PL36614B1 - - Google Patents

Download PDF

Info

Publication number
PL36614B1
PL36614B1 PL36614A PL3661454A PL36614B1 PL 36614 B1 PL36614 B1 PL 36614B1 PL 36614 A PL36614 A PL 36614A PL 3661454 A PL3661454 A PL 3661454A PL 36614 B1 PL36614 B1 PL 36614B1
Authority
PL
Poland
Prior art keywords
column
bearing capacity
compressive forces
weight
calculated according
Prior art date
Application number
PL36614A
Other languages
Polish (pl)
Filing date
Publication date
Publication of PL36614B1 publication Critical patent/PL36614B1/pl
Application filed filed Critical

Links

Description

Przedmiotem wynalazku jest sposób powiek¬ szania nosnosci sciskanych elementów konstruk¬ cyjnych za pomoca przeniesienia sil sciskajacych na ciecz, zawarta wewnatrz tych elementów.Dotychczas stosowany sposób przeniesienia sil sciskajacych sciskanym elementom konstrukcyj¬ nym, zwanym dalej dla krótkosci slupami, posia¬ da te niedogodnosc, ze przy pewnej wielkosci sil sciskajacych slupy ulegaja wyboczeniu. Sila sci¬ skajaca P, powodujaca wyboczenie slupa, czyli nosnosc slupa jest równa: P = ^KF, (1) gdzie K oznacza wytrzymalosc materialu, z któ¬ rego slup jest wykonany, F oznacza pole przekro¬ ju poprzecznego slupa, P oznacza tak zwany wspólczynnik zmniejszajacy, zalezny od smuklo- sci slupa. Wspólczynnik /? jest zawsze mniejszy od 1 i na przyklad dla slupów, wykonanych ze *) Wlasciciel patentu oswiadczyl, ze twórca wynalazku jest dr inz. Jerzy Nowinski. stali konstrukcyjnej OW 37 (Polskie PN/B-190.Projekt. Listopad 1949 r.), wynosi od 0,320 do 0,190 dla slupów o smuklosci równej .od 150 do 200.Zatem nosnosc slupów smuklych moze byc kilka¬ krotnie mniejsza od ich nosnosci w przypadku, gdyby wyiboczenie tych slupów nie zachodzilo.Niedogodnosc te usuwa sposób wedlug wynalaz¬ ku, przedstawiony tytulem przyikladu na rysun¬ ku, na którym fig. 1 przedstawila przekrój po¬ przeczny slupa w ksztalcie rury, fig. 2 zas — jego przekrój podluzny.Nowoscia zasadnicza wynalazku jest przeniesie¬ nie sil sciskajacych przez ciecz, zawarta wewnatrz slupa.Wedlug wynalazku jedna z sil sciskajacych P (lub obie sily sciskajace) jest przeniesiona przez tlok 2, który cisnie na ciecz 3, zawarta w rurze 1 o srednicy wewnetrznej 2 r, srednicy zewnetrznej 2 R i dlugosci l. Dolna czesc rury jest zamknieta szczelnie dnem 4 lub posiada tlok, podobny do tloka 2.W przypadkach, w których dzialania ciezaru wlasnego slupa rurowego i ciezaru cieczy w nim zawartej mozna nie uwzgledniac, nosnosc slupa rurowego wedlug wynalazku wynosi: P = K Jt (R—r) r, (2) -nosnosc zas tego samego slupa, obliczona wedlug dotychczas obowiazujacego sposobu, wynosi na podstawie podanego wyzej wzoru (1) P = K Jt (R—r) . /? (R + r). (3) Ze wzorów 2 oraz 3 wynika, ze nosnosc slupa rurowego wedlug wynalazku jest r/A(R + r) razy wieksza od nosnosci tego samego slupa, obliczo¬ nej wedlug dotychczas obowiazujacego sposobu.Na przyklad dla slupa rurowego ze stali kon¬ strukcyjnej OW 37, zamocowanego przygubowo na obu koncach i posiadajacego smuklosc równa 3QQ oraz scianki o grubosci równej 1/10 polowy srednicy wewnetrznej rury 2 r, jest nosnosc slu¬ pa wedlug wynalazku przeszlo 2l/2 raza wieksza od nosnosci tego samego slupa, obliczonej wedlug dotychczas obowiazujacego sposobu.Jezeli trzeba uwzglednic dzialanie ciezaru wlasnego slupa oraz ciezaru cieczy w nim zawar¬ tej, to stosunek nosnosci slupa wedlug wynalaz¬ ku do nosnosci slupa, obliczonej wedlug dotych¬ czas obowiazujacego sposobu, powieksza sie jesz¬ cze bardziej.Istotnie, jezeli trzeba uwzglednic dzialanie cie¬ zaru wlasnego slupa, to nosnosc slupa, obliczona wedlug dotychczas obowiazujacego sposobu wy¬ nosi: P = £KF — -2-' (4) gdzie Q oznacza ciezar wlasny slupa. (A. N. Din- nik. Ustojcziwosc uprugich sistem. Wydawnictwo Akademii Nauk Z. S. R. R. Moskwa — Leningrad, 1951 r. Strona 60). Ze wzoru 4 wynika, ze gdy smuklosc slupa jest tak duza, ze jego ciezar wla¬ sny jest równy podwójnej wielkosci /?KF, to nos¬ nosc slupa, obliczona wedlug dotychczas obowia¬ zujacego sposobu, jest równa zeru. Natomiast nosnosc slupa wedlug wynalazku w tym samym szczególnym przypadku istnieje i bez uwzglednie¬ nia dwukierunkowego stanu naprezenia, zmniej¬ sza sie o ciezar cieczy, zawartej wewnatrz slupa rurowego. PLThe subject of the invention is a method of increasing the load-bearing capacity of compressed structural elements by transferring the compressive forces to the liquid inside these elements. The hitherto used method of transferring the compressive forces to the compressed structural elements, hereinafter referred to as the shortness of the poles, has this disadvantage, that at a certain amount of compressive forces, the poles buckle. The shear force P, causing the column to buckle, i.e. the bearing capacity of the column is equal to: P = KF, (1) where K is the strength of the material from which the column is made, F is the cross-sectional area of the column, P means yes called the reducing factor, depending on the slenderness of the column. Ratio /? it is always smaller than 1 and, for example, for poles made of *) The patent owner stated that the inventor is Dr. Jerzy Nowinski. of structural steel OW 37 (Polish PN / B-190. Project. November 1949), ranges from 0.320 to 0.190 for poles with a slenderness of 150 to 200. Therefore, the bearing capacity of slender poles may be several times lower than their bearing capacity in This inconvenience is removed by the method according to the invention, shown by the title of the example in the drawing, in which Fig. 1 shows the cross-section of the column in the form of a tube, and Fig. 2 - its longitudinal section. The main novelty of the invention is the transfer of compressive forces by the liquid inside the column. According to the invention, one of the compressive forces P (or both of them) is transferred by the piston 2, which presses on the liquid 3 contained in the tube 1 with an inner diameter of 2 mm. , external diameter 2 R and length l. The lower part of the pipe is sealed with a bottom 4 or has a piston, similar to a piston 2. In cases where the effect of the dead weight of the tubular column and the weight of the liquid contained therein cannot be taking into account that the load-bearing capacity of a tubular column according to the invention is: P = K Jt (R-r) r, (2) -the load-bearing capacity of the same column, calculated according to the currently applicable method, is based on the above formula (1) P = K Jt ( R — r). /? (R + r). (3) Formulas 2 and 3 show that the resistance of a tubular column according to the invention is r / A (R + r) times greater than the resistance of the same column, calculated according to the previously binding method. For example, for a tubular column made of steel, Structural OW 37, bent at both ends and having a slenderness equal to 3QQ and a wall thickness equal to 1/10 of a half of the internal diameter of the pipe 2 r, the carrying capacity of the pipe according to the invention is more than 2l / 2 times greater than that of the same pole, calculated according to If one has to take into account the effect of the dead weight of the column and the weight of the liquid contained therein, the ratio of the column bearing capacity according to the invention to the column bearing capacity, calculated according to the previously valid method, is increased even more. Indeed, if it is necessary to take into account the effect of the own weight of the column, the bearing capacity of the column, calculated according to the method in force so far, is: P = £ KF - -2- '(4) where Q is the dead weight of the column and. (A. N. Dinnik. Ustojczivosc uprugich sistem. Publishing House of the Academy of Sciences Z. S. R. R. Moscow - Leningrad, 1951. Page 60). Formula 4 shows that when the slenderness of the column is so great that its own weight is equal to twice the value of KF, then the load capacity of the column, calculated according to the current method, is equal to zero. On the other hand, the bearing capacity of the column according to the invention in the same particular case exists and, without taking into account the two-way state of stress, is reduced by the weight of the liquid contained inside the tubular column. PL

Claims (1)

1. Zastrzezenie patentowe Sposób frowiefciszeinia nosnosci sciskanych ele¬ mentów konstrukcyjnych, znamienny tym, ze dzialanie sil sciskajacych jest przenoszone na ciecz (3), zawarta wewnatrz elementu (1), za pomoca tiloków (2). Instytut T seto miki BudowlanejDo opisu patentowego nr 36614 Fiff.l i ^ i. _£il_ n X '^ \ p Fig. Z „Prasa" St-gród, 3974. 3. 9. 54 — R-5-17232 BI bezdrz. 100 g. — 150 PLClaim 1. A method for ensuring the bearing capacity of compressed construction elements, characterized in that the action of the compressive forces is transferred to the liquid (3) contained inside the element (1) by means of tilocks (2). Building Research Institute T seto mica To patent description No. 36614 Fiff.li ^ i. Fig. Z "Press" St-gród, 3974. 3. 9. 54 - R-5-17232 BI bezdrz. 100 g. - 150 PL
PL36614A 1954-11-20 PL36614B1 (en)

Publications (1)

Publication Number Publication Date
PL36614B1 true PL36614B1 (en) 1953-10-31

Family

ID=

Similar Documents

Publication Publication Date Title
PL36614B1 (en)
IT1222016B (en) SELF-ADJUSTABLE DEVICE FOR THE MUTUAL LOCKING OF TWO BODIES, IN WHICH THE DISTANCE BETWEEN THE ANCHORING BRIDGES OF ONE BODY TO THE OTHER CAN BE VARIABLE
SU580292A1 (en) High-strength reinforced concrete element for compression load
DE3915403A1 (en) High-temperature superconductor in wire or strip form, based on a superconducting ceramic of the class (La, Ba, Sr)2CuO4 or of the class (Y, RE)Ba2Cu3O6.5+y, with RE = rare earth and 0 < y < 1, and a mechanical support and a normal conductor
AT246765B (en) Avalanche barriers
CN215441419U (en) Multistage spacing cable shock mount
GB1340059A (en) Building structure
CN204174732U (en) Two bar architectural structure systems
DE3915402A1 (en) Flexible high-temperature superconductor in wire form, based on a superconducting ceramic material of the class (La, Ba, Sr)2CuO4 or of the class (Y, RE)Ba2Cu3O6.5+y, with RE = rare earth and 0 < y < 1, and a mechanical support
FRISCH-FAY Influence of tensile additives to the stability of masonry structures
Bihari Examination of the settlement of Myotis myotis in an abandoned mine
SU372304A1 (en) BMBLIOTE'LA
RU93008778A (en) METHOD OF CONSTRUCTION OF EXTERNAL WALLS AND CONSTRUCTION ELEMENT FOR CONSTRUCTION OF EXTERNAL WALLS
DE766233C (en) Ski backpack
Lopez Comparison of Safety Levels of Reinforced Masonry and Concrete Walls Using Reliability Analysis
SU823592A1 (en) Rope-type anchorage roof support
DE966399C (en) Flanged gutter profiles for the extension of the route
DE2021429A1 (en) Hydropneumatic and pneumatic vehicle suspensions
YAO Vlasov small deflection theory and galerkin method are used to obtain the buckling strength of truncated hemispheres, under axial tensile loads
IT1264493B1 (en) ANTI-SEISMIC BRACING WITH BUTTERFLY HEAT SINKS FOR REINFORCED CONCRETE BUILDINGS.
DE2608496A1 (en) Highly heat insulating load bearing composite masonry - comprising pref. insulation filled perforated bricks and special mortar
SU678249A1 (en) Quick-disconnection pipe coupling
Soong Response Modification Coefficient Using Natural Period
SU138784A1 (en) Battery Pack
DE1768343U (en) ALLOY PROFILES FOR WALL POSTS FOR ONE STOREY BUILDINGS.