OA17014A - Pesticidal compositions and processes related thereto. - Google Patents

Pesticidal compositions and processes related thereto. Download PDF

Info

Publication number
OA17014A
OA17014A OA1201400346 OA17014A OA 17014 A OA17014 A OA 17014A OA 1201400346 OA1201400346 OA 1201400346 OA 17014 A OA17014 A OA 17014A
Authority
OA
OAPI
Prior art keywords
alkyl
haloalkyl
phenyl
alkenyl
crc
Prior art date
Application number
OA1201400346
Inventor
Lindsey G. Fischer
Gary D. Crouse
Thomas C. Sparks
Erich W. BAUM
Original Assignee
Dow Agrosciences Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Agrosciences Llc filed Critical Dow Agrosciences Llc
Publication of OA17014A publication Critical patent/OA17014A/en

Links

Abstract

This document discloses molecules having the following formulas (formula one & formula two and formula three). The Ar1, Het, Ar2, R1, R2, R3, R4, and R5 are further described herein.

Description

PESTICIDAL COMPOSITIONS AND PROCESSES RELATED THERETO CROSS-REFERENCE TO RELATED APPLICATIONS
Thls Application daims priority from U.S. provisional application 61/594,107 filed on February 2, 2012. Tho entire content of thls provisional application is hereby incorporated by référencé into thls Application.
FIELD OF THE INVENTION
The Invention disclosed in thls document is related to the field of processes to produce molécules that are useful as pesticides (e.g., acaricides, insecticides, mollusdcides, and nematiddes), such molécules, and processes of using such molécules to contrai pests.
BACKGROUND OF THE INVENTION
Pests cause millions of human deaths around the world each year. Furthermore, there are more than ten thousand species of pests that cause losses in agriculture. The world-wide agricultural losses amount to billions of U.S. dollars each year.
Termites cause damage to ail kinds of private and public structures. The world-wide termite damage losses amount to billions of U.S. dollars each year.
Stored food pests eat and adulterate stored food. The world-wide stored food losses amount to billions of U.S. dollars each year, but more importantly, deprive people of needed food.
There is an acute need for new pesticides. Certain pests are developing résistance to pesticides in current use. Hundreds of pest species are résistant to one or more pesticides. The development of résistance to some of the older pesticides, such as DDT, the carbamates, and the organophosphates, is well known, but résistance has even developed to some of the newer pesticides.
Therefore, for many reasons, including the above reasons, a need exists for new pesticides.
DEFINITIONS
The examples given in the définitions are generally non-exhaustive and must not be construed as limiting the Invention disclosed In this document. It Is understood that a substituent should comply with chemical bonding rules and steric compatibility constraints in relation to the particular molécule to which it is attached.
Acarlclde Group Is defîned under the heading ACARICIDES.
Al Group* Is defîned after the place In this document where the Herbicide Group is defîned.
‘Alkenyl* means an acyclic, unsaturated (at least one carbon-carbon double bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, vinyl, allyl, butenyl, pentenyl, and hexenyl.
Aikenyloxy means an alkenyl further consisting of a carbon-oxygen single bond, for example, allyloxy, butenyloxy, pentenyloxy, hexenyloxy.
Alkoxy means an alkyl further consisting of a carbon-oxygen single bond, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, and tert-butoxy.
Alkyl means an acyclic, saturated, branched or unbranched, substituent consisting of carbon and hydrogen, for example, methyl, ethyl, propyl, Isopropyl, butyl, and tert-butyl.
“Alkynyl means an acyclic, unsaturated (at least one carbon-carbon triple bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, ethynyl, propargyl, butynyl, and pentynyl.
‘Alkynyloxy means an alkynyl further consisting of a carbon-oxygen single bond, for example, pentynyloxy, hexynyloxy, heptynyloxy, and octynyloxy.
“Aryl means a cyclic, aromatic substituent consisting of hydrogen and carbon, for example, phenyl, naphthyl, and blphenyl.
Cycloalkenyl* means a monocyclic or polycyclîc, unsaturated (at least one carbon-carbon double bond) substituent consisting of carbon and hydrogen, for example, cyciobutenyl, cyclopentenyl, cyclohexenyl, norbomenyl, bicyclo[2.2.2]octenyl, tetrahydronaphthyl, hexahydronaphthyl, and octahydronaphthyl.
Cycioalkenyloxy* means a cycloalkenyl further consisting of a carbon-oxygen single bond, for example, cyclobutenyloxy, cydopentenyloxy, norbomenyloxy, and bicyclo[2.2.2]octenyloxy.
Cycloalkyl means a monocyclic or polycyclîc, saturated substituent consisting of carbon and hydrogen, for example, cyclopropyl, cyclobutyl, cydopentyl, norbomyl, bicydo[2.2.2]octyl, and decahydronaphthyl.
Cycloalkoxy means a cycloalkyl further consisting of a carbon-oxygen single bond, for example, cyclopropyloxy, cydobutyloxy, cydopentyloxy, norbomyloxy, and bicyclo[2.2.2]octyloxy.
Funglclde Group Is defîned under the heading FUNGICIDES.
Halo means fluoro, chloro, bromo, and iodo.
“Haloalkoxy* means an alkoxy further consisting of, from one to the maximum possible number of identical or different, halos, for example, fluoromethoxy, trifluoromethoxy, 2,2difluoropropoxy, chloromethoxy, trichloromethoxy, 1,1,2,2-tetrafluoroethoxy, and pentafluoroethoxy.
’Haloalkyl means an alkyl further consisting of, from one to the maximum possible number of, identical or different, halos, for example, fluoromethyl, trifluoromethyl, 2,2-difluoropropyl, chloromethyl, trichloromethyl, and 1,1,2,2-tetrafluoroethyl.
“Herbicide Group’ is defined underthe heading “HERBICIDES?
“HeterocyclyT means a cydic substituent that may be fully saturated, partially unsaturated, or fully unsaturated, where the cyclic structure contains at least one carbon and at least one heteroatom, where said heteroatom is nitrogen, sulfur, oroxygen. Exemples of aromatic heterocydyls inciude, but are not limited to, benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazoiyl cinnolinyl, furanyl, indazoiyl, indolyl, imidazolyl, isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolinyl, oxazolyl, phthalazlnyl, pyrazinyl, pyrazolinyl, pyrazoiyl, pyridazinyl, pyridyl, pyrimîdinyl, pyrrolyl, quinazolinyl, quinoiinyl, quinoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl, triazinyl, and triazolyl. Examples of fuliy saturated heterocydyls inciude, but are not limited to, piperazinyl, piperidinyl, morphollnyl, pyrrolidinyl, tetrahydrofuranyl, and tetrahydropyranyl. Examples of partially unsaturated heterocydyls indude, but are not limited to, 1,2,3,4-tetrahydro-quinolinyl, 4,5-dihydro-oxazoiyl, 4,5dihydro-1H-pyrazolyl, 4,5-dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]-oxadiazolyl.
“Insecticide Group’ is defined under the heading 'INSECTICIDES.* “Nematlcide Group* is defined underthe heading NEMATICIDES ’Synergist Group’ is defined under the heading “SYNERGISTIC MIXTURES AND SYNERGISTS'
DETAILED DESCRIPTION OF THE INVENTION
This document disdoses molécules having the following formulas (“Formula One’ &“Formula Two* and Formula Three): (In the following formulas the nîtrogens are numbered 1, 2, and 3, solely for the purpose of identifying them and being able to refer to them throughout this document for cia rit y purposes)
Formula l
YS'R3
RI Hck -N2^S Arf NI \
N3-R5
R4
Formula 2
Ar2 zR5 . ,N2 's NI Y
N3 R4
Formula 3 wherein:
(a) An is (1) furanyl, phenyl, pyrîdazînyl, pyridyl, pyrimidinyl, thienyl, or (2) substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, or substituted thienyl, wherein said substituted furanyl, substituted phenyl, substituted pyrldazinyl, substituted pyridyl, substituted pyrimidinyl, and substituted thienyl, hâve one or more substituents independently selected from H, F, Ci, Br, I, CN, NO2, Ci-C« alkyl, Cj-Cj haloalkyl, C3-C« cycloalkyl, Ca-Ce halocycloalkyl, Ca-Ce cydoalkoxy, C3-C« halocycioalkoxy, Cf-Ce alkoxy, Ct-CB haloalkoxy, Cr C« alkenyl, CrC« alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrC« haloalkyl), OSO2(CrC« alkyl), OSO2(CrC« haloalkyl), C(=O)NRKRy, (0,-0« alkyl)NR,Ry, 0(=0)(0,-0β alkyl), Ο(=Ο)Ο(Ο,-Οβ alkyl). C(=0)(C1-Ce haloalkyl), 0(=0)0( 0,-0« haloalkyl), C(=O)(Ca-Ce cycloalkyl), C(=O)O(Ca-Ce cycloalkyl), 0(=0)(0ΐ-0β alkenyl), 0(=0)0(0^ alkenyl), (0,-0« alkyl)O(Ci-Ce alkyl), (CrC« alkyl)S(C,-Ce alkyl), 0(=0)(0,-0« alkyl)C(=O)O(CrC« alkyl), phenyl, phenoxy, substituted phenyl, and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents independently selected from H, F, Cl, Br, I, CN, N02, C,-C« alkyl, Ci-C« haloalkyl, C3C« cycloalkyl, Ca-Ce halocycloalkyl, C3-C« cydoalkoxy, CyCe halocydoalkoxy, C,-C« alkoxy, C,-C« haloalkoxy, CrC« alkenyl, CrC« alkynyl, S(=O)n(C,-C« alkyl), S(=O)n(C,-C« haloalkyl), OSO2(C,-Ce alkyl), OSO2(C,-C« haloalkyl). C(=O)NRMR¥, (C,-C« alkyi)NR,Ry. C(=0)(C,-C« alkyl), C(=0)0(C,-C« alkyl), C(=0)(C,-C« haloalkyl), C(=0)0(C,-C« haloalkyl). 0(=0)(0,^ cycloalkyl). C(=0)0(C3-C« cycloalkyl), C(=0)(C2-C« alkenyl), C(=O)O(C2-C« alkenyl), (CrC« alkyl)O(CrC« alkyl), (C,-C« alkyOStC^Ce alkyl), C(=0)(CrCe alkyl)C(=O)O(Ci-C« alkyl) phenyl, and phenoxy;
(b) Het is a 5 or 6 membered, saturated or unsaturated, heterocyciic ring, containing one or more heteroatoms Independently selected from nîtrogen, sulfur, or oxygen, and where Ar, and Ar2 are not ortho to each other (but may be meta or para, such as, for a five membered ring they are 1,3 and for a 6 membered ring they are elther 1,3 or 1,4), and where said heterocyciic ring may also be substituted with one or more substîtuents Independently selected from H, F, Ci, Br, I, CN, NO2, oxo, CrCe alkyl, CrCe haloalkyl, C3-C9 cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cycloalkoxy, Qj-Ce halocycloalkoxy, Ci-Ce alkoxy, Ct-Ce haloalkoxy, C2-Ce alkenyl, Cz-Ce alkynyl, S(-O)n(CrCe alkyl), S(-O)n(C,-Ce haloalkyl), OSO^CpCe alkyl), OSO2(CrCe haloalkyl), C(=O)NRxRy, (Ci-Ce alkyl)NRxRy, C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(Ci-Ce haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-C9 cycloalkyl), C(=0)(CrCe alkenyl), C(=O)O(Cz-Ce alkenyl), (Ci-Ce alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=O)(Ci-Ce alkyt)C(=O)O(Ci-Ce alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substitueras Independently selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, CrCe haloalkyl, C3Ce cycloalkyl, C3-CB halocycloalkyl, CrCe cycloalkoxy, CrCe halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, CrCe alkenyl, Cz-Ce alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSOz(Ci-CB alkyl), OSOz(CrCe haloalkyl), C(=O)H, C(=O)NRxRy, (C,-Ce alkyl)NRxRy, C(=O)(Ci-Ce alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-C9 cycloalkyl), C(=O)(Cz-Ce alkenyl), C(=O)O(Cz-Ce alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=O)(Ci-Ce alkyl)C(=O)O(Ci-Ce alkyl), phenyl, and phenoxy;
(c) Ar2 Is (1) furanyl, phenyl, pyridazinyl, pyridyl, pyrimldinyl, thîenyl, or (2) substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimldinyl, or substituted thîenyl, wherein sald substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, and substituted thîenyl, hâve one or more substîtuents independently selected from H, F, Cl, Br, I, CN, NO2, Ci-Ce alkyl, Ci-Ce haloalkyl, C3-Ce cycloalkyl, Cs-Ce halocycloalkyl, C^Ce cycloalkoxy, Qj-Ce halocycloalkoxy, CrCe alkoxy, Ci-Ce haloalkoxy, CzCe alkenyl, Cz-C9 alkynyl, S(=O)n(Ci-Ce alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrCe alkyl), OSOz(CrCe haloalkyl), C(=O)NRXRP (CrCe alkyl)NRxRp C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(Cz-Cfl alkenyl), C(=O)O(C2-Ce alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alky1)S(C,-Ce alkyl), 0(=0)(0,-08 alky1)C(=O)O(CrCe alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy, whereln such substituted phenyl and substituted phenoxy hâve one or more substituents independently selected from H, F, Cl, Br, I, CN, N02, 0,-0 alkyl, 0,-0 haloalkyl, OCe cycloalkyl, C3-Ce halocycioaikyl, O-Ce cycloalkoxy, 0-0 halocycloalkoxy, C,-Ce alkoxy, C,-Ce haloalkoxy, C2-Cfl aikenyl, C2-O alkynyl, S(=0)n(C,-O alkyl), S(=O)n(C1-Ce haloalkyl), OSO2(C,-Ce alkyl), OSO2(C,-Ce haloalkyl), C(=O)H, C(=O)NRxRy, (0,-0 aiky1)NRxRy, 0(=0)(0,-0, alkyl), 0(=0)0(0,-O alkyl), 0(=0)(0,-0β haloalkyl), 0(=0)0(0,-O haloalkyl), 0(=0)(03-0β cycloalkyl), C(=O)O(Ca-Ce cycloalkyl), 0(=0)(0,-0β haloalkyl), 0(=0)(0-06 aikenyl), 0(=0)0(Ο-0β aikenyl), (C,-Ce alkyl)O(C,-Ce alkyl). (C,-Ce aikyl)S(C,-Ce alkyl), 0(=0)(0,-Ce alkyl)C(=O)O(C,-Ce alkyl), phenyl, and phenoxy;
(d) R1 is selected from H, CN, F, Cl, Br, I, C,-Ce alkyl, 0-0 cycloalkyl, C3-O cycloalkoxy, 0,-0 alkoxy, C2-O aikenyl, C2-O alkynyl, S(=0)n(C,-O alkyl), 0S02(C,-O alkyl), C(=O)NRxRy, (C,-Ce alkyl)NRxRy, Ο(=Ο)(Ο,-Οβ alkyl), C(=O)O(C,-Ce alkyl), C(=0)(O-O cycloalkyl), C(=0)0(O-Ce cycloalkyl), C(=O)(C2-Ce aikenyl), C(=0)0(O-O aikenyl), (Ο,-Οβ aikyl)O(CrCe alkyl), (0,-0 alkyl)S(C,-O alkyl), Ο(=Ο)(Ο,·Οβ aikyl)C(=O)O(C,-Ce alkyl), phenyl, or phenoxy, whereln each alkyl, cycloalkyl, cycloalkoxy, alkoxy, aikenyl, alkynyl, phenyl, and phenoxy, are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, N02, oxo, 0-0 alkyl, CrO haloalkyl, 0-0 cycloalkyl, 0-0 halocycioaikyl, 0-0 cycloalkoxy, C3-O halocycloalkoxy, Ο,-Οβ alkoxy, C,-Ce haloalkoxy, 0-0 aikenyl, CrCe alkynyl, S(=O)n(C1-Ce alkyl). S(=0)n(C,-O haloalkyl), OSO2(C,-Ce alkyl). 0S02(C,-O haloalkyl), C(=O)NRxRy, (0,-0 alkyl)NRxRy, 0(=0)(0,-0 alkyl), 0(=0)0(0,-O alkyl). 0(=0)(0,-O haloalkyl), C(=O)O(C,-Ce haloalkyl), 0(=0)(03-0 cycloalkyl), C(=0)0(O-O cycloalkyl), 0(=0)(02-0β aikenyl), C(=O)O(CrCe aikenyl). (C,-Ce alkyf)O(C,-Ce alkyl), (Ο,-Οβ alkyl)S(Ci-O alkyl), 0(=0)(0,-Ce alkyl)C(=O)O(Ci-Ce alkyl), phenyl, and phenoxy, (e) R2 is H, C,-Ce alkyl, 0-0 cycloalkyl, CrO aikenyl, C2-Ce alkynyl, C(=O)H, C(=O)(C,-Ce alkyl), 0(=0)0(0,-Ce alkyl), C(=0)(O-O cycloalkyl), C(=0)0(O-O cycloalkyl), C(=O)(C2-Ce aikenyl), C(=0)0(CrO aikenyl), (0,-0 alkyl)O(C,-Ce alkyl). (0,-0 alkyl)S(C,-O alkyl), 0(=0)(0,-O alky1)C(=0)0(C,-O alkyl), phenyl, Ο,-Οβ alkylphenyl, C,-Ce alkyl-O-phenyl, C(=0)Het-1, Het-1, 0,-0 alkylHet-1, or 0,-0 alkyl-O-Het-1, whereln each alkyl, cycloalkyl, aikenyl, alkynyl, phenyl, and Het-1 are optionally substîtuted with one or more substituents independently selected from F, Cl, Br, I, CN, NO2, NRxRy, CrG alkyl, CrG haloalkyl, C3-G cycloalkyl. G-G halocycloalkyl, G-G cycloalkoxy, G-G halocycloalkoxy, CrG alkoxy, G-G haloalkoxy, C2-Ce alkenyl, G-G cycloalkenyl, C2-CB atkynyi, S(=O)n(Ci-Ce alkyl), S(=O)n(C1-CB haloalkyl). OSO2(G-G alkyl), OSO2(CrG haloalkyl), C(=O)H, C(=O)NRxRy. (G-G alkyl)NRxRy, C(=O)(G-G alkyl). C(=O)O(CrG alkyl), C(=O)(G-G haloalkyl). C(=O)O(CrG haloalkyl), C(=O)(G-G cycloalkyl). C(=O)O(G-G cycloalkyl). C(=O)(G-G alkenyl), C(=O)O(CrG alkenyl). (G-G alkyl)O(G-G alkyl). (G-G alkyl)S(G-G alkyl), C(=O)(CrG alkyl)C(=O)O(G-G alkyl), phenyl, phenoxy, and Het-1 ;
(f) R3 Is G-G alkyl, C3-G cycloalkyl, CrG alkenyl, G-G alkynyl, C(=O)H, C(=O)(GG alkyl). C(=O)O(G-G alkyl), C(=O)(G-G cycloalkyl), C(=O)O(C3-G cycloalkyl). C(=O)(G-Ce alkenyl), C(=O)O(G-G alkenyl), (C,-G alkyl)O(G-G alkyl), (CrG alkyl)S(G-G alkyl), C(=O)(Cr G alkyl)C(=O)O(G-G alkyl), phenyl, G-G alkylphenyl, CrG alkyl-O-phenyl, C(=O)Het-1, Het-1, CrG alkylHet-1, CrCealkyl-O-C(=O)CrG alkyl-O-G-G alkyl, CrGalkyl-O-C(=O)G-G alkyl-OG-G alkyl-O- G-Galkyl, G-G alkyl-O-C(~O)G-Cj alkyl-O-G-G) haloalkyl, G-Gjalkyl-O* C(=O)CrG alkyl-N(Rx)C(=O)-O-phenyl, G-Galkyl-O-C(=O)G-G alkyt-N(Rx)C(=O)-O-CrG alkylphenyl. G-G alkylC(=O)N(Rx)CrG alkyl. CrGalkylC(=O)N(Rx)G-G alkylHet-1 C(=O)-O-Cr G alkyl, CrGalkylC(=O)N(Rx)G-G alkylHet-1. G-GalkylC(=O)Het-1, G-GalkylC(=O)N(Rx)GCe alkyl(N(Rx)(Ry))(C(=O)OH), G-GalkylC(=O)N(Rx)G-G alkylNtR.XR,). CrG alkylC(=O)N(Rx)G-G alkylN(Rx)C(=O)-O-G-G alkyl, CrGalkylC(=O)N(Rx)G-G alkyl(N(Rx)C(=O)-O-G-G alkyl)(C(=O)OH), C,-GalkylC(=O)Ket-1C(=O)-O-G-G alkyl, CrG alkyl· O-C(=O)-O-G-G alkyl, C,-G alkyl-O-C(=O)G-G alkyl, CrGalkyl-O-C(=O)G-G cycloalkyl, G-G alkyl-O-C(=O)Het-1. CrGalkyl-O-C(=O)G-G alkyl-N(Rx)C(=O)-O-CrG alkyl, CrG alkyl-NRxRy, or CrG alkyl-O-Het-1, wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substîtuted with one or more substituents independently selected from F, Cl, Br, I, CN. NO2, NRxRy, G-G alkyl, CrG haloalkyl, C3-C6 cycloalkyl, C3-G halocycloalkyl, C3-C6 cycloalkoxy, G-G halocycloalkoxy, CrG aikoxy, CrG haloalkoxy, CrG alkenyl, CrG cycloalkenyl, CrG alkynyl, S(=O)n(G-G alkyl), S(=O)n(G-G haloalkyl), OSO2(G-G alkyl). OSO2(CrG haloalkyl), C(=O)H, C(=O)OH, C(=O)NRxRy, (CrG alkyl)NRxRy, C(=O)(G-G alkyl). C(=O)O(G-G alkyl), C(=O)(G-G haloalkyl). C(=O)O(CrG haloalkyl), C(=O)(CrG cycloalkyl), C(=O)O(GrG cycloalkyl), C(=O)(Cr G alkenyl). C(=O)O(CrG alkenyl), (G-G alkyl)O(CrG alkyl), (CrG alkyl)S(CrG alkyl), C(=O)(G-G alkyl)C(=O)O(G-G alkyl), phenyl, phenoxy, Si(CrG alkyl)3, S(=O)nNRxRy, and Het-1;
(g) R4 is H, CrCe aîkyl, Ca-Ce cycloalkyl, CrCe alkenyl, C2-Ce alkynyl, C(=O)H, 0(=0)(0,-0,, alkyl), 0(=0)0(0,-08 alkyl), C(=0)(C3-Ce cycloalkyl), C(=0)0(C3-Ce cycloalkyl), C(=O)(Cj-Ce alkenyl). 0(=0)0(02-0β alkenyl), (C,-Ce alkyl)O(C,-Ce alkyl), (0,-Ce alky1)S(Ci-Ce alkyl), C(=0)(C,-Ce alkyl)C(=O)O(C,-Ce alkyl), phenyl, 0,-Ce alkylphenyl, C,-Ce alkyl-O-phenyl, C(=0)Het-1, Het-1, C,-Ce alkylHet-1, or C,-Ce alkyl-O-Het-1, whereln each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substituted with one or more substituents independently selected from F, Cl, Br, I, CN, N02, NRxRy, C,-Ce alkyl, C,-Ce haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cycloalkoxy, CrCe halocycloalkoxy, 0,-Ce alkoxy, C,-Ce haloalkoxy, CrCe alkenyl, C3-Cfl cycloalkenyl, C^Ce alkynyl, S(=O)n(C,-Ce alkyl), S(=O)n(C,-Ce haloalkyl), OSO2(C,-Ce alkyl), OSO2(C,-Ce haloalkyl), C(=O)H, C(=O)NRxRy, (Ο,-Οβ alky1)NRïRy, C(=O)(C,-Ce alkyl), Ο(=Ο)Ο(Ο,-Οβ alkyl), 0(=0)(0,-0β haloalkyl), C(=O)O(C,-Ce haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), 0(=0)(0^-08 alkenyl), C(=O)O(CrCe alkenyl), (0,-Ce alkyt)O(Ci-Ce alkyl), (0,-Ce alkylJS^-Ce alkyl), 0(=0)(0,-Ce alkyt)C(=O)O(C,-Ce alkyl), phenyl, phenoxy, and Het-1;
(h) R5 Is a 2 to 4 membered saturated or unsaturated hydrocarbyl linkage where said linkage may also be substituted with at least one OH and optionally one or more substituents selected from F, Cl, Br, I, CN, N02, oxo, NRxRy, Ο,-Οβ alkyl, C,-Ce haloalkyl, CrCe cycloalkyl, C3-CB halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, 0,-Ce alkoxy, C,-Ce haloalkoxy, C^Ce alkenyl, C3-CB cycloalkenyl, CrCe alkynyl, S(=O)n(C,-Ce alkyl), S(=O)n(C,-Ce haloalkyl), OSO2(Cr Ce alkyl). OSO2(C,-Ce haloalkyl), C(=O)H, C(=O)OH, C(=O)NRxRy, (0,-Ce alkyl)NRxRy. C(=O)(C,-Ce alkyl), 0(=0)0(0,-0β alkyl), Ο(=Ο)(Ο,-Οβ haloalkyl). C(=O)O(C,-Ce haloalkyl), 0(=0)(θ3-0β cycloalkyl), C(=0)0(C3-Ce cycloalkyl), C(=0)(CrCe alkenyl), 0(=0)0(02-08 alkenyl), (C,-Ce alkyf)O(Ci-Ce alkyl). (C,-Ce alkyl)S(C,-Ce alkyl), 0(=0)(0,-Ce alkyl)C(=O)O(C,-Ce alkyl), phenyl, phenoxy, and Het-1, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, phenoxy, and Het-1, are optionally substituted with one or more substituents independently selected from F, Cl, Br, I, CN, N02, oxo, NRxRy, C,-Ce alkyl, C,-Ce haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, Ο,-Οβ alkoxy, C,-Ce haloalkoxy, CrCe alkenyl, C3-C6 cycloalkenyl, C2-Ce alkynyl, 5(=Ο)η(Ο,-Οβ alkyl), S(=0)n(CrCe haloalkyl), OSO2(C,Ce alkyl), OSO2(C,-Ce haloalkyl), C(=O)H, C(=O)OH, C(=O)NRxRy, (CrCe alkyl)NRxRy, 0(=0)(0,-0β alkyl). 0(=0)0(0,-0β alkyl), C(=O)(C,-Ce haloalkyl), 0(=0)0(0,-Ce haloalkyl), C(=0)(CrCe cycloalkyl), 0(=0)0(03-0β cycloalkyl), 0(=0)(0^ alkenyl), C(=O)O(C2-Ce alkenyl), (C,-Ce alkyl)O(C,-Ce alkyl), (C,-Ce alkyl)S(C,-Ce alkyl), 0(=0)(0,-0β 3^νΙ)Ο(=Ο)Ο(Ο,-Οβ alkyl), phenyl, halophenyl, phenoxy, and Het-1;
(i) n= 0, 1,or2;
(j) R» and Ry are Independently selected from H, Ci-Ce alkyt, CrC8 haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycioalkyl, Cr-Ce alkenyl, Cj-Ce alkynyl, S(=O)n(C,-Ce alkyl), S(=O)n(C,-Ce haloalkyl), OSO2(Ci-Ce alkyî). OSO2(C,-Ce haloalkyl), C(=O)H, C(=O)(C,-Ce alkyl), 0(=0)0(0,-0(, alkyl), Ο(=Ο)(Ο,-Οβ haloalkyl), 0(=0)0(0,-0(, haloalkyl), 0(=0)(03-0(, cycloalkyl), 0(=0)0(03-0,, cycloalkyl), C(=0)(C2-Ce alkenyl), Ο(=Ο)Ο(ΟτΟβ alkenyl), (C,-Ce atkyt)O(C,-Ce alkyl), (C,-Ce alkyl)S(C,-Ce alkyl), C(=O)(C,-Ce alkyl)C(=O)O(Ci-Ce alkyl), and phenyl, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, phenoxy, and Het-1, are optlonally substltuted with one or more substituents independently selected from F, Cl, Br, I, CN, N02, oxo, C,-Ce alkyl, C,-Ce haloalkyl, Cs-Co cycloalkyl, C3-Ce halocycioalkyl, Cs-Ce cycloalkoxy, Cs-Ce halocycloalkoxy, Ο,-Οβ alkoxy, C,-Ce haloalkoxy, Cj-Ce alkenyl, C3-Ce cycloalkenyl, CrCe alkynyl, S(=O)n(Ci-Ce alkyl), S(=O)n(C,-Ce haloalkyl), OSO2(CiCe alkyl), OSO2(C,-Ce haloalkyl), C(=O)H, C(=O)OH, C(=0)(C,-Ce alkyl), 0(=0)0(0,-Ce alkyl), 0(=0)(0,-Ce haloalkyl), 0(=0)0(0,-Ce haloalkyl), C(=0)(C3-Ce cycloalkyl), C(=0)0(C3-Ce cycloalkyl), 0(=0)(02-08 alkenyl), C(=0)0(C2-Ce alkenyl), (C,-Ce alkylJOiCrCe alkyl), (C,-Ce alkyl)S(C,-Ce alkyl), 0(=0)(0,-Ce alkyt)C(=O)O(C,-Ce alkyl), phenyl, halophenyl, phenoxy, and Het1.
or Rx and Ry together can optionally form a 5- to 7-membered saturated or unsaturated cyclic group which may contaln one or more heteroatoms selected from nitrogen, sulfur, and oxygen, and where said cyclic group can contain >0=0 or >C=S, and where said cyclic group may be substituted with F, Cl, Br, I, CN, C,-Ce alkyl, C,-Ce haloalkyl, Cs-Ce cycloalkyl, C3-Ce halocycioalkyl, Cs-Ce cycloalkoxy, Cs-Ce halocycloalkoxy, Ο,-Οβ alkoxy, C,-Ce haloalkoxy, C^Ce alkenyl, C3-C9 cycloalkenyl, C2-CB alkynyl, S(=0)n(C,-Ce alkyl), S(=O)n(C,-Ce haloalkyl), OSO2(CiCe alkyl), OSO2(C,-Ce haloalkyl), 0(=0)(0,-Ce alkyl), C(=0)0(C,-Ce alkyl), 0(=0)(0,-Ce haloalkyl), 0(=0)0(0,-Ce haloalkyl), Ο(=Ο)(Ο3β cycloalkyl), C(=0)0(C3-Ce cycloalkyl), 0(=0)(02-08 alkenyl), C(=0)0(C2-Ce alkenyl). (C,-Ce alky1)0(Ci-Ce alkyl), (C,-Ce a1kyî)S(C,-Ce alkyl), 0(=0)(0,-Ce alkyt)C(=O)O(C,-Ce alkyl), phenyl, substituted phenyl, phenoxy, and Het-1; and (k) Het-1 is a 5- or 6-membered, saturated or unsaturated, heterocyclic ring, contalning one or more heteroatoms independently selected from nitrogen, sulfur or oxygen.
lt is understood that in Formula 1, when R2 is H, the compounds may exist in more than one tautomeric or isomeric form, whereîn the hydrogen is attached to eîther of the nitrogen atoms; further, both E and Z isomers may exist. Any and ail Isomeric forms of the compounds of thïs Invention are claimed.
In another embodiment Ar, is a substituted phenyl, wherein said substituted phenyl has one or more substituents independently selected from CrCe haloalkyl and CpCe haloalkoxy.
In another embodiment Ar, is a substituted phenyl, wherein said substituted phenyl has one or more substituents independently selected from CF3, OCF3, and OCFÎCF3.
In another embodiment Het Is selected from triazoiyl, Imidazoiyl, or pyrazoiyl, which can be substituted or unsubstituted.
In another embodiment Het is a 1,2,4-triazoiyl
N
In another embodiment Het is 1,4-lmidazolyl
In another embodiment Het Is 1,3-pyrazolyl
I0
In anotherembodiment Het is a substituted 1,3-pyrazolyl.
In anotherembodiment Het Is 1,4-pyrazolyl
In anotherembodiment Ar2 is a phenyl.
In anotherembodiment R1 Is H or CrCe alkyl.
In anotherembodiment R1 is H or CH3.
In anotherembodiment R2 is H.
In another embodiment R3 is selected from CrCe alkyl, C2-Ce alkenyl, CrCe alkynyl, Ci-Ce alkylphenyl, Ci-Ce alkyîHet-1, C,-Ce alkyl-O-C(=O)C,-Ce alkyl-O-C,-Ce alkyl, C1-Cealkyl-O-C(=O)C1Ce alkyl-O-CrCe alkyl-O- Ct-Ce alkyl, CrCe alkyl-O-C(=0)CrCe alkyl-O-CrCe haloalkyl, CrCealkylO-C(=O)CrCe alkyî-N(Rx)C(=O)-O-phenyl) Ci-Cealkyl-O-C(=O)CrCe alkyt-N(Rx)C(=O)-O-CrCe alkylphenyl, CrCealkyîC(=O)N(R,)C1-Ce alkyl, Cf-CealkylC^OJNtRJCrCe alkylHet-10(=0)-0-0,Ce alkyl, C1-CealkylC(=O)N(Rx)CrCe alkylHet-1, C,-CealkylC(=0)Het-1, CrCe alkylC(=O)N(Rx)Cr C« a!kyl(N(Rx)(Ry))(C(=O)OH), CrCe alkytC(=O)N(RM)C1-Ce alkylN(Rx)(Ry), CrCe alkytC(=O)N(Rx)CrCe alkylN(R,)C(=O)-O-C1-Ce alkyl, Ci-CealkylC(=O)N(Rx)C1-Ce alkyl(N(Rx)C(=O)-O-C1-Ce alkyl)(C(=O)OH), C,-CealkylC(=0)Het-1C(=0)-0-C1-Ce alkyl, CrCealkylO-C(=O)-O-CrCe alkyl, C1-Cealkyl-O-C(=O)C1-Ce alkyl, C1-Ccalkyl-O-C(=O)CrCe cycloalkyl, C,-Ce alkyl-0-C(=0)Het-1, or CrCe alkyl-O-C(=O)C1-Ce alkyl-N(Rx)C(=O)-O-C1-Ce alkyl, wherein each alkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substituted with one or more substituents independently selected from F, Cl, Br, CrCe alkyl, C,-Ce haloalkyl, CrCe haloalkoxy, S(=O)n(CrCe alkyl), C(=O)OH, C(=0)0(CrCe alkyl), phenyl, Si(C,-Ce alkyl)3, and S(=O)nNRxRy.
In another embodiment R4 Is phenyl, CrCe alkylphenyl, Het-1, or CrCe alkyl-O-phenyl, whereîn each alkyl, Het-1, and phenyl are optionally substituted with one or more substituents independently selected from F, Cl, NRxRy, CrCe alkyl, Cj-Ce cycloalkyl, CrCe haloalkoxy, C(=O)O CrCe alkyl, or CpCe alkoxy.
In another embodiment R5 Is substituted with oxo, C(=O)OH, phenyl, and Het-1, whereîn each phenyl and Het-1, may be optionally substituted with one or more substituents independently selected from oxo, Ci-Ce haloalkyl, CrCe haloalkoxy, C(=O)OH, and haiophenyl.
In another embodiment Rx and Ry are independently selected from H and phenyl, whereîn saîd phenyl, may be optionally substituted with one or more substituents independently selected from F and Cl.
In another embodiment:
Ar, is a substituted phenyl wherein said substituted phenyl, has one or more Ci-Ce haloalkoxy;
Hetis a triazolyl;
Ar2 is a phenyl;
R1 îs H;
R2îs H;
R3 is Ci-Ce alkylHet-1 wherein said alkyl and Het-1 are optionally substituted with one or more substituents Independently selected from F, Cl, Br, CrCe alkyl, C,-Ce haloalkyl, CrCe haloalkoxy, S(=O)n(CrCe alkyl), C(=O)OH, C(=O)O(CrCe alkyl), phenyl, Si(CrCe alkyl)3, and S{=O)nNRxRy;
R4 is phenyl, wherein saîd phenyl is optionally substituted with one or more substituents independently selected from F, Cl, NR,Ry, CrC6 alkyl, or CrCe alkoxy; and n= 0, 1, or 2;
Rx and Ry are independently selected from H and phenyl, wherein said phenyl, may be optionally substituted with one or more substituents independently selected from F and Cl; and
Het-1 Is a 5- or 6-membered, saturated or unsaturated, heterocyclic ring, containing one or more heteroatoms independently selected from nitrogen, sulfur or oxygen.
In another embodiment Het-1 is selected from benzofuranyl, benzoisothïazolyl, benzoisoxazoiyî, benzoxazolyl, benzolhienyl, benzolhiazolyl cinnolinyî, furanyl, indazolyî, indolyl, Imidazolyl, isoindolyl, isoquinoiinyl, isothiazolyl, isoxazolyl, oxadîazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, qulnolinyl, quînoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl, triazinyl, triazolyl, plperazinyl, piperidinyl, morpholinyî, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, 4,5-dihydro-oxazolyl, 4,5-dihydro-1H-pyrazolyl, 4,5-dihydro-isoxazolyl, and 2,3-dihydro[1,3,4]-oxadiazolyl.
In another embodiment Het is selected benzofuranyl, benzoisothïazolyl, benzoisoxazoiyî, benzoxazolyl, benzothienyl, benzothiazolyl cinnolinyî, furanyl, indazolyî, indolyl, imidazolyl, Isoindolyl, Isoquinoiinyl, isothiazolyl, isoxazolyl, oxadîazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, qulnolinyl, quînoxalinyl, tetrazolyl, thlazolinyl, thiazolyl, thienyl, triazinyl, triazolyl, piperazinyl, piperidinyl, morpholinyî, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydro-quinolinyl, 4,5dihydro-oxazoiyl, 4,5-dihydro-lH-pyrazolyl, 4,5-dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]oxadiazolyl.
In another embodiment Het-1 is selected from benzofuranyl, benzoisothïazolyl, benzoisoxazoiyî, benzoxazolyl, benzothienyl, benzothiazolyl, benzothiadizolyl, cinnolinyî, furanyl, indazolyî, indolyl, imidazolyl, isoindolyl, isoquinoiinyl, isothiazolyl, isoxazolyl, oxadîazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, qulnolinyl, quînoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl, thîenylpyrazolyl, triazinyl, triazolyl, piperazinyl, piperidinyl, morpholinyî, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydro-quinolinyl, 4,5-dihydro-oxazolyl, 4,5-dihydro-1H-pyrazolyl, 4,5dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]-oxadiazolyl.
In another embodiment Het-1 is selected from benzothiadizolyl, furanyl, oxazolyl, and thîenylpyrazolyl.
While these embodiments hâve been expressed, other embodiments and combinations of these expressed embodiments and other embodiments are possible.
The Molécules of Formulae One, Two and Three will generally hâve a molecular mass of about 100 Daltons to about 1200 Daltons. However, it Is generally preferred if the molecular mass ls from about 120 Daltons to about 900 Daltons, and it is even more generally preferred if the molecular mass is from about 400 Daltons to about 800 Daltons.
PREPARATION OF TRIARYL-INTERMEDIATES
Compounds of this invention can be prepared by making a triaryl intermediate, An-Het-Ar;, and then linking it to the desîred intermediate to form the desired compound. A wîde variety of triaryl intermediates can be used to préparé compounds of this invention, provided that such triaryl 10 intermediates contaîn a suitable functional group on Ar2 to which the rest of the desired intermediate can be attached. Suitable functional groups include an oxoalkyl or a formyl group. These triaryl Intermediates can be prepared by methods prevîousiy described In the chemical iiterature, Including Crouse et al. PCT Int. Appl. Publ. W02009/102736 A1.
PREPARATION OF HYDRAZONE-LINKED COMPOUNDS
Hydrazone-iinked compounds can be prepared from the corresponding aryl aldéhydes or ketones by one of three methods: (1) by reaction with a hydrazine, followed by reaction with an aryl Isothiocyanate in tetrahydrofuran (THF), at températures between 0 and 100 °C (Reaction A); (2) by reaction with methyl hydrazinecarbodithioate, followed by reaction with an aniline in a polar 20 aprotic solvent such as Ν,/V-dimethylformamide (DMF), at températures between 25 and 150 ’C (Reaction B): or (3) by reaction with an aryl thiosemicarbazide, that ls either commerdaily available or can be prepared by one who ls skilled In the art, in a polar protic solvent such as ethyl alcohol (EtOH), at températures between 0 and 100°C (Reaction C).
1. NH2NH-R2
2. R4-NCS,
THF, 0-100 °C h2n.nAs/ *· H
2. R4-NH2, DMF,
- 150 °C
S
Η2Ν_Λ t.R4
N N
R3 I Nj,
EtOH.O-100 °C
PREPARATION OF ALKYLATED HYDRAZONE-LINKED COMPOUNDS (A) (B) (C)
Alkylated hydrazone-linked compounds can be prepared from the conesponding hydrazone-linked compounds by one of two methods: (1 ) by reaction with an alkylating agent in EtOH or acetone, at températures between 0 and 100 ’C for from 1 to 24 h or (2) by reaction with an alkylating agent In chloroform (CHCI3), dichloromethane (CH2CI2), or other halocarbon solvent, with or without a base such as sodium bicarbonate, at from 20 to 60 °C.
Alkylating agent, EtOH
0-100 °C,
1-24 h (D)
Alkylating agent, CH2C12 or CHCIj
(E)
20-60 °C,
1-24 h
Compounds of Formula Two, wherein R5 forms a ring with N3 (see Scheme beiow) or of
Formula Three, wherein R5 forms a ring with N2. can be prepared from a suitable acyclic precursor by using D-halo acids, acid halides, esters, or ketones (F or G or H). For example, treatment of the thiosemicarbazone with a siight ex ce s s of an D-halo ester, in a p rôtie solvent such as EtOH or methyi alcohol (CH3OH) results In S-alkylation and subséquent ring dosure exdusively onto N3 (Reaction F; see for example, J. Indien Chemica! Society 1966, 43, 275-276, or J.Heterocyd. Chem. 1978,15,335-336). When an aprotic solvent such as CH2CI2 or dichloroethane (CICH2CH2CI) Is used at températures from 30 °C to 80 °C, the orientation of addition of DDhalo ketones also favors closure onto N3, with subséquent déhydration to form an imino thiazole (Reaction G). With D-halo adds or acid halides or esters in a halocarbon solvent such as CH2CI2 or CICH2CH2CI, ring closure onto both N2 (Reaction H) and N3 is observed. Though these réactions often proceed in the absence of added base, a base such as sodium bicarbonate, sodium carbonate or sodium acetate, or an amine base such as pyridine or triethyiamine, can be added.
R1 R2 R3
Arj Ar2 N| ΐ R4 S
B rss>/ZCO2CH j
EtOH or MeOH
O * Het Arf (F) (G)
Brs^COjCHj
CH2Ci2 or (H)
CICH2CH2CI
Arf
Altematively, 3-arylidineimino-2-aryliminothiazolin-4-ones can be prepared by treating an aldéhyde or ketone, wherein R1 is as previously described, with a 3-amino- 2-(arylimino)thiazolidin 4-one in acetic add at from 30 to 70 °C as shown in the following scheme (I). The intermediate 1amino-2-aryliminothiazolin-5-one, wherein R4 is phenyi, has been described (see for example, J. Org. Chem. 1962, 27, 2878); il was prepared in 80% yield by treatment of 4-phenyl thlosemicarbazide with ethyl 2-chloroacetate and sodium acetate in hot EtOH.
Br>___€Ο2ΟΗ3
Altematively, compounds of Formula 2 and Formula 3 may be formed by heating a thlosemicarbazone precursor with a di-halo group Hal1-R5-Hal2 such as 1-bromo-2-chloro ethane, 5 In acetone or 2-butanone or other suitable solvent, using a base such as potassium carbonate or triethylamlne, at températures between ambient and 100 °C for from 1 to 72 hours. The S-alkylated Intermediate undergoes cyclization at N2 or N3 to generate compounds of Formula Two or Formula Three (Reaction J). In some cases, addition of Kl may be required to accelerate the cyclization of the intermediate S-alkylated dérivatives to the ring-closed products.
(J)
An alternative method of preparing compounds of this invention Is by treatment of a thlosemicarbazone precursor with an unsaturated ester or acid chloride (Reaction L).
Compounds of Formula Two, wherein R5 forma a hydroxyl-containing ring with N3, or of Formula Three, wherein R5 forms a hydroxyl-containing ring with N2 (see Scheme below), can be prepared from a suitable acyclic precursor by using an C-halo ketone (Reaction M). Thls procedure is similar to Réaction G; under milder conditions (usuaily ambient température to 90 *C), the intermediate hydroxy thiazoline can be isolated prior to déhydration. This procedure is conveniently conducted In an aprotic solvent such as acetone, 2-butanone or dichloroethane, with or without a base such as triethylamine or sodium bicarbonate. The direction of cyclization often favors reaction at N3, although when highiy hindered R< groups are used, products resulting from cyclization at N2 may be formed.
(M)
Substituted hydrazinecarbothioamide intermediates, such as those utilized in Method C above, can be prepared by a number methods known In the chemical literature. Alternative^, compounds wherein R„ Rb, and Rc are not derived from a commercially available aniline can be prepared according to the scheme below. For example, a 2-halo nitrobenzene, such as 2chloronitrobenzene, substituted with one or multiple Rcsubstituents, wherein Rc can be H, alkyl, alkoxy, or halo, such as fluoro, can be reacted with a boronic acid or boronate ester, such as the 18 substituted 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, wherein R, and Rb are H, in the presence of a base, for example sodium carbonate, and a palladium catalyst, such as bis(triphenylphosphine)palladÎum(ll)chloride, in an aqueous solvent System, such as 4:1 dioxane/water, at an elevated température, for example 80 °C, affords the alkenyl substituted nitrobenzene compounds. Altematively, R, and R6 can be taken together to form a ring, such as a cyclopentene, to give the corresponding 2-(cyclopent-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane, which under the conditions described above affords the cyclic alkene substituted nitrobenzene. Treatment of a solution of the olefinic nitrobenzenes in an aprotic solvent, such as ethyl acetate, wherein R., R6, and R^are as defined above, with hydrogen gas In the presence of a catalyst, for example palladium on carbon (Pd / C), affords the corresponding alkyl or cycloalkyl substituted anilines. Treating a biphasic solution of the anilines, wherein R„ Ro, and Rcare as defined, in a mixture of halogenated solvent and water, such as 2:1 dichloromethane / water, with a base, such as sodium hydrogencarbonate, followed by thiophosgene affords the intermediate isothiocyanatobenzenes. Séparation and removal of the aqueous phase, followed by drying and évaporation of the organic solvent affords the crude intermediate, which is Immediately dissolved in an alcohol, such as éthanol, and treated with hydrazine hydrate to give the hydrazinecarbothioamide intermediates, wherein Ra, Rb. and Rcare as defined.
EXAMPLES
The examples are for illustration purposes and are not to be construed as limiting the Invention disclosed in this document to only the embodiments disclosed in these examples.
Starting matériels, reagents, and solvents that were obtained from commercial sources were used without further purification, Anhydrous solvents were purchased as Sure/Seal™ from Aldrich and were used as received. Melting points were obtained on a Thomas Hoover Unimelt capillary melting point apparatus or an OptiMelt Automated Melting Point System from Stanford Research Systems and are uncorrected. Molécules are given their known names, named according 5 to naming programs within MDL ISIS™/Draw 2.5, ChemBioDraw Ultra 12.0 or ACD Name Pro, If such programs are unable to name a molécule, the molécule Is named using conventional naming rules, ’H NMR spectral data are in ppm (δ) and were recorded at 300,400 or 600 MHz, and ’3C NMR spectral data are in ppm (□) and were recorded at 75,100 or 150 MHz, unless otherwise stated.
Example 1: Préparation of (E)-N-(4-dimethylamlno)phenyl)-2-(4-(1-(4(trlfluoromethoxyJphenylJ-IH-l^^-triazol-S-ylJbenzylÎdeneJhydrazInecarbothloamide (Compound 1-1) [Synthesls Method A].
Step 1. (E)-3-(4-(Hydrazonomethyl)phenyl)-1-(4-(trlfluoroniethoxy)phenyl)-1H-1,2l4trlazoie. To a 250 miililiter (mL) round-bottomed flask contalning hydrazine hydrate (64% aqueous (aq) solution; 7.27 mL, 15,0 millimoles (mmol)) in EtOH (100 mL) at 80 eC was added 4-(1-(420 trifluoromethoxyphenyl)-1 H-(1,2,4]triazol-3-yl]-benzaldehyde (5.00 grams (g), 1.50 mmol) portionwise over 5 minutes (min). The solution was stirred at reflux for an additional 3 hours (h) before being diluted with water (H2O; 300 mL) and cooled to 0 ’C. The precipitated product was collected by vacuum filtration as a white solid (4.89 g, 93%); mp 222 - 226 ’C; ’H NMR (400 MHz, DMSO-dg) □ 8.59 (s, 1H), 8.22 (d, J= 8.2 Hz, 2H), 7.84-7.79 (m, 3H), 7.66 (d, J= 8.3 Hz, 2H). 7.41 (d. J = 8.2 Hz, 2H). 7,29 (s, 1 H), 5.63 (br s, 2H): ESIMS m/z 348 (M+H).
Step 2. To a 25 mL round-bottomed flask containing (E)-3-(4-(hydrazonomethyl)-phenyl)-1(4-(trifluoromethoxy)pheny1)-1H-1l2l4-triazole (250 mg, 0.720 mmol) in THF (10 mL) was added 4isothiocyanato-N,/V-dimethy1aniline (385 mg, 2.16 mmol), The contents were heated at 65 ’C with stirring for 2 h before the solvent was removed under reduced pressure. The residue was siurried in 30 CH2CI2 (10 mL) resulting in précipitation of product material, The desired product was obtained as a yellow solid via vacuum filtration (350 mg, 93%); mp 205 - 208 eC; ’H NMR (400 MHz, DMSO-d6) □ 11.78 (s, 1 H). 10.02 (s, 1H), 9.42 (s, 1H), 8.19-7,99 (m, 6H), 7.64 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 20
8.3 Hz. 2H), 7.73 (d, J= 8.3 Hz, 2H), 2.92 {s, 6H); ESIMS m/z 526 (M+H).
Example 2: Préparation of N-(3-(dlmethylamlno)phenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)1H-1,2,4-trlazol-3-yl)benzylldene)hydrazlnecarbothloamlde (Compound I-2) [Synthesls Method B].
Step 1. (E)-Methyl 2-(4-(1 -(4-(trlfluoromethoxy)phenyl)-1H-1,2,4-trIazol-3yl)benzylldene)hydrazlnecarbodithioate. To a 250 mL round-bottom flask containing hydrazinecarbodithiolc acid methyi ester (2.38 g, 1.95 mmol) in EtOH (100 mL) was added 4-(1-(4trifluoromethoxyphenyl)-1H-[1,2,4]triazol-3-yl]-benzaldehyde (5.00 g, 1.50 mmol). The vessel was heated at 80 ’C for 3 h before being diluted with H2O (300 mL) and cooled to 0 ’C. The precipitated product was collected by vacuum filtration as an off-white solid (6.13 g, 93%): mp 204 - 206 ’C; ’H NMR (400 MHz. DMSO-cfe) □ 13.39 (s, 1 H), 9.43 (s, 1 H). 8.38 (s. 1 H). 8.21 (d, J = 8.3 Hz, 2H). 8.09 (d, J - 8.4 Hz, 2H), 7.88 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H). 2.57 (s, 3H); ESIMS m/z 438 (M+H).
Step 2. To a 50 mL round-bottomed flask containing (E)-methyl 2-(4-(1-(4(trifluoromethoxy)phenyl)-1 W-1,2,4-triazol-3-yl)benzylidene)hydrazînecarbodithioate (250 mg, 0.571 mmol) in DMF (3 mL) was added N1 ,N1-dimethylbenzene-1,3-diamine (195 mg, 1.43 mmol). The contents were heated at 150 ’C with stirring for 5 h before the solution was allowed to cool ovemlght. The mixture was filtered, and the filtrats was purifîed via RP-HPLC to afford the desired material (235 mg, 78%) as an off-white solid: mp 192 - 194*C; ’H NMR (400 MHz, DMSO-da) □□11.82 (s, 1H), 10.04 (s. 1H). 9.41 (s, 1 H). 8.19 (s, 1H), 8.16-7.99 (m, 6H). 7.61 (d. 8.3 Hz,
2H), 7.16 (t, J- 7.2 Hz, 1H). 7.01 (m, 1H), 6.87 (m, 1H). 6.58 (m, 1H), 2.88 (s, 6H); ESIMS m/z 526 ([M+H]*).
Example 3: Préparation of N-benzyl-2-(4-(1-(4-(trifluoromethoxy)phenyi)-1H-1,2,4-trlazol-3yl)benzylldene)hydrazlnecarbothioamlde (Compound I-3) [Synthesls Method C].
2I
To a 50 mL round-bottomed flask containing 4-I1-[4-(trifluoromethoxy)phenyl]-1,2,4-triazol3-yl]benzaldehyde (500 mg, 1.5 mmol) in EtOH (3 mL) was added 4-benzylthrosemicarbazide (650 mg, 3.6 mmol). The réaction mixture was heated at 80 ’C ovemight. H2O was added upon completion of the reaction, and the crude product material was isolated by vacuum filtration. The title compound was isolated via RP-HPLC as a white solid (390 mg. 52%): mp 220 - 224 *C; ’H NMR (400 MHz, CDCI3) δ 9.29 (s, 1 H). 8.59 (s, 1H), 8.21 (d, J= 8.4 Hz, 2H). 7.85-7.79 (m, 3H), 7.71 (d, J - 8.4 Hz, 2H), 7.46-7.30 (m, 8H), 5.01 (d, J = 5.8 Hz, 2H); ESIMS m/z 497.2 (M+H).
Compounds 1-4 through 1-31 in Table 1 were synthesized in accordance with the examples above. Other intermediates used in the préparation of compounds of this invention were prepared in accordance with the procedures described in Brown, et al, WO 2011017504 A1, or by other known routes.
Example 4: Préparation of N-(4-dimethylaminophenyl)-S-methyl-2-{4-[1-(4trifluoromethoxypheny!)-1H-[1,2,4]-trlazol-3-yl]-benzylldene}-hydrazlne-carbothloamlde (Compound 1C) (Synthesis Method D)
i
A solution containing (E)-N-(4-(dimethylamino)phenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)1H-1,2,4-triazol-3-yl)benzylidene)hydrazinecarbothioamide (150 mg, 0.285 mmol) and iodomethane (0.054 mL, 0.856 mmol) in EtOH (5 mL) was heated at 80 °C for 3 h before the solvent was removed under reduced pressure. The residue was purified via normal phase flash chromatography (gradient elution with hexanes/EtOAc) to afford the title compound as an orange foam (93 milligrams (mg), 60%): 1H NMR (400 MHz, DMSO-de) δ 8.61 (s. 1 H). 8.48 (s, 1H), 8.22 (d, J = 8.24
Hz, 2H), 8.17 (s, 1H), 7.89 (d, J = 8.24 Hz, 2H), 7.80 (d, J= 8.28 Hz. 2H), 7.41 (d, J = 8.28 Hz, 2H), 7.19 (d, J - 8.24 Hz, 2H), 6.71 (d, J= 8.24 Hz, 2H), 2.99 (s, 6H), 2.42 (s, 3H); EIMS m/z 540 (M*).
Example 5: General procedure for S-alkylatlon of triaryl thlosemlcarbazones (Synthesis Method E)
A stirred solution of the thiosemicarbazone and alkylating reagent in CH2CI2 or chloroform (CHCI3) was heated at from 35 to 50 eC for from 10 to 24 h. The cooled solution was concentrated under reduced pressure. The resldue was generally purified via chromatography using a chloroform/methanol (CHCIj/CH3OH) or EtOAc-hexane solution as the eluent to afford the Salkylated products.
Example 6: Préparation of (S)-fert-butyl 3-((2-((Z)-(2,6-dlmethy1pheny1lmino)-((E)-2-(4-(1-(4(trif1uoromethoxy)phenyl)-1 W-1,2,4-triazol-3-yl)benzylldene)hydrazlnyl)methylthio)acetamido)methy1)plperidine-1-carboxyÎate (Compound 56C) (Synthesis Method E)
O
To a solution of bromoacetyl bromide (26 microliters (pL), 0.299 mmol) in dichloroethane (3 mL) was added dropwise a solution of (S)-terf-butyl 3-(aminomethyl)piperidine-1-carboxylate (63.9 mg, 0.298 mmol) in dichloromethane (1 mL), followed by W-ethyl-W-isopropylpropan-2-amine (76 mg, 0.588 mmol). This mixture was stirred at room température for 30 min, then (E)-W-(2,6dimethylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)hydrazinecarbothioamide (100 mg, 0.196 mmol) was added as a solid and the mixture was heated to 40 ’C for 90 min. It was then allowed to cool to room température and evaporated under reduced pressure, gîving a light yellow glass, which was dissolved In acetonitrile (2 mL) and allowed to stand at room température. The resulting precipitate was isolated by centrifuge and decanting, washing with fresh acetonitrile. The solid was dried under a nitrogen stream and then under high vacuum. The crude product was recrystallized from acetone-isopropyl alcohol. The tille compound was isolated as a white solîd (36.5 mg. 24%): mp 148 -151 °C; Ή NMR (400 MHz, methanol-d4) δ 9.18 (s, 1H), 8.59 (s, 1H), 8.30 (d, J = 8.1 Hz, 2H), 8.12 (m, 2H), 8.07 - 8.00 (m, 2H), 7.58 - 7,43 (m, 2H), 7.33 (dd, J- 8.6, 6.5 Hz, 1H), 7.25 (d. J = 7.6 Hz, 2H), 4.02(m, 2H), 3.97-3.75 (m, 2H),
3.21 (d, J- 6.9 Hz, 2H), 2.90 (m, 1H), 2.59 (m, 1H). 2.35 (s, 6H). 1.84 (m, 2H), 1.78-1.63 (m, 2H), 1.44 (s, 9H), 1.29 (m. 3H); ESIMS m/z 765 (M+H).
Example 7: Préparation of (1Z,2E)-2-oxo-2-(((R)-plperldin-3-ylmethyl)amino)ethyl N-(2,6dimethyiphenyi)-2-(4-(1-(4-(trlfluoromethoxy)phenyi)-1H’1,2,4-triazol-3yl)benzylldene)hydrazlnecarblmldothloate trifluoroacetlc acid (Compound 62C) (Synthesis Method K)
A solution of (S)-tert-butyl 3-((2-((Z)-(2,6-dimethylphenylimino)-((E)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-y1)benzylidene)hydrazinyl)methy1thlo)acetamido)methy1)piperidine-1-carboxylate (32.0 mg, 0.042 mmol) in TFA (250 pL, 3.24 mmol) was stirred at room température for 10 min. Et2O (10 mL) was then added giving a white predpitate, which was isolated by centrifuge and decanting, then rinsing with fresh Et2O (5 mL). The solid was dried under nitrogen stream and then under high vacuum giving the title compound as a white solid (19.8 mg, 60%): mp 110 - 120 °C; Ή NMR (400 MHz, methanol-d4) δ 9.18 (s, 1H), 8.56 (m, 1H), 8.26 (m, 2H), 8.16 - 7.84 (m, 4H), 7.52 (m, 2H), 7.27 (m, 1H), 7.22 (m, 2H), 4.00 (s, 2H), 3.28 (m, 3H), 3.06 - 2.83 (m, 1 H), 2.75 (t, J = 12.2 Hz, 1 H), 2.34 (s, 6H), 2.21-1.83 (m, 4H), 1.72 (m, 1 H), 1.47 -1.19 (m. 2H); ESIMS m/z 665 (M+H).
Example B: Préparation of 2*(((Z)-((4-methoxy-2,6-dimethylphenyi)lmino)((E)-2-(4-(1-(4(trlfluoromethoxy)phenyl)’1H-1,2,4-trlazol-3-yi)benzylldene)hydrazinyi)methyl)-thlo)acetlc acid sodium sait (Compound 68C)
Το a solution of 2-((Z)-(4-methoxy-2,6-dimethylphenylimino)((E)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)hydrazinyl)methylthio)acetÎc acid (77.7 mg, 0.130 mmoî) in THF (10 mL) was added slowly sodium methanolate (0.5 M in methanol; 260 pL, 0.130 mmol) at room température. The mixture immediately tumed a darker yellow and was then evaporated at room température under vacuum giving a light orange solid, This matériel was triturated with EtîO (2X) and isolated by decanting using a centrifuge and drying under a nitrogen stream and then under high vacuum. The title compound was Isolated as a light orange solid (32 mg, 39%): mp 146-154 °C; 1H NMR(400 MHz, methanol-^) δ9.11 (s, 1H), 8.64-7.68(m, 7H). 7.51 (m, 2H). 6.70 (s, 2H), 3.85 - 3.70 (m. 4H), 3.61 (m, 1H), 2.29 (s, 6H); ESIMS m/z 599 (M+H).
Example 9: Préparation of (2)-3-(4-methoxy-2I6-dimethylphenyl)-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylldene)hydrazono)thlazolldin-4-one (Compound 69C) (Synthesis Method F)
To a solution of (E)-W-(4-methoxy-2,6-dimethylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)1H-1,2,4-triazol-3-yl)benzylidene)hydrazine-carbothioamide (250 mg, 0.462 mmol) In EtOH (5 mL) was added methyl bromoacetate (100 mg, 0.65 mmol), and the mixture was heated to 70 °C for 4 h. The mixture was allowed to cool to room température and diluted with water (1 mL). The precipitate was vacuum filtered, giving the title compound as a white solid (204 mg, 76%): mp 188 25
- 190°C; Ή NMR (400 MHz, CDCI3) δ 8.56 (s, 1 H), 8.33 (s, 1H), 8.22 (d, J= 8.1 Hz, 2H), 7.907.70 (m, 4H), 7.39 (d, J - 8.7 Hz, 2H), 6.72 (s, 2H), 4.01 (s, 2H). 3.87 - 3.73 (s, 3H), 2.18 (s, 6H); ESIMS mfz 581 (M+H).
Example 10: Préparation of 4-((2Z)-3-(2,6-d Imethylp h en yl )-2-( (4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzyiidene)hydrazono)-2,3-dÎhydrothlazoÎ-4yÎ)-N,N-dlethylanlllne (Compound 74C) (Synthesls Method G)
To a solution of (E)-N-(2,6-dimethylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzylidene)hydrazîne-carbothioamide (74.7 mg, 0.144 mmol) in dîchloroethane (5 mL), was added □-bromo-4-diethylamino)acetophenone (53.9 mg, 0.199 mmol), and the mixture was heated to 40 °C for 4 h. The mixture was then cooled to room température and evaporated under vacuum. The crude material was triturated with acetonitrile and decanted (2X). The resulting solid was dried under a stream of nitrogen, givïng the title compound as a pale yellow solid (25 mg, 25%): mp 190 -193 ’C dec; 1H NMR (400 MHz, methanol-d<) δ 9.20 (s, 1H), 8.38 (s, 1 H), 8.31 8.24 (m, 2H), 8.08 - 8.00 (m, 2H), 7.95 - 7.88 (m. 2H), 7.55 - 7.48 (m, 3H), 7.48 - 7.36 (m, 5H), 7.31 (d, J= 7.7 Hz, 2H), 3.60 (q, J- 7.2 Hz, 4H), 2.20 (s, 6H), 1.07 (t, J= 7.2 Hz. 6H); ESIMS mfz 682 (M+H).
Example 11 : Préparation of (Z)-2-(2,6-dimethylphenylimlno)-3-((E)-4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-y1)benzy1ideneamlno)thlazolidin-4-one (Compound 81C) (Synthesls Method I)
To a solution of 1-(2,6-dimethylphenyl)thiourea (1.0 g, 5.55 mmol) in EtOH (10 mL) was added methyl 2-bromoacetate (1.0 g, 6.5 mmol) and sodium acetate (1.0 g, 12.2 mmol). The solution was stirred and heated to reflux for 1 h, then it was cooled and the îiquid was decanted from a small amount of solid material and the Iiquid was then diluted with water (10 mL). The precipitate was isolated by filtration to give (1.1 g, 83%) of (Z)-3-amino-2-(2,6dimethyiphenylimino)thiazolidÎn-4-one: mp 149 -152 °C; 1H NMR (400 MHz, CDCI3) δ 7.06 (d, J = 7.2 Hz, 2H), 6.98 (m, 1H), 4.75 (s, 2H), 3.80 (s, 2H), 2.12 (s, 6H); ESIMS m/z 236 (M+H).
A portion of this material (0.07 g, 0.3 mmol) was dissolved in glacial acetic acid (3 mL) and treated with 4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzaldehyde (0.10 g, 0.30 mmol), and the solution was heated to 60 °C for 2 h. The solution was then cooled and diluted with water (1 mL), and the resultïng solid was filtered and air-dried to give the title compound (0.12 g, 67%): mp 209-213 °C; Ή NMR (400 MHz, CDCI3) δ 9.42 (s, 1H), 8.59 (s, 1H), 8.28 (d, J= 8.4 Hz, 2H), 8.01 (d, J = 8.3 Hz. 2H), 7.80 - 7.77 (m, 2H), 7.43 - 7.34 (m, 2H), 7.07 (d. J = 7.5 Hz, 2H), 6.98 (dd, J - 8.2,6.7 Hz, 1H), 3.90 (s, 2H), 2.17 (s, 6H); ESIMS m/z 551 (M+H).
«
Example 12: Préparation of (2Z,NE)-2-{{2-isopropy1phenyl)imlno)-N-(4-(1-(4(trif1uoromethyi)phenyl)-1H-1,2,4-trlazol-3-yl)benzy1ldene)-1,3-thlazinan-3-amlne and (Z)-3-(2lsopropylphenyl)-2-((E)-(4-(1’(4-(trifluoromethyi)phenyl)-1H-1,2,4-trlazol-3yl)benzyildene)hydrazono)-1,3-thlazlnane (Compound 87C and 179C) (Synthesls Method J)
To (E)-N-(2-isopropylphenyl)-2-(4-(1-(4-(trifluoromethyl)phenyl)-1 H-1,2,4-triazol-327 yl)benzylidene)hydrazinecarbothioamide (200 mg, 0.393 mmol) and potassium carbonate (217 mg, 1.57 mmol) in butanone (10 ml) In a 25 mL vial equlpped with a stir bar and vigruex column was added 1-bromo-3-chloropropane (0.047 ml, 0.472 mmol). The reaction was heated to 60 °C ovemîght. The réaction was determined to be complété by LCMS. The reaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided two compounds. The mlnor compound was dried ovemîght under house vacuum providing the title compound B7C (2Z,NE)-2-((2-isopropylphenyl)imino)-N-(4-(1-(4(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)-1,3-thiazinan-3-amine (28.5 mg, 13%) as a yeilow solid: mp 187-189 °C; 1H NMR (400 MHz. CDCI3) δ 8.81 (s, 1H), 8.66 (s, 1H), 8.21 (d, J = 8.3 Hz, 2H), 7.92 (d, J- 8.4 Hz, 2H), 7.81 (t, J = 10.2 Hz, 4H), 7.30-7.26 (m, 2H), 7.17-7.04 (m, 1 H), 6.83 (d. J ~ 6.4 Hz, 1 H), 3.96 (t, J = 6.1 Hz, 2H), 3.13 (heptet, J = 6.9 Hz, 1 H), 2.97 - 2.90 (m, 2H). 2.47 - 2.38 (m, 2H), 1.25 (d, J = 7.5 Hz, 6H); ESIMS m/z 550 (M+H). The major compound was recrystallized with MeOH. The solid was filtered, washed with MeOH and dried at 50°C under vacuum. The solid was then azeotroped with acetone (3x) and the résultant solid was dried at 50°C under vacuum providing the title compound 179C (Z)-3-(2-isopropylphenyl)-2-((£)-(4-(1-(4(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)hydrazono)-1,3-thiazinane as a yeliow solid (92.3 mg, 0.168 mmol, 43%): mp 212-213 °C; ’H NMR (400 MHz, CDCI3) δ 8.64 (s, 1H), 8.15 (d, J= 8,4 Hz, 2H), 8.06 (s, 1H), 7.91 (d, J= 8.5 Hz, 2H), 7.79 (d, J= 8.6 Hz, 2H), 7.75 (d, 8.4
Hz, 2H), 7.38 (dd, J = 7.8, 1.6 Hz, 1 H), 7.33 (td. J - 7.5,1.4 Hz, 1 H), 7.29 - 7.23 (m, 1 H). 7.18 (dd, J ~ 7.8, 1.4 Hz, 1 H), 3.78 - 3.72 (m, 1 H), 3.59 - 3.48 (m, 1 H), 3.18 - 3.04 (m, 3H), 2.40 - 2.30 (m, 2H), 1.26 -1.20 (m, 6H); ESIMS m/z 550 (M+H).
Example 13: Préparation of(Z)-3-f2-cyclopropylphenyl)-5-methyl-2-((E)-(4-{1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylÎdene)hydrazono)thlazolidin-4-one (Compound 127C) (Synthesis Method F)
To (E)-W-(2-cyclopropylphenyl)-2-{4-(1 -{4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-328 yl)benzylidene)hydrazinecarbothÎoamide (100 mg. 0.191 mmol) and sodium acetate (63.0 mg, 0.765 mmol) in EtOH (4 mL) was added methyl 2-bromopropanoate (0.026 mL, 0.230 mmol). The reaction was heated to 60 °C ovemight. The reaction was then heated to 85 °C for 72 hours. The réaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organlc layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided the title compound as a white solid (32.5 mg, 0.056 mmol, 30%): mp 112 - 115 °C; 1H NMR (400 MHz, CDCI3) δ 8.58 (s, 1H), 8.32 (s. 1H). 8.22 (d, J = 8.3 Hz, 2H), 7.87 - 7.75 (m. 4H), 7.43 - 7.32 (m, 4H), 7.26 - 7.24 (m, 2H), 4.23 (q, J = 7.3 Hz, 1 H), 1.85 - 1.78 (m, 4H), 0.90 - 0.78 (m, 2H), 0.78 - 0.69 (m, 1 H), 0.65 - 0.55 (m, 1 H); ESIMS 10 m/z 578 (M+H).
Example 14: Préparation of (Z)-3-(2-isopropylphenyl)-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazono)thlazolldine (Compound 132C) (Synthesls Method J)
To (E)-N-(2-isopropylphenyl )-2-(4-(1 -(4-( trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3yl)benzylidene)hydraztnecarbothioamide (214 mg, 0.407 mmol) and potassium carbonate (225 mg,
1.63 mmol) In butanone (4 ml) was added 1-bromo-2-chloroethane (70.0 mg, 0.489 mmol). The reaction was heated to 90 °C ovemight. The reaction was determined to be complété by LCMS. The reaction mixture was cooled, diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were filtered through a phase separator and concentrated. Séparation by flash column chromatography and drying the recovered solid at 55 ®C under vacuum provided the title compound as a white solid (137 mg, 0.249 mmol, 61%): mp 193 -196 °C; 1H NMR (400 MHz, CDCI3) δ 8.56 (s, 1H), 8.22 (s, 1H), 8.17 (d, J= 8.4 Hz, 2H), 7,80 (ddd, J = 9.5, 6.9, 4.9 Hz, 4H), 7.43 - 7.33 (m, 4H), 7.31 - 7.21 (m, 2H), 4.05 (td, J= 9.4, 7.1 Hz, 1H), 3.97 3.87 (m, 1 H), 3.42 - 3.33 (m, 1H), 3.33 - 3.24 (m, 1H), 3.12 (heptet, J= 6.8 Hz, 1H), 1.27 (d, J = 6.8 Hz, 3H), 1.22 (d, J = 6.9 Hz, 3H); ESIMS m/z 552 (M+H).
Example 15: Préparation of (Z)-3-(2-1sopropylphenyl)-4-methyf-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylldene)hydrazono)thlazolidlne (Compound 155C) (Synthesls Method J)
To (E)-A/-(2-isopropylphenyl )-2-(4-(1 -(4-(trifluoromethoxy)phenyt)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazïnecarbothioamide (300 mg. 0.572 mmol) and potassium carbonate (316 mg, 2.29 mmol) in butanone (4 ml) was added 1,2-dibromopropane (0.072 ml, 0.686 mmol). The réaction was heated to 85 °C ovemlght. The reaction was determined to be complété by LCMS. The reaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided a yellow solid. The solid was recrystallized from MeOH. The solid was filtered, washed with MeOH, and dried to provide the title compound as a yellow solid which was dissolved in acetone and concentrated (3x). The light yellow solid was collected and dried underto provide the title compound as a 1:1 mixture of rotational diastereoisomers (75.1 mg, 0.133 mmol. 23%): mp 201 - 204 °C; ’H NMR of mixture (400 MHz, CDCI3) 5 8.56 (s, 2H), 8.18 (dd, J = 10.8, 7.4 Hz, 6H), 7.84 - 7.73 (m, 8H), 7.45 - 7.30 (m, 8H), 7.30-7.23 (m, 2H), 7.20 (d, J= 6.7 Hz, 1H), 7.12 (dd, J= 7.8.1.2 Hz, 1H), 4.43-4.33 (m. 1H), 4,16 (dd, J= 12.6, 6.3 Hz, 1H), 3.48 (dt. J= 13.3, 6.7 Hz, 1H), 3.37 (dd, J - 10.8, 6.2 Hz, 1H), 3.24 (dt, J= 13.7, 6.9 Hz, 1H), 3.08-2.92 (m, 3H), 1.33-1.16 (m, 18H); ESIMS ntfz566 (M+H).
Example 16: Préparation of (Z)-3-(2,6-dlmethylphenyl)-4-methyl-2-((Ê)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazono)-2,3-dlhydrothlazole (Compound 173C) (Synthesls Method G)
Το a solution of (E)-N-(o-tolyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3yl)benzylidene)hydrazinecarbothioamide (257 mg, 0,520 mmol) In butanone (5 mL) was added triethylamine (0.14 mL, 1.0 mmol) and chloroacetone (0.06 mL, 0.73 mmoî) and refluxed at 75 *C for 15 h. The mixture was allowed to cool to room température and then transferred to a separatory funnel contalning water (5 mL) and extracted twice with dichloromethane. The organic îayers were filtered through a phase separator, adsorbed onto silica gel, and purified by flash column chromatography to afford the title compound as a yeliow solid (229 mg, 83%): mp 87 ’C (dec); ’H NMR (400 MHz, CDCI3) δ 8.56 (s, 1H). 8.19-8.15 (m, 3H), 7.82 - 7.75 (m, 4H), 7.43 - 7.30 (m, 5H), 7.24 (d, J= 7.3 Hz, 1H), 5.88 (d, J= 1.3 Hz, 1H), 2.21 (s. 3H), 1.80 (d, J= 1.2 Hz, 3H); ESIMS m/z 536 (M+H).
Example 17: Préparation of(Z)-3-(2-lsopropylphenyl)-5-methyl-2-((E)-(4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzyildene)hydrazono)-1,3-thlazlnane (Compound 178C) (Synthesls Method J)
To (E)-N-(2-isopropylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3yl)benzylidene)hydrazinecarbothioamlde (100 mg, 0.191 mmol) and potassium carbonate (105 mg, 0.763 mmol) in butanone (4 ml) was added 1-bromo-3-chloro-2-methylpropane (39.0 mg, 0.229 mmol). The reaction was heated to 80 °C ovemight. The reaction mixture was then diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic Iayers were poured through a phase separator and concentrated. Purification by flash column chromatography provided the title compound as a light yeliow solid as a mixture of rotational diastereoisomers: mp
186 - 190 °C; Ή NMR (400 MHz, CDCI3) 6 8.55 (d, J = 3.6 Hz, 1 H), 8.14 (d, J = 8.4 Hz, 2H), 8.06 (s, 1 H), 7.84 - 7.77 (m, 2H), 7.74 (d, J = 8.4 Hz, 2H). 7.38 (d, J = 9.0 Hz, 3H), 7.32 (td, J = 7.5,1.4 Hz, 1H), 7.26 (s, 1H), 7.17 (t, J = 7.1 Hz, 1H), 3.69-3.26(m, 1H), 3.55-3.37(m, 1H), 3.18-2.98 (m, 2H), 2.93 - 2.80 (m, 1 H), 2.47 (d, J - 35.9 Hz, 1 H). 1.31 -1.12 (m, 9H); ESIMS m/z 580 (M+H).
Example 18: Préparation of (Z)-3-(2l6-dlmethylphenyl)<2*((E)-(4-(1-(4(trlfluoromethoxy)phenyl)-1 H-1 ^^-trlazol-S-ylJbenzylldeneJhydrazono)-! ,3-thlazepane (Compound 211C) (Synthesls Method J)
To (E)-N-(2l6-dimethylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3yljbenzylidenejhydrazinecarbothioamide (500 mg, 0.979 mmol) and potassium carbonate (541 mg, 3.92 mmol) in acetone (4 ml) was added 1-bromo-4-chlorobutane (0.135 ml, 1.18 mmol). The reaction was heated to 60 °C ovemîght. The alkylation was determined to be complets by ultra performance liquld chromatography (“IIPLC). The réaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided (1Z,N’E)-4-chlorobutyl N-(2,6-dimethylphenyl)-N,-(4-(1-(4-(trifluoromethoxy)phenyl)-1 H1,2,4-triazol-3-yl)benzylidene)carbamohydrazonothioate (427 mg, 0.710 mmol, 73%) as a yellow gum which was used without further purification. To (1Z,N'E)-4-chlorobutyl N-(2,6-dimethylphenyl)W-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylîdene)-carbamohydrazonothioate (427 mg, 0.710 mmol), potassium iodide (236 mg, 1.42 mmol) and potassium carbonate (393 mg, 2.84 mmol) was added acetone (7 ml). The reaction was heated to 65°C for 72 h. The reaction was cooled to room température, diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided a yellow oîl. The yeliow oil was recrystallized from MeOH, filtered, washed with MeOH and dried to provide the title compound as a yellow solid (100 mg, 0.177 mmol, 25%); mp 100-106 °C; Ή NMR (400 MHz, CDCI3) 6 8.55 (s. 1H), 8.15 (d,
J - 8.4 Hz, 2H), 8.10 {s, 1 H), 7.79 (dt, J = 10.4, 5.8 Hz, 4H), 7.38 (d, J = 8.3 Hz, 2H), 7.11 (s, 3H), 3.85 - 3.78 (m, 2H), 3.20 - 3.12 {m, 2H), 2.30 (s, 6H), 2.13 - 2.07 (m, 2H), 1.87 - 1.82 {m, 2H); ESIMSm/z566 (M+H).
Example 19: Préparation of (Z)-3-(2-isopropylphenyl)-2-((E)-(4-(1-(4(trifluoromethoxy)phenyi)-1 H-1,2,4-triazoi-3-yl)benzylldene)hydrazono)-1,3-thlazlnan-4-one (Compound 224C) (Synthesis Method L)
To ( E)-N-(2-isopropylphenyl )-2-(4-(1 -(4-(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazinecarbothioamide (500 mg, 0.953 mmol) in butanone (9.5 ml) was added acryloyl chloride (0.077 ml, 0.953 mmol). The reaction was stirred at ambient température for 10 min followed by 50 °C for 2 h. The reaction was cooled to 40 °C ovemight. The reaction was determined to be complété by LCMS. The reaction mixture was diiuted with DCM and washed with saturated sodium bicarbonate. The aqueous layerwas extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided a yellow oil. The oil was recrystallized with diethyl ether/hexanes to provide the title compound as a light yellow solid (125 mg, 0.217 mmol, 23%): mp 118 °C (dec); 1H NMR (400 MHz, CDCl3) δ 8.57 (s. 1H), 8.21 (d, J = 8.4 Hz, 2H), 8.16 (s, 1H), 7.85 - 7.75 (m, 4H), 7.46 - 7.36 (m, 4H), 7.33 - 7.26 (m, 1 H), 7.10 (d, J - 7.6 Hz, 1 H), 3.26 - 3.14 (m, 4H), 2.81 (heptet, J - 6.9 Hz, 1H), 1.21 (t, J - 7.2 Hz, 6H); ESIMS m/z 580 (M+H).
Example 20: Séparation of rotatlonaily stable atroplsomers from racemic mixtures
Séparation of constituent Isomers from racemic mixtures can be cam'ed out utilizing one of the following chiral HPLC methods.
Séparation Method A: The column used for séparation was a Chiral Technologies INC Chiral Pak 1A 5 pm, 4.6 X 250 mm column (Part number 80325). The method consiste of a 1.0 mL/min flow rate from 0 to 30 min with an isocratic hold at 25% B for the duration of the run. The A eluent is nhexane, the B eluent Is fso-propyl alcohol.
Séparation Method B: The column used for séparation was a Chiral Technologies INC Chiral Pak 1B 5 pm, 4.6 X 250 mm column (Part number 81325). The method consists of a 1.0 mL/min flow rate from 0 to 30 min with an isocratic hold at 15% B for the duration of the run. The A eluent is npentane, the B eluent Is n-buty! alcohol.
Example 21: Préparation of (Z)-3-(2,6-dlfluorophenyl)-4-methyl-2-((E)-(4-(1-(4(trlfluoromethoxy)phenyl)-1 H-l^^triazol-S-ylJbenzylideneJhydrazonoJthiazoiidin^-ol (Compound 240C; Synthesls Method M).
To a solution of (E)-N-(2I6-difluorophenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-lH-1,2,4triazol-3-yl)benzylidene)hydrazinecarbothioamide (253 mg, 0.49 mmoi) In butanone (4.9 mL) was added triethylamine (0.14 mL, 0.98 mmol) and chloroacetone (0.055 mL, 0.68 mmol), and the 20 reaction was stirred at 80 *C for 15 hours. The mixture was allowed to cool to room température, transferred to a separatory funnel containing water (5 mL), and extracted twice with dîchloromethane. The organic extracts were filtered through a phase separator, adsorbed onto silica gel, and purified by flash chromatography (0 - 20% ethyl acetate/B, where B » 1:1 dîchloromethane/hexanes) to afford the title compound as a yeliow solid (248 mg, 88%): mp 105 25 eC (dec); 1H NMR (400 MHz. CDCI3) δ 8.57 (s. 1H), 8.25 - 8.12 (m. 3H). 7.88 - 7.72 (m, 4H), 7.39 (d, J~ 8.5 Hz, 3H), 7.06 (td. J- 8.9, 4.4 Hz, 2H), 3.58 (d, J= 11.5 Hz, 1H), 3.37 (d, J = 11.5 Hz, 1 H), 3.24 (d, J = 2.7 Hz, 1 H), 1.59 (s, 3H); 19F NMR (376 MHz, CDCIJ δ -58.02, -113.71, -115.83, 115.84; ESIMS m/z 576 (M+H)‘.
Example 22: Préparation of (Z)-2-((2-ch1oro-6-(trlfluoromethyl)phenyl)lmlno)-4-methyl-3-((E)(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylidene)amlno)thlazolidin-4-ol (Compound 241C; Synthesls Method M).
,OH
To a solution of (E)-N-(2-chloro-6-(trifluoromethyl)pheny1)-2-(4-(1-(4-(trifluoromethoxy)pheny1)-1H-1,2,4-triazol-3-yl)benzylidene)hydrazinecarbothioamide (111 mg, 0.19 mmol) in butanone (2 mL) was added chloroacetone (0.02 mL, 0.27 mmol) and triethylamine (0.05 mL, 0.38 mmol), and the reaction was stirred at 75 ’C for 16 hours. The mixture was ailowed to cool to room température, transferred to a separatory funnel contalning water (5 mL), and was extracted twice with dichloromethane. The organic extracts were filtered through a phase separator, adsorbed onto silica gel, and purified by flash chromatography (0 - 20% ethyl acetate/B, where B = 1:1 dichloromethane/hexanes). The title compound was isolated as a yellow solid (60.5 mg, 50%): mp 97 ’C (dec); 1H NMR (400 MHz, CDCI3) δ 9.72 - 9.57 (m, 1H), 8.58 (s, 1 H), 8.24 (d, J = 8.4 Hz, 2H), 7.88 - 7.72 (m, 4H), 7.56 (dt, J = 18.3, 5.8 Hz, 2H), 7.40 (d, J - 8.3 Hz. 2H). 7.09 (t, J = 8.0 Hz, 1H), 3.49 (d, J~ 13.3 Hz, 1 H), 3.35 (m, 2H), 1.86 (d, J= 14.0 Hz, 3H); ”F NMR (376 MHz, CDCI3) δ -58.01, -62.05, -62.22; ESIMS m/z 642 (M+H).
Example 23: Préparation of (Z)-3-(2-lsopropylpheny1)-4-methyl-2-((E)-(4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylidene)hydrazono)thlazolidin-4-ol (Compound 242C; Synthesls Method M).
To a solution of (E)-W-(2-isopropylphenyi)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzylidene)hydrazinecarbothioamide (134 mg, 0.26 mmol) In butanone (1.9 mL) was added chloroacetone (0.03 mL, 0.33 mmol) and triethylamine (0.04 mL, 0.28 mmol), and the reaction was stirred at room température for 16 hours. The mixture was transferred to a separatory funnel containtng water (5 mL) and extracted twice with dichloromethane. The organic extracts were filtered through a phase separator, adsorbed onto silica gel, and purified by flash chromatography (0 - 25% ethyl acetate/B, where B = 1:1 dichloromethane/hexanes) to provide the title compound as a yellow solid (117 mg, 79%): mp 114-116 *C; 1H NMR (400 MHz, CDCi3) δ 8.57 (s, 1 H), 8.19 (dd, J = 10.1, 6.2 Hz, 3H), 7.79 (dd, J = 11.5, 4.7 Hz, 4H), 7.50 - 7.44 (m, 1 H), 7.44 - 7.36 (m, 4H), 7.29 - 7.25 (m, 1 H), 3.55 (d, J = 11.5 Hz, 1 H), 3.45 (s, 1 H), 3.34 (d. J = 11.5 Hz, 1 H), 2.98 (dt, J = 13.8, 6.9 Hz, 1 H), 1.43 (s, 3H), 1.27 -1.16 (m, 6H); 19F NMR (376 MHz, CDCI3) δ -58.02; ESIMS m/z 582 (M+H)*.
Example 24: Préparation of (Z)-3-(2-(sei>butyl)phenyl)-4-methyl-2-((Ê)-(4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylldene)hydrazono)thlazolldin-4-ol (Compound 243C; Synthesis Method M).
Starting from (E)-N-(2-sec-butylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol3-yl)benzylidene)hydrazinecarbothioamîde, and using conditions described in Example 23, the title compound was isolated as a yellow soiid (122 mg, 89%): mp 112 “C (dec); 1H NMR (400 MHz, CDCI3) δ 8.57 (s, 1H), 8.23 - 8.13 (m, 3H), 7.84 - 7.74 (m. 4H), 7.55 - 7.44 (m, 1H), 7.43 - 7.32 (m, 4H), 7.28 - 7.24 (m, 1 H), 3.55 - 3.51 (m, 2H), 3.32 (dd, J = 11.5, 1.0 Hz, 1 H), 2.69 (td, J = 13.9, 7.0 Hz, 1 H). 1.63 - 1.56 (m, 2H), 1.45 (d, J = 4.9 Hz, 3H), 1.26 -1.16 (m, 3H), 0.83 (dt, J = 10.2, 7.4 Hz, 3H); ”F NMR (376 MHz, CDCI3) δ -58.02; ESIMS m/z 596 (M+H)*.
Example 25: Préparation of (Z)-3-(2-chioro-6-methylphenyl)-4-methyl-2-((Ê)-(4-(1-(4(trifluoromethoxy)phenyl)-1 H-1,2,4-trlazol-3-yi)benzylldene)hydrazono)thiazolldln-4-ol (Compound 244C; Synthesls Method M).
Starting from (E)-N-(2-chloro-6-methylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzyiidene)hydrazinecarbothioamide, and using conditions described In Example 23, the title compound was isolated as a yellow solid (107 mg, 91 %): mp 103 °C (dec): 1H NMR (400 MHz, CDCIj) δ 8.57 (s, 1H), 8.22 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H>, 7.83 - 7.76 (m, 4H), 7.41 - 7.32 (m, 3H), 7.25-7.21 (m, 2H), 3.70-3.61 (m, 1H), 3.53 (s, 1H), 3.30 (d, J = 11.2 Hz, 1H>, 2.49 (s, 3H), 1.51 (s, 3H); 1®F NMR (376 MHz, CDCI3) δ -58.02; ESIMS m/z 588 (M+Hf.
Example 26: Préparation of (Z)-3-(4-methoxy-2-methylphenyl)-4-methyl-2-((E)-(4-(1-(4(trlf!uoromethoxy)phenyl)-1H-1,2,4-triazoi-3-yl)benzyildene)hydrazono)thlazolldin-4-ol (Compound 245C; Synthesls Method M).
Starting from (E)-N-(2-methyl-4-methoxyphenyl)-2-(4-(1-(4-(trifluoromethoxy)-phenyl)-1 H1,2,4-triazol-3-yl)benzylîdene)hydrazînecarbothioamide, and using conditions described In Example 23, the title compound was isolated as a yellow solid (88 mg, 76%): mp 129 *C (dec); 1H NMR (400 MHz, CDCI3) δ 8.57 (s, 1H), 8.25 (s, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.82 - 7.75 (m. 4H), 7.39 (t, J = 8.8 Hz, 3H), 6.86-6.76 (m, 2H), 3.83 (s, 3H), 3.52 (d, J= 11.5 Hz, 1H), 3.43 (s, 1H), 3.31 (d, J = 11.6 Hz, 1H), 2.19 {s, 2H), 1.43 {s, 3H); 19F NMR (376 MHz, CDCIj) δ -58.02; ESIMS m/z 584 (M+H)*.
Example 27: Préparation of (Z)-3-(2-lsopropylphenyl)-2-((E)-{4-{1-{4(trlfluoromethoxyJphenylJ-IH-l^^trlazol-S-ylJbenzylldeneJhydrazono)^(trifluoromethyl)thlazoildin-4-ol (Compound 246C; Synthesls Method M).
To a solution of (E)-N-(2-lsopropylphenyl)-2-(4-(1-{4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzylidene)hydrazinecarbothioamide (351 mg, 0.67 mmol) In butanone (6.7 mL) was added 3-bromo-1,1,1-trifluoroacetone (0.14 mL, 1.34 mmol) and triethylamlne (0.19 mL, 1.34 mmol), and the reaction was stirred at 85 °C for 21 hours. The mixture was allowed to cool to room température, transferred to a separatory funnel containing water (5 mL), and the aqueous mixture extracted twice with dichloromethane. The organic extracts were filtered through a phase separator, adsorbed onto siîica gel, and purified by flash chromatography (0 - 20% ethyl acetate/B, where B = 1:1 dichloromethane/hexanes) to provide a diastereomeric mixture (2:1) of the title compound as an orange solid (189 mg, 45%): mp 185 -187 C; ’H NMR (400 MHz, CDCI3, both diastereomers) δ 8.56 (m, 2H), 8.22 - 8.14 (m, 6H), 7.83 - 7.75 (m, 8H), 7.49 - 7.34 (m, 10H), 7.32 - 7.23 (m, 2H), 4.22 (s, 1H), 3.82 (dd, J= 12.5, 4.8 Hz, 2H). 3.51 (d, J- 13.2 Hz, 1H), 3.40 (d, J= 12.3 Hz, 1H), 3.31 (s, 1H), 3.09 (tt, J= 13.9, 7.0 Hz, 2H), 1.31-1.13 (m, 12H); 19F NMR (376 MHz, CDCI,) δ58.02, -78.33, -78.77; ESIMS m/z 636 (M+H)*.
Example 28: Préparation of (Z)-3-(2-(sec-butyl)phenyl)-2-((E)-(4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazono)-4(trlfluoromethyl)thlazolldln-4-ol (Compound 247C; Synthesls Method M).
To a solution of (E)-/V-(2-(sec-butyl)phenyl)-2-(4-{1-{4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzylidene)hydrazinecarbothioamide {203 mg, 0.38 mmol) in butanone {3.8 mL) was added triethylamine {0.07 mL, 0.49 mmol) and 3-bromo-1,1,1-trifiuoroacetone (0.05 mL, 0.49 mmol), and the reaction was stirred at 85 ’C for 20 hours, after which LC/MS analysis showed minimal conversion. Additional triethylamine (0.03 mL, 0,21 mmoL) and 3-bromo-1,1,1trifluoroacetone (0.1 mL, 0.98 mmol) were added to the reaction mixture and the reaction was stirred at 90 ’C for an additional 20 hours. The mixture was allowed to cool to room température, transferred to a separatory funnel containing water (5 mL), and extracted twice with dichloromethane. The organic extracts were filtered through a phase separator, adsorbed onto süica gel, and purified by flash chromatography (0 - 20% ethyl acetate/B, where B = 1:1 dîchloromethane/hexanes). Further purification by reverse-phase flash chromatography (0 -100% acetonitrile/water) provided the title compound as an orange solid (16 mg, 7%): ’H NMR (400 MHz, CDCl3) δ 8.59 - 8.54 (m, 1H), 8.30 - 8.13 (m, 3H), 7.79 (dd, J= 8.6, 6.7 Hz, 4H), 7.45 - 7.34 (m, 5H), 7.32 - 7.21 (m, 1H), 3.99 (s, 1H), 3.83 (d, J = 12.2 Hz, 1H). 3.52 - 3.38 (m, 1H), 2.82 - 2.75 (m, 1 H), 1.27-1.26 (m, 1 H). 1.21 -1.12 (m, 3H), 0.97-0.75 (m, 4H); ’9F NMR (376 MHz, CDCI3) δ -58.03, -78.23, -78.32, -78.76, -78.84; ESIMS m/z 650 (M+H)*.
Compounds 248-256, 258-262, and 264, shown in Table 3, were prepared according to the method described In Example 23 from the appropriately substituted intermediates disclosed in Table 1. Characterization data for these compounds is reported in Table 4.
Example 29: Préparation of (Z)-3-(2-lsopropylphenyl)-4,5-dlmethyi-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzyl1dene)hydrazono)thlazolld1n-4-ol (Compound 257C).
To a solution of (E)-N-(2-isopropylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzylidene)hydrazinecarbothioamlde (114 mg, 0.22 mmol) in butanone (2.2 mL) was added 3-bromo-2-butanone (0.03 mL, 0.28 mmol) and triethylamine (0.06 mL, 0.44 mmoi), and the reaction was stirred at room température ovemight. The reaction mixture was directly applied to a sîlica gel cartridge and purified by flash chromatography (0 - 30% ethyî acetate/B, where B = 1:1 dichloromethane/hexanes) to provide the title compound as a yellow solid (108 mg, 84% yleld): mp 140 ’C (dec); 1H NMR (400 MHz, CDCI3) δ 8.57 (s, 1H). 8.22 - 8.16 (m, 3H), 7.82 - 7.74 (m, 4H), 7.55 - 7.47 (m, 1 H), 7.42 - 7.35 (m, 4H), 7.29 - 7.24 (m, 1 H). 3.92 - 2.96 (m, 3H), 1.57 (s, 1 H), 1.57 -1.50 (m, 3H), 1.35 -1.17 (m, 9H); ieF NMR (376 MHz, CDCI3) δ -58.02; ESIMS m/z 595 ((M+H]*).
Example 30: Préparation of (Z)-3-(2-lsopropylphenyl)-2-((E)-(4-(1-(4(trifIuoromethoxy)phenyl)-1H-1,2t4-triazol*3-yl)benzylidene)hydrazono)-4-{2(trifIuoromethyl)phenyi)thiazolidin-4-ol (Compound 263C).
A solution of (E)-N-(2-isopropylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2l4-triazol· 3-yl)benzylidene)hydrazinecarbothloamide (0.30 g, 0.57 mmol) and 2-(trifluoromethyl)phenacyl bromide (0.22 g, 0.85 mmol) In DCE (30 mL) was heated to reflux and stirred ovemight. The reaction mixture was cooled to room température, diluted with ethyî acetate (100 mL), washed with water (2 x 50 mL), washed with brine solution (1 x 25 mL), and dried over anhydrous sodium sulfate. The solution was filtered, the filtrate concentrated, and the residue purified by flash chromatography (0 -100% ethyî acetate/hexanes) to provide (Z)-3-(2-isopropylphenyl)-2-((E)-(4-(140 (4-(trifluoromethoxy)-phenyl)-1H-1,2,4-triazol-3-yl)benzylÎdene)hydrazono)-4-(2-(trifluoromethyl)phenyl)thiazolidin-4-ol as a yellow solid (0.15 g, 38% yîeld): mp 115-117.5 eC; Ή NMR (400 MHz, CDCb) δ 8.59 (s, 1H), 8.33 (s, 1H), 8.24 (d, J =8.4 Hz, 2H), 8.13 (s, 1 H), 7.86-7.77 (m, 5H).
7.73 (d, J- 7.2 Hz, 1H), 7.62 (dt, J- 21.6, 7.2 Hz, 2H). 7.40 (d, J = 8.2 Hz, 2H). 7.37-7.28 (m, 3H), 7.24 - 7.17 (m, 1 H>. 4.34 (s, 2H), 3.20 (dt, J = 13.7, 6.8 Hz, 2H), 1.25 (d, J = 6.9 Hz, 6H); ieF NMR (376 MHz, CDCI3) δ -57.99, -58.02; ESIMS m/z 711 ([M+H]*).
Example 31: (E)-N-(2-cyclopentylphenyl)-2-(4-(1*(4-(trifluoromethoxy)pheny1)-1H-1,2,4triazol-3-yl)benzyiidene)hydrazlnecarbothloamlde (Compound 1-35; Synthesis Methods N and C) >
Step 1: Préparation of 1-(cyclopent-1-en-1-yl)-2-nitrobenzene (Ι-32, Method N). To a mixture of 1-chloro-2-nitrobenzene (0.5 g, 3.2 mmol) and sodium carbonate (0.34 g. 3.2 mmol) in a 100 mL roundbottom flask equipped with a magnetic stir bar and nitrogen inlet were added water (3.2 mL), dioxane (13 mL) and 2-(cyclopent-1-en-1-yl)-4,4(5l5-tetramethyl-1,3l2-dioxaborolane (0.77 mL, 3.8 mmol). The reaction flask was evacuated and purged with nitrogen (2 x) prior to the addition of bis(triphenylphosphine)palladium(II) chloride (0.18 g, 0.25 mmol), and then evacuated and purged (3 x) following the addition of the catalyst. The réaction was heated to 80 eC and stirred ovemight. The reaction was cooled and filtered through a pad of Celite® which was subsequently washed with water and ethyl acetate. The phases were separated and the organic phase was dried by passing it through a phase separator cartridge and concentrated. The residue was purified by flash column chromatography providing the title compound (0.56 g, 3.0 mmol, 93 % yîeld) as a yellow oil: 1H NMR (400 MHz, CDCI3) δ 7.78 - 7.71 (m, 1H), 7.54 - 7.47 (m, 1H), 7.40-7.32 (m, 2H), 5.86-5.82 (m, 1H), 2.63-2.55 (m, 2H), 2.55-2.47 (m, 2H), 2.09-1.98 (m, 2H); 13C NMR (101 MHz, CDCI3) δ 148.77,139.96, 133.58,132.08, 130.87,130.52,127.55,123.70, 35.31, 33.49, 24.05; ESIMS m/z 190 ([M+H]*).
Step 2: Préparation of 2-cycIopentylanlllne (1-33, Method N). To a solution of 1(cyclopent-1-en-1-yl)-2-nitrobenzene (0.58 g, 3.0 mmol) In ethyl acetate (30 mL) In a 200 mL roundbottom flask equipped with a magnetic stir bar and nitrogen înlet was added palladium on carbon (0.63 g, 0.30 mmol, 5 %). The flask was evacuated and purged with nitrogen (3 x), and then evacuated and piaced under hydrogen (1 atmosphère (atm)). The mixture was stirred at room température ovemight, fiitered through a pad of Celite®, and the filter cake washed with ethyl acetate. The filtrats was concentrated to provide the tille compound (0.46 g, 2.9 mmol, 98 % yield) as a dearand slightly red oil: ’H NMR (400 MHz, CDCI3) δ 7.14 (dd, 7.7,1.3 Hz, 1H), 7.02 (td, J= 7.6,1.5 Hz, 1H), 6.76 (td, J= 7.4,1.1 Hz, 1H), 6.68 (dd, J= 7.8,1.2 Hz, 1H), 3.66 (bs, 2H), 3.04 - 2.92 (m. 1H), 2.13-1.98 (m, 2H), 1.88 -1.58 (m, 6H); 13C NMR (101 MHz, CDCI3) δ 144.12, 130.34,126.51,125.95, 118.78, 115.70, 39.89, 32.17, 25.21; ESIMS m/z 162 ([M+H]*).
Step 3: Préparation of N-(2-cyclopentylphenyl)hydrazlnecarbothloamlde (I-34,
Method N). To a biphasic solution of 2-cyclopentylaniiine (0.46 g. 2.9 mmol) In dichloromethane (10 mL) and water (4.8 mL) in a 100 mL roundbottom flask equipped with a magnetic stir bar and nitrogen Inlet was added sodium hydrogencarbonate (0.73 g, 8.6 mmol) followed by thiophosgene (0.21 mL 2.8 mmol). The reaction was stirred at room température for 1 hour, fiitered through a phase separator cartridge, and concentrated providing the 1-cyclopentyJ-2-lsothiocyanatobenzene as a red oil which was used without further purification. To a solution of the isothiocyanate in éthanol (5.5 mL) In a 100 mL roundbottom flask was added hydrazine hydrate (0.15 mL, 3.1 mmol), and the reaction was stirred at room température overnight. The reaction mixture was diluted with hexanes and the resulting solid was collected by filtration, washed with hexanes, and dried under house vacuum to provide the tille compound (0.41 g, 1.7 mmol, 63 % yield) as a white solid: 1H NMR (400 MHz, CDCIa) δ 9.02 (bs, 1H), 7.52 (bs, 1H), 7.41 - 7.18 (m, 4H), 4.06 (bs, 2H), 3.21 3.06 (m, 1H). 2.04 (s, 2H), 1.90-1.74 (m, 2H). 1.74 - 1.58 (m, 4H); ESIMS m/z 236 ([M+H]*).
Step 4: Préparation of (E)-W-(2-cyclopentylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyI)-1H-1,2,4-trIazol-3-yl)benzylldene)hydrazlnecarbothloamlde (I-35, Method C). To a mixture of 4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzaldehyde (0.58 g, 1.7 mmol) and N-(2-cyclopentylphenyl)hydrazinecarbothioamide (0.41 g, 1.7 mmol) ln a 100 mL roundbottom flask equipped with a magnetic stir bar and reflux condenser was added methanol (17 mL), and the reaction was heated to 50 °C and stirred overnight. The reaction was cooled to room température and the resulting solid was filtered, washed with methanol and dried under vacuum (25 in Hg) at 55 °C to give the title compound (795 mg, 1.44 mmol, 83 % yield) as a yellow solid: mp 213-216 °C; ’H NMR (400 MHz, CDCIj) δ 9.45 (s, 1H), 9.11 (s, 1H), 8.60 (s, 1H), 8.26 (d, J= 8.4 Hz, 2H), 7.91 (s, 1 H), 7.86 - 7.71 (m, 5H), 7.40 (dd, J = 8.8, 6.4 Hz. 3H), 7.35 - 7.27 (m, 2H), 3.22 (t, J = 8.0 Hz, 1H), 2.13 (d, J= 2.5 Hz, 2H), 1.90-1.59 (m, 6H); ESIMS m/z 551 ((M+Hf).
Intermediate compounds 1-36 —1-55 and 1-61 —1-62, shown in Table 1, were prepared according to the methods outlined In Example 29, Steps 1-4. Characterization data for these intermediates is shown In Table 2.
Example 32: Bioassays on Beet Armyworm (BAW”) and Corn Earworm (CEW”)
BAW has few effective parasites, diseases, or predators to lower its population. BAW infests many weeds, trees, grasses, legumes, and field crops. In various places, it Is of économie concem upon asparagus, cotton, corn, soybeans, tobacco, alfalfa, sugar beets, peppers, tomatoes, potatoes, onions, peas, sunflowers, and citrus, among other plants. CEW is known to attack corn and tomatoes, but it also attacks artichoke, asparagus, cabbage, cantaloupe, collards, cowpeas, cucumbers, eggplant, lettuce, lima beans, melon, okra, peas, peppers, potatoes, pumpkin, snap beans, spinach, squash, sweet potatoes, and watermelon, among other plants. CEW is also known to be résistant to certain insecticides. Consequently, because of the above factors control of these pests is important. Furthermore, molécules that control these pests are useful In controllîng other pests.
Certain molécules disclosed in this document were tested against BAW and CEW using procedures described in the following examples. In the reporting of the results, the 'BAW & CEW Ratlng Table' was used (See Table Section).
Bioassays on BAW (Spodoptera exlgua)
Bioassays on BAW were conducted using a 128-well diet tray assay. One to fïve second instar BAW larvae were placed In each well (3 mL) of the diet tray that had been previously filled with 1 mL of artificial diet to which 50 pg/cm2 of the test compound (dissolved In 50 pL of 90:10 acetone-water mixture) had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adhesive cover and held at 25 C, 14:10 light-dark for five to seven days. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged. The results are indicated in the table entitled Table 5: Blologlcal Results* (See Table
Section).
BIOASSAYS ON CEW (Hellcoverpa zea)
Bioassays on CEW were conducted using a 128-well diet tray assay. One to five second instar CEW larvae were placed in each weli (3 mL) of the diet tray that had been previously filled with 1 mL of artificïal diettowhich 50 pg/cm2ofthe test compound (dissolved in 50 pLof 90:10 acetone-water mixture) had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a dear self-adhesive cover and held at 25 ’C, 14:10 light-dark for five to seven days. Percent mortality was recorded for the larvae in each well; activity In the eight wells was then averaged. The results are indicated In the table entitled 'Table 5: Blological Results (See Table Section).
Example 33: Bioassays on Green Peach Aphid (“GPA’r) (Myzus perslcae).
GPA is the most significant aphid pest of peach trees. causing decreased growth, shriveling of the leaves, and the death of various tissues. It is also hazardous because it acts as a vector for the transport of plant viruses, such as potato virus Y and potato leafroll virus to members of the nightshade/potato family Solanaceae, and various mosaic viruses to many otherfood crops. GPA attacks such plants as broccoli, burdock, cabbage, carrot, cauliflower, daikon, eggplant, green beans, lettuce, macadamia, papaya, peppers, sweet potatoes, tomatoes, watercress, and zucchini, among other plants. GPA also attacks many omamental crops such as carnation, chrysanthemum, flowering white cabbage, poinsettia, and roses. GPA has developed résistance to many pesticides.
Certain molécules disdosed in thïs document were tested against GPA using procedures described in the following example. In the reporting of the results, the *GPA Rating Table* was used (See Table Section).
Cabbage seedlings grown In 3-inch pots, with 2-3 small (3-5 cm) true leaves, were used as test substrate. The seedlings were infested with 20-50 GPA (wingless adult and nymph stages) one day prior to chemical application. Four pots with individual seedlings were used for each treatment. Test compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm test compound. The stock solutions were diluted 5X with 0.025% Tween 20 in H2O to obtain the solution at 200 ppm test compound. A hand-held aspirator-type sprayer was used for spraying a solution to both sides of cabbage leaves until runoff. Reference plants (solvent check) were sprayed with the diluent only containing 20% by volume of acetone/methanol (1:1) solvent. Treated plants were held in a holding room for three days at approxîmately 25 ’C and ambient relative humîdity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Percent Control was measured by using Abbott's correction formula (W.S. Abbott, “A Method of Computing the Effectiveness of an Insecticide* J. Econ. Entomol. 18 (1925), pp.265-267) as follows.
Corrected % Control = 100 * (X - Y) / X where
X = No. of live aphids on solvent check plants and
Y - No. of live aphids on treated plants
The results are indicated in the tabie entitled Table 5: Blologlcal Results (See Table Section).
PESTICIDALLY ACCEPTABLE ACID ADDITION SALTS, SALT DERIVATIVES, SOLVATES, ESTER DERIVATIVES, POLYMORPHS, ISOTOPES AND RADIONUCLIDES
Molécules of Formulas One, Two and Three may be formulated Into pesticidaîly acceptable acid addition salts. By way of a non-limiting example, an amine function can form salts with hydrochloric, hydrobromlc, sulfuric, phosphoric, acetic, benzoic, citric, malonic, salicylic, malic, fuma rie, oxalic, succinic, tartaric, lactic, gluconic, ascorbic, maleic, aspartic, benzenesulfonic, methanesuifonic, ethanesulfontc, hydroxymethanesulfonic, and hydroxyethanesulfonlc acids. Additlonally, by way of a non-limiting example, an acid function can form salts including those derived from alkaîi or alkaline earth metals and those derived from ammonia and amines. Examples of preferred cations include sodium, potassium, and magnésium.
Molécules of Formulas One, Two and Three may be formulated into sait dérivatives. By way of a non-limiting example, a sait dérivative can be prepared by contacting a free base with a sufficient amount of the desired acid to produce a sait. A free base may be regenerated by treating the sait with a suitable diiute aqueous base solution such as dilute aqueous sodium hydroxide (NaOH), potassium carbonate, ammonia, and sodium bicarbonate. As an example, in many cases, a pesticide, such as 2,4-D, is made more water-soluble by converting it to its dimethylamine sait..
Molécules of Formulas One, Two and Three may be formulated into stable complexes with a solvent, such that the complex remains intact after the non-complexed solvent Is removed. These complexes are often referred to as “solvatés.* However, it Is particularly désirable to form stable hydrates with water as the solvent.
Molécules of Formulas One, Two and Three may be made into ester dérivatives. These ester dérivatives can then be applied in the same manner as the invention disclosed in this 45 document is appîied.
Molécules of Formulas One, Two and Three may be made as various crystal polymorphs. Polymorphism is important in the development of agrochemicals since different crystal polymorphs or structures of the same molécule can hâve vastly different physlcal properties and biological performances.
Molécules of Formulas One, Two and Three may be made with different isotopes. Of particular importance are molécules having 2H (also known as deuterium) in place of ’H.
Molécules of Formulas One, Two and Three may be made with different radionuclides. Of particular Importance are molécules having 14C.
STEREOISOMERS
Moiecules of Formulas One, Two and Three may exist as one or more stereolsomers. Thus, certain moiecules can be produced as racemic mixtures, it will be appreciated by those skilled in the art that one stereoisomer may be more active than the other stereoisomers. Individual stereolsomers may be obtained by known sélective synthetic procedures, by conventional synthetic procedures using resolved starting matériels, or by conventional resolution procedures.
INSECTICIDES
Moiecules of Formulas One, Two and Three may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the following Insecticides - 1,2-dichioropropane, abamectin, acephate, acetamlprid, acethion, acetoprole, acrinathrin, acrylonitrile, alanycarb, aldicarb, aldoxycarb, aldrin, allethrin, allosamidin, allyxycarb, a/pha-cypermethrin, afpha-ecdysone, a/pha-endosulfan, amidithion, aminocarb, amiton, amiton oxalate, amitraz, anabasine, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphos-methyl, azothoate, barium hexafluorosilicate, barthrin, bendiocarb, benfuracarb, bensultap, befa-cyfluthrin, befa-cypermethrin, bifenthrin, bioallethrin, bioethanomethrin, biopermethrin, bistrifluron, borax, boric acid, bromfenvinfos, bromocycien, bromo-DDT, bromophos, bromophos-ethyl, bufencarb, buprofezin, butacarb, butathiofos, butocarboxim, butonate, butoxycarboxim, cadusafos, calcium arsenate, calcium polysulfide, camphechlor, carbanolate, carbaryl, carbofuran, carbon disulfide, carbon tetrachioride, carbophenothion, carbosulfan, cartap, cartap hydrochloride, chlorantranîliprole, chlorbicyclen, chlordane, chîordecone, chlordimefomn, chlordimeform hydrochloride, chlorethoxyfos, chlorfenapyr, chlorfenvinphos, chlorfluazuron, chlormephos, chloroform, chloropicrin. chlorphoxim, chlorprazophos, chlorpyrifos, chlorpyrifos methyl, chlorthiophos, chromafenozide, cinerin I, cinerin 11, cinerins, cismethrin, cloethocarb, closantel, clothianidin, copperacetoarsenite, copperarsenate, copper naphthenate, copper oleata, coumaphos, coumithoate, crotamîton, crotoxyphos, crufomate, cryolite, cyanofenphos, cyanophos, cyanthoate, cyantranîliprole, cyclethrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, cyphenothrin, cyromazine, cythioate, DDT, decarbofuran, deltamethrin, demephion, demephion-O, demephion-S, demeton, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-Smethyl, demeton-S-methylsulphon, diafenthïuron, dialifos, diatomaceous earth, diazinon, dicapthon, dichlofenthion, dichlorvos, dicresyl, dicrotophos, dicyclanil, dîeldrin, diflubenzuron, dilor, dimefluthrin, dimefox, dimetan, dimethoate, dimethrin, dimethylvinphos, dimetilan, dînex, dinexdiclexine, dinoprop, dinosam, dinotefuran, diofenolan, dioxabenzofos, dioxacarb, dioxathion, disulfoton, dithlcrofos, d-!imonene, DNOC, DNOC-ammonium, DNOC-potasslum, DNOC-sodium, doramectin, ecdysterone, emamectïn, emamectin benzoate, EMPC, empenthrin, endosulfan, endothion, endrin, EPN, epofenonane, eprinomectin, esdepaliéthrine, esfenvalerate, etaphos, ethiofencarb, ethion, ethiprole, ethoate-methyl, ethoprophos, ethyl formate, ethyl-DDD, ethylene dibromide, ethylene dichloride, ethylene oxide, etofenprox, etrimfos, EXD, famphur, fenamiphos, fenazaflor, fenchlorphos, fenethacarb, fenfluthrin, fenitrothion, fenobucarb, fenoxacrim, fenoxycarb, fenpirithrin, fenpropathrin, fensulfothion, fenthion, fenthion-ethyl, fenvalerate, fipronil, flometoquin, flonlcamid, flubendiamide (additionallv resolved isomers thereof), flucofuron, flucycloxuron, flucythrinate, flufenerim, flufenoxuron, flufenprox, flufiprole, flupyradifurone, fluvalinate, fonofos, formetanate, formetanate hydrochloride, formothion, formparanate, formparanate hydrochloride, fosmethilan, fospirate, fosthietan, fufenozide, furathlocarb, furethrin, gamma-cyhalothrin, gamma· HCH, halfenprox, halofenozide, HCH, HEOD, heptachlor, heptenophos, heterophos, hexaflumuron, HHDN, hydramethylnon, hydrogen cyanide, hydroprene, hyquîncarb, imidacloprid, imlprothrin, indoxacarb, iodomethane, IPSP, isazofos, isobenzan, isocarbophos, isodrin, isofenphos, isofenphos-methyl, Isoprocarb, isoprothiolane, isothioate, isoxathîon, ivermectin, jasmolïn I, jasmolin II, Jodfenphos, Juvénile hormone I, juvénile hormone II, juvénile hormone III, kelevan, kinoprene, lambda-cyhalothrin, lead arsenate, lepimectin, leptophos, iindane, lirimfos, lufenuron, lythidathion, malathion, malonoben, mazîdox, mecarbam, mecarphon, menazon, meperfluthrin, mephosfolan, mercurous chloride, mesulfenfos, metaflumizone, methacrifos, methamidophos, methidathion, methîocarb, methocrotophos, methomyl, methoprene, methothrin, methoxychlor, methoxyfenozide, methyl bromide, methyl isothlocyanate, methylchloroform, methylene chloride, metofluthrin, metolcarb, metoxadiazone, mevinphos, mexacarbate, milbemectin, milbemycin oxime, mipafox, mirex, molosultap, monocrotophos, monomehypo, monosultap, morphothion, moxidectin, naftalofos, naled, naphthalene, nicotine, nifluridîde, nitenpyram, nithiazine, nitrilacarb, novaluron, noviflumuron, omethoate, oxamyl, oxydemeton-methyl, oxydeprofos, oxydisulfoton, para47 dichlorobenzene, parathion, parathion-methyl, penfluron, pentachlorophenol, permethrin, phenkapton, phenothrin, phenthoate, phorate, phosalone, phosfolan, phosmet, phosnichlor, phosphamldon, phosphine, phoxlm, phoxlm-methyl, pirimetaphos, pirimlcarb, plrimÎphos-ethyl, pirimlphos-methyl, potassium arsenite, potassium thiocyanate, pp'-DDT, prallethrin, precocene I, precocene II, precocene III, primidophos, profenofos, profluralin, profluthrin, promacyl, promecarb, propaphos, propetamphos, propoxur, prothîdathion, prothiofos, prothoate, protrifenbute, pymetrozine, pyraclofos, pyrafluprole, pyrazophos, pyresmethrin, pyrethrin I, pyrethrin II, pyrethrins, pyridaben, pyridalyî, pyridaphenthion, pyrifluquinazon, pyrimidifen, pyrimitate, pyriprole, pyriproxyfen, quassia, quinalphos, quinalphos-methyl, quinothion, rafoxanide, resmethrin, rotenone, ryania, sabadilla, schradan, selamectin, silafluofen, silica gel, sodium arsenite, sodium fluoride, sodium hexafluorosilicate, sodium thiocyanate, sophamide, spinetoram, spinosad, spiromesifen, spirotetramat, sulcofuron, sulcofuron-sodium, sulfluramid, sulfotep, sulfoxaflor, sulfuryl fluoride, sulprofos, tau-fluvalinate, tazimcarb, TDE, tebufenozide, tebufenpyrad, tebupîrimfos, teflubenzuron, tefluthrin, temephos, TEPP, terallethrin, terbufos, tetrachloroethane, tetrachlorvinphos, tetramethrin, tetramethylfluthrin, fhefa-cypermethrin, thiacloprid, thiamethoxam, thicrofos, thiocarboxime, thîocyclam, thiocyclam oxalate, thiodicarb, thiofanox, thiometon, thiosultap, thiosultap-disodium, thiosultap-monosodium, thuringiensin, tolfenpyrad, tralomethrin, transfluthrin, transpermethrin, triarathene, triazamate, triazophos, trichlorfon, trichlormetaphos*3, trichloronat, trifenofos, triflumuron, trimethacarb, triprene, vamidothion, vaniliprole, XMC, xylylcarb, zeta-cypermethrin, and zolaprofos (collectively these commonly named insecticides are defined as the ‘Insecticide Group'),
ACARICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as, in a compositions! mixture, or a simultaneous or sequential application) with one or more of the following acaricides - acequinocyl, amidoflumet, arsenous oxide, azobenzene, azocyclotin, benomyl, benoxafos, benzoximate, benzyl benzoate, bifenazate, binapacryl, bromopropylate, chinomethionat, chlorbenside, chlorfenethol, chlorfenson, chlorfensulphide, chlorobenzilate, chloromebuform, chloromethiuron, chloropropylate, clofentezine, cyenopyrafen, cyflumetofen, cyhexatin, dichlofluanid, dicofol, dienochlor, diflovidazin, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, diphenyl sulfone, disulfiram, dofenapyn, etoxazole, fenazaquin, fenbutatin oxide, fenothiocarb, fenpyroximate, fenson, fentrifanil, fluacrypyrim, fluazuron, flubenzimine, fluenetil, flumethrin, fluorbenside, hexythiazox, mesulfen, MNAF, nikkomycins, proclonol, propargite, quintiofos, spirodiclofen, sulfiram, sulfur, tetradifon. tetranactin, tetrasui, and thioquinox (coilectiveiy these commonly named acaricides are defined as the Acariclde Group).
NEMATICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the foliowing nematicides - 1,3-dichloropropene, benclothiaz, dazomet, dazomet-sodium, DBCP, DCIP, diamidafos, fluensulfone, fosthiazate, furfural, imtcyafos, isamldofos, isazofos, metam, metamammonium, metam-potassium, metam-sodium, phosphocarb, and thionazin (coilectiveiy these commonly named nematicides are defined as the Nematlcide Group)
FUNGICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as, in a compositional mixture, or a simultaneous or sequential application) with one or more of the foliowing fongicides - (3-ethoxypropyl)mercury bromide, 2-methoxyethylmercury chioride, 2phenylphenol, 8-hydroxyquinoline sulfate, 8-phenylmercurioxyquinoline, acibenzolar, acibenzoiarS-methyl, acypetacs, acypetacs-copper, acypetacs-zinc, aldimorph, allyl alcohol, ametoctradin, amisuibrom, ampropylfos, anilazine, aureofungin, azaconazole, azithiram, azoxystrobin, barium polysulfide, benalaxyt, benalaxyl-M, benodanil, benomyl, benquinox, bentaluron, benthlavalicarb, benthiavalicarb-isopropyl, benzalkonium chioride, benzamacril, benzamacril-isobutyl, benzamorf, benzohydroxamic acid, bethoxazin, binapacryl, biphenyl, bïtertanol, bithionol, blxafen, blasticidin-S, Bordeaux mixture, boscalid, bromuconazole, bupirimate, Burgundy mixture, buthiobate, butylamine, calcium polysulfide, captafol, captan, carbamorph, carbendazim, carboxin, carpropamid, carvone, Cheshunt mixture, chinomethionat, chlobenthiazone, chloraniformethan, chloranii, chlorfenazole, chlorodinitronaphthalene, chloroneb, chloroplcrin, chlorothalonil, chiorquinox, chlozolinate, climbazole, clotrimazole, copper acetate, copper carbonate, baslc, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper silicate, copper sulfate, copper zinc chromate, cresol, cufraneb, cuprobam, cuprous oxide, cyazofamid, cyclafuramid, cycloheximlde, cyflufenamid, cymoxanil, cypendazoie, cyproconazole, cyprodinii, dazomet, dazomet-sodium, DBCP, debacarb, decafentin, dehydroacetic acid, dichlofluanid, dichlone, dichlorophen, dichlozoline, diclobutrazol, diclocymet, diclomezine, diclomezine-sodium, dicloran, diethofencarb, diethyl pyrocarbonate, difenoconazole, diflumetorim, dimethirimoi, dimethomorph, dimoxystrobin, diniconazole, dinlconazole-M, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, diphenylamine, dipyrithlone, disulfiram, ditalimfos, dithlanon, DNOC,
DNOC-ammonium, DNOC-potassium, DNOC-sodium, dodemorph, dodemorph acetate, dodemorph benzoate, dodïcin, dodicin-sodium, dodine, drazoxolon, edïfenphos, epoxiconazoie, etaconazole, etem, ethaboxam, ethirimol, ethoxyquin, ethylmercury 2,3-dihydroxypropyl mercaptide, ethylmercury acetate, ethylmercury bromide, ethylmercury chloride, ethylmercury phosphate, etridiazole, famoxadone, fenamldone, fenaminosulf, fenapanii, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenitropan, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fentin, fentin chloride, fentin hydroxide, ferbam, ferimzone, fluazlnam, fludioxonîl, flumetover, flumorph, fluopicolide, fluopyram, fluoroimlde, fluotrimazole, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, formaldéhyde, fosetyl, fosetyl-aluminium, fuberidazole, furalaxyl, furametpyr, furcarbanil, furconazole, furconazole-cls, furfural, furmecyclox, furophanate, glyodin, griseofulvln, guazatîne, halacrinate, hexachlorobenzene, hexachlorobutadiene, hexaconazole, hexylthiofos, hydrargaphen, hymexazol, Imazalîl, imazalîl nitrate, imazalil sulfate, imibenconazole, iminoctadine, iminoctadine triacetate, iminoctadine trialbesilate, iodomethane, ipconazole, iprobenfos, iprodione, iprovalicarb, isoprothiolane, isopyrazam, isotianil, isovaledione, kasugamycin, kresoxim-methyl, mancopper, mancozeb, mandipropamld, maneb, mebenii, mecarbinzid, mepanipyrim, mepronîl, meptyldinocap, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, metalaxyl-M, metam, metamammonium, metam-potassium, metam-sodium, metazoxolon, metconazole, methasulfocarb, methfuroxam, methyl bromide, methyl Isothiocyanate, methylmercury benzoate, methylmercury dicyandiamide, methylmercury pentachlorophenoxide, metiram, metominostrobin, metrafenone, metsulfovax, milneb, myclobutanil, myclozolin, N-(ethylmercury)-p-toluenesulphonanilide, nabam, natamycin, nitrostyrene, nitrothai-isopropyl, nuarimol, OCH, octhilinone, ofurace, orysastrobin, oxadixyl, oxine-copper, oxpoconazole, oxpoconazoie fumarate, oxycarboxin, pefurazoate, penconazole, pencycuron, penflufen, pentachlorophenol, penthiopyrad, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury dérivative of pyrocatechol, phenylmercury nitrate, phenylmercury salicylate, phosdiphen, phthalîde, picoxystrobin, piperalin, polycarbamate, poiyoxins, polyoxorim, poiyoxorim-zinc, potassium azide, potassium polysulfide, potassium thiocyanate, probenazole. prochloraz, procymidone, propamocarb, propamocarb hydrochloride, propiconazole, propineb, proqulnazîd, prothiocarb, prothiocarb hydrochloride, prothioconazole, pyracarbolid, pyraclostrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyridinitril, pyrifenox, pyrimethanil, pyriofenone, pyroquilon, pyroxychior, pyroxyfur, quinacetol, quinacetol sulfate, quinazamid, quinconazole, quinoxyfen, quintozene, rabenzazole, salîcylanilide, sedaxane, siithiofam, simeconazole, sodium azide, sodium orthophenylphenoxide, sodium pentachlorophenoxide, sodium polysulfide, spiroxamine, streptomycin, sulfur, sultropen, TCMTB, tebuconazole, tebufloquin, tedoftalam, tecnazene, tecoram, tetraconazole, thiabendazole, thiadifluor, thlcyofen, thifluzamide, thiochlorfenphim, thiomersal, thiophanate, thlophanate-methyl, thioquînox, thiram, tîadinil, tioxymid, toldofos-methyl, tolylfluanid, tolylmercury acetate, triadimefon, triadimenol, triamiphos, triarimol, triazbutil, triazoxide, tributyltin oxide, trichlamide, tricyclazole, tridemorph, trifloxystrobin, triflumlzole, triforine, triticonazole, uniconazole, uniconazole-P, validamycin, valifenalate, vinclozolin, zarilamid, zinc naphthenate, zîneb, ziram, zoxamide (collectively these commonly named fungiddes are deflned as the ‘Funglcide Group*).
HERBICIDES
Molécules of Formulas One, Two and Three may also be used In combination (such as, In a compositlonal mixture, or a simultaneous or sequential application) with one or more of the following herbicides - 2,3,6-TBA, 2,3,6-TBA-dimethylammonium, 2,3,6-TBA-sodium, 2,4,5-T, 2,4,5T-2-butoxypropyl, 2,4,5-T-2-ethylhexyl, 2,4,5-T-3-butoxypropyl, 2,4,5-TB, 2,4,5-T-butometyl, 2,4,5T-butotyl, 2,4,5-T-butyl, 2,4,5-T-isobutyl, 2,4,5-T-isoctyl, 2,4,5-T-lsopropyl, 2,4,5-T-methyl, 2,4,5-Tpentyl, 2,4,5-T-sodium, 2,4,5-T-triethylammonium, 2,4,5-T-trolamine, 2,4-D, 2,4-D-2-butoxypropyl,
2.4- D-2-ethylhexyl, 2,4-D-3-butoxypropyl, 2,4-D-ammonium, 2,4-DB, 2,4-DB-butyl, 2,4-DBdimethylammonium, 2,4-DB-isoctyl, 2,4-DB-potassium, 2,4-DB-sodium, 2,4-D-butotyl, 2,4-D-butyl,
2.4- D-dlethylammonlum, 2,4-D-dimethylammonium, 2,4-D-diolamine, 2,4-D-dodecyfammonium,
2.4- DEB, 2,4-DEP, 2,4-D-ethyl, 2,4-D-heptylammonium, 2,4-D-isobutyl, 2,4-D-isoctyl, 2,4-Disopropyl, 2,4-D-isopropylammonlum, 2,4-D-lithium, 2,4-D-meptyl, 2,4-D-methyl, 2,4-D-octyl, 2,4-Dpentyl, 2,4-D-potassium, 2,4-D-propyl, 2,4-D-sodium, 2,4-D-tefuryl, 2,4-D-tetradecylammonium,
2.4- D-triethylammonium, 2,4-D-tris(2-hydroxypropyl)ammonium, 2,4-D-trolamine, 3,4-DA, 3,4-DB,
3.4- DP, 4-CPA, 4-CPB, 4-CPP, acetochlor, acifluorfen, adfluorfen-methyl, adfluorfen-sodium, adonifen, acrolein, alachlor, allidochlor, alloxydim, alloxydim-sodium, aliyï alcohol, alorac, ametrldione, ametryn, amlbuzin, amicarbazone, amidosulfuron, aminocyclopyrachlor, aminocyclopyrachlor-methyl, aminocyclopyrachlor-potassium, aminopyralid, aminopyralidpotassium, aminopyralid-tris(2-hydroxypropyl)ammonium, amiprofos-methyl, amitrole, ammonium sulfamate, anîlofos, anisuron, asulam, asulam-potassium, asulam-sodium, atraton, atrazine, azafenldin, azlmsulfuron, aziprotryne, barban, BCPC, beflubutamid, benazolin, benazolindimethylammonium, benazolin-ethyl, benazolin-potassium, bencarbazone, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, bentazone-sodium, benzadox, benzadoxammonium, benzfendizone, benzipram, benzobicyclon, benzofenap, benzofluor, benzoylprop, benzoylprop-ethyl, benzthiazuron, bicyclopyrone, bifenox, bilanafos, bilanafos-sodlum, bispyribac, bispyribac-sodium, borax, bromadl, bromadl-lithium, bromacil-sodium, bromobonil, bromobutlde, bromofenoxim, bromoxynil, bromoxynil butyrate, bromoxynîl heptanoate, bromoxynil octanoate, bromoxynil-potassium, brompyrazon, butachlor, butafenacil, butamifos, butenachlor, buthidazole, buthiuron, butralin, butroxydim, buturon, butylate, cacodylic acid, cafenstrale, calcium chlorate, calcium cyanamide, cambendichlor, carbasulam, carbetamide, carboxazole, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlomethoxyfen, chloramben, chloramben-ammonium, chloramben-diolamlne, chloramben-methyl, chloramben-methylammonium, chloramben-sodium, chloranocryl, chlorazifop, chlorazifop-propargyl, chlorazine, chlorbromuron, chlorbufam, chloreturon, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorfenprop-methyl, chlorflurazole, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlomitrofen, chloropon, chlorotoluron, chloroxuron, chloroxynil, chlorprocarb, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, chlorthal-monomethyl, chlorthiamid, cinidon-ethyl, cinmethylin, dnosulfuron, dsanilide, dethodim, cliodinate, dodïnafop, clodinafop-propargyl, dofop, clofopisobutyl, domazone, domeprop, cloprop, doproxydim, dopyralid, clopyralid-methyl, clopyralidolamine, clopyralid-potassium, clopyralid-tris(2-hydroxypropyl)ammonium, doransulam, doransulam-methyl, CMA, copper sulfate, CPMF, CPPC, credazine, cresol, cumyluron, cyanamide, cyanatryn, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyduron, cyhalofop, cyhalofop-butyl, cyperquat, cyperquat chloride, cyprazine, cyprazole, cypromid, daimuron, dalapon, dalaponcalclum, dalapon-magnesium, dalapon-sodium, dazomet, dazomet-sodium, delachlor, desmedipham, desmetryn, di-allate, dicamba, dicamba-dimethylammonium, dicamba-diolamine, dîcamba-isopropylammonium, dicamba-methyl, dicamba-olamine, dicamba-potassium, dicambasodium, dicamba-trolamine, dichlobenil, dichloralurea, dichlormate, dichiorprop, dichlorprop-2ethylhexyl, dichlorprop-butotyt, dichlorprop-dimethylammonium, dichlorprop-ethylammonium, dichlorprop-isoctyi, dichlorprop-methyl, dichlorprop-P, dichlorprop-P-dimethylammonium, dichlorprop-potassium, dichlorprop-sodîum, dîclofop, didofop-methyl, diclosulam, diethamquat, dïethamquat dichloride, diethatyl, diethatyl-ethyl, difenopenten, difenopenten-ethyl, difenoxuron, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimexano, dimidazon, dinitramine, dinofenate, dinoprop, dinosam, dinoseb, dinoseb acetate, dinosebammonium, dinoseb-dïolamine, dinoseb-sodium, dinoseb-trolamine, dinoterb, dinoterb acetate, diphacinone-sodium, diphenamid, dipropetryn, diquat, diquat dibromide, disul, disul-sodium, dithîopyr, diuron, DMPA, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, DSMA, EBEP, egllnazlne, eglinazïne-ethyl, endothal, endothal-diammonium, endothal-dipotassium, endothal-disodium, epronaz, EPTC, erbon, esprocarb, ethalfluralin, ethametsulfuron, ethametsuifuron-methyl, ethidimuron, ethiolate, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etinofen, etnipromid, etobenzanid, EXD, fenasulam, fenoprop, fenoprop-3 butoxypropyl, fenoprop-butometyl, fenoprop-butotyl, fenoprop-butyf, fenoprop-isoctyl, fenopropmethyl, fenoprop-potassium, fenoxaprop, fenoxaprop-ethyt fenoxaprop-P, fenoxaprop-P-ethyt fenoxasulfone, fenteracol, fenthîaprop, fenthiaprop-ethyt, fentrazamide, fenuron, fenuronTCA, ferrous sulfate, flamprop, flamprop-isopropyt, flamprop-M, flamprop-methyt, flamprop-M-isopropyl, flamprop-M-methyt, flazasulfuron, florasulam, fluazifop, fluazifop-butyt, fluazifop-methyl, fluazifop-P, fluazifop-P-butyf, fluazolate, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenican, flufenpyr, flufenpyr-ethyt, flumetsulam, flumezin, flumiclorac, flumicloracpentyt, flumioxazin, flumipropyn, fluometuron, fluorodifen, fluoroglycofen, fluoroglycofen-ethyt fluoromidine, fluoronitrofen, fluothiuron, flupoxam, flupropacii, flupropanate, flupropanate-sodium, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyrbutometyl, fluroxypyr-meptyt, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen* sodium, foramsulfuron, fosamine, fosamine-ammonium, furytoxyfen, glufosinate, glufosinateammonium, glufosinate-P, glufosinate-P-ammonlum, glufosinate-P-sodium, glyphosate, glyphosate-dîammonium, glyphosate-dimethytammonlum, glyphosate-lsopropyiammonium, glyphosate-monoammonium, glyphosate-potassium, glyphosate-sesquisodium, glyphosatetrimesium, halosafen, halosulfuron, halosulfuron-methyl, haloxydine, haloxyfop, haloxyfop-etotyl, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-etotyl, haloxyfop-P-methyl, haloxyfop-sodium, hexachloroacetone, hexaflurate, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, Imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyrIsopropyiammonium, imazaquin, imazaquin-ammonium, imazaquin-methyi, imazaquin-sodium, imazethapyr, imazethapyr-ammonium, imazosulfuron, Indanofan, indaziflam, iodobonil, iodomethane, iodosulfuron, iodosulfuron-methyt-sodium, ioxynil, ioxynil octanoate, ioxynil-lithium, loxynil-sodium, Ipazine, Ipfencarbazone, Iprymidam, isocarbamid, isocil, isomethiozin, isonoruron, Isopolinate, isopropalin, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, isoxapyrifop, karbutilate, ketospiradox, lactofen, lenadl, linuron, MAA, ΜΑΜΑ, MCPA, MCPA-2-ethylhexyl, MCPA-butotyl, MCPA-butyl, MCPA-dimethylammonium, MCPA-diolamine, MCPA-ethyl, MCPAisobutyl, MCPA-lsoctyl, MCPA-isopropyl, MCPA-methyl, MCPA-olamine, MCPA-potassium, MCPAsodium, MCPA-thîoethyl, MCPA-trolamine, MCPB, MCPB-ethyl, MCPB-methyl, MCPB-sodium, mecoprop, mecoprop-2-ethylhexyl, mecoprop-dimethylammonium, mecoprop-diolamïne, mecoprop-ethadyl, mecoprop-isoctyf, mecoprop-methyl, mecoprop-P, mecoprop-Pdimethylammonlum, mecoprop-P-îsobutyl, mecoprop-potassium, mecoprop-P-potasstum, mecoprop-sodium, mecoprop-trolamine, medinoterb, medinoterb acetate, mefenacet, mefluidide, mefluidide-diolamine, mefluidide-potassium, mesoprazine, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metam-ammonium, metamifop, metamitron, metam-potassium, metam* sodium, metazachlor, metazosulfuron, metflurazon, methabenzthiazuron, methaipropalîn, methazole, methiobencarb, methîozolin, methiuron, methometon, methoprotryne, methyl bromide, methyl Isothiocyanate, methyldymron, metobenzuron, metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monalide, monisouron, monochloroacetic acid, monolinuron, monuron, monuron TCA, morfamquat, morfamquat dichloride, MSMA, naproanilide, napropamîde, naptalam, naptalam-sodium, neburon, nicosulfuron, nlpyraclofen, nitralin, nitrofen, nitrofluorfen, norflurazon, noruron, OCH, orbencarb, ortho-dichlorobenzene, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxapyrazon, oxapyrazon-dimolamîne, oxapyrazon-sodium, oxasulfuron, oxaziclomefone, oxyfluorfen, parafluron, paraquat, paraquat dichloride, paraquat dimetilsulfate, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, perfluidone, pethoxamîd, phenisopham, phenmedipham, phenmedîpham-ethyl, phenobenzuron, phenylmercury acetate, picloram, picloram2-ethylhexyl, plcloram-isoctyl, picloram-methyl, picloram-olamine, picloram-potassium, picloramtriethylammonium, picloram-tris(2-hydroxypropyl)ammonium, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, potassium cyanate, pretilachlor, primisulfuron, primisulfuron15 methyl, procyazine, prodiamine, profluazol, profluralin, profoxydim, proglinazine, proglinazine-ethyl, prometon, prometryn, propachlor, propanîl, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamîde, prosulfalin, prosulfocarb, prosulfuron, proxan, proxan-sodium, prynachlor, pydanon, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyriclor, pyridafol, pyridate, pyriftalid, pyriminobac, pyrimînobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quinonamid, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rhodethanil, rimsulfuron, saflufenacil, sebuthylazine, secbumeton, sethoxydim, siduron, simazine, simeton, simetryn, SMA, S-metolachlor, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfallate, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, sulfuric acid, sulglycapin, swep, TCA, TCA-ammonium, TCA-calcium, TCA-ethadyl, TCAmagnesium, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbuchlor, terbumeton, terbuthylazine, terbutryn, tetrafluron, thenylchlor, thiazafluron, thiazopyr, thidiazimin, thidiazuron, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, triclopyr-butotyl, triclopyrethyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trifop, trifop-methyl, trifopsime, trihydroxytriazine, trimeturon, tripropindan, tritac, tritosulfuron, vemolate, xylachlor, (collectively these commonly named herbicides are defined as the ‘Herbicide Group*).
BIOPESTICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as in a compositionai mixture, or a simultaneous or sequentiai application) with one or more biopesticides. The term “biopesticide*’ is used for microbial biologicai pest control agents that are applied in a simiiar mannerto chemical pesticides. Commonly these are bacterial, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis {a control agent for grape powdery mildew). Bacillus subtilis are used to control plant pathogens. Weeds and rodents hâve also been controlled with microbial agents. One well-known Insecticide example is Bacillus thuringiensîs, a bacterial disease of Lepidoptera, Coleoptera, and Diptera. Because it has little effect on other organisais, it is considered more environmentally friendly than synthetic pesticides. Biologicai insecticides include products based on:
1. entomopathogenic fungi (e.g. Metarhizium anlsopliae);
2. entomopathogenic nematodes (e.g. Steinemema feltiaé); and
3. entomopathogenic viruses (e.g. Cydia pomonella granulovirus).
Other examples of entomopathogenic organisais include, but are not limited to, baculoviruses, bacteria and other prokaryotic organisms, fungi, protozoa and Microsproridia. Biologically derived insecticides include, but not limited to, rotenone, veratridine, as weii as microbial toxins; insect tolérant or résistant plant varieties; and organisms modified by recombinant DNA technology to either produce insecticides or to convey an insect résistant property to the geneticaliy modified organism. In one embodiment, the Molécules of Formula One, Two or Three may be used with one or more biopesticides in the area of seed treatments and soil amendments. The Manual ofBiocontrol Agents gives a review of the avaiiable biologicai insecticide (and other bioiogy-based controi) products. Copptng L.G. (ed.) (2004). The Manual of BiocontrolAgents (fonmerly the Biopesticide Manual) 3rd Edition. British Crop Production Council (BCPC), Famham, Surrey UK.
OTHER ACTIVE COMPOUNDS
Molécules of Formulas One, Two and Three may also be used in combination (such as in a compositionai mixture, or a simultaneous or sequentiai application) with one or more of the following:
1. 3-(4-chloro-2,6-dimethylphenyl)-4-hydroxy-8-oxa-1-azaspiro(4,5]dec-3-en-2-one;
2. 3-(4'-chloro-2,4-dimethyl[1,1'-biphenyl]-3-yl)’4-hydroxy-8-oxa-1-azaspiro(4,5]dec-3-en-255 one;
3. 4-[[(6-chloro-3-pyridinyl)methyl]methylamino]-2(5H)-furanone;
4. 4-[[(6-chloro-3-pyridinyl)methyl]cyclopropylamino]-2(5H)-furanone;
5. 3-chloro-A/2-[(1S)-1-methyl-2-(methylsulfonyl)ethyl]-N1-[2-methyl-4-[1,2,2,2-tetrafluoro-1- (trifïuoromethyl )ethyl]phenyl]-1,2-benzenedicarboxamide;
6. 2-cyano-N-ethyl-4-fluoro-3-methoxy-benenesulfonamlde;
7. 2-cyano-N-ethyl-3-methoxy-benzenesulfonamide;
8. 2-cyano-3-difIuoromethoxy-N-ethyl-4-fluoro-benzenesulfonamide;
9. 2-cyano-3-fluoromethoxy-N-ethyl-benzenesulfonamlde;
10. 2-cyano-6-fluoro-3-methoxy-N,N-dimethyl-benzenesulfonamide;
11. 2-cyano-N-ethyl-6-fIuoro-3-methoxy-N-methyl-benzenesulfonamide;
12. 2-cyano-3-difluoromethoxy-N,N-dimethylbenzenesulfon-amide;
13. 3-(difluoromethyl)-N-[2-(3,3-dimethylbutyl)phenyl]-1-methyl-1H’pyrazole-4-carboxamîde;
14. N-ethyl-2,2-dimethylpropîonamide-2-(2,6-dïchloro-a,a,a-trifIuoro-p-tolyl) hydrazone;
15. N-ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide’2-(2,6-dichloro-a,a,a-trifluoro-ptolyl) hydrazone nicotine;
16. 0-((E-)-[2-(4-chloro-phenyl)-2-cyano-1 -(2-trifl uoromethylphenyl)-vinyl]) S-methyl thiocarbonate;
17. (E)-N1-[(2-chloro-1,3-thiazol-5-ylmethyl)]-N2-cyano-N1-methylacetamîdine;
18. 1-(6-chloropyridin-3-ylmethyl)-7-methyl-8-nltro-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridin5-ol;
19. 4-[4-chlorophenyl-(2-butylidine-hydrazono)methyl)]phenyl mesylate; and
20. N-Ethyl-2,2-dichloro-1-methylcyclopropanecarboxamide-2-(2,6-dichloro-a/pha,a/pha,a/phatrifluoro-p-tolyl)hydrazone.
Molécules of Formulas One, Two and Three may also be used in combination (such as in a compositions! mixture, or a simultaneous or sequential application) with one or more compounds in the following groups: algicldes, antifeedants, avicîdes, bactéricides, bird repellents, chemosterilants, herbicide safeners, Insect attractants, insect repellents, mammal repellents, mating disrupters, molluscicldes, plant activators, plant growth regulators, rodenticides, and/or vlrucides (collectively these commonly named groups are deflned as the Al Group). It should be noted that compounds falling within the Al Group, Insecticide Group, Fungîcide Group, Herbicide
Group, Acaricide Group, or Nematicide Group might be in more than one group, because of multiple activities the compound has. For more Information consult the Compendium of Pesticide Common Names located at http://www.alanwood.net/pesticides/index.html. Also consult The Pesticide Manual 14th Edition, edited by C D S Tomlin, copyright 2006 by British Crop
Production Council, or its prior or more recent éditions.
SYNERGISTIC MIXTURES AND SYNERGISTS
Molécules of Formulas One, Two and Three may be used with the compounds In the Insecticide Group to form synergistic mixtures where the mode of action of such compounds compared to the mode of action of the Molécules of Formula One and Two are the same, similar, or different. Examples of modes of action inciude, but are not limited to: acetylcholinesterase Inhibitor; sodium channel modulator; chitin biosynthesis inhibitor; GABA-gated chloride channel antagonist; GABA and glutamate-gated chloride channel agonist; acétylcholine receptor agonist; MET I inhibitor; Mg-stimulated ATPase inhibitor; nicotinic acétylcholine receptor; Midgut membrane disrupter; oxidative phosphorylation disrupter, and ryanodine receptor (RyRs). Additionally, Molécules of Formula One and Two may be used with compounds in the Fungicide Group, Acaricide Group, Herbicide Group, or Nematicide Group to form synergistic mixtures. Furthermore, Molécules of Formulas One, Two and Three may be used with other active compounds, such as the compounds under the heading ‘OTHER ACTIVE COMPOUNDS, algicides, avicides, bactéricides, molluscicides, rodenticides, virucides, herbicide safeners, adjuvants, and/or surfactants to form synergistic mixtures. Generally, weight ratios of the Molécules of Formulas One, Two and Three in a synergistic mixture with another compound are from about 10:1 to about 1:10, preferably from about 5:1 to about 1:5, and more preferably from about 3:1, and even more preferably about 1:1. Additionally, the following compounds are known as synergists and may be used with the molécules disclosed in Formula One: piperony! butoxide, plprotal, propyl Isome, sesamex, sesamolin, sulfoxide, and tribufos (collectively these synergists are defined as the ‘Synergists Group).
FORMULATIONS
A pesticide is rarely suitable for application in its pure form. It is usually ne ces sa ry to add other substances so that the pesticide can be used at the required concentration and in an appropriate form, permitting ease of application, handling, transportation, storage, and maximum pesticide activity. Thus, pesticides are formulated Into, for example, baits, concentrated émulsions, dusts, emulsifiable concentrâtes, fumigants, gels, granules, microencapsulations, seed treatments, 57 suspension concentrâtes, suspoemulslons, tablets, water soluble liqulds, water dispersible granules or dry flowables, wettable powders, and ultra low volume solutions. For further information on formulation types see 'Catalogue of Pesticide Formulation Types and International Coding System’ Technical Monograph n*2, 5th Edition by CropLife International (2002).
Pesticides are applied most often as aqueous suspensions or émulsions prepared from concentrated formulations of such pesticides. Such water-soluble, water-suspendable, or emulsifiable formulations are either solids, usualiy known as wettable powders, or water dispersible granules, or liqulds usualiy known as emulsifiable concentrâtes, or aqueous suspensions. Wettable powders, whlch may be compacted to form water dispersible granules, comprise an Intimate mixture of the pesticide, a carrier, and surfactants. The concentration of the pesticide Is usualiy from about 10% to about 00% by weight. The carrier Is usualiy chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates. Effective surfactants, comprising from about 0.5% to about 10% of the wettable powder, are found among sulfonated lignins, condensed naphthalenesulfonates, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-lonlc surfactants such as ethylene oxide adducts of alkyl phénols.
Emulsifiable concentrâtes of pesticides comprise a convenient concentration of a pesticide, such as from about 50 to about 500 grams per liter of liquid dissolved in a carrier that is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers. Useful organic solvents include aromatics, especially xylenes and petroleum fractions, espedally the highboiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as the terpenlc solvents Including rosln dérivatives, aliphatic ketones such as cyclohexanone, and compiex alcohols such as 2-ethoxyethanol. Suitable emulsifiers for emulsifiable concentrâtes are chosen from conventional anionic and non-ionic surfactants.
Aqueous suspensions comprise suspensions of water-insoluble pesticides dispersed in an aqueous carrier at a concentration in the range from about 5% to about 50% by weight. Suspensions are prepared by finely grinding the pesticide and vigorously mixing it into a carrier comprised of water and surfactants. Ingrédients, such as inorganic salts and synthetic or naturel gums may also be added, to Increase the density and viscosity of the aqueous carrier, it is often most effective to grind and mix the pesticide at the same time by preparing the aqueous mixture and homogenizing it in an Implement such as a sand mill, bail mill, or piston-type homogenizer.
Pesticides may also be applied as granular compositions that are particularly useful for applications to the soil. Granular compositions usualiy contain from about 0.5% to about 10% by 58 weight of the pesticide, dispersed in a carrier that comprises day or a similar substance. Such compositions are usually prepared by dissolving the pesticide in a suitable solvent and applying it to a granular carrier which has been pre-formed to the appropriate partide size, in the range of from about 0.5 to about 3 mm. Such compositions may also be formulated by making a dough or paste of the carrier and compound and crushlng and drying to obtain the desrred granular partide size.
Dusts containing a pesticide are prepared by intimateiy mixing the pesticide In powdered form with a suitable dusty agricultural carrier, such as kaolin day, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the pesticide. They can be applied as a seed dressing or as a foliage application with a dust blower machine.
It is equally practical to apply a pesticide in the form of a solution in an appropriate organic solvent, usually petroleum oïl, such as the spray oils, which are widely used in agricultural chemistry.
Pestiddes can also be applied in the form of an aérosol composition. In such compositions the pestldde Is dissolved or dispersed in a carrier, which is a pressure-generating propellant mixture. The aérosol composition Is packaged In a container from which the mixture is dispensed through an atomizing valve.
Pestidde baits are formed when the pesticide is mixed with food or an attractant or both. When the pests eat the bait they also consume the pesticide. Baits may take the form of granules, gels, flowable powders, liquids, or solids. They can be used in pest harborages.
Fumlgants are pestiddes that hâve a relatively high vapor pressure and hence can exist as a gas In suffident concentrations to kill pests in soil orendosed spaces. The toxicity of the fumlgant is proportional to its concentration and the exposure time. They are charaderized by a good capacity for diffusion and act by penetrating the pest’s respiratory System or being absorbed through the pesfs cutide. Fumlgants are applied to control stored product pests under gas proof sheets, in gas sealed rooms or buildings or in spécial chambers.
Pestiddes can be microencapsulated by suspending the pestidde partides or droplets In plastic polymers of various types. By altering the chemistry of the polymer or by changing factors in the processing, microcapsules can be formed of various sizes, soiubility, wall thicknesses, and degrees of penetrability. These fadors govem the speed with which the adive ingrédient within Is released, which in tum, affects the resïdual performance, speed of action, and odorof the produd.
Oil solution concentrâtes are made by dissolving pestidde in a solvent that will hold the pestidde in solution. Oil solutions of a pesticide usually provide faster knockdown and kill of pests than other formulations due to the solvents themselves having pesticidal adion and the dissolution of the waxy covering of the integument increasing the speed of uptake of the pesticide. Other advantages of oit solutions include better storage stability, better pénétration of crevices, and better adhesion to greasy surfaces.
Another embodiment is an oil-in-water émulsion, wherein the émulsion comprises oiiy globules which are each provided with a lamellar liquid crystal coating and are dispersed in an aqueous phase, wherein each oïly globule comprises at least one compound which is agriculturally active, and is individually coated with a monolamellar or oligolamellar layer comprising: (1) at least one non-ionic lipophilie surface-active agent, (2) at least one non-lonic hydrophîlic surface-active agent and (3) at least one ionic surface-active agent, wherein the globules having a mean particle diameter of less than 800 nanometers. Further information on the embodiment is disclosed in U.S. patent publication 20070027034 published February 1, 2007, having Patent Application serial number 11/495,228. For ease of use, this embodiment wîll be referred to as OIWE.
For further Information consult Insect Pest Management 2nd Edition by D. Dent, copyright CAB International (2000). Additionally, for more detailed Information consult Handbook of Pest Control - The Behavior, Life History, and Control of Household Pests by Arnold Mallis, 9th Edition, copyright 2004 by GIE Media Inc.
OTHER FORMULATION COMPONENTS
Generally, when the molécules disclosed in Formulas One, Two and Three are used In a formulation, such formulation can also contain other components. These components Include, but are not limited to, (this is a non-exhaustive and non-mutually exclusive list) wetters, spreaders, stickers, pénétrants, buffers, sequestering agents, drift réduction agents, compatibility agents, antifoam agents, cleaning agents, and emulsifiers. A few components are described forthwith.
A wetting agent is a substance that when added to a liquid increases the spreading or pénétration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading. Wetting agents are used for two main fonctions In agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders In water to make concentrâtes for soluble liquîds or suspension concentrâtes; and during mixing of a product with water in a spray tank to reduce the wetting time of wettable powders and to improve the pénétration of water into water-dispersible granules. Examples of wetting agents used in wettable powder, suspension concentrate, and water-dispersible granule formulations are: sodium lauryt sulfate; sodium dioctyl sulfosucclnate; alkyl phénol ethoxylates; and aliphatic alcohol ethoxylates.
A dispersing agent is a substance which adsorbs onto the surface of particles and helps to preserve the state of dispersion of the particles and prevents them from reaggregating. Dispersing agents are added to agrochemical formulations to fadlitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water In a spray tank. They are widely used In wettabie powders, suspension concentrâtes and water-dispersible granules. Surfactants that are used as dispersing agents hâve the ability to adsorb strongiy onto a particle surface and provide a charged or steric barrier to reaggregation of particles. The most commonly used surfactants are anionic, non-ionic, or mixtures of the two types. For wettabie powder formulations, the most common dispersing agents are sodium lignosulfonates. For suspension concentrâtes, very good adsorption and stabilization are obtained using polyelectrolytes, such as sodium naphthalene sulfonate formaldéhyde condensâtes. Tristyryiphenol ethoxylate phosphate esters are also used. Non-ionics such as alkyiarylethylene oxide condensâtes and EO-PO block copolymers are sometimes combined with anionics as dispersing agents for suspension concentrâtes. In recent years, new types of very high molecular welght polymeric surfactants hâve been developed as dispersing agents. These hâve very long hydrophobie 'backbones' and a large number of ethylene oxide chains forming the 'teeth* of a ’comb' surfactant. These high molecular weight polymers can give very good long-term stability to suspension concentrâtes because the hydrophobie backbones hâve many anchoring points onto the particle surfaces. Examples of dispersing agents used in agrochemical formulations are: sodium lignosulfonates; sodium naphthalene suifonate formaldéhyde condensâtes; tristyryiphenol ethoxylate phosphate esters; aliphatic alcohol ethoxylates; alkyl ethoxylates; EO-PO block copolymers; and graft copolymers.
An emulsifying agent Is a substance which stabilizes a suspension of droplets of one iiquid phase in another Iiquid phase. Without the emulsifying agent the two iiquîds would separate into two immiscible Iiquid phases. The most commonly used emulsifier blends contain alkylphenoi or aliphatic alcohol with twelve or more ethylene oxide unïts and the oil-soluble calcium sait of dodecylbenzenesulfonicacîd. A range of hydrophile-lipophile balance (HLB) values from 8 to 18 will normally provide good stable émulsions. Emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.
A solubîlizing agent is a surfactant which will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobie part of the micelle. The types of surfactants usually used for solubilization are non-ionics, sorbitan monooleates, sorbitan monooleate ethoxylates, and methyl oleate esters.
Surfactants are sometimes used, elther alone or with other additives such as minerai or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the pesticide on the target. The types of surfactants used for bioenhancement dépend generally on the nature and mode of action of the pesticide. However, they are often non-ionics such as: alkyl ethoxylates; linear aliphatic alcohol ethoxylates; aliphatic amine ethoxylates.
A carrier or diluent in an agricultural formulation is a matériel added to the pesticide to give a product of the required strength. Carriers are usually matériels with hlgh absorptive capacities, while diluents are usually materials with low absorptive capacities. Carriers and diluents are used in the formulation of dusts, wettable powders, granules and water-dispersible granules.
Organlc solvents are used mainiy in the formulation of emulsifiable concentrâtes, oil-înwater émulsions, suspoemulsions, and ultra low volume formulations, and to a lesser extent, granuiar formulations. Sometimes mixtures of solvents are used. The first main groups of solvents are aliphatic paraffinic oils such as kerosene or refined paraffins. The second main group (and the most common) comprises the aromatîc solvents such as xylene and higher molecular weight fractions of C9 and C10 aromatîc solvents. Chlorinated hydrocarbons are usefui as cosolvents to prevent crystallization of pesticides when the formulation is emulsified lato water. Alcohols are sometimes used as cosoivents to increase solvent power. Other solvents may include vegetable oils, seed oils, and esters of vegetable and seed oils.
Thickeners or gelling agents are used mainiy in the formulation of suspension concentrâtes, émulsions and suspoemulsions to modify the rheology orflow properties of the liquid and to prevent séparation and settling of the dispersed particles or droplets. Thickening, gelling, and anti-settling agents generally fall Into two categories, nameiy water-insoluble partîculates and water-soluble polymers. It is possible to produce suspension concentrais formulations using clays and silicas. Examples of these types of materials, include, but are not limited to, montmorillonite, bentonite, magnésium aluminum silicate, and attapulgite. Water-soluble polysaccharides hâve been used as thickening-gelling agents for many yeare. The types of polysaccharides most commonly used are naturel extracts of seeds and seaweeds or are synthetic dérivatives of cellulose. Examples of these types of materials Include, but are not limited to, guar gum; locust bean gum; carrageenam; alginates; methy! cellulose; sodium carboxymethyl cellulose (SCMC); hydroxyethyl cellulose (HEC). Other types of anti-settling agents are based on modified starches, polyacrylates, polyviny! alcohol and polyethylene oxide. Another good anti-settling agent is xanthan gum.
Microorganisms can cause spoilage of formulated products. Therefore préservation agents are used to eliminate or reduce their effect. Examples of such agents include, but are not limited to: proplonic acid and its sodium sait; sorblc acid and Ils sodium or potassium salts; benzoic acid and Its sodium sait; p-hydroxybenzoic acid sodium sait; methyl p-hydroxybenzoate; and 1,262 benzisothiazolîn-3-one (BIT).
The presence of surfactants often causes water-based formulations to foam during mixing operations in production and in application through a spray tank. In order to reduce the tendency to foam, anti-foam agents are often added either during the production stage or before filling into bottles. Generally, there are two types of anti-foam agents, namely silicones and non-silicones. Silicones are usually aqueous émulsions of dimethyt polysiloxane, whîle the non-silicone anti-foam agents are water-lnsoluble oils, such as octanol and nonanol, or silica. In both cases, the fonction of the anti-foam agent Is to displace the surfactant from the air-water interface.
‘Green agents (e.g., adjuvants, surfactants, solvents) can reduce the overall envlronmental footprint of crop protection formulations. Green agents are biodégradable and generally derived from naturel and/or sustainable sources, e.g. plant and animal sources. Spécifie examples are: vegetable oils, seed oils, and esters thereof, also alkoxylated alkyl polyglucosides.
For further information, see Chemistry and Technology of Agrochemical Formulations edited by D.A. Knowles, copyright 1998 by Kluwer Academie Publishers. Also see Insecticides in Agriculture and Environment - Retrospects and Prospects by A.S. Perry, I. Yamamoto, I. Ishaaya, and R. Perry, copyright 1998 by Springer-Verlag.
PESTS
In general, the Molécules of Formula Formulas One, Two and Three may be used to control pests e.g. beetles, earwigs, cockroaches, (lies, aphids, scales, whiteflies, leafhoppers, ants, wasps, termites, moths, butterflies, lice, gresshoppers, locusts, crickets, fleas, thrips, bristletails, mites, ticks, nematodes, and symphytans.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests in the Phyla Nematoda and/or Arthropode.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests in the Subphyla Chelicerata, Myrlapoda, and/or Hexapoda.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests in the Classes of Arachnlda, Symphyla, and/or Insecta.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Anoplura. A non-exhaustive list of particular généra includes, but is not limited to, Haematopinus spp., Hoplopleura spp., Unognathus spp., Pediculus spp., and Polyplax spp. A non-exhaustive list of particular species includes, but is not limited to, Haematopinus asini, Haematopinus suis, Unognathus setosus, Unognathus ovillus, Pediculus humanus capitis.
Pediculus hum anus humanus, and Pthirus pubis.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests in the Order Coleoptera. A non-exhaustive list of particular généra includes, but is not limited to, Acanlhoscelides spp., Agrîotes spp., Anthonomus spp., Apion spp., Apogonia spp., Aulacophora spp,, Bruchus spp., Cerosterna spp., Cerotoma spp., Ceutorhynchus spp., Chaetocnema spp., Colaspis spp., Ctenicera spp., Curculio spp., Cyclocephala spp., Diabrotica spp., Hypera spp., Ips spp., Lyctus spp., Megascelis spp., Meligathes spp., Otiorhynchus spp., Pantomorus spp., Phyllophaga spp., Phyllotreta spp., Rhizotrogus spp., Rhynchites spp., Rhynchophorus spp., Scolytus spp., Sphenophorus spp., Sitophilus spp., and Tribolium spp. A nonexhaustive list of particular spedes indudes, but is not limited to, Acanthoscelides obtectus, Agrilus planlpennis, Anoplophora glabripennis, Anthonomus grandis, Ataenius spretulus, Atomaria linearis, Bothynoderes punctiventris, Bruchus pisorum, Callosobruchus maculatus, Carpophilus hemipterus, Cassida vittata, Cerotoma trifurcata, Ceutorhynchus assimilis, Ceutorhynchus napl, Conoderus scalaris, Conoderus stigmosus, Conotrachelus nénuphar, Cofinis nitida, Crioceris asparagl, Cryptolestes ferrugineus, Cryptolestes pusilius, Cryptolestes turcicus, Cylindrocopturus adspersus, Deporaus marginatus, Dermestes lardarius, Dermestes maculatus, Epilachna varivestis, Faustinus cubae, Hylobius pales, Hypera postica, Hypothenemus hampel, Lasioderma serricorne, Leptlnotarsa decemlineata, Uogenys fuscus, Uogenys suturalis, Llssorhoptrus oryzophilus, Maecolaspls jolivetl, Melanotus commuais, Meligethes aeneus, Melolontha melolontha, Oberea brevis, Oberea linearis, Oryctes rhinocéros, Oryzaephilus mercator, Oryzaephilus surinamensîs, Ouléma melanopus, Ouléma oryzae, Phyllophaga cuyabana, Popillia japonlca, Prostephanus truncatus, Rhyzopertha dominica,, Sitona lineatus, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamals, Stegobium paniceum, Tribolium castaneum, Tribolium confusum, Trogoderma variabîle, and Zabrus tenebrioides.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Dermaptera.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Blattaria. A non-exhaustive list of particular species indudes, but is not limited to, Blattella germanica, Blatta orientalis, Parcoblatta pennsylvanica, Periplaneta americana, Periplaneta australasiae, Periplaneta brunnea, Periplaneta fuliginosa, Pycnoscelus surinamensîs, and Supella longipalpa.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Diptera. A non-exhaustive list of particular généra Indudes, but is not limited to, Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Bactrocera spp., Ceratitis 64 spp., Chrysops spp., Cochliomyia spp., Contarinia spp., Cu/exspp., Dasineura spp., Délia spp., Drosophile spp., Fannia spp., Hylemyia spp., Liriomyza spp., Musca spp., Phorbîa spp., Tabanus spp„ and Tipula spp. A non-exhaustive list of particular species Indudes, but Is not limited to, Agromyza frontella, Anastrepha suspensa, Anastrepha ludens, Anastrapha obliqa, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera Invadens, Bactrocera zonata, Ceratitis capitata, Dasineura brasslcae, Délia platura, Fannia canicularis, Fannia scalaris, Gasterophilus Intestinalis. Gracillia perseae, Haematobia im'tans, Hypoderma lineatum, Liriomyza brassicae, Melophagus ovinus, Musca eutumnalis, Musca domestica, Oestrus ovis, Oscinella frit, Pegomya betae, Psila rosae, Rhagoletis cerasi, Rhagoletïs pomonella, Rhagoletis mendax, Sitodiplosls mosellana, and Stomoxys calcltrans.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Hemlptera. A non-exhaustive list of particular généra indudes, but is not limited to, Adelges spp., Aulacaspls spp., Aphrophora spp., Aphls spp., Bemîsia spp., Ceroplastes spp., Chionespls spp., Chrysomphalus spp., Coccus spp., Empoasca spp., Lepidosaphes spp., Legynotomus spp., Lygus spp., Macrosiphum spp., Nephotettix spp., Nezere spp., Philaenus spp., Phytocoris spp., Piezodorus spp., Planococcus spp., Pseudococcus spp., Rhopaloslphum spp., Saissetia spp., Therioaphls spp., Toumeyella spp., Toxoptere spp., Trialeurodes spp., Triatoma spp. and Unaspis spp. A non-exhaustive iist of particular spedes Indudes, but Is not limited to, Acrosternum hilare, Acyrthosiphon pisum, Aleyrodes proletella, Aleurodicus dispersus, Aleurothrixus floccosus, Amrasca biguttula biguttula, Aonidiella aurantii, Aphis gossypii, Aphis glycines, Aphis pomi, Aulacorthum solanl, Bemisia argentifoliï, Bemisia tabac!, Blissus leucopterus, Brachycorynella asparagi, Brevennia rehl, Brevicoryne brassicae. Calocoris norvegicus, Ceroplastes rubans, Cimex hemipterus, Cimex lectularius, Dagbertus fasclatus, Dichelops furcatus, Diuraphis noxia, Diaphorina cîtri, Dysaphls plantaglnea, Dysdercus suturellus, Edessa meditabunda, Erlosoma lanigerum, Eurygaster maura, Euschistus héros, Euschistus servus, Helopeltis antonii, Helopeltis theivora, Icerya purchasi, Idioscopus nitidulus, Laodelphax striatellus, Leptocorisa oratorius, Leptocorisa varicomis, Lygus hesperus, Maconellicoccus hirsutus, Macrosiphum euphorbiae, Macrosiphum granarium, Macrosiphum rosae, Macrosteles quadrilineatus, Mahanarva frimbiolata, Metopolophium dirhodum, Midis longicornis, Myzus persicae, Nephotettix cinctipes, Neurocolpus longirostris, Nezara viridula, Nilaparvata lugens, Pariatoria pergandii, Parlatoria ziziphl, Peregrinus maldis, Phylloxéra vltifoliae, Physokermes plceae,, Phytocoris californicus, Phytocoris relativus, Piezodorus guildinii, Poecilocapsus lineatus, Psallus vaccinicola, Pseudacysta perseae, Pseudococcus brevipes, Quadraspidiotus pemlciosus, Rhopalosiphum maidis, Rhopalosiphum padi, Saissetia oleae, Scaptocoris castanea, Schizaphis gramlnum, Sitobion avenae, Sogatella furcifera, Trialeurodes vaporariorum, Trialeurodes abutiloneus, Unaspis yanonensis, and Zulia entrerriana.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Hymenoptera. A non-exhaustive list of particular généra Includes, but is not limited to, Acromyrmex spp., Atta spp., Camponotus spp., Diprion spp., Formica spp., Monomorîum spp,, Neodiprion spp., Pogonomyrmex spp., Polistes spp., Solenopsis spp., Vespula spp., and Xylocopa spp. A non-exhaustive list of particular spedes indudes, but is not limited to, Athalia rosae, Atta texana, Iridomyrmex humilis, Monomorium minimum, Monomorîum pharaonis, Solenopsis invicta, Solenopsis geminata, Solenopsis molesta, Solenopsis richtery, Solenopsis xylonl, and Tapinoma sessile.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Isoptera. A non-exhaustive list of particular généra indudes, but is not limited to, Coptotermes spp., Cornitermes spp., Cryptotermes spp., Heterotermes spp., Kalotermes spp., Inclsitermes spp.. Macrotermes spp., Marginitermes spp.. Microcerotermes spp., Procornitermes spp., Reticulitermes spp., Schedorhinotermes spp., and Zootermopsis spp. A nonexhaustive list of particular spedes indudes, but is not limited to, Coptotermes curvignathus, Coptotermes franchi, Coptotermes formosanus, Heterotermes aureus, Microtermes obesi, Reticulitermes banyulensis, Reticulitermes grassei, Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes hesperus, Reticulitermes santonensis, Reticulitermes speratus, Reticulitermes tibialis, and Reticulitermes virginicus.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Lepidoptera. A non-exhaustive list of particular généra includes, but is not limited to, Adoxophyes spp., Agrotis spp., Argyrotaenia spp., Cacoecîa spp., Caloptilia spp., Chilo spp., Chrysodeixis spp., Colias spp., Crambus spp., Dîaphania spp., Diatraea spp., Earias spp., Ephestia spp., Epîmecis spp., Feltia spp., Gortyna spp., Helicoverpa spp., Heliothis spp., Indarbela spp., Lithocolletis spp., Loxagrotis spp., Malacosoma spp., Peridroma spp., Phyllonorycter spp., Pseudaletia spp., Sesamia spp., Spodoptera spp., Synanthedon spp., and Yponomeuta spp. A non-exhaustive list of particular spedes Includes, but Is not limited to, Achaea janata, Adoxophyes orana, Agrolis ipsilon, Alabama argillacea, Amorbia cuneana, Amyelois transitella, Anacamptodes defectaria, Anarsia lineatella, Anomis sabulifera, Anticarsia gemmatalis, Archips argyrospila, Archips rosana, Argyrotaenia citrana, Autographa gamma, Bonagota cranaodes, Borbo cinnara, Bucculatrix thurberiella, Capua reticulana, Carposina niponensis, Chlumetia transversa, Choristoneura rosaceana, Cnaphalocrocis medinalis, Conopomorpha cramerella, Cossus cossus, Cydia caryana, Cydia funebrana, Cydia molesta, Cydia nlgricana, Cydia pomonella, Dama diducta, Diatraea saccharalis, Diatraea grandiosella, Earias insulana,
Earîas vlttella, Ecdytolopha aurantianum, Elasmopalpus lignosellus, Ephestia cautella, Ephestia e lutetia. Ephestia kuehniella, Epinotia a pore ma, Epiphyas postvittana, Erionota thrax, Eupoecilia amblguella, Euxoa auxiliaris, Grapholita molesta, Hedylepta Indicata, Helîcoverpa armigera, Helicoverpa zea, Heliothis virescens, Hellula undalis, Keiferia lycopersicella, Leucinodes orbonalis, Leucoptera coffeella, Leucoptera mallfoliella, Lobesia botrana, Loxagrotis alblcosta, Lymantria dispar, Lyonetia clerkella, Mahasena corbetti, Mamestra brasslcae. Maruca testulalis, Metisa plana, Mythimna unlpuncta, Neoleucinodes elegantalis, Nymphula depunctalis, Operophtera brumata, Ostrinla nubilalis, Oxydla vesulia, Pandemis cerasana, Pandemis heparana, Papilio demodocus, Pectinophora gossypiella, Perldroma sa u ci a, Perileucoptera coffeella, Phthorimaea operculella, Phyllocnistis cltrella, Pieds rapae, Plathypena scabra, Plodia Interpunctella, Plutella xyfostella, Polychrosis vîteana, Prays endocarpe, Prays oleae, Pseudaletia unipuncta, Pseudoplusla includens, Rachîplusia nu, Scïrpophaga Incertulas, Sesamia inferens, Sesamia nonagdoides, Setora nitens, Sitotroga cerealella, Sparganothîs pilleriana, Spodoptera exigua, Spodoptera frugiperda, Spodoptera eddanla, Theda basilides, Tineola bisselliella, Trichoplusla ni, Tuta absoluta, Zeuzera coffeae, and Zeuzera pyrina.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Mallophaga. A non-exhaustive list of particular généra Indudes, but Is not limited to, Anaticola spp., Bovicola spp., Cheloplstes spp„ Goniodes spp., Menacanthus spp., and Tnchodectes spp. A non-exhaustive list of particular spedes Indudes, but is not limited to, Bovicola bovis, Bovicola caprae, Bovicola ovis, Chelopistes meleagridis, Goniodes disslmilis, Goniodes gigas, Menacanthus stramineus. Menopon gallinae, and Trichodectes canis.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Orthoptera. A non-exhaustive list of particular généra Indudes, but is not limited to, Melanoplus spp., and Pterophylta spp. A non-exhaustive list of particular spedes indudes, but is not limited to, Anabrus simplex, Gryllotalpa africana, Gryllotalpa australis, Gryllotalpa brachyptera, Gryllotalpa hexadactyla, Locus ta mîgratoria, Microcentrum retinerve, Schistocerca gregaria, and Scuddeda furcata.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Slphonaptera. A non-exhaustive list of particular spedes Indudes, but is not limited to, Ceratophyllus gallinae, Ceratophyllus niger, Ctenocephalldes canis, Ctenocephalides felis, and Pulex Irritans.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Thysanoptera. A non-exhaustive list of particular généra Indudes, but is not limited to, Caliothrips spp., Frankliniella spp., Scidothrips spp., and Thrips spp. A non exhaustive list of particular sp. Includes, but is not limited to, Frankliniella fusca, Frankliniella occldentalis, Frankliniella schultzei, Frankliniella williamsi, Heliothrips haemorrhoidalis, Rhlpiphorothrlps cruentatus, Scirtothrips citri, Scirtothrips dorsalis, and Taeniothrlps rhopalantennalis, Thrips hawaiiensis, Thrips nlgropilosus, Thrips orientalis, Thrips tabaci.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Thysanura. A non-exhaustive list of particular généra Indudes, but Is not limited to, Lepisma spp. and Thermobia spp.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Acarlna. A non-exhaustive list of particular généra includes, but Is not limited to, Acarus spp., Aculops spp., Boophilus spp., Demodex spp., Dermacentor spp., Epitrimerus spp., Eriophyes spp., Ixodes spp., Oligonychus spp., Panonychus spp., Rhlzoglyphus spp., and Tetranychus spp. A non-exhaustive list of particular spedes Includes, but is not limited to, Acarapls woodi, Acarus slro, Aceria mangiferae, Aculops lycopersicl, Aculus pelekassi, Aculus schlechtendali, Amblyomma americanum, Brevipalpus obovatus, Brevipalpus phoenicis, Dermacentor variabilis, Dermatophagoides pteronysslnus, Eotetranychus carpinl, Notœdres catl, Oligonychus coffeae, Oligonychus ilicis, Panonychus citri, Panonychus ulml, Phyllocoptruta oleivora, Polyphagotarsonemus latus, Rhipicephalus sanguineus. Sarcoptes scabiei, Tegolophus perseaflorae, Tetranychus urticae, and Varroa destructor.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pest of the Order Symphyla. A non-exhaustive list of particular sp. Indudes, but Is not limited to, Scutigerella Immaculata.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Phylum Nematoda. A non-exhaustive iist of particular généra Indudes, but is not limited to, Aphelenchoides spp., Belonolaimus spp., Criconemella spp., Ditylenchus spp., Heterodera spp., Hirschmanniella spp., Hoplolaimus spp., Meloldogyne spp., Pratylenchus spp., and Radopholus spp. A non-exhaustive list of particular sp. indudes, but is not limited to, Dirofilaria immltis, Heterodera zeae, Me/oidogyne incognita, Meloidogyne javanïca, Onchocerca volvulus, Radopholus similis, and Rotylenchulus reniformis.
For additional Information consult “HandbookofPestControl-The Behavior, Life History, and Control of Household Pests by Arnold Mallis, 9th Edition, copyright 2004 by GIE Media Inc.
APPLICATIONS
Molécules of Formulas One, Two and Three are generally used in amounts from about 0.01 grams per hectare to about 5000 grams per hectare to provide control. Amounts from about 0.1 grams per hectare to about 500 grams per hectare are generally preferred, and amounts from about 1 gram per hectare to about 50 grams per hectare are generally more preferred.
The area to which a molécule of Formulas One, Two and Three is applied can be any area inhabited (or maybe inhabited, or traversed by) a pest, for example: where crops, trees, fruits, cereals, fodder species, vines, turf and omamental plants, are growing; where domesticated animais are residing; the Interior or exterior surfaces of buildings (such as places where grains are stored), the materials of construction used in building (such as impregnated wood), and the soil around buildings. Particuiar crop areas to use a molecuie of Formula One include areas where apples, corn, sunflowers, cotton, soybeans, canola, wheat, rice, sorghum, barley, oats, potatoes, oranges, alfalfa, lettuce, strawberries, tomatoes, peppers, crucifers, pears, tobacco, almonds, sugar beets, beans and other valuable crops are growing or the seeds thereof are going to be planted. Il is also advantageous to use aluminum sulfate with a molecuie of Formula One when growing various plants.
Controlling pests generally means that pest populations, pest actîvity, or both, are reduced in an area. This can corne about when: pest populations are repulsed from an area; when pests are incapadtated In or around an area; or pests are exterminated, in whole, or in part, in or around an area. Of course, a combination of these results can occur. Generally, pest populations, actîvity, 20 or both are desirably reduced more than fifty percent, preferably more than 90 percent. Generally, the area is not in or on a human; consequently, the locus is generally a non-human area.
The Molécules of Formulas One, Two and Three may be used in mixtures, applied simultaneousiy or sequentially, alone or with other compounds to enhance plant vigor (e.g. to grow a better root System, to better withstand stressful growing conditions). Such other compounds are, 25 for exampie, compounds that modulate plant ethylene receptors, most notably 1methylcyclopropene (also known as 1-MCP).
The Molécules of Formulas One, Two and Three can be applied to the foliar and fruiting portions of plants to control pests. The molécules will either corne in direct contact with the pest, or the pest will consume the pestidde when eating leaf, fruit mass, or extracting sap, that contains the 30 pesticide. The Molécules of Formulas One, Two and Three can aiso be applied to the soil, and when appiied in this manner, root and stem feeding pests can be controlled. The roots can absorb a molecuie taklng it up into the foliar portions of the plant to control above ground chewlng and sap feeding pests.
Generally, with baits, the baits are placed in the ground where, for example, termites can come into contact with, and/or be attracted to, the bait. Baits can also be applied to a surface of a building, (horizontal, vertical, or slant surface) where, for exemple, ants, termites, cockroaches, and flies, can come into contact with, and/or be attracted to, the bait. Baits can comprise a molécule of Formula One, Two or Three.
The Molécules of Formulas One, Two and Three can be encapsulated inside, or placed on the surface of a capsule. The size of the capsules can range from nanometer slze (about 100-900 nanometers in diameter) to micrometer size (about 10-900 microns in diameter).
Because of the unique ability of the eggs of some pests to resist certain pesticides, repeated applications of the Formula One, Two or Three may be désirable to contrat newiy emerged iarvae.
Systemic movement of pesticides in plants may be utilized to contrai pests on one portion of the plant by applying (for example by spraying an area) the Molécules of Formula One, Two or Three to a different portion of the plant. For example, contrai of foliar-feedïng insects can be achieved by drip irrigation or furrow application, by treating the soi! with for example pre- or postpianting soit drench, or by treating the seeds of a plant before planting.
Seed treatment can be appiied to ail types of seeds, Including those from which plants genetically modified to express specialized traits will germinate. Représentative examples Include those expressing proteins toxic to invertebrate pests, such as Bacillus thuringiensls or other insecticidal toxins, those expressing herbicide résistance, such as Roundup Ready seed, or those with “stacked foreign genes expressing insecticidal toxins, herbicide résistance, nutritionenhancement, drought résistance, or any other bénéficiai traits. Furthermore, such seed treatments with the Molécules of Formula One, Two or Three may further enhance the ability of a plant to better withstand stressful growing conditions. This résulte in a healthier, more vigorous plant, which can lead to higheryields at harvest time. Generally, about 1 gram of the Molécules of Formula One, Two or Three to about 500 grams per 100,000 seeds is expected to provide good benefits, amounts from about 10 grams to about 100 grams per 100,000 seeds is expected to provide better benefits, and amounts from about 25 grams to about 75 grams per 100,000 seeds is expected to provide even better benefits.
It should be readily apparent that the Molécules of Formulas One, Two and Three may be used on, in, or around plants genetically modified to express specialized traits, such as Bacillus thuringiensis or other insecticidal toxins, or those expressing herbicide résistance, or those with stacked foreign genes expressing insecticidal toxins, herbicide résistance, nutrition-enhancement, or any other bénéficiai traits.
The Molécules of Formulas One, Two and Three may be used for controlling endoparasites and ectoparasites in the veterinary medidne sector or In the field of non-human animal keeping. The Molécules of Formulas One, Two and Three are applied, such as by oral administration In the form of, for example, tablets, capsules, drinks, granules, by dermal application in the form of, for example, dipping, spraying, pouring on, spotting on, and dusting, and by parentéral administration In the form of, for example, an injection.
The Molécules of Formulas One, Two and Three may also be employed advantageously in livestock keeping, for example, cattle, sheep, pigs, chickens, and geese. They may also be employed advantageously in pets such as, horses, dogs, and cats. Partîcular pests to control would be fleas and ticks that are bothersome to such animais. Suitable formulations are administered oraily to the animais with the drinklng water or feed. The dosages and formulations that are suitable dépend on the species.
The Molécules of Formulas One, Two and Three may also be used for controliing parasitic worms, especially of the intestine, in the animais listed above.
The Molécules of Formula One, Two, and Three may also be employed in therapeutic methods for human health care. Such methods include, but are limited to, oral administration In the form of, for example, tablets, capsules, drinks, granules, and by dermal application.
Pests around the world hâve been migrating to new environments (for such pest) and thereafter becomlng a new invasive species in such new environment. The Molécules of Formula One and Two may also be used on such new Invasive species to control them in such new environment.
The Molécules of Formula One, Two, and Three may also be used in an area where plants, such as crops, are growlng (e.g. pre-planting, plantïng, pre-harvesting) and where there are low levels (even no actual presence) of pests that can commerdaily damage such plants. The use of such molécules In such area Is to benefit the plants being grown in the area. Such benefits, may include, but are not limited to, improving the health of a plant, Improving the yield of a plant (e.g. increased biomass and/or increased content of valuable ingrédients), improving the vigorof a plant (e.g. Improved plant growth and/or greener leaves), improving the quality of a plant (e.g. improved content or composition of certain ingrédients), and improving the tolérance to abiotic and/or biotic stress of the plant.
Before a pesticide can be used or soid commercially, such pesticide undergoes lengthy évaluation processes by various govemmental authorities (local, régional, state, national, and international). Voluminous data requirements are specified by regulatory authorities and must be addressed through data génération and submission by the product registrant or by a third party on the product registrant's behalf, often using a computer with a connection to the World Wide Web.
These govemmental authorities then review such data and if a détermination of safety is concluded, provide the potential user or seller with product registration approval, Thereafter, in that locality where the product registration is granted and supported, such user or seller may use or sell such pesticide.
A molécule according to Formula One, Two, and Three can be tested to détermine its efficacy against pests. Furthermore, mode of action studies can be conducted to détermine if said molécule has a different mode of action than other pesticides. Thereafter, such acquired data can be disseminated, such as by the internet, to third parties.
The headings In this document are for convenlence only and must not be used to
Interpret any portion hereof.
TABLE SECTION
BAW & CEW Ratlng Table
% Control (or Mortality) Ratlng
50-100 A
More than 0 - Less than 50 B
Not Tested C
No activity noticed in this bioassay D
GPA Ratlng Table
% Control (or Mortality) Ratlng
80-100 A
More than 0 - Less than 80 B
Not Tested C
No activity noticed in this bioassay D
Table 1: Structures for Compounds
ID Structure
ID Structure
1-11 UnsR>n'n,,nh
1-12 Vq. » vP
1-13
Μ 4 N-NH \-N
1-15 sJrO N-NH îf'CVrO-' UN
1-16
1-17
ID Structure
1-18
1-19
I-20
1-21 H _
I-22 H c zy^NNY
I-23 h s
I-24 po
ID Structure
1-25 H c ’po FS
1-26
1-27 “Όγ” 0
1-28 fA n n™ ΥΊ °<Χί
1-29 f*X _/ v °-ONJS
1-30 H ς fv XX FVXT X
1-31 H v rr ”'”·λ 'Vo-sr
ID Structure
1-32
1-33
1-34 h2N*îAnh Γ-Λ (Γ
1-35 F F F-X /“V-f/A 0A_# ν'\α s î^îi H H 1
136
1-37
1-38 h;n.nanXJ H
1-39 FS(F /=\ 0 Nn\a s Ργ^ι H
η
ID Structure
1-40 όδ
1-41
1-42 H2N.nAnXJx H
1-43 Λ/ 0<k“\x»NxNn. H
1-44 V . Ζδ
1-45
1-46 S |*”S HjN H H 1
1-47 H i.X
ID Structure
1-48 A F
1-49 F
1-50 h2n.nAnJÇX H
1-51 s VA>nn'’'N\J' H hA
1-52 F
1-53 F
1-54 Η2ν·ν-^ν'Ο^ H HÂ
Table 2: Analytlcal Data for Compounds In Table 1.
ID Synthesis Method MS mp (°C) ’H, ’3C, or 19F NMR (□)’
I-4 A 551 (M+1) 209-211 (DMSO-de) 12.06 (s, 1 H), 10.19 (s, 1H), 9.42 (s, 1H), 8.22 (s, 1H), 8.17-8.03 (m, 5H), 7.66-7.57 (m, 4H), 7.42-7.38 (m, 2H)
I-5 C 511 (M+1) 220-225 (CDCI3) 9.30 (s, 1H), 8.69 (s, 1H), 8.60 (s, 1H), 8.26 (d, J= 8.4 Hz, 2H), 7.89 (s, 1H), 7.81 (m, 4H), 7.41 (d, J= 8.4 Hz. 2H), 7.19(m, 3H),2.35(s, 6H)
I-6 C 555 (M+H) 206-209 (CDCI3) 8.90 (s, 1H), 8.80 (s, 1H), 8.6 (s, 1H), 8.28 (d, J- 8.4 Hz, 2H), 8.9-8.7 (m, 4H), 7.4 (d, J- 8.6 Hz, 2H). 6.7 (s, 2H), 3.80 (s, 3H), 2.39 (s, 3H), 2.32 (s, 6H)
I-7 C 541 (M+H) 202-210 (CDCI3) 9.88 (s, 1H), 8.61 (s, 1H), 8.60 (s, 1H), 8.27 (d, J- 8.4 Hz, 2H), 7.9 (s, 1H), 7.9-7.7 (m, 4H), 7.4 (d, J= 8.6 Hz, 2H), 6.7 (s, 2H), 3.81 (s, 3H), 2.33 (s, 6H)
I-8 B 581 195-199 (CDCI3) 10.2 (s, 1H), 8.7 (s, 1H), 8.6 (s, 1 H), 8.25 (d. J = 8.4 Hz, 2H), 8.0 (s, 1 H), 7.82 (m, 4H), 7.4 (d, J = 8.4 Hz. 2H), 7.0 (s, 2H), 3.82 (s, 3H)
I-9 C 591 (M+H) 233-236 (CDCI3) 9.89 (s, 1H), 8.60 (s, 2H), 8.25 (d, J= 8.5 Hz, 2H), 7.95 (s, 1H), 7.88- 7.70 (m, 4H), 7.41 (d, J= 9.0 Hz, 2H), 6.70 (s, 2H), 3.81 (s, 3H), 2.31 (s, 6H)
8I
ID Synthesis Method MS mp(°C) ’H, UC, or ”F NMR (D)1
1-10 C 525 (M+H) 230-240 (CDCI3) 9.93 (s, 1H), 8.69 (s. 1H), 8.60 (s. 1 H), 8.26 (d, J= 8.4 Hz, 2H), 7.93 (d, J = 9.5 Hz, 2H). 7.95 (s, 1H), 7.86-7.75 (m, 4H), 6.69 (s, 2H), 3.81 (s, 3H), 2.31 (s, 6H)
1-11 C 561 (M+H) 234-238 (CDCIj) 9.62 (s, 1H). 8.70 (s, 1H), 8.60 (s, 1H). 8.26 (d, J = 8.4 Hz, 2H), 7.92 (s, 1H), 7.86-7.75 (m, 4H), 7.41 (d, J= 9.0 Hz, 2H). 7.18 (m. 3H). 2.35 (s, 6H)
1-12 C 577 (M+H) 197-200 (CDCIj) 10.2 (s, 1H). 8.90 (s, 1H), 8.62 (s. 1H), 8.25 (d, J= 8.4 Hz, 2H), 7.98 (s, 1H), 7.9-7.7 (m, 4H), 7.4 (m. 3H). 6.8 (m, 2H). 3.82 (s, 3H), 2.37 (s, 3H)
1-13 B 541 (M+H) 180-186 (CDCIj) 9.9 (s, 1H), 8.6 (s, 1H), 8.23 (d, J = 8.4 Hz. 2H). 7.9 (s, 1H). 7.8 (d, J = 8.6 Hz, 2H), 7.75 (d. J= 8.4 Hz. 2H), 7.7 (d, J = 7 Hz, 1H), 7.45-7.35 (m, 4H), 6.91 (d, J = 8 Hz. 2H). 5.73 (m. 1 H). 3.80 (s. 3H). 1.65 (d. J =7.2 Hz, 3H)
1-14 B 559 (M+H) 196-203 (CDCh) 9.32 (s, 1H), 8.6 (s, 1H), 8.22 (d. J= 8.4 Hz, 2H). 7.85-7.7 (m, 5H), 7.6 (d, J = 6 Hz, 1 H), 7.4 (d, J = 8.5 Hz. 2H). 7.25-7.15 (m, 2H), 6.93 (m, 1H). 5.7 (m. 1 H). 3.89 (s, 3H), 1.67 (d. J = 6 Hz, 3H)
1-15 B 511 (M+H) 201-206 (CDCh) 9.32 (s. 1H). 8.61 (s, 1H), 8.27 (d, J = 8.4 Hz. 2H). 7.9-7.7 (m. 6H). 7.5- 7.3 (m. 7H), 5.76 (m. 1H), 1.67 (d, J = 7 Hz, 3H)
ID Synthesis Method MS mp(°C) ’H, 13C, or19FNMR (D)1
1-16 C 525 (M+1) 218-225 (CDCb) 9.37 (s, 1 H), 8.63 (s, 1 H), 8.60 (s, 1H), 8.26 (d, J= 8.4 Hz, 2H), 7.89 (s, 1 H). 7.85-7.76 (m, 4H), 7.41 (d, J= 8.4 Hz, 2H), 6.97 (s, 2H), 2.32 (s, 3H), 2.30 (s, 6H)
1-17 C 525 (M+H) 168-180 (CDCb) 10.2 (s, 1H), 9.07 (s, 1H), 8.63 (s. 1H), 8.25 (d, J= 8.4 Hz, 2H), 8.0 (s, 1H), 7.9-7.7 (m, 4H), 7.65 (d, J = 8 Hz, 1H), 7.4-7.25 (m, 5H), 3.25 (heptet, J= 7 Hz, 1 H), 1.35 (d, J=7Hz, 6H)
1-18 C 539 (M+1) 216-221 (CDCb) δ 9.29 (s, 1H), 8.87 (s, 1H), 8.59 (s, 1H), 8.31 - 8.19 (m, 2H), 7.90 - 7.84 (m, 2H), 7.85 - 7.79 (m, 2H), 7.73 (dd, J = 7.5,1.7 Hz, 1 H), 7.39 (dd, J = 12.6, 5.1 Hz, 3H), 7.35 - 7.27 (m, 2H), 3.37 3.04 (m, 1H), 2.40 (s, 3H), 1.29 (d, J = 7.5 Hz, 6H)
1-19 C 509 (M+1) 223-225 (CDCb) δ 9.74 (s, 1H), 9.06 (s, 1 H). 8.69 (s, 1 H), 8.31 - 8.20 (m, 2H), 7.98 - 7.84 (m, 3H). 7.80 (m. 4H), 7.65 (d, J- 1.4 Hz, 1H), 7.43-7.28 (m, 3H), 3.19 (heptet, J ~ 6.9 Hz, 1 H), 1.32 (d, J = 6.9 Hz, 6H)
ID Synthesis Method MS mp(°C) ’H, UC, or19FNMR (□)1
1-20 C 538 (M+H) 220 (dec) (CDCI3) δ 9.52 (s, 1H), 9.31 (s. 1H), 8.66 (d, J= 8.2 Hz, 1H). 8.60 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H). 7.86 - 7.80 (m, 2H), 7.77 (d, J - 8.4 Hz, 2H), 7.41 (d, J - 8.3 Hz, 2H), 7.32 (ddd, J= 13.9, 7.2, 4.3 Hz, 1 H), 7.24 - 7.15 (m, 2H), 6.27 (s, 1H), 2.03 (d, J= 1.3 Hz, 3H), 1.73 (d, J» 1.1 Hz, 3H)
1-21 C 540 (M+H) 207210; 215-218 (CDCI3) δ 9.48 (s, 1H), 9.14 (s, 1H), 8.60 (s. 1H), 8.26 (d, J- 8.4 Hz. 2H), 7.92 (s, 1 H), 7.87 (d, J - 7.7 Hz, 1 H), 7.84 - 7.76 (m, 4H), 7.40 (d. J = 8.3 Hz, 2H), 7.30 (dl, J = 8.2, 3.7 Hz, 1 H). 7.28 - 7.23 (m, 2H). 2.57 (d, J - 7.2 Hz, 2H). 1.93 (dq, J = 13.6,6.7 Hz. 1H). 0.98 (d, J = 6.6 Hz, 6H)
I-22 C 540 (M+H) 210-215 (CDCI3) δ 9.46 (s, 1H), 9.05 (s, 1H), 8.60 (s. 1H), 8.26 (d. J~ 8.4 Hz, 2H). 7.91 (s, 1 H), 7.84 - 7.74 (m, 4H). 7.69 (d. J - 7.4 Hz. 1 H), 7.40 (d, J - 8.3 Hz. 2H), 7.36 7.27 (m, 3H), 2.91 (dt, J ~ 13.9, 6.9 Hz. 1 H), 1.75 -1.58 (m, 2H), 1.30 (d, J = 6.9 Hz, 3H), 0.92 (t, J =7.4 Hz, 3H)
I-23 C 560 (M+H) 213-216 (CDCI3) δ 9.41 (s, 1H), 9.01 (s, 1H). 8.74 (d, J- 7.7 Hz, 1H), 8.60 (s, 1H). 8.15 (d, J = 8.4 Hz, 2H), 7.86 - 7.78 (m, 2H), 7.69 (s. 1H), 7.57-7.44 (m, 6H), 7.42 (d, J= 9.1 Hz, 2H), 7.37-7.27 (m, 4H)
ID Synthesis Method MS mpCC) ’H, 13C, or F NMR (□)’
1-24 C 524 (M+H) 200- 206; 210-211 (CDCI3) δ 9.65 (d, J = 17.9 Hz, 1H), 9.20 (s, 1H), 8.60 (s, 1H), 8.27 (dd, J= 8.0, 4.5 Hz, 3H), 7.89 (s, 1H), 7.86- 7.75 (m, 4H), 7.41 (d, J = 8.3 Hz, 2H), 7.30 - 7.27 (m, 1 H), 7.18 (q, J = 7.8 Hz, 2H), 2.00 1.90 (m, 1 H), 1.09 - 1.01 (m, 2H). 0.81 0.73 (m, 2H)
1-25 C 550 (M+H) 221-223 (DMSO-de) δ 12.13 (s, 1H). 10.07 (s, 1H), 9.44 (s, 1H), 8.23 (s. 1H). 8.16 (d, J = 8.4 Hz, 2H), 8.13 - 8.06 (m, 2H), 8.01 - 7.98 (m, 3H). 7.63 (d, J = 8.4 Hz, 2H). 7.38-7.26 (m, 3H), 7.23 (t, JHF= 74.1 Hz, 1H)
1-26 C 590 (M+H) 230-231 (CDCI3) δ 9.37 (s, 1H), 8.60 (s. 1H). 8.57 (s, 1 H). 8.27 (d, J- 8.4 Hz. 2H). 7.90 (s, 1 H), 7.81 (dt, J = 8.5, 4.8 Hz, 4H), 7.41 (d, J- 8.3 Hz. 2H), 7.31 (s, 2H), 2.31 (s, 6H)
1-27 C 556 (M+H) 190-192 (CDCI3) δ 9.39 (s, 1H), 9.15 (s, 1H), 8.61 (s, 1H), 8.29 (d, J = 8.4 Hz, 2H), 8.16 8.05 (m. 2H), 7.95-7.85 (m, 3H), 7.85 7.76 (m, 4H), 7.41 (d, J = 8.3 Hz, 2H), 4.39 (q, J= 7.1 Hz. 2H), 1.41 (t, J= 7.1 Hz, 3H)
ID Synthesis Method MS mp(°C) ’H, ’3C, or”FNMR (□)’
1-28 C 528 (M+H) 219-221 (300 MHz, CDCIj) δ 10.17 (s. 1H), 9.09 (s, 1H), 9.03 (l. J = 5.4 Hz, 1H), 8.60 (s, 1H), 8.23 (t, J = 8.9 Hz, 2H), 7.89 - 7.76 (m, 5H), 7.39 (t, J = 7.2 Hz, 2H), 7.177.07 (m, 1 H), 7.03 (d, J = 7.8 Hz, 1 H), 6.94 (d, J = 6.9 Hz, 1H). 4.18 (q. J =7.1 Hz, 2H), 1,61 (t, J =7.0 Hz, 3H)
1-29 C 499 (M+1) 195-200 (DMSO-de) δ 9.44 (s. 1H), 8.49 (s, 1H), 8.42 (d, J = 5.2 Hz, 1 H), 8,29 - 8.21 (m, 2H), 8.16 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 2.3 Hz, 1 H), 8.08 (d, J = 3.0 Hz, 1 H), 8.04 (t, J - 6.5 Hz, 2H), 7.63 (d, J = 8.3 Hz, 3H), 2.29 (s, 3H)
1-30 C 499 (M+1) 114-118 (CDCIj) δ 8.60 (s, 1H), 8.31 (s, 1H), 8.24 (d, J= 8.4 Hz, 2H), 8.16 (d, J- 3.9 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 9.0 Hz, 2H), 7.55 (d, J =6.7 Hz, 1H), 7.41 (s, 2H), 6.99 (dd, J = 7.4. 5.1 Hz, 1H), 2.35 (s,3H).
1-31 C 513 (M+1) 122-125 (CDCIj) δ 8.60 (s, 1H), 8.32 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 8.19-8.16 (m, 1H), 7.97 (d, J= 8.4 Hz, 2H), 7.84 - 7.81 (m, 2H), 7.58 (d, J = 7.5 Hz, 1 H). 7.40 (d, J = 8.3 Hz, 2H), 7.03 (dd, J = 7.5, 5.1 Hz, 1H), 2.67 (s, 2H), 1.35 (t. J = 7.5 Hz, 3H)
ID Synthesrs Method MS mp(°C) 1H, 13C, or19FNMR (□)’
1-32 N 190 ([M+H]*) (CDCI3) δ 7.78 - 7.71 (m, 1H), 7.54 - 7.47 (m, 1H), 7.40-7.32 (m, 2H), 5.86 5.82 (m, 1 H), 2.63 - 2.55 (m, 2H), 2.55 - 2.47 (m, 2H), 2.09 -1.98 (m, 2H); ,3C NMR (101 MHz, CDCI3) δ 148.77, 139.96,133.58,132.08,130.87, 130.52, 127,55,123.70, 35.31, 33.49, 24.05
1-33 N 162 ([M+H]*) (CDCI3) δ 7.14 (dd, J= 7.7,1.3 Hz, 1H), 7.02 (td, J= 7.6,1.5 Hz, 1H), 6.76 (td, J = 7.4, 1.1 Hz, 1 H), 6.68 (dd, J = 7.8,1.2 Hz, 1 H), 3.66 (bs, 2H), 3.04 - 2.92 (m. 1 H), 2.13 -1.98 (m, 2H), 1.88 - 1.58 (m, 6H); 13C NMR (101 MHz, CDCI3) δ 144.12, 130.34,126.51, 125.95,118.78,115.70, 39.89, 32.17, 25.21
1-34 N 236 ([M+H]*) CDCI3) δ 9.02 (bs, 1H), 7.52 (bs, 1H). 7.41 - 7.18 (m, 4H), 4.06 (bs, 2H), 3.21 - 3.06 (m, 1 H). 2.04 (s, 2H), 1.90 -1.74 (m,2H), 1.74-1.58 (m, 4H);
1-35 C 551 ([M+H]*) 213-216 (CDCIa) δ 9.45 (s, 1H), 9.11 (s, 1H), 8.60 (s, 1H), 8.26 (d, J= 8.4 Hz, 2H), 7.91 (s, 1 H), 7.86 - 7.71 (m, 5H), 7.40 (dd, J 8.8. 6.4 Hz, 3H), 7.35 - 7.27 (m, 2H), 3.22 (t, J - 8.0 Hz, 1 H), 2.13 (d, J = 2.5 Hz, 2H). 1.90-1.59 (m, 6H)
ID Synthesls Method MS mp(°C) 1H, 13C, or19FNMR (□)1
(CDCI3) δ 7.48 - 7.36 (m, 1 H), 7.21 7.06 (m, 2H), 5.23 (p, J= 1.5 Hz, 1H), 5.05 (q, J = 1.1 Hz, 1 H), 2.09 (s, 3H);
1-36 N 13C NMR (101 MHz, CDCIJ δ 153.56 (d, Jcf = 257.5 Hz), 139.62.139.60 , 138.83.131.48 (d, Jcf - 8.6 Hz), 124.47 (d, Jcf = 3.6 Hz), 117.60,115.51 (d, Jcf = 19.1 Hz), 23.18
(CDCIj) δ 6.92 (dt, J = 7.7,1.2 Hz, 1H), 6.86 (ddd, J = 10.8, 8.1,1.4 Hz, 1 H), 6.69 (td, J= 8.0, 5.6 Hz. 1H). 3.71 (bs, 2H), 2.92 (hept. J= 6.8 Hz, 1H), 1.26 (d, J =6.8 Hz. 6H);
1-37 N 13C NMR (101 MHz, CDCI3) δ 151.91 (d, J - 237.6 Hz), 135.10 (d, J~ 2.3 Hz). 131.60 (d, J = 11.8 Hz). 120.52 (d. J = 3.0 Hz), 117.99 (d. J = 8.0 Hz). 112.28 (d, J= 19.6 Hz), 27.77 (d, J= 2.9 Hz), 22.22
1-38 N 229 ([M+HD 122-124 (CDCI3) δ 8.56 (bs, 1H), 7.54 (bs, 1H). 7.32 (td, J = 8.1, 5.6 Hz, 1 H), 7.17 - 7.09 (m, 1H). 7.00 (ddd, J =9.5. 8.2,1.4 Hz, 1H). 4.07 (bs, 2H), 3.15 (hept, J= 7.0 Hz, 1 H), 1.24 (d, J = 6.9 Hz. 6H), 7.78 7.39 (m, 1H)
ID Synthesis Method MS mp (°C) ’H, 13C. or 19F NMR (□)’
1-39 C 544 ([M+H]*) 210-212 (CDCI3) δ 9.54 (s, 1H), 8.60 (s, 1H), 8.56 (s, 1 H). 8.30 - 8.22 (m. 2H), 7.92 (s, 1 H), 7.86 - 7.76 (m, 4H), 7.44 - 7.38 (m, 2H), 7.35 (dd. J= 8.1, 5.6 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1 H), 7.04 (ddd, J = 9.4, 8.2,1.3 Hz, 1H), 3.22 (p. J- 6.9 Hz, 1 H). 1.29 (d, J =6.9 Hz. 6H)
1-40 N (CDCI3) δ 7.60 (dd, J = 8.2, 2.5 Hz, 1H), 7.37 - 7.21 (m. 2H), 5.19 (p, J = 1.5 Hz, 1H), 4.97-4.89 (m, 1H), 2.11 -2.04 (m, 3H); nC NMR (101 MHz, CDCh) δ 160.96 (d, J = 250.8 Hz), 148.46,141.88,135.18 (d, J =4.1 Hz), 132.09 (d, J =7.8 Hz). 119.98 (d, J =20.9 Hz). 115.99,111.63 (d. J =26.4 Hz). 23.35
1-41 N - (CDCI3) δ 7.05 (dd, J = 8.5, 6.4 Hz. 1H), 6.45 (td, J= 8.5,2.6 Hz. 1H), 6.37 (dd, J = 10.6, 2.6 Hz. 1H), 3.74 (bs. 2H). 2.83 (hept, J = 6.8 Hz. 1 H). 1.24 (d. J - 6.8 Hz. 6 H); nC NMR (101 MHz, CDCh) δ 161.75 (d, J = 241.3 Hz), 144.76 (d, J = 10.3 Hz), 128.11 (d. J= 2.8 Hz), 126.53 (d, J= 9.6 Hz). 105.06 (d, J = 20.7 Hz), 102.26 (d, J = 24.2 Hz), 27.27.22.35
ID Synlhesis Method MS mp (°C) Ή. 13C, or ’eF NMR (□)’
1-42 N 226 133-135 (CDCI3) δ 9.11 (bs. 1H), 7.44 (bs, 2H), 7.35 - 7,27 (m, 1H), 6.99 (s, 1H), 4.03 (bs, 2H), 3.05 (hept, J- 6.9 Hz, 1H), 1.23 (d, J =6.9 Hz, 6H)
1-43 C 537 ([M-HD 219-222 (CDCI3) δ 9.52 (s, 1H), 9.09 (s, 1H), 8.59 (s. 1H), 8.26 (d, J= 8.2 Hz, 2H), 7.92 (s, 1H), 7.85 - 7.71 (m, 4H), 7.47 (d, J- 7.5 Hz, 1H), 7.40 (d, J= 8.7 Hz, 2H), 7.21 7.08 (m, 2H), 3.52 - 3.34 (m, 1H), 2,42 (s. 3H), 1.39 (d. J =7.2 Hz, 6H)
1-44 N (CDCI3) δ 7.67 (d. J = 0.8 Hz, 1H), 7.34 (ddd, J =7.8,1.6, 0.5 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1 H), 5.15 (penlet, J = 1.4 Hz, 1 H), 4.93 - 4.89 (m, 1 H). 2.42 (s, 3H), 2.06 (dd, J = 1.4,1.0 Hz. 3H); 13C NMR (101 MHz. CDCI3) δ 148.17, 142.71,138.30,136.16,133.37,130.33. 124.29,115.18, 23.32, 20.81
1-45 N - (CDCIs) δ 7.03 (d, J = 7.8 Hz, 1 H), 6.65 - 6.56 (m, 1H), 6.52 (d, J = 0.9 Hz, 1 H), 3.58 (bs, 2H), 2.87 (hept, J = 6.8 Hz, 1H), 1.24 (d, J = 6.8 Hz. 6H); ,3C NMR (101 MHz, CDCI3) δ 143.15, 136.16,129.82,125.33,119.79,116.55, 27.37, 22.41,20.96
ID Synthesis Method MS mpfC) ’H, nC, or1BFNMR (O)1
1-46 N 224 ([Μ+ΗΓ) 167-169 (CDCIj) δ 8.95 (bs. 1 H), 7.53 - 6.93 (m, 4H), 4.08 (bs. 2H). 3.06 (heptet, J - 6.8 Hz, 1 H), 2.33 (s. 3H). 1.19 (d. J = 6.8 Hz, 6H)
1-47 C 540 ([M+HD 194-196 (CDCI3) δ 9.50 (s, 1H), 9.00 (s, 1H), 8.60 (s, 1H), 8.26 (d. J- 8.4 Hz, 2H), 7.91 (s, 1H), 7.86 - 7.72 (m, 4H), 7.49 - 7.36 (m. 3H). 7.27 (d, J = 9.2 Hz. 1 H). 7.15 (d, J = 6.7 Hz. 1H), 3.14 (heptet, J = 6.8 Hz, 1 H), 2.37 (s, 3H), 1.29 (d. J = 6.9 Hz, 6H)
1-48 N (CDCI3) δ 7.96 (dd, J- 9.0, 5.1 Hz, 1 H). 7.08 (ddd, J= 9.0, 7.4, 2.8 Hz, 1H), 7.02 (dd, J= 8.7, 2.8 Hz, 1H), 5.20 (p, J- 1.5 Hz, 1H), 4.96 (p. J - 1.0 Hz, 1H), 2.11 2.06 (m, 3H)
1-49 N - (CDCIj) δ 6.85 (dd, J= 10.3, 2.9 Hz, 1H), 6.72 (td. J= 8.3, 2.9 Hz, 1 H), 6.60 (dd, J = 8.6, 5.1 Hz, 1H), 3.49 (bs, 2H), 2.88 (hept. J = 6.8 1 H), 1.24 (d, J = 6.8 Hz, 6H); nC NMR (101 MHz, CDCI3) δ 156.92 (d. JCF = 235.0 Hz), 139.17 (d, J& = 2.1 Hz), 134.61 (d, Jcf - 6.2 Hz), 116.55 (d, JCF = 7.5 Hz), 112.69 (d, Jcf - 22.5 Hz). 112.17 (d, Jcf = 22.4 Hz), 27.90,22.11
ID Synthesis Method MS mp(°C) Ή, 13C, or «F NMR (□)’
1-50 N 228 ([M+H]*) 163-167 (CDCIj) δ 8.88 (bs, 1H) 7.42 (bs. 1H), 7.03 (dd. J = 10.0,2.9 Hz, 1 H), 6.93 (ddd, J - 8.7, 7.7, 3.0 Hz, 1H), 4.03 (bs, 2H), 3.14 - 3.00 (m, 1 H), 1.23 (d. J = 6.9 Hz, 6H)
1-51 C 544 ([M+H]*) 219-221 (CDCI3) δ 9.55 (s, 1H). 8.90 (s, 1H), 8.59 (s, 1H), 8.30 - 8.21 (m. 2H), 7.92 (s, 1 H), 7.85 - 7.74 (m, 4H), 7.54 (dd, J = 8.8, 5.5 Hz, 1H). 7.40 (d. J~ 8.6 Hz, 2H), 7.07 (dd. J= 10.0, 2.9 Hz, 1H), 6.97 (td, J= 8.2, 2.9 Hz. 1H), 3.24 - 3.08 (m, 1H), 1.29 (d,J=6.9 Hz, 6H)
I-52 N (CDCIa) δ 7.87 - 7.78 (m, 1H), 7.19 7.09 (m, 1 H), 5.20 (q. J = 1.5 Hz, 1 H), 4.94 (q, J = 1.2 Hz, 1 H). 2.07 (t, J = 1.3 Hz, 3H); 13C NMR (101 MHz, CDCI3) δ 152.53 (dd. Jcf = 259.5,12.5 Hz), 148.52 (dd. Jcf = 253.7.13.8 Hz). 143.22,141.38 . 137.23 (dd. Jcf = 7.1,4.2 Hz). 119.27 (d, Jcf ~ 18.9 Hz). 116.39.114.49 (dd. Jcf = 21.9, 2.1 Hz), 23.12
ID Synthesis Method MS mpfC) Ή, 13C, or 19F NMR (□)’
l-53 N - (CDCI3) δ 6.97 - 6.84 (m. 1H), 6.45 (dd. J- 12.1, 7.2 Hz, 1H), 3.57 (bs, 2H), 2.89 - 2.72 (m, 1 H), 1.22 (d, J = 6.8 Hz. 6H); ,3C NMR (101 MHz, CDCI3) δ 148.36 (dd, = 243.1,13.4 Hz), 143.71 (dd, JCF- 236.4,12.4 Hz), 139.79- 139.13 (m), 128.70 (t, Jcf - 3.7 Hz), 114.07 (d, Jcf= 18.1 Hz), 104.18 (d, Jcf= 19.8 Hz), 27.44, 22.20
I-54 N 246 ([M+H]*) 169-170 (CDCI3) δ 8.95 (s, 1H), 7.82 - 7.34 (m, 2H), 7.10 (dd, J = 11.7, 8.5 Hz, 1H). 4.01 (s, 2H). 3.13 - 2.94 (m. 1 H), 1.22 (d, J = 6.9 Hz, 6H)
I-55 C 561 ((Μ+ΗΓ) 217-221 (CDCI3) δ 9.46 (s, 1H), 8.96 (s, 1H), 8,60 (s. 1H), 8.31-8.22 (m. 2H). 7.92 (s, 1 H), 7.84 - 7.75 (m, 4H), 7.60 (dd, J 11.2, 7.7 Hz. 1H), 7.44-7.36 (m. 2H), 7.14 (dd, J= 11.7, 8.5 Hz, 1H). 3.19 3.04 (m, 1H), 1.29 (d, J- 6.9 Hz, 6H)
I-56 P* 402 [Μ-ΗΓ) - (CDCIJ δ 8.64 (d, J = 1.1 Hz, 1H). 8.09 (m, 3H). 7.93 (m, 3H). 7.78 (d, J = 8.5 Hz. 3H), 7.30 (d, J = 7.9 Hz. 3H), 2.42 (s, 4H); 19F NMR (376 MHz, CDCI3) Ô -75.61, -75.63, -75.63, -182.14, -182.17, -182.18
ID Synthesis Method MS mp(°C) 1H, 13C. or 19F NMR (O)1
1-57 P* 418 ([M+H]*) - (CDCI3) δ 10.09 (s. 1 H). 8.71 (s, 1H), 8.39 (d, J - 8.3 Hz, 2H), 8.01 (d, J = 8.3 Hz, 2H), 7.95 (m, 2H), 7.82 (d, J = 8.6 Hz. 2H); 19F NMR (376 MHz, CDCI3) δ -75.57, -75.59, -182.14, -182.16, -182.18
1-58 N 210 ([M+H]*) - (CDCh) δ 8.97 (bs, 1H), 7.74 - 7.11 (m, 5H), 4.06 (bs, 2H), 3.11 (hept, J= 6.9 Hz, 1 H), 1.24 (d,J=6.9 Hz, 6H)
1-59 C 609 ([M+H]*) (CDCI3) δ 9.59 (s, 1H), 9.05 (s, 1H), 8.69 (s, 1H), 8.31 - 8.24 (m, 2H), 7.94 (d, J = 8.8 Hz, 3H), 7.85 - 7.74 (m, 4H). 7.66 (dd, J= 7.7,1.5 Hz, 1H), 7.39 (dd, J = 7.7.1.8 Hz, 1 H), 7.37 - 7.27 (m, 2H), 3.19 (hept, J = 6.9 Hz, 1H), 1.32 (d, J~ 6.8 Hz, 6H); ,9F NMR (376 MHz, CDCI3) δ -75.58 , -182.16
1-60- C 575 ([M+H]*) 214-216 (DMSO-d6) δ 11.87 (s, 1H), 10.08 (s, 1H), 9.44 (s, 1 H). 8.20 (s, 1H), 8.178.02 (m, 6H), 7.63 (d, J - 9.0 Hz, 2H), 7.39 - 7.35 (m, 1 H), 7.35 - 7.28 (m, 1 H). 7.27 - 7.18 (m, 2H), 3.19 - 3.05 (m, 1 H), 1.20 (d, J =6.9 Hz, 6H); 19F NMR (376 MHz, DMSO-c/6) δ -85.20, -86.94
ID Synthesis Method MS mp(°C) ’H, ,3C. or 19F NMR (O)’
1-61 N 227 ([Μ+2ΗΠ (DMSO-de) δ 9.20 (brs, 1H), 8.89 (s, 1H). 7.20 (d, J = 8.32 Hz, 1H). 6.71-6.77 (m, 2H), 4.71 (brs, 2H), 3.74 (s, 3H), 2.52-2.46 (m, 2H), 1.11 (t, J = 7.56 Hz, 3H)
I-62 C 591 ([M+H]*) (DMSO-de) δ 11.83 (s, 1H), 9.94 (s, 1H), 9.44 (s, 1H),8.19(s, 1H), 8.16-8.08 (m, 4H), 8.05 (d, J = 8.3 Hz. 2H). 7.63 (d, J = 9.0 Hz. 2H). 7.14 (d. J - 8.5 Hz, 1H), 6.85 (d, J =2.9 Hz, 1H), 6.80 (dd, J - 8.5, 2.9 Hz, 1H), 3.78 (s, 3H), 2.57 (q, J- 7.5 Hz. 2H). 1.16 (t, J= 7.6 Hz. 3H);
1®F NMR (376 MHz, DMSO-de) δ -85.18,-86.92
NMR spectral data were acquired using a 400 MHz instrument unless otherwise noted.
P* - Prepared according to methods described in Crouse et al. PCT Int. Appl, Publ.
W02009/102736 A1 and Brown, et al, WO 2011017504 A1.
Table 3: Structures for Compounds
ID Structure
1C
2C Cl
ID Structure
3C Cl
4C
5C
6C OH
7C
8C fJL0
9C
ID Structure
10C
11C -F-X
12C
13C 0
14C N-S
15C
ID Structure
16C
17C
18C o-TV'CLL^x f/f N*<CLN.NiN'xp
19C F N'N
20C
21C
ID Structure
22C
23C „ °v-nyo^j0
24C 0 JL· ^NnJXXn.>JÇ)
25C
26C X><VA W' F FF nÀn Λγ)
27C ?<KVÂ γγ- ffV La,n.nanJU
28C ., °\^n v°j0 /—\ /*N I X
ID Structure
29C 0 y—X /*N
30C
31C
32C i—V '’N *) Wrr0' F F F ' Cl
33C θνο^ y-V f*N / pO n^YS °<-sCIZY°F F f AnAyJ Cl
34C rx-N °V< ,°Ό'ΝΝ'1γΧ| °^sci'<y0' F F F kxkxN.NAN AjJ Cl
35C
100
-17014
ΙΟ Structure
36C Ρ'Ό'ΝΝΛγ%
37C °Δ -ΰ°~
38C rN θ—S JJ ε^ΟΝνΛΌ-ν·νΧν^
39C rN <Js J)
40C
41C 0-^-0^ r «jJP Fw^”‘”
ΙΟΙ
ID Structure
42C p-0- 0- t-b
43C Xi
44C °Y~> s X~ F Pt!.C N -
45C vX F F I
460 o^- F F I
I02
ID Structure
47C /-χ /**N Ηθ-γ° V>> FF F xAyN-N\-k/
48C /-N ΗΟ-γ0 ,°<>nn Vï V Yy°x FF F
49C ”r°
50C ÿO-ÎL· T p- ^CUVp'
51C r X y^o. F>ÇF <A^n.nXnJ^J
52C x>%? X d FFf ί^^Ν·ΝΧΝΑ^
53C /xv X K fff ΧΧν.νΛναΓ
103
ID Structure
54C XHV Η°τ° P
55C ,5°¾...½
56C ^-°VC\ 0
57C Λ-ο Ν0<^Ιθ4
58C
59C Λ\ 0 „N Ηθν^ΝΛ
104
ID Structure
60C ^0
61C “Xo —. Λ.Ν° Ό-^Ο
62C cf3co2h
63C cf3co2h h,n r\^ c
64C cF3co^1!Nn 0 Ρ</νν\> X γγθχ F F F ^ί!ΐ,^^Ν'Ν^Ν,
65C CF3CO2H HN^ r-x /—N X-'N'Y’0
105
ID Structure
66C cF^H Nn 0 /*N Ν-γ*°
67C cF3c°2H fJN^ g-v /~N
68C Na* Λ ρΌ~νΧ^ F F F
69C
70C 'WoxS
71C
72C ''AyO^
106
I07
I0S
ID Structure
85C
86C
87C
88C r. ACrNfAO-N'N M
89C H° L rN SYN-O ΚΌτ%Χ^Ν'Ν f
90C O / rN syn ;<CrNA>N-N
91C O /-N SYNO ;<CtNnA>n'n >
I09
ID Structure
92C oz /-N V'Ÿ'A
93C Pci /-N SYNŸ^ fî«>Nn^On'n
94C rN ÇN<5
95C Po /—n SÇNŸA ^ÛN^K'N F
96C ^9 /-N syntS
97C Ήδ/Ά /—n fy F^Or%X^N-N
98C 'χοΥΎ>Π Γ<°
99C ^ο-ΖΛ-νΎ <f-r° f'
110
ID Structure
100C
101C
102C
103C
104C
105C /—K i— ^Tl
106C
107C
108C
ID Structure
109C
110C
me
112C
113C
114C
115C y—\ r**N .— sçi \Λ>Ν-Ν <Ao^
116C Κ/νπ rf
117C Ux/N-N N^J
H2
ID Structure
118C
119C
120C
121C
122C
123C
124C F P
125C
U3
ID Structure
1260
127C
1280
1290 ti/ LA^n-nciaJ
1300
1310 kxk,N-N fAJI
1320
1330
1340
H4
ID Structure
135C
136C
137C \
138C /**N f ' ,,>νΌ.·Χό.;
139C
140C
141C
142C
143C K^W;:ô
II5
ID Structure
144C
145C
146C
147C
148C
149C
150C
151C
152C F ^VF j—1 r~\ C^~ F ,μ>Λχ^Υ)
lie
ID Structure
153C
154C
155C
156C
157C
158C
159C çQ
160C
161C
II7
ID Structure
162C rX0-O-N N-<Q SÇÇZ \An-n <Ao I
163C
164C
165C
166C
167C
168C
169C
170C F f\f ζΎ-ϊΛν r~( <>V ”^χ.Ρ·ό
II8
ID Structure
171C :<o-% ça faJ
172C
173C ^Αχ^ύ
174C
175C îx^AAô
176C ίχ^~Α.Α
177C
178C
179C
H9
ID Structure
180C
181C o-
182C
183C
184C
185C
186C
120
ID Structure
187C Q c
188C Q c
189C
190C
191C Q. IAn-n
192C
193C
194C
I2l
ID Structure
195C kA,N-N X-Z
196C
197C
198C k^A^N-N )—/
199C
200C :W%:
201C
202C >'λ-·Άο OCHj
I22
ID Structure
203C rN >-N / Br
204C rN Q 9™·
205C
206C «yr;SO-“’rp HjCO
207C rN G COjEt
208C
209C
21 OC
123
ID Structure
211C
212C
213C
214C
215C
216C <W. Qy,
217C ?x°O-NX> Q- ?
21 ec
I24
ID Structure
219C
220C
221C
222C
223C O* r-N ’y-N J
224C
225C r^yo /-N Sy-N r-
226C ryo /—N Sy-N J
227C ryo /-N Sy-N ! 'X.-O'^YY-W
I25
ID Structure
228C
229C crJ*° F /—N Sy-N P”f*F
230C rN Çr>/ FXo O
231C Γ>° /—N y-N /
232C çr> 5sOrX>~- O
233C /-N sÇ-\L°V x.-œ'-c-.»·” ü
234C szT° /—N y-N ,cl
235C ν JJ
236C - ’PCr
126
ID Structure
237C rN
238C
239C r. ÇQ-
240C >ωχ>-νό
241C /=N \/>H WXXV N Cl -W
242C A0H, /-N VN / O
243C X.-O'^X-^O
244C Z'XoH /=n Sy-N P
127
ID Structure
245C 0—
246C F- z=N sy_ ^F &
247C F-~ ^F
248C fV rypl PX-zX” P
249C
250C
I2S
ID Structure
251C
252C
253C
254C O
255C
256C
I29
130
ID Structure
262C
263C
264C /™N S^/°H
Table 4: Analytical Data for Compounds In Table 3
ID Synthesis Method MS mp (°C) 1H NMR, «C. or 19F NMR
1C D 540 (M+) - (DMSO-de) 8.61 (s, 1H). 8.48 (s, 1H), 8.22 (d, J= 8.24 Hz. 2H), 8.17 (s, 1H), 7.89 (d, J = 8.24 Hz, 2H), 7.80 (d, J = 8.28 Hz, 2H), 7.41 (d, J = 8.28 Hz, 2H), 7.19 (d, J = 8.24 Hz, 2H), 6.71 (d, J= 8.24 Hz, 2H), 2.99 (s, 6H), 2.42 (s, 3H)
I3I
ID Synthesis Method MS mp (°C) Ή NMR, nC, or”F NMR
2C D 580 (M+) 168-171 (DMSO-d6) 9.42 (s, 1H), 8.18-8.03 (m, 5H), 7.78-7.69 (m, 2H), 7.61 (d, J- 8.26 Hz, 2H), 7.44 (d, J= 8.24 Hz, 2H), 7.18 (m, 1H), 3.09-2.99 (m, 2H), 1.39-1.32 (m, 3H)
3C D 594 180-182 (DMSO-de) 9.42 (s, 1H), 8.18-8.04 (m, 5H), 7.78-7.69 (m, 2H), 7.61 (d, J= 8.26 Hz, 2H), 7.48 (d, J= 8.24 Hz, 2H), 7.19 (m, 1H), 3.06-3.02 (m, 2H), 1.78-1.64 (m, 2H), 1.040.96 (m, 3H)
4C D 629 (M+) (DMSO-de) 8.57 (s, 1H), 8.48 (d, J = 5.5 Hz, 1H), 8.22 {d. J= 8.2 Hz, 2H), 7.91-7.75 (m, 5H), 7.38 (d, J = 8.7 Hz. 2H), 7.22-7.07 (m, 3H), 6.50-6.19 (m, 2H). 3.85 {d. J = 7.2 Hz, 1H), 3.75-3.64 (m, 1H), 2.33 (s, 6H)
5C E 636 (M+) (300 MHz, CDCI3) 8.56 (s, 1H). 8.54 (s, 1H). 8.23 (d, J- 8.3 Hz, 2H), 7.89 (d, J~ 8.2 Hz, 3H), 7.79 (d. J = 9.0 Hz, 2H), 7.38 (d, J = 8.7 Hz, 2H). 7.23-7.00 (m, 4H), 6.88-6.74 (m, 2H), 4.44 (s, 2H), 2.33 (s, 6H)
6C D 645 (M+H) 196-198 (methanol-d<) 9.16 (s, 1H), 8.46 (s, 1H), 8.21 (d, J- 8.3 Hz, 2H), 8.03 (m, 6H), 7.52 (d, J = 8.3 Hz. 4H), 7.28 - 6.91 (m, 3H), 4.39 (s, 2H), 2.08 (s, 6H)
7C E 636 (M+) (300 MHz, CDCI3) 8.56 (m, 2H). 8.23 (d, J = 8.3 Hz. 2H), 7.88 (d, J= 8.3 Hz, 3H), 7.79 (d, J= 9.0 Hz, 2H), 7.55-7.42 (m, 1H), 7.37 (d, J= 9.0 Hz. 2H), 7.20-7.01 (m. 3H), 6.89- 6.68 (m, 2H), 4.30 (s, 2H), 2.28 (s, 6H)
I32
ID Synthesis Method MS mp(°C) 1H NMR, nC, or 19F NMR □ □□°
8C E 684 (M+) (CDCI3) 8.57 (s, 1H), 8.52 {s, 1 H), 8.24 (d, J = 8.3 Hz, 2H), 7.91-7.84 (m, 3H), 7.80 (d. J = 9.1 Hz, 2H), 7.39 (d, J= 8.6 Hz, 4H), 7.18-7.03 (m, 5H). 4.32 (s, 2H), 2.29 (s, 6H)
9C E 620 (M+) (CDCh) 8.57 (s, 1H), 8.47 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d, J= 8.3 Hz, 2H>, 7.80 (m, 3H), 7.39 (d, J= 8.4 Hz, 2H), 7.21-7.10 (m, 3H), 3.93 (s, 2H), 2.35 (s, 6H), 0.13 (s, 9H)
10C D 600 (M+) (DMSO-de) 8.57 (s, 1H), 8.54 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 7.87 (s, 1H), 7.80 (d, J= 9.0 Hz, 2H), 7.447.32 (m, 4H), 7.31-7.19 (m, 3H), 7.19-7.00 (m, 3H), 4.34 (s, 2H), 2.31 (s. 6H)
11C D 618 (M+) (DMSO-de) 8.57 (s, 1 H), 8.55 (s, 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H). 7.86 (s, 1H), 7.83-7.73 (m, 2H). 7.48 (td, J = 7.6, 1.7 Hz, 1 H), 7.38 (d, J = 8.5 Hz. 2H). 7.23-6.91 (m, 6H), 4.39 (s, 2H), 2.30 (s, 6H)
12C D 658 (M+) (DMSO-de) 8.57 (s, 1H), 8.51 (s. 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.94 (d, J= 8.3 Hz, 2H). 7.88 (d, J = 8.2 Hz, 2H), 7.86 (s, 1 H), 7.79 (d, J= 9.0 Hz, 2H), 7.44 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.20-7.05 (m, 3H), 4.35 (s, 2H). 3.88 (s, 3H), 2.28 (s, 6H)
13C E 679 (M+) (DMSO-de) 8.59 (s, 1H), 8.51 (s, 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.93-7.76 (m, 7H), 7.53 (d, J = 8.2 Hz, 2H), 7.39 (d, J= 8.7 Hz, 2H), 7.20-7.06 (m, 3H). 4.88 (s, 2H), 4.36 (s, 2H), 2.28 (s, 6H)
I33
ID Synthesis Method MS mp fC) Ή NMR, «C, or ,9F NMR
14C E 658 (M+) (CDCIj) 8.57 (s, 1H), 8.52 (s, 1 H), 8.23 (d, J = 8.3 Hz, 2H), 7.91-7.85 (m, 4H), 7.80 (d, J = 9.1 Hz, 2H), 7.73 (d, J= 6.8 Hz, 1H), 7.52 (dd, J = 8.8, 6.9 Hz, 1 H), 7.39 (d, J - 9.0 Hz, 2H), 7.13-7.01 (m, 3H), 4.88 (s, 2H), 2.27 {s, 6H)
15C E 667 (M+) (CDCI3) 8.57 (s, 1H), 8.25-8.14 (m, 3H), 7.94-7.66 (m, 7H), 7.52-7.35 (m, 6H), 7.16- 7.03 (m, 3H), 4.54 (s, 2H), 2.32 (s, 6H)
16C E 658 (M+) {CDCI3) 8.57 (s, 1H), 8.49 (s, 1 H), 8.24 (d, J = 8.4 Hz, 2H), 7.88 (d, J- 8.3 Hz, 2H), 7.83-7.77 (m, 3H), 7.39 (d, J= 8.3 Hz, 2H), 7.19-7.07 (m, 3H), 6.69-6.65 (m, 1 H), 6.396.35 (m, 1H), 4.36 (s, 2H), 2.29 (s, 6H)
17C E 678 (M+) (CDCI3) 8.58 (s, 1H), 8.50 (s, 1 H), 8.23 (d, J - 8.3 Hz, 2H), 7.94-7.74 (m, 7H), 7.59 (d, J - 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H). 7.20-7.04 (m, 3H), 4.37 (s, 2H), 3.01 (s, 3H), 2.29 (s, 6H)
18C E 773 (M+) (CDCI3) 8.59 (s, 1 H). 8.46 (s, 1H), 8.22 (d, J - 8.4 Hz, 2H), 7.86 (d, J- 8.4 Hz, 2H), 7.83-7.75 (m, 3H), 7.63 (d, 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.38 {d, J = 8.4 Hz, 2H), 7.17-7.05 (m, 3H), 7.03-6.98 (m, 3H), 6.89 (t, J - 8.6 Hz, 2H), 4.30 (s, 2H), 2.24 (s, 6H)
134
ID Synthesis Method MS mp fC) 1HNMR, 13C, or 19F NMR □ □□°
19C E 728 (M+) (CDCb) 8.59 (s, 2H), 8.26 (d, J - 8.3 Hz, 2H), 7.93 (d, J- 8.3 Hz, 2H), 7.89 (s, 1H), 7.82 (d, J= 9.1 Hz, 2H), 7.40 (d, J= 8.3 Hz, 2H), 7.20-7.05 (m, 3H), 6.86 (s, 1H), 4.49 (s, 2H), 3.98 (s, 3H), 2.31 (s, 6H)
20C E 681 (M+) (CDCb) 8.58 (s, 1H), 8.38 (s, 1H). 8.23 (d, J = 8.3 Hz, 2H), 7.86 (d, J= 8.3 Hz, 3H), 7.81 (d, J= 9.1 Hz, 2H), 7.67-7.63 (m, 2H), 7.467.36 (m, 5H), 7.18-7.05 (m, 3H), 4.24 (s, 2H), 2.47 (s, 3H), 2.29 (s, 6H)
21C E 596 (M+) (DMSO-cb) 8.58 (s, 1 H), 8.15 (d, J - 8.4 Hz, 2H), 7.80 (d, J = 9.0 Hz, 2H), 7.47-7.35 (m, 4H), 7.21-6.93 (m, 5H), 3.68 (t, J= 5.4 Hz, 2H), 3.35 (s, 3H), 2.65 (t, J = 6.2 Hz, 2H), 2.29 (s, 6H)
22C E 626 (M+) (DMSO-cb) 8.59 (s, 1H), 8.52 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.95-7.75 (m, 5H), 7.39 (d, J = 8.4 Hz, 2H), 7.21-7.06 (m, 3H), 5.80 (s, 2H), 4.12 (s, 2H), 3.69-3.50 (m, 2H), 2.31 (s, 6H), 1.35-1.11 (m, 3H)
23C E 731 (M+) (DMSO-de) 8.58 (s, 1H), 8.50 (s, 1H), 8.22 (d, 8.2 Hz, 2H), 7.93-7.70 (m, 5H). 7.45- 7.28 (m, 8H), 7.23-7.03 (m, 3H), 5.79 (s, 2H), 5.38-5.27 (m, 1H), 5.11 (s, 2H), 4.073.98 (m, 2H), 2.30 (s, 6H)
24C E 626 (M+) (DMSO-de) 8.58 (s, 1H), 8.51 (s, 1H), 8.22 (d, J- 8.3 Hz, 2H), 7.93-7.73 (m, 5H), 7.39 (d, 8.9 Hz, 2H), 7.21-7.07 (m, 3H), 5.76 (s, 2H), 5.05-4.70 (m, 1H), 2.32 (s, 6H). 1.38-1.17 (m, 6H)
135
ID Synthesis Method MS mp fC) 1H NMR, ’3C, or ,BF NMR
25C E 610 (M+) (DMS0-de) 8.59 (s, 1H), 8.52 (s, 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.91-7.79 (m, 5H), 7.40 (d, J = 8.5 Hz, 2H), 7.18-7.06 (m, 3H), 5.73 (s, 2H), 2.70-2.45 (m, 1H), 2.32 (s, 6H), 1.15 (s, 6H)
26C E 654 (M+) (DMSO-d6) 8.58 (s, 1H). 8.21 (d, J = 8.4 Hz, 2H), 7.98 (d, J= 8.4 Hz, 2H), 7.81 (d, J = 6.9 Hz, 2H), 7.69 (s, 1H), 7.40 (d, J= 8.8 Hz, 2H), 6.63 (s, 2H), 5.73 (s, 2H), 3.80 (s, 3H), 2.64-2.53 (m, 1H), 2.58 (s, 3H), 2.28 (s. 6H), 1.17 (d, J = 7.0 Hz, 6H)
27C E 640 (M+) (DMSO-de) 8.58 (s. 1H), 8.50 (s, 1H), 8.23 (d, J = 8.2 Hz, 2H), 7.88 (d, J = 8.3 Hz, 2H), 7.81 (d, J= 9.0 Hz, 2H), 7.74 (s, 1H), 7.39 (d, J= 8.6 Hz, 2H), 6.63 (s, 2H), 5.71 (s, 2H), 3.79 (s, 3H), 2.74-2.43 (m, 1H), 2.27 (s, 6H), 1.16 (d, J = 7.0 Hz, 6H)
28C E 761 (M+) (300 MHz, CDCIj) 8.58 (s, 1H), 8.48 (s, 1 H), 8.22 (d, J= 8.3 Hz, 2H), 7.87 (d. J= 8.4 Hz, 2H), 7.80 (d, J- 9.0 Hz, 2H), 7.74 (s, 1H), 7.45-7.28 (m, 7H), 6.63 (s, 2H), 5.78 (s, 2H), 5.29 (m, 1 H), 5.12 (s, 2H), 4.03 (d, J ~ 5.6 Hz, 2H), 3.79 (s, 3H), 2.27 (s, 6H)
29C E 656 (M+) (300 MHz. CDCI3) 8.58 (s, 1H), 8.49 (s, 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.87 (d, J= 8.4 Hz. 2H), 7.81 (d, J ~ 9.0 Hz, 2H), 7.72 (s, 1 H). 7.40 (d, J- 8.7 Hz, 2H), 6.63 (s, 2H), 5.78 (s, 2H), 4.11 (s, 2H), 3.80 (s, 3H), 3.59 (q, J - 7.0 Hz, 2H), 2.27 (s, 6H), 1.24 (t, J= 7.1 Hz, 3H)
I36
ID Synthesis Method MS mpfC) ’H NMR, 13C, or 1flF NMR
30C E 697 (M+) (300 MHz, CDCI3) 8.60 (s, 1H), 8.50 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 8.2 Hz, 2H), 7.82 (s, 1H), 7.80 (d, J - 9.0 Hz, 2H), 7.38 (d, J = 8.8 Hz, 3H), 7.23-7.02 (m, 3H), 5.78 (s, 2H), 3.96 (s, 2H), 2.31 (s, 6H), 1.44 (s. 9H)
31C E 582 (M+) (300 MHz, CDCIj) 8.58 (s, 1H), 8.52 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.88 (m, 3H), 7.80 (d, J = 9.0 Hz, 2H), 7.38 (d, J - 8.6 Hz, 2H), 7.14 (m, 3H), 5.72 (s, 2H), 2.32 (s, 6H), 2.09 (s, 3H)
32C E 697 (M+) (CDCIj) (Mixture of atropisomers) [8.61 (s), 8.58 (s), 8.56 (s), 8.51 (s), 8.37 (d, J~ 8.3 Hz), 8.23 (d, J ~ 8.4 Hz), 8.21-8.14 (m), 8.00 (d, J - 8.4 Hz), 7.89 (d, J = 8.2 Hz), 7.84-7.77 (m), 7.45-7.35 (m); 11 H], 6.94 (s, 2H), [5.87 (s), 5.80 (s); 2H], [4.12 (s), 4.11 (s); 2H], 3.83 (s, 3H), 3.69-3.44 (m, 2H), 1.38-1.10 (m, 3H)
33C E 697 (M+) (CDCIj) 8.57 (s, 1H), 8.51 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.88 (d, J ~ 8.4 Hz, 2H), 7.83-7.77 (m. 3H), 7.39 (d, J- 8.4 Hz, 2H), 6.94 (s, 2H), 5.76 (s, 2H), 4.96-4.77 (m, 1H), 3.82 (s, 3H). 1.30 (d, J~ 6.3 Hz, 6H)
34C E 681 (M+) (CDCIj) 8.57 (s, 1H), 8.51 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.92-7.76 (m, 5H), 7.39 (d, J ~ 8.4 Hz, 2H), 6.93 (s, 2H), 5.73 (s, 2H), 3.82 (s, 3H), 2.59 (m, 1H), 1.17 (d, J = 7.0 Hz, 6H)
I37
ID Synthesis Method MS mp (°C) 1H NMR, 13C, or 19F NMR □ □□°
35C E 636 (M+) (CDCIj) 8.57 (s. 1 H). 8.50 (s, 1H), 8.23 (d. J = 8.4 Hz, 2H), 7.92-7.73 (m, 5H), 7.38 (d, J = 8.3 Hz, 2H), 7.20-6.92 (m, 3H), 5.72 (s, 2H), 2.94-2.63 (m, 1H), 2.31 (s. 6H), 2.021.38 (m, 8H)
36C E 624 (M+) (CDCIj) 8.56 (s, 1H). 8.49 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d, J= 8.3 Hz, 2H), 7.84 (s, 1 H). 7.79 (d, J = 9.0 Hz, 2H), 7.38 (d, J 8.4 Hz, 2H), 7.19-7.05 (m, 3H), 5.71 (s, 2H), 2.31 (s, 6H), 1.20 (s, 9H)
37C E 691 (M+H) (CDCIj) 8.59 (s, 1H), 8.50 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H). 7.93-7.77 (m, 4H), 7.72 (s, 1 H), 7.40 (d, J = 9.0 Hz, 2H), 6.63 (s, 2H), 5.71 (s, 2H), 3.80 (s, 3H), 2.68-2.48 (m, 1H), 2.28 (s, 6H), 1.16 (d, J = 7.0 Hz, 6H)
38C E 724 (M+) (CDCIj) 8.58 (s, 1H), 8.47 (s, 1H), 8.23 (d, J ~ 8.3 Hz, 2H), 7.87 (d, J~ 8.3 Hz, 2H), 7.81 (d, J - 9.1 Hz, 2H). 7.71 (s, 1 H), 7.39 (d, J = 9.0 Hz, 2H), 6.64 (s, 2H), 5.76 (dd, J= 37.3, 11.0 Hz, 2H), 4.19 (q, J - 6.9 Hz, 1 H), 4.143.97 (m, 1H), 3.80 (s, 3H), 3,79-3.68 (m, 1 H), 2.27 (s, 6H), 1.47 (d, J = 6.9 Hz, 3H)
39C E 694 (M+) (CDCIj) 8.58 (s, 1H), 8.48 (s, 1 H). 8.24 (d, J = 8.3 Hz, 2H), 7.87 (d, J= 8.3 Hz, 2H), 7.83 (s, 1H), 7.81 (d, J- 9.1 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.23-6.99 (m, 3H), 5.77 (dd, J = 36.4,11.0 Hz. 2H). 4.19 (q, J = 6.9 Hz, 1H), 4.14-3.97 (m, 1H), 3.84-3.65 (m, 1H), 2.31 (s, 6H), 1.47 (d, J ~ 6.9 Hz, 3H)
138
ID Synthesls Method MS mp {°C) Ή NMR. 13C, or ,eF NMR □ □□°
40C E 654 <M+) (CDCI3) 8.57 (s, 1H), 8.48 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.87 {d, J= 8.3 Hz, 2H), 7.80 (d, J = 9.0 Hz, 2H), 7.72 {s, 1 H). 7.38 {d, J = 8.4 Hz, 2H). 6.62 {s, 2H), 5.70 (s, 2H), 3.79 (s,3H), 2.27 {s, 6H), 1.20 {s, 9H)
41C E 670 (M+) {CDCI3) 8.58 (s, 1 H). 8.49 {s, 1 H). 8.23 (d, J - 8.3 Hz, 2H), 7.87 (d, J - 8.3 Hz, 2H), 7.84 {s, 1H), 7.80 (d, J= 9.0 Hz. 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.23-6.96 (m, 3H), 5.77 (dd, J = 27.4, 10.9 Hz, 2H), 4.07 (q. 6.9 Hz, 1H), 3.78-3.70 {m, 1H), 3.66-3.39 {m, 3H), 3,35 (s, 3H), 2.31 (s, 6H), 1.42 {d, J- 6.9 Hz, 3H)
42C E 700 (M+) (CDCIj) 8.58 (s. 1H), 8.48 {s, 1H), 8.23 {d, J = 8.4 Hz, 2H). 7.87 (d, J= 8.3 Hz, 2H), 7.80 {d, J- 9.1 Hz. 2H), 7.71 (s, 1H), 7.39 {d, J = 8.3 Hz, 2H), 6.63 {s, 2H), 5.76 {dd, J - 27.8, 10.9 Hz, 2H), 4.07 {q, J = 6.9 Hz, 1H), 3.79 (s, 3H), 3.79-3.70 {m. 1 H>, 3.63-3.45 {m, 3H), 3.35 {s, 3H), 2.27 (s, 6H), 1.42 (d, J = 6.9 Hz. 3H)
43C E 666 <M+) (CDCI3) 8.57 {s, 1H), 8.49 (s, 1H). 8.22 (d, J = 8.3 Hz, 2H>, 7.87 (d, J- 8.3 Hz, 2H), 7.79 (d, J= 9.1 Hz, 2H), 7.74 (s, 1H), 7.38 {d, J = 8.3 Hz. 2H), 6.62 (s, 2H), 5.71 {s, 2H), 3.79 (s, 3H), 2.85-2.65 (m, 1 H). 2.27 (s, 6H), 1.98-1.51 (m, 8H)
139
ID Synthesis Method MS mp(°C) ’H NMR. nC, or 19F NMR □ □□°
44C E 668 (M+) (CDCh) 8.59 (s. 1H). 8.55 (s. 1H). 8.22 (d. J = 8.3 Hz. 2H). 7.87 (d, J = 8.3 Hz. 2H). 7.84-7.74 (m. 3H). 7.38 (d. J- 8.4 Hz. 2H). 6.63 (s. 2H). 5.85-5.73 (m. 2H), 4.54-4.47 (m. 1H). 4.03 (dd. J~ 14.7,6.9 Hz. 1H). 3.91 (dd. J= 13.8. 7.4 Hz. 1H). 3.79 (s. 3H). 2.27 (s. 6H), 2.09-1.83 (m. 4H)
45C E 746 (M+H) 132-137 (CDCh) 8.68 (s. 1H). 8.49 (s. 1H). 8.24 (d. J = 8.3 Hz. 2H), 7.93 (d. J= 8.4 Hz, 2H), 7.88 (d. J= 8.3 Hz, 2H), 7.81 (d, J= 8.5 Hz. 2H). 7.73 (s. 1H), 7.35 (s, 5H), 6.64 (s, 2H). 5.78 (s, 2H), 5.24 (s, 1H). 5.12 (s. 2H), 4.04 (d, J - 5.5 Hz, 2H). 3.80 (s, 3H). 2.28 (s, 6H)
46C E 624 108-113 (CDCI3) 8.68 (s, 1 H), 8.50 (s, 1 H), 8.24 (d, J - 8.3 Hz. 2H). 7.98-7.69 (m, 7H), 6.63 (s. 2H). 5.71 (s, 2H), 3.80 (s, 3H). 2.59 (heptet, J = 7.0 Hz, 1H), 2.29 (d, J = 6.9 Hz, 6H), 1.16 (d, J =7.0 Hz, 6H)
47C E 149-151 (acetone-de) 9.20 (s, 1H). 8.52 (s, 1H), 8.40 -8.21 (m. 2H), 8.21-8.01 (m, 4H), 7.61 (d. J= 8.3 Hz, 2H). 7.32-6.94 (m, 3H), 3.83 (s, 2H), 2.34 (s, 6H)
48C E 599 (M+H) 128-137 (acetone-de) 9.18 (s, 1H). 8.83 (s. 1H), 8.67 - 7.82 (m, 8H), 7.60 (d, J= 8.4 Hz, 2H). 6.78 (s, 2H), 3.99 - 3.72 (m, 3H), 2.41 - 2.20 (m, 6H)
49C E 619 (M+H) 177-185 (methanol-d4) 9.23 (s, 1H), 8.62 (s, 1 H), 8.29 (m, 2H). 8.17 - 7.98 (m, 4H), 7.60 7.45 (m, 2H). 7.41 - 7.19 (m, 3H), 4.22 (s, 2H), 2.34 (s. 6H)
140
ID Synthesis Method MS mp(°C) ’HNMR, ’3C. or ’9F NMR
50C E 635 (M+H) 193-196 (methanol-d4) 9.23 (s. 1 H). 8.57 (s. 1H), 8.28 (m, 3H), 8.09 - 7.98 (m, 4H), 7.50 (m, 4H), 4.19 - 4.11 (m. 2H). 3.85 (s. 3H), 2.36 (s. 3H)
51C E 649 (M+H) 176-179 (methanol-d4) 9.23 (s, 1H), 8.60 (s, 1H), 8.30 (m. 2H). 8.14- 8.00 (m, 4H), 7.52 (m. 2H), 6.81 (s, 2H), 4.22 (s, 2H), 3.84 - 3.81 (m, 3H). 2.33 (s, 6H)
52C E 599 (M+H) 168-178 (methanol-d4) 9.21 (s, 1H), 8.44 (s, 1H), 8.27 (d, J - 8.1 Hz. 2H), 8.09 - 7.98 (m. 4H), 7.52 (d. J = 8.3 Hz. 2H). 7.40 (d. J = 8.7 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 5.40 (s, 1H), 4.37-4.13 (m, 2H), 3.79 (s, 3H), 1.79 (m,3H)
53C E 617 (M+H) 168-170 (methanol-d4) 9.21 (s, 1H), 8.44 (m, 1H), 8.28 (d, J = 8.2 Hz, 2H), 8.11 - 7.99 (m, 4H), 7.52 (d, J- 8.4 Hz, 2H), 7.25 (m, 2H), 7.14 (t, J ~ 8.5 Hz. 1 H), 5.42 (m, 1 H), 4,25 (m, 2H), 3.88 (s, 3H), 1.75 (m, 3H)
54C E 569 (M+H) 167-170 (methanol-d4) 9.23 (s, 1H), 8.46 (s, 1H), 8.27 (m, 2H), 8.05 (m, 4H), 7.57 - 7.39 (m, 7H), 5.41 (m. 1H), 4.24 (m, 2H), 1.79 (m, 3H)
55C E 624 (M+H) 90-97 (methanol-d4) 9.12 (s, 1H), 8.46 (s, 1H), 8.14 (m. 2H), 7.99 (m. 3H), 7.78 (s, 1H), 7.49 (d, J= 8.5 Hz, 2H), 7.12 (m, 3H), 3.69 (s, 2H), 3.22 - 2.80 (m, 2H), 2.25 (s, 6H), 2.03 (s, 2H), 1.93 -1.66 (m, 1H), 0.92 (m, J = 9.7 Hz, 6H)
I4l
ID Synthesis Method MS mp (°C) ’H NMR, ,3C, or 19F NMR □ □□°
56C E 765 (M+H) 148-151 (methanol-di) 9.18 (s, 1H), 8.59 (s, 1H), 8.30 (d, J= 8.1 Hz, 2H), 8.12 (m, 2H), 8.07 - 8.00 (m, 2H), 7.58 - 7.43 (m, 2H), 7.33 (dd, J- 8.6, 6.5 Hz, 1H), 7.25 (d, J= 7.6 Hz, 2H), 4.02 (m, 2H), 3.97 - 3.75 (m, 2H), 3.21 (d, J - 6.9 Hz, 2H), 2.90 (m, 1 H), 2.59 (m, 1 H), 2.35 (s, 6H), 1.84 (m, 2H), 1.78 1.63 (m, 2H), 1.44 (s, 9H), 1.29 (m, 3H)
57C E 737 (M+H) 151-153 (methanol-d4) 9.20 (s, 1H), 8.65 (s, 1H), 8.30 (m, 2H), 8.21 - 7.96 (m, 4H), 7.53 (d, J = 8.4 Hz, 2H), 7.35 (dd, J - 8.5, 6.5 Hz, 1 H), 7.28 (d, J = 7.5 Hz, 2H), 4.44 (s, 2H), 3.91-3.40 (m, 9H), 2.38 (s, 6H), 1.50 (s, 9H)
58C E 725 (M+H) 125-127 (methanol-d,) 9.18 (s, 1H), 8.61 (s, 1H), 8.31 (m, 2H), 8.14 (m, 2H), 8.06 (d, J- 9.0 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.32 (dt, J = 26.0, 7.0 Hz, 3H), 4.02 (s, 2H), 3.383.34 (m, 2H), 3.22 - 3.03 (m, 2H), 2.37 (s, 6H), 1.74 (m, 2H), 1.45 (s, 9H)
59C E 755 (M+H) 147-149 (methanol-d») 9.18 (s, 1H), 8.62 (s, 1H), 8.38-7.97 (m, 6H), 7.51 (d, J= 8.4 Hz, 2H), 7.32 (dd, J- 8.5, 6.6 Hz, 1H), 7.25 (d, J - 7.6 Hz, 2H), 4.40 (s, 1H), 4.06 (m, 2H), 3.91 - 3.74 (m, 2H), 3.56 - 3.41 (m, 1 H), 2.36 (s, 6H), 1.44 (s, 9H)
142
ID Synthesis Method MS mp (°C) ’HNMR, 13C, or19F NMR
60C E 755 (M+H) 136-139 (methanol-di) 9.16 (s, 1 H), 8.58 (s, 1H), 8.28 (d, J - 7.4 Hz, 2H), 8.16-7.76 (m, 4H), 7.52 (p, J= 8.8 Hz, 2H), 6.83 (m, 2H), 4.04 (d, J = 8.5 Hz, 2H), 3.90-3.73 (m, 3H), 3.553.37 (m, 2H). 3.14-2.75 (m, 3H), 2.30 (s, 6H), 1.99-1.80 (m, 2H), 1.43-1.31 (m, 2H)
61C E 738 (M+H) 70-79 dec (methanol-d4) 9.12 (s, 1H), 8.12-8.07 (m, 2H), 8.02 - 7.96 (m, 2H), 7.55-7.50 (m, 2H), 7.50-7,45 (m, 2H), 7.43 (d, J- 7.7 Hz, 1H), 7.31 (d, J= 7.6 Hz, 2H), 4.03 (s, 2H), 3.25 (dt, J= 15.5, 7.0 Hz, 4H), 2.84 (s, 3H), 2.04 (s, 6H), 1.81 - 1.66 (m, 2H), 1.44 (s, 9H)
62C K 665 (M+H) 110-120 (methanol-d4) δ 9.18 (s, 1H), 8.56 (m, 1H), 8.26 (m, 2H). 8.16-7.84 (m, 4H), 7.52 (m, 2H). 7.27 (m, 1H). 7.22 (m, 2H), 4.00 (s, 2H), 3.28 (m, 3H). 3.06-2.83 (m, 1H), 2.75 (t. J= 12.2 Hz, 1H), 2.34 (s, 6H), 2.21 - 1.83 (m, 4H). 1.72 (m. 1H), 1.47-1.19 (m, 2H)
63C K 655 (M+H) 98-110 (methanol-d4) 9.18 (s, 1H), 8.63 (s, 1H). 8.28 (m, 2H), 8.13 - 7.97 (m, 4H), 7.51 (d, J = 8.3 Hz, 2H), 7.31 (dd, J = 8.5, 6.5 Hz, 1 H), 7.24 (d, J = 7.6 Hz, 2H), 4.32 - 4.07 (m, 3H), 3.98-3.81 (m, 1H), 3.72 (s, 1H), 2.35 (s, 6H)
143
ID Synthesïs Method MS mp (°C) ’HNMR, nC, or ”FNMR
64C K 655 (M+H) 83-112 (methanol-di) 9.19 (s, 1 H). 8.58 (s, 1H). 8.28 (m, 2H), 8.14 - 7.97 (m, 4H), 7.51 (m, 2H), 6.78 (s, 2H), 4.00 (m, 2H), 3.81 (s, 3H), 3.10 - 2.93 (m, 4H), 2.30 (s, 6H). 1.91 (m, 2H)
65C K 667 (M+H) 128dec (methanol-dO 9-20 (s, 1H), 8.65 (s, 1 H). 8.27 (m 2H), 8.11 - 7.99 (m, 4H), 7.52 (d, J = 8.3 Hz, 2H), 6.78 (s, 2H), 4.40 (s, 2H), 3.87 (m, 4H), 3.53 (s, 3H), 2.32 (s, 6H), 1.33 (m, 4H)
66C K 625 (M+H) 100-105 (methanol-di) 9.20 (s, 1H), 8.56 (s, 1H), 8.27 (m, 2H), 8.12 - 7.99 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H), 7.24 (m, 4H), 3.99 (s. 2H), 3.42 (m, 2H), 3.05 (m, 2H), 2.36 (s, 6H), 1.99-1.88 (m, 2H)
67C K 636 (M+H) 237-240 dec (methanol-dt) 9.20 (s, 1H), 8.74 (s, 1H), 8.33 - 8.25 (m, 2H), 8,12 - 7.98 (m, 4H), 7.53 (d, J = 8.3 Hz, 2H), 7.33 (dd, J = 8.5, 6.4 Hz, 1H), 7.26 (d, J= 7.5 Hz, 2H), 4.55 (s, 2H), 3.92 (m, 4H), 3.37 (m, 2H), 3.31 (m, 2H), 2.38 (s, 6H)
69C F 581 (M+H) 188-190 (CDCIj) 8.56 (s, 1H), 8.33 (s, 1H), 8.22 (d, J = 8.1 Hz, 2H), 7.90 - 7.70 (m. 4H), 7.39 (d, J = 8.7 Hz, 2H), 6.72 (s, 2H), 4.01 (s, 2H), 3.87-3.73 (s, 3H), 2.18 (s, 6H)
70C F 592 (M+) 134-138 (CDCI3) 8.65 (s. 1 H). 8.31 (s. 1H), 8.23 (d, J = 8.3 Hz, 2H>, 7.83 (m, 4H), 7.50 (d, J= 8.1 Hz, 2H), 7.45-7.38 (m, 3H), 4.05 (s, 2H)
144
ID Synthesls Method MS rnpfC) Ή NMR, 13C, or 19F NMR
71C F 551 (M+H) 104-111 (CDCI3) 8.62 (s, 1H), 8.32 (s, 1H), 8.23 (d, J ~ 8.3 Hz, 2H), 7.88 - 7.74 (m, 4H), 7.40 (d, J = 8.3 Hz, 2H), 7.34 - 7.26 (m, 1H), 7.20 (d, J= 7.5 Hz, 2H), 4.02 (s, 2H), 2.22 (s, 6H)
72C F 565 (M+H) 118-121 (CDCÎj) 8.58 (s, 1H). 8.33 (s. 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.81 (m, 4H), 7.40 (d, J = 8.3 Hz, 2H), 7.01 (d, J = 0.4 Hz, 2H), 4.01 (s, 2H), 2.34 (s, 3H), 2.17 (s, 6H)
73C F 565 (M+H) 145-150 (CDCI3) 8.58 (s, 1H), 8.30 (s, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.81 (m, 2H), 7.49 (d, J~ 4.0 Hz, 1 H). 7.40 (d, J = 8.4 Hz, 1 H), 7.34 (s, 1H), 7.18 (d, J - 7.8 Hz, 1H), 4.01 (d, J = 1.4 Hz, 1H), 2.83 (heptet, J= 6.8 Hz, 1H). 1.23 (t, J =6.6 Hz, 3H).
74C G 682 (M+H) 190-193 (methanol-d4) 9.20 (s, 1H), 8.38 (s, 1H), 8.31 - 8.24 (m, 2H), 8.08 - 8.00 (m, 2H), 7.95 - 7.88 (m, 2H), 7.55 - 7.48 (m, 3H), 7.48 - 7.36 (m, 5H), 7.31 (d, J = 7.7 Hz, 2H), 3.60 (q, J = 7.2 Hz, 4H), 2.20 (s, 6H), 1.07 (t, J =7.2 Hz, 6H);
75C G 617 (M+) (CDCIj) 8.56 (s, 1H), 8.23 (s, 1H). 8.19 (d, J = 8.4 Hz, 2H), 7.84-7.73 (m, 5H), 7.41-7.33 (m, 3H), 7.21 (d, J = 7.2 Hz, 2H), 7.16 (s, 1 H), 7.12 (d, J = 3.2 Hz, 1 H), 2.20 (s, 6H).
760 G 711 (M+) (CDCIj) 8.56 (s, 1H). 8.25 (s, 1H), 8.20 (d. J = 8.4 Hz, 2H), 7.80 (dd, J= 8.7, 5.6 Hz, 4H), 7.48-7.34 (m, 8H), 7.26 (d, J= 7.7 Hz, 2H), 7.08 (s, 1H), 2.20 (s, 6H)
145
ID Synthesis Method MS mp(°C) Ή NMR, ”C, or”FNMR □ □□°
77C G 655 (M+H) 261-263 (methanol-d4)9.14 (s, 1H), 8.21 -8.13 (m, 3H), 8.06 - 7.99 (m, 2H), 7.86 - 7.75 (m, 4H), 7.50 (d, J= 8.3 Hz, 2H), 7.28 - 7.18 (m, 3H), 7.14 (d, J= 7.9 Hz, 2H), 6.72 (s, 1H), 0.09--0.09 (m, 6H)
78C G 694 (M+H) (CDCIj) 8.55 (s, 1H), 8.22 (s, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.79 (dd, J = 8.7, 5.1 Hz, 4H), 7.37 (d, J- 9.0 Hz, 2H), 7.23-6.94 (m. 7H), 6.26 (s, 1 H), 2.17 (s, 6H)
79C G 678 (M+H) (CDCIj) 8.55 (s, 1H), 8.23 (s, 1H). 8.19 (d, J = 8.3 Hz, 2H), 7.79 (d, J- 8.7 Hz, 4H), 7.43 (d, J= 8.3 Hz, 2H), 7.37 (d, J= 8.9 Hz, 2H), 7.23-7.16 (m, 3H), 7.08 (d, J = 7.4 Hz, 2H), 6.35 (s, 1H), 2.18 (s, 6H)
80C G 609 (M+H) 215-219 (methanol-d4) 9.23 (s, 1H), 8.40 (s, 1 H), 8.26 (m, 2H). 8.22 (s, 1H). 8.07-8.00 (m, 3H), 7.91 (d, J- 8.4 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 6.90 (s. 1H), 3.88 (s, 3H), 2.13 (S.6H)
81C I 551 (M+H) 209-213 (CDCIj) 9.42 (s, 1H). 8.59 (s. 1H), 8.28 (d, J = 8.4 Hz, 2H), 8.01 (d, J - 8.3 Hz, 2H), 7.80 - 7.77 (m. 2H), 7.43 - 7.34 (m. 2H), 7.07 (d, J = 7.5 Hz. 2H), 6.98 (dd. J = 8.2, 6.7 Hz, 1H). 3.90 (s. 2H), 2.17 (s, 6H)
82C I 565 (M+H) 225-232 (CDCIj) 9.46 (s. 1 H), 8.60 (s. 1H), 8.29 (d, J - 8.4 Hz. 2H), 8.02 (d, J= 8.4 Hz. 2H), 7.89 - 7.76 (m, 2H), 7.40 (d, J = 8.3 Hz, 2H). 6.88 (s, 2H), 3.90 (s, 2H), 2.28 (s. 3H), 2.13 (s, 6H).
146
ID Synthesis Method MS mp (°C) ’HNMR, 13C, or19FNMR
83C 1 581 (M+H) 211-215 (CDCI3) 9.44 (s, 1H), 8.60 (s. 1H), 8.30 (d. J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 9.1 Hz. 2H), 7.40 (d. J = 8.3 Hz. 2H). 6.63 (s, 2H). 3.90 (s. 2H). 3.78 (s. 3H). 2.15 (s, 6H)
84C 1 591 250 dec (CDCI3) 9.42 (s. 1H). 8.40 (s. 1H). 8.18 (d. J = 8.24 Hz. 2H), 8.07 (d. J = 8.28 Hz, 2H), 7.89 (d. J = 8.24 Hz, 2H). 7.76 (d. J = 8.28 Hz. 2H), 7.64-7.58 (m, 3H). 4.42 (s, 2H)
85C 1 551 (M+H) 146-149 (CDCI3) δ 9.36 (s. 1H). 8.60 (s, 1H), 8.30 (d, J= 8.4 Hz, 2H), 8.01 (d. J = 8.4 Hz, 2H), 7.86 - 7.77 (m, 2H). 7.40 (d. J = 8.3 Hz. 2H), 7.32 (dd, J= 6.9, 2.3 Hz, 1H). 7.247.12 (m, 2H). 6.91 (dd, J = 7.1,2.0 Hz, 1 H), 3.93 (s. 2H), 3.15 - 2.97 (m, 1 H), 1.21 (d. J = 6.9 Hz, 6H)
86C J 566 (M+H) 163-169 (CDCI3) δ 8.81 (bs. 1H), 8.57 (s, 1H), 8.20 (d. J = 8.3 Hz, 2H). 7.87- 7.75 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.32-7.25 (m, 1 H), 7.10 (2dt, J = 7.4,1.5 Hz, 2H). 6.83 (d. J =6.5 Hz, 1H), 3.96 (t, J =6.1 Hz. 2H), 3.13 (heptet, J = 6.9 Hz, 1H), 2.99-2.88 (m. 2H), 2.49-2.36 (m, 2H), 1.29-1.21 (m, 6H).
147
ID Synthesis Method MS mp(°C) Ή NMR, 13C, or 19F NMR
87C J 550 (M+H) 187-189 (CDCI3) δ 8.81 (s. 1 H), 8.66 (s, 1H), 8.21 (d, J= 8.3 Hz, 2H), 7.92 (d, 8.4 Hz, 2H), 7.81 (t, J = 10.2 Hz, 4H), 7.30 - 7.26 (m, 2H), 7.17 - 7.04 (m, 1 H), 6.83 (d. J = 6.4 Hz, 1H), 3.96 (t, 6.1 Hz, 2H), 3.13 (heptet, J = 6.9 Hz, 1 H), 2.97 - 2.90 (m, 2H), 2.47 - 2.38 (m, 2H), 1.25 (d. J - 7.5 Hz, 6H).
88C F 579.2 (M+H) 178-182 (CDCI3) δ 8.58 (s, 1H), 8.30 (s. 1H), 8.22 (d, J= 8.3 Hz, 2H), 7.82 (dd, J - 8.7, 7.2 Hz, 4H), 7.48 (dd, J = 4.1,1.3 Hz. 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.37 - 7.30 (m, 1 H), 7.17 (m, 1 H), 4.23 (dq. J = 14.5, 7.2 Hz, 1 H). 2.83 (dd, J = 14.6,6.9 Hz, 1 H), 1.79 (d, J = 7.2Hz, 3H), 1.22 (ddd, J = 12.1, 6.9,1.9 Hz, 6H).
89C F 559 (M+H) 205-206 (CDCl3) δ 8.58 (s, 1H), 8.32 (s, 1H). 8.23 (d, J = 8.4 Hz, 2H), 7.90 - 7.75 (m, 4H), 7.52 7.44 (m, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.10 (dd, J = 8.6, 7.4 Hz, 2H). 4.04 (s, 2H).
90C F 566 (M+H) 148-151 (CDCIj) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.82 (t. J = 8.5 Hz, 4H), 7.46-7.31 (m, 3H), 7.25-7.18 (m, 2H), 4.02 (s, 2H), 2.53 (q, J = 7.6 Hz. 2H). 2.21 (s, 3H), 1.26-1.16 (m, 3H).
91C F 554 (M+H) 227-235 (CDCIj) δ 8.58 (s, 1H), 8.36 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.88 - 7.76 (m, 4H), 7.49 7.35 (m, 3H), 7.01 (dd, J= 8.5, 2.5 Hz, 1H), 6.96 (dd, J-7.8,1.0 Hz, 1H), 6.91 (t. J = 2.2 Hz, 1 H), 3.98 (s, 2H), 3.85 (s, 3H).
I48
ID Synthesis Method MS mp (°C) Ή NMR, ’3C, or 19F NMR
92C F 554 (M+H) 104-108 (CDCI3) δ 8.58 (s, 1H), 8.32 (s, 1H). 8.22 (d, J = 8.4 Hz, 2H), 7.86 - 7.77 (m, 4H), 7.50 7.43 (m, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.32 - 7.27 (m, 1 H), 7.14 - 7.04 (m, 2H), 4.01 (d, J = 17.2 Hz, 1H), 3.94 (d, J =17.3 Hz, 1H), 3.84 (s. 3H).
93C F 572 (M+H) 183-186 (CDCb) δ 8.58 (s, 1H). 8.31 (s, 1H), 8.278.18 (m, 2H), 7.88 - 7.77 (m, 4H), 7.43 7.37 (m, 3H), 7.34 (t, J = 7.8 Hz, 1H), 7.30 7.26 (m, 1H), 4.07 (d, J = 17.4 Hz, 1H), 4.00 (d, J=17.4 Hz, 1H), 2.29 (s, 3H).
94C F 552 (M+H) 134-136 (CDCI3) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.86 - 7.78 (m, 4H), 7.49 7.32 (m, 5H), 7.24 - 7.18 (m, 1 H), 4.06 3.94 (m, 2H). 2.56 (q, J- 7.6 Hz. 2H), 1.26 -1.18(m, 3H).
95C F 576.1 (M+H) 195-201 (CDCh) δ 8.59 (d, J= 4.8 Hz. 1H). 8.26 (m, 3H). 7.89 - 7.74 (m, 4H). 7.52 - 7.31 (m. 4H), 7.24 - 7.13 (m, 1H), 4.05 (d. J= 0.9 Hz, 2H).
96C F 600 (M+H) 182-185 (300 MHz. CDCI3) δ 8.58 (s, 1H), 8.33 (d. J = 7.9 Hz, 1H), 8.24 (s, 1H). 8.21 (s, 1H), 7.86 - 7.76 (m, 4H). 7.53 (t, J = 5.9 Hz. 3H). 7.44 - 7.29 (m. 8H), 3.80 - 3.73 (m. 1 H), 3.59-3.51 (m. 1H).
97C F 567 (M+H) 234-236 (CDCfa) δ 8.57 (s, 1H). 8.37 (s. 1H), 8.23 (d, J - 8.4 Hz. 2H), 7.89 - 7.73 (m. 4H), 7.45 7.29 (m. 3H). 6.79 (dd. J= 8.2, 2.2 Hz, 1H), 6.70 (d, 1 H). 6.57 (s, 1 H). 3.96 (s, 2H), 2.98 (s, 6H)
149
ID Synthesis Method MS mp CC) Ή NMR, ’3C, or ”F NMR □□□°
98C F 612 (M+H) 225-226 (CDCI3) δ 8.55 (s, 1H), 8.29 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 7.86 - 7.71 (m, 4H), 7.42 7.23 (m, 3H), 6.63 (d. J = 8.5 Hz, 2H), 4.07 (q. J = 7.0 Hz, 4H), 3.94 (s, 2H), 1.31 (t, J = 7.0 Hz, 6H)
99C F 679 (ΜΗ) 230-231 (CDCb) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.23 (d. J = 8.4 Hz, 2H), 7.89-7.77 (m. 4H). 7.70 (d, J = 8.1 Hz, 2H), 7.40 (d, J - 8.3 Hz, 2H), 7.29-7.20 (m, 1H), 4.04 (s, 2H)
100C F 602 (M+H) 118-120 (CDCb) δ 8.58 (s, 1H), 8.30 (s. 1H), 8.22 (d. J ~ 8.4 Hz, 2H), 7.93 - 7.70 (m, 4H), 7.39 (d, J= 9.0 Hz, 2H), 7.28 (t, 1H). 7.19 (d, J 7.7 Hz, 2H), 4.01 (s, 2H), 2.21 (s. 6H).
101C F 583 (M+H) 106-107 (CDCb) δ 8.60 (s, 1H), 8.32 (s. 1H). 8.23 (d, J- 8.4 Hz. 2H). 7.89-7.74 (m, 4H), 7.39 (d, J= 8.3 Hz, 2H), 6.56 (s, 1H). 4.01 (s, 2H), 3.94 (s, 3H). 2.32 (s, 3H), 2.16 (s, 3H)
102C F 589 (ΜΗ) 123-126 (CDCb) δ 8.27 (s, 1H). 7.95 - 7.71 (m, 5H), 7.60 (d, J = 1.3 Hz, 1 H), 7.53 - 7.43 (m. 4H), 7.45 - 7.32 (m, 3H), 4.04 (s, 2H)
103C F 551 (M+H) 194-196 (CDCb) δ 8.28 (s, 1H), 7.93 (dd. J = 5.4, 4.1 Hz, 3H), 7.78 (m. 4H), 7.36 - 7.23 (m, 3H). 7.19 (d, J - 7.6 Hz, 2H). 6.81 (d, J= 2.5 Hz, 1H), 4.00 (s, 2H), 2.21 (s. 6H)
104C F 551 (M+H) 100-102 (CDCb) δ 8.27 (s. 1H), 8.16 (s, 1H), 8.03 (s, 1 H), 7.80 - 7.71 (m, 4H). 7.57 (d, J - 8.3 Hz, 2H), 7.30 (dd. J = 28.7, 5.8 Hz, 3H), 7.19 (d, J= 7.6 Hz, 2H), 4.01 (s. 2H), 2.21 (s, 6H)
150
ID Synthesis Method MS mp CO ’H NMR, ”C, or ”F NMR
105C F 586 (M+H) 209-211 (CDCIj) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 7.8 Hz, 2H), 7.82 (m, 4H), 7.39 (d, J = 8.0 Hz, 2H), 7.19 (s, 2H), 4.01 (s, 2H), 2.19 (s, 6H)
106C F 558 (M+H) 180-182 (CDCIj) δ 8.58 (s, 1H), 8.30 (s. 1H), 8.22 (d, J = 8.2 Hz, 2H), 7.81 (m, 4H), 7.58 (dd, J = 6.0, 3.3 Hz, 1H), 7.43 (ddd, J = 23.4,11.3, 5.5 Hz, 5H), 4.02 (dd, J- 29.9,17.4 Hz, 2H)
107C F 596 (M+H) 227-232 (CDCIj) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.22 (dd. J- 10.0, 8.6 Hz, 4H), 7.82 (m, 4H), 7.49 (d, J= 8.5 Hz, 2H). 7.40 (d, J- 8.6 Hz, 2H), 4.42 (q. */ = 7.1 Hz, 2H), 4.00 (s, 2H), 1.41 (t, */=7.1 Hz, 3H)
108C F 580 (M+H) 167-171 (CDCIj) δ 8.58 (s, 1H), 8.28 (d. */=15.0 Hz. 1 H), 8.23 (d. J = 8.3 Hz. 2H). 7.87 - 7.76 (m, 4H). 7.53 - 7.30 (m, 5H), 7.18 (ddd, J = 7.8, 4.2. 1.2 Hz, 1H), 4.03 - 3.98 (m, 2H). 2.53 (dd, J = 14.1,7.0 Hz, 1 H), 1.77 - 1.56 (m. 2H), 1.26-1.16 (m, 3H), 0.78 (td, */ = 7.4, 2.3 Hz, 3H).
109C F 652 (M+H) 105-111 (CDCIj) δ 8.25 (s, 1H), 7.73 (d, J = 7.4 Hz, 4H), 7.55 - 7.43 (m, 2H), 7.43 - 7.36 (m, 1H). 7.10 (t. */= 11.6 Hz, 4H), 4.90-4.79 (m, 1H), 4.04 (s, 2H), 3.76 (s, 3H), 3.73 3.62 (m, 1H), 3.52 - 3.35 (m, 1H)
ISl
ID Synthesis Method MS mp(°C) Ή NMR, 13C, or ,eF NMR
110C F 611 (M+H) Oil (CDCI3) δ 8.25 (s, 1H), 7.82 - 7.64 (m, 4H), 7.30 (t. 1H), 7.22 - 6.99 (m, 6H), 4.83 (dd, J = 12.8, 6.5 Hz, 1H), 4.00 (s, 2H), 3.89 3.59 (m, 4H), 3.44 (dd, J = 17.2, 6.5 Hz, 1H), 2.20 (s, 6H).
111c F 580 (M+H) 209-210 (CDCI3) δ 8.58 (s, 1H), 8.30 (s, 1H), 8.23 (d, J = 8.4 Hz. 2H), 7.86 - 7.77 (m. 4H), 7.39 (t. J = 7.8 Hz, 3H), 7.34 - 7.27 (m. 1 H). 7.20 (d, J- 7.4 Hz, 1H), 4.03 (s. 2H), 2.86-2.71 (m, 1H), 2.21 (s, 3H), 1.21 (2d. J~ 6.7 Hz, 6H).
112C F 564 (M+H) 154-158 (CDCI3) δ 8.58 (s. 1H), 8.32 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.87 - 7.75 (m, 4H), 7.43 7.33 (m. 4H), 7.26-7.19 (m, 2H), 4.02 (s, 2H), 1.86 - 1.77 (m, 1 H). 0.90 - 0.83 (m, 2H), 0.77 - 0.68 (m, 1 H), 0.67 - 0.59 (m, 1H).
113C F 538 (M+H) 111-116; 210-212 (Acetone-de) δ 9.20 (s, 1H), 8.28 (d, J= 8.2 Hz. 3H), 8.13 (d, J= 9.0 Hz, 2H), 7.94 (d, J = 8.2 Hz, 2H), 7.60 (d, J= 8.8 Hz, 2H), 7.39 (t, J = 17.1 Hz, 4H). 4.15 (q, J = 17.3 Hz, 2H), 2.23 (s, 3H)
114C F 568 (M+H) 203-205 (CDCI3) δ 8.58 (s, 1H). 8.33 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.88 - 7.67 (m. 4H). 7.38 (d, J= 8.4 Hz, 2H). 7.14 (d, J- 8.3 Hz, 1H), 6.87 (d, J= 8.9 Hz, 2H), 3.98 (s, 2H), 3.83 (s, 3H), 2.20 (s, 3H)
I52
ID Synthesis Method MS mp (°C) Ή NMR. ,3C. or19FNMR
115C F 554 (M+H) 261-264 (CDCIa) δ 8.58 (s, 1H), 8.35 (s, 1H). 8.23 (d, J = 8.2 Hz. 2H), 7.82 (m. 4H). 7.40 (d, J = 8.6 Hz. 2H). 7.30 (d, 2H). 7.03 (d. J= 8.8 Hz, 2H). 3.97 (s, 2H). 3.86 (s. 3H)
116C F 568 (M+H) 92-97 (CDCIa) δ 8.58 (s, 1H), 8.31 (s, 1H). 8,22 (d, J - 8.3 Hz. 2H). 7.88 - 7.72 (m, 4H). 7.48 7.32 (m, 3H). 7.31 - 7.20 (m. 1H), 7.13 6.97 (m, 2H). 4.09 (q, J- 7.0 Hz. 2H). 3.95 (t. J = 11.7 Hz, 2H). 1.33 (t, J = 7.0 Hz, 3H).
117C F 539 (M+H) 127-132 (CDCIa) δ 8.59 (s. 1H). 8.54 (dd, J= 4.8, 1.3 Hz, 1 H). 8.28 (s, 1 H), 8.22 (d, J = 8.4 Hz. 2H), 7.84 - 7.77 (m, 4H). 7.77 - 7.72 (m, 1H), 7.38 (dd, J =7.7, 5.0 Hz, 3H). 4.02 (d, J =1.2 Hz. 2H), 2.30 (s, 3H)
118C F 539 (M+H) 215 (dec) (CDCIa) δ 8.67 (s, 1H), 8.59 (s, 1H), 8.24 (d, J = 8.4 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.84 (dd, J = 8.3, 3.8 Hz, 4H), 7.80 (s, 1H), 7.42 - 7.39 (m, 3H). 4.03 (d, J = 1.3 Hz, 2H), 2.26 (s, 3H).
119C F 580 (M+H) 124-138 (CDCIa) δ 8.58 (s, 1H), 8.29 (s. 1H), 8.23 (d, J - 8.4 Hz, 2H). 7.88 - 7.77 (m, 4H), 7.48 7.34 (m, 5H), 7.23 - 7.18 (m. 1 H), 4.06 3.93 (m, 2H), 2.40 (qd, J= 14.2, 7.3 Hz, 2H), 1.94 - 1.81 (m, 1 H), 0.89 (d, J = 6.6 Hz, 6H).
120C F 549.7 (M+H) 153-159 (CDCIj) δ 8.67 (s, 1H), 8.30 (s, 1 H), 8.24 (d, J= 8.3 Hz, 2H), 7.92 (d, J- 8.5 Hz, 2H), 7.82 (m, 3H), 4.01 (d, J = 1.5 Hz, 2H), 3.80 - 3.64 (m, 2H), 2.91 - 2.76 (m, 2H), 1.30 1.14 (m. 6H)
I53
ID Synthesls Method MS mp(°C) Ή NMR, nC, or 19F NMR □ππα
121C F 578 (M+H) 143-147; 148-151 (CDCI3) δ 8.57 (d, J - 7.4 Hz, 1 H), 8.30 (s, 1 H), 8.23 (d, J - 8.4 Hz, 2H), 7.87 - 7.78 (m, 4H), 7.49 - 7.33 (m, 5H). 7.29 - 7.26 (m, 1H), 6.03 (s, 1H), 3.95 (s, 2H), 1.84 (d, J ~ 1.3 Hz, 3H), 1.71 (d, J - 1.2 Hz, 3H).
122C F 579.3 (M+1) 169-171 (CDCI3) δ 8.58 (s, 1H), 8.24 - 8.18 (m. 2H), 7.99- 7.94 (m. 2H). 7.84 - 7.78 (m, 2H), 7.47 (dd, J= 5.0,1.1 Hz, 2H),7.40 (d, J = 8.3 Hz, 2H), 7.34 (ddd, J= 7.9, 5.1, 3.7 Hz, 1 H), 7.18 (d. J = 7.6 Hz, 1 H). 4.00 (d, J 1.5 Hz. 2H), 3.72 (dd. 7.0, 5.1Hz, 2H). 2.94 - 2.80 (m, 1H), 2.22 (s, 3H), 1.23 (m. 9H).
123C F 553 (M+H) 130-135 (CDCI3) δ 8.62 (s. 1H), 8.54 (d. J= 3.2 Hz. 1 H), 8.28 - 8.19 (m, 3H), 7.82 (d, J = 8.8 Hz, 5H), 7.43-7.37 (m. 3H), 4.02 (s, 2H), 2.63 (d, J= 7.6 Hz, 2H), 1.22 (s, 3H)
124C F 608 (M+H) 140-145 (CDCI3) δ 8.58 (s, 1H). 8.29 (s, 1H), 8.23 (d, J ~ 8.4 Hz, 2H). 7.89 - 7.75 (m, 4H), 7.58 7.51 (m, 1H), 7.49 - 7.36 (m. 5H). 4.04 (d. J - 17.4 Hz, 1 H). 3.97 (d, J - 17.4 Hz. 1H).
125C F 580 (M+H) 130-140 (CDCI3) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.22 (d. J = 8.4 Hz, 2H), 7.86 - 7.78 (m, 4H), 7.65 (dd. J ~ 8.1,1.4 Hz. 1 H), 7.49 - 7.42 (m. 1H), 7.40 (d. J= 8.3 Hz. 2H), 7.35 (dt. J = 7.6.1.5 Hz, 1H), 7.05 (dd, J= 7.8, 1.5 Hz. 1H). 3.95 (s. 2H). 1.38 (s, 9H).
154
ID Synthesis Method MS mp(°C) Ή NMR, 13C, or ieF NMR
126C F 590 (M+H) 175-177 (CDCI3) δ 8.58 (s, 1H), 8.29 (s, 1 H), 8.23 (d, J = 8.4 Hz, 2H), 7.87 - 7.77 (m, 4H), 7.52 (ddd, J = 8.1,6.0, 3.4 Hz, 1 H), 7.44 - 7.34 (m, 5H), 6.46 (t, JHF = 73.5 Hz, 1 H). 4.05 3.95 (m, 2H).
127C F 578 (M+H) 112-115 (CDCIa) δ 8.58 (s. 1H), 8.32 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.87 - 7.75 (m, 4H), 7.43 7.32 (m, 4H), 7.26 - 7.24 (m, 2H), 4.23 (q, J = 7.3 Hz, 1H), 1.85-1.78 (m, 4H),0.900.78 (m, 2H), 0.78-0.69 (m, 1H), 0.650.55 (m, 1H).
128C F 580 (M+H) 164-171 (CDCI3) δ 8.58 (s, 1H), 8.29 (d, J = 7.8 Hz, 1 H), 8.22 (d, J = 8.3 Hz, 2H), 7.88 - 7.74 (m, 4H), 7.48-7.30 (m, 5H), 7.20 (t, J11.1 Hz, 1H), 4.26-4.14 (m, 1H), 2.502.46 (m, 2H). 1.79 (d, J= 7.3 Hz, 3H), 1.69 -1.56 (m, 2H). 0.93 (t, J = 7.3 Hz, 3H).
129C F 606 (M+H) 140-142 (CDCIj) δ 8.58 (s, 1H), 8.30 (s, 1H), 8.22 (d, J - 8.4 Hz, 2H), 7.87 - 7.76 (m, 4H). 7.53 7.47 (m, 2H), 7.44 - 7.35 (m, 3H), 4.27 (q, J = 7.3 Hz, 1H), 1.82 (d, J= 7.3 Hz, 3H).
130C F 590 (M+H) 93-97; 191-194 (CDCIa) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.88 - 7.76 (m, 4H), 7.48 - 7.34 (m, 4H), 7.20 (tt, J= 12.4, 6.1 Hz, 1H). 4.35 - 4.18 (m, 1 H), 1.81 (2d, J = 7.3 Hz, 3H).
155
1D Synthesis Method MS mp(°C) ’HNMR, 13C, or”FNMR
131C F 572 (ΜΗ) 93-98; 185-186 (CDCIj) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.26 8.20 (m, 2H), 7.86 - 7.78 (m, 4H), 7.53 7.42 (m, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.09 (t, J- 8.1 Hz, 2H), 4.26 (q, J- 7.3 Hz. 1 H), 1.80 (d,J = 7.3 Hz, 3H).
132C J 552 (M+H) 193-196 (CDCb) δ 8.56 (s, 1H), 8.22 (s, 1H), 8.17 (d, J - 8.4 Hz. 2H), 7.80 (ddd, J = 9.5, 6.9, 4.9 Hz, 4H), 7.43 - 7.33 (m, 4H), 7.31 - 7.21 (m, 2H), 4.05 (td, J- 9.4,7.1 Hz, 1H), 3.97 - 3.87 (m, 1H). 3.42 - 3.33 (m, 1H), 3.33 3.24 (m, 1 H), 3.12 (heptet, J = 6.8 Hz, 1 H), 1.27 (d, J = 6.8 Hz, 3H), 1.22 (d, J - 6.9 Hz, 3H).
133C J 538 (M+H) 167-169 (CDCI3) δ 8.55 (d, J= 7.1 Hz, 1 H). 8.23 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.80 (dt. J = 11.4. 6.2 Hz, 4H), 7.43 - 7.23 (m, 6H), 4.00 (s, 2H), 3.32 (s, 2H), 2.67 (q, J - 7.6 Hz, 2H), 1.25 (dd, J- 9.6,5.5 Hz, 3H).
134C J 536 (M+H) 217-220; 230-232 (CDCIj) δ 8.65 (s, 1H), 8.22 (s. 1H), 8.18 (d, J - 8.4 Hz, 2H), 7,94 - 7.88 (m, 2H), 7.817.78 (m, 4H), 7.41 (dd, J- 7.8,1.5 Hz, 1H), 7.39 - 7.33 (m, 1H), 7.30 - 7.24 (m, 1H), 7.23 (dd. J = 7.8,1.5 Hz, 1 H), 4.09 - 4.02 (m, 1H), 3.98 - 3.88 (m, 1H), 3.43 - 3.24 (m, 2H), 3.12 (heptet, J - 6.9 Hz, 1H), 1.27 (d, J - 6.8 Hz, 3H), 1.22 (d. J = 6.9 Hz, 3H).
156
ID Synthesîs Method MS mp (°C) ’HNMR, 13C, or”F NMR
135C J 566 (M+H) 167-169 (CDCIj) δ 8.56 (s, 1H), 8.19 (dd. J= 12.7, 9.0 Hz. 3H). 7.84- 7.74 (m, 4H). 7.37 (dd. J = 14.9, 6.1 Hz, 4H), 7.26 (s, 1H), 7.21 (d, J = 7.6 Hz, 1 H), 4.17 - 3.85 (m, 2H), 3.42 3.22 (m, 2H), 2.82 (d. J~ 23.6 Hz. 1H), 1.80 - 1.55 (m. 2H), 1.23 (2d, J = 6.9 Hz, 3H), 0.82 (2t. J= 7.4 Hz, 3H).
136C J 552 (M+H) 143-147 (CDCIj) δ 8.56 (s, 1H), 8.22 (s, 1H), 8.17 (d, J= 8.4 Hz. 2H), 7.84-7.74 (m, 4H), 7.39 (d. J = 8.3 Hz, 2H), 7.24 (d. J = 7.5 Hz. 1 H). 7.19 (d, J - 6.4 Hz. 1 H), 7.15 (d. J = 7.3 Hz, 1 H). 3.92 (qt, J = 10.1.7.3 Hz. 2H). 3.43 3.28 (m. 2H), 2.72 - 2.51 (m. 2H). 2.27 (s. 3H), 1.25 (t, J= 7.6 Hz, 3H).
137C J 554 (M+H) 183-186 (CDCIj) δ 8.56 (d, J= 5.3 Hz, 1H), 8.26 (s, 1H). 8.17 (d. J- 8.4 Hz. 2H). 7.84-7.74 (m, 4H). 7.39 (d, J = 8.3 Hz. 2H). 7.18 (d, J = 8.5 Hz. 1H), 6.81 (dt, J~ 8.4. 2.9 Hz, 2H). 3.96 (t. J = 6.6 Hz, 2H), 3.81 (s. 3H), 3.30 (t, J=6.9Hz. 2H), 2.28 (s, 3H).
138C J 568 (M+H) 231-233 (CDCIj) δ 8.56 (d, J= 5.4 Hz. 1H), 8.25 (s, 1H), 8.17 (d, J =8.4 Hz, 2H). 7.84-7.72 (m, 4H). 7.39 (d, J= 8.3 Hz. 2H). 6.67 (s, 2H), 3.92 - 3.85 (m. 2H), 3.79 (s, 3H), 3.34 (t, J =7.1 Hz, 2H). 2.25 (s. 6H).
139C J 552 (M+H) 195-197 (CDCIj) δ 8.56 (s, 1H). 8.24 (s, 1H), 8.17 (d, J = 8.3 Hz, 2H), 7.83 - 7.73 (m. 4H), 7.39 (d, J= 8.3 Hz, 2H), 6.95 (s, 2H). 3.90 (t, J = 7.1 Hz, 2H), 3.35 (t, J= 7.1 Hz. 2H), 2.30 (s, 3H), 2.23 (s, 6H).
I57
ID Synthesis Method MS mp (°C) ’H NMR, 13C, or ieF NMR □nnD
140C J 540 (M+H) 181-184 (CDCIj) δ 8.56 (s, 1H), 8.24 (s, 1 H). 8.17 (d, J = 8.3 Hz, 2H), 7.84 - 7.75 (m, 4H), 7.43 7.36 (m, 3H), 7.30 (ddd, J= 12.8,6.9, 3.1 Hz, 1 H), 7.06 - 6.97 (m, 2H), 4.04 (t, J = 7.0 Hz, 2H), 3.86 (s, 3H), 3.29 (t, J = 7.0 Hz, 2H).
141C J 524 (M+H) 173-176 (CDCIj) δ 8.56 (s, 1H), 8.25 (s, 1H), 8.18 (d, J= 8.4 Hz, 2H), 7.83 - 7.75 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.34 - 7.23 (m, 4H), 4.01 (t, J= 8.9 Hz, 2H), 3.32 (t, J= 8.9 Hz, 2H), 2.31 (s, 3H).
142C J 538 (M+H) 210-213 (CDCIj) δ 8.56 (s, 1H), 8.23 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H). 7.84 - 7.74 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.22 - 7.10 (m, 3H), 3.92 (t, J= 7.1 Hz, 2H), 3.36 (t, J- 7.1 Hz, 2H), 2.28 (s, 6H).
143C J 562 (M+H) 221-224 (CDCIj) δ 8.56 (s, 1H), 8.23 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H). 7.83 - 7.74 (m, 4H), 7.38 (d, J= 8.3 Hz, 2H), 7.30 (dt, J= 7.4, 4.8 Hz, 2H), 7.15 - 7.09 (m, 1 H), 4.05 (ddd, J = 9.4, 7.3, 5.2 Hz. 1 H), 4.00 - 3.89 (m, 1 H), 3.46 3.30 (m, 2H).
144C J 586 (M+H) 117-123; 134-138 (300 MHz, CDCIj) δ 8.56 (d, J= 4.3 Hz, 1H), 8.34 (s. 1H), 8.21 (s, 1H), 8.18 (s, 1H), 7.81 (dd, J= 8.9, 2.3 Hz, 4H), 7.52 (d, J = 6.7 Hz, 1H), 7.50-7.31 (m, 10H), 3.533.49 (m, 2H), 2.95 - 2.90 (d, 6.8 Hz, 2H).
158
ID Synthesis Method MS mp (°C) 1H NMR, 13C, or ,9F NMR
145C J 550 (M+H) 207-209 (CDCIj) δ 8.56 (s, 1H), 8.26 (s, 1H), 8.18 (d, J - 8.3 Hz, 2H), 7.84-7.74 (m, 4H). 7.39 (d, J = 8.3 Hz, 2H), 7.32 - 7.21 (m, 3H), 7.01 (dd, J = 8.9, 2.5 Hz, 1 H), 4.12 - 4.04 (s, 2H), 3.34 (t, J = 6.9 Hz, 2H), 2.09 - 1.98 (m, 1H), 0.95 (dd. J- 8.5,1.7 Hz, 2H), 0.72 (bs. 2H).
146C J 554 (M+H) 141-144 (CDCIj) δ 8.56 (d, J = 5.2 Hz, 1H), 8.24 (s, 1H), 8.17 (d, J = 8.3 Hz, 2H), 7.80 (dt, J = 8.2, 4.6 Hz, 4H), 7.45-7.36 (m, 3H), 7.30 7.24 (m, 1H), 7.05 - 6.95 (m, 2H), 4.13 4.02 (m, 4H), 3.28 (t, J= 7.0 Hz, 2H), 1.44 1.35 (m, 3H).
147C J 540 (M+H) 168-170 (CDCIj) δ 8.57 (s, 1H), 8.37 (s, 1H). 8.21 (d, J= 8.3 Hz, 2H), 7.87-7.76 (m, 4H), 7.40 (d, J= 8.4 Hz, 2H), 7.29 (dd, J- 14.2, 6.0 Hz, 1H). 7.24 (d, J = 2.3 Hz, 1H), 7.09 7.02 (m, 1H), 6.72 (dd, J= 8.0. 2.1 Hz, 1H), 4.20 (t, J- 6.9 Hz. 2H), 3.83 (d, J- 8.7 Hz, 3H), 3.24 (t, J = 6.9 Hz, 2H).
148C J 546 (M+H) 213-216 (CDCIj) δ 8.56 (s, 1H), 8.24 (s, 1H), 8.18 (d, J= 8.3 Hz, 2H), 7.80 (dt, J~ 4.0, 2.5 Hz, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.30 (ddd, J8.5, 7.4, 4.2 Hz, 1H), 7.05 - 6.97 (m, 2H), 4.02 (t, J = 6.9 Hz, 2H), 3.36 (t, J = 6.9 Hz, 2H).
I59
ID Synthesis Method MS mp (°C) Ή NMR, UC, or ”F NMR
149C J 612 (M+H) 200-203 (CDClj) δ 8.56 (s, 1H), 8.18 (d, J = 2.6 Hz, 2H), 8.16 (s, 1H), 7.80 (dt, J = 8.3,4.7 Hz, 4H), 7.71 (t, J = 8.6 Hz, 2H), 7.47 (t, J = 7.7 Hz, 1 H), 7.39 (d, J = 8.3 Hz, 2H), 4.18 4.07 (m, 1H), 3.93 - 3.84 (m, 1H), 3.46 (td, J = 10.7, 7.3 Hz, 1 H), 3.35 - 3.25 (m, 1 H).
150C J 566 (M+H) 169-172 (CDCI3) δ 8.56 (s, 1H), 8.22 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.80 (dt, J = 11.5, 6.2 Hz, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.31 - 7.27 (m, 3H), 7.26-7.24 (m, 1H), 4.10-3.89 (m, 2H), 3.38 - 3.32 (m, 2H), 2.48 (s, 2H), 2.01 -1.84 (m, 1 H), 0.91 (d, J = 6.2 Hz, 6H).
151C J 564 (M+H) 149-153 (CDClj) δ 8.57 (s, 1H), 8.25 (s, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.99 (s, 1H), 7.81 (dt, J = 8.3,4.5 Hz, 4H), 7.39 (dd, J = 6.1, 3.5 Hz, 3H), 7.33 - 7.27 (m, 2H), 6.21 (s, 1H), 3.92 (t, J= 6.9 Hz, 2H), 3.26 (t, J= 6.8 Hz, 2H), 1,89 (d, J =1.1 Hz, 3H), 1.79 (d, J =1.1 Hz, 3H).
152C J 576 (M+H) 161-163 (CDCI3) δ 8.57 (s. 1H), 8.23 - 8.16 (m, 3H), 7.83 - 7.77 (m, 4H), 7.48 (dd, J = 7.5, 2.0 Hz, 1H), 7.39 (d, J= 8.3 Hz, 2H), 7.33 (dt, J = 7.2, 2.1 Hz, 2H), 7.28 (dd, J= 9.8,1.9 Hz, 1H), 6.52 (t, JHF= 74.1 Hz, 1H), 4.06 (t, J = 6.9 Hz, 2H), 3.33 (t, J = 6.9 Hz, 2H).
160
ID Synthests Method MS mp(°C) ’H NMR, nC, or ”F NMR
153C J 594 (M+H) 195-197 (CDCIj) δ 8.57 (s, 1H), 8.25 (s. 1H). 8.19 (d, J = 8.4 Hz, 2H). 7.81 (dt, J = 4.1, 2.6 Hz, 4H), 7.58 - 7.52 (m. 1 H), 7.42 - 7.33 (m, 5H), 4.05 (t, J = 6.9 Hz, 2H), 3.31 (t, J = 6.9 Hz, 2H).
154C J 538 (M+H) 164-167 CDCh) δ 8.56 (s, 1 H), 8.23 (d, J = 9.8 Hz, 1 H), 8.17 (d. J = 8.3 Hz, 2H), 7.84 - 7.74 (m, 4H). 7.39 (d, J= 8.3 Hz, 2H), 7.35 7.27 (m, 3H). 7,19 (s, 1H), 3.54-3.31 (m, 1 H), 3.07 - 2.93 (m, 1 H). 2.31 (d. J = 9.0 Hz, 3H), 1.62 -1.56 (m, 1 H), 1.31 -1.19 (m. 3H).
155C J 566 (M+H) 201-204 Twolsomers (CDCI3) δ 8.56 (s, 2H), 8.18 (dd, J= 10.8.7.4 Hz. 6H). 7.84 - 7.73 (m. 8H), 7.45 - 7.30 (m, 8H). 7.30 - 7.23 (m, 2H), 7.20 (d. J = 6.7 Hz, 1 H), 7.12 (dd, J = 7.8,1.2 Hz.1H), 4.43-4.33 (m, 1H). 4.16 (dd. J= 12.6,6.3 Hz, 1H), 3.48 (dt. 13.3, 6.7 Hz. 1H), 3.37 (dd. 10.8,6.2 Hz. 1H), 3.24 (dt. J= 13.7,6.9 Hz. 1H), 3.08-2.92 (m, 3H), 1.33-1.16 (m, 18H).
156C J 566 (M+H) 105-110 (CDCI3) δ 8.56 (s, 1H). 8.20 (d, J= 3.4 Hz. 1H). 8.16 (d, J = 8.4 Hz, 2H). 7.84 - 7.73 (m. 4H). 7.39 (d. J = 8.3 Hz, 2H), 7.25 7.09 (m. 3H), 4.39 - 4.23 (m. 1 H). 3.53 3.35 (m. 1 H). 3.04 - 3.00 (m, 1 H). 2.78 2.49 (m. 2H), 2.28 (2s, 3H). 1.34 -1.08 (m, 6H).
I6l
1D Synthesis Method MS mpfC) Ή NMR, »C. or ”F NMR
157C J 592 (M+H) 175-176 (CDCIa) δ 8.56 (d, J = 0.6 Hz, 1 H), 8.21 (s. 1 H), 8.17 (d, J = 8.2 Hz, 2H), 7.82 - 7.77 (m, 4H), 7.49 - 7.35 (m, 4H), 7.30 - 7.28 (m, 1 H), 4.64 - 4.57 (m, 1 H), 3.44 (dd, J - 10.2, 6.3 Hz, 1 H), 3.16 - 3.01 (m, 1 H), 1.27 (d, J =6.3 Hz, 3H).
158C J 572 (M+H) 99-102 Two Isomers (CDCh) δ 8.56 (s, 2H), 8.20 (s, 2H), 8.19 - 8.12 (m, 4H), 7.84 - 7.73 (m, 8H), 7.39 (d, J = 8.3 Hz, 4H), 7.36 - 7.29 (m, 2H), 7.25 - 7.17 (m, 4H), 4.78 - 4.55 (m, 1H), 4.35 (dt, J = 9.4, 6.3 Hz, 1H), 3.48 (dd, J = 10.7, 6.5 Hz, 1 H), 3.38 (dd, J = 10.7, 6.2 Hz, 1 H), 3.11 (dd, J = 10.7, 9.4 Hz, 1H), 3.01 (dd, J= 10.7, 8.3 Hz, 1H). 2.35 (s, 3H), 2.30 (s, 3H), 1.26 (d, J= 6.3 Hz, 3H), 1.21 (d, J = 6.4 Hz, 3H)
159C J 607 (M+H) 85 (dec) (CDCh) δ 8.56 (s, 1H), 8.18 (dd, J = 11.9, 5.3 Hz, 3H), 7.79 (dd, J = 8.7, 6.5 Hz, 4H), 7.47 (dd. J = 7.8, 2.3 Hz, 1 H), 7.42 - 7.32 (m, 5H), 4.48 - 4.29 (m. 1 H), 3.45 (dd, J = 10.7, 6.4 Hz, 1H), 2.98 (dd, J= 10.7, 7.1 Hz, 1 H), 1.26 (d, J =6.3 Hz, 3H)
160C J 626 (M+H) 93 (dec) Two Isomers (CDCI3) 6 8.56 (s, 2H), 8.19 8.12 (m, 6H), 7.84 - 7.73 (m, 10H), 7.71 (d. J = 8.2 Hz, 2H). 7.47 (t, J = 8.0 Hz, 2H), 7.39 (d, J= 8.3 Hz. 4H). 4.76 - 4.64 (m, 1 H). 4.48 (dd, J = 14.6, 6.3 Hz. 1 H), 3.43 (dd, J = 10.6, 6.2 Hz, 1 H), 3.29 (dd, J = 10.5, 5.5 Hz, 1H), 3.16-3.00 (m. 2H), 1.27 (d, J = 6.4 Hz. 3H), 1.17 (d, J = 6.4 Hz, 3H)
162
ID Synthesis Method MS mp (°C) 1HNMR, ’3C, or 19F NMR
161C J 566 (M+H) 105 (dec) (CDCI3) δ 8.56 (s. 1H), 8.22 (s, 1H), 8.16 (d, J= 8.4 Hz, 2H), 7.83 - 7.70 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H). 6.94 (d, J- 9.3 Hz, 2H), 4.43 - 4.22 (m, 1H), 3.42 (dd, J = 10.8, 6.5 Hz, 1H), 3.00 (dd, J = 10.8, 8.5 Hz, 1H), 2.30 (s, 3H), 2.25 (s, 3H). 2.21 (s, 3H), 1.20 (d, J =6.3 Hz, 3H)
162C J 566 (M+H) 100 (dec) (CDCI3) δ 8.56 (s. 1H), 8.24 (s. 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.83 - 7.73 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.18 - 7.09 (m, 1 H), 6.86 - 6.76 (m, 2H), 4.33 - 4.19 (m, 1 H), 3.82 (s, 3H), 3.47 - 3.38 (m. 1 H), 3.00 2.99 (m, 1H), 2.29-2.27 (m, 3H), 1.331.15 (m, 3H)
163C J 580 (M+H) 92-102 (CDCI3) δ 8.56 (s. 2H). 8.18 (dd, J= 10.7, 5.3 Hz, 6H). 7.84 - 7.74 (m, 8H), 7.42 7.30 (m, 8H), 7.23 - 7.10 (m, 2H), 4.37 (dd, J-19.5,13.6 Hz, 1H), 4.16 (dd, J = 13.1, 6.6 Hz, 1H), 3.56-3.42 (m, 1H), 3.34 (dd, J = 10.8,6.0 Hz, 1H). 3.08-2.87 (m, 3H), 2.70 (dd, J = 16.0, 7.0 Hz, 1 H), 1.71 -1.56 (m, 4H), 1.34-1.25 (m, 6H), 1.24-1.14 (m, 6H), 0.93-0.73 (m, 6H)
164C J 589 (M+H) 80 (dec) (CDCI3) δ 8.56 (s, 1H), 8.22- 8.14 (m, 3H), 7.84 - 7.76 (m, 4H), 7.42 - 7.27 (m, 6H), 6.51 (t, Jhf = 74.3 Hz, 1H), 4.52 - 4.31 (m, 1H). 3.44 (dd. J= 10.8. 6.5 Hz, 1H). 2.99 (dd, J =10.8, 7.6 Hz. 1H). 1.25 (d. J =6.3 Hz, 3H)
163
1D Synthesls Method MS mp(°C) ’H NMR, 13C, or ”F NMR
165C J 580 (M+H) 143 (dec) Two Isomers (CDCIj) δ 8.56 (s, 2H), 8.22 (s, 1H), 8.20 (s, 1H), 8.16 (d, J= 8.3 Hz, 4H), 7.84 - 7.74 (m, 8H), 7.58 (ddd, J = 9.7, 8.0,1.7 Hz, 2H), 7.39 (d, J- 8.4 Hz. 4H), 7.36 - 7.27 (m, 4H), 7.15 (dd, J - 7.7, 1.6 Hz, 1 H), 7.09 (dd, J = 7.6,1.7 Hz, 1 H), 4.38 - 4.22 (m, 2H), 3.61 (dd, J - 10.8,7.0 Hz, 1 H), 3.24 (dd, J = 10.7, 5.6 Hz, 1 H), 3.07 2.94 (m, 1 H), 2.91 (dd, J = 10.8,1.5 Hz, 1H). 1.47-1.38 (m, 24H)
166C J 552 (M+H) 93 (dec) (CDCIj) δ 8.56 (s, 1H). 8.21 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.84 - 7.73 (m, 4H), 7.39 (d, J - 8.3 Hz, 2H), 7.32 - 7.28 (m, 3H), 7.20 (s, 1 H), 4.20 - 4.06 (m, 1 H), 3.41 (s, 1 H), 3.05 (dd, J = 10.8, 8.2 Hz. 1 H), 2.31 32.30 (m, 3H), 1.66 (s, 2H), 0.90 - 0.88 (m, 3H)
167C J 586 (M+H) 105 (dec) Two Isomers (CDCIj) δ 8.56 (s, 2H), 8.20 (s, 2H), 8.16 (d, J~ 8.3 Hz, 4H), 7.83 - 7.74 (m, 8H), 7.43-7.28 (m, 6H), 7.21 (dd, J = 5.4, 3.3 Hz, 4H), 4.49 - 4.36 (m, 1 H), 4.17 4,05 (m. 1H), 3.49 (dd, J= 10.7, 6.6 Hz, 1H). 3.40 (dd, J= 10.7, 6.3 Hz, 1H), 3.10 (dd, J= 10.7, 9.4 Hz, 1H), 3.04 (dd, J~ 10.8, 8.2 Hz, 1H). 2.34 (s. 3H). 2.30 (s, 3H), 1.73 - 1.48 (m, 4H), 0.91 (m, 6H)
168C J 560 (M+H) 199-200 (CDCIj) δ 8.56 (s, 1H), 8.18 (m„ 2H), 7.79 (m, 4H), 7.47 (dd. J- 7.8, 2.3 Hz, 1H), 7.42 - 7.32 (m, 5H), 4.48 - 4.29 (m, 1H). 3.45 (dd, J= 10.7, 6.4 Hz, 1H), 2.98 (dd, J~ 10.7, 7.1 Hz, 1 H), 1.26 (d, J - 6.3 Hz, 3H)
IM
ID Synthesis Method MS mpfC) ’H NMR, 13C, or 19F NMR
169C G 623 (M+H) Oil (CDCIj) δ 10,45 (s. 1H), 8.59 (s. 1H), 8.25 (d, J = 8.3 Hz. 2H), 7.88 (d. J = 8.3 Hz, 2H), 7.81 (d. J = 8.9 Hz, 2H). 7.61 (t, J = 7.5 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 7.11 (t, J = 8.0 Hz. 1 H), 5.71 (d, J = 1.1 Hz. 1H), 2.35 (s. 3H) 19F NMR (376 MHz. CDCIj) δ -58.02, -62.31
170C G 606 (M+H) 157-159 (CDCIj) δ 8.56 (s, 1H), 8.19 - 8.14 (m. 3H). 7.79 (m, 4H), 7.56 - 7.46 (m, 2H), 7.46 7.43 (m. 2H), 7.39 (d, J= 8.3 Hz, 2H), 5.88 (d, J = 1.3 Hz, 1H), 1.86 (d, J = 1.2 Hz. 3H)
171C G 558 (M+H) 236-237 (CDCIj) δ 8.56 (s, 1H), 8.19 (d, J = 5.9 Hz, 2H), 8.16 (s, 1H), 7.83 - 7.76 (m. 4H), 7.45 (tt, J= 8.4, 6.1 Hz, 1H), 7.39 (d, J= 8.3 Hz. 2H), 7.10 (dd, J= 8.5, 7.3 Hz. 2H), 5.90 (d. J = 1.3 Hz, 1H), 1.92 (s. 3H)
172C G 580 (M+H) 103-108 (CDCIj) δ 8.56 (d, J= 3.7 Hz, 1H). 8.21 (s, 1 H), 8.16 (d, J = 8.4 Hz, 2H), 7.84 - 7.72 (m, 4H), 7.39 (d, J= 8.3 Hz, 2H), 6.72 (s, 2H), 5.89 (d, J = 1.3 Hz, 1 H), 3.82 (s, 3H), 2.14 (s, 6H). 1.75 (d, J = 1.2 Hz, 3H).
173C G 536 (M+H) 87 (dec) (CDCIj) δ 8.56 (s, 1H), 8.19-8.15 (m, 3H), 7.82 - 7.75 (m, 4H), 7.43 - 7.30 (m, 5H), 7.24 (d, J= 7.3 Hz, 1H), 5.88 (s, 1H), 2.21 (s, 3H), 1.80 (d, J =1.2 Hz, 3H)
174C G 570 (M+H) 95 (dec) (CDCIj) δ 8.56 (s, 1H), 8.20 - 8.12 (m, 3H), 7.83 - 7.74 (m, 4H), 7.43 - 7.36 (m, 3H), 7.32 (t, J = 7.7 Hz, 1H), 7.29-7.27 (m, 1H), 5.92 (d, J= 1.3 Hz, 1H), 2.26 (s, 3H), 1.81 (d, J =1.2 Hz, 3H)
165
ID Synthesis Method MS mp(°C) Ή NMR, 13C, or ”F NMR
175C G 550 (M+H) 132-136 (CDCI3) δ 8.56 (d, J = 5.0 Hz, 1H), 8.21 8.13 (m, 3H), 7.83 - 7.74 (m, 4H), 7.39 (d, J = 8.2 Hz, 2H), 7.29-7.23 (m, 1H), 7.19 (d, J = 7.7 Hz, 2H), 5.92 (d, J = 1.3 Hz, 1 H), 2.18 (s, 6H), 1.75 (d, J = 1.2 Hz. 3H).
176C G 564 (M+H) 123-138 (CDCI3) δ 8.56 (s, 1H), 8.19 - 8.14 (m, 3H), 7.83 -7.75 (m, 4H), 7.49- 7.43 (m, 2H), 7.39 (d, J= 8.3 Hz, 2H), 7.33 (ddd, J = 7.8, 5.9, 3.0 Hz, 1 H), 7.19 - 7.17 (m. 1 H), 5.88 (d, J = 1.3 Hz, 1 H), 2.96 - 2.76 (m, 1 H), 1.81 (d, J= 1.2 Hz, 3H), 1.24 (t, J= 6.4 Hz, 3H), 1.22-1,16 (m. 3H).
177C J 566 (M+H) 185-187 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.05 (s, 1 H), 7.84 - 7.77 (m, 2H), 7.74 (d, J= 8.3 Hz, 2H). 7.42-7.35 (m, 3H), 7.32 (dd, J= 10.6, 4.3 Hz, 1H), 7.28 - 7.24 (m. 1H), 7.18 (dd. J = 7.8,1.4 Hz, 1H), 3.80 - 3.69 (m, 1 H), 3.59 - 3.48 (m. 1 H), 3.11 (dd, J= 13.2,6.8 Hz, 3H), 2.41 - 2.27 (m, 2H). 1.22 (t, J =5.6 Hz. 6H).
178C J 580 (M+H) 186-190 (CDCI3) δ 8.55 (d. J= 3.6 Hz. 1H), 8.14 (d, J = 8.4 Hz. 2H). 8.06 (s, 1 H), 7.84 - 7.77 (m, 2H), 7.74 (d. J= 8.4 Hz, 2H), 7.38 (d, J = 9.0 Hz, 3H). 7.32 (td. J= 7.5.1.4 Hz. 1H), 7.26 (s, 1H), 7.17 (t, J = 7.1 Hz. 1H), 3.693.26 (m. 1H), 3.55-3.37 (m, 1H), 3.182.98 (m. 2H), 2.93 - 2.80 (m, 1H), 2.47 (d. J = 35.9 Hz, 1H), 1.31-1.12 (m. 9H).
166
ID Synthesis Method MS mp (’C) ’H NMR, 13C, or F NMR
179C J 550 (M+H) 212-213 (CDCI3) δ 8.64 (s. 1H). 8.15 (d. J= 8.4 Hz, 2H), 8.06 (s, 1H), 7.91 (d, J= 8.5 Hz, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.38 (dd, J= 7.8,1.6 Hz, 1H), 7.33 (td, J = 7.5,1.4 Hz, 1 H), 7.29 - 7.23 (m, 1 H), 7.18 (dd, J = 7.8,1.4 Hz, 1 H), 3.78 - 3.72 (m, 1 H), 3.59 - 3.48 (m, 1 H), 3.18 - 3.04 (m, 3H), 2.40 - 2.30 (m, 2H), 1.26 -1.20 (m, 6H).
180C J 566 (M+H) 127-133 (300 MHz, CDCI3) δ 8.55 (s, 1H), 8.13 (d, J = 8.3 Hz, 2H), 8.05 (s, 1H), 7.76 (dd, J = 17.0, 8.7 Hz, 4H), 7.37 (t, J- 8.4 Hz, 2H), 7.18 (dd, J = 12.7, 9.6 Hz, 3H), 3.54 - 3.49 (m, 2H), 3.12 - 3.08 (m, 2H), 2.70 - 2.55 (m, 2H), 2.39-2.31 (m, 2H), 2.28 (s, 3H), 1.25 (t, J =7.6 Hz, 3H).
181C J 582 (M+H) 170-174 (CDCI3) δ 8.55 (s, 1H). 8.14 (d, J = 8.3 Hz, 2H), 8.08 (s, 1H), 7.84 - 7.76 (m, 2H), 7.74 (d, J= 8.3 Hz. 2H), 7.38 (d, J= 8.3 Hz, 2H), 6.65 (s, 2H), 3.79 (s, 3H), 3.52 - 3.45 (m, 2H), 3.10 - 3.07 (m, 2H), 2.38 - 2.31 (d, J = 5.7 Hz, 2H), 2.25 (s, 6H).
182C J 552 (M+H) 148-155; 166-168 (300 MHz, CDCIa) δ 8.55 (d, J -1.0 Hz, 1H), 8.14 (d, J = 8.4 Hz, 2H). 8.05 (s, 1H), 7.83 - 7.76 (m, 2H), 7.74 (d, J - 8.4 Hz, 2H), 7.38 (d, J- 9.0 Hz, 2H), 7.14-7.09 (m, 3H). 3.51 (dd, J= 9.1,3.5 Hz, 2H), 3.15 -3.03 (m, 2H), 2.36 (s, 2H), 2.28 (s, 6H).
167
ID Synthesis Method MS mp(°C) ’H NMR, 13C, or 19F NMR □ □□°
183C J 580 (M+H) 159-162 (CDCIj) δ 8.55 (d, J =3.7 Hz, 1 H), 8.14 (d, J= 8.4 Hz, 2H), 8.03 (d, J = 19.3 Hz, 1H), 7.84 - 7.77 (m, 2H), 7,74 (d, J = 8.4 Hz, 2H), 7,38 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 3.8 Hz, 2H), 7.25 (d, J =6.6 Hz, 1H), 7.19 (t, J= 8.0 Hz, 1H), 3.76 (ddd, J = 24.2, 12.0, 5.9 Hz, 1H), 3.58-3.46 (m, 1H), 3.11 (dd, J = 15.3,6.1 Hz, 2H). 2.82 (dd, J = 14.6, 7.2 Hz, 1H), 2.41-2.29 (m, 2H), 1.71-1.55 (m, 2H), 1.20 (d, J = 6.8 Hz. 3H), 0.87-0.76 (m, 3H).
184C J 566 (M+H) 194-198 (CDCIj) δ 8.55 (s, 1H). 8.14 (d, J = 8.4 Hz, 2H), 8.07 (s, 1H), 7.83 - 7.76 (m, 2H). 7.74 (d, J = 8.4 Hz, 2H), 7.40 (t, J = 10.1 Hz, 2H), 6.93 (s, 2H), 3.53-3.47 (m, 2H), 3.12 -3.05 (m, 2H), 2.34 (dt. J = 11.7, 5.8 Hz, 2H), 2.30 (s, 3H), 2.23 (s, 6H).
185C J 552 (M+H) 157-160 (CDCIj) δ 8.55 (s, 1 H), 8.14 (d, J = 8.4 Hz, 2H), 8.06 (s. 1H), 7.83-7.77 (m, 2H), 7.74 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz. 2H), 7.36 - 7.27 (m, 3H), 7.23 - 7.19 (m, 1 H), 3.74 (m, 1H), 3.50 (m, 1H), 3.10 (d, J = 5.9 Hz, 2H), 2.64 (q, J =7.6 Hz, 2H), 2.402.29 (m, 2H), 1.28-1.21 (m, 3H).
186C J 564 (M+H) 173-177 (CDCIj) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.09 (s, 1H), 7.83-7.77 (m, 2H), 7.81 - 7,77 (m. 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.24 - 7.22 (m, 3H), 7.05 - 6.95 (m, 1 H), 3.77 - 3.63 (m, 2H), 3.14 - 3.07 (m. 2H), 2.45 - 2.29 (m, 2H), 2.09 - 1.92 (m, 1H), 0.97 - 0.82 (m, 3H), 0.53 (bs, 1 H).
I68
ID Synthesis Method MS mp (°C) ’H NMR, 13C, or 19F NMR
187C J 593 (M+H) 180-182 (300 MHz, CDCb) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.05 (d, J= 4.9 Hz, 1H), 7.77 (dd, J- 11.4, 8.6 Hz, 4H), 7.39 (t, J~ 8.1 Hz, 4H), 7.21 (dd, J= 13.2, 5.6 Hz, 1H), 3.65 - 3.58 (m, 2H), 3.09 (t, J= 5.5 Hz, 2H), 2.45 - 2.35 (m, 2H).
188C J 576 (M+H) 209-212 (CDCI3) δ 8.56 (s, 1 H), 8.15 (d, J = 8.4 Hz, 2H), 8.07 (s, 1H), 7.79 (ddd, J = 15.8, 7.8, 5.8 Hz, 4H), 7.38 (d, J= 8.3 Hz, 2H), 7.31 7.21 (m, 2H), 7.10 (ddd, J = 9.7, 7.8, 2.0 Hz, 1H), 3.64 (t, J- 5.4 Hz, 2H), 3.11 (t, J 6.0 Hz, 2H), 2.46 - 2.33 (m, 2H).
189C J 560 (M+H) 217-219 (CDCb) δ 8.56 (s, 1H), 8.15 (d, J= 8.4 Hz, 2H), 8.08 (s, 1H), 7.83 - 7.74 (m, 4H), 7.38 (d, J = 8.3 Hz, 2H), 7.31 - 7.21 (m, 1 H), 7.03 - 6.94 (m, 2H), 3.72 - 3.62 (m, 2H), 3.15 - 3.07 (m, 2H), 2.40 - 2.34 (m, 2H).
190C J 626 (M+H) 190-193 (CDCb) δ 8.55 (s, 1H), 8.14 (d, J ~ 8.3 Hz, 2H), 8.00 (s, 1H), 7.83 - 7.73 (m, 4H), 7.71 (d, J = 8.1 Hz, 1 H), 7.67 (d, J = 7.7 Hz, 1 H), 7.40 (dd, J= 15.8, 8.2 Hz, 3H), 3.79 - 3.69 (m, 1 H), 3.55 - 3.49 (m, 1 H), 3.16 - 3.04 (m, 2H), 2.47-2.31 (m, 2H).
191C J 554 (M+H) 150-155 (CDCb) δ 8.54 (d, J = 4.3 Hz, 1 H), 8.13 (d, J - 8.3 Hz, 2H), 8.05 (d, J = 6.3 Hz, 1 H), 7.77 (dd, J = 15.4, 8.7 Hz, 4H), 7.38 (d, J = 8.3 Hz, 2H), 7.29 (dd, J = 8.0, 4.8 Hz, 2H), 7.04 - 6.93 (m, 2H), 3.85 (s, 3H), 3.65 3.61 (m, 2H), 3.10 - 3.06 (m. 2H), 2.36 2.28 (s, 2H).
169
ID Synthesis Method MS mp(°C) ’H NMR, nC, or”FNMR
192C J 568 (M+H) 164-167; 168-173 (CDCIj) B 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.09 (s. 1H), 7.82-7.77 (m, 2H), 7.74 (d, J - 6.7 Hz, 2H), 7.38 (d. J = 8.3 Hz, 2H), 7.13 (d, J= 8.3 Hz, 1H), 6.79 (dd, J= 11.9, 3.3 Hz, 2H), 3.81 (s, 3H). 3.74-3.66 (m, 1H), 3.57 - 3.48 (m, 1H), 3.12 - 3.04 (m, 2H), 2.36 - 2.30 (m, 2H), 2.25 (s, 3H).
193C J 580 (M+H) 155-158 (CDCIj) δ 8.55 (s, 1H). 8.14 (d, J = 8.4 Hz, 2H), 8.04 (s, 1H), 7.83-7.77 (m, 2H), 7.74 (d, J= 8.4 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.31 - 7.24 (m, 3H), 7.23 - 7.20 (m, 1 H), 3.82-3.71 (m, 1H), 3.56-3.47 (m, 1H), 3.17 - 3.02 (m, 2H), 2.46 (t, J = 6.7 Hz, 2H), 2.39 - 2.27 (m. 2H), 1.99 (heptet, J = 6.8 Hz, 1H), 0.95-0.92 (m. 6H).
194C J 600 (M+H) 102-108 (CDCIj) δ 8.56 (s, 1H), 8.17 (m 3H). 7.80 (m, 4H), 7.52 - 7.47 (m, 2H), 7.47 - 7.31 (m, 9H), 3.42 - 3.05 (m, 2H), 2.86 (bs, 2H), 2.04-1.71 (m, 2H).
195C J 538 (M+H) 159-162 (CDCIj) δ 8.55 (s, 1H), 8.14 (d. J = 8.3 Hz, 2H). 8.08 (s, 1H). 7.84-7.77 (m, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.31 - 7.19 (m, 4H), 3.81 - 3.47 (m, 2H), 3.20 - 3.00 (m, 2H), 2.35 (dt, J = 11.7, 5.8 Hz, 2H), 2.28 (s, 3H).
170
ID Synthesis Method MS mp (°C) Ή NMR, 13C, or 1BF NMR
196C J 572 (M+H) 140-143 (CDCIa) δ 8.55 (s, 1H), 8.14 (d. J= 8.1 Hz. 2H), 8.05 (s, 1H), 7.80 (d, J= 8.9 Hz, 2H), 7.75 (d, J= 8.2 Hz. 2H), 7.38 (d. J = 8.8 Hz. 2H), 7.33 (dd. J= 6.1, 3.4 Hz, 1H), 7.21 7.15 (m, 2H), 3.72 - 3.66 (m, 1H), 3.55 3.41 (m, 1H), 3.16 - 3.05 (m. 2H), 2.48 2.34 (m, 2H), 2.32 (s. 3H).
197C J 578 (M+H) 151-155 (CDCIa) δ 8.55 (s. 1H), 8.14 (d, J- 8.2 Hz. 2H), 8.06 (s, 1H), 7.80 (d, J= 8.9 Hz, 2H). 7.75 (d, J- 8.2 Hz, 2H), 7.38 (d, J= 8.8 Hz, 2H), 7.29 (dd, J- 10.7,4.6 Hz, 4H), 6.20 (s, 1H), 3.59-3.48 (m, 2H), 3.10- 3.01 (m. 2H), 2.34 - 2.20 (m, 2H). 1.90 (s, 3H), 1.78 (s, 3H).
198C J 539 (M+H) 186-189 (CDCIa) δ 8.56 (s, 1H), 8.36 (dd, J= 4.8,1.3 Hz, 1H), 8.15 (d, J = 8.3 Hz, 2H), 8.09 (s, 1H). 7.78 (m, 4H), 7.54 (dd, J = 7.5, 0.9 Hz, 1 H), 7.37 (d, J - 8.5 Hz, 2H), 7.13 (dd, J = 7.4, 4.8 Hz. 1H), 3.87 (t, J= 5.7 Hz, 2H), 3.12 - 3.03 (m, 2H), 2.40 - 2.32 (m, 2H), 2.24 (s, 3H).
199C J 608 (M+H) 207-208 (CDCIa) δ 8.55 (s. 1H). 8.15 (d. J- 8.4 Hz, 2H), 8.05 (s, 1 H), 7.83 - 7.78 (m, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.43 - 7.36 (m, 3H), 7.34 (t, J- 4.7Hz, 3H), 3.71 -3.64 (m, 2H), 3.12 - 3.06 (m, 2H). 2.39 - 2.30 (m, 2H).
I7l
ID Synthesis Method MS mp(°C) 1H NMR, ”C. or ”F NMR □□0°
200C J 590 (M+H) 170-172 (CDCIj) δ 8.56 (s. 1H). 8.15 (d. J= 8.4 Hz, 2H), 8.03 (s, 1 H), 7.83 - 7.77 (m, 2H), 7.76 (d, J = 8.3 Hz, 2H), 7.42 - 7.27 (m, 6H), 6.74 - 6.29 (m, 1 H), 3.70 - 3.64 (m, 2H). 3.13 - 3.06 (m, 2H). 2.40 - 2.31 (m, 2H).
201C J 626 (M+H) 190-193 (CDCIj) δ 8.55 (s. 1H), 8.14 (d. J= 8.3 Hz, 2H). 8.00 (s, 1H), 7.83-7.73 (m, 4H), 7.71 (d, J= 8.1 Hz, 1H), 7.67 (d, J= 7.7 Hz, 1H), 7.40 (dd, J- 15.8, 8.2 Hz, 3H), 3.79 - 3.69 (m, 1 H), 3.55 - 3.49 (m, 1 H), 3.16 - 3.04 (m,2H), 2.47-2.31 (m. 2H).
202C J 554 (M+H) 231-234 (CDCIj) δ 8.56 (s. 1H). 8.19 - 8.08 (m, 3H), 7.84 - 7.72 (m. 4H), 7.39 (d. J = 8.4 Hz, 2H), 7.25 - 7.20 (m, 2H), 6.96 - 6.88 (m, 2H), 3.83 (s, 3H). 3.76 - 3.68 (m. 2H), 3.13 - 3.03 (m, 2H), 2.39 - 2.27 (m, 2H).
203C J 631 (M+H) 200-201 (CDCIj) δ 8.56 (s. 1H), 8.15 (d. J = 8.2 Hz, 2H). 8.06 (s, 1H), 7.83 - 7.77 (m, 2H), 7.75 (d. J= 8.2 Hz. 2H). 7.39 (d. J- 8.5 Hz, 2H), 7.28 - 7.25 (m, 2H), 3.51 - 3.42 (m, 2H). 3.14 - 3.05 (m, 2H), 2.35 (s, 2H), 2.25 (s. 6H).
204C J 568 (M+H) 193-196 (CDCIj) δ 8.55 (s. 1H), 8.14 (d. J = 8.4 Hz, 2H). 8.09 (s, 1H). 7.84 - 7.77 (m. 2H). 7.75 (d, J = 8.4 Hz, 2H). 7.38 (d, J = 8.3 Hz, 2H), 7.08 (t. J= 4.0 Hz, 2H), 6.88 (d. J= 8.6 Hz, 1H), 3.82 (s, 3H), 3.66 - 3.58 (m, 2H). 3.11 - 3.03 (m, 2H), 2.36 - 2.27 (m, 5H).
172
ID Synthesis Method MS mp(°C) ’H NMR. ,3C, or 19F NMR
205C J 539 (M+H) Oil (CDCIj) δ 8.55 (s. 1H). 8.45 (dd, J= 4.8,1.6 Hz, 1H), 8.18-8.12 (m, 2H), 8.06 (s, 1H), 7.82 - 7.72 (m. 4H), 7.53 (dd, J= 7.9,1.6 Hz, 1 H), 7.40 - 7.33 (m. 2H), 7.24 - 7.18 (m, 1 H), 3.63 (br s, 2H), 3.18 - 3.03 (m, 2H), 2.51 (s 3H). 2.35 (dt. J = 11.7, 5.7 Hz, 2H)
206C J 554 (M+H) 177-178 (CDCIj) δ 8.56 (s, 1H), 8.16 (d, 8.9 Hz, 3H), 7.84 - 7.73 (m, 4H), 7.39 (d, J = 8.8 Hz, 2H), 7.30 (t, J = 8.1 Hz, 1 H), 6.95 6.85 (m, 2H), 6.78 (dt, J = 11.1, 5.5 Hz, 1H), 3.81 (s, 3H), 3.79 - 3.73 (m. 2H), 3.12 3.04 (m, 2H), 2.38 - 2.28 (m, 2H).
207C J 596 (M+H) 171-173 (CDCIj) δ 8.57 (s, 1H), 8.23 - 8.13 (m, 3H), 8.06 (d, J - 8.5 Hz, 2H), 7.80 (dd, J = 8.5, 4.5 Hz, 4H), 7.39 (d, J = 8.5 Hz, 4H), 4.38 (q. J = 7.2 Hz, 2H), 3.82 (t, J = 6.0 Hz, 2H), 3.14 - 3.03 (m, 2H), 2.37 (s, 2H), 1.40 (t, J = 7.1 Hz, 3H).
208C J 568 (M+H) 171-173 (CDCIj) δ 8.55 (s, 1H), 8.14 (d, J= 8.3 Hz, 2H). 8.07 (s, 1H), 7.84-7.77 (m. 2H), 7.75 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.32 - 7.23 (m, 2H), 6.99 (ddd, J = 8.3, 5.5, 1.4 Hz, 2H), 4.08 (q, J « 7.0 Hz, 2H), 3.69 3.57 (m, 2H), 3.16 - 3.02 (m, 2H), 2.32 (dt, J = 11.7, 5.9 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H).
I73
ID Synthesis Method MS mp (’C) Ή NMR, ,3C, or19FNMR
2090 J 550 (M+H) 212-213 (CDCIj) δ 8.64 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.06 (s, 1H), 7.91 (d. J= 8.5 Hz, 2H), 7.79 (d. J = 8.6 Hz, 2H), 7.75 (d, J= 8.4 Hz, 2H), 7.38 (dd, J- 7.8.1.6 Hz, 1 H). 7.33 (td. J = 7.5,1.4 Hz, 1H), 7.29 - 7.23 (m, 1H), 7.18 (dd, J= 7.8,1.4 Hz, 1H), 3.78-3.72 (m, 1H), 3.59-3.48 (m, 1H). 3.18-3.04 (m, 3H), 2.40 - 2.30 (m, 2H), 1.26 - 1.20 (m, 6H).
21 OC J 580 (M+H) 136-139 (CDCIj) δ 8.55 (s, 1H), 8.14 (d. 8.4 Hz, 2H), 8.07 (s, 1 H), 7.83 - 7.77 (m. 2H), 7.75 (d, J= 8.4 Hz. 2H), 7.55-7.49 (m, 1H). 7.38 (d. J = 8.3 Hz, 2H), 7.32 - 7.26 (m, 2H), 7.19 - 7.13 (m, 1 H), 3.72 (ddd, J 12.9, 9.3, 3.8 Hz. 1H), 3.60 - 3.51 (m, 1H), 3.15 (ddd, J - 13.3, 9.4, 4.0 Hz, 1 H), 3.10 3.01 (m. 1H). 2.51-2.36 (m, 1H), 2.362.22 (m, 1 H), 1.43 (s, 9H).
211C J 566 (M+H) 100-106 (CDCIa) δ 8.55 (s, 1H), 8.15 (d, J= 8.4 Hz, 2H), 8.10 (s, 1H), 7.79 (dt, J= 10.4, 5.8 Hz, 4H), 7.38 (d, J = 8.3 Hz, 2H), 7.11 (s, 3H), 3.85 - 3.78 (m, 2H), 3.20-3.12 (m. 2H), 2.30 (s, 6H), 2.13 - 2.07 (m, 2H), 1.87 1.82 (m, 2H).
212C J 580 (M+H) 186-188 (CDCI3) δ 8.55 (s, 1H), 8.19-8.10 (m, 3H), 7.79 (dt, J = 10.7, 5.9 Hz, 4H), 7.38 (dd, J8.5. 2.6 Hz. 3H), 7.30 (td. J = 7.5, 1.4 Hz, 1H), 7.23 (td, J = 7.5,1.7 Hz, 1H), 7.13 (dd, J = 7.8, 1.4 Hz, 1 H), 3.94 (bs. 2H), 3.24 3.02 (m, 3H), 2.13-2.05 (m, 2H), 1.841.73 (m, 2H), 1.24 (t, J= 10.5 Hz, 6H).
I74
ID Synthesis Method MS mpfC) ’H NMR, ’3C, or ’flF NMR
213C J 580 (M+H) 123-127 (CDCIj) δ 8.55 (s, 1H), 8.13 (d, J= 8.4 Hz, 2H), 8.03 (d, J= 4.4 Hz, 1 H), 7.83 - 7.76 (m, 2H), 7.74 (d. J = 8.0 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.24- 7.15 (m, 2H), 7.12 (dd, J = 11.9.4.6 Hz, 1 H), 3.82 - 3.71 (m, 1 H), 3.30 - 3.18 (m, 1 H), 3.07 - 2.94 (m, 1H), 2.72 - 2.40 (m, 3H), 2.30 - 2.16 (m, 4H), 1.30-1.12 (m, 6H).
214C J 622 (M+H) 160-162 (CDCIj) δ 8.55 (s. 1H), 8.15 (d, J- 8.4 Hz, 2H), 8.06 (s, 1H), 7.83 - 7.72 (m, 4H), 7.38 (m, 3H), 7.34 (dd, J= 2.9,1.5 Hz, 3H), 3.58 (ddd, J~ 12.3, 3.9,1.4 Hz, 1H), 3.39 (dd, J = 12.2, 9.2 Hz, 1H), 3.04 (ddd. 12.2, 3.9,1.4 Hz, 1H), 2.84 (dd, J = 12.2, 9.5 Hz, 1 H), 2.61 - 2.42 (m, 1 H), 1.18 (d, J - 6.7 Hz, 3H)
215C J 640 (M+H) 116 (dec) (CDCIj) δ 8.55 (s, 1H), 8.14 (dd, J= 8.3,1.5 Hz, 2H), 8.00 (d, J ~ 4.0 Hz, 1 H), 7.84 7.72 (m, 4H), 7.72 - 7.63 (m, 2H), 7.45 7.32 (m, 3H), 3.60 - 3.44 (m, 1H), 3.37 3.27 (m, 1H), 3.03 - 2.92 (m, 1H), 2.92 2.82 (m, 1 H). 2.69 - 2.54 (m, 1 H), 1.19 1.12 (m,3H)
216C J 622 (M+H) 132-135 (CDCIj) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.02 (s, 1H), 7.82-7.71 (m, 4H), 7.44 - 7.30 (m, 6H), 3.87 (d, J - 6.3 Hz, 1 H), 3.23 (td, J - 11.9, 3.8 Hz, 1 H), 3.07 - 2.94 (m, 1H), 2.54 - 2.43 (m, 1 H), 2.19 (ddd, J13.9, 9.0, 5.0 Hz, 1 H). 1.31 (d, J = 6.6 Hz, 3H)
175
ID Synthesis Method MS mp (°C) ’H NMR, nC, or ,flF NMR □00°
217C J 640 (M+H) 93 (dec) Two Isomers (CDCI3) δ 8.55 (s, 2H), 8.14 (dd, J- 8.4, 2.7 Hz, 4H), 7.98 (d, J= 4.2 Hz, 2H). 7.83 - 7.72 (m, 8H), 7.67 (dt, J = 12.9, 7.4 Hz, 4H), 7.40 (dd. J = 15.3, 8.1 Hz, 6H), 4.17 (s, 1 H), 3.96 (td. J ~ 6.6, 3.1 Hz, 1H), 3.24-3.12 (m,2H), 3.12-3.01 (m, 2H), 2.41 (dddd, J= 10.8,10.0, 8.9, 4.2 Hz, 2H), 2.30-2.15 (m, 2H), 1.24 (d, J = 6.7 Hz, 3H), 1.04 (d, 6.7 Hz, 3H)
2180 J 580 (M+H) 95 (dec) (CDCI3) δ 8.55 (s, 1H), 8.18- 8.10 (m, 2H), 8.05 (s, 1 H). 7.83 - 7.76 (m, 2H), 7.73 (d, J - 8.4 Hz, 2H), 7.41 - 7.37 (m, 2H), 6.93 (d, J - 9.4 Hz, 2H), 3.76 (dd. J ~ 10.8, 4.6 Hz, 1H), 3.29-3.16 (m, 1H), 2.99 (ddd. J~ 12.2, 5.9, 3.9 Hz, 1 H), 2.54 - 2.37 (m. 1 H), 2.31 (s, 3H), 2.22 (d, J ~ 6.4 Hz, 7H), 1.19 (d, J-6.7 Hz, 3H)
219C J 592 (M+H) 100 (dec) (CDCI3) δ 8.55 (s, 1H), 8.14 - 8.06 (m. 3H), 7.91 - 7.65 (m, 4H). 7.44-7.37 (m, 2H), 7.16 - 7.09 (m. 1H). 6.93 - 6.77 (m, 2H), 4.06 - 3.64 (m, 4H), 3.31 - 3.16 (m, 1 H), 3.02 - 2.92 (m. 1H), 2.51 - 2.40 (m, 1 H), 2.25- 2.17 (m, 4H), 1.41 -1.14 (m, 3H)
I76
ID Synthesis Method MS mp CO Ή NMR, nC, or ,9F NMR
220C J 593 (M+H) 95 (dec) Two isomers: (CDd3) δ 8.55 (s, 1H), 8.16 8.09 (m, 2H), 8.01 (m, 1H), 7.86 - 7.76 (m, 2H), 7.76 - 7.70 (m, 2H), 7.64 - 7.28 (m, 4H), 7.24 - 7.14 (m, 2H), 4.08 - 3.65 (m, 1H), 3.37 - 3.15 (m, 1H), 3.09 - 2.92 (m, 1H), 2.80 (td, J- 14.2, 6.8 Hz, 1H), 2.45 m, 1 H), 2.35 - 2.09 (m, 1 H), 1.76-1.58 (m. 1 H), 1.48 - 1.35 (m, 2H), 1.27 - 1.19 (m, 2H), 1.19 - 1.13 (m, 2H), 1.06 - 0.92 (m, 1H), 0.92-0.72 (m. 3H)
221C J 603 (M+H) 113 (dec) (400 MHz, CDCI3) δ 8.56 (s, 1H), 8.208.10 (m, 2H), 8.00 (s. 1H), 7.83 - 7.77 (m, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.42 - 7.28 (m, 6H), 6.72 - 6.25 (m, 1 H), 3.90 (d, J = 6.4 Hz, 1H), 3.24 (td. J - 12.0, 3.6 Hz, 1H), 3.05 - 2.93 (m, 1 H), 2.49 (tt, J = 11.7, 4.0 Hz, 1H), 2.21 (td, J= 8.7, 4.4 Hz, 1 H), 1.29 (d, J =6.6 Hz, 3H)
222C J 594 (M+H) 124 (dec) (CDCl3) δ 8.55 (s, 1H), 8.14 (dd, J= 8.4, 2.1 Hz. 2H), 8.05 (d, J~ 2.8 Hz, 1H), 7.877.72 (m, 4H), 7.61 - 7.49 (m, 1 H), 7.38 (d, J = 8.3 Hz, 2H), 7.33-7.21 (m, 2H). 7.15 7.05 (m, 1H), 3.79 - 3.68 (m, 1 H), 3.51 3.29 (m, 1 H), 3.12 - 2.93 (m, 1 H), 2.66 2.52 (m, 1H), 2.18-2.12 (m, 1H). 1.43 (m, 12H)
223C L 566 (M+H) 75-87 (CDCIj) δ 8.58 (s, 1H), 8.21 (d, 8.4 Hz, 2H), 8.16 (s, 1H), 7.85 - 7.77 (m. 4H), 7.40 (d, J- 8.3 Hz, 2H), 7.23 (dd, J= 8.4, 6.6 Hz, 1 H), 7.15 (d, J - 7.5 Hz, 2H), 3.24 3.14 (m, 4H), 2.18 (s, 6H).
I77
ID Synthesis Method MS mp(°C) 1H NMR, ,3C. or”FNMR
224C L 580 (M+H) 118 (dec) (CDCI3) δ 8.57 (s, 1 H). 8.21 (d, J = 8.4 Hz, 2H), 8.16 (s. 1H), 7.85 - 7.75 (m, 4H), 7.46 - 7.36 (m, 4H), 7.33 - 7.26 (m, 1 H), 7.10 (d, J =7.6 Hz. 1H), 3.26-3.14 (m, 4H), 2.81 (sept. J= 6.9 Hz. 1 H). 1.21 (t, J= 7.2 Hz. 6H).
225C L 580 (M+H) 111 (dec) (CDCI3) δ 8.57 (s, 1 H). 8.21 (d, J= 8.4 Hz. 2H), 8.15 (s, 1H). 7.86-7.76 (m, 4H), 7.39 (d. J= 8.3 Hz. 2H), 7.29 (t, J = 7.6 Hz. 1H). 7.21 - 7.15 (m. 2H). 3.27 - 3.10 (m. 4H), 2.50 (q, J= 7.5 Hz, 2H), 2.18 (s. 3H). 1.20 (t, J= 7.6 Hz, 3H).
226C L 573 (M+H) 196-200 (CDCI3) δ 8.57 (s, 1H). 8.24- 8.16 (m. 3H). 7.85 - 7.76 (m. 4H), 7.43 - 7.34 (m. 3H). 7.03 (dd. J= 8.5, 7.4 Hz. 2H). 3.21 (s. 4H)
227C L 586 (M+H) Oil (CDCI3) δ 8.57 (s. 1H). 8.21 (d. J= 8.3 Hz. 2H). 8.15 (s. 1 H). 7.81 (t. J= 9.1 Hz. 4H), 7.43 - 7.31 (m. 3H). 7.28 - 7.21 (m. 2H). 3.36 - 3.07 (m. 4H), 2.24 (s, 3H); ’9F NMR (376 MHz. CDCÎ3) δ -58.02
228C L 640 (M+H) 99 (dec) (CDCI3) δ 8.57 (s, 1H). 8.21 (d. J = 8.3 Hz. 2H), 8.11 (s, 1H), 7.81 (dd, J= 11,5, 4.7 Hz. 4H), 7.72 (dd. J= 17.3, 8.0 Hz, 2H). 7.51 (dd. J= 10.0. 5.4 Hz. 1H). 7.39 (d. J = 8.3 Hz. 2H). 3.36-3.03 (m. 4H)
229C L 622 (M+H) 95 (dec) (CDCh) δ 8.57 (s. 1H), 8.21 (d. J = 8.4 Hz. 2H). 8.13 (s. 1 H). 7.80 (dt, J = 5.5, 4.9 Hz. 4H). 7.44 - 7.34 (m, 6H). 3.29 - 3.10 (m. 4H)
I78
ID Synthesîs Method MS mp(°C) ’H NMR, 13C, or 19F NMR □DD°
230C L 594 (M+H) 94 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J= 8.3 Hz, 2H),8.14(d, J= 15.4 Hz, 1H), 7.83-7.76 (m, 4H), 7.43-7.37 (m, 4H), 7.32 - 7.26 (m, 1 H), 7.16 - 7.09 (m, 1 H), 3.24 - 3.12 (m,4H), 2.61-2.44 (m, 1H), 1.75-1.50 (m, 2H), 1.17 (dd, J = 6.9, 3.3 Hz, 3H), 0.87 - 0.73 (m, 3H)
231C L 582 (M+H) 105 (dec) (CDCIj) δ 8.58 (s, 1H), 8.22 (s, 1H), 8.19 (d, J = 5.0 Hz, 2H), 7.81 (dd, J = 8.7, 5.5 Hz, 4H), 7.40 (d, J- 8.3 Hz, 2H), 7.05 (d, 8.3 Hz, 1H), 6.90 - 6.76 (m, 2H), 3.83 (s, 3H), 3.22 - 3.11 (m, 4H), 2.16 (s, 3H)
232C L 593 (M+H) 120 (dec) (CDCIj) δ 8.57 (s, 1H), 8.21 (d, J= 8.4 Hz, 2H), 8.16 (s, 1H), 7.81 (dd, J= 8.7, 5.3 Hz. 4H), 7.58 (dd, J = 8.1,1.5 Hz, 1H), 7.38 (dd, J = 13.2, 5.1 Hz, 3H), 7.33 - 7.27 (m, 1H), 7.02 - 6.96 (m, 1 H), 3.37 - 3.01 (m, 4H), 1.36 (s, 9H)
233C L 604 (M+H) 92 (dec) (CDCIj) δ 8.58 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 8.14 (s, 1H), 7.86-7.72 (m, 4H), 7.48 - 7.28 (m, 6H), 6.40 (t, JHF = 74.3 Hz, 1H), 3.25-3.11 (m, 4H)
240C M 576 (M+H) 105 (dec) (CDCIj) δ 8.57 (s, 1H), 8.25- 8.12 (m, 3H), 7.88 - 7.72 (m, 4H), 7.39 (d, J = 8.5 Hz, 3H), 7.06 (td, J = 8.9, 4.4 Hz, 2H), 3.58 (d. J = 11.5 Hz, 1H), 3.37 (d, J= 11.5 Hz, 1H), 3.24 (d, J = 2.7 Hz, 1 H), 1.59 (s, 3H); 19F NMR (376 MHz, CDCIj) δ -58.02, -113.71,-115.83, -115.84
179
ID Synthesis Method MS mp (°C) ’H NMR, 13C, or 19F NMR □ □□°
241C M 642 (M+H) 97 (dec) (CDCh) δ 9.72 - 9.57 (m, 1 H). 8.58 (s, 1 H), 8.24 (d. J = 8.4 Hz. 2H), 7.88 - 7.72 (m, 4H), 7.56 (dt, J= 18.3, 5.8 Hz, 2H). 7.40 (d, J = 8.3 Hz, 2H), 7.09 (t. J = 8.0 Hz. 1 H), 3.49 (d. J = 13.3 Hz, 1H), 3.35 (m,2H), 1.86 (d, J = 14.0 Hz, 3H): 19F NMR (376 MHz. CDCIj) δ -58.01, -62.05, -62.22
242C M 582 (M+H) 114-116 (CDCIs) δ 8.57 (s, 1H), 8.19 (dd, J = 10.1. 6.2 Hz, 3H), 7.79 (dd. J= 11.5, 4.7 Hz. 4H), 7.50 - 7.44 (m, 1 H), 7.44 - 7.36 (m, 4H). 7.29 - 7.25 (m, 1 H). 3.55 (d. J = 11.5 Hz. 1 H), 3.45 (s, 1 H). 3.34 (d, J = 11.5 Hz, 1 H), 2.98 (dt, J= 13.8, 6.9 Hz, 1H), 1.43 (s, 3H), 1.27-1.16 (m, 6H); ieF NMR (376 MHz, CDCI3) δ -58.02
243C M 596 (M+H) 112 (dec) (CDCI3) δ 8.57 (s, 1H), 8.23 - 8.13 (m. 3H), 7.84 - 7.74 (m, 4H), 7.55 - 7.44 (m. 1 H), 7.43 - 7.32 (m, 4H), 7.28 - 7.24 (m, 1 H). 3.55 - 3.51 (m, 2H), 3.32 (dd, J = 11.5,1.0 Hz, 1 H), 2.69 (td, J = 13.9, 7.0 Hz, 1 H), 1.63 -1.56 (m, 2H). 1.45 (d, J = 4.9 Hz, 3H), 1.26 -1.16 (m. 3H). 0.83 (dt, J = 10.2, 7.4 Hz. 3H); ,9F NMR (376 MHz. CDCI3) δ -58.02
I80
ID Synthesis Method MS mpfC) Ή NMR, 13C, or ”F NMR
244C M 588 (M+H) 103 (dec) (CDCI3) δ 8.57 (s, 1 H). 8.22 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.83 - 7.76 (m, 4H), 7.41 7.32 (m, 3H), 7.25 - 7.21 (m, 2H), 3.70 3.61 (m, 1H), 3.53 (s, 1H), 3.30 (d, J= 11.2 Hz, 1H), 2.49 (s,3H), 1.51 (s, 3H); 19F NMR (376 MHz, CDCI3) δ -58.02
245C M 584 (M+H) 129 (dec) (CDCI3) δ 8.57 (s, 1H). 8.25 (s, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.82 - 7.75 (m, 4H), 7.39 (t, J = 8.8 Hz, 3H). 6.86 - 6.76 (m, 2H), 3.83 (s. 3H), 3.52 (d, J = 11.5 Hz, 1 H), 3.43 (s, 1 H). 3.31 (d, J = 11.6 Hz, 1 H), 2.19 (s, 2H). 1.43 (s. 3H); 19F NMR (376 MHz, CDCI3) δ -58.02
246C M 636 (M+H) 185-187 (CDCI3, both diastereomers) δ 8.56 (m, 2H), 8.22 - 8.14 (m, 6H), 7.83 - 7.75 (m, 8H), 7.49 - 7.34 (m, 10H), 7.32 - 7.23 (m, 2H), 4.22 (s. 1H), 3.82 (dd, J= 12.5, 4.8 Hz, 2H). 3.51 (d. J = 13.2 Hz, 1H), 3.40 (d, J= 12.3 Hz, 1H), 3.31 (s, 1H), 3.09 (tt, J= 13.9, 7.0 Hz, 2H). 1.31 -1.13 (m, 12H); 19F NMR (376 MHz, CDCI3) δ -58.02, -78.33, -78.77
181
ID Synthesis Method MS mp(°C) Ή NMR, nC, or1’FNMR □ □□°
247C M 650 (M+H) - (CDCI3) δ 8.59 - 8.54 (m. 1H), 8.30 - 8.13 (m, 3H), 7.79 (dd, J = 8.6, 6.7 Hz. 4H), 7.45 - 7.34 (m, 5H), 7.32 - 7.21 (m, 1H), 3.99 (s, 1H), 3.83 (d, J = 12.2 Hz, 1H), 3.52 - 3.38 (m, 1H), 2.82-2.75 (m, 1H), 1.27-1.26 (m. 1H), 1.21 - 1.12 (m, 3H), 0.97 - 0.75 (m. 4H); ,9F NMR (376 MHz, CDCh) δ -58.03, -78.23. -78.32, -78.76, -78.84
248C M 554 (M+H) 113-126 (CDCI3) δ 8.57 (d, J= 2.3 Hz, 1H), 8.24 (s, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.83-7.74 (m, 4H), 7.54 - 7.47 (m, 1 H), 7.39 - 7.27 (m, 5H), 3.66 (s, 1H), 3.54 (d, J= 11.5 Hz, 1 H), 3.33 (d, J = 11.5 Hz, 1H), 2.41 - 2.18 (m,3H). 1.60-1.41 (m, 3H); ”F NMR (376 MHz, CDCh) δ -58.02
249C M 607 (M+H) 134 (dec) (CDCh) δ 8.57 (s, 1 H), 8.28 - 8.13 (m, 3H), 7.85-7.72 (m, 4H), 7.50 - 7.34 (m, 5H), 7.28 - 7.23 (m, 1H), 3.54 (d, J = 11.5 Hz, 1 H), 3.42 (s, 1 H), 3.33 (d, J = 11.5 Hz, 1 H), 3.04 (dd, J = 17.2, 9.3 Hz, 1H), 2.09 (s, 1H), 1.93 -1.75 (m, 3H), 1.68 - 1.60 (m, 3H), 1.55 (s, 3H), 1.43 (s, 2H); 19F NMR (376 MHz, CDCh) δ -58.02
182
ID Synthesls Method MS mp(°C) Ή NMR, ’3C, or”FNMR
250C M 600 (M+H) 112 (dec) (CDCIj) δ 8.57 (s, 1H), 8.19 - 8.17 (m, 3H), 7.83 - 7,75 (m, 4H), 7.42 - 7.33 (m, 3H), 7.23 (t, J =7.0 Hz, 1H), 7.10-6.95 (m, 1H), 3.56 (dd, J = 30.7,11.4 Hz, 1H), 3.44 - 2.90 (m, 3H), 1.54-1.48 (m, 3H), 1.27-1.15 (m, 6H); ”F NMR (376 MHz, CDCIj) δ -58.02, -116.16, -117.35
251C M 596 (M+H) 118 (CDCIj) δ 8.57 (s, 1H), 8.23 (s, 1H), 8.20- 8.14 (m, 2H), 7.83 - 7.72 (m, 4H), 7.39 - 7.33 (m, 3H), 7.20 (s, 1H), 7.10 - 7.05 (m, 1H), 3.53 (d, J = 11.5 Hz, 1H), 3.43 (s, 1H), 3.32 (d, J = 11.5 Hz, 1 H), 2.98 - 2.88 (m, 1H), 2.39 (s, 3H), 1.43 (s, 3H), 1.28-1,14 (m, 6H); ”F NMR (376 MHz, CDCIj) δ -58.03
252C M 596 (M+H) 118 (dec) (CDCIj) δ 8.57 (s, 1H), 8.22 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.81 - 7.77 (m, 4H), 7.38 (d, J = 8.4 Hz. 2H), 7.33 (t, J = 4.7 Hz, 1H), 7.17 (d, J = 5.0 Hz, 2H), 3.53 (d, J = 11.5 Hz, 1H), 3.42 (s, 1H), 3.37-3.18 (m, 2H), 2.52 (s, 3H), 1.42 (s, 3H), 1.32 (dd, J = 7.3, 3.7 Hz, 6H); ”F NMR (376 MHz, CDCIj) δ -58.02
I83
ID Synthesis Method MS mp (°C) 1HNMR, 13C, or 1flF NMR □ □□°
253C M 596 (M+H) 112 (dec) (CDCh) δ 8.57 (s. 1 H), 8.23 (s, 1H), 8.21 8.15 (m, 2H), 7.79 (t, J= 8.1 Hz, 4H), 7.38 (d, J = 8.9 Hz, 2H), 7.31 - 7.27 (m, 2H), 7.21 (d, J = 8.1 Hz, 1H), 3.53 (d, J- 11.5 Hz, 1 H). 3.44 (s, 1 H). 3.33 (d, J = 11.5 Hz, 1H), 2.91 (dt. J = 13.8, 6.9 Hz, 1H), 2.34 (d, J= 3.1 Hz. 3H), 1.59-1.43 (m, 3H), 1.19 (dd, J =10.4,6.9 Hz, 6H); ieF NMR (376 MHz, CDCI3) δ -58.02
254C M 568 (M+H) 111 (dec) (CDCh) δ 8.57 (s, 1H), 8.23 (s, 1H), 8.21 - 8.15 (m, 2H). 7.83 - 7.74 (m, 4H), 7.50 (d, J = 7.7 Hz, 1H), 7.39 7.37 (m, 4H), 7.31 - 7.27 (m, 1 H), 3.54 (d, J = 11.5 Hz, 1 H), 3.47 (s. 1H). 3.32 (d. J = 11.5 Hz, 1H), 2.68- 2.45 (m, 2H), 1.43 (s, 3H), 1.28 -1.21 (m, 3H); 19F NMR (376 MHz, CDCh) δ -58.02
255C M 597 (M+H) 110 (dec) (CDCh) δ 8.57 (s, 1 H), 8.25 (s, 1H),8.18(d, J = 8.3 Hz, 2H). 7.84 - 7.75 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 6.76 - 6.64 (m, 2H), 3.80 (s, 3H), 3.51 (d, J= 11.3 Hz, 1 H). 3.35 (s, 1H). 3.32 (d, J~ 11.4 Hz, 1H), 2.40 (s, 3H). 2.14 (s, 3H). 1.43 (s, 3H); 19F NMR (376 MHz, CDCh) δ -58.02
184
ID Synthesis Method MS mp (’C) ’H NMR, 13C, or ”F NMR
256C M 580 (M+H) 100 (CDCIj) δ 8.57 (s, 1H), 8.24 - 8.15 (m, 3H), 7.79 (dd. J = 8.8, 2.7 Hz, 4H), 7.51 (d, J = 7.6 Hz, 1H), 7.40-7.33 (m, 4H), 7.307.28 (m, 1 H), 3.64 (s, 1 H), 3.54 (d, J = 11.5 Hz, 1 H), 3.32 (d, J = 11.5 Hz, 1 H), 2.60 2.40 (m, 2H), 1.76-1.62 (m, 2H), 1.43 (s, 3H), 0.94 (t, J = 7.3 Hz, 3H); ”F NMR (376 MHz, CDCI3) δ -58.02
257C M 595 (M+H) 140 (dec) (CDCI3) δ 8.57 (s, 1H), 8.22 - 8.16 (m, 3H), 7.82 - 7.74 (m, 4H), 7.55 - 7.47 (m, 1 H), 7.42 - 7.35 (m, 4H), 7.29 - 7.24 (m, 1 H), 3.92 - 2.96 (m, 3H), 1.57 (s, 1 H), 1.57 1.50 (m, 3H), 1.35-1.17 (m, 9H); ieF NMR (376 MHz, CDCI3) δ -58.02
258C M 597 (M-H) 117 (dec) (CDCI3) δ 8.57 (s, 1H), 8.22 - 8.16 (m, 3H), 7.80 (dt, J = 8.4, 4.9 Hz, 4H), 7.46 (dd, J = 8.8, 5.6 Hz, 1H), 7.39 (d, J= 8.3 Hz, 2H), 7.09 (dd, J = 10.0,2.9 Hz, 1 H), 7.01 - 6.90 (m, 1H), 3.54 (d, J= 11.5 Hz, 1H), 3.39 (s, 1 H), 3.33 (d, J = 11.6 Hz, 1 H), 2.99 - 2.92 (m, 1 H), 1.56 (d, J = 7.3 Hz, 3H), 1.42 (s, 3H), 1.20 (dd, J= 8.6,6.9 Hz, 6H); 1eF NMR (376 MHz, CDCI3) δ -58.02, -112.57
185
ID Synthesis Method MS mp (°C) ’H NMR, 13C, or19FNMR □□0°
259C M 615 (M-H) 186-188 (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J = 3.5 Hz, 2H). 8.18 (s, 1H), 7.83-7.75 (m, 4H). 7.43 - 7.34 (m, 3H). 7.17 (dd, J= 11.8,8.6 Hz, 1H), 3.54 (d, J= 11.6 Hz, 1H), 3.44 (s, 1H), 3.32 (d, J = 11.6 Hz, 1H), 2.93 (dd, J = 13.0, 6.1 Hz, 1H), 1.45 (s, 3H), 1.18 (dd, J14.2, 6.9 Hz, 6H); 19F NMR (376 MHz. CDCf3) δ -58.02, -136.51, -136.57. -138.80, -138.86
260C M 665 (M+H) 117 (dec) (CDCIa) δ 8.66 (s, 1H), 8.24 - 8.15 (m. 3H), 7.93 (d, J = 8.8 Hz, 2H). 7.78 (dd, J= 8.2, 6.5 Hz, 4H), 7.52-7.45 (m, 1H), 7.457.36 (m, 2H), 7.29-7.25 (m, 1H), 3.55 (d, J = 7.5 Hz. 1H), 3.50 (s, 1H), 3.34 (d, J= 11.5 Hz. 1H), 3.01 -2.95 (m, 1H), 1.21 (dd. J = 8.3, 7.0 Hz. 6H); 19F NMR (376 MHz, CDCI3) δ -75.61, -182.14,-182.16, -182.18
261C M 565 (M+H) 113 (dec) (CDCIa) δ 8.66 (s, 1H), 8.22 -8.19 (m, 2H), 8.18 (s, 1H), 7.91 (d, J= 8.4 Hz. 2H), 7.79 (d. J = 8.4 Hz, 4H), 7.50 - 7.44 (m, 1 H), 7.44 - 7.36 (m. 2H), 7.29 - 7.25 (m. 1 H), 3.55 (d, J = 11.5 Hz, 1 H), 3.50 (s, 1 H), 3.34 (d, J=11.5 Hz, 1H), 3.04-2.91 (m, 1H), 1.21 (dd, J =8.3,6.9 Hz. 6H); 19F NMR (376 MHz. CDCIa) δ -62.50
186
ID Synthesis Method MS mp (’C) ’H NMR, ”C, or ”F NMR
262C M 631 (M+H) 115 (dec) (CDCIj) δ 8.58 (s, 1H), 8.19 (dd, J= 8.5, 6.8 Hz, 3H), 7.80 (dd, J= 12.5, 5.3 Hz, 4H), 7.50 - 7.44 (m, 1H), 7.42 - 7.36 (m, 4H), 7.29 - 7.24 (m, 1 H), 3.53 (dd, J = 14.9, 11.4 Hz, 2H). 3.34 (d, J = 11.5 Hz, 1 H), 3.03 2.89 (m, 1H), 1.21 (dd, J= 8.4, 6.9 Hz, 6H); ’9F NMR (376 MHz, CDCIj) δ -85.90, -87.85
263C M 711 (M+H) 115.3- 117.6 (CDCIj) δ 8.59 (s, 1H), 8.33 (s, 1H), 8.24 (d, J- 8.4 Hz, 2H). 8.13 (s, 1H), 7.86 - 7.77 (m, 5H), 7.73 (d, J= 7.2 Hz, 1 H), 7.62 (dt, J = 21.6, 7.2 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.37 - 7.28 (m, 3H). 7.24 - 7.17 (m, 1H), 4.34 (s, 2H), 3.20 (dt, J= 13.7, 6.8 Hz, 2H), 1.25 (d, J= 6.9 Hz, 6H); ”F NMR (376 MHz, CDCIj) δ -58.02
264C M 647 (M+H) 116-120 (300 MHz, CDCIj) δ 8.57 (s, 1H), 8.23 (d, J = 4.9 Hz, 1 H), 8.18 (dd, J = 8.3, 1.7 Hz, 2H), 7.84- 7.75 (m, 4H), 7.39 (dd, J- 8.8, 6.8 Hz, 3H), 6.89 (d, J = 3.0 Hz. 1 H), 6.80 (dd, J= 8.6, 3.1 Hz, 1H), 3.84 (s, 3H), 3.51 (d, J- 11.6 Hz, 1H), 3.48-3.43 (m, 1H), 3.31 (d, J= 11.5 Hz, 1H), 2.65-2.40 (m, 2H), 1.41 (s, 3H), 1.22 (t, J = 7.6 Hz, 3H)
NMR spectral data were acquired using a 400 MHz instrument except where noted.
Table 4A: Analytlcal Data for Optlcally Active Compounds in Table 3
187
ID Séparation Method MS Chiral Purity (%) ’HNMR(D)1
234C A 571 (M+H) 98.73 (CDCIa) δ 8.58 (s, 1 H). 8.31 (s, 1H), 8.23 (d, J - 8.4 Hz, 2H), 7.87 - 7.78 (m, 4H), 7.41 (t, J = 6.3 Hz, 3H). 7.37 - 7.31 (m, 1 H), 7.28 (d, J = 7.0 Hz. 1 H), 4.09 - 3.98 (m, 2H), 2.29 (s, 3H)
235C A 571 (M+H) 95.75 (CDCIa) δ 8.58 (s, 1H), 8.31 (s. 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87-7.78 (m, 4H). 7.41 (dd, J « 7.0, 5.6 Hz, 3H), 7.34 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 6.0 Hz, 1H), 4.09 - 3.98 (m, 2H), 2.29 (s, 3H)
236C A 565 (M+H) 96.32 (CDCIa) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J= 8.4 Hz. 2H), 7.81 (dd, J = 11.7, 5.1 Hz, 4H), 7.40 (d, J = 8.4 Hz, 2H), 7.35 (t, J- 7.7 Hz, 1H), 7.24-7.18 (m, 2H), 4.02 (s, 2H), 2.53 (q, J~ 7.5 Hz, 2H), 2.21 (s, 3H). 1.21 (t, J =7.6 Hz, 3H)
237C A 565 (M+H) 92.33 (CDCIa) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.81 (dd, J = 11.7, 5.1 Hz, 4H), 7.40 (d, J = 8.3 Hz, 2H), 7.35 (dd, J = 10.4, 4.9 Hz, 1 H), 7.24 - 7.20 (m, 2H), 4.02 (s, 2H), 2.59-2.45 (m, 2H), 2.21 (s, 3H), 1.21 (t, J = 7.6 Hz, 3H)
238C B 579 (M+H) 95.41 (CDCIa) δ 8.58 (s, 1H), 8.29 (d, J = 3.9 Hz, 1H), 8.23 (d, J= 8.4 Hz, 2H), 7.82 (t, J = 8.8 Hz, 4H), 7.40 (d, J = 8.3 Hz, 3H), 7.31 (d, J= 6.9 Hz, 1H), 7.19 (dd, J= 7.6, 5.2 Hz, 1 H), 4.03 (s, 2H), 2.83 - 2.73 (m, 1 H), 2.21 (s, 3H), 1.25 - 1.18 (m. 6H)
188
ID Séparation Method MS Chiral Purity (%) ’HNMR(n)1
239C B 579 (M+H) 92.68 (CDCIj) δ 8.58 (s, 1H), 8.30 (s, 1H), 8.22 (t, J = 8.7 Hz, 2H), 7.82 (t, J = 8.7 Hz. 4H), 7.40 (d. J = 8.2 Hz, 3H). 7.31 (d, J = 8.0 Hz, 1H). 7.20 (d, J= 7.3 Hz. 1H). 4.03 (s, 2H), 2.83 - 2.73 (m, 1H), 2.21 (s, 3H), 1.25-1.18 (m, 6H)
NMR spectral data were acquired uslng a 400 MHz Instrument except where noted.
Table 5: Blologlcal Results
Compoun d Number % Mortality CEW50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA200 ppm
1C A A D
2C A A D
3C A A D
4C A A B
5C A A B
6C A A D
7C A D D
8C A A B
9C A A D
10C A A D
11C A A D
12C A A B
189
Compoun d Number % Mortality CEW 50 □g/cm* % Mortality BAW50 □g/cm2 % Mortality GPA200 ppm
13C A A B
14C A A B
15C A A A
16C A A D
17C A A B
18C A A B
19C A A B
20C A A D
21C C C D
22C A A B
23C A A D
24C A A B
25C A A D
26C C C D
27C A A B
28C A A B
29C A A B
30C A A B
31C A A B
32C C C B
33C A A B
34C C C B
35C A A B
190
Compoun d Number % Mortality CEW 50 □g/cm* % Mortality BAW50 □g/cm2 % Mortality GPA 200 ppm
36C A A D
37C A A D
38C A A D
39C C C D
40C A A B
41C A A D
42C A A D
43C A A B
44C A A D
45C A A C
46C A A D
47C A A B
. 48C A A C
49C A A B
SOC A A C
51C A A D
52C D B B
53C D B B
54C A A D
55C A A D
56C A A C
57C A A B
58C A A B
I9I
Compoun d Number % Mortality CEW50 □g/cma % Mortality BAW50 □g/cm1 % Mortality GPA 200 ppm
59C A A B
60C A A D
61C A A C
62C A A B
63C A A D
64C A A D
65C A A B
66C A A B
67C A A D
68C A A B
69C A A C
70C A A D
71C A A D
72C A A B
73C A A B
74C A A D
75C A A B
76C A A B
77C A A B
78C A A B
79C A A B
80C A A D
81C A A D
192
Compoun d Number % Mortality CEW50 □g/cma % Mortality BAW50 □g/cm* % Mortality GPA 200 ppm
82C A A C
83C A A C
84C A A D
85C A A B
86C A A D
87C C C B
88C A A B
89C A A D
90C A A B
91C D D C
92C A A B
93C A A D
94C A A D
95C A A B
96C A A B
97C A A C
98C C A C
99C A A C
100C A A C
101C A A C
102C A A C
103C A A C
104C A A C
193
Compoun d Number % Mortallty CEW50 □g/cm1 % Mortallty BAW50 □g/cm1 % Mortallty GPA 200 ppm
105C A A C
106C A A C
107C D D C
108C A A D
109C A A C
110C A A C
111c A A B
112C A A B
113C A A C
114C A A C
115C D B C
116C A A C
117C A A D
118C A A D
119C A A D
120C A A C
121C A A B
122C A A C
123C A A C
124C A A C
125C A A c
126C A A c
127C A A c
194
Compoun d Number % Mortality CEW 50 □g/cml % Mortality BAW50 □g/cm* % Mortality GPA200 ppm
128C A A C
129C A A C
1300 A A C
131C A A D
132C A A B
133C A A B
134C A A C
135C A A D
136C A A D
137C A A D
138C A A B
139C A A B
140C A A B
141C A A D
142C A A D
143C A A C
144C A A C
145C A A B
146C A A B
147C A A B
148C A A C
149C A A D
150C A A D
195
Compoun d Number % Mortality CEW50 □g/cm1 % Mortality BAW50 □g/cn? % Mortality GPA 200 ppm
151C A A B
152C A A C
153C A d C
154C A A B
155C A A D
156C A A B
157C A A B
158C A A B
159C A A C
160C A A C
161C A A C
162C A A C
163C A A C
164C A A C
165C A A C
166C A A C
167C A A C
168C A A D
169C A A C
170C A A C
171C A A C
172C A A D
173C A A D
196
Compoun d Number % Mortaiity CEW 50 □g/cm1 % Mortaiity BAW50 □g/cm1 % Mortaiity GPA200 ppm
174C A A B
175C A A D
176C A A C
177C A A D
178C A A D
179C A A D
180C A A B
181C A A B
182C A A B
183C A A D
184C A A D
185C A A D
186C A A B
187C A A D
188C A A B
189C A A B
190C A A B
191C A A D
192C A A B
193C A A B
194C A A B
195C A A B
196C A A D
197
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA 200 ppm
197C A A D
198C A A D
199C A A C
200C A A C
201C A A B
202C A A B
203C A A B
204C A A B
205C A A B
206C A A D
207C d D C
208C A A D
209C A A D
21 OC A A C
211C A A D
212C A A D
213C A A B
214C A A C
215C A A C
216C A A C
217C A A C
218C A A C
219C A A C
I98
Compoun d Number % Mortallty CEW 50 □g/cm1 % Mortallty BAW50 □g/cm2 % Mortallty GPA 200 ppm
220C A A C
221C A A C
222C A A C
223C A A C
224C A A B
225C A A C
226C A A C
227C A A C
228C A A C
229C A A C
230C A A C
231C A A C
232C A A C
233C A A C
234C A A C
235C A A C
236C A A C
237C A A C
238C A A C
239C A A c
240C A A D
241C A A C
242C A A B
199
Compoun d Number % Mortality CEW50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA200 ppm
243C A A B
244C A A D
245C A A B
246C A A C
247C A A C
248C A A B
249C A A C
250C A A B
251C A A B
252C A A C
253C A A D
254C A A B
255C A A D
256C A A B
257C A A D
258C A A C
259C A A D
260C A A D
261C A A D
262C A A B
263C A A B
264C C A C
200

Claims (6)

  1. WE CLAtM:
    1. A molécule according to Formulas Two or Three RI
    Dl Di
    Formula
  2. 2
    Formula 3 whereln:
    (a) An Is (1 ) furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, thienyl, or (2) substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, or substituted thienyl, whereln sald substituted furanyl, substituted phenyl, substituted
    10 pyridazinyl, substituted pyridyl, substituted pyrimidinyl, and substituted thienyl, hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, NO2, Ci-Ce alkyl, CrC6 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkoxy, C3-Ce halocycloalkoxy, Ci-C6 alkoxy, Ci-Ce haloalkoxy, C2-C6 alkenyl, C2-Ce alkynyl, S(=O)n(CrC6 alkyl), S(=O)n(Ci-C6 haloalkyl), OSO2(Ci-C6
    15 alkyl), OSO2(CrC6 haloalkyl), C(=O)NRxRy, (Ci-C6 alkyl)NRxRy. C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(Ci-Ce haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-C6 alkenyl), (Ci-C6 alkyl)O(CrC6 alkyl), (CrCe alkyt)S(CrCe alkyl), C(=O)(CrC6 alkyl)C(=O)O(Ci-C6 alkyl), phenyl, phenoxy, substituted phenyl, and
    20 substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, NO2, CrC6 alkyl, CrCe haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, CrC6 alkoxy, CrCe haloalkoxy, C2-Ce alkenyl, C2-Ce
    25 alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrC6 alkyl), OSO2(C1-C6 haloalkyl), C(=O)NRxRy, (CrCe alkyl)NRKRy, C(=O)(CrC6 alkyl), C(=O)O(Ci-C6 alkyl), C(=O)(CrC6 haloalkyl), C(=O)O(CrC6 haloalkyl), C(=O)(C3C6 cycloalkyl), C(=O)O(C3-C6 cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-C6 alkenyl), (CrCe alkyl)O(Ci-C6 alkyl), (Ci-Ce alkyl)S(CrC6 alkyl), C(=O)(CrC6
    30 alkyOCfsOJOtCi-Ce alkyl) phenyl, and phenoxy;
    201 (b) Het Is a 5 or 6 membered, saturated or unsaturated, heterocyclic ring, containïng one or more heteroatoms Independently selected from nltrogen, sulfur, or oxygen, and where Αη and Ar2 are not ortho to each other (but may be meta or para, such as, for a five membered ring they are 1,3 and for a 6 membered ring they are either 1,3 or 1,4), and where sald heterocyclic ring may also be substituted with one or more substituents independently selected from H, F, Cl, Br, I, CN, NO2, oxo, Ci-Ce alkyl, CrCe haloalkyl, C3-Ce cycloalkyl, C3-C6 halocycloalkyl, C3-Ce cydoalkoxy, C3-Ce halocycioalkoxy, CrCe alkoxy, CrCe haloalkoxy, C2-Ce alkenyl, C2-Ce alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrC6 haloalkyl), OSO2(Ci-C0 alkyl), OSO2(Ci-Ce haloalkyl), C(=O)NRxRy, (CrC6 alkyl)NRxRy, C(=O)(CrC6 alkyl), C(=O)O(Ci-Ce alkyl), C(=O)(CrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-C6 alkenyl), (CrCe alkyl)O(CrCe alkyl), (Ci-C0 alkyl)S(Ci-Ce alkyl), C(=O)(CrCe aikyl)C(=O)O(Ci-Ce alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents independently selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, CrCe haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cydoalkoxy, C3-C6 halocycioalkoxy, CrCe alkoxy, CrCe haloalkoxy, C2-Ce alkenyl, C2-Ce alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrCe alkyl), 0S02(CrCe haloalkyl), C(=O)H, C(=O)NRxRy, (CrC6 alkyl)NRxRy, C(=0)(CrC6 alkyl), C(=O)O(CrC6 alkyl), C(=O)(CrC6 haloalkyl), C(=O)O(CrC6 haloalkyl), C(=O)(C3-C6 cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-C6 alkenyl), (CrC6 alkyl)O(CrC6 alkyl), (CrC6 alkyl)S(CrC6 alkyl), C(=O)(CrCe alkyl)C(=O)O(CrCe alkyl), phenyl, and phenoxy;
    (c) Ar2 Is (1) furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, thienyl, or (2) substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, or substituted thienyl, wherein said substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, and substituted thienyl, hâve one or more substituents independently 202 selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, Ci-C6 haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, CpCg alkoxy, Ci-Ce haloalkoxy, Cî-Ce alkenyl, C2-Ce alkynyl, S(=O)n(Ci-C6 alkyl), S(=O)n(Ci-Ce haloalkyl), OSO2(C1-Ce alkyl), OSO2(Ci-Ce haloalkyl), C(=O)NRxRy, (CrC6 alkyl)NRxRy, C(=O)(CrC6 alkyl), C(=O)O(CrCe alkyl), C(=O)(CrC6 haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-C6 cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-Cg alkenyl), (CrCg alkyl)O(CrCe alkyl), (CrC6 alkyl)S(Ci-C6 alkyl), C(=O)(C1-C6 alkyl)C(=O)O(Ci-Ce alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, C^Cg haloalkyl, C3-Cg cycloalkyl, C3-C6 halocycloalkyl, C3-Cg cycloalkoxy, C3-Cg halocycloalkoxy, CpCg alkoxy, Ci-Ce haloalkoxy, C2-Ce alkenyl, C2-Cg alkynyl, S(=O)ri(CrCe alkyl), S(=O)n(CrCg haloalkyl), OSO2(CrCg alkyl), OSO2(CrCe haloalkyl), C(=O)H, C(=O)NRxRy, (CrCg alkyl)NRxRy, C(=O)(CrC6 alkyl), C(=O)O(CrCs alkyl), C(=O)(CrCg haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-CS cycloalkyl), C(=O)O(C3-Cg cycloalkyl), C(=O)(CrCg haloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-Cg alkenyl), (CrCg alkyl)O(Ci-Ce alkyl), (CrCe alkyl)S(CrCg alkyl), C(=O)(Ci-Cg alkyl)C(=O)O(Ci-Cg alkyl), phenyl, and phenoxy;
    (d) R1 Is selected from H, CN, F, Cl, Br, I, CpCg alkyl, C3-Cg cycloalkyl, C3-Ce cycloalkoxy, CrCe alkoxy, C2-Ce alkenyl, C2-C6 alkynyl, S(=O)n(CrCe alkyl), OSO2(Ci-Ce alkyl), C(=O)NRxRy, (Ci-C6 alkyl)NRxRy, C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=O)(C3-C6 cycloalkyl), C(=O)O(C3-C6 cycloalkyl), C(=O)(C2-C6 alkenyl), C(=O)O(C2-C6 alkenyl), (CrC6 alkyl)O(Ci-C6 alkyl), (CrC6 alkyl)S(CrCe alkyl), C(=O)(Ci-Cg alkyl)C(=O)O(C1-C6 alkyl), phenyl, or phenoxy, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, and phenoxy, are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, NO2, oxo, Ci-Cg alkyl, Ci-Cg haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-Cg cycloalkoxy, C3-Cg halocycloalkoxy, CpCg alkoxy, CrCe haloalkoxy, C2-Cg alkenyl, C2-Cg alkynyl, S(=O)n(CrC6 alkyl), S(=O)n(CrCg haloalkyl), OSO2(Ci-C6 alkyl), OSO2(CrCg haloalkyl), C(=O)NRxRy, (CrC6 alkyl)NRxRy, C(=O)(CrC6 alkyl), C(=O)O(CrC6
    203 selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, CrCe haloalkyl, C3-C6 cycloalkyl, C3-C0 halocycloalkyl, C3-C6 cycloalkoxy, C3-Cq halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, C2-C0 alkenyl, C2-C0 alkynyl, S(=O)n(Ci-Ce alkyl), S(=0)n(CrCe haloalkyl). OSO2(CrC6 alkyl), OSO2(CrC0 haloalkyl), C(=0)NRxRy,
    5 (CrCe alkyl)NRxRy. 0(=0)(0,-06 alkyl), Ο(=Ο)Ο(ΟΓΟβ alkyl), 0(=0)(0,-06 haloalkyl). 0(=0)0(0,-0β haloalkyl). Ο(=Ο)(Ο36 cycloalkyl), 0(=0)0(03-0β cycloalkyl), C(=O)(C2-Ce alkenyl), 0(=0)0(02-06 alkenyl), (Ci-Ce alkyl)O(Ci-C0 alkyl), (C,-Ce alkyl)S(C,-C6 alkyl). Ο(=Ο)(Ο,-Οβ alkyl)C(=O)O(C,-Ce alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy,
    10 whereln such substituted phenyl and substituted phenoxy hâve one or more substituents independently selected from H, F, Cl, Br, I, CN, N02, Ci-Ce alkyl, Ci-C0 haloalkyl, C3-C0 cycloalkyl, C3-C0 halocycloalkyl, C3-C0 cycloalkoxy, C3-C0 halocycloalkoxy, Ci-C0 alkoxy, C,-C0 haloalkoxy, C2-C0 alkenyl, C2-Ce alkynyl, S(=0)n(Ci-C6 alkyl), S(=0)n(Ci-C6 haloalkyl), OSO2(Ci-C0
    15 alkyl), OSO2(C,-C0 haloalkyl), C(=0)H, C(=O)NRxRy, (C,-Ce alkyl)NRxRy, C(=O)(C,-C0 alkyl), C(=O)O(C,-C0 alkyl), Ο(=Ο)(Ο,-Ο0 haloalkyl), 0(=0)0(0,-06 haloalkyl), C(=O)(C3-C0 cycloalkyl), Ο(=Ο)Ο(Ο3β cycloalkyl), Ο(=Ο)(Ο,-Ο0 haloalkyl), C(=O)(C2-C0 alkenyl), C(=O)O(C2-C0 alkenyl), (CrC0 alkyl)O(CrC0 alkyl), (Ο,-Οβ alkyl)S(Ci-C0 alkyl), C(=O)(Ci-C0 alkyl)C(=0)0(Ci-C6 alkyl), phenyl, 20 and phenoxy;
    (d) R1 is selected from H, CN, F, Cl, Br, I, CrCe alkyl, Ο30 cycloalkyl, C3-C0 cycloalkoxy, Ο,-Οβ alkoxy, C2-C0 alkenyl, C2-C0 alkynyl, S(=0)n(Ci-C6 alkyl), OSO2(C,-C0 alkyl), C(=0)NRxRy, (C,-C0 alkyl)NRxRy, Ο(=Ο)(Ο,-Οβ alkyl),
    25 Ο(=Ο)Ο(Ο,-Ο0 alkyl), Ο(=Ο)(Ο36 cycloalkyl), C(=O)O(C3-Ce cycloalkyl),
    C(=0)(C2-Ce alkenyl), C(=O)O(C2-C0 alkenyl), (C,-C6 alkyl)O(C,-C6 alkyl), (C,-C0 alkyl)S(CrC0 alkyl), C(=O)(Ci-C0 alkyl)C(=O)O(Ci-C0 alkyl), phenyl, or phenoxy, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, and phenoxy, are optionally substituted with one or more substituents
    30 independently selected from F, Cl, Br, I, CN, N02, oxo, CrC0 alkyl, CrCe haloalkyl, C3-Ce cycloalkyl, C3-C0 halocycloalkyl, C3-C0 cycloalkoxy, C3-C0 halocycloalkoxy, CrC0 alkoxy, Ci-C0 haloalkoxy, C2-Ce alkenyl, C2-C0 alkynyl, S(=0)n(CrC6 alkyl), S(=O)n(Ci-C0 haloalkyl), OSO2(CrC0 alkyl), OSO2(CrC6 haloalkyl), C(=0)NRxRy. (CrCe alkyl)NRxRy, 0(=0)(0,-06 alkyl), C(=0)0(Ci-C6 204 alkyl), phenyl, phenoxy, and Het-1, whereln each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, phenoxy, and Het-1, are optionally substituted with one or more substituents independently selected from F, Cl, Br, I, CN, NO2, oxo, NRxRy, Ci-C6 alkyl, Ci-Cg haloalkyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C3-C6 cycloalkoxy, C3-Ce halocycloalkoxy, CrCe alkoxy, Ci-Ce haloalkoxy, C2-Ce alkenyl, C3-C6 cycloalkenyl, C2-Ce alkynyl, S(=O)n(Ci-Ce alkyl), S(=O)n(Ci-Ce haloalkyl), OSO2(CrC6 alkyl), OSO2(Ci-Ce haloalkyl), C(=O)H, C(=O)OH, C(=O)NRxRy, (Cr C6 alkyl)NRxRy, C(=O)(CrC6 alkyl). C(=O)O(CrC6 alkyl), C(=O)(CrC6 haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-Ce alkenyl), (Ci-Ce alkyl)O(CrCe alkyl), (Ci-C6 alkyl)S(CrCe alkyl), C(=O)(Ci-Ce alkyl)C(=O)O(Ci-Ce alkyl), phenyl, halophenyl, phenoxy, and Het-1;
    (I) n=0,1,or2;
    (j) Rx and Ry are independently selected from H, CrCe alkyl, CrCe haloalkyl, C3-Ce cycloalkyl, C3-C6 halocycloalkyl, C2-Ce alkenyl, C2-Ce alkynyl, S(=O)n(Ci-C6 alkyl), S(=O)n(Ci-Ce haloalkyl), OSO2(CrC6 alkyl), OSO2(CrCe haloalkyl), C(=O)H, C(=O)(CrCe alkyl), C(=O)O(CrC6 alkyl), C(=O)(CrC6 haloalkyl), C(=O)O(C1-Ce haloalkyl), C(=O)(C3-C0 cycloalkyl), C(=O)O(C3-C6 cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-C6 alkenyl), (CrC6 alkyl)O(CrC6 alkyl), (CrC6 alkyl)S(CrCe alkyl), C(=O)(CrC6 alkyl)C(=O)O(CrC6 alkyl), and phenyl, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, phenoxy, and Het-1, are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, NO2, oxo, CrCe alkyl, CrC6 haloalkyl, C3-Ce cycloalkyl, C3-C6 halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, CrCe alkoxy, Ci-C6 haloalkoxy, C2-Ce alkenyl, C3-C6 cycloalkenyl, C2-Ce alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrC6 haloalkyl), OSO2(CrC6 alkyl), OSO2(CrC6 haloalkyl), C(=O)H, C(=O)OH, C(=O)(Ci-C6 alkyl), C(=O)O(CrC6 alkyl), C(=O)(CrC6 haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-C6 cycloalkyl), C(=O)O(C3-C6 cycloalkyl), C(=O)(C2-Ce alkenyl), C(=O)O(C2-C6 alkenyl), (CrC6 alkyl)O(CrC6 alkyl), (CrC6 alkyl)S(Ci-C6 alkyl), 205
    C(=O)(C1-Ce alkyl)C(=O)O(CrCe alkyl), phenyl, halophenyl, phenoxy, and Het-1, or Rx and Ry together can optionally form a 5- to 7-membered saturated or unsaturated cyclic group which may contaln one or more heteroatoms selected from nltrogen, sulfur, and oxygen, and where said cyclic
    5 group can contain >C=0 or >C=S, and where sald cyclic group may be substituted with F, Cl, Br, I, CN, CrC6 alkyi, Ci-C8 haloalkyl, C3-C8 cycloalkyi, C3C8 haiocycioalkyl, C3-C8 cycloalkoxy, C3-C8 halocycloalkoxy, Ci-Ce alkoxy, CrC8 haloalkoxy, C2-C8 alkenyl, C3-C8 cycloalkenyl, C2-C8 alkynyl, S(=O)n(CrC8 aîkyl), S(=O)n(CrC6 haloalkyl), OSO2(CrC8 alkyl), OSOîfCrCe haloalkyl), C(=O)(CrC8
    10 alkyl), C(=O)O(CrC8 alkyl), C(=O)(Ct-C8 haloalkyl), C(=O)O(CrC8 haloalkyl), C(=O)(C3-C8 cycloalkyi), C(=O)O(C3-C8 cycloalkyi), C(=O)(C2-C8 alkenyl), C(=O)O(C2-C8 alkenyl), (Ci-C8 alkyl)O(Ci-C8 alkyl), (CpC8 alkyl)S(Ci-C8 alkyl), C(=O)(CrC8 alkyi)C(=O)O(Ci-C8 alkyl), phenyl, substituted phenyl, phenoxy, and Het-1 ; and (k) Het-1 is a 5- or 6-membered, saturated or unsaturated, heterocyclic ring, containlng one or more heteroatoms independently selected from nitrogen, sulfur or oxygen.
    20 2. A molécule according to claim 1 wherein
    - An is a substituted phenyl wherein said substituted phenyl has one or more substituents independently selected from CpCe haloalkyl and Ci-C8 haloalkoxy, preferably independently selected from CF3, OCF3, and
    25 OCF2CF3;
    - Het is selected from benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazolyl, cinnolinyl, furanyl, indazolyl, indolyl, imidazolyl, isoindolyl, Isoquinolinyl, isothiazolyl, isoxazolyl,
    30 oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyi, tetrazolyl, thiazolinyl, thiazolyl, threnyl, triazinyl, triazolyl, piperazinyl, pîperidinyl, morpholinyl, pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydro-quinolinyl, 4,5-dihydro-oxazolyl, 4,5206 dihydro-1H-pyrazotyt, 4,5-dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]oxadîazolyl, preferably from triazolyl, imidazolyl, or pyrazolyl, which can be substituted or unsubstituted, and more preferably is a 1,2,4-triazolyl a 1,4-imidazolyl an optionally substituted 1,3-pyrazolyl a 1,4-pyrazolyt Ar2 is a phenyl,
    R1 is H or C1-C6 alkyl, preferably H or CH3;
    . R4 is phenyl, CpCg alkylphenyl, or Ci-Cg alkyl-O-phenyl, wherein each alkyl and phenyl are optionally substituted with one or more substituents independently selected from F, Cl, NRXRZ, Ct-Ce alkyl, or CrC6 alkoxy;
    207
    - R5 Is substituted with one OH and optionally, one or more substituents selected from Ci-Ce haloalkyl, and Ci-C6 alkyl;
    5 - Rx and Ry are Independently selected from H and phenyl, wherein said phenyl, may be optionally substituted with one or more substituents Independently selected from F and Cl; or
    - Het-1 Is selected from benzofuranyl, benzoisothiazolyl, benzolsoxazolyl,
    10 benzoxazolyl, benzothienyl, benzothiazolyl, benzothiadizolyl, cinnolinyl, furanyl, indazolyl, Indolyl, imidazolyl, isoindolyl, isoquinolinyl, Isothiazolyl, isoxazolyl, oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl,
    15 thienylpyrazolyl, triazinyl, triazolyl, piperazinyl, piperidinyl, morpholinyl, pyrrolidlnyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydroquinolinyl, 4,5-dihydro-oxazolyl, 4,5-dihydro-1 H-pyrazolyl, 4,5-dihydroisoxazolyl, and 2,3-dihydro-[1,3,4]-oxadiazolyl, preferably from benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl,
    20 benzothienyl, benzothiazolyl cinnolinyl, furanyl, indazolyl, indolyl, imidazolyl, Isoindolyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl. pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl, triazinyl, triazolyl,
    25 piperazinyl, piperidinyl, morpholinyl. pyrrolidinyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydro-quinolinyl, 4,5-dihydro-oxazolyl, 4,5dihydro-1 H-pyrazolyl, 4,5-dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]oxadiazolyl, more preferably from benzothiadizolyl, furanyl, oxazolyl, and thienylpyrazolyl.
  3. 3. A molécule according to claim 1 wherein
    Δη is a substituted phenyl wherein said substituted phenyl, has one or more CrC6 haloalkoxy;
    Het is a triazolyl;
    208
    Ar2 is a phenyl;
    R1 is H;
    R4 is phenyl, wherein said phenyl is optionally substîtuted with one or more substituents independently selected from F, Cl, NRxRy, CrC6 alkyl, or Ci-C6 5 alkoxy; and
    R5 is a 2 to 4 membered saturated or unsaturated hydrocarbyl linkage where said linkage may also be substîtuted with at least one OH and optionally one or more substituents selected from CrC6 alkyl, and Ci-C6 haloalkyl; and
    Rx and Ry are independently selected from H and phenyl, wherein said
    10 phenyl, may be optionally substîtuted with one or more substituents independently selected from F and Cl.
  4. 4. A molécule according to claim 1 wherein said molécule Is selected from
    240C - -X 241C /=N \/011 N CI 242C 243C - X? 244C rN G /Cl
    209
    17014 CJ
    245C s^oh /=n y~-n / Q o- 246C F-. rN y- XF 247C F-.. /=N \--N XF 248C f\F FVn^Ï & 249C 250C 251C
    210
    211
    259C R 260C F F g—\ PN F7\ J Y-n Jl Λ JTU N'Vp p.OH X 261C 262C 263C 264C /=N sAx />
  5. 5. A composition comprising a molécule according to any of daims 1 to 4.
    212
  6. 6. A process to apply a composition according to claim 5 said process comprising applying a composition according to claim 5, to an area to control a pest, in an amount sufficient to control such pest.
OA1201400346 2012-02-02 2013-01-23 Pesticidal compositions and processes related thereto. OA17014A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/594,107 2012-02-02

Publications (1)

Publication Number Publication Date
OA17014A true OA17014A (en) 2016-02-26

Family

ID=

Similar Documents

Publication Publication Date Title
AU2013215537B2 (en) Pesticidal compositions and processes related thereto
US9018136B2 (en) Pesticidal compositions and processes related thereto
US9018388B2 (en) Pesticidal compositions and processes related thereto
US9107410B2 (en) Pesticidal compositions and processes related thereto
US20160135464A1 (en) Pesticidal compositions and processes related thereto
OA17014A (en) Pesticidal compositions and processes related thereto.
OA19159A (en) Pesticidal Compositions and Processes Related Thereto
OA16500A (en) Pesticidal compositions and processes related thereto.
OA17013A (en) Pesticidal compositions and processes related thereto.
NZ613659B2 (en) Pesticidal compositions and processes related thereto
AU2011296266A1 (en) Pesticidal compositions