OA17013A - Pesticidal compositions and processes related thereto. - Google Patents

Pesticidal compositions and processes related thereto. Download PDF

Info

Publication number
OA17013A
OA17013A OA1201400345 OA17013A OA 17013 A OA17013 A OA 17013A OA 1201400345 OA1201400345 OA 1201400345 OA 17013 A OA17013 A OA 17013A
Authority
OA
OAPI
Prior art keywords
alkyl
crce
spp
phenyl
cdci
Prior art date
Application number
OA1201400345
Inventor
Erich W. BAUM
Gary D. Crouse
William Hunter Dent
Thomas C. Sparks
Lawrence C. Creemer
Original Assignee
Dow Agrosciences Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Agrosciences Llc filed Critical Dow Agrosciences Llc
Publication of OA17013A publication Critical patent/OA17013A/en

Links

Abstract

This document discloses molecules having the following formulas (formula one & formula two and formula three). The Ar1, Het, Ar2, R1, R2, R3, R4, and R5 are further described herein.

Description

FIELD OF THE INVENTION
The Invention disclosed in this document Is related to the field of processes to produce 10 molécules that are useful as pesticides (e.g., acaricides, insecticides, mollusclcides, and nematicldes), such molécules, and processes of using such molécules to control pests.
BACKGROUND OF THE INVENTION
Pests cause millions of human deaths around the world each year. Furthermore, there are more than ten thousand species of pests that cause losses in agriculture. The worid-wide .
agricultural losses amount to billions of U.S. dollars each year.
Termites cause damage to ail klnds of private and public structures. The worid-wide termite damage losses amount to billions of U.S. dollars each year.
Stored food pests eat and adulterate stored food. The worid-wide stored food losses amount to billions of U.S. dollars each year, but more Importantly, deprive people of needed food.
There Is an acute need for new pesticides. Certain pests are developing résistance to pesticides in current use. Hundreds of pest species are résistant to one or more pesticides. The development of résistance to some of the older pesticides, such as DDT, the carbamates, and 25 the organophosphates, is well known, but résistance has even developed to some of the newer pesticides.
Therefore, for many reasons, Including the above reasons, a need exists for new pesticides.
DEFINITIONS
The examples given In the définitions are generally non-exhaustive and must not be construed as limiting the Invention disclosed in this document. It is understood that a substituent should comply with chemical bonding rules and steric compatibility constraints in relation to the particular molécule to which It is attached.
“Acarlclde Group’ is defined under the heading ACARICIDES’.
‘Al Group’ is defined after the place in this document where the ‘Herbicide Group* Is defined.
Alkenyl means an acyclic, unsaturated (at least one carbon-carbon double bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, vinyl, allyl, butenyl, pentenyl, and hexenyl.
“Alkenyloxy means an alkenyl further consisting of a carbon-oxygen single bond, for example, allyloxy, butenytoxy, pentenyloxy, hexenytoxy.
Alkoxy“ means an alkyl further consisting of a carbon-oxygen single bond, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, Isobutoxy, and tert-butoxy.
“Alkyl means an acyclic, saturated, branched or unbranched, substituent consisting of carbon and hydrogen, for example, methyl, ethyl, propyl, isopropyl, butyl, and tert-butyl.
“Alkynyl means an acyclic, unsaturated (at least one carbon-carbon triple bond), branched or unbranched, substituent consisting of carbon and hydrogen, for example, ethynyl, propargyl, butynyl, and pentynyl.
Alkynyloxy means an alkynyl further consisting of a carbon-oxygen single bond, for example, pentynyloxy, hexynyloxy, heptynyloxy, and octynyloxy.
“Aryl means a cyclic, aromatic substituent consisting of hydrogen and carbon, for example, phenyl, naphthyl, and biphenyl.
“Cycloalkenyi means a monocyclic or polycyclic, unsaturated (at least one carboncarbon double bond) substituent consisting of carbon and hydrogen, for example, cyclobutenyl, cyclopentenyl, cyclohexenyt, norbomenyl, bicyclo[2.2.2]octenyt, tetrahydronaphthyl, hexahydronaphthyl, and octahydronaphthyl.
Cycloalkenyloxy means a cycloalkenyi further consisting of a carbon-oxygen single bond, for example, cyclobutenyloxy, cyciopentenyloxy, norbomenyloxy, and bicydo[2.2.2]octenyloxy.
“Cycloalkyl means a monocyclic or polycyclic, saturated substituent consisting of carbon and hydrogen, for example, cyclopropyl, cyclobutyt, cyclopentyl, norbomyl, bicyclo(2.2.2]octyl, and decahydronaphthyl.
Cycloalkoxy means a cycloalkyl further consisting of a carbon-oxygen single bond, for example, cyclopropyloxy, cyclobutytoxy, cyclopentyloxy, norbomyloxy, and bicyclo[2.2.2]octy!oxy.
Fungiclde Group* is defined under the heading “FUNGICIDES.
Halo means fluoro, chlore, bromo, and iodo.
Haloalkoxy” means an alkoxy further consisting of, from one to the maximum possible number of Identical or different, halos, for example, fluoromethoxy, trifluoromethoxy, 2,2difluoropropoxy, chloromethoxy, trichloromethoxy, 1,1,2,2-tetrafluoroethoxy, and pentafluoroethoxy.
“Haloalkyl* means an alkyl further consisting of, from one to the maximum possible number of, identical or different, halos, for example, fluoromethyl, trifluoromethyl, 2,2difluoropropyl, chloromethyl, trichloromethyl, and 1,1,2,2-tetrafluoroethyl.
“Herbicide Group Is defined under the heading “HERBICIDES.
Heterocyclyl means a cyclic substituent that may be fully saturated, partially unsaturated, or fully unsaturated, where the cyclic structure contains at least one carbon and at least one heteroatom, where said heteroatom ls nitrogen, sulfur, or oxygen. Examples of aromatic heterocyclyls Include, but are not limited to, benzofuranyl, benzolsothlazolyl, benzoisoxazolyl, benzoxazolyl, benzothlenyl, benzothiazolyl cinnoltnyl, furanyl, Indazolyl, Indolyl, imldazolyl, isolndolyl, isoquinolinyl, Isothlazolyl, Isoxazolyl, oxadiazolyl, oxazollnyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, qulnolinyl, qulnoxalinyl, tetrazolyl, thlazolinyl, thiazolyl, thienyl, triazinyl, and triazolyl. Examples of fully saturated heterocyclyls include, but are not limited to, piperazinyl, plperidinyl, morpholinyl, pyrrolidinyl, tetrahydrofuranyl, and tetrahydropyranyl. Examples of partially unsaturated heterocyclyls include, but are not limited to, 1,2,3,4-tetrahydro-quinolinyl,
4,5-dihydro-oxazolyl, 4,5-dihydro-1H-pyrazoiyl, 4,5-dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]oxadlazolyl.
Insecticide Group* is defined under the heading INSECTICIDES. Nematiclde Group* ls defined under the heading NEMATICIDES Synergist Group ls defined under the heading SYNERGISTIC MIXTURES AND SYNERGISTS
DETAILED DESCRIPTION OF THE INVENTION
This document discloses molécules having the following formulas (Formula One* &*Formula Two* and Formula Three): (In the following formulas the nltrogens are numbered 1, 2, and 3, solely for the purpose of Identifying them and being able to refer to them throughout this document for clarity purposes)
Het
Αη >Γ2
Formula 1
RI
Λ. _N2,
N3xR5 !
RI R5 I z v
wherein:
Formula 2
Formula 3 (a)
Αη ls (D furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, thienyl, or (2) substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, or substituted thienyl, wherein said substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, and substituted thienyl, hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, N02, CrCa alkyl, CrCa haloalkyl, Ca-Ca cycloalkyl, Ca-Ca halocycloalkyl, Ca-Ca cycloalkoxy, Ca-Ca halocycloalkoxy, CpCe alkoxy, CrCa haloalkoxy, CrCa alkenyl, CrCa alkynyl, S(=O)n(Ci-Ce alkyl), S(=O)n(Ci-Ce haloalkyl), OSO2(C,-C9 alkyl), OSOXCi-Ce haloalkyl), C(=O)NRxRy, (C,-Ce alkyl)NRxRyi C(=O)(CrCe alkyl), C(=O)O(CrCa alkyl), C(=OXC,-Ce haloalkyl), C(=O)O(C,-Ce haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(Ca-Ca cycloalkyl), C(=OXCrCe alkenyl), C(=O)O(C2-Ca alkenyl), (0,-(¾ alkyl)O(C,-Ce alkyl), (CrCa alkyt)S(Ci-Ce alkyl), C(=O)(Ci-Ce alkyl)C(=O)O(C,-Ce alkyl), phenyl, phenoxy, substituted phenyl, and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, NO2i CrCa alkyl, CrCa haloalkyl, Cj-Ca cycloalkyl, Cs-Ce halocycloalkyl, C3-Ca cycloalkoxy, Cs-Ca halocycloalkoxy, Cr Ca alkoxy, CrCa haloalkoxy, CrCa alkenyl, CrCa alkynyl, S(=O)n(Ci-Ce alkyl), S(=O)n(CrCa haloalkyl), OSCMCrCa alkyl), OSO2(CrCa haloalkyl), C(=O)NRxRy, (CrCa alkyl)NRxRy, C(=O)(CrCa alkyl), C(=O)O(CrCa alkyl), CÎ=OXCrCa haloalkyl), C(=O)O(CrCe haloalkyl), 0(=0)(03-(¾ cycloalkyl), C(=O)O(C3-Ca cycloalkyl). C(=OXCrCa alkenyl), C(=O)O(CrCa alkenyl), (CrCa alkyl)O(CrCa alkyl), (CrCa alkyf)S(C,-Ce alkyl), 0(=0χ0Γ0β alky1)C(=0)0(C,Ca alkyl) phenyl, and phenoxy;
(b) Het is a 5 or 6 membered, saturated or unsaturated, heterocyclic ring, containing one or more heteroatoms Independently selected from nitrogen, sulfur, or oxygen, and where An and Ar2 are not ortho to each other (but may be meta or para, such as, for a five membered ring they are 1,3 and for a 6 membered ring they are either 1,3 or 1,4), and where said heterocyclic ring may also be substituted with one or more substituents independently selected from H, F, Cl, Br, I, CN, NQî. oxo, 0,-(¾ alkyl, Ci-Ce haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, 0,-(¾ alkoxy, C,-Ce haloalkoxy, CrCe alkenyl, CrCe alkynyl, S(=O)n(C,-Ce alkyl), S(=O)n(CrCe haloalkyl), OSO2(C,-Ce alkyl), 080^0,-(¾ haloalkyl), C(=O)NRxRyi (0,-(¾ alkyl)NRxRy, C(=OXCrCe alkyl), C(=O)O(C,-Ce alkyl), C(=OXC,-Ce haloalkyl), C(=O)O(C,-Ce haloalkyl), C(=OXC3-Ce cycloalkyl), 0(=0)0((^(¾ cycloalkyl). C(=OXCrCe alkenyl), C(=O)O(CrCe alkenyl), (0,-(¾ alky!)O(C,-Ce alkyl), (C,-Ce alkyt)S(CrCe alkyl), C(=OXC,-Ce 8^)0(=0)0(0,-(¾ alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, N02l 0,-(¾ alkyl, CrCe haloalkyl,
C3-Ce cycloalkyl, CrCe halocycloalkyl, C3-C6 cycloalkoxy, C3-Ce halocycloalkoxy, C,-Ce alkoxy,
CrCe haloalkoxy, CrCe alkenyl, CrCe alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrCe alkyl), OSOXCrCe haloalkyl), C(=O)H, C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=OXCr Ce alkyl), C(=O)O(CrCe alkyl), C(=OXCrCe haloalkyl), CÎ=O)O(CrCe haloalkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OX CrCe alkenyl), C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=OXCrCe alkyl)C(=O)O(Ci-Ce alkyl), phenyl, and phenoxy;
(c) Ar2 Is (1) furanyl, phenyl, pyridazinyl, pyridyl, pyrimidinyl, thîenyl, or (2) substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, or substituted thîenyl, wherein said substituted furanyl, substituted phenyl, substituted pyridazinyl, substituted pyridyl, substituted pyrimidinyl, and substituted thîenyl, hâve one or more substituents independently selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, CrCe haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, CrCe alkenyl, CrCe alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSOXCrCe alkyl), OSOXCrCe haloalkyl), C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=OXCrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=OXCrCe cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=OXCrCe alkenyl), C(-O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=O)(CrCe alky1)C(=O)O(CrCe alkyl), phenyl, phenoxy, substituted phenyl and substituted phenoxy, wherein such substituted phenyl and substituted phenoxy hâve one or more substituents Independently selected from H, F, Cl, Br, I, CN, NO2, CrCe alkyl, CrCe haloalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, C3-Ce cycloalkoxy, C3-Ce halocycloalkoxy, Cr Ce alkoxy, CrCe haloalkoxy, CrCe alkenyl, CrCe alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrCe alkyl), OSO2(CrCe haloalkyl). C(=O)H, C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=OXCrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=O)(C3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=OXCrCe haloalkyl), C(=OXCrCe alkenyl), C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl). C(=O)(CrCe alkyl)C(=O)O(CrCe alkyl), phenyl, and phenoxy;
(d) R1 Is selected from H, CN, F, Cl, Br, I, CrCe alkyl, C3-Ce cycloalkyl, CrCe cycloalkoxy, CrCe alkoxy, CrCe alkenyl, CrCe alkynyl, S(=O)n(CrCe alkyl), OSO2(CrCe alkyl), C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=OXC,-Ce alkyl), C(-O)O(CrCe alkyl), C(=O)(CrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OXCrCe alkenyl). C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=OXCrCe alkyl)C(=O)O(CrCe alkyl), phenyl, or phenoxy, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, and phenoxy, are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, NO2, oxo, CrCe alkyl, CrCe haloalkyl, CrCe cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, C3-Ce halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, CrCe alkenyl, CrCe alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrCe alkyl), OSO2(CrCe haloalkyl), C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=OXCrCe alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=O)(CrCe alkenyl), C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=OXCrCe alkyl)C(=O)O(CrCe alkyl), phenyl, and phenoxy;
(e) R2 Is H, Ci-Ce alkyl, CrCe cycloalkyl, CrCe alkenyl, CrCe alkynyl, C(=O)H, C(=O)(CrCe alkyl), C(=O)O(C,-Ce alkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=O)(CrCe alkenyl), C(-O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=OXCrCe alkyl)C(=O)O(CrCe alkyl), phenyl, CrCe alkylphenyl, Ct-Ce alkyl-O-phenyl, C(=O)Het-1, Het-1, Ct-Ce alkylHet-1, or CrCe alkyl-O-Het-1, wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, NO21 NRxRy, Cj-Ce alkyl, Ct-Ce haloalkyl, CrCe cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, CrCe halocycloalkoxy, Ct-Ce alkoxy, CrCe haloalkoxy, CrCe alkenyl, C3-Ce cycloalkenyl, CrCe alkynyl, S(=O)n(C1-Ce alkyl), S(=O)n(CrCe haloalkyl), OSO2(Ct-Ce alkyl), OSO2(CrCe haloalkyl), C(=O)H, C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=O)(C,-Ce alkyl), C(=O)O(CrCe alkyl), CÎ=O)(Cr Ce haloalkyl), C(=O)O(CrCe haloalkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OXCrCe alkenyl), C(=O)O(CrCe alkenyl), (Ct-Ce alkyl)O(Ct-Ce alkyl), (Ct-Ce alkyl)S(CrCe alkyl), C(=OXCi-Ce alkyl)C(=O)O(CrCe alkyl), phenyl, phenoxy, and Het-1;
(f) R3 Is CrCe alkyl, CrCe cycloalkyl, CrCe alkenyl, CrCe alkynyl, C(=O)H, C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=OXCrCe cycloalkyl), Cf=O)O(CrCe cycloalkyl), C(=O)(CrCe alkenyl), C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (Ct-Ce alkyl)S(CrCe alkyl), C(=OXCrCe alkyl)C(=O)O(Ct-Ce alkyl), phenyl, CrCe alkylphenyl, CrCe alkyl-O-phenyl, C(=O)Het-1, Het-1, CrCe alkylHet-1, CrCealkyl-O-C(=O)CrCe alkyl-O-CrCe alkyl, Ct-CealkylO-CÎ=O)CrCe alkyl-O-CrCe aikyl-O- CrCe alkyl, CrCealkyl-O-C(=O)CrCe alkyl-O-CrCe haloalkyl, Ct-Ceaikyl-O-C(=O)Ci-Ce alkyl-N(Rx)C(=O)-O-phenyl, CrCe alkyl-O-C(=O)CrCe alkylN(Rx)C(=O)-O-CrCe alkylphenyl, CrCealkylC(=O)N(Rx)CrCe alkyl, Ct-CealkylC(-O)N(Rx)Ci-Ce alkylHet-1C(=O)-O-CrCe alkyl, Ci-CealkylC(=O)N(Rx)CrCe alkylHet-1, Ci-CealkylC(=O)Het-1, Ct-Ce alkylC(=O)N(Rx)CrCe alkyl(N(Rx)(Ry))(C(=O)OH), CrCe alky!C(=O)N(Rx)Ci-Ce alkylN(Rx)(Ry), Ct-CealkylC(=O)N(Rx)CrCe alky!N(Rx)C(=O)-O-CrCe alkyl, CrCe alkylC(=O)N(Rx)Ct-Ce alkyl(N(Rx)C(=O)-O-CrCe alkyl)(C(=O)OH), CrCealkylC(=O)Het-1C(=O)O-Ct-Ce alkyl, CrCe alkyl-O-C(=O)-O-Ci-Ce alkyl, Ct-Cealkyl-O-C(=O)Ct-Ce alkyl, CrCealkyl-OC(=O)CrCe cycloalkyl, CrCealkyl-O-C(=O)Het-1, CrCealkyl-O-C(=O)Ci-Ce alkyl-N(Rx)C(=O)6
O-CpCe alkyl, CrCe alkyl-NRxRy, or CrCe alkyl-O-Het-1, wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, NO2, NRxRy, CrCe alkyl, CrCe haloalkyl, CrCe cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, Cj-Ce halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, CrCe alkenyl, Ca-Ce cycloalkenyl, CrCe alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OS02(CrCe alkyl). OSO2(CrCe haloalkyl), C(=O)H, C(=O)OH, C(=O)NRxRy, (C,-Ce alkyl)NRxRy, C(=OXCrCe alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=OXCrCe cycloalkyl), C(=O)0(CyCe cycloalkyl), C^OXQrCe alkenyl), C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=OXCrCe alkyl)C(=O)0(CrCe alkyl), phenyl, phenoxy, Si(CrCe alkyl)3, S(=O)nNRKRy, and Het-1 ;
(g) R4 is H, CrCe alkyl, C3-Ce cycloalkyl, CrCe alkenyl, Cj-Ce alkynyl, C[=O)H, C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), C(=OXCrCe cycloalkyl). C(=O)O(CrCe cycloalkyl), C(=O)(CrCe alkenyl). C(=O)O(CrCe alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyl)S(CrCe alkyl), C(=OXCrCe alky!)C(=O)O(CrCe alkyl), phenyl, CrCe alkylphenyl, CrCe alkyl-O-phenyl, C(=O)Het-1, Het-1, CrCe alkylHet-1, or CrCe alkyl-O-Het-1, wherein each alkyl, cycloalkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substituted with one or more substituents independently selected from F, Cl, Br, I, CN, NO2, NRxRy, CrCe alkyl, CrCe haloalkyl, Qj-Ce cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, Cj-Ce halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, CrCe alkenyl, CrCe cycloalkenyl, C^Ce alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(CrCe alkyl), OSOï(Ci-Ce haloalkyl), C(=O)H, C(=O)NRxRy, (CrCe alkyl)NRxRyi C(=O)(CrCe alkyl), C(=O)O(CrCe alkyl), 0(=0)(0,Ce haloalkyl), C(=O)O(C,-Ce haloalkyl), C(=OXC3-Ce cycloalkyl), C(=O)O(C3-Ce cycloalkyl), C(=O)(CrCe alkenyl). C(=O)O(C2-Ce alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyJ)S(C,-Ce alkyl), C(=OXCrCe alkyl)C(=O)0(CrCe alkyl), phenyl, phenoxy, and Het-1;
(h) R5 is a 1 membered saturated or a 2 to 4 membered saturated or unsaturated hydrocarbyl linkage where said linkage may also be substituted with F, Cl, Br, I, CN, NO2, oxo, NRxRy, CrCe alkyl, CrCe haloalkyl, CrCe cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, C3-Ce halocycloalkoxy, CrCe alkoxy, CrCe haloalkoxy, CrCe alkenyl, CrCe cycloalkenyl, C^Ce alkynyl, S(=O)n(CrCe alkyl), S(=O)n(CrCe haloalkyl), OSO2(C,-Ce alkyl), OSO2(CrCe haloalkyl), C(=O)H. C(=O)OH, C(=O)NRxRy, (CrCe alkyl)NRxRy, C(=OXC,-Ce alkyl), C(=O)O(CrCe alkyl), C(=O)(CrCe haloalkyl), C(=O)O(CrCe haloalkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OXC2-Ce alkenyl), C(=O)O(C2-Ce alkenyl), (CrCe alkyl)O(C,-Ce alkyl), (C,-Ce alkyl)S(CrCe alkyl), C(=OXCi-Ce alkyl)C(=0)0(CrCe alkyl), phenyl. phenoxy, and Het-1.
wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, phenoxy, and Het-1, are optionally substituted with one or more substituents independently selected from F, Cl, Br, I, CN, N02, oxo, NRxRy, CpCe alkyl, Cj-Ce haioalkyl, C3-Ce cycloalkyl, Cj-Ce halocycloalkyl, C3-Ce cycloalkoxy, CrCe halocycloalkoxy, CrCe alkoxy, Cj-Ce haloalkoxy, CrCe alkenyl, CrCe cycloalkenyl, CrCe alkynyl, S(=O)n(C1-Ce alkyl), S(=O)n(CrCe haioalkyl), OSOïiCrCe alkyl), OSO^Cj-Ce haioalkyl), C(=O)H, C(=O)OH, C(=O)NRxRy, (CrCe alky1)NRxRy, C(=O)(C1-Ce alkyl), C(=O)O(C1-Ce alkyl), Ct=OXC1-Ce haioalkyl), C(=O)O(CrCe haioalkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OXCrCe alkenyl), C(=O)O(CrCe alkenyl), (CrCe alky))O(CrCe alkyl), (CrCe alkyljStCrCe alkyl), C(=OXCrCe alky1)C(=O)O(C1Ce alkyl), phenyl, halophenyl, phenoxy, and Het-1;
(I) n= 0,1, or 2;
(j) Rx and Ry are Independently selected from H, CrCe alkyl, C,-Ce haioalkyl, C3-Ce cycloalkyl, C3-Ce halocycloalkyl, CrCe alkenyl, CrCe alkynyl, S(=O)n(Ci-Ce alkyl), S(=O)n(Ci-Ce haioalkyl), OSO2(CrCe alkyl), OSO2(CrCe haioalkyl), C(=O)H, Cf=OXCrCe alkyl), 0(=0)0(0,Ce alkyl), C(=O)(C1-Ce haioalkyl), C(=O)O(CrCe haioalkyl), C(=O)(CrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OXCrCe alkenyl), C(=O)O(C2-Ce alkenyl), (CrCe alkyl)O(CrCe alkyl), (CrCe alkyOStCpCe alkyl), C(=O)(CrCe 3^)0(=0)0(^ alkyl), and phenyl, wherein each alkyl, cycloalkyl, cycloalkoxy, alkoxy, alkenyl, alkynyl, phenyl, phenoxy, and Het-1, are optionally substituted with one or more substituents Independently selected from F, Cl, Br, I, CN, N021 oxo, C,-Ce alkyl, C,-Ce haioalkyl, CrCe cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, C3-Ce halocycloalkoxy, C,-Ce alkoxy, CrCe haloalkoxy, CrCe alkenyl, C3-Ce cycloalkenyl, CrCe alkynyl, S(=O)n(C,-Ce alkyl), S(=O)n(CrCe haioalkyl), OSO2(CrCe alkyl), OSOXCrCe haioalkyl), C(=O)H, C(=O)OH, CÎ=OXCrCe alkyl), C(=O)O(Cr Ce alkyl), C(=O)(CrCe haioalkyl), C(=O)O(C1-Ce haioalkyl), C(=OXCrCe cycloalkyl), C(=O)O(CrCe cycloalkyl), C(=OXCrCe alkenyl), C(=0)0(CrCe alkenyl). (CrCe alkyf)O(CrCe alkyl), (CrCe alkyl)S(Ci-Ce alkyl), C(=O)(Ci-Ce alky!)C(=O)O(CrCe alkyl), phenyl, halophenyl, phenoxy, and Het-1, or R» and Rytogether can optionally form a 5- to 7-membered saturated or unsaturated cyclic group which may contain one or more heteroatoms selected from nitrogen, sulfur, and oxygen, and where said cyclic group can contain >C=0 or >C=S, and where said cyclic group may be substituted with F, Cl, Br, I, CN, CrCe alkyl, CrCe haioalkyl, Qj-Ce cycloalkyl, CrCe halocycloalkyl, CrCe cycloalkoxy, CrCe halocycloalkoxy, CrCe alkoxy, Cj-Ce haloalkoxy, CrCe alkenyl, CrCe cycloalkenyl, CrCe alkynyl, S(=O)n(Ci-C6 alkyl), S(=O)n(C1-Ce haioalkyl), OSO2(CrCe alkyl), OSO2(CrCe haioalkyl). C(=OXCrCe alkyl), C(=O)O(CrCe alkyl). C(=0)(CrC6 haioalkyl), C(=0)0(CrCe haioalkyl), C(=OXCrCe cycloalkyl), C(=0)0(CrCe cycloalkyl), C(=OXCrCe alkenyl), C(=0)0(CrCe alkenyl), (Cj-Ce alkylJOiCj-Ce alkyl), (Cj-Ce alkyt)S(CrCe alkyl), C(=OXCj-Ce alkyl)C(=O)O(Ci-Ce alkyl), phenyl, substituted phenyl, phenoxy, and Het-1 ; and (k) Het-1 Is a 5- or 6-membered, saturated or unsaturated, heterocycllc ring, containing one or more heteroatoms independently selected from nitrogen, sulfur or oxygen.
It is understood that in Formula 1, when R2 is H, the compounds may exist In more than one tautomeric or isomeric form, wherein the hydrogen is attached to either of the nitrogen atoms; further, both E and Z isomers may exist. Any and ail Isomeric forms of the compounds of this invention are claimed.
In another embodiment Art is a substituted phenyl, wherein said substituted phenyl has one or more substituents Independently selected from CrCe haloalkyl and CrCe haloalkoxy.
In another embodiment Αη is a substituted phenyl, wherein said substituted phenyl has one or more substituents Independently selected from CF3, OCF3, and OCF2CF3.
In another embodiment Het Is selected from triazolyl, imidazolyl, or pyrazolyl, which can be substituted or unsubstituted.
In another embodiment Het is a 1,2,4-triazoly!
In another embodiment Het is 1,4-lmldazolyl
In another embodiment Het Is 1,3-pyrazolyl
In another embodiment Het Is a substituted 1,3-pyrazolyl.
In another embodiment Het Is 1,4-pyrazolyt
In another embodiment Ar2 Is a phenyl.
In another embodiment R1 is H or CrCe alkyl.
In another embodiment R1 Is H or CH3.
In another embodiment R2 Is H.
In another embodiment R3 Is selected from CpCe alkyl, CrCe alkenyl, CrCe alkynyl, Cr Ce alkylphenyl, CrC6 alkylHet-1, CrCealkyl-O-C^OJCrCe alkyl-O-CrCe alkyl, CrCealkyl-OC(=O)CrCe alkyl-O-CrCe alkyl-O- CrCe alkyl, CrCealkyl-O-C^OJCrCe alkyl-O-CrCe haloalkyl, CpCealkyl-O-C^OJCrCe alkyl-N(Rx)C(=O)-O-phenyl1 CpCealkyl-O-C^OJCrCe alkylN(RX)C(=O)-O-C1-Ce alkylphenyl, C1-CealkyiC(=O)N(Rx)C1-Ce alkyl, CrCealkylC(-O)N(R,)CrCe aikylHet-10(=0)-0-0,-Ce alkyl, C1-C6alky1C(=O)N(Rx)C1-Ce alkylHet-1, C1-CealkylC(=0)Het-1, C1-Cealky1C(=O)N(Rx)C1-Cealky1(N(Rx)(Ry))(C(=O)OH), C1-Cealky1C(=O)N(Rx)C1-C6 alkylN(Rx)(Ry), C1-Cealky1C(=O)N(Rx)C1-Ce alkylN(Rx)C(=O)-O-C1-Ce alkyl, CrCe aiky1C(=O)N(Rx)C1-Ce aIky1(N(Rx)C(=O)-O-C1-Ce alkyl)(C(=O)OH), C,-CealkylC(=O)Het-1C(=O)O-CpCe alkyl, CrCealkyl-O-C^OJ-O-CrCe alkyl, CrCealkyl-O-C(=O)Ci-Ce alkyl, 0,-Ceaikyl-OC(=O)C3-Ce cycioalkyl, C1-C6alky1-O-C(=O) Het-1, or CrCealkyl-O-C^OJCrCealkylN(RX)C(=O)-O-C1-Ce alkyl, wherein each alkyl, alkenyl, alkynyl, phenyl, and Het-1 are optionally substituted with one or more substituents Independently selected from F, Cl, Br, CrCe alkyl, Cr Ce haloalkyl, CrCe haloalkoxy, S(=0)n(CrCe alkyl), C(=O)OH, C(=O)O(Ci-Ce alkyl), phenyl, Si(CrCe alkyl)3, and S(=O)nNRxRy.
In another embodiment R4 Is phenyl, CrCe alkylphenyl, Het-1, or CrCe alkyl-O-phenyl, wherein each alkyl, Het-1, and phenyl are optionally substituted with one or more substituents Independently selected from F, Ci, NRxRy, CrCe alkyl, Cj-Ce cycioalkyl, Ο,-Ce haloalkoxy, 0(=0)0 Ci-Ce alkyl, or CrCe alkoxy.
In another embodiment R5 Is substituted with oxo, C(=O)OH, phenyl, and Het-1, wherein each phenyl and Het-1, may be optionally substituted with one or more substituents Independently selected from oxo, CrCe haloalkyl, CrCe haloalkoxy, C(=O)OH, and halophenyl.
In another embodiment R« and Ry are independently selected from H and phenyl, wherein said phenyl, may be optionally substituted with one or more substituents Independently selected from F and Cl.
In another embodiment:
Αη is a substituted phenyl wherein said substituted phenyl, has one or more C,Cç haloalkoxy;
Het is a triazolyi;
Ar2 Is a phenyl;
R1 is H;
R2 is H;
R3 is Ci-Ce alkylHet-1 wherein said alkyl and Het-1 are optionally substituted with one or more substituents Independently selected from F, Cl, Br, Ci-Ce alkyl, CrCe haloalkyl, CrCe haloalkoxy, S(=O)n(C1-C6 alkyl), C(=O)OH, C(=O)O(CrCe alkyl), phenyl, Si(Cr Ce alkyl)3, and S(=O)nNRxRy;
R4 is phenyl, wherein said phenyl is optionally substituted with one or more substituents Independently selected from F, Cl, NR,Ry, CrCe alkyl, or CrCe alkoxy; and n= 0,1, or 2;
Rx and Ry are independently selected from H and phenyl, wherein said phenyl, may be optionally substituted with one or more substituents Independently selected from F and Cl; and
Het-1 is a 5- or 6-membered, saturated or unsaturated, heterocyclîc ring, containing one or more heteroatoms independently selected from nitrogen, sulfur or oxygen.
In another embodiment Het-1 Is selected from benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazolyl cinnoltnyl, furanyl, indazolyl, indolyl, Imidazolyl, Isoindolyl, Isoquinoiinyl, Isothiazolyl, Isoxazoiyl, oxadiazolyl, oxazolinyl, oxazoiyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrazolyl, thiazolinyl, thiazolyl, thienyl, triazinyl, triazolyi, plperazinyl, piperidinyl, morpholinyl, pyrrolidinyl. tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4tetrahydro-quinolinyl, 4,5-dihydro-oxazolyl, 4,5-dihydro-1H-pyrazolyl, 4,5-dihydro-lsoxazolyl, and
2,3-dihydro-[1,3,4l-oxadiazolyl.
In another embodiment Het Is selected benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazolyl cinnolinyl, furanyl, Indazolyl, Indolyl, Imidazolyl, isoindolyl, Isoquinoiinyl, Isothiazolyl, Isoxazoiyl, oxadiazolyl, oxazolinyl, oxazoiyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyf, tetrazoiyl, thiazolinyl, thiazolyl, thienyl, triazinyl, triazolyl, piperazinyl, piperidinyl, morpholinyl, pyrrolldinyî, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydro-quinolinyl, 4,5dihydro-oxazolyl, 4,5-dihydro-1H-pyrazolyl, 4,5-dihydro-lsoxazolyl, and 2,3-dihydro-[1,3,4]oxadiazolyl.
In another embodiment Het-1 Is selected from benzofuranyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, benzothienyl, benzothiazolyl, benzothiadizolyl, cinnolinyl, furanyl, Indazolyl, indolyl, Imidazolyl, Isoindolyl, Isoquinolinyl, Isothiazolyl, Isoxazolyl, oxadiazolyl, oxazolinyl, oxazolyl, phthalazinyl, pyrazinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, tetrazoiyl, thiazolinyl, thiazolyl, thienyl, thlenylpyrazolyl, triazinyl, triazolyl, piperazinyl, piperidinyl, morpholinyl, pyrrolidtnyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3,4-tetrahydro-quinolînyl, 4,5-dihydro-oxazolyl, 4,5dihydro-1H-pyrazolyl, 4,5-dihydro-isoxazolyl, and 2,3-dihydro-[1,3,4]-oxadiazolyl.
In another embodiment Het-1 Is selected from benzothiadizolyl, furanyl, oxazolyl, and thlenylpyrazolyl.
While these embodiments hâve been expressed, other embodiments and combinations of these expressed embodiments and other embodiments are possible.
The Molécules of Formulae One, Two and Three will generally hâve a molecular mass of about 100 Daltons to about 1200 Daltons. However, it Is generally preferred If the molecular mass is from about 120 Daltons to about 900 Daltons, and it is even more generally preferred If the molecular mass is from about 400 Daltons to about 800 Daltons.
PREPARATION OF TRIARYL INTERMEDIATES
Compounds of this invention can be prepared by making a triaryl intermediate, ArrHetAr2, and then linking it to the desired Intermediate to form the desired compound. A wide variety of triaryl Intermediates can be used to préparé compounds of this invention, provided that such triaryl intermediates contain a suitable functional group on Ar2 to which the rest of the desired Intermediate can be attached. Suitable functional groups Include an oxoalkyl or a formyl group. These triaryl Intermediates can be prepared by methods previously described In the chemical literature, including Creuse et al. PCT Int. Appl. Publ. W02009/102736 A1.
PREPARATION OF HYDRAZONE-LINKED COMPOUNDS
Hydrazone-linked compounds can be prepared from the corresponding aryl aldéhydes or ketones by one of three methods: (1) by reaction with a hydrazine, followed by reaction with an aryl Isothlocyanate In tetrahydrofuran (THF), at températures between 0 and 100 ’C (Reaction
A); (2) by reaction with methyl hydrazinecarbodithioate, followed by reaction with an aniline In a polar aprotic solvent such as Ν,Ν-dimethylformamide (DMF), at températures between 25 and
150 ’C (Reaction B): or (3) by reaction with an aryl thlosemicarbazide, that is either commerclally available or can be prepared by one who Is skilled In the art, In a polar protic solvent such as ethyl alcohol (EtOH), at températures between 0 and 100 °C (Réaction C).
1. NH2NH-R2
2. R4-NCS,
THF, 0-100 °C h2n.nA L H
2. R4-NH2, DMF, 25- 150°C (A)
(B)
EtOH, 0-100 °C (C)
PREPARATION OF ALKYLATED HYDRAZONE-LINKED COMPOUNDS
Alkylated hydrazone-linked compounds can be prepared from the corresponding hydrazone-linked compounds by one of two methods: (1) by reaction with an alkylating agent in EtOH or acetone, at températures between 0 and 100 *C for from 1 to 24 h or (2) by reaction with an alkylating agent in chloroform (CHCI3), dichloromethane (CH2CI2), or other halocarbon solvent, with or without a base such as sodium bicarbonate, at from 20 to 60 °C.
Alkylating agent, EtOH
0-100°C,
1-24 h
R2 R3
R4
Alkylating agent, CH2C12 or CHClj
- 60 °C,
1-24 h
Compounds of Formula Two, wherein R5 forms a ring with N3 (see Scheme below) or of Formula Three, wherein R5 forms a ring with N2, can be prepared from a suitable acyclic precursor by using π-halo acids, acid halides, esters, or ketones (F or G or H). For example, treatment of the thiosemicarbazone with a slight excess of an π-halo ester, ln a protic solvent such as EtOH or methyl alcohol (CH3OH) results in S-alkylation and subséquent ring closure exclusively onto N3 (Reaction F; see for example, J. Indian Chemical Society 1966,43,275276, or J. Heterocycl. Chem. 1973,15, 335-336). When an aprotic solvent such as CH2CI2 or dichloroethane (CICH2CH2CI) is used at températures from 30 °C to 80 °C, the orientation of addition of □ halo ketones also favors closure onto N3, with subséquent déhydration to form an imino thlazoline (Reaction G). With Π-halo acids or acid halides or esters in a halocarbon solvent such as CH2CI2 or CICH2CH2CI, ring closure onto both N2 (Reaction H) and N3 is observed. Though these reactions often proceed in the absence of added base, a base such as sodium bicarbonate, sodium carbonate or sodium acetate, or an amine base such as pyridine or triethylamine, can be added.
Br^COjH
Br^CO2CH3
EtOH or MeOH
(F)
(θ)
Br\^,CO2CH3
CH2Cl2or
ClCH2CH2Cl
R4
O (H)
Altematively, 3-arylidineimino-2-arylimlnothiazolin-4-ones can be prepared by treating an aldéhyde or ketone, wherein R1 is as previously described, with a 3-amino- 2(arylimlno)thiazolidin-4-one in acetic acid at from 30 to 70 °C as shown ln the following scheme (I). The intermediate 1-amlno-2-aryliminothiazolin-5-one, wherein R4 is phenyl, has been described (see for example, J. Org. Chem. 1962,27,2878); itwas prepared in 80% yield by treatment of 4-phenyl thiosemicarbazide with ethyl 2-chloroacetate and sodium acetate in hot EtOH.
Bn___CO2CH
Arj
(I)
Alternatively, compounds of Formula 2 and Formula 3 may be formed by heating a thiosemicarbazone precursor with a di-halo group Hal1-R5-Hal2 such as 1-bromo-2-chloro 5 ethane or diiodomethane, in acetone or 2-butanone or other suitable solvent, using a base such as potassium carbonate or triethylamine, at températures between ambient and 100 °C for from 1 to 72 hours. The S-alkylated intermediate undergoes cydizatlon at N2 or N3 to generate compounds of Formula Two or Formula Three (Reaction J). In some cases, addition of Kl may be required to accelerate the cyclization of the Intermediate S-alkylated dérivatives to the ring10 closed products.
(J)
An alternative method of preparing compounds of this Invention Is by treatment of a 15 thiosemicarbazone precursor with an unsaturated ester or acid chloride (Reaction L).
R*
N
R4
(L)
Substituted hydrazinecarbothioamide intermediates, such as those utilized in Method C above, can be prepared by a number methods known in the chemical literature. Altematively, compounds wherein R., Rb, and Rc are not derived from a commercially avaiiable aniiine can be prepared according to the scheme below. For example, a 2-halo nitrobenzene, such as 2bromonitrobenzene, substituted with one or multipie Rcsubstituents, wherein Rc can be H, alkyl, alkoxy, or halo, such as fluoro, can be reacted with a boronic acid or boronate ester, such as the substituted 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, wherein R, and Rb are H, in the presence of a base, for example sodium carbonate, and a palladium catalyst, such as bis(triphenylphosphlne)paliadium(ll)chloride, in an aqueous solvent System, such as 4:1 dioxane / water, at an elevated température, for exampie 80 °C, affords the olefinic substituted nitrobenzene compounds. Altematively, R. and Rb can be taken together to form a ring, such as a cyclopentene, togive the corresponding 2-(cyclopent-1-en-1-yl)-4,4,5,5-tetramethyM,3,2dioxaborolane, which under the conditions described above affords the cyclic alkene substituted nitrobenzene. Treatment a solution of the olefinic nitrobenzenes in an aprotic solvent, such as ethyl acetate, wherein R,, Rb, and Rcare as defined above, with hydrogen gas In the presence of a cataiyst, for example pailadium on carbon (Pd/C), affords the corresponding alkyl or cycloalkyl substituted anilines. Treating a biphaslc solution of the anilines, wherein R., Rb, and Rcare as defined, in a mixture of haiogenated solvent and water, such as 2:1 dichloromethane /water, with a base, such as sodium hydrogencarbonate, followed by thiophosgene affords the Intermediate isothiocyanatobenzenes. Séparation of the phases, followed by drying and évaporation of the organic solvent affords the crude intermediate which is Immedlateiy dissolved In an alcohol, such as éthanol, and treated with hydrazine hydrate to give the hydrazinecarbothioamide Intermediates, wherein R,, Rb, and Rcare as defined.
αΝ·°~ X^Br
Ra
2) NHj-Nïlj (M)
EXAMPLES
The examples are for Illustration purposes and are not to be construed as limiting the Invention dîsclosed in this document to only the embodiments dîsclosed In these examples.
Starting materials, reagents, and solvents that were obtained from commercial sources were used without further purification. Anhydrous solvents were purchased as Sure/Seal™ from Aldrich and were used as received. Melting points were obtained on a Thomas Hoover Unimelt capillary melting point apparatus or an OptiMelt Automated Melting Point System from Stanford Research Systems and are uncorrected. Molécules are given their known names, named according to naming programs within MDL ISIS™/Draw 2.5, ChemBioDraw Ultra 12.0 or ACD Name Pro. If such programs are unable to name a molécule, the molécule is named using conventional naming rules. 1H NMR spectral data are in ppm (δ) and were recorded at 300, 400 or 600 MHz, and 13C NMR spectral data are in ppm (□) and were recorded at 75,100 or 150 MHz, unless otherwise stated.
Example 1: Préparation of (E)-N-(4-dimethylamino)phenyl)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)hydrazine-carbothioamide (Compound 1-1) [Synthesis Method A].
Step 1. (E)-3-(4-(Hydrazonomethyl)phenyl)-1-(4-(trIfluoromethoxy)phenyl)-1 H-1,2,4trlazole. To a 250 milliliter (mL) round-bottomed flask containing hydrazine hydrate (64% aqueous (aq) solution; 7.27 mL, 15.0 millimoles (mmol)) in EtOH (100 mL) at 80 °C was added 4-[1-(4-trifluoromethoxyphenyl)-1H-[1,2,4]triazol-3-yl]-benzaldehyde (S.OOgrams (g), 1.50 mmol) portionwise over 5 minutes (min). The solution was stirred at reflux for an additional 3 hours (h)
before being diluted with water (H2O; 300 mL) and cooled to 0 *C. The precipitated product was collected by vacuum filtration as a white solid (4.89 g, 93%): mp 222 - 226 *C; ’H NMR (400 MHz, DMSO-de) □ 8.59 (s, 1H), 8.22 (d. J= 8.2 Hz, 2H), 7.84-7.79 (m, 3H), 7.66 (d, J= 8.3 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 7.29 (s, 1H), 5.63 (br s, 2H); ESIMS m/z 348 (M+H).
Step 2. To a 25 mL round-bottomed flask containing (E)-3-(4-{hydrazonomethy1)phenyl)-1-(4-(trinuoromethoxy)phenyl)-1H-1,2,4-triazole (250 mg, 0.720 mmol) In THF (10 mL) was added 4-lsothiocyanato-N,N-dimethylaniline (385 mg, 2.16 mmol). The contents were heated at 65 *C with stirring for 2 h before the solvent was removed under reduced pressure. The residue was slurried in CH2Cl2 (10 mL) resulting In précipitation of product material. The desired product was obtained as a yellow solid via vacuum filtration (350 mg, 93%): mp 205 208*0; Ή NMR (400 MHz, DMSO-de) □ 11.78 (s, 1H), 10.02 (s, 1H), 9.42 (s, 1H), 8.19-7.99 (m, 6H), 7.64 (d, J =8.3 Hz, 2H). 7.28 (d, J =8.3 Hz, 2H), 7.73 (d, J= 8.3 Hz, 2H), 2.92 (s, 6H); ESIMS m/z 526 (M+H).
Example 2: Préparation of N-(3-(dlmethy!amlno)pheny!)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylidene)hydrazinecarbothloamlde (Compound I-2) [Synthesis Method B].
Step 1. (E)-Methyl 2-(4-(1-(4-(trif1uoromethoxy)phenyl)-1H-1,2,4-triazol-3yl)benzyiidene)hydrazlnecarbodlthioate. To a 250 mL round-bottom flask containing hydrazinecarbodithioic acid methyl ester (2.38 g, 1.95 mmol) in EtOH (100 mL) was added 4-[1(4-trifluoromethoxyphenyl)-1H-[1,2,4]triazol-3-yl]-benzaldehyde (5.00 g, 1.50 mmol). The vessel was heated at 80 ’C for 3 h before being diluted with H2O (300 mL) and cooled to 0 *C. The precipitated product was collected by vacuum filtration as an off-white solid (6.13 g, 93%): mp 204-206 *C; Ή NMR (400 MHz, DMSO-de) □ 13.39 (s, 1H), 9.43 (s, 1H). 8.38 (s, 1H). 8.21 (d. J = 8.3 Hz, 2H), 8.09 (d, J= 8.4 Hz, 2H), 7.88 (d, J= 8.4 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 2.57 (s, 3H); ESIMS m/z 438 (M+H).
Step 2. To a 50 mL round-bottomed flask containing (E)-methy12-(4-(1-(4(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3-yl)benzylidene)hydrazinecarbodithloate (250 mg, 0.571 mmol) in DMF (3 mL) was added N1,N1-dimethy1benzene-1,3-diamine (195 mg, 1.43 mmol). The contents were heated at 150 *C with stirring for 5 h before the solution was allowed to cool ovemight. The mixture was filtered, and the filtrate was purified via RP-HPLC to afford the desired material (235 mg, 78%) as an off-white solid: mp 192 -194 *C; ’H NMR (400 MHz, DMSO-de) 0011.82 (s, 1H), 10.04 (s. 1H). 9.41 (s. 1H). 8.19 (s, 1H), 8.16-7.99 (m, 6H), 7.61 (d, J = 8.3 Hz, 2H), 7.16 (t, J = 7.2 Hz, 1 H). 7.01 (m, 1H), 6.87 (m, 1H), 6.58 (m, 1H), 2.88 (s, 6H);
ESIMS m/z 526 ([M+H]*).
Example 3: Préparation of N-benzyl-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazol3-yl)benzylidene)hydrazinecarbothioamide (Compound I-3) [Synthesis Method C].
To a 50 mL round-bottomed flask containing 4-[1-[4-(trifluoromethoxy)phenyl]-1,2,4triazol-3-yl]benzaldehyde (500 mg, 1.5 mmol) In EtOH (3 mL) was added 4benzylthiosemicarbazide (650 mg, 3.6 mmol). The reaction mixture was heated at 80 ’C ovemight. H2O was added upon completion of the réaction, and the crude product material was isolated by vacuum filtration. The title compound was isolated via RP-HPLC as a white solid (390 mg, 52%): mp 220 - 224 *C; Ή NMR (400 MHz, CDCI3) δ 9.29 (s, 1H). 8.59 (s, 1H), 8.21 (d, J= 8.4 Hz, 2H), 7.85-7.79 (m, 3H), 7.71 (d, J - 8.4 Hz, 2H), 7.46-7.30 (m, 8H), 5.01 (d, J = 5.8 Hz, 2H); ESIMS m/z 497.2 (M+H).
Compounds 1-4 through 1-31 In Table 1 were synthesized in accordance with the examples above. Other intermediates used in the préparation of compounds of this invention were prepared in accordance with the procedures described in Brown, et al, WO 2011017504 A1, or by other known routes.
Example 4: Préparation of N-(4-dimethylamlnophenyl)-S-methyl-2-{4-[1-(4trifluoromethoxyphenyl)-1H-[1,2,4]-triazol-3-yl]-benzylldene)-hydrazine-carbothloamide (Compound 1C) (Synthesis Method D)
i
A solution containing (E)-W-(4-(dimethylamino)phenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2l4-triazol-3-y1)benzylidene)hydrazlnecarbothioamide (150 mg, 0.285 mmol) and lodomethane (0.054 mL, 0.856 mmol) in EtOH (5 mL) was heated at 80 *C for 3 h before the solvent was removed under reduced pressure. The residue was purified via normal phase flash chromatography (gradient elution with hexanes/EtOAc) to afford the title compound as an orange foam (93 millîgrams (mg), 60%); 1H NMR (400 MHz, DMSO-cQ δ 8.61 (s, 1H), 8.48 (s, 19
H), 8.22 (d, J = 8.24 Hz, 2H), 8.17 (s, 1 H), 7.89 (d, J = 8.24 Hz, 2H), 7.80 (d, J = 8.28 Hz, 2H), 7.41 (d, J- 8.28 Hz, 2H), 7.19 (d, J = 8.24 Hz, 2H), 6.71 (d, J = 8.24 Hz, 2H), 2.99 (s, 6H), 2.42 (s, 3H); EIMS m/z 540 (M*).
Example 5; General procedure for S*alkylation of trlaryl thiosemicarbazones (Synthesis Method E)
A stirred solution of the thiosemicarbazone and alkylating reagent in CH2CI2 or chloroform (CHCI3) was heated at from 35 to 50 eC for from 10 to 24 h. The cooled solution was concentrated under reduced pressure. The residue was generally purified via chromatography using a chloroform/methanol (CHCI3/CH3OH) or EtOAc-hexane solution as the eluent to afford the S-alkylated products.
Example 6: Préparation of (S)*fert-butyl 3-((2-((Z)-(2,6-dimethylphenylimlno)-((E)-2-(4-(1(4-(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazInyl)methylthlo)acetamldo)methyl)piperldine-1-carboxylate (Compound 56C) (Synthesis Method E)
O
To a solution of bromoacetyl bromide (26 microliters (pL), 0.299 mmol) In dichloroethane (3 mL) was added dropwise a solution of (S)-ferf-butyl 3-(aminomethyl)piperidine-1-carboxylate (63.9 mg, 0.298 mmol) In dichloromethane (1 mL), followed by N-ethyl-/V-lsopropylpropan-2amine (76 mg, 0.588 mmol). This mixture was stirred at room température for 30 min, then (E)N-(2,6-dimethylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2l4-triazol-3yl)benzylidene)hydrazine-carbothioamlde (100 mg, 0.196 mmol) was added as a solid and the mixture was heated to 40 ’C for 90 min. It was then allowed to cool to room température and evaporated under reduced pressure, giving a light yellow glass, which was dissolved in acetonltrile (2 mL) and allowed to stand at room température. The resulting precipitate was Isolated by centrifuge and decanting, washing with fresh acetonltrile. The soiid was dried under a nitrogen stream and then under high vacuum. The crude product was recrystallized from acetone-lsopropyl alcohol. The title compound was Isolated as a white solid (36.5 mg, 24%):
mp 148-151 eC; ’H NMR (400 MHz, methanol-d4) δ 9.18 (s, 1H), 8.59 (s. 1 H). 8.30 (d, J-8.1 Hz, 2H), 8.12 (m, 2H), 8.07 - 8.00 (m, 2H), 7.58 - 7.43 (m, 2H), 7.33 (dd, J ~ 8.6, 6.5 Hz, 1 H).
7.25 (d, J = 7.6 Hz, 2H), 4.02 (m, 2H), 3.97 - 3.75 (m, 2H), 3.21 (d, J = 6.9 Hz, 2H), 2.90 (m,
H), 2.59 (m, 1 H), 2.35 (s, 6H), 1.84 (m, 2H), 1.78 -1.63 (m, 2H), 1.44 (s, 9H), 1.29 (m, 3H); ESIMS m/z 765 (M+H).
Example 7: Préparation of (1Z,2E)-2-oxo-2-(((R)-piperidin-3-ylmethyl)amlno)ethyl N-(2,6dlmethylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2l4-trlazol-3yl)benzylidene)hydrazlnecarblmidothioate trlfluoroacetic acid (Compound 62C) (Synthesis Method K)
A solution of (S)-tert-buty13-((2-((Z)-(2,6-dÎmethylphenylimino)-((E)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylidene)hydrazinyl)methylthIo)acetamido)methyl)piperldine-1-carboxylate (32.0 mg, 0.042 mmol) in TFA (250 pL, 3.24 mmol) was stirred at room température for 10 min. Et2O (10 mL) was then added giving a white predpitate, which was Isolated by centrifuge and decanting, then rinsing with fresh Et2O (5 mL). The solid was dried under nitrogen stream and then under high vacuum giving the title compound as a white solid (19.8 mg, 60%): mp 110-120 eC; 1H NMR (400 MHz, methanol-d4) δ 9.18 (s, 1 H), 8.56 (m, 1H), 8.26 (m, 2H). 8.16 - 7.84 (m, 4H), 7.52 (m, 2H), 7.27 (m. 1H), 7.22 (m, 2H). 4.00 (S, 2H), 3.28 (m, 3H), 3.06 - 2.83 (m, 1 H). 2.75 (t, J = 12.2 Hz, 1H), 2.34 (s, 6H), 2.21-1.83 (m, 4H), 1.72 (m, 1 H). 1.47 -1.19 (m. 2H); ESIMS m/z 665 (M+H).
Example 8: Préparation of 2-(((Z)-((4-methoxy-2,6-dlmethylphenyl)lmlno)((E)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylidθne)hydrazlnyl)methyl)-thio)acetlc acid sodium sait (Compound 68C)
To a solution of2-((Z)-{4-niethoxy-2,6-dimethylphenylimlno)((E)-2-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazo!-3-yl)benzylidene)hydrazinyl)methylthlo)aceticacld (77.7 mg, 0.130 mmol) In THF (10 mL) was added slowly sodium methanolate (0.5 M in methanol; 260 pL, 0.130 mmol) at room température. The mixture immediateiy tumed a darker yellow and was then evaporated at room température under vacuum giving a light orange solid. This material was triturated with Et2O (2X) and isolated by decanting using a centrifuge and drying under a nitrogen stream and then under high vacuum. The title compound was Isolated as a light orange solid (32 mg, 39%). mp 146 -154 *C; ’H NMR (400 MHz, methanol-d4) δ 9.11 (s, 1 H), 8.64 - 7.68 (m, 7H), 7.51 (m, 2H), 6.70 (s, 2H), 3.85 - 3.70 (m, 4H), 3.61 (m, 1 H), 2.29 (s, 6H); ESIMS m/z 599 (M+H).
Example 9: Préparation of (Z)-3-(4-methoxy-2,6-dImethylphenyl)-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazono)thJazolidin-4-one (Compound 69C) (Synthesis Method F)
To a solution of (E)-N-(4-methoxy-2,6-dlmethylphenyl)-2-(4-(1-{4(trifluoromethoxy)phenyl)-1 /7-1,2,4-triazol-3-yl)benzylidene)hydrazine-carbothioamide (250 mg, 0.462 mmol) in EtOH (5 mL) was added methyl bromoacetate (100 mg, 0.65 mmol), and the mixture was heated to 70 °C for 4 h. The mixture was allowed to cool to room température and diluted with water (1 mL). The precipitate was vacuum filtered, giving the title compound as a white solid (204 mg, 76%): mp 188 - 190 °C; 1H NMR (400 MHz, CDCI3} δ 8.56 (s, 1H), 8.33 (s, 1H), 8.22 (d, J = 8.1 Hz, 2H), 7.90-7.70 (m, 4H), 7.39 (d, J =8.7 Hz, 2H), 6.72 (s, 2H), 4.01 (s, 2H), 3.87 - 3.73 (s, 3H), 2.18 (s, 6H); ESIMS m/z 581 (M+H).
Example 10: Préparation of 4-((2Z)-3-(2,6-dimethylphenyl)-2-((4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazono)-2,3dlhydrothlazol-4-yl)-A/,A/-diethylanillne (Compound 74C) (Synthesis Method G)
To a solution of (E)-N-(2,6-dimethylphenyl)-2-(4-(1-(4-(trifluoiOmethoxy)pheny1)-1H1,2,4-triazoi-3-y1)benzylidene)hydrazine-carbothioamlde (74.7 mg, 0.144 mmol) ln dichloroethane (5 mL), was added □-bromo-4-diethy1amino)acetophenone (53.9 mg, 0.199 mmol), and the mixture was heated to 40 °C for 4 h. The mixture was then cooled to room température and evaporated under vacuum. The crude material was triturated with acetonitrile and decanted (2X). The resulting solid was dried under a stream of nitrogen, giving the title compound as a pale yellow solid (25 mg, 25%): mp 190 -193 °C dec; 1H NMR (400 MHz, methanol-cQ δ 9.20 (s, 1 H), 8.38 (s, 1 H), 8.31 - 8.24 (m, 2H), 8.08 - 8.00 (m, 2H), 7.95 - 7.88 (m, 2H), 7.55 - 7.48 (m, 3H), 7.48 - 7.36 (m, 5H), 7.31 (d, J - 7.7 Hz, 2H), 3.60 (q, J = 7.2 Hz, 4H), 2.20 (s, 6H), 1.07 (t, J = 7.2 Hz, 6H); ESIMS m/z 682 (M+H).
Example 11: Préparation of (Z)-2-(2,6-dimethylphenylimino)’3-((E)-4-(1-(4(trifluoromethoxy)phenyl)-1H-1l2,4-triazol-3-yl)benzylideneamino)thiazolidln-4-one (Compound 81 C) (Synthesis Method I)
To a solution of 1-(2,6-dimethy1pheny1)thlourea (1.0 g, 5.55 mmol) in EtOH (10 mL) was added methyl 2-bromoacetate (1.0 g, 6.5 mmol) and sodium acetate (1.0 g, 12.2 mmol). The solution was stirred and heated to reflux for 1 h, then it was cooled and the liquid was decanted from a small amount of solid material and the liquid was then diluted with water (10 mL). The precipitate was Isolated by filtration to give (1.1g, 83%) of (Z)-3-amino-2-(2,6dimethylphenylimino)thiazo!idin-4-one: mp 149 -152 °C; 1H NMR (400 MHz, CDCI3) δ 7.06 (d, J =7.2 Hz, 2H), 6.98 (m, 1H), 4.75 (s, 2H), 3.80 (s, 2H), 2.12 (s, 6H); ESIMS m/z 236 (M+H).
A portion of this material (0.07 g, 0.3 mmol) was dissolved ln glacial acetic acid (3 mL) and treated with 4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazo!-3-yl)benzaldehyde (0.10 g,
0.30 mmol), and the solution was heated to 60 °C for 2 h. The solution was then cooled and diluted with water (1 mL), and the resulting solid was filtered and alr-dried to give the title compound (0.12 g, 67%): mp 209- 213 °C; 1H NMR (400 MHz, CDCI3) δ 9.42 (s, 1H), 8.59 (s, 1 H), 8.28 (d, J = 8.4 Hz, 2H), 8.01 (d, J - 8.3 Hz, 2H), 7.80 - 7.77 (m, 2H), 7.43 - 7.34 (m, 2H), 7.07 (d, J = 7.5 Hz, 2H), 6.98 (dd, J - 8.2,6.7 Hz, 1 H), 3.90 (s, 2H). 2.17 (s, 6H); ESIMS m/z 551 (M+H).
Example 12: Préparation of (2Z,NE)-2-((2-lsopropylphenyl)imino)-N-(4-(1-(4(trifluoromethyl)phenyl)-1 H-1,2,4-triazol-3-yl)benzy!idene)-1,3-thiazinan-3-amine and (Z)-3-(2isopropyl phenyl )-2-((5)-( 4-(1-( 4-(trifluoromethyl)phenyl)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazono)-1,3-thiazinane (Compound 87C and 179C) (Synthesis Method J)
To (E)-N-(2-lsopropylphenyl)-2-(4-(1 -(4-(trifluoromethyl)phenyl)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazinecarbothioamide (200 mg, 0.393 mmol) and potassium carbonate (217 mg, 1.57 mmol) in butanone (10 ml) in a 25 mL vïal equipped with a stir bar and vigruex column was added 1-bromo-3-chloropropane (0.047 ml, 0.472 mmol). The reaction was heated to 60 °C overnight. The reaction was determined to be complété by LCMS. The reaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided two compounds. The minor compound was dried overnight under house vacuum providing the title compound 87C (2Z,NE)-2-((2-isopropylphenyl)imino)-N(4-(1-(4.(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)-1,3-thiazinan-3-amine (28.5 mg, 13%) as a yellow solid: mp 187-189 °C; ’H NMR (400 MHz, CDCI3) δ 8.81 (s, 1H), 8.66 (s, 1 H), 8.21 (d, J = 8.3 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.81 (t, J = 10.2 Hz, 4H), 7.30 - 7.26 (m, 2H), 7.17-7.04(m, 1H), 6.83 (d, J =6.4 Hz, 1H), 3.96 (t, J = 6.1 Hz, 2H), 3.13 (heptet, J = 6.9 Hz, 1H), 2.97 - 2.90 (m, 2H), 2.47 - 2.38 (m, 2H), 1.25 (d, J - 7.5 Hz, 6H); ESIMS m/z 550 (M+H). The major compound was recrystallized with MeOH. The solid was filtered, washed with MeOH and dried at 50°C under vacuum. The solid was then azeotroped with acetone (3x) and the résultant solid was dried at 50°C under vacuum providing the title compound 179C (Z)-3-(2lsopropylphenyl)-2-((EH4-(1-(4-(trifluoromethyl)phenyl)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazono)-1,3-thiazinane as a yellow solid (92.3 mg, 0.168 mmol, 43%): mp 212-213 °C; ’H NMR (400 MHz, CDCi3) δ 8.64 (s, 1H), 8.15 (d, J - 8.4 Hz, 2H), 8.06 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H). 7.79 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.38 (dd, J - 7.8,1.6 Hz. 1H), 7.33 (td, J = 7.5, 1.4 Hz. 1H), 7.29 - 7.23 (m. 1H), 7.18 (dd, J = 7.8,1.4 Hz, 1H), 3.78 24
3.72 (m, 1 H), 3.59 - 3.48 (m, 1 H). 3.18 - 3.04 (m, 3H), 2.40 - 2.30 (m, 2H), 1.26-1.20 (m, 6H);
ESIMS m/z 550 (M+H).
Example 13: Préparation of (Z)-3-(2-cyclopropylphenyl)-5-methyl-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-triazol-3-yl)benzylidene)hydrazono)thiazolidln-4-one (Compound 127C) (Synthesis Method F)
To (E)-N-(2-cyciopropylpheny1)-2-(4-(1-(4-(trinuoromethoxy)phenyl)-1 H-1,2,4-triazoi-3y1)benzyiidene)hydrazinecarbothioamide (100 mg, 0.191 mmol) and sodium acetate (63.0 mg, 0.765 mmol) in EtOH (4 mL) was added methyl 2-bromopropanoate (0.026 mL, 0.230 mmol). The reaction was heated to 60 ®C ovemight. The réaction was then heated to 85 °C for 72 hours. The reaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided the title compound as a white solid (32.5 mg, 0.056 mmol, 30%): mp 112 - 115 °C; Ή NMR (400 MHz, CDCI3) δ 8.58 (s, 1 H), 8.32 (s, 1 H), 8.22 (d, J = 8.3 Hz, 2H), 7.87 - 7.75 (m, 4H), 7.43 - 7.32 (m, 4H), 7.26 7.24 (m, 2H), 4.23 (q, J = 7.3 Hz, 1 H), 1.85 - 1.78 (m, 4H), 0.90 - 0.78 (m, 2H), 0.78 - 0.69 (m, 1H). 0.65 - 0.55 (m, 1H); ESIMS m/z 578 (M+H).
Example 14: Préparation of (Z)-3-(2-isopropylphenyl)-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1(2,4-triazoi-3-yl)benzylidene)hydrazono)thiazolidine (Compound 132C) (Synthesis Method J)
To (E)-N-(2-isopropylphenyl)-2-(4-(1 -(4-( tnfluoromethoxy)phenyi)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazinecarbothioamide (214 mg, 0.407 mmol) and potassium carbonate (225 mg, 1.63 mmol) In butanone (4 ml) was added 1-bromo-2-chioroethane (70.0 mg, 0.489 mmol).
The reaction was heated to 90 °C ovemight. The reaction was determined to be complété by LCMS. The reaction mixture was cooled, diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were filtered through a phase separator and concentrated. Séparation by flash column chromatography and drying the recovered solid at 55 °C under vacuum provided the title compound as a white solid (137 mg, 0.249 mmol, 61%): mp 193 -196 °C; Ή NMR (400 MHz, CDCI3) δ 8.56 (s, 1H), 8.22 (s, 1H), 8.17 (d, J « 8.4 Hz, 2H), 7.80 (ddd, J = 9.5, 6.9, 4.9 Hz, 4H), 7.43 - 7.33 (m, 4H), 7.31 - 7.21 (m, 2H), 4.05 (td, J = 9.4,7.1 Hz, 1 H), 3.97 - 3.87 (m, 1 H), 3.42 - 3.33 (m, 1 H), 3.33 - 3.24 (m, 1H), 3.12 (heptet, J = 6.8 Hz, 1H), 1.27 (d, J = 6.8 Hz, 3H), 1.22 (d, J = 6.9 Hz, 3H); ESIMS m/z 552 (M+H).
Example 15: Préparation of (Z)-3-(2-lsopropylphenyl)-4-methyl-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1H-1,2,4-trIazol-3-yl)benzylidene)hydrazono)thiazolidine (Compound 155C) (Synthesis Method J) /=N
To (E)-N-(2-lsopropylphenyl)-2-(4-(1 -(4-(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3yl)benzylidene)hydrazinecarbothioamide (300 mg, 0.572 mmol) and potassium carbonate (316 mg, 2.29 mmol) In butanone (4 ml) was added 1,2-dibromopropane (0.072 ml, 0.686 mmol). The reaction was heated to 85 °C ovemight. The reaction was determined to be complété by LCMS. The reaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided a yellow solid. The solid was recrystallized from MeOH. The solid was filtered, washed wi'th MeOH, and dried to provide the title compound as a yellow solid which was dissolved in acetone and concentrated (3x). The light yellow solid was collected and dried under to provide the title compound as a 1:1 mixture of rotational diastereoisomers (75.1 mg, 0.133 mmol, 23%): mp 201 - 204 °C; ’H NMR of mixture (400 MHz, CDCI3) δ 8.56 (s, 2H), 8.18 (dd, J = 10.8, 7.4 Hz, 6H). 7.84 - 7.73 (m, 8H), 7.45 7.30 (m, 8H), 7.30 - 7.23 (m, 2H), 7.20 (d, J = 6.7 Hz, 1 H), 7.12 (dd, J = 7.8,1.2 Hz, 1 H), 4.43 4.33 (m, 1H), 4.16 (dd, J= 12.6,6.3 Hz, 1H), 3.48 (dt, J = 13.3,6.7 Hz, 1H), 3.37 (dd, J= 10.8,
6.2 Hz, 1H), 3.24 (dt, J= 13.7, 6.9 Hz, 1H), 3.08-2.92 (m, 3H), 1.33 -1.16 (m, 18H); ESIMS m/z 566 (M+H).
Example 16: Préparation of (Z)-3-(2,6-dlmethylphenyl)-4-methyl-2-((E)*(4-(1*(4{trif1uoromethoxy)phenyl)-1H-1,2,4-triazol-3-yi)benzyiidene)hydrazono}-2,3dihydrothlazole (Compound 173C) (Synthesis Method G)
To a solution of (£)-N-(o-tolyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1W-1l2I4-triazol-3yl)benzylidene)hydrazinecarbothioamide (257 mg, 0.520 mmol) In butanone (5 mL) was added triethylamîne (0.14 mL, 1.0 mmol) and chloroacetone (0.06 mL, 0.73 mmol) and refluxed at 75 eC for 15 h. The mixture was allowed to cool to room température and then transferred to a separatory funnel containing water (5 mL) and extracted twice with dichloromethane. The organic layers were filtered through a phase separator, adsorbed onto silica gel, and purified by flash column chromatography to afford the title compound as a yellow solid (229 mg, 83%): mp 87 ’C (dec); Ή NMR (400 MHz, CDCI3) δ 8.56 (s, 1 H), 8.19-8.15 (m, 3H), 7.82 - 7.75 (m, 4H), 7.43-7.30 (m, 5H), 7.24 (d, J =7.3 Hz, 1 H), 5.88 (d, J= 1.3 Hz, 1 H), 2.21 (s, 3H), 1.80 (d, J =
1.2 Hz, 3H); ESIMS m/z 536 (M+H).
Example 17: Préparation of (Z)-3-(2-isopropyiphenyi)-5-methy!-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl )-1//-1,^trlazol-S-yiJbenzyHdeneJhydrazonoH.S-thiazinane (Compound 178C) (Synthesis Method J)
To (E>N-(2-isopropylphenyl)-2-(4-( 1 -(4-(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3yl}benzylidene)hydrazinecarbothioamide (100 mg, 0.191 mmol) and potassium carbonate (105 mg, 0.763 mmol) In butanone (4 ml) was added 1-bromo-3-chloro-2-methylpropane (39.0 mg, 0.229 mmol). The réaction was heated to 80 °C ovemight. The reaction mixture was then diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided the title compound as a light yellow solid as a mixture of rotational diastereoisomers: mp 186 -190 °C; Ή NMR (400 MHz, CDCI3) δ 8.55 (d, J= 3.6 Hz, 1 H), 8.14
(d, J = 8.4 Hz, 2H), 8.06 (s, 1 H), 7.84 - 7.77 (m, 2H), 7.74 (d, J - 8.4 Hz, 2H), 7.38 (d, J - 9.0 Hz, 3H), 7.32 (td, J = 7.5,1.4 Hz, 1H), 7.26 (s, 1H), 7.17 (t, J= 7.1 Hz, 1H), 3.69-3.26 (m, 1H), 3.55 - 3.37 (m, 1 H), 3.18 - 2.98 (m, 2H), 2.93 - 2.80 (m, 1 H), 2.47 (d, J = 35.9 Hz, 1 H), 1.31 1.12 (m, 9H); ESIMS m/z 580 (M+H).
Example 18: Préparation of (Z)-3-(2,6-dlmethylphenyl)-2-((E)-(4-(1-(4· (tr1fluoromethoxy)phenyl)-1 H-1,2,44riazol*3-yl)benzylldene)hydrazono)-1,3-thiazepane (Compound 211C) (Synthesis Method J) /=N
To (E)-N-(2,6-dimethy1phenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3y1)benzylidene)hydrazinecarbothioamlde (500 mg, 0.979 mmol) and potassium carbonate (541 mg, 3.92 mmol) in acetone (4 ml) was added 1-bromo-4-chlorobutane (0.135 ml, 1.18 mmol). The réaction was heated to 60 °C ovemight. The alkylation was determined to be complété by ultra performance liquid chromatography (‘UPLC’). The réaction mixture was diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided (1Z,N’E)-4-chlorobutyl N-(2,6-dlmethy1phenyl)-N'-(4-(1-(4(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3-y1)benzy1idene)carbamo hydrazonothioate (427 mg, 0.710 mmol, 73%) as a yellow gum which was used without further purification. To (1Z,/\TE)-4-chlorobutyl A/-(2,6-dimethy1pheny1)-/ï-(4-(1-(4(trifluoromethoxy)phenyl)-1 H-1 ,2,4-triazol-3-y1)benzylidene)-carbamohydrazonothioate (427 mg, 0.710 mmol), potassium iodide (236 mg, 1.42 mmol) and potassium carbonate (393 mg, 2.84 mmol) was added acetone (7 ml). The reaction was heated to 65°C for 72 h. The reaction was cooled to room température, diluted with DCM and washed with water. The aqueous layer was extracted with DCM. The organic layers were poured through a phase separator and concentrated. Purification by flash column chromatography provided a yellow oil. The yellow oil was recrystallized from MeOH, filtered, washed with MeOH and dried to provide the title compound as a yellow solid (100 mg, 0.177 mmol, 25%): mp 100 -106 °C; ’H NMR (400 MHz, CDCh) C 8.55 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.10 (s, 1H), 7.79 (dt, J~ 10.4, 5.8 Hz, 4H), 7.38 (d, J- 8.3 Hz, 2H), 7.11 (s, 3H), 3.85-3.78 (m, 2H), 3.20-3,12 (m, 2H), 2.30 (s, 6H), 2.13 2.07 (m, 2H), 1.87 -1.82 (m, 2H): ESIMS m/z 566 (M+H).
Example 19: Préparation of (Z)-3-(2-isopropylphenyl)-2-((E)-(4-(1-(4(trifluoromethoxy)phenyl)-1 H-1,2,4-trlazol-3-yl)benzylidene)hydrazono)-1,3-thlazinan-4one (Compound 224C) (Synthesis Method L)
To (E)-N-(2-lsopropylphenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1 H-1,2,4-triazol-3yl)benzy!idene)hydrazinecarbothloamide (500 mg, 0.953 mmol) in butanone (9.5 mi) was added acryloyl chloride (0.077 mi, 0.953 mmol). The reaction was stirred at ambient température for 10 min followed by 50 eC for 2 h. The reaction was cooled to 40 °C overnight. The reaction was determined to be complété by LCMS. The reaction mixture was diluted with DCM and washed with saturated sodium bicarbonate. The aqueous layer was extracted with DCM. The organic iayers were poured through a phase separator and concentrated. Purification by flash column chromatography provided a yellow oil. The oil was recrystallized with diethyl ether/hexanes to provide the title compound as a light yellow solid (125 mg, 0.217 mmol, 23%): mp 118 eC (dec); 1H NMR (400 MHz, CDCij) δ 8.57 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 8.16 (s, 1H), 7.85-7.75 (m, 4H), 7.46 - 7.36 (m, 4H), 7.33 - 7.26 (m, 1H), 7.10 (d, J = 7.6 Hz, 1 H), 3.26 - 3.14 (m, 4H).
2.81 (heptet, J = 6.9 Hz, 1H), 1.21 (t, J = 7.2 Hz, 6H); ESIMS m/z 580 (M+H).
Example 20: Préparation of (Z)-3-(2,6-difluorophenyl)-2-((E)-(4-(1-(4(trlfluoromethoxy)phenyi)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazono)-1,3-thiazetldlne (Compound 245C) (Synthesis Method J)
To a mixture of (E)-N-(2,6-difluorophenyl)-2-(4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4triazol-3-yl)benzy1idene)hydrazlnecarbothioamide (0.50 g, 0.96 mmol) and potassium carbonate (0.53 g, 3.9 mmol) in butanone (10 mL) in a 25 mL vial equipped with a magnetic stir bar was added dilodomethane (0.093 ml, 1.2 mmol). The reaction was heated to 55 eC and stirred for two days. The reaction mixture was diluted with DCM, washed with water, and the phases separated. The aqueous phase was extracted with DCM and the combined organic phases were dried by passing through a phase separator cartridge and then concentrated. Purification by flash column chromatography provided a yellow oil which crystallized upon standing. The solid was slurried in diethyl ether and hexanes and collected by vacuum filtration. The solid was washed with hexanes and dried to provide the title compound (0.086 g, 0.16 mmol, 17%) as a light yellow solid: mp 144 -146 °C; 1H NMR (400 MHz, CDCI3) δ 8.58 (s, 1H), 8.34 (s, 1H), 8.20 (d, J = 8.3 Hz, 2H), 7.81 (d, J= 8.8 Hz, 4H), 7.40 (d,J- 8.3 Hz, 2H), 7.31 -7.23 (m, 1H), 7.03 - 6.97 (m, 2H), 5.05 (s, 2H); ESIMS m/z 532 (M+H).
Compounds 240 - 244 and 246 - 261, shown In Table 3, were prepared according to the method described In Example 20 from the appropriately substituted Intermediates disclosed in Table 1. Characterization data for these compounds is reported in Table 4.
Example 21: Séparation of rotatlonally stable atroplsomers from racemic mixtures
Séparation of constituent isomers from racemic mixtures can be carried out utilizing one of the following chiral HPLC methods.
Séparation Method A: The column used for séparation was a Chiral Technologies INC Chiral Pak 1A 5 pm, 4.6 X 250 mm column (Part number 80325). The method consists of a 1.0 mL/min flow rate from 0 to 30 min with an Isocratic hold at 25% B for the duration of the run. The A eluent is n-hexane, the B eluent Is /so-propyl alcohol.
Séparation Method B: The column used for séparation was a Chiral Technologies INC Chiral Pak 1B 5 pm, 4.6 X 250 mm column (Part number 81325). The method consists of a 1.0 mUmin flow rate from 0 to 30 min with an isocratic hold at 15% B for the duration of the run. The A eluent Is n-pentane, the B eluent is n-butyl alcohol.
Example 22: Préparation of {E)-N-(2-fluoro-6-lsopropylphenyl)-2-{4-(1-(4(trlfluoromethoxy)phenyl)-1H-1,2,4-trlazol-3-yl)benzylldene)hydrazlnecarbothloamlde (Compound I-40; Synthesis Method C)
Step 1: Préparation of 1-fluoro-2-nltro-3-(prop-1-en-2-y])benzene (I-37, Method M).
To a mixture of 1-bromo-3-fluoro-2-nitrobenzene (0.953 g, 4.33 mmol) in a 100 mL roundbottomed fiask equipped with a magnetic stir bar and nitrogen Inlet were added dioxane (17.3 mL), sodium carbonate (0.551 g, 5.20 mmol), water (4.33 mL), and 4,4,5,5-tetramethyl-2-(prop1-en-2-yl)-1,3,2-dioxaborolane (0.977 mL, 5.20 mmol). To this mixture was added bis(triphenylphosphine)palladium(ll)chlorlde (0.243 g, 0.347 mmol). The fiask was evacuated and purged with nitrogen (3 x) and then heated to 80 eC and stirred ovemight. The reaction was cooled to room température, filtered through Celite ®, and the pad was washed with ethyl acetate. The phases were separated and the organic phase was concentrated. Purification by flash column chromatography provided the title compound (0.590 g, 3.26 mmol, 75 % yield) as a light yellow oil: Ή NMR (400 MHz, CDCIj) δ 7.48 - 7.36 (m, 1H), 7.21 - 7.06 (m, 2H), 5.23 (p, J = 1.5 Hz, 1H), 5.05 (q, J = 1.1 Hz, 1H), 2.09 (s, 3H); 13C NMR (101 MHz. CDCI3) δ 153.56 (d. JCF = 257.5 Hz), 139.62, 139.60,138.83, 131.48 (d, JCF= 8.6 Hz), 124.47 (d, 3.6 Hz), 117.60, 115.51 (d.JcF- 19.1 Hz), 23.18.
Step 2: Préparation of 2-fluoro-6-lsopropyianlline (1-38, Method M). To a solution of 1-fluoro-2-nltro-3-(prop-1-en-2-yl)benzene (0.590 g, 3.26 mmol) ln ethyl acetate (32.6 mL) in a 250 mL round-bottomed fiask equipped with a magnetic stir bar and nitrogen inlet was added palladium on carbon (5% Pd / C, 0.693 g, 0.326 mmol). The réaction fiask was evacuated and 20 purged with hydrogen (2 x) and then placed under 1 atmosphère (atm) of hydrogen and stirred at room température ovemight. The reaction was filtered through Celite® and the pad was washed with ethyl acetate. The filtrate was concentrated to give the title compound (0.423 g, 2.76 mmol, 85 % yield) as clear and coloriess oil: IR (neat) 3476 (m), 3392 (m), 2966 (m), 2872 (m), 1628 (s), 1474 (s), 1270 (m) cm·1; 1H NMR (400 MHz, CDCIj) δ 6.92 (dt, J = 7.7,1.2 Hz, 25 1H), 6.86 (ddd, J = 10.8, 8.1,1.4 Hz, 1H), 6.69 (td, J = 8.0, 5.6 Hz, 1H), 3.71 (bs, 2H). 2.92 (hept, J = 6.8 Hz, 1 H), 1.26 (d, J = 6.8 Hz, 6H); 13C NMR (101 MHz, CDCIj) δ 151.91 (d, J = . 237.6Hz), 135.10 (d, J = 2.3 Hz), 131.60 (d, J = 11.8 Hz), 120.52 (d, J = 3.0 Hz), 117.99 (d, J=
8.0 Hz), 112.28 (d, J= 19.6 Hz), 27.77 (d, J = 2.9 Hz), 22.22.
Step 3: Préparation of N-(2-fluoro-6-lsopropylphenyl)hydrazinecarbothloamlde (i30 39, Method M). To a 100 mL round-bottomed fiask equipped with a stir bar and nitrogen inlet were added 2-fluoro-6-isopropylaniline (0.415 g, 2.71 mmol), dichloromethane (13.6 mL), water (6.78 mL), and sodium bicarbonate (0.683 g, 8.13 mmol). To this biphasic mixture was added thiophosgene (0.199 mL, 2.60 mmol) and the réaction was stirred vigorousiy for 2 hours. The suspension was filtered through a phase separator cartridge and the organic phase was concentrated in a 100 mL round-bottomed flask. The flask was equlpped with a magnetic stir bar and nitrogen inlet and the residue was dissolved in éthanol (6.78 mL). To the resulting solution was added hydrazlne hydrate (0.131 mL, 2.71 mmol) and the reaction was stirred at room température for 2 days. The solution was concentrated and the resulting residue was suspended In a mixture of diethyl ether and hexanes and re-concentrated to give a solid. The solid was suspended In a minimal amount of diethyl ether and the mixture was diluted with hexanes. The majority of the diethyl ether was evaporated and the resulting solid was collected by vacuum filtration, washed with hexanes and then dried under house vacuum to provide the title compound (0.518 g, 2.28 mmol, 84 % yield) as a white solid: mp 122-124 °C; 1H NMR (400 MHz, CDCIj) δ 8.56 (bs, 1H), 7.52 (bs, 1H), 7.32 (td, J-8.1, 5.6 Hz, 1 H). 7.17-7.12 (m, 1H), 7.00 (ddd. J = 9.5, 8.2,1.4 Hz. 1 H). 4.07 (bs, 2H), 3.15 (hept, J = 7.0 Hz, 1 H), 1.24 (d, J = 6.9 Hz, 6H); ESIMS m/z 229 ([M+H]*).
Step 4: Préparation of (E)-W-(2-fluoro-6-lsopropylphenyl)-2-(4-(1-(4(trifluoromethoxy)pheny1)-1H-1,2,4-trlazol-3-yi)benzylidene)hydrazinecarbothioamide (I40, Method C). To a solution of 4-(1-(4-(trifluoromethoxy)phenyl)-1H-1,2,4-triazo1-3yljbenzaldehyde (0.760 g, 2.28 mmol) in methanol (22.8 mL) In a 100 mL round-bottomed flask equlpped with a magnetic stir bar and reflux condenser was added W-(2-fluoro-6isopropylphenyl)hydrazinecarbothioamide (0.518 g, 2.28 mmol), and the reaction was heated to 65°C and stirred for 6 hours. The température was lowered to 50°C and the reaction was stirred ovemlght. The reaction was cooled to room température and the resulting solid was filtered, washed with methanol, and dried under vacuum (25 in Hg) at 55 °C to give the title compound (0.907 g, 1.67 mmol, 73 % yield) as a white solid: mp 210-212 °C; ’H NMR (400 MHz, CDCI3) δ 9.54 (S, 1H), 8.60 (s, 1H), 8.56 (s, 1 H). 8.30 - 8.22 (m, 2H), 7.92 (s, 1H), 7.86 - 7.76 (m, 4H), 7.44-7.38 (m, 2H), 7.35 (dd. J- 8.1, 5.6 Hz, 1H), 7.18 (d, J= 7.9 Hz, 1H), 7.04 (ddd, J= 9.4, 8.2,1.3 Hz, 1 H), 3.22 (p, J = 6.9 Hz, 1 H), 1.29 (d. J = 6.9 Hz, 6H); ESIMS m/z 544 ([M+H]*).
Intermediate compounds 1-32 -1-36 and 1-41 -1-65, shown In Table 1, were prepared according to the methods outlined In Example 22, Steps 1-4. Characterization data for these intermediates Is shown In Table 2.
Example 23: Bioassays on Beet Armyworm (BAW) and Corn Earworm (CEW”)
BAW has few effective parasites, diseases, or predators to lower Its population. BAW infests many weeds, trees, grasses, legumes, and field crops. in various places, It is of économie concem upon asparagus, cotton, com, soybeans, tobacco, alfalfa, sugar beets, peppers, tomatoes, potatoes, onions, peas, sunflowers, and citrus, among other plants. CEW Is known to attack corn and tomatoes, but It also attacks artichoke, asparagus, cabbage, cantaloupe, collards, cowpeas, cucumbers, eggplant, lettuce, lima beans, melon, okra, peas, peppers, potatoes, pumpkin, snap beans, spinach, squash, sweet potatoes, and watermelon, among other plants. CEW is also known to be résistant to certain Insecticides. Consequently, because of the above factors control of these pests is important. Furthermore, molécules that control these pests are useful ln controlling other pests.
Certain molécules disclosed in this document were tested against BAW and CEW using procedures described in the following examples, ln the reporting of the results, the 'BAW & CEW Rating Table” was used (See Table Section).
BIOASSAYS ON BAW (Spodoptera exlgua)
Bioassays on BAW were conducted using a 128-well diet tray assay. One to five second Instar BAW larvae were placed in each well (3 mL) of the diet tray that had been previously filled with 1 mL of artificial diet to which 50 pg/cm2 of the test compound (dissolved in 50 pL of 90:10 acetone-water mixture) had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adheslve cover and held at 25 °C, 14:10 light-dark for five to seven days. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged. The results are indicated ln the table entitled Table 5: Biological Results” (See Table Section).
Bioassays on CEW (Helicoverpa zea)
Bioassays on CEW were conducted using a 128-well diet tray assay. One to five second instar CEW larvae were placed in each well (3 mL) of the diet tray that had been previously filled with 1 mLof artificial diettowhich 50 pg/cm2ofthe test compound (dissolved in 50pLof 90:10 acetone-water mixture) had been applied (to each of eight wells) and then allowed to dry. Trays were covered with a clear self-adhesive cover and heid at 25 *C, 14:10 light-dark for five to seven days. Percent mortality was recorded for the larvae in each well; activity in the eight wells was then averaged. The results are indicated ln the table entitled 'Table 5: Biological Results” (See Table Section).
Example 24: bioassays on Green Peach Aphid (“GPA) (Myzus perslcae).
GPA is the most significant aphid pest of peach trees, causing decreased growth, shriveling of the leaves, and the death of various tissues. It is aiso hazardous because It acts as a vector for the transport of plant viruses, such as potato virus Y and potato ieafroll virus to members of the nightshade/potato family Solanaceaa, and various mosaic viruses to many other food crops. GPA attacks such plants as broccoli, burdock, cabbage, carrot, caultflower, daikon, eggplant, green beans, lettuce, macadamia, p a paya, peppers, sweet potatoes, tomatoes, watercress, and zucchini, among other plants. GPA also attacks many omamental crops such as carnation, chrysanthemum, flowering white cabbage, poinsettia, and roses. GPA has developed résistance to many pesticides.
Certain molécules disclosed in this document were tested against GPA using procedures described In the following example. In the reporting of the results, the GPA Rattng Table was used (See Table Section).
Cabbage seedlings grown In 3-lnch pots, with 2-3 small (3-5 cm) true leaves, were used as test substrate. The seedlings were Infested with 20-50 GPA (wingless adult and nymph stages) one day prior to chemical application. Four pots with Individual seedlings were used for each treatment. Test compounds (2 mg) were dissolved In 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm test compound. The stock solutions were diluted 5X with 0.025% Tween 20 in H2O to obtain the solution at 200 ppm test compound. A hand-held asplrator-type sprayer was used for spraying a solution to both sides of cabbage leaves until runoff. Reference plants (solvent check) were sprayed with the diluent only containing 20% by volume of acetone/methanol (1:1) solvent. Treated plants were held in a holding room for three days at approximately 25 °C and ambient relative humidity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Percent Control was measured by using Abbott's correction formula (W.S. Abbott, A Method of Computing the Effectiveness of an Insecticide J. Econ. Entomol. 18 (1925), pp.265-267) as follows.
Corrected % Control = 100 * (X - Y) / X where
X = No. of live aphids on solvent check plants and Y = No. of live aphids on treated plants
The results are Indicated in the table entitled Table 5: Biological Results (See Table Section).
PESTICIDALLY ACCEPTABLE ACID ADDITION SALTS, SALT DERIVATIVES, SOLVATES, ESTER DERIVATIVES, POLYMORPHS, ISOTOPES AND RADIONUCLIDES
Molécules of Formulas One, Two and Three may be formulated Into pesticidally acceptable acid addition salts. By way of a non-limiting example, an amine function can form salts with hydrochloric, hydrobromic, sulfuric, phosphoric, acetic, benzoic, citric, malonîc, salicyllc, malle, fumaric, oxalic, succinic, tartane, lactic, gluconic, ascorbic, malelc, aspartic, benzenesulfonic, methanesulfonic, ethanesulfonic, hydroxymethanesulfonlc, and hydroxyethanesulfonic acids. Additionally, by way of a non-limiting example, an acid fonction can form salts Including those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Examples of preferred cations Include sodium, potassium, and magnésium.
Molecuies of Formulas One, Two and Three may be formulated Into sait dérivatives. By way of a non-limiting example, a sait dérivative can be prepared by contacting a free base with a sufficlent amount of the desired acid to produce a sait. A free base may be regenerated by treating the sait with a suitable dilute aqueous base solution such as diiute aqueous sodium hydroxide (NaOH), potassium carbonate, ammonia, and sodium bicarbonate. As an example, in many cases, a pesticide, such as 2,4-D, ls made more water-soluble by converting It to its dimethylamine sait.
Molécules of Formulas One, Two and Three may be formulated Into stable complexes with a solvent, such that the complex remains Intact after the non-complexed solvent is removed. These complexes are often referred to as solvatés. However, it is particularly désirable to form stable hydrates with water as the solvent.
Molécules of Formulas One, Two and Three may be made into ester dérivatives. These ester dérivatives can then be applied in the same manner as the Invention disclosed in this document is applied.
Molécules of Formulas One, Two and Three may be made as various crystal polymorphs. Polymorphism is important in the development of agrochemicais since different crystal polymorphs or structures of the same molécule can hâve vastly different physical properties and biological performances.
Molecuies of Formulas One, Two and Three may be made with different isotopes. Of particular importance are molecuies having ZH (also known as deuterium) in place of 1H.
Moiecules of Formulas One, Two and Three may be made with different radionuclides. Of particular Importance are molecuies having 14C.
STEREOISOMERS
Molecuies of Formulas One, Two and Three may exist as one or more stereoisomers. Thus, certain moiecules can be produced as racemic mixtures. It will be appreciated by those skilled in the art that one stereoisomer may be more active than the other stereoisomers. Individual stereoisomers may be obtained by known sélective synthetic procedures, by conventional synthetic procedures using resolved starting materials, or by conventional resolution procedures.
INSECTICIDES
Moiecules of Formulas One, Two and Three may aiso be used ln combination (such as, ln a compositlonal mixture, or a simultaneous or sequential application) with one or more of the following insecticides -1,2-dichloropropane, abamectin, acephate, acetamiprid, acethlon, acetoprole, acrinathrin, acrylonitriie, aianycarb, aldicarb, aidoxycarb, aldrin, allethrin, allosamidin, aliyxycarb, a/pha-cypermethrin, a/pha-ecdysone, a/pha-endosuifan, amldithion, aminocarb, amiton, amiton oxalate, amitraz, anabaslne, athidathion, azadirachtin, azamethiphos, azinphos-ethyl, azinphos-methyl, azothoate, barium hexafluorosilicate, barthrin, bendiocarb, benfuracarb, bensultap, befa-cyfluthrin, befa-cypermethrin, blfenthrin, bioallethrin, bioethanomethrin, biopermethrin, blstrifluron, borax, boric acid, bromfenvinfos, bromocyclen, bromo-DDT, bromophos, bromophos-ethyl, bufencarb, buprofezin, butacarb, butathlofos, butocarboxlm, butonate, butoxycarboxim, cadusafos, calcium arsenate, calcium polysulfide, camphechlor, carbanolate, carbaryl, carbofuran, carbon disulfide, carbon tetrachloride, carbophenothion, carbosulfan, cartap, cartap hydrochloride, chlorantraniiiprole, chlorbïcycien, chlordane, chlordecone, chlordimeform, chlordimeform hydrochloride, chlorethoxyfos, chlorfenapyr, chlorfenvinphos, chlorfluazuron, chlormephos, chloroform, chloroplcrin, chlorphoxim, chlorprazophos, chlorpyrifos, chlorpyrifos-methyl, chlorthlophos, chromafenozide, cinerin I, clnerîn II, cinerins, cismethrin, cloethocarb, closantel, clothianldin, copper acetoarsenite, copper arsenate, copper naphthenate, copper oleate, coumaphos, coumithoate, crotamiton, crotoxyphos, crufomate, cryolite, cyanofenphos, cyanophos, cyanthoate, cyantraniliproie, cyclethrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin, cyphenothrin, cypropen, cyromazlne, cythloate, DDT, decarbofuran, deltamethrin, demephion, demephion-O, demephion-S, demeton, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-S-methyl, demeton-S-methylsulphon, dîafenthiuron, dialifos, diatomaceous earth, diazinon, dicapthon, dichlofenthion, dichlorvos, dlcresyl, dicrotophos, dicyclanil, dieldrln, diflubenzuron, dilor, dimefluthrin, dimefox, dimetan, dimethoate, dimethrin, dimethylvinphos, dimetilan, dinex, dinex-diclexine, dinoprop, dinosam, dinotefuran, diofenolan, dioxabenzofos, dioxacarb, dioxathion, disulfoton, dithlcrofos, d-limonene, DNOC, DNOC-ammonium, DNOCpotassium, DNOC-sodium, doramectin, ecdysterone, emamectin, emamectin benzoate, EMPC, empenthrin, endosulfan, endothion, endrin, EPN, epofenonane, eprinomectin, esdepalléthrine, esfenvalerate, etaphos, ethiofencarb, ethion, ethlprole, ethoate-methyl, ethoprophos, ethyl formate, ethyl-DDD, ethylene dîbromide, ethylene dichloride, ethylene oxide, etofenprox, etrimfos, EXD, famphur, fenamiphos, fenazaflor, fenchlorphos, fenethacarb, fenfluthrin, fenitrothion, fenobucarb, fenoxacrim, fenoxycarb, fenpirithrin, fenpropathrîn, fensulfothion, fenthlon, fenthion-ethyl, fenvalerate, fipronil, flometoquin, flonlcamld, flubendlamide (additionally resolved Isomers thereof). flucofuron, flucycloxuron, flucythrinate, flufenerim, flufenoxuron, flufenprox, flufiproie, flupyradifurone, fluvalinate, fonofos, formetanate, formetanate hydrochloride, formothlon, formparanate, formparanate hydrochloride, fosmethilan, fosplrate, fosthletan, fufenozide, furathiocarb, furethrin, gamma-cyhalothrin, gamma-HCH, halfenprox, halofenozide, HCH, HEOD, heptachlor, heptenophos, heterophos, hexaflumuron, HHDN, hydramethylnon, hydrogen cyanide, hydroprene, hyqulncarb, Imldacloprld, Imidaclothlz, Imlprothrin, Indoxacarb, iodomethane, IPSP, isazofos, Isobenzan, Isocarbophos, isodrin, Isofenphos, Isofenphos-methyl, isoprocarb, isoprothlolane, Isothioate, isoxathion, ivermectin, jasmolin I, jasmolin II, jodfenphos, juvénile hormone I, juvénile hormone II, juvénile hormone III, kelevan, klnoprene, lambda-cyhalothrln, lead arsenate, lepimectin, leptophos, lindane, iirimfos, lufenuron, lythidathion, malathion, malonoben, mazidox, ME-5343, MEB-5343, mecarbam, mecarphon, menazon, meperfluthrin, mephosfolan, mercurous chloride, mesulfenfos, metaflumizone, methacrifos, methamldophos, methidathion, methiocarb, methocrotophos, methomyl, methoprene, methothrin, methoxychlor, methoxyfenozide, methyl bromide, methyl Isothiocyanate, methylchloroform, methylene chloride, metofluthrin, metolcarb, metoxadiazone, mevinphos, mexacarbate, milbemectln, milbemycin oxime, mipafox, mirex, molosultap, monocrotophos, monomehypo, monosultap, morphothion, moxidectin, naftalofos, naled, naphthalene, nicotine, nifluridide, nitenpyram, nithiazine, nitrilacarb, novaluron, noviflumuron, omethoate, oxamyl, oxydemeton-methyl, oxydeprofos, oxydisulfoton, para-dichlorobenzene, parathion, parathion-methyl, penfluron, pentachlorophenol, permethrin, phenkapton, phenothrin, phenthoate, phorate, phosalone, phosfolan, phosmet, phosnlchlor, phosphamidon, phosphine, phoxim, phoxim-methyl, pirimetaphos, pirimicarb, pirimiphos-ethyl, pirimiphos-methyl, potassium arsenite, potassium thiocyanate, pp’-DDT, prallethrin, precocene I, precocene II, precocene III, primidophos, profenofos, profluralin, profluthrin, promacyl, promecarb, propaphos, propetamphos, propoxur, prothidathlon, prothiofos, prothoate, protrifenbute, pymetrozine, pyraclofos, pyrafluprole, pyrazophos, pyresmethrin, pyrethrin I, pyrethrin II, pyrethrins, pyridaben, pyridalyl, pyridaphenthion, pyrifluquinazon, pyrimidifen, pyrimitate, pyriprole, pyriproxyfen, quassia, quinalphos, quinalphos-methyl, quinothion, rafoxanide, resmethrin, rotenone, ryania, sabadilla, schradan, selamectin, sllafluofen, silica gel, sodium arsenite, sodium fluoride, sodium hexafluorosllicate, sodium thiocyanate, sophamide, spinetoram, spinosad, spiromesifen, splrotetramat, sulcofuron, sulcofuron-sodium, sulfluramid, sulfotep, sulfoxaflor, sulfuryl fluoride, sulprofos, tasmanone, tau-fluvalinate, tazimcarb, TDE, tebufenozide, tebufenpyrad, tebupirimfos, teflubenzuron, tefluthrin, temephos, TEPP, terallethrin, terbufos, tetrachloroethane, tetrachlorvinphos, tetramethrin, tetramethylfluthrin, thete-cypermethrin, thiacloprid, thiamethoxam, thicrofos, thiocarboxime, thiocyclam, thiocyclam oxalate, thiodicarb, thiofanox, thiometon, thiosultap, thiosultap-disodium, thiosultapmonosodîum, thuringiensin, tolfenpyrad, tralomethrin, transfluthrin, transpermethrin, triarathene, triazamate, triazophos, trichlorfon, trichlormetaphos-3, trichloronat, trifenofos, triflumuron, trimethacarb, triprene, vamidothion, vaniliprole, XMC, xylylcarb, zeta-cypermethrin, and zolaprofos (collecttvely these commonly named Insecticides are defined as the Insecticide Group).
ACARICIDES
Molécules of Formulas One, Two and Three may also be used ln combination (such as, ln a composltional mixture, or a simultaneous or sequential application) with one or more of the following acaricides - acequinocyl, amidoflumet, arsenous oxide, azobenzene, azocyclotin, benomyl, benoxafos, benzoximate, benzyl benzoate, bifenazate, binapacryl, bromopropylate, chinomethionat, chlorbenside, chlorfenethol, chlorfenson, chlorfensulphide, chlorobenzilate, chloromebuform, chloromethiuron, chloropropylate, clofentezine, cyenopyrafen, cyflumetofen, cyhexatin, dichlofluanid, dicofol, dienochlor, diflovidazin, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosuifon, dinoterbon, diphenyl suifone, disulfiram, dofenapyn, etoxazoie, fenazaquin, fenbutatin oxide, fenothiocarb, fenpyroximate, fenson, fentrifanil, fluacrypyrim, fluazuron, flubenzimine, fluenetii, flumethrin, fluorbenside, hexythiazox, mesulfen, MNAF, nikkomycins, proclonoi, propargite, quintiofos, spirodiciofen, suifiram, sulfur, tetradifon, tetranactin, tetrasul, and thioquinox (collectively these commonly named acaricides are defined as the Acarlclde Group).
NEMATICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as, in a compositionai mixture, or a simuitaneous or sequential application) with one or more of the following nematicides -1,3-dichloropropene, benclothiaz, dazomet, dazomet-sodium, DBCP, DCIP, diamidafos, fluensulfone, fosthiazate, furfural, imlcyafos, isamidofos, isazofos, metam, metam-ammonium, metam-potassium, metam-sodium, phosphocarb, and thionazln (collectiveiy these commonly named nematicides are defined as the Nematlclde Group)
FUNGICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as, in a compositionai mixture, or a simuitaneous or sequential application) with one or more of the following fongicides - (3-ethoxypropyi)mercury bromide, 2-methoxyethylmercury chloride, 2phenylphenol, 8-hydroxyquinoüne sulfate, 8-phenylmercurioxyquinoline, acibenzolar, acibenzolar-S-methyl, acypetacs, acypetacs-copper, acypetacs-zinc, aldimorph, allyl alcohol, ametoctradln, amlsulbrom, ampropylfos, aniiazine, aureofungin, azaconazole, azithiram, azoxystrobin, barium poiysulfide, benalaxyl, benalaxyl-M, benodanil, benomyl, benquinox, bentaluron, benthlavalicarb, benthiavalicarb-isopropyl, benzaikonium chloride, benzamacril, benzamacril-lsobutyl, benzamorf, benzohydroxamic acid, bethoxazin, binapacryl, biphenyl, bitertanol, bithionol, bixafen, blasticidin-S, Bordeaux mixture, boscalld, bromuconazole, bupirimate, Burgundy mixture, buthiobate, butylamlne, calcium poiysulfide, captafol, captan, carbamorph, carbendazlm, carboxin, carpropamid, carvone, Cheshunt mixture, chinomethionat, chlobenthlazone, chloraniformethan, chioranil, chlorfenazole, chlorodinitronaphthalene, chloroneb, chloropicrin, chlorothalonil, chlorquinox, chlozolinate, climbazole, clotrimazole, copper acetate, copper carbonate, basic, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper silicate, copper suifate, copper zinc chromate, cresol, cufraneb, cuprobam, cuprous oxide, cyazofamid, cyclafuramid, cycloheximide, cyflufenamld, cymoxanil, cypendazole, cyproconazole, cyprodinii, dazomet, dazomet-sodium, DBCP, debacarb, decafentin, dehydroacetic acid, dichlofluanid, dichlone, dichlorophen, dichlozoltne, diclobutrazol, diclocymet, diclomezine, diclomezine-sodium, dicloran, diethofencarb, diethyl pyrocarbonate, difenoconazole, diflumetorim, dimethirimol, dimethomorph, dimoxystrobin, diniconazole, diniconazole-M, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dlnoterbon, diphenylamine, dipyrithione, disulfiram, ditalimfos, dithianon, DNOC, DNOCammonium, DNOC-potassium, DNOC-sodium, dodemorph, dodemorph acetate, dodemorph benzoate, dodicln, dodicln-sodium, dodine, drazoxolon, edifenphos, epoxiconazole, etaconazole, etem, ethaboxam, ethlrimol, ethoxyquin, ethylmercury 2,3-dihydroxypropyl mercaptide, ethylmercury acetate, ethylmercury bromide, ethylmercury chloride, ethylmercury phosphate, etridiazole, famoxadone, fenamldone, fenaminosulf, fenapanil, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenitropan, fenoxanll, fenpidonll, fenpropidin, fenpropimorph, fentin, fentin chloride, fentln hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flumetover, flumorph, fluopicolide, fluopyram, fluoroimide, fluotrimazole, fluoxastrobln, fluquinconazole, flusilazole, flusulfamlde, flutianil, flutolanil, flutriafol, fluxapyroxad, folpet, formaldéhyde, fosetyl, fosetyl-alumlnlum, fuberidazole, furalaxyl, furametpyr, furcarbanil, furconazole, furconazole-cis, furfural, furmecyclox, furophanate, glyodin, griseofulvin, guazatine, halacrinate, hexachlorobenzene, hexachlorobutadlene, hexaconazole, hexylthiofos, hydrargaphen, hymexazol, imazalil, imazalil nitrate, Imazali! sulfate, imibenconazole, iminoctadine, Iminoctadine triacetate, iminoctadine trialbesilate, iodomethane, ipconazole, Iprobenfos, Iprodione, iprovallcarb, Isoprothlolane, isopyrazam, isotianil, Isovaledione, kasugamycin, kresoxim-methyl, mancopper, mancozeb, mandipropamid, maneb, mebenil, mecarblnzid, mepanipyrim, mepronil, meptyldinocap, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, metalaxy!-M, metam, metam-ammonium, metam-potassium, metam-sodium, metazoxolon, metconazole, methasulfocarb, methfuroxam, methyl bromide, methyl isothiocyanate, methylmercury benzoate, methylmercury dicyandiamide, methylmercury pentachlorophenoxide, metiram, metominostrobin, metrafenone, metsulfovax, milneb, myclobutanil, myclozolin, N-(ethylmercury)-p-toluenesulphonaniiide, nabam, natamycin, nltrostyrene, nltrothal-isopropyl, nuarimol, OCH, octhilinone, ofurace, orysastrobin, oxadixyl, oxine-copper, oxpoconazole, oxpoconazole fuma rate, oxycarboxin, pefurazoate, penconazole, pencycuron, penflufen, pentachlorophenol, penthiopyrad, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury dérivative of pyrocatechol, phenylmercury nitrate, phenylmercury salicylate, phosdiphen, phthalide, picoxystrobin, piperalin, polycarbamate, polyoxins, polyoxorim, polyoxorim-zinc, potassium azide, potassium polysulfide, potassium thiocyanate, probenazole, prochloraz, procymldone, propamocarb, propamocarb hydrochloride, proplconazole, proplneb, proquinazid, prothiocarb, prothiocarb hydrochloride, prothioconazole, pyracarbolid, pyraclostrobln, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyridinitril, pyrifenox, pyrimethanil, pyriofenone, pyroquilon, pyroxychlor, pyroxyfur, quinacetol, quinacetol sulfate, quinazamid, qulnconazole, quinoxyfen, qulntozene, rabenzazole, salicytanilide, sedaxane, silthiofam, simeconazole, sodium azide, sodium orthophenylphenoxide, sodium pentachlorophenoxide, sodium polysulfide, splroxamine, streptomycin, sulfur, sultropen, TCMTB, tebuconazole, tebufloquin, tecloftalam, tecnazene, tecoram, tetraconazole, thiabendazole, thiadifluor, thlcyofen, thifluzamide, thiochlorfenphim, thiomersal, thiophanate, thiophanate-methyt, thioqulnox, thiram, tiadinil, tioxymid, tolclofosmethyl, tolylfluanid, tolylmercury acetate, triadimefon, triadimenol, triamiphos, triarimol, triazbutil, 5 triazoxide, tributyltin oxide, trichlamide, tricyclazole, tridemorph, trifloxystrobln, triflumizole, triforine, triticonazole, uniconazole, uniconazole-P, validamycin, valifenalate, vinclozolin, zarilamid, zinc naphthenate, zineb, ziram, zoxamide (collectively these commonly named fungicldes are defined as the Fungiclde Group).
iO HERBICIDES
Molécules of Formulas One, Two and Three may also be used in combination (such as, In a compositional mixture, or a simultaneous or sequential application) with one or more of the following herbicides - 2,3,6-TBA, 2,3,6-TBA-dimethylammonium, 2,3,6-TBA-sodium, 2,4,5-T,
2.4.5- T-2-butoxypropyl, 2,4,5-T-2-ethylhexyl, 2,4,5-T-3-butoxypropyl, 2,4,5-TB, 2,4,5-T- butometyl, 2,4,5-T-butotyl, 2,4,5-T-butyl, 2,4,5-T-isobutyl, 2,4,5-T-isoctyl, 2,4,5-T-lsopropyl,
2.4.5- T-methyl, 2,4,5-T-pentyl, 2,4,5-T-sodium, 2,4,5-T-triethylammonlum, 2,4,5-T-trolamine,
2.4- D, 2,4-D-2-butoxypropyl, 2,4-D-2-ethylhexyl, 2,4-D-3-butoxypropyl, 2,4-D-ammonium, 2,4· DB, 2,4-DB-butyl, 2,4-DB-dimethylammonlum, 2,4-DB-lsoctyl, 2,4-DB-potassium, 2,4-DBsodium, 2,4-D-butotyl, 2,4-D-butyl, 2,4-D-diethylammonium, 2,4-D-dimethylammonium, 2,4-D- diolamine, 2,4-D-dodecylammonium, 2,4-DEB, 2,4-DEP, 2,4-D-ethyl, 2,4-D-heptylammonium,
2.4- D-lsobutyl, 2,4-D-lsoctyl, 2,4-D-isopropyl, 2,4-D-lsopropylammonium, 2,4-D-lithium, 2,4-Dmeptyl, 2,4-D-methyl, 2,4-D-octyl, 2,4-D-pentyl, 2,4-D-potassium, 2,4-D-propyl, 2,4-D-sodium,
2.4- D-tefuryl, 2,4-D-tetradecylammonium, 2,4-D-triethylammonium, 2,4-D-tris(2hydroxypropyl)ammonium, 2,4-D-trolamine, 3,4-DA, 3,4-DB, 3,4-DP, 4-CPA, 4-CPB, 4-CPP, acetochlor, acifluorfen, acifluorfen-methyl, acifluorfen-sodium, aclonifen, acrolein, alachlor, allidochlor, alloxydim, alloxydim-sodium, allyl alcohol, alorac, ametridione, ametryn, amibuzin, amicarbazone, amidosulfuron, amlnocyclopyrachlor, aminocyclopyrachlor-methyl, aminocyclopyrachlor-potassium, aminopyralid, aminopyralid-potassium, aminopyralid-tris(2hydroxypropyl)ammonium, amiprofos-methyl, amitrole, ammonium sulfamate, anilofos, anisuron, asulam, asulam-potassium, asulam-sodium, atraton, atrazine, azafenldin, azimsulfuron, aziprotryne, barban, BCPC, beflubutamid, benazolin, benazolindimethylammonium, benazolin-ethyl, benazolin-potasslum, bencarbazone, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, bentazone-sodium, benzadox, benzadox-ammonium, benzfendizone, benzipram, benzobicyclon, benzofenap, benzofluor, benzoylprop, benzoylprop-ethyl, benzthiazuron, bicyclopyrone, blfenox, bilanafos, bilanafos-sodium, btspyribac, bispyribac-sodium, borax, bromacil, bromacil-lithium, bromacilsodium, bromobonil, bromobutide, bromofenoxim, bromoxynil, bromoxynil butyrate, bromoxynil heptanoate, bromoxynil octanoate, bromoxynil-potassium, brompyrazon, butachlor, butafenacil, butamifos, butenachlor, buthidazole, buthluron, butralin, butroxydim, buturon, butylate, cacodytic acid, cafenstrole, calcium chlorate, calcium cyanamide, cambendichlor, carbasulam, carbetamide, carboxazole, carfentrazone, carfentrazone-ethyi, CDEA, CEPC, chlomethoxyfen, chloramben, chloramben-ammonium, chloramben-diolamine, chloramben-methyl, chlorambenmethylammonlum, chloramben-sodium, chloranocryl, chlorazifop, chlorazifop-propargyl, chlorazine, chlorbromuron, chlorbufam, chloreturon, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorfenprop-methyi, chlorflurazole, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlomitrofen, chloropon, chlorotoluron, chloroxuron, chloroxynil, chlorprocarb, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyi, chlorthalmonomethyi, chlorthiamid, cinldon-ethyi, cinmethyiin. cinosulfuron, cisanilide, clethodim, cliodinate, clodinafop, clodinafop-propargyi, clofop, clofop-isobutyl, clomazone, clomeprop, cloprop, cloproxydim, clopyralid, clopyralid-methyl, clopyralid-olamine, clopyralid-potassium, clopyralid-tris(2-hydroxypropyl)ammonlum, cloransulam, cloransulam-methyl, CMA, copper sulfate, CPMF, CPPC, credazine, cresol, cumyiuron, cyanamide, cyanatryn, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cycluron, cyhalofop, cyhalofop-butyl, cyperquat, cyperquat chloride, cyprazine, cyprazole, cypromid, daimuron, dalapon, dalapon-calcium, dalapon-magnesium, dalapon-sodium, dazomet, dazomet-sodium, delachlor, desmedipham, desmetryn, di-allate, dicamba, dicamba-dimethylammonium, dicamba-diolamine, dicambaIsopropylammonium, dicamba-methyl, dicamba-olamîne, dicamba-potassium, dicamba-sodium, dicamba-trolamine, dichlobenil, dichloralurea, dîchlormate, dichlorprop, dichlorprop-2-ethyihexyt, dichlorprop-butotyl, dichlorprop-dimethyiammonium, dichlorprop-ethylammonium, dichlorpropisoctyi, dichlorprop-methyl, dichlorprop-P, dlchlorprop-P-dimethyiammonium, dichlorproppotassium, dichlorprop-sodium, diclofop, dlclofop-methyl, diclosulam, diethamquat, diethamquat dichloride, dïethatyt, diethatyl-ethyl, difenopenten, difenopenten-ethyl, difenoxuron, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimexano, dimidazon, dinitramine, dinofenate, dinoprop, dinosam, dinoseb, dinoseb acetate, dinosebammonium, dlnoseb-diolamine, dinoseb-sodium, dinoseb-trolamine, dinoterb, dinoterb acetate, diphacinone-sodium, diphenamid, dipropetryn, diquat, diquat dibromide, disul, disul-sodium, dithiopyr, diuron, DMPA, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, DSMA, EBEP, eglinazine, egiinazine-ethyi, endothal, endothal-diammonium, endothal-dipotassium, endothal-disodium, epronaz, EPTC, erbon, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyi, ethidimuron, ethiolate, ethofumesate, ethoxyfen, ethoxyfen-ethyi, ethoxysulfuron, etinofen, etnipromid, etobenzanid, EXD, fenasulam, fenoprop, fenoprop-3butoxypropyi, fenoprop-butometyl, fenoprop-butotyl, fenoprop-butyl, fenoprop-isoctyl, fenopropmethyl, fenoprop-potassîum, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, fenoxasulfone, fenteracol, fenthiaprop, fenthiaprop-ethyl, fentrazamide, fenuron, fenuron TCA, ferrous sulfate, flamprop, flamprop-isopropyl, flamprop-M, flamprop-methyl, flamprop-M41
Isopropyl, flamprop-M-methyl, flazasuîfuron, florasulam, fluazifop, fluazifop-butyl, fluazifopmethyl, fluazifop-P, fluazifop-P-butyl, fluazolate, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenlcan, flufenpyr, flufenpyr-ethyl, flumetsuîam, flumezin, flumlclorac, flumiclorac-pentyl, flumioxazin, flumïpropyn, fluometuron, fluorodifen, fluoroglycofen, fluoroglycofen-ethyl, fluoromldine, fluoronitrofen, fluothiuron, flupoxam, flupropacil, flupropanate, flupropanate-sodium, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamlne, fosamineammonium, furyloxyfen, glufoslnate, glufosinate-ammonium, glufosinate-P, glufosinate-Pammonium, glufosinate-P-sodium, glyphosate, glyphosate-diammonlum, glyphosatedimethylammonium, glyphosate-lsopropylammonlum, glyphosate-monoammonium, glyphosatepotassium, glyphosate-sesquisodium, glyphosate-trimesium, halosafen, halosulfuron, halosulfuron-methyl, haloxydine, haloxyfop, haloxyfop-etotyl, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-etotyl, haloxyfop-P-methyl, haloxyfop-sodium, hexachloroacetone, hexaflurate, hexazinone, Imazamethabenz, imazamethabenz-methyl, imazamox, imazamox-ammonium, Imazaplc, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, Imazaquïn-ammonlum, imazaquin-methyl, imazaquin-sodium, imazethapyr, imazethapyrammonlum, imazosulfuran, indanofan, indaziflam, iodobonil, iodomethane, iodosulfuron, lodosulfuron-methyl-sodium, ioxynil, loxynil octanoate, ioxynil-lithium, ioxynil-sodtum, ipazlne, Ipfencarbazone, iprymidam, isocarbamid, isocil, Isomethlozin, isonoruron, isopolinate, Isopropalin, isoproturon, isouron, Isoxaben, isoxachlortole, Isoxaflutole, isoxapyrifop, karbutilate, ketospiradox, lactofen, lenacil, linuron, MAA, ΜΑΜΑ, MCPA, MCPA-2-ethylhexyl, MCPA-butotyl, MCPA-butyl, MCPA-dimethylammonium, MCPA-diolamlne, MCPA-ethyl, MCPA-isobutyl, MCPA-lsoctyt, MCPA-isopropyl, MCPA-methyl, MCPA-olamine, MCPA-potassium, MCPAsodium, MCPA-thioethyl, MCPA-trolamine, MCPB, MCPB-ethyl, MCPB-methyl, MCPB-sodium, mecoprop, mecoprop-2-ethy!hexyl, mecoprop-dimethylammonium, mecoprop-diolamine, mecoprop-ethadyl, mecoprop-lsoctyl, mecoprop-methyl, mecoprop-P, mecoprop-Pdimethylammonium, mecoprop-P-isobutyl, mecoprop-potassium, mecoprop-P-potassium, mecoprop-sodium, mecoprop-trolamine, medinoterb, medlnoterb acetate, mefenacet, mefluidide, mefluldide-diolamine, mefluidide-potassium, mesoprazine, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metam-ammonium, metamifop, metamitron, metampotassium, metam-sodium, metazachlor, metazosulfuron, metflurazon, methabenzthiazuron, methalpropalin, methazole, methiobencarb, methiozolin, methluron, methometon, methoprotryne, methyl bromide, methyl Isothiocyanate, methyldymron, metobenzuron, metoîachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsuîfuron-methyl, molinate, monalide, monisouron, monochloroacetic acid, monolinuron, monuron, monuron TCA, morfamquat, morfamquat dichloride, MSMA, naproanilide, napropamide, naptalam, naptalamsodium, neburon, nicosuîfuron, nlpyraclofen, nitralin, nitrofen, nitrofluorfen, norflurazon, noruron,
OCH, orbencarb, ortho-dichlorobenzene, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxapyrazon, oxapyrazon-dimolamine, oxapyrazon-sodium, oxasulfuron, oxaziclomefone, oxyfluorfen, parafluron, paraquat, paraquat dichloride, paraquat dimetilsulfate, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, perfluldone, pethoxamid, phenlsopham, phenmedipham, phenmedipham-ethyl, phenobenzuron, phenylmercury acetate, plcloram, plcloram-2-ethylhexyl, plcloram-lsoctyl, plcloram-methyl, picloram-olamine, picloram-potassium, picloram-trlethylammonlum, picloram-tris(2hydroxypropyljammonlum, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, potassium cyanate, pretilachlor, primisulfuron, primisulfuron-methyl, procyazine, prodiamine, profluazol, profluralin, profoxydim, proglinazine, proglinazine-ethyl, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamîde, prosulfalin, prosulfocarb, prosulfuron, proxan, proxan-sodium, prynachlor, pydanon, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyriclor, pyridafol, pyridate, pyriftalid, pyrimlnobac, pyrimlnobacmethyl, pyrimlsulfan, pyrithlobac, pyrithlobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, qulnmerac, quinoclamine, quinonamid, qulzalofop, qulzalofop-ethyl, qulzalofop-P, quizalofop-Pethyl, quizalofop-P-tefuryl, rhodethanil, rimsulfuron, saflufenacil, sebuthylazine, secbumeton, sethoxydim, siduron, slmazîne, slmeton, slmetryn, SMA, S-metolachlor, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfallate, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, sulfuric acid, sulglycapin, swep, TCA, TCA-ammonium, TCA-calcium, TCA-ethadyl, TCA-magneslum, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbuchlor, terbumeton, terbuthylazine, terbutryn, tetrafluron, thenylchlor, thiazafluron, thiazopyr, thldiazlmln, thldiazuron, thiencarbazone, thlencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, tioclorim, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, triclopyr-butotyl, trlclopyr-ethyl, triclopyr-triethylammonium, tridiphane, trletazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trifop, trifop-methyl, trifopsime, trihydroxytriazine, trimeturon, tripropindan, tritac, tritosulfuron, vemolate, xylachlor, (collectively these commonly named herbicides are defined as the ‘Herbicide Group**).
BIOPESTICIDES
Molécules of Formulas One, Two and Three may also be used In combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more biopesticides. The term “biopesticlde” is used for mlcrobial biological pest control agents that are applied In a similar manner to chemical pesticides. Commonly these are bacterial, but there are also examples of fungal control agents, including Trichoderma spp. and Ampelomyces quisqualis (a control agent for grape powdery mildew). Bacillus subtilis are used to control plant pathogens. Weeds and rodents hâve also been controlled with microbial agents. One wellknown Insecticide example is Bacillus thuringlensls, a bacteriai disease of Lepidoptera, Coleoptera, and Diptera. Because it has little effect on other organisms, It is considered more environmentaily friendly than synthetic pesticides. Biological insecticides Inciude products based on:
1. entomopathogenic fungi (e.g. Metarhlzium anisopliae):
2. entomopathogenic nematodes (e.g. Steinemema feltiae): and
3. entomopathogenic viruses (e.g. Cydia pomonella granulovirus).
Other examples of entomopathogenic organisms Include, but are not limited to, baculoviruses, bacteria and other prokaryotic organisms, fungi, protozoa and Microsproridia. Biologicaily derived insecticides Include, but not limited to, rotenone, veratridine, as well as microbial toxins; Insect tolérant or résistant plant varieties; and organisms modified by recombinant DNA technology to either produce Insecticides or to convey an Insect résistant property to the genetically modified organism. In one embodiment, the Molécules of Formula One, Two or Three may be used with one or more biopesticides In the area of seed treatments and soil amendments. The Manual of Bïocontrol Agents gives a review of the available biological Insecticide (and other biology-based control) products. Copping L.G. (ed.) (2004). The Manual of Bïocontrol Agents (formerly the Biopesticide Manuaf) 3rd Edition. British Crop Production Council (BCPC), Famham, Surrey UK.
OTHER ACTIVE COMPOUNDS
Molécules of Formulas One, Two and Three may also be used In combination (such as in a compositional mixture, or a simultaneous or sequential application) with one or more of the following:
1. 3-(4-chloro-2,6-dimethy1pheny1)-4-hydroxy-8-oxa-1-azaspiro[4,5]dec-3-en-2-one;
2. 3-(4,-chloro-2,4-dimethyl[1,r-blphenyl]-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4,5]dec-3-en-2one;
3. 4-n(6-ch1oro-3-pyridinyl)methyl]methylamino]-2(5H)-furanone‘,
4. 4-n(6-chloro-3-pyridinyl)methyl]cyclopropylam1no]-2(5H)-furanone;
5. 3-chloro-/V2-[(1S)-1-nnethy1-2-(nnethylsu1fony1)ethyl]-N1-[2-methyl-4-[1l2l2,2-tetrafluoro-1(trifluoromethyl)ethyl]phenyll’1,2-benzenedicarboxamide;
6. 2-cyano-N-ethyl-4-fluoro-3-methoxy-benenesulfonamide;
7. 2-cyano-/7-ethyl-3-methoxy-benzenesulfonamlde;
8. 2-cyano-3-difluoromethoxy-N-ethyl-4-fluoro-benzenesulfonamide;
9. 2-cyano-3-fluoromethoxy-N-ethyl-benzenesulfonamide;
10. 2-cyano-6-fluoro-3-methoxy-N,N-dimethyl-benzenesulfonamide;
11. 2-cyano-N-ethyl-6-fluoro-3-methoxy-N-methyl-benzenesulfonamide;
12. 2-cyano-3-difluoromethoxy-N,N-dimethylbenzenesulfon-amide:
13. 3-(difluoromethyl)-N-[2-(3,3-dimethylbuty1)phenyl]-1-methyl-1H-pyrazole-4-carboxamide;
14. N-ethyl-2,2-dimethylpropionamide-2-(2,6-dichloro-a,a,a-trifluoro-p-tolyl) hydrazone;
15. N-ethyl-2,2-dichloro-1-methylcyclopropane-carboxamide-2-(2,6-dichloro-a,a,a-trÎfIuoro-ptolyl) hydrazone nicotine;
16. 0-{(E-)-[2-{4-chloro-phenyl)-2-cyano-1-(2-trifluoromethylphenyl)-vinyl]} S-methyl thiocarbonate;
17. (E)-N1-[(2-chloro-1,3-thiazol-5-ylmethyl)]-N2-cyano-N1-methylacetamidine;
18. 1-(6-chloropyridin-3-ylmethyl)-7-methyl-8-nitro-1,2,3,5,6,7-hexahydiO-imidazo[1,2a]pyridin-5-ol;
19. 4-[4-chlorophenyl-(2-butylidine-hydrazono)methyl)]phenyl mesylate; and
20. N-Ethyl-2,2-dichloro-1-methylcyclopropanecarboxamide-2-(2l6-dichloroalpha, alpha, a/pha-trifluoro-p-tolyl)hydrazone.
Molécules of Formulas One, Two and Three may also be used in combination (such as in a compositional mixture, or a simultaneous or sequential application} with one or more compounds in the following groups: algicides, antifeedants, avicides, bactéricides, bird repellents, chemosterilants, herbicide safeners, insect attractants, insect repellents, mammal repellents, mating disrupters, molluscicides, plant activators, plant growth regulators, rodenticides, and/or virucides (collectively these commonly named groups are defined as the ‘Al Group}. It should be noted that compounds falling within the Al Group, Insecticide Group, Fungicide Group, Herbicide Group, Acaricide Group, or Nematicide Group might be in more than one group, because of multiple activités the compound has. For more information consult the Compendium of Pesticide Common Names located at http://www.alanwood.net/Desticides/index.html. Also consult The Pesticide Manual 14th Edition, edited by C D S Tomlin, copyright 2006 by British Crop Production Council, or its prior or more recent éditions.
SYNERGISTIC MIXTURES AND SYNERGISTS
Molécules of Formulas One, Two and Three may be used with the compounds in the Insecticide Group to form synergistic mixtures where the mode of action of such compounds compared to the mode of action of the Molécules of Formula One and Two are the same, similar, or different. Examples of modes of action include, but are not limited to: acetylcholinesterase inhibitor, sodium channel modulator; chitin biosynthesis inhibitor; GABAgated chloride channel antagonist; GABA and glutamate-gated chloride channel agonist; acétylcholine receptor agonist; MET I inhibitor; Mg-stimulated ATPase inhibitor; nicotinic acétylcholine receptor, Mïdgut membrane disrupter; oxidative phosphorylation disrupter, and ryanodine receptor (RyRs). Additionally, Molécules of Formula One and Two may be used with compounds in the Fungicide Group, Acaricide Group, Herbicide Group, or Nematicide Group to form synergistic mixtures. Furthermore, Molécules of Formulas One, Two and Three may be used with other active compounds, such as the compounds under the heading OTHER ACTIVE COMPOUNDS, algicides, avicides, bactéricides, molluscicides, rodenticides, vlrucides, herbicide safeners, adjuvants, and/or surfactants to form synergistic mixtures. Generally, weight ratios of the Molécules of Formulas One, Two and Three In a synergistic mixture with another compound are from about 10:1 to about 1:10, preferably from about 5:1 to about 1:5, and more preferably from about 3:1, and even more preferably about 1:1. Additionally, the following compounds are known as synergists and may be used with the molécules disclosed in Formula One: piperonyî butoxide, piprotal, propyl isome, sesamex, sesamoltn, sulfoxide, and tribufos (collectiveiy these synergists are defined as the Synergists Group).
FORMULATIONS
A pesticide is rarely suitable for application in its pure form. It is usually necessary to add other substances so that the pesticide can be used at the required concentration and in an appropriate form, permitting ease of application, handling, transportation, storage, and maximum pesticide activity. Thus, pesticides are formulated into, for example, baits, concentrated emuisions, dusts, emulsifiable concentrâtes, fumigants, gels, granules, microencapsulations, seed treatments, suspension concentrâtes, suspoemulsîons, tablets, water soluble liquids, water dispersible granules or dry flowables, wettable powders, and ultra low volume solutions. For further information on formulation types see “Catalogue of Pesticide Formulation Types and International Coding System Technical Monograph n°2, 5th Edition by CropLife International (2002).
Pesticides are applied most often as aqueous suspensions or émulsions prepared from concentrated formulations of such pesticides. Such water-soluble, water-suspendable, or emulsifiable formulations are either solids, usually known as wettable powders, or water dispersible granules, or liquids usually known as emulsifiable concentrâtes, or aqueous suspensions. Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of the pesticide, a carrier, and surfactants. The concentration of the pesticide is usually from about 10% to about 90% by weight The carrier is usually chosen from among the attapulgite clays, the montmorillonite clays, the diatomaceous earths, or the purified silicates. Effective surfactants, comprising from about 0.5% to about 10% of the wettable powder, are found among sulfonated lignins, condensed naphthalenesulfonates, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-ionic surfactants such as ethylene oxide adducts of alkyl phénols.
Emulsifiable concentrâtes of pesticides comprise a convenient concentration of a pesticide, such as from about 50 to about 500 grams per liter of liquid dissolved in a carrier that
Is either a water miscible solvent or a mixture of water-immiscible organic solvent and emulsifiers. Useful organic solvents include aromatics, especially xylenes and petroleum fractions, especially the high-boiiing naphthaienic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as the terpenic solvents Including rosin dérivatives, aliphatic ketones such as cyclohexanone, and complex alcohols such as 2-ethoxyethanoi. Suitable emulsifiers for emulsifiable concentrâtes are chosen from conventional anionic and non-lonic surfactants.
Aqueous suspensions comprise suspensions of water-insoluble pesticides dispersed ln an aqueous carrier at a concentration in the range from about 5% to about 50% by weight. Suspensions are prepared by finely grinding the pesticide and vigorously mixing it Into a carrier comprised of water and surfactants. Ingrédients, such as Inorganic salts and synthetic or natural gums may also be added, to increase the density and viscosity of the aqueous carrier, it is often most effective to grind and mix the pesticide at the same time by preparing the aqueous mixture and homogenlzing It ln an implement such as a sand mill, bail mill, or piston-type homogenlzer.
Pesticides may aiso be applied as granular compositions that are particularly useful for applications to the soil. Granular compositions usually contain from about 0.5% to about 10% by weight of the pesticide, dispersed ln a carrier that comprises clay or a similar substance. Such compositions are usually prepared by dissolving the pesticide in a suitable solvent and applying It to a granular carrier which has been pre-formed to the appropriate particle size, in the range of from about 0.5 to about 3 mm. Such compositions may also be formulated by making a dough or paste of the carrier and compound and crushing and drying to obtain the desired granular particle size.
Dusts containing a pesticide are prepared by intimately mixing the pesticide in powdered form with a suitable dusty agricultural carrier, such as kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% of the pesticide. They can be applied as a seed dressing or as a foiiage application with a dust blower machine.
It Is equally practicai to apply a pesticide In the form of a solution ln an appropriate organic solvent, usually petroleum oil, such as the spray oils, which are widely used in agricultural chemistry.
Pesticides can also be applied ln the form of an aérosol composition, ln such compositions the pesticide 1s dissolved or dispersed in a carrier, which Is a pressure-generatïng propellant mixture. The aerosoi composition is packaged in a container from which the mixture Is dispensed through an atomlzing valve.
Pesticide baits are formed when the pesticide is mixed with food or an attractant or both. When the pests eat the bait they also consume the pesticide. Baits may take the form of granules, gels, flowable powders, liquide, or solids. They can be used in pest harborages.
Fumigants are pesticides that hâve a relatively high vapor pressure and hence can exist as a gas in sufficient concentrations to kill pests ln soil or enciosed spaces. The toxicity of the fomlgant is proportional to Its concentration and the exposure time. They are characterized by a good capacity for diffusion and act by penetrating the pest’s respiratory system or being absorbed through the pest’s cuticle. Fumigants are applied to control stored product pests under gas proof sheets, in gas sealed rooms or buildings or in spécial chambers.
Pesticides can be microencapsuiated by suspending the pesticide particies or droplets In plastic polymers of various types. By altering the chemistry of the polymer or by changing factors in the processing, microcapsules can be formed of various slzes, solubility, wall thicknesses, and degrees of penetrabllity. These factors govem the speed with which the active Ingrédient within is released, which In tum, affects the residual performance, speed of action, and odor of the product.
Oil solution concentrâtes are made by dissolving pesticide in a solvent that will hold the pesticide in solution. Oil solutions of a pesticide usually provide faster knockdown and kill of pests than other formulations due to the solvents themselves having pesticidal action and the dissolution of the waxy covering of the Integument Increasing the speed of uptake of the pesticide. Other advantages of oil solutions Include better storage stability, better pénétration of crevices, and better adhesion to greasy surfaces.
Another embodiment Is an oil-ln-water émulsion, wherein the émulsion comprises oily globules which are each provided with a lamellar liquid crystal coating and are dispersed in an aqueous phase, wherein each oily globule comprises at least one compound which is agriculturally active, and is individually coated with a monolamellar or oligolamellar layer comprising: (1) at least one non-ionic lipophilie surface-active agent, (2) at least one non-lonic hydrophilic surface-active agent and (3) at least one ionic surface-active agent, wherein the globules having a mean particle diameter of less than 800 nanometers. Further information on the embodiment Is disclosed in U.S. patent publication 20070027034 published February 1, 2007, having Patent Application serial number 11/495,228. For ease of use, this embodiment will be referred to as OIWE.
For further information consult Insect Pest Management 2nd Edition by D. Dent, copyright CAB International (2000). Additionally, for more detailed Information consult Handbook of Pest Control - The Behavior, Life History, and Control of Household Pests by Arnold Mallis, 9th Edition, copyright 2004 by GIE Media Inc.
OTHER FORMULATION COMPONENTS
Generally, when the molécules disclosed in Formulas One, Two and Three are used in a formulation, such formulation can also contain other components. These components include, but are not limited to, (this Is a non-exhaustive and non-mutually exclusive list) wetters, spreaders, stickers, pénétrants, buffers, sequestering agents, drift réduction agents, compatibillty agents, anti-foam agents, cleaning agents, and emulsifiers. A few components are described forthwith.
A wetting agent is a substance that when added to a liquid Increases the spreading or pénétration power of the liquid by reducing the interfacial tension between the liquid and the surface on which it is spreading. Wetting agents are used for two main fonctions in agrochemical formulations: during processing and manufacture to increase the rate of wetting of powders in water to make concentrâtes for soluble liquids or suspension concentrâtes; and during mixing of a product with water ln a spray tank to reduce the wetting time of wettable powders and to improve the pénétration of water into water-dispersible granules. Examples of wetting agents used ln wettable powder, suspension concentrate, and water-dispersible granule formulations are: sodium lauryl sulfate; sodium dioctyl sulfosuccinate; alkyl phénol ethoxylates; and aliphatic alcohol ethoxylates.
A dispersing agent Is a substance which adsorbs onto the surface of particles and helps to préserva the state of dispersion of the particles and prevents them from reaggregating. Dispersing agents are added to agrochemical formulations to facilitate dispersion and suspension during manufacture, and to ensure the particles redisperse into water in a spray tank. They are wldely used ln wettable powders, suspension concentrâtes and water-dispersible granules. Surfactants that are used as dispersing agents hâve the abîlity to adsorb strongly onto a particle surface and provide a charged or steric barrier to reaggregation of particles. The most commonly used surfactants are anionic, non-ionic, or mixtures of the two types. For wettable powder formulations, the most common dispersing agents are sodium lignosulfonates. For suspension concentrâtes, very good adsorption and stabilization are obtained using polyelectrolytes, such as sodium naphthalene sulfonate formaldéhyde condensâtes. Tristyrylphenol ethoxylate phosphate esters are also used. Non-lonics such as alkylarylethylene oxide condensâtes and EO-PO block copolymers are sometimes combined with anionics as dispersing agents for suspension concentrâtes. In recent years, new types of very high molecular weight polymeric surfactants hâve been developed as dispersing agents. These hâve very long hydrophobie ’backbones’ and a large number of ethylene oxide chains forming the ’teeth' of a ’comb’ surfactant. These high molecular weight polymère can give very good longterm stability to suspension concentrâtes because the hydrophobie backbones hâve many anchoring points onto the particle surfaces. Examples of dispersing agents used in agrochemical formulations are: sodium lignosulfonates; sodium naphthalene sulfonate formaldéhyde condensâtes; tristyrylphenol ethoxylate phosphate esters; aliphatic alcohol ethoxylates; alkyl ethoxylates; EO-PO block copolymers; and graft copolymers.
An emulsifying agent is a substance which stabllizes a suspension of droplets of one liquid phase in another liquid phase. Without the emulsifying agent the two liquids would separate into two Immiscible liquid phases. The most commonly used emulsifier blends contain alkylphenol or aliphatic alcohol with tweive or more ethylene oxide units and the oll-soluble calcium sait of dodecylbenzenesulfonic acid. A range of hydrophile-lipophile balance (HLB) values from 8 to 18 will normally provide good stable émulsions. Emulsion stability can sometimes be improved by the addition of a small amount of an EO-PO block copolymer surfactant.
A solubilizing agent ls a surfactant which will form micelles in water at concentrations above the critical micelle concentration. The micelles are then able to dissolve or solubilize water-insoluble materials inside the hydrophobie part of the micelle. The types of surfactants usually used for solubilization are non-lonics, sorbitan monooleates, sorbitan monooleate ethoxylates, and methyl oleate esters.
Surfactants are sometimes used, either alone or with other additives such as minerai or vegetable oils as adjuvants to spray-tank mixes to improve the biological performance of the pesticide on the target. The types of surfactants used for bioenhancement dépend generally on the nature and mode of action of the pesticide. However, they are often non-lonics such as: alkyl ethoxylates; linear aliphatic alcohol ethoxylates; aliphatic amine ethoxylates.
A carrier or diluent in an agricultural formulation is a material added to the pesticide to give a product of the required strength. Carriers are usually materials with high absorptive capacities, while diluents are usually materials with low absorptive capacities. Carriers and diluents are used in the formulation of dusts, wettable powders, granules and water-dispersible granules.
Organic solvents are used mainly ln the formulation of emulsifiable concentrâtes, oil-inwater émulsions, suspoemulslons, and ultra low volume formulations, and to a lesser extent, granular formulations. Sometimes mixtures of solvents are used. The first main groups of solvents are aliphatic paraffinic oils such as kerosene or refined paraffins. The second main group (and the most common) comprises the aromatic solvents such as xylene and higher molecular weight fractions of C9 and C10 aromatic solvents. Chlorinated hydrocarbons are useful as cosolvents to prevent crystallization of pesticides when the formulation is emulsified Into water. Alcohols are sometimes used as cosolvents to increase solvent power. Other solvents may include vegetable oils, seed oils, and esters of vegetable and seed oils.
Thickeners or gelling agents are used mainly in the formulation of suspension concentrâtes, émulsions and suspoemulsions to modify the rheology or flow properties of the liquid and to prevent séparation and settling of the dispersed particles or droplets. Thlckening, gelling, and anti-settling agents generally fall Into two categories, namely water-insoluble particulates and water-soluble polymère. It is possible to produce suspension concentrate formulations using clays and silicas. Examples of these types of materials, include, but are not limited to, montmorillonlte, bentonite, magnésium aiuminum silicate, and attapulgite. Watersoluble polysaccharides hâve been used as thickening-gelling agents for many years. The types of polysaccharides most commonly used are natural extracts of seeds and seaweeds or are synthetic dérivatives of cellulose. Examples of these types of materials Include, but are not limited to, guar gum; locust bean gum; carrageenam; alginates; methyl cellulose; sodium carboxymethyl cellulose (SCMC); hydroxyethyl cellulose (HEC). Other types of anti-settling agents are based on modified starches, polyacrylates, polyvinyl alcohol and polyethylene oxide.
Another good antl-settllng agent is xanthan gum.
Microorganlsms can cause spollage of formulated products. Therefore préservation agents are used to eliminate or reduce their effect. Examples of such agents Include, but are not limited to: propionic acid and its sodium sait; sorbic acid and its sodium or potassium salts; benzoic acid and its sodium sait; p-hydroxybenzoic acid sodium sait; methyl p-hydroxybenzoate; and 1,2-benzisothlazolin-3-one (BIT).
The presence of surfactants often causes water-based formulations to foam during mixing operations in production and in application through a spray tank, ln order to reduce the tendency to foam, anti-foam agents are often added either during the production stage or before filling into bottles. Generally, there are two types of anti-foam agents, namely silicones and nonsilicones. Silicones are usually aqueous émulsions of dimethyl polysiloxane, while the nonsilicone anti-foam agents are water-lnsoluble oils, such as octanol and nonanol, or silica. In both cases, the function of the anti-foam agent is to displace the surfactant from the aîr-water Interface.
‘Green* agents (e.g., adjuvants, surfactants, solvents) can reduce the overall environmental footprint of crop protection formulations. Green agents are biodégradable and generally derived from natural and/or sustainable sources, e.g. plant and animai sources. Spécifie examples are: vegetable oils, seed oils, and esters thereof, also alkoxylated alkyl polyglucosldes.
For further Information, see 'Chemistry and Technology of Agrochemical Formulations' edited by D.A. Knowles, copyright 1998 by Kluwer Academie Publishers. Also see 'Insecticides in Agriculture and Environment - Retrospects and Prospects’ by A.S. Perry, I. Yamamoto, I. Ishaaya, and R. Perry, copyright 1998 by Springer-Verlag.
PESTS
In general, the Moiecules of Formula Formulas One, Two and Three may be used to control pests e.g. beetles, earwigs, cockroaches, files, aphids, scales, whiteflies, leafhoppers, ants, wasps, termites, moths, butterflies, lice, grasshoppers, locusts, crickets, fleas, thrips, brlstletails, mites, ticks, nematodes, and symphylans.
ln another embodiment, the Molecuies of Formulas One, Two and Three may be used to control pests ln the Phyla Nematoda and/or Arthropoda.
ln another embodiment, the Moiecules of Formulas One, Two and Three may be used to control pests ln the Subphyla Chelicerata, Myriapoda, and/or Hexapoda.
ln another embodiment, the Moiecules of Formulas One, Two and Three may be used to control pests ln the Classes of Arachnlda, Symphyla, and/or Insecta.
ln another embodiment, the Moiecules of Formulas One, Two and Three may be used to control pests of the Order Anoplura. A ποπ-exhaustive list of particular généra Includes, but is not limited to, Haematopinus spp., Hoplopleura spp., Linognathus spp., Pediculus spp., and
Polyplax spp. A non-exhaustive list of particular species includes, but is not limited to, Haematoplnus asinl, Haematopinus suis, LJnognathus setosus, Linognathus ovilius, Pediculus humanus capitis, Pediculus humanus humanus, and Pthlrus pubis.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests in the Order Coleoptera. A non-exhaustive list of particular généra includes, but is not limited to, Acanthoscelides spp., Agriotes spp., Anthonomus spp., Aplon spp., Apogonia spp., Aulacophora spp., Bruchus spp., Cerostema spp., Cerotoma spp., Ceutorhynchus spp., Chaetocnema spp., Co/aspis spp., Ctenicera spp., Curculio spp., Cyclocephala spp., Diabrotica spp., Hypera spp., Ips spp., Lyctusspp., Megascelis spp., Meligethes spp., Otiorhynchus spp., Pantomorus spp., Phyllophaga spp., Phyllotreta spp., Rhizotrogus spp., Rhynchites spp., Rhynchophorus spp., Scolytus spp., Sphenophorus spp., Sitophilus spp., and Tribolium spp. A non-exhaustive list of particular species Includes, but Is not limited to, Acanthoscelides obtectus, Agrilus planipennis, Anoplophora glabripennis, Anthonomus grandis, Ataenlus spretulus, Atomaria linearis, Bothynoderes punctiventris, Bruchus pisorum, Callosobruchus maculatus, Carpophilus hemipterus, Cassida vittata, Cerotoma trifurcata, Ceutorhynchus assimilis, Ceutorhynchus napi, Conoderus scalaris, Conoderus stigmosus, Conotrachelus nénuphar, Cotinis nitida, Crioceris asparagi, Cryptolestes ferrugineus, Cryptolestes puslllus, Cryptolestes turcicus, Cylindrocopturus adspersus, Deporaus marginatus, Dermestes lardarius, Dermestes maculatus, Epilachna varivestis, Faustinus cubae, Hylobius pales, Hypera postica, Hypothenemus hampei, Lasioderma serricome, Leptinotarsa decemlineata, Uogenys fuscus, Uogenys suturalis, Lissorhoptrus oryzophilus, Maecolaspis joiiveti, Melanotus communis, Meligethes aeneus, Melolontha melolontha, Oberea brevis, Oberea linearis, Oryctes rhinocéros, Oryzaephilus mercator, Oryzaephilus surlnamensis, Ouléma melanopus, Ouléma oryzae, Phyllophaga cuyabana, Popillia japonica, Prostephanus truncatus, Rhyzopertha dominica,, Sitona lineatus, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum, Tribolium castaneum, Tribolium confusum, Trogoderma variablle, and Zabrus tenebrioides.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Dermaptera.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Blattaria. A non-exhaustive list of particular species includes, but is not limited to, Blattella germanica, Blatta orientalis, Parcoblatta pennsylvanica, Periplaneta americana, Periplaneta australasiae, Periplaneta brunnea, Periplaneta fuligînosa, Pycnoscelus surlnamensis, and Supella longlpalpa.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Diptera. A non-exhaustive list of particular généra includes, but 1s not limited to, Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Bactrocera spp., Ceratitis spp., Chrysops spp., Cochllomyia spp., Contarinla spp., Culex spp„ Dasineura spp.,
Délia spp., Drosophile spp., Fannla spp., Hylemyia spp., LJriomyza spp., Musca spp., Phorbia spp., Tabanus spp., and Tipula spp. A non-exhaustive list of particular species Includes, but Is not limited to, Agromyza frontella, Anastrepha suspensa, Anastrepha ludens, Anastrepha obliqa, Bactrocera cucurbitae, Bactrocera dorsalis, Bactrocera Invadens, Bactrocera zonata, Ceratitis capitata, Dasineura brasslcae, Délia platura, Fannia canicularis, Fannia scalaris, Gasterophîlus intestinalis, Gracillia perseae, Haematobia irritans, Hypoderma Hneatum, LJriomyza brasslcae, Melophagus ovlnus, Musca autumnalis, Musca domestica, Oestrus ovis, Oscinella frit, Pegomya betae, Psila rosae, Rhagoletis cerasl, Rhagoletis pomonella, Rhagoletis mendax, Sitodiplosis mosellana, and Stomoxys calcitrans.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Hemlptera. A non-exhaustive list of particular généra Includes, but Is not limited to, Adelges spp., Aulacaspls spp., Aphrophora spp., Aphis spp., Bemlsla spp., Ceroplastes spp., Chionaspis spp., Chrysomphalus spp., Coccus spp., Empoasca spp., Lepidosaphes spp., Lagynotomus spp., Lygus spp., Macroslphum spp., Nephotettix spp., Nezara spp., Philaenus spp., Phytocoris spp., Piezodorus spp., Planococcus spp., Pseudococcus spp., Rhopaloslphum spp., Saissetia spp., Therioaphis spp., Toumeyella spp., Toxoptera spp., Trialeurodes spp., Triatoma spp. and Unaspis spp. A non-exhaustive list of particular species Includes, but is not limited to, Acrosternum hilare, Acyrthosiphon plsum, Aleyrodes proletella, Aleurodicus dispersus, Aleurothrixus floccosus, Amrasca biguttula biguttula, Aonidlella aurantii, Aphis gossypli, Aphis glycines, Aphis pomi, Aulacorthum solanl, Bemisia argentifolii, Bemlsla tabacl, Blissus leucopterus, Brachycorynella asparagl, Brevennia rehl, Brevicoryne brasslcae, Calocorls norveglcus, Ceroplastes rubens, Clmex hemipterus, Cimex lectularlus, Dagbertus fasclatus, Dlchelops furcatus, Diuraphls noxla, Dlaphorlna citrl, Dysaphls plantaginea, Dysdercus suturellus, Edessa meditabunda, Eriosoma lanlgerum, Eurygaster maure, Euschistus héros, Euschistus servus, Helopeltis antonli, Helopeltis theivora, Icerya purchasl, Idioscopus nîtidulus, Laodelphax striatellus, Leptocorisa oratorius, Leptocorisa varicomls, Lygus hesperus, Maconellicoccus hirsutus, Macroslphum euphorblae, Macrosiphum granarium, Macrosiphum rosae, Macrosteles quadrilineatus, Mahanarva frlmbiolata, Metopolophium dirhodum, Mictls longlcomls, Myzus persicae, Nephotettix clnctipes, Neurocolpus longirostris, Nezara viridula, Nilaparvata lugens, Parlatoria pergandll, Parlatoria zlziphl, Peregrlnus maidis, Phylloxéra vitifoiiae, Physokermes plceae,, Phytocoris califomicus, Phytocoris relativus, Piezodorus guildinil, Poecllocapsus lineatus, Psallus vacclnicola, Pseudacysta perseae, Pseudococcus brevlpes, Quadraspidiotus pernlclosus, Rhopalosiphum maidis, Rhopaloslphum padi, Saissetia oleae, Scaptocoris castanea, Schizaphis graminum, Sitobion avenae, Sogatella furcifera, Trialeurodes vaporariorum, Trialeurodes abutiloneus, Unaspls yanonensis, and Zulia entrerriana.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Hymenoptera. A non-exhaustive list of particular généra Includes, but Is not limited to, Acromyrmex spp., Atta spp., Camponotus spp., Diprion spp., Formica spp., Monomorium spp., Neodiprion spp., Pogonomyrmex spp., Polistes spp., Solenopsis spp., Vespula spp., and Xylocopa spp. A non-exhaustive list of particular species Includes, but Is not limited to, Athalla rosae, Atta texana, Iridomyrmex humilis, Monomorium minimum, Monomorium pharaonis, Solenopsis Invicta, Solenopsis geminata, Solenopsis molesta, Solenopsis richtery, Solenopsis xylonl, and Taplnoma sessile.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Isoptera. A non-exhaustive list of particular généra includes, but is not limited to, Coptotermes spp., Cornitermes spp., Cryptotermes spp., Heterotermes spp., Kalotermes spp., Incisitermes spp., Macrotermes spp., Marginitermes spp., Microcerotermes spp., Procornitermes spp., Reticulitermes spp., Schedorhinotermes spp., and Zootermopsis spp. A non-exhaustive list of particular species Includes, but is not limited to, Coptotermes curvignathus, Coptotermes frenchi, Coptotermes formosanus, Heterotermes aureus, Microtermes obesi, Reticulitermes banyulensis, Reticulitermes grassei, Reticulitermes flavlpes, Reticulitermes hagenl, Reticulitermes hesperus, Reticulitermes santonensis, Reticulitermes speratus, Reticulitermes tibialis, and Reticulitermes virginlcus.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Lepldoptera. A non-exhaustive list of particular généra includes, but Is not limited to, Adoxophyes spp., Agrotis spp., Argyrotaenia spp., Cacoecia spp., Caloptilia spp., Chilo spp., Chrysodeixis spp., Colias spp., Crambus spp., Diaphanla spp., Diatraea spp., Earlas spp., Ephestia spp., Epimecis spp., Feltia spp., Gortyna spp., Helicoverpa spp., Heliothis spp., Indarbela spp., Lithocolletis spp., Loxagrotis spp., Malacosoma spp., Perldroma spp., Phyllonorycter spp., Pseudaletia spp., Sesamia spp., Spodoptera spp., Synanthedon spp., and Yponomeuta spp. A non-exhaustive list of particular species Includes, but Is not limited to, Achaea janata, Adoxophyes orana, Agrotis ipsilon, Alabama argillacea, Amorbla cuneana, Amyelols transitella, Anacamptodes defectaria, Anarsla lineatella, Anomis sabulifera, Anticarsia gemmatalis, Archlps argyrospila, Archips rosana, Argyrotaenia citrana. Autographe gamma, Bonagota cranaodes, Borbo cinnara, Bucculatrix thurberiella, Capua reticulana, Carposina nlponensis, Chlumetia transversa, Choristoneura rosaceana, Cnaphalocrocis medinalis, Conopomorpha cramerella, Cossus cossus, Cydia caryana, Cydia funebrana, Cydia molesta, Cydia nigricana, Cydia pomonella, Dama diducta, Diatraea saccharalis, Diatraea grandiosella, Earias insulana, Earlas vittella, Ecdytolopha aurantianum, Elasmopaipus lignosellus, Ephestia cautella, Ephestia elutella, Ephestia kuehniella, Epinotia aporema, Epiphyas postvittana, Erionota thrax, Eupoecilia ambiguella, Euxoa auxiliaris, Grapholita molesta, Hedylepta Indicata, Helicoverpa armigera, Helicoverpa zea, Heliothis virescens, Hellula undalis, Keiïeria lycopersicella, Leucinodes orbonalis, Leucoptera coffeella, Leucoptera malifoliella, Lobesia botrana, Loxagrotis albicosta, Lymantria dispar, Lyonetia clerkella, Mahasena corbetti, Mamestra brasslcae, Maruca testulalis, Metisa plana, Mythimna unipuncta, Neoleucinodes elegantalis, Nymphula depunctalis, Operophtera brumata, Ostrinia nubllalis. Oxydia vesulia, Pandemis cerasana, Pandemis heparana, Papllio demodocus, Pectlnophora gossyplella, Peridroma saucla, Perileucoptera coffeella, Phthorimaea operculella, Phyllocnistis citrella, Pieris rapae, Plathypena scabra, Plodia Interpunctella, Plutella xyiostella, Polychrosis viteana, Prays endocarpa, Prays oleae, Pseudaletia unipuncta, Pseudoplusia Includens, Rachlplusla nu, Scirpophaga Incertulas, Sesamla inferens, Sesamla nonagrioides, Setora nitens, Sitotroga cerealella, Sparganothls pilleriana, Spodoptera exigua, Spodoptera frugiperda, Spodoptera eridanla, Thecla basilides, Tineola bisselliella, Trichoplusla ni, Tuta absoluta, Zeuzera coffeae, and Zeuzera pyrlna.
ln another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Mallophaga. A non-exhaustive list of particular généra includes, but Is not limited to, Anatlcola spp., Bovlcola spp., Cheloplstes spp., Goniodes spp., Menacanthus spp., and Trichodectes spp. A non-exhaustive list of particular species includes, but is not limited to, Bovlcola bovls, Bovlcola caprae, Bovlcola ovls, Chelopistes meleagrldis, Goniodes disslmllis, Goniodes gigas, Menacanthus stramlneus, Menopon gallinae, and Trichodectes canis.
ln another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Orthoptera. A non-exhaustive list of particular généra Includes, but Is not limited to, Melanoplus spp., and Pterophylla spp. A non-exhaustive list of particular species includes, but Is not limited to, Anabrus simplex, Gryllotalpa afrlcana, Gryllotalpa australis, Gryllotalpa brachyptera, Gryllotalpa hexadactyla, Locusta mlgratorla, Microcentrum retinerve, Schistocerca gregarla, and Scudderia furcata.
ln another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Siphonaptera. A non-exhaustive list of particular species includes, but is not limited to, Ceratophyllus gallinae, Ceratophyllus niger, Ctenocephalides canis, Ctenocephalides felis, and Pulex Irritans.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Thysanoptera. A non-exhaustive list of particular généra includes, but Is not limited to, Caliothrips spp., Franklinlella spp., Scirtothrips spp., and Thrips spp. A nonexhaustive list of particular sp. includes, but Is not limited to, Franklinlella fusca, Franklinlella occidentalls, Franklinlella schultzel, Franklinlella williamsl, Hellothrlps haemorrholdalls, Rhlplphorothrlps cruentatus, Scirtothrips citri, Scirtothrips dorsalis, and Taenlothrlps rhopalantennalis, Thrips hawaliensis, Thrips nlgropllosus, Thrips orientalis, Thrips tabacl.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Order Thysanura. A non-exhaustive list of particular généra Indudes, but Is not limited to, Leplsma spp. and Thermobla spp.
ln another embodiment, the Molecuies of Formulas One, Two and Three may be used to control pests of the Order Acarina. A non-exhaustive list of particular généra Includes, but Is not limited to, Acarus spp., Aculops spp., Boophilus spp., Demodex spp., Dermacentor spp., Epitrimerus spp., Eriophyes spp., Ixodes spp., Oligonychus spp., Panonychus spp., Rhlzoglyphus spp., and Tetranychus spp. A non-exhaustive list of particular species Includes, but Is not limited to, Acarapis woodi, Acarus siro, Aceria manglferae, Aculops lycopersici, Aculus pelekassl, Aculus schlechtendall, Amblyomma americanum, Brevipalpus obovatus, Brevipalpus phoenlcls, Dermacentor variabilis, Dermatophagoldes pteronyssinus, Eotetranychus carplni, Notoedres cati, Oligonychus coffeae, Oligonychus llicis, Panonychus citri, Panonychus ulmi, Phyllocoptruta oleivora, Polyphagotarsonemus latus, Rhiplcephalus sangulneus, Sarcoptes scabiei, Tegolophus perseaflorae, Tetranychus urticae, and Varroa destructor.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pest of the Order Symphyla. A non-exhaustive list of particular sp. Includes, but Is not limited to, Scutigerella immaculata.
In another embodiment, the Molécules of Formulas One, Two and Three may be used to control pests of the Phylum Nematoda. A non-exhaustive list of particular généra includes, but Is not limited to, Aphelencholdes spp., Belonolalmus spp., Criconemella spp., Ditylenchus spp., Heterodera spp., Hirschmanniella spp., Hoplolalmus spp., Meloidogyne spp., Pratylenchus spp., and Radopholus spp. A non-exhaustive list of particular sp. includes, but is not limited to, Dirofilaria immltis, Heterodera zeae, Meloidogyne Incognita, Meloidogyne javanlca, Onchocerca volvulus, Radopholus similis, and Rotylenchulus rendormis.
For additional information consult ‘Handbook of Pest Control-The Behavior, Life History, and Control of Household Pests by Arnold Maliis, 9th Edition, copyright 2004 by GIE Media Inc.
APPLICATIONS
Molécules of Formulas One, Two and Three are generally used In amounts from about 0.01 grams per hectare to about 5000 grams per hectare to provide control. Amounts from about 0.1 grams per hectare to about 500 grams per hectare are generally preferred, and amounts from about 1 gram per hectare to about 50 grams per hectare are generally more preferred.
The area to which a molécule of Formulas One, Two and Three is applied can be any area Inhabited (or maybe Inhabited, or traversed by) a pest, for example: where crops, trees, fruits, cereals, fodder species, vlnes, turf and omamental plants, are growing; where domesticated animais are residing; the Interior or exterior surfaces of buildings (such as places where grains are stored), the materials of construction used In building (such as impregnated wood), and the soil around buildings. Particular crop areas to use a molécule of Formula One Include areas where apples, com, sunflowers, cotton, soybeans, canola, wheat, rice, sorghum, barley, oats, potatoes, oranges, alfalfa, lettuce, strawbemes, tomatoes, peppers, cructfers, pears, tobacco, almonds, sugar beets, beans and other valuable crops are growing or the seeds thereof are going to be planted. It is also advantageous to use aluminum sulfate with a molécule of Formula One when growing various plants.
Controlling pests generally means that pest populations, pest activity, or both, are reduced In an area. This can corne about when: pest populations are repulsed from an area; when pests are Incapacitated In or around an area; or pests are exterminated, In whole, or in part, In or around an area. Of course, a combination of these results can occur. Generally, pest populations, activity, or both are desirably reduced more than fifty percent, preferably more than 90 percent. Generally, the area Is not In or on a human; consequently, the locus Is generally a non-human area.
The Molécules of Formulas One, Two and Three may be used In mixtures, applied simultaneously or sequentially, alone or with other compounds to enhance plant vigor (e.g. to grow a better root system, to better withstand stressful growing conditions). Such other compounds are, for example, compounds that modulate plant ethylene receptors, most notably 1-methylcyclopropene (also known as 1-MCP).
The Molécules of Formulas One, Two and Three can be applied to the foliar and fruiting portions of plants to control pests. The molécules will either corne In direct contact with the pest, or the pest will consume the pesticide when eating leaf, fruit mass, or extracting sap, that contains the pesticide. The Molécules of Formulas One, Two and Three can also be applied to the soil, and when applied In this manner, root and stem feeding pests can be controlled. The roots can absorb a molécule taking it up into the foliar portions of the plant to control above ground chewing and sap feeding pests.
Generally, with baits, the baits are placed In the ground where, for example, termites can corne Into contact with, and/or be attracted to, the bait. Baits can also be applied to a surface of a building, (horizontal, vertical, or slant surface) where, for example, ants, termites, cockroaches, and flies, can corne Into contact with, and/or be attracted to, the bait. Baits can comprise a molécule of Formula One, Two or Three.
The Molécules of Formulas One, Two and Three can be encapsulated Inside, or placed on the surface of a capsule. The size of the capsules can range from nanometer size (about 100-900 nanometers in diameter) to micrometer size (about 10-900 microns In diameter).
Because of the unique abiiity of the eggs of some pests to reslst certain pesticides, repeated applicationsofthe Formula One, Two orThree maybe désirable to control newly emerged larvae.
Systemic movement of pesticides in plants may be utilized to control pests on one portion of the plant by applying (for example by spraying an area) the Molécules of Formula One, Two or Three to a different portion of the plant. For example, control of foliar-feeding Insects can be achieved by drip irrigation or furrow application, by treating the soit with for example pre- or post-planting soil drench, or by treating the seeds of a plant before planting.
Seed treatment can be applied to ail types of seeds, including those from which plants genetically modified to express specialized traits will germinate. Représentative examples Include those expressing proteins toxic to Invertebrate pests, such as Bacilius thuringiensis or other insecticidal toxins, those expressing herbicide résistance, such as Roundup Ready seed, or those with stacked foreign genes expressing Insecticidal toxins, herbicide résistance, nutrition-enhancement, drought résistance, or any other bénéficiai traits. Furthermore, such seed treatments with the Molécules of Formula One, Two or Three may further enhance the ability of a plant to better withstand stressful growing conditions. This results in a healthler, more vigorous plant, which can lead to higher yields at harvest time. Generally, about 1 gram of the Molécules of Formula One, Two or Three to about 500 grams per 100,000 seeds is expected to provide good benefits, amounts from about 10 grams to about 100 grams per 100,000 seeds is expected to provide better benefits, and amounts from about 25 grams to about 75 grams per 100,000 seeds is expected to provide even better benefits.
It should be readily apparent that the Molécules of Formulas One, Two and Three may be used on, in, or around plants genetically modified to express specialized traits, such as Bacilius thuringiensis or other insecticidal toxins, or those expressing herbicide résistance, or those with “stacked foreign genes expressing Insecticidal toxins, herbicide résistance, nutritionenhancement, or any other bénéficiai traits.
The Molécules of Formulas One, Two and Three may be used for controlling endoparasites and ectoparasites in the veterinary medicine sector or in the field of non-human animal keeping. The Molecuies of Formulas One, Two and Three are applied, such as by oral administration in the form of, for example, tablets, capsules, drinks, granules, by dermal application in the form of, for example, dipping, spraylng, pouring on, spotting on, and dusting, and by parentéral administration in the form of, for example, an injection.
The Molécules of Formulas One, Two and Three may aiso be employed advantageously ln livestock keeping, for example, cattle, sheep, pigs, chickens, and geese. They may also be employed advantageously in pets such as, horses, dogs, and cats. Particular pests to contre! would be fleas and ticks that are bothersome to such animais. Sultabie formulations are administered orally to the animais with the drinking water or feed. The dosages and formulations that are suitable dépend on the species.
The Molécules of Formulas One, Two and Three may also be used for controlling parasitic worms, especially of the Intestine, in the animais listed above.
The Molecuies of Formula One, Two, and Three may also be employed in therapeutic methods for human health care. Such methods indude, but are limited to, oral administration in the form of, for example, tablets, capsules, drinks, granules, and by dermal application.
Pests around the worid hâve been migrating to new environments (for such pest) and thereafter becoming a new Invasive species in such new environment. The Molecuies of Formula One and Two may also be used on such new invasive species to control them in such new environment.
The Moiecules of Formula One, Two, and Three may also be used ln an area where plants, such as crops, are growîng (e.g. pre-pfanting, plantlng, pre-harvesting) and where there are low levels (even no actual presence) of pests that can commercially damage such plants. The use of such moiecules ln such area ls to benefit the plants being grown ln the area. Such benefits, may indude, but are not limited to, Improving the health of a plant, Improving the yield of a plant (e.g. Increased biomass and/or increased content of valuable Ingrédients), improving the vigor of a plant (e.g. improved plant growth and/or greener Ieaves), Improving the quality of a plant (e.g. improved content or composition of certain Ingrédients), and improving the tolérance to abiotic and/or biotic stress of the plant.
Before a pestidde can be used or sold commerdally, such pesticide undergoes lengthy évaluation processes by various govemmentai authorities (local, régional, state, national, and international). Voluminous data requirements are specifïed by regulatory authorities and must be addressed through data génération and submission by the product registrant or by a third party on the product reglstrant's behaff, often using a computer with a connection to the World Wide Web. These govemmentai authorities then review such data and If a détermination of safety ls concluded, provide the potential user or seller with product registration approval. Thereafter, in that iocality where the product registration is granted and supported, such user or seller may use or seli such pestidde.
A molécule according to Formula One, Two, and Three can be tested to détermine its efficacy against pests. Furthermore, mode of action studies can be conducted to détermine if said molécule has a different mode of action than other pestiddes. Thereafter, such acquired data can be dissemlnated, such as by the internet, to third parties.
The headlngs ln this document are for convenience only and must not be used to Interpret any portion hereof.
TABLE SECTION
BAW & CEW Rating Table
% Control (or Mortallty) Rating
50-100 A
More than 0 - Less than 50 B
Not Tested C
No activity noticed ln this bioassay D
GPA Ratlng Table
% Control (or Mortallty) Ratlng
80-100 A
More than 0 - Less than 80 B
Not Tested C
No activity noticed ln this btoassay D
Table 1: Structures for Compounds
ID Structure
1-9
MO ,,4Cu K vif
Ml F^°o N N ViP sH>N'NH
M2 O~O-^
1-13 Ό'ν5_0_7)·(^
M4 ^NhTCj'0^ n-nh 'f O-a-C'· UN
M5 yNbO n-nh \=*N
M6
ID Structure
1-25 'X<y»X fJ FS
1-26
1-27 ’/θίτΡ~ “Όγ» 0
1-28 & _/v N Tl 0<Xï
1-29 /γΑ5 f’X J-ι N~XJ ππγΊϊ °OnJS
1-30 p <ynAs FF Γ 1 HN_N XJ
1-31 H Q y Lf Χα ΧφΐΓ XJ
I-32 H:N.NANXj H
ID Structure
1-41 αΐψ°'ΐ X
I-42 X
I-43 F S h=hnW H H Jk
I-44 ΛΖ F °θΝ»·\χ i Λ H H Jk
I-45 F
1-46 X F
1-47 S <YF h2n.nAn^J H H Jk
1-48 H
1-49 θ-Ν’θ·, (X
ID Structure
1-50 Y
1-51 h2n.nan£1f H hA
I-52 fV o-ο- n f H HX
I-53 ^OuA-Ô H H JL
I-54 F\JF 7—\ /^N F ^Λχ,λ-Ψ H H JL
I-55 F F Fv ΓΥν^π Χλ_/ Ν*γ> F F
I-56 F F pV y—\ n/*n F'A/V/ N lù n F F H
I-57 H H JL
Table 2: Analytical Data for Compounds in Table 1.
ID Synthesis Method MS mp (°C) ’H, 13C, or 19F NMR (□)’
1-4 A 551 (M+1) 209-211 (DMSO-de) 12.06 (s, 1H), 10.19 (s, 1H), 9.42 (s, 1 H). 8.22 (s, 1H), 8.17-8.03 (m, 5H), 7.66-7.57 (m, 4H), 7.42-7.38 (m, 2H)
1-5 C 511 (M+1) 220-225 (CDCIj) 9.30 (s, 1H), 8.69 (s, 1H), 8.60 (s, 1H), 8.26 (d, J- 8.4 Hz, 2H), 7.89 (s, 1H), 7.81 (m, 4H), 7.41 (d. J= 8.4 Hz, 2H), 7.19 (m, 3H), 2.35 (s, 6H)
1-6 C 555 (M+H) 206-209 (CDCt3) 8.90 (s, 1H), 8.80 (s, 1H), 8.6 (s, 1H), 8.28 (d, J = 8.4 Hz, 2H), 8.9-8.7 (m, 4H), 7.4 (d, J = 8.6 Hz, 2H), 6.7 (s, 2H), 3.80 (s, 3H), 2.39 (s. 3H), 2.32 (s, 6H)
1-7 C 541 (M+H) 202-210 (CDCI3) 9.88 (s, 1H), 8.61 (s. 1H). 8.60 (s, 1H), 8.27 (d, J =8.4 Hz. 2H), 7.9 (s, 1H), 7.9-7.7 (m, 4H), 7.4 (d, J - 8.6 Hz, 2H). 6.7 (s, 2H), 3.81 (s, 3H), 2.33 (s, 6H)
1-8 B 581 195-199 (CDCI3) 10.2 (s, 1H), 8.7 (s. 1H), 8.6 (s, 1H). 8.25 (d, J = 8.4 Hz, 2H), 8.0 (s, 1H), 7.82 (m, 4H), 7.4 (d, J = 8.4 Hz. 2H), 7.0 (s, 2H), 3.82 (s, 3H)
1-9 C 591 (M+H) 233-236 (CDCI3) 9.89 (s, 1H), 8.60 (s. 2H), 8.25 (d, J- 8.5 Hz, 2H), 7.95 (s. 1H). 7.88-7.70 (m. 4H), 7.41 (d, J = 9.0 Hz, 2H), 6.70 (s, 2H), 3.81 (s, 3H). 2.31 (s. 6H)
1-10 C 525 (M+H) 230-240 (CDCI3) 9.93 (s, 1 H), 8.69 (s, 1H), 8.60 (s, 1 H), 8.26 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 9.5 Hz, 2H), 7.95 (s. 1H), 7.86-7.75 (m, 4H), 6.69 (s, 2H), 3.81 (s, 3H), 2.31 (s, 6H)
ID Synthesis Method MS mp (°C) ’H, ’3C, or ”F NMR (□)’
1-11 C 561 (M+H) 234-238 (CDCI3) 9.62 (s, 1 H), 8.70 (s, 1H), 8.60 (s, 1H), 8.26 (d, J = 8.4 Hz, 2H), 7.92 (s, 1H), 7.86-7.75 (m, 4H), 7.41 (d, J = 9.0 Hz, 2H), 7.18 (m, 3H), 2.35 (s, 6H)
1-12 C 577 (M+H) 197-200 (CDCIj) 10.2 (s, 1H), 8.90 (s, 1H), 8.62 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.98 (s, 1H), 7.9-7.7 (m, 4H), 7.4 (m, 3H), 6.8 (m, 2H), 3.82 (s, 3H), 2.37 (s, 3H)
1-13 B 541 (M+H) 180-186 (CDCb) 9.9 (s. 1H). 8.6 (s, 1 H), 8.23 (d, J = 8.4 Hz, 2H). 7.9 (s, 1 H), 7.8 (d, J = 8.6 Hz, 2H). 7.75 (d, J = 8.4 Hz, 2H), 7.7 (d, J = 7 Hz, 1H), 7.45-7.35 (m, 4H), 6.91 (d, J = 8 Hz, 2H), 5.73 (m, 1H), 3.80 (s, 3H), 1.65 (d, J =7.2 Hz, 3H)
1-14 B 559 (M+H) 196-203 (CDCI3) 9.32 (s, 1 H), 8.6 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.85-7.7 (m, 5H), 7.6 (d, J = 6 Hz, 1 H), 7.4 (d, J= 8.5 Hz, 2H), 7.257.15 (m, 2H), 6.93 (m, 1H). 5.7 (m, 1H), 3.89 (s, 3H), 1.67 (d, J= 6 Hz, 3H)
1-15 B 511 (M+H) 201-206 (CDCI3) 9.32 (s, 1H), 8.61 (s, 1H), 8.27 (d, J= 8.4 Hz, 2H), 7.9-7.7 (m, 6H), 7.5-7.3 (m, 7H), 5.76 (m. 1H), 1.67 (d, J = 7 Hz, 3H)
1-16 C 525 (M+1) 218-225 (CDCI3) 9.37 (s, 1H), 8.63 (s, 1H), 8.60 (s, 1 H), 8.26 (d, J= 8.4 Hz, 2H), 7.89 (s, 1H), 7.85-7.76 (m, 4H), 7.41 (d, J = 8.4 Hz, 2H), 6.97 (s, 2H), 2.32 (s. 3H). 2.30 (s, 6H)
ID Synthesis Method MS mp (°C) ’H. 13C, or ”F NMR (□)’
1-17 C 525 (M+H) 168-180 (CDCI3) 10.2 (s. 1H). 9.07 (s. 1H), 8.63 (s, 1 H), 8.25 (d, J = 8.4 Hz, 2H), 8.0 (s, 1 H). 7.9-7.7 (m, 4H), 7.65 (d. J = 8 Hz, 1H), 7.4-7.25 (m, 5H), 3.25 (heptet, J = 7 Hz, 1H), 1.35 (d, J = 7Hz, 6H)
1-18 C 539 (M+1) 216-221 (CDCh) 0 9.29 (S, 1 H), 8.87 (s, 1H), 8.59 (s, 1 H), 8.31 - 8.19 (m, 2H), 7.90 - 7.84 (m, 2H), 7.85 - 7.79 (m, 2H), 7.73 (dd, J = 7.5,1.7 Hz, 1H), 7.39 (dd, J - 12.6, 5.1 Hz, 3H), 7.35 - 7.27 (m, 2H), 3.37 - 3.04 (m, 1H), 2.40 (s, 3H), 1.29 (d, J= 7.5 Hz, 6H)
1-19 C 509 (M+1) 223-225 (CDCh) C 9.74 (s, 1H), 9.06 (s, 1H), 8.69 (s, 1H), 8.31 - 8.20 (m, 2H), 7.98 - 7.84 (m, 3H), 7.80 (m, 4H), 7.65 (d, J = 1.4 Hz, 1 H), 7.43 - 7.28 (m, 3H), 3.19 (heptet, J 6.9 Hz, 1 H), 1.32 (d, J = 6.9 Hz, 6H)
1-20 C 538 (M+H) 220 (dec) (CDCh) δ 9.52 (s, 1H), 9.31 (s, 1H), 8.66 (d, J = 8.2 Hz, 1H), 8.60 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.87 (s, 1H), 7.86 - 7.80 (m, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.32 (ddd, J = 13.9,z 7.2, 4.3 Hz, 1 H), 7.24 - 7.15 (m, 2H), 6.27 (s, 1 H), 2.03 (d, J = 1.3 Hz, 3H), 1.73 (d, J = 1.1 Hz, 3H)
ID Synthesis Method MS mp (°C) ’H, 13C, or 19F NMR (□)1
1-21 C 540 (M+H) 207210; 215-218 (CDCIj) δ 9.48 (s, 1H), 9.14 (s, 1H), 8.60 (s, 1H), 8.26 (d, J= 8.4 Hz, 2H), 7.92 (s, 1 H), 7.87 (d, J = 7.7 Hz, 1 H), 7.84 - 7.76 (m, 4H), 7.40 (d, J= 8.3 Hz, 2H), 7.30 (dt, J = 8.2, 3.7 Hz, 1 H), 7.28 - 7.23 (m, 2H), 2.57 (d, J = 7.2 Hz, 2H), 1.93 (dq, J = 13.6,6.7 Hz, 1 H), 0.98 (d, J = 6.6 Hz, 6H)
I-22 C 540 (M+H) 210-215 (CDCIj) δ 9.46 (s, 1H), 9.05 (s, 1H), 8.60 (s, 1H), 8.26 (d, J= 8.4 Hz, 2H), 7.91 (s, 1 H), 7.84 - 7.74 (m, 4H), 7.69 (d, J = 7.4 Hz, 1H), 7.40 (d, J= 8.3 Hz, 2H), 7.36 7.27 (m, 3H), 2.91 (dt, J= 13.9,6.9 Hz, 1 H), 1.75 -1.58 (m, 2H), 1.30 (d, J = 6.9 Hz, 3H), 0.92 (t, J =7.4 Hz, 3H).
I-23 c 560 (M+H) 213-216 (CDCIj) δ 9.41 (s, 1 H), 9.01 (s, 1 H), 8.74 (d, J = 7.7 Hz, 1H), 8.60 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 7.86-7.78 (m, 2H), 7.69 (s, 1 H), 7.57 - 7.44 (m, 6H), 7.42 (d, J = 9.1 Hz, 2H), 7.37-7.27 (m, 4H).
I-24 c 524 (M+H) 200- 206; 210-211 (CDCIj) δ 9.65 (d, J= 17,9 Hz, 1H), 9.20 (s, 1 H), 8.60 (s, 1H), 8.27 (dd, J= 8.0, 4.5 Hz. 3H), 7.89 (s, 1H), 7.86 - 7.75 (m, 4H), 7.41 (d, J = 8.3 Hz, 2H), 7.30 - 7.27 (m, 1 H), 7.18 (q, J = 7.8 Hz, 2H), 2.00 -1.90 (m, 1 H), 1.09 -1.01 (m, 2H), 0.81 - 0.73 (m, 2H).
I-25 c 550 (M+H) 221-223 (DMSO-cfe) δ 12.13 (s, 1H), 10.07 (s, 1H), 9.44 (s, 1H), 8.23 (s, 1H), 8.16 (d. J= 8.4 Hz, 2H), 8.13-8.06 (m, 2H), 8.01 -7.98 (m, 3H), 7.63 (d, J= 8.4 Hz, 2H), 7.38 7.26 (m, 3H), 7.23 (t, JHF= 74.1 Hz, 1H)
ID Synthesis Method MS mp (°C) 1H, 13C, or19F NMR (D)1
1-26 C 590 (M+H) 230-231 (CDCI3) δ 9.37 (s, 1 H), 8.60 (s, 1 H), 8.57 (s, 1H), 8.27 (d, J = 8.4 Hz, 2H), 7.90 (s, 1H), 7.81 (dt, J = 8.5,4.8 Hz, 4H), 7.41 (d, J = 8.3 Hz, 2H), 7.31 (s, 2H), 2.31 (s, 6H)
1-27 C 556 (M+H) 190-192 (CDCI3) δ 9.39 (s, 1H), 9.15 (s, 1H), 8.61 (s, 1H), 8.29 (d, J = 8.4 Hz, 2H), 8.16 8.05 (m, 2H), 7.95- 7.85 (m, 3H), 7.85 7.76 (m, 4H), 7.41 (d, J = 8.3 Hz, 2H), 4.39 (q, J= 7.1 Hz, 2H), 1.41 (t, J= 7.1 Hz, 3H)
î-28 C 528 (M+H) 219-221 (300 MHz, CDCI3) δ 10.17 (S, 1H), 9.09 (s. 1 H), 9.03 (t, J= 5.4 Hz, 1H), 8.60 (s, 1H), 8.23 (t, J ~ 8.9 Hz, 2H), 7.89 - 7.76 (m, 5H), 7.39 (t, J = 7.2 Hz, 2H), 7.17 - 7.07 (m, 1H), 7.03 (d, J - 7.8 Hz, 1H), 6.94 (d, J = 6.9 Hz, 1H), 4.18 (q, 7.1 Hz, 2H), 1.61 (t, J =7.0 Hz, 3H)
1-29 C 499 (M+1) 195-200 (DMSO-de) δ 9.44 (s, 1H), 8.49 (s, 1H), 8.42 (d. J - 5.2 Hz, 1H), 8.29 - 8.21 (m, 2H), 8.16 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 2.3 Hz, 1H), 8.08 (d, J= 3.0 Hz, 1H), 8.04 (t, J = 6.5 Hz, 2H), 7.63 (d, J = 8.3 Hz, 3H), 2.29 (s, 3H).
1-30 C 499 (M+1) 114-118 (CDCI3) δ 8.60 (s, 1H), 8.31 (s, 1H), 8.24 (d, J = 8.4 Hz, 2H), 8.16 (d, J= 3.9 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 9.0 Hz. 2H), 7.55 (d, J = 6.7 Hz, 1 H), 7.41 (s, 2H), 6.99 (dd, J = 7.4, 5.1 Hz, 1H), 2.35 (s, 3H).
ID Synthesis Method MS mp ro 1H, 13C. or19F NMR (□)1
1-31 C 513 (M+1) 122-125 (CDCI3) δ 8.60 (S, 1H), 8.32 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 8.19-8.16 (m, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.84-7.81 (m, 2H), 7.58 (d, J = 7.5 Hz, 1 H), 7.40 (d, J = 8.3 Hz, 2H), 7.03 (dd, J =7.5, 5.1 Hz, 1H), 2.67 (s, 2H), 1.35 (t, J =7.5 Hz, 3H).
I-32 M 210 ([Μ+ΗΓ) (CDCIj) δ 8.97 (bs, 1H), 7.74 - 7.11 (m, 5H), 4.06 (bs, 2H). 3.11 (hept, J = 6.9 Hz, 1H), 1.24 (d, J = 6.9 Hz, 6H)
I-33 C 575 ([M+HD 214-216 (DMSO-cfe) δ 11.87 (s, 1H), 10.08 (s, 1H), 9.44 (s, 1H), 8.20 (s, 1H), 8.17 - 8.02 (m, 6H), 7.63 (d, J = 9.0 Hz, 2H), 7.39 - 7.35 (m, 1H), 7.35-7.28 (m, 1H), 7.27-7.18 (m, 2H), 3.19-3.05 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -85.20, -86.94
I-34 P* 317 ([M+H]*) (CDCI3) δ 8.50 (s, 1H), 8.07 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 2.1 Hz, 1 H), 7.44 (dd, J = 8.6, 2.2 Hz, 1H), 7.29 (d, J- 8.0 Hz, 2H), 7.19 (d, J = 8.6 Hz, 1H), 2.42 (s, 3H); 19F NMR (376 MHz, CDCI3) δ -49.69
ID Synthesis Method MS mp (°C) Ή. “C. or F NMR (0)'
1-35 P* 330 ([M+H]*) - (CDCI3) δ 10.09 (s, 1H), 8.55 (m, 1 H), 8.37 (m, 1H), 8.22 (m, 1H). 8.00 (m, 1 H). 7.57 (dd. J = 5.3, 2.2 Hz, 1H), 7.51 (m, 1H), 7.46 (m, 1H), 7.21 (m. 1H); ieF NMR (376 MHz. CDCI3) δ -49.61
1-36 C 521 ([M+H]*) 200 (dec.) (CDCI3) δ 9.47 (s, 1H), 9.05 (s, 1 H). 8.54 (s, 1H), 8.25 (d, J = 8.4 Hz, 2H), 7.92 (s, 1H), 7.78 (d, J = 8.4 Hz, 2H), 7.71 - 7.62 (m, 1H), 7.57 (t. J = 2.7 Hz, 1H), 7.46 (dd, J = 8.6, 2.2 Hz, 1H), 7.41 - 7.29 (m, 3H). 7.21 (d, J= 8.6 Hz, 1H), 3.19 (dt, J = 13.8, 6.9 Hz, 1H), 1.32 (d, J = 6.9 Hz, 6H); 19F NMR (376 MHz, CDCI3) δ -49.62
1-37 M (CDCI3) δ 7.48 - 7.36 (m, 1H), 7.21 - 7.06 (m, 2H), 5.23 (p, J = 1.5 Hz. 1H), 5.05 (q, J = 1.1 Hz, 1 H), 2.09 (s, 3H); 13C NMR (101 MHz, CDCI3) 0 153.56 (d, Jcf = 257.5 Hz), 139.62,139.60,138.83, 131.48 (d, Jcf = 8.6 Hz), 124.47 (d. JCf = 3.6 Hz), 117.60,115.51 (d, JCf= 19.1 Hz), 23.18
ID Synthesis Method MS mp (°C) ’H, ’3C, or ’9F NMR (□)’
1-38 M - - (CDCl3) δ 6.92 (dt, J - 7.7,1.2 Hz, 1H), 6.86 (ddd. J = 10.8, 8.1,1.4 Hz, 1H), 6.69 (td, J = 8.0, 5.6 Hz, 1 H), 3.71 (bs, 2H), 2.92 (hept, J = 6.8 Hz, 1 H). 1.26 (d, J = 6.8 Hz, 6H); ’3CNMR(101 MHz, CDCI3) δ 151.91 (d, J = 237.6 Hz), 135.10 (d, J = 2.3 Hz), 131.60 (d, J = 11.8 Hz), 120.52 (d, J = 3.0 Hz), 117.99 (d, J - 8.0 Hz), 112.28 (d, J = 19.6 Hz), 27.77 (d, J = 2.9 Hz), 22.22
1-39 M 229 ([M+H]*) 122-124 (CDCh) δ 8.56 (bs, 1H), 7.54 (bs, 1H), 7.32 (td, J = 8.1, 5.6 Hz, 1 H), 7.17 - 7.09 (m, 1H), 7.00 (ddd, J = 9.5, 8.2,1.4 Hz, 1H), 4.07 (bs, 2H), 3.15 (hept, J = 7.0 Hz, 1 H), 1.24 (d. J = 6.9 Hz, 6H), 7.78 - 7.39 (m, 1H)
1-40 C 544 ([M+H]*) 210-212 (CDCI3) δ 9.54 (s, 1H), 8.60 (s, 1H), 8.56 (s, 1H), 8.30 - 8.22 (m, 2H), 7.92 (s, 1H), 7.86 - 7.76 (m, 4H), 7.44 - 7.38 (m, 2H), 7.35 (dd, J = 8.1, 5.6 Hz, 1H), 7.18 (d, J = 7.9 Hz, 1H), 7.04 (ddd, J = 9.4, 8.2,1.3 Hz, 1 H), 3.22 (p, J = 6.9 Hz, 1 H), 1.29 (d, J = 6.9 Hz, 6H);
ID Synthesis Method MS mp CC) ’H, ’3C, or 19F NMR (□)’
1-41 M (CDCIa) δ 7.60 (dd, J =8.2, 2.5 Hz, 1H), 7.37-7.21 (m, 2H), 5.19 (p, J = 1.5 Hz, 1H), 4.97 - 4.89 (m, 1H), 2.11 - 2.04 (m, 3H); ’3C NMR (101 MHz, CDCI3) δ 160.96 (d, J = 250.8 Hz), 148.46,141.88,135.18 (d, J - 4.1 Hz), 132.09 (d, J- 7.8 Hz), 119.98 (d, J = 20.9 Hz), 115.99, 111.63 (d, J = 26,4 Hz), 23.35
1-42 M (CDCI3) δ 7.05 (dd, J= 8.5, 6.4 Hz, 1H), 6.45 (td, J= 8.5, 2.6 Hz, 1H), 6.37 (dd, J = 10.6, 2.6 Hz, 1 H), 3.74 (bs, 2H), 2.83 (hept, J = 6.8 Hz, 1H), 1.24 (d, J= 6.8 Hz, 6H); ’3C NMR (101 MHz, CDCI3) δ 161.75 (d, J = 241.3 Hz), 144.76 (d, J= 10.3 Hz), 128.11 (d, J = 2.8 Hz), 126.53 (d, J = 9.6 Hz), 105.06 (d, J= 20.7 Hz), 102.26 (d, J - 24.2 Hz), 27.27, 22.35
1-43 M 226 ([M-HD 133-135 (CDCI3) δ 9.11 (bs, 1H), 7.44 (bs, 2H), 7.35-7.27 (m, 1H), 6.99 (s, 1H), 4.03 (bs, 2H), 3.05 (hept, J = 6.9 Hz, 1H), 1.23 (d, J = 6.9 Hz, 6H)
ID Synthesis Method MS mp (°C) ’H, 13C, or ”F NMR (□)1
1-44 C 544 ([M+H]*) 217-222 (CDCI3) δ 9.45 (s, 1 H), 9.13 (s, 1H), 8.60 (s, 1H), 8.32 - 8.21 (m, 2H), 7.92 (s, 1H), 7.87 - 7.75 (m, 4H), 7.64 (dd, J = 9.9, 2.7 Hz, 1 H), 7.46 - 7.37 (m, 2H), 7.32 (dd, J = 8.8,6.2 Hz, 1H), 7.02 (td, J = 8.3, 2.8 Hz, 1H), 3.14 (hept, J = 6.9 Hz, 1H), 1.31 (d, J = 6.9 Hz, 6H)
1-45 M (CDCI3) δ 7.96 (dd, J- 9.0, 5.1 Hz, 1 H), 7.08 (ddd, J = 9.0, 7.4, 2.8 Hz, 1 H), 7.02 (dd, J - 8.7, 2.8 Hz, 1 H), 5.20 (p, J = 1.5 Hz, 1H), 4.96 (p, J = 1.0 Hz, 1H), 2.11 2.06 (m, 3H)
1-46 M - CDCI3) δ 6.85 (dd, J = 10.3, 2.9 Hz, 1 H), 6.72 (td, J = 8.3, 2.9 Hz, 1H), 6.60 (dd, J = 8.6, 5.1 Hz, 1H), 3.49 (bs, 2H), 2.88 (hept, J = 6.8 1 H), 1.24 (d, J = 6.8 Hz, 6H); 13C NMR (101 MHz, CDCI3) δ 156.92 (d, Jcf = 235.0 Hz), 139.17 (d, Jcf - 2.1 Hz), 134.61 (d, Jcf = 6.2 Hz), 116.55 (d, JCf 7.5 Hz), 112.69 (d, Jcf =22.5 Hz), 112.17 (d, Jcf = 22.4 Hz), 27.90, 22.11
1-47 M 228 ([M+H]*) 163-17 (CDCi3) δ 8.88 (bs, 1H) 7.42 (bs, 1H), 7,03 (dd, J = 10.0, 2.9 Hz, 1 H), 6.93 (ddd, J = 8.7, 7.7, 3.0 Hz, 1H), 4.03 (bs, 2H), 3.143.00 (m, 1 H), 1.23 (d, J = 6.9 Hz, 6H)
ID Synthesis Method MS mp (°C) ’H, 13C, or ieF NMR (Π)1
1-48 C 544 ([M+H]*) 219-221 (300 MHz, CDCi3) δ 9.55 (s. 1H), 8.90 (s, 1H), 8.59 (s, 1H). 8.30-8.21 (m. 2H), 7.92 (s, 1 H), 7.85 - 7.74 (m, 4H). 7.54 (dd, J= 8.8, 5.5 Hz, 1H), 7.40 (d, J= 8.6 Hz, 2H), 7.07 (dd, J = 10.0, 2.9 Hz, 1H), 6.97 (td, J = 8.2, 2.9 Hz, 1 H), 3.24 - 3.08 (m, 1H), 1.29 (d, J = 6.9 Hz, 6H)
1-49 M (CDCI3) 5 7.64 (dt, J = 8.1,1.2 Hz, 1H), 7.39 (td, J= 8.2, 5.4 Hz, 1H), 7.31 (td, J8.5,1.2 Hz, 1H), 5.28 (p, J= 1.5 Hz, 1H), 4.91 (p, J- 1.0 Hz, 1H). 2.16 (t, J = 1.3 Hz, 3H); 13C NMR (101 MHz, CDCI3) 5 159.59 (d, J - 249.3 Hz), 149.81,136.14,128.57 (d, J - 9.0 Hz), 127.02 (d. J = 22.0 Hz). 119.84 (d, J = 23.4 Hz), 119.41 (d, J - 3.6 Hz), 117.25, 23.10 (d, J =1.9 Hz)
1-50 M CDCI3) δ 6.92 (td, J = 8.1, 6.1 Hz, 1H), 6.44 (ddd. J = 10.4, 8.1,1.1 Hz, 2H), 3.72 (bs, 2H), 3.06(heptd, J = 7.1,1.3 Hz, 1H), 1.35 (dd, J =7.1,1.5 Hz,6H); 13C NMR (101 MHz, CDCI3) δ 162.83 (d, J = 243.4 Hz), 145.29 (d, J = 8.8 Hz), 127.08 (d, J = 11.2 Hz), 119.64 (d, J = 16.1 Hz), 111.77 (d. J =2.3 Hz), 106.47 (d, J = 24.2 Hz), 25.65, 20.97 (d, J = 3.8 Hz)
ID Synthesis Method MS mp (°C) Ή, 13C, or 19FNMR (□)1
1-51 M 228 ([M+HD 158-160 (CDCIj) δ 8.91 (bs, 1H), 7.42 (bs, 1H), 7.25 - 7.08 (m, 2H), 7.02 (d, J - 10.0 Hz, 1H), 4.04 (bs. 2H), 3.18 (hept, J = 7.0 Hz, 1H), 1.44-1.24 (m, 6H)
1-52 C 544 ([M+H]*) 220-223 (CDCI3) δ 10.05 (s, 1H), 8.95 (s, 1H), 8.60 (s, 1H). 8.30-8.21 (m, 2H), 7.99 (s, 1H), 7.85 - 7.73 (m, 4H), 7.44 - 7.37 (m, 2H), 7.34 (d, J- 7.9 Hz. 1H), 7.24 (td, J- 8.1, 5.8 Hz, 1 H), 7.05 (ddd, J = 11.1, 8.2,1.3 Hz, 1H), 3.37-3.21 (m, 1H), 1.41 (dd, J = 7.1, 1.2 Hz, 6H)
1-53 C 527 ([M+H]*) (DMSO-de)C 11.98 (s, 1 H), 10.11 (s, 1H), 9.57 (s, 1H), 8.24 - 8.19 (m, 3H), 8.19 8.14 (m, 2H), 8.09 - 8.03 (m, 2H), 8.03 7.96 (m, 2H), 7.39 (dd, J= 8.7, 6.4 Hz, 1H), 7.22-7.08 (m, 2H), 3.12 (hept, J = 7.1 Hz, 1 H), 1.19 (d, J = 6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -60.81, 117.72
1-54 C 593 ([M+H]*) (DMSO-de) δ 12.07-11.88 (m, 1H), 10.11 (s, 1H), 9.45 (s, 1H), 8.21 (s, 1H), 8.18 8.13 (m, 2H), 8.13 - 8.08 (m, 2H), 8.08 8.03 (m, 2H), 7.67 - 7.59 (m, 2H), 7.39 (dd, J = 8.7, 6.5 Hz, 1 H), 7.22 - 7.08 (m, 2H), 3.12 (hept, J= 7.0 Hz, 1 H). 1.19 (d, J = 6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -85.19, 86.92, -117.73
ID Synthesis Method MS mp (°C) 1H, 13C, or 19F NMR (□)1
1-55 P* 402 [M-H]·) (CDCh) 0 8.64 (d, J = 1.1 Hz, 1 H), 8.09 (m, 3H), 7.93 (m, 3H), 7.78 (d, J = 8.5 Hz, 3H), 7.30 (d, J = 7.9 Hz, 3H), 2.42 (s, 4H); 19F NMR (376 MHz, CDCI3) 0 -75.61, 75.63, -75.63, -182.14, -182.17, -182.18
1*56 P* 418 ([M+HD (CDCI3) C 10.09 (s, 1H), 8.71 (s, 1 H). 8.39 (d, J = 8.3 Hz, 2H), 8.01 (d. J = 8.3 Hz, 2H), 7.95 (m, 2H), 7.82 (d, J = 8.6 Hz, 2H);
19F NMR (376 MHz, CDCI3) δ -75.57, - 75.59, -182.14, -182.16, -182.18
1-57 C 627 ([M+HD (DMSO-de) δ 11.98 (s, 1H), 10.11 (s, 1H), 9.54 (s, 1H). 8.30-8.20 (m, 3H), 8.198.13 (m, 2H), 8.10 - 8.03 (m, 2H), 7.93 (d, J = 8.5 Hz, 2H), 7.39 (dd, J = 8.7, 6.4 Hz, 1H), 7.21 - 7.08 (m, 2H), 3.12 (hept, J = 6.7 Hz, 1 H), 1.19 (d, J = 6.8 Hz, 6H);
19F NMR (376 MHz, DMS0-dB) δ -75.08 (d, J= 7.4 Hz), -117.73, -179.04--182.36 (m)
ID Synthesis Method MS mp (°C) ’H, 13C, or ’9F NMR (□)’
1-58 454 ([M+H]*) (CDCI3) δ 8.65 (s, 1H), 8.10 (m, 2H), 7.93 (m, 2H), 7.77 (d, J= 8.3 Hz, 2H), 7.30 (m, 2H), 2.42 (s, 3H); ’9F NMR (376 MHz, CDCI3) δ -73.89, - 73.91, -73.92, -73.93, -73.94, -73.95, - 73.95, -73.97, -73.97, -79.19, -79.22, - 121.15, -121.18, -121.41, -121.43, - 121.44, -121.46, -182.85, -182.87, - 182.89,-182.90
1-59 468( [M+H]*) (CDCh) δ 10.09 (s, 1H), 8.72 (s, 1H), 8.39 (m, 2H), 8.01 (m, 2H). 7.95 (m, 2H), 7.80 (d, J =8.3 Hz, 2H); ’9F NMR (376 MHz, CDCI3) δ -73.84, -79.18, -121.08, -182.84
1-60 C 677 ([M+H]*) (DMSO-de)ô 11.98 (s, 1 H), 10.11 (s, 1H), 9.55 (s, 1 H), 8.31 - 8.20 (m, 3H), 8.20 8.13 (m, 2H). 8.11 - 8.03 (m, 2H), 7.92 (d, J = 8.5 Hz, 2H), 7.39 (dd, J = 8.7, 6.5 Hz, 1 H), 7.23 - 7.07 (m, 2H), 3.12 (hept, J = 6.7 Hz, 1 H), 1.19 (d, J- 6.9 Hz, 6H); ’9F NMR (376 MHz, DMSO-de) δ -73.44 (dtd, J= 15.4, 8.1, 7.5, 3.0 Hz), -78.73 (d, J = 12.8 Hz), -117.73, -120.00 - -122.33 (m), -182.26 (tt, J- 12.8, 6.4 Hz)
ID Synthesis Method MS mp (°C) 1H, 13C, or 19F NMR (□)’
1-61 P‘ 302 ([M+H]*) (CDCI3)5 8.61 (s, 1H), 8.11 (d, J = 8.16 Hz, 2H), 7.84 (d, J = 8.68 Hz, 2H), 7.67 (d, J = 8.68 Hz, 2H), 7.30 (d, J = 7.96 Hz, 2H), 2.43 (s, 3H), 1.98 (t, J = 18.12 Hz, 3H)
I-62 P* 314 ([M+H]*) 139-141 (CDCI3) δ 10.11 (s, 1H), 8.69 (s, 1H). 8.41 (d, J = 8.28 Hz, 2H), 8.02 (d, J = 8.28 Hz, 2H), 7.87 (d, J= 8.56 Hz, 2H), 7.71 (d, J = 8.56 Hz, 2H), 2.00 (t. J= 18.12 Hz, 3H)
1-63 C 523 ([M+H]*) (DMSO-de) δ 11.98 (s, 1 H), 10.11 (s, 1 H), 9.49 (s, 1H), 8.21 (d, J= 0.8 Hz, 1H), 8.16 (d, J = 8.4 Hz, 2H), 8.12 - 8.03 (m, 4H), 7.85 - 7.76 (m, 2H), 7.39 (dd, J = 8.7, 6.4 Hz, 1H), 7.22 - 7.08 (m, 2H), 3.12 (hept, J = 6.6 Hz, 1H), 2.04 (t, J= 18.9 Hz. 3H), 1.19 (d, J =6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -84.18, 117.72
1-64 c 577 ([M+H]*) (DMSO-de) δ 12.04 (s, 1H), 10.17 (s, 1H), 9.62 (s, 1H), 8.30 (d, J = 1.6 Hz, 1H), 8.28 (d, J = 4.6 Hz, 2H), 8.25 - 8.19 (m, 2H), 8.17 - 8.08 (m, 2H), 8.01 (d, J = 8.6 Hz, 2H), 7.45 (dd, J = 8.7, 6.4 Hz, 1 H), 7.27 7.12 (m, 2H), 3.17 (hept, J = 6.9 Hz, 1 H), 1.24 (d, J = 6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -84.03 (d, J= 2.6 Hz), -113.43, -117.72
ID Synthesis Method MS mp (°C) ’H, ’3C, or ”F NMR (□)’
1-65 C 527 ([M+H]*) (DMSO-d6) δ 11.92 (s, 1H), 10.05 (s, 1H), 9.57 (s, 1 H), 8.29 - 7.94 (m, 9H), 7.20 (ddd, J = 20.5, 9.6, 4.3 Hz, 2H), 7.06 (td, J = 8.4, 3.0 Hz, 1 H), 3.18 - 3.03 (m, 1 H), 1.19 (d, J =6.8 Hz, 6H); ’9F NMR (376 MHz, DMSO-de) δ -60.81, 114.66
NMR spectral data were acquired using a 400 MHz Instrument unless otherwise noted. P* - Prepared according to methods described in Crouse et al. PCT Int. Appi. Publ. W02009/102736 A1 and Brown, et ai, WO 2011017504 A1.
Table 3: Structures for Compounds
ID Structure
1C /V /*®N i
2C Cl
3C Cl
4C
5C
ID Structure
6C OH
7C
80
9C
10C
11C
12C o
ID Structure
13C 0
14C
15C
16C
17C χ·σ'σο3.Λ.;φ
18C
19C
ID Structure
20C
21C ,-x /-N VX
22C O ΓΆ/ΐ θ Λχ-Χφ
23C 0y_,N YojO
24C
25C o-CXV.'^X ν> XUn,in
26C 0 /-N \Ao ^-O nn-\> \ Yy°' F F ^S*NN nV
27C 0 r-v Λ-Ν ν*-0 Λ'0'ΥΧ.Χ'ψ'
ID Structure
28C J—v /*N 1 A p-O- nn^qJ^-x Vy°-
29C O ί—K /**N ^θχχ^-ο
30C °κ_,Ν 0 <—\ z-N 1 A Γ'
31C
32C Cl
33C °VcA /—x /-N Γ /°'ΌΝΛγ> s^y'y0'' FFf kxk>N.NANA^J C)
34C -N V< θΌ'ΝΝ*ιγν\ Οχ—sclZY°x Cl
35C
ID Structure
36C
37C r,X-riT -ÿXr“^O”’
38C
39C Î2VF iriCr'riyriX
40C /—N θ'-—S 3
41C
42C l2^° p- tÀ «*N _ }**N\
ID Structure
43C °T -<r r*N /-λ °^S>*n\
44C ”2. -if
45C F5 |
46C 0^ fjTn>'^N'N To F F 1
47C Λ-N H0^°
48C /—κ /*N ΗΟγθ
49C
ID Structure
50C f o-O-iQ Horo fvf *-<NNANjÇr '
51C y—/**N ΗΟ^-«*θ
52C 0r_ /*.» HO-γ*0 y~< /Ch Vi h P
53C
54C n y-yri H0T° O Ρ'Χ-Γ νΛΥ> S W fff
55C
56C
57C -V-0 °ΛΟ^° υ.<υ^μ-α\!
ID Structure
58C o z-v /-N N~-f°
59C 0 1,0 Λ
60C “7*o ^οΛν3ύο F -T^NfAcvλ χτΟχ FF Ν'ν ν
61C -;<O
62C CF3CO2H
63C CF,C02H H2N N0' '•Nx.f.fi
ID Structure
64C n Z-N N~z°
65C CFjCOjH HN^X Λ-Ν Χ--Ν-γΟ
66C cf3co2h rx g-/*>N N^°
67C CF>CO>H ΗίΓΎ O
68C Na+ n r-χ /-N Ό-γ° p-O'^X-s \ Yy°x FF F
69C
70C
71C
ID Structure
86C
87C
88C
89C O F rN Q-O f^ONnO-n'n f
90C rN ÇV)
91C rN ÇNO >F o-CrNNX^N'N >
92C j jC
93C rN
94C rN ^YN<3
ID Structure
95C Ab
96C
97C γμ sYNON'
98C
99C
100C F F Λχχχι
101C ç£a
102C
103C
104C
ID Structure
105C
106C
107C
108C
109C
110C
111c çCX UxyN'N AJ
112C
113C
114C
ID Structure
115C
116C
117C sçÇl
118C kA^N-N
119C
120C
121C
122C
123C
124C
ID Structure
125C
126C
127C
128C fûy/V H r~ Yu-a5
129C V ''N z° Cl sçk/ N-N
130C 'Yo-tv. ‘tQ; La^n-n fXj
131C
132C
133C
134C
135C *o<W
ID Structure
136C
137C λ
138C
139C ΐχ^οχΜ
140C
141C
142C
143C
144C çn 9 U^N-N
145C
146C
100
ID Structure
147C
148C
1490
150C
151C
152C F “Xx. rô
153C F f’C/Wi Z~! AF 0<> ’XxX’ï)
1540 ;x^W-ô
155C
156C
1570
ΙΟΙ
ID Structure
158C o<> A,»>N
159C
160C
161C
162C çQ k>^.N-N kJLo 1
163C
164C
165C
166C F\fF /”X 7**N f—/ FM>NN-<n ÇkA
167C N AJrtô
102
ID Structure
168C '0 û '
169C
170C
171C IAzN-n
172C
173C
174C
175C
176C
177C
103
ID Structure
178C
179C
180C G
181C o—
182C
183C
184C
185C
186C
104
SOI
□961
□k6l
□C61
^d’^yo-y □361
□ 161
Λ-rxu /-v0 □061
G □681
'%’^yO-y □881
o A>o^ □Z8t
ajnpnjig ai
ID Structure
196C
197C
198C
199C
200C
201C
202C OCHj
203C rs /-N \-N / 'W-x^-q Br
204C rN Q p™» ';WA> ijj
106
ID Structure
205C
206C O n—N N '/.-©-“•J-O”' p H}CO
207C COjEt
208C
209C
21 OC
211C Q
212C Qj_
213C
107
ID Structure
214C d y
215C ^o-OnXs 0 v
216C LA^N-N W F
217C s^V f AQjÿ'
218C
219C
220C
221C
222C
223C <Vo rN y-N J
108
ID Structure
224C >·Ό' fiCWz· O
225C ΓΧθ rN Sy-N r~ 'Ασ'Α>·Ό
226C pr® /—N y-N /
227C sr>° /—N \-N / ’XCr“*<XW
228C rVoF p S f U-F /—N y-N A p «Τ-Όλό
229C ry° F rN Sy-N P-f'F
230C - ÇCY
231C sr>° /—N y-N / -ΛΟ·Α>”- q 0—
232C r» Ç\°k
233C py° f /-n y~\ /°~^f
234C -N SÇ\J=
109
ID Structure
235C rN svX_jci
236C r-N
237C
238C
239C /-N
240C /=N YoZX ν\Χν.να0-
241C /= N -ο
242C /= N AX'\x,-X o—
243C /=N χΟΛχ.χ Y
110
ID Structure
244C /^N
245C YYA/
246C
247C /*=N
248C /**N ;-AoXT n’\X]Zn-nJî)-
249C S'A F
250C Y'Çy. ,, ^ΑλΑΙ F R5
m
ID Structure
251C
252C /λ /“VnY' °-V_/ N^y^. S kzMsAi Zb F
253C f'a λα-νΥ 'N ηΑι s~> <A^n A Zb F
254C Z-X /-VH °'U SAl S-7 Άα a Ad
255C ; ' ' ' 'A.··...'· >-t>F
256C Ho-vk s >-tbF
112
ID Structure
257C F F'4-F \L ./3
258C F f \__L-ΐ
259C . F /=\ R>-
260C :-t>·
261C X) F
Table 4: Analytlcal Data for Compounds In Table 3
ID Synthesis Method MS mp (°C) ’H NMR(D)1
113
ID Synthesis Method MS mp (°C) 1HNMR(a)’
1C D 540 (M+) - (DMSO-de) 8.61 (s, 1 H), 8.48 (s, 1H). 8.22 (d, J= 8.24 Hz, 2H), 8.17 (s, 1H), 7.89 (d, J = 8.24 Hz, 2H), 7.80 (d, J = 8.28 Hz, 2H), 7.41 (d, J= 8.28 Hz, 2H), 7.19 (d, J = 8.24 Hz, 2H), 6.71 (d, J = 8.24 Hz, 2H), 2.99 (s, 6H), 2.42 (s, 3H)
2C D 580 (M+) 168-171 (DMSO-de) 9.42 (s, 1H), 8.18-8.03 (m, 5H), 7.78-7.69 (m, 2H), 7.61 (d, J = 8.26 Hz, 2H), 7.44 (d, J = 8.24 Hz, 2H), 7.18 (m, 1H), 3.09-2.99 (m, 2H), 1.39-1.32 (m, 3H)
3C D 594 180-182 (DMSO-de) 9.42 (s, 1H), 8.18-8.04 (m, 5H), 7.78-7.69 (m, 2H), 7.61 (d, J = 8.26 Hz, 2H), 7.48 (d, J = 8.24 Hz, 2H), 7.19 (m, 1H), 3.06-3.02 (m, 2H), 1.78-1.64 (m, 2H), 1.040.96 (m, 3H)
4C D 629 (M+) (DMSO-de) 8.57 (s, 1 H), 8.48 (d, J = 5.5 Hz, 1H), 8.22 (d, J= 8.2 Hz, 2H), 7.91-7.75 (m, 5H), 7.38 (d, J= 8.7 Hz, 2H), 7.22-7.07 (m, 3H), 6.50-6.19 (m, 2H), 3.85 (d, J = 7.2 Hz, 1H), 3.75-3.64 (m, 1H), 2.33 (s, 6H)
5C E 636 (M+) (300 MHz, CDCI3) 8.56 (s, 1H), 8.54 (s, 1H). 8.23 (d, J= 8.3 Hz, 2H), 7.89 (d, J= 8.2 Hz, 3H), 7.79 (d, J = 9.0 Hz, 2H), 7.38 (d. J = 8.7 Hz, 2H). 7.23-7.00 (m, 4H), 6.88-6.74 (m, 2H), 4.44 (s, 2H), 2.33 (s, 6H)
6C D 645 (M+H) 196-198 (methanol-d4) 9.16 (s, 1H), 8.46 (s, 1H), 8.21 (d, J= 8.3 Hz, 2H), 8.03 (m, 6H), 7.52 (d, J = 8.3 Hz, 4H), 7.28 - 6.91 (m, 3H), 4.39 (s, 2H), 2.08 (s, 6H)
114
ID Synthesis Method MS mp (°C) 1HNMR(ü)’
7C E 636 (M+) (300 MHz, CDCI3) 8.56 (m, 2H), 8.23 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 8.3 Hz, 3H). 7.79 (d, J- 9.0 Hz, 2H), 7.55-7.42 (m. 1H), 7.37 (d, J- 9.0 Hz, 2H), 7.20-7.01 (m, 3H), 6.89- 6.68 (m, 2H), 4.30 (s, 2H), 2.28 (s, 6H)
8C E 684 (M+) (CDQ3) 8.57 (s, 1H), 8.52 (s, 1 H), 8.24 (d, J = 8.3 Hz, 2H), 7.91-7.84 (m, 3H), 7.80 (d, J - 9.1 Hz, 2H), 7.39 (d, 8.6 Hz, 4H), 7.18-7.03 (m, 5H), 4.32 (s, 2H), 2.29 (s, 6H)
9C E 620 (M+) (CDCI3) 8.57 (s, 1H), 8.47 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d, J - 8.3 Hz. 2H), 7.80 (m, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.21-7.10 (m, 3H), 3.93 (s, 2H), 2.35 (s, 6H), 0.13 (s, 9H)
10C D 600 (M+) (DMSO-de) 8.57 (s, 1H), 8.54 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.89 (d, J= 8.3 Hz, 2H), 7.87 (s, 1H), 7.80 (d, J= 9.0 Hz, 2H), 7.447.32 (m, 4H), 7.31-7.19 (m, 3H), 7.19-7.00 (m, 3H), 4.34 (s, 2H), 2.31 (s, 6H)
11C D 618 (M+) (DMSO-de) 8.57 (s, 1 H), 8.55 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.89 (d, J ~ 8.3 Hz, 2H), 7.86 (s, 1H), 7.83-7.73 (m, 2H), 7.48 (td, J 7.6,1.7 Hz, 1 H), 7.38 (d, J = 8.5 Hz, 2H), 7.23-6.91 (m, 6H), 4.39 (s, 2H), 2.30 (s, 6H)
12C D 658 (M+) (DMSO-de) 8.57 (s, 1H), 8.51 (s, 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.94 (d, J - 8.3 Hz, 2H), 7.88 (d, J = 8.2 Hz, 2H). 7.86 (s, 1H), 7.79 (d, J ~ 9.0 Hz, 2H), 7.44 (d, J - 8.3 Hz, 2H), 7.38 (d, J = 8.6 Hz, 2H), 7.20-7.05 (m, 3H), 4.35 (s, 2H), 3.88 (s, 3H), 2.28 (s. 6H)
115
ID Synthesis Method MS mp (°C) ’HNMR(n)1
13C E 679 (M+) (DMS0-de) 8.59 (s, 1H), 8.51 (s, 1H), 8.23 (d, J= 8.3 Hz, 2H), 7.93-7.76 (m, 7H), 7.53 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 7.20-7.06 (m, 3H), 4.88 (s, 2H), 4.36 (s, 2H), 2.28 (s, 6H)
14C E 658 (M+) (CDCI3) 8.57 (s, 1 H), 8.52 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.91-7.85 (m, 4H), 7.80 (d, J = 9.1 Hz, 2H), 7.73 (d, J = 6.8 Hz, 1H), 7.52 (dd, J= 8.8,6.9 Hz, 1H), 7.39 (d, J= 9.0 Hz, 2H), 7.13-7.01 (m, 3H), 4.88 (s, 2H), 2.27 (s, 6H)
15C E 667 (M+) (CDCI3) 8.57 (s, 1 H), 8.25-8.14 (m, 3H), 7.94-7.66 (m, 7H), 7.52-7.35 (m, 6H), 7.167.03 (m, 3H), 4.54 (s, 2H), 2.32 (s, 6H)
16C E 658 (M+) (CDCh) 8.57 (s, 1H), 8.49 (s, 1H), 8.24 (d, J = 8.4 Hz, 2H), 7.88 (d, J= 8.3 Hz, 2H), 7.83-7.77 (m, 3H), 7.39 (d, J = 8.3 Hz, 2H), 7.19-7.07 (m. 3H). 6.69-6.65 (m, 1H), 6.39- 6.35 (m, 1H), 4.36 (s, 2H), 2.29 (s, 6H)
17C E 678 (M+) (CDCI3) 8.58 (s, 1H), 8.50 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.94-7.74 (m, 7H), 7.59 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.20-7.04 (m, 3H), 4.37 (s, 2H). 3.01 (s, 3H), 2.29 (s, 6H)
18C E 773 (M+) (CDCI3) 8.59 (s, 1H), 8.46 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.86 (d, J= 8.4 Hz, 2H). 7.83-7.75 (m. 3H), 7.63 (d, J= 8.4 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.38 (d. J = 8.4 Hz, 2H), 7.17-7.05 (m, 3H), 7.03-6.98 (m, 3H), 6.89 (t, J= 8.6 Hz, 2H), 4.30 (s, 2H), 2.24 (s, 6H)
116
ID Synthesis Method MS mp (°C) 1HNMR(Q)1
19C E 728 (M+) (CDCI3) 8.59 (s, 2H), 8.26 (d, J - 8.3 Hz, 2H), 7.93 (d, J- 8.3 Hz, 2H), 7.89 (s, 1H), 7.82 (d, J = 9.1 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.20-7.05 (m, 3H), 6.86 (s, 1H), 4.49 (S, 2H). 3.98 (S, 3H). 2.31 (s, 6H)
20C E 681 (M+) (CDCI3) 8.58 (s, 1H), 8.38 (s, 1H), 8.23 (d, J = 8.3 Hz. 2H), 7.86 (d. J = 8.3 Hz, 3H), 7.81 (d, J- 9.1 Hz, 2H). 7.67-7.63(m, 2H), 7.467.36 (m, 5H), 7.18-7.05 (m, 3H), 4.24 (s. 2H), 2.47 (s, 3H), 2.29 (s. 6H)
21C E 596 (M+) (DMSO-cfe) 8.58 (s, 1H), 8.15 (d, J= 8.4 Hz, 2H), 7.80 (d. J = 9.0 Hz. 2H), 7.47-7.35 (m, 4H), 7.21-6.93 (m, 5H), 3.68 (t, J - 5.4 Hz, 2H), 3.35 (s, 3H), 2.65 (t, J = 6.2 Hz, 2H), 2.29 (s, 6H)
22C E 626 (M+) (DMSO-de) 8.59 (s, 1H), 8.52 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.95-7.75 (m, 5H), 7.39 (d, J = 8.4 Hz, 2H), 7.21-7.06 (m, 3H), 5.80 (s, 2H), 4.12 (s, 2H), 3.69-3.50 (m, 2H), 2.31 (s, 6H), 1.35-1.11 (m, 3H)
23C E 731 (M+) (DMSO-de) 8.58 (s, 1H), 8.50 (s, 1H), 8.22 (d, J = 8.2 Hz, 2H), 7.93-7.70 (m, 5H), 7.457.28 (m, 8H), 7.23-7.03 (m, 3H), 5.79 (s, 2H), 5.38-5.27 (m, 1H), 5.11 (s, 2H), 4.073.98 (m, 2H), 2.30 (s, 6H)
24C E 626 (M+) (DMSO-de) 8.58 (s, 1H), 8.51 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.93-7.73 (m, 5H), 7.39 (d, J - 8.9 Hz, 2H), 7.21-7.07 (m, 3H), 5.76 (s, 2H), 5.05-4.70 (m, 1H). 2.32 (s, 6H), 1.38-1.17 (m, 6H)
117
ID Synthesis Method MS mp (’C) ’hnmr(c)1
25C E 610 (M+) (DMSO-de) 8.59 (s, 1H), 8.52 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H). 7.91-7.79 (m, 5H), 7.40 (d, J = 8.5 Hz, 2H), 7.18-7.06 (m, 3H), 5.73 (s, 2H), 2.70-2.45 (m, 1H), 2.32 (s, 6H), 1.15 (s, 6H)
26C E 654 (M+) (DMSO-de) 8.58 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 7.98 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 6.9 Hz, 2H), 7.69 (s, 1H), 7.40 (d, J = 8.8 Hz, 2H), 6.63 (S, 2H), 5.73 (s, 2H), 3.80 (s, 3H), 2.64-2.53 (m, 1H), 2.58 (s, 3H), 2.28 (s, 6H), 1.17 (d, J =7.0 Hz, 6H)
27C E 640 (M+) (DMSO-de) 8.58 (s, 1H), 8.50 (s, 1H), 8.23 (d, J= 8.2 Hz, 2H), 7.88 (d, J= 8.3 Hz, 2H), 7.81 (d, J= 9.0 Hz, 2H), 7.74 (s, 1 H), 7.39 (d, J = 8.6 Hz, 2H), 6.63 (s, 2H), 5.71 (s, 2H), 3.79 (s, 3H), 2.74-2.43 (m, 1H), 2.27 (s, 6H), 1.16 (d, J =7.0 Hz, 6H)
28C E 761 (M+) (300 MHz, CDCIj) 8.58 (s, 1H), 8.48 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7.80 (d, J= 9.0 Hz, 2H), 7.74 (s, 1H), 7.45-7.28 (m, 7H), 6.63 (s, 2H), 5.78 (s, 2H), 5.29 (m, 1H), 5.12 (s, 2H), 4.03 (d, J = 5.6 Hz, 2H), 3.79 (s, 3H), 2.27 (s, 6H)
29C E 656 (M+) (300 MHz, CDCI3) 8.58 (s, 1H), 8.49 (s, 1 H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 7.81 (d, J= 9.0 Hz, 2H), 7.72 (s, 1H), 7.40 (d, J = 8.7 Hz, 2H). 6.63 (s, 2H), 5,78 (s, 2H), 4.11 (s, 2H), 3.80 (s, 3H), 3.59 (q, J = 7.0 Hz, 2H), 2.27 (s, 6H), 1.24 (t, J= 7.1 Hz, 3H)
lis
I
ID Synthesis Method MS mp (°C) 1HNMR(C)1
30C E 697 (M+) (300 MHz, CDCI3) 8.60 (s, 1H), 8.50 (s, 1 H). 8.22 (d, J- 8.3 Hz, 2H), 7.88 (d, J - 8.2 Hz, 2H), 7.82 (s, 1H), 7.80 (d, 9.0 Hz, 2H), 7.38 (d, J= 8.8 Hz, 3H), 7.23-7.02 (m, 3H), 5.78 (s, 2H), 3.96 (s, 2H), 2.31 (s, 6H), 1.44 (s, 9H)
31C E 582 (M+) (300 MHz, CDCI3) 8.58 (s, 1H), 8.52 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.88 (m, 3H), 7.80 (d, J= 9.0 Hz, 2H), 7.38 (d, J= 8.6 Hz, 2H), 7.14 (m, 3H), 5.72 (s. 2H), 2.32 (s, 6H), 2.09 (s, 3H)
32C E 697 (M+) (CDCI3) (Mixture of atropisomers) [8.61 (s), 8.58 (s), 8.56 (s), 8.51 (s), 8.37 (d, J = 8.3 Hz), 8.23 (d, J = 8.4 Hz), 8.21-8.14 (m), 8.00 (d, J = 8.4 Hz), 7.89 (d, J = 8.2 Hz), 7.84-7.77 (m), 7.45-7.35 (m); 11 H], 6.94 (s, 2H). [5.87 (s), 5.80 (s); 2H], [4.12 (s), 4.11 (s); 2H], 3.83 (s, 3H), 3.69-3.44 (m, 2H), 1.38-1.10 (m, 3H)
33C E 697 (M+) (CDCI3) 8.57 (s, 1H), 8.51 (s, 1H), 8.23 (d, J - 8.3 Hz, 2H), 7.88 (d, J - 8.4 Hz, 2H), 7.83-7.77(m, 3H), 7.39 (d, J- 8.4 Hz, 2H), 6.94 (s, 2H), 5.76 (s, 2H), 4.96-4.77 (m, 1 H), 3.82 (s, 3H), 1.30 (d, J - 6.3 Hz, 6H)
34C E 681 (M+) (CDCI3) 8.57 (s, 1H), 8.51 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.92-7.76 (m, 5H), 7.39 (d, J - 8.4 Hz, 2H), 6.93 (s, 2H), 5.73 (s, 2H), 3.82 (s, 3H), 2.59 (m, 1 H), 1.17 (d, J = 7.0 Hz, 6H)
119
ID Synthesis Method MS mp (°C) ’HNMR(n)1
35C E 636 (M+) (CDCI3) 8.57 (s, 1H), 8.50 (s, 1H), 8.23 (d. J = 8.4 Hz. 2H), 7.92-7.73 (m. 5H), 7.38 (d. J = 8.3 Hz. 2H), 7.20-6.92 (m. 3H). 5.72 (s, 2H). 2.94-2.63 (m. 1 H), 2.31 (s, 6H), 2.021.38 (m, 8H)
36C E 624 (M+) (CDCI3) 8.56 (s, 1H), 8.49 (s, 1H). 8.23 (d. J = 8.3 Hz. 2H). 7.87 (d, J = 8.3 Hz. 2H). 7.84 (s, 1 H), 7.79 (d, J = 9.0 Hz. 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.19-7.05 (m, 3H). 5.71 (s, 2H), 2.31 (s, 6H), 1.20 (s, 9H)
37C E 691 (M+H) (CDCI3) 8.59 (s, 1 H), 8.50 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.93-7.77 (m, 4H), 7.72 (s. 1H), 7.40 (d, J = 9.0 Hz, 2H), 6.63 (s, 2H), 5.71 (s, 2H). 3.80 (s, 3H), 2.68-2.48 (m, 1 H), 2.28 (s, 6H), 1.16 (d, J = 7.0 Hz, 6H)
38C E 724 (M+) (CDCI3) 8.58 (s, 1H), 8.47 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d. J= 8.3 Hz, 2H), 7.81 (d. J = 9.1 Hz, 2H), 7.71 (s, 1 H). 7.39 (d, J = 9.0 Hz, 2H), 6.64 (s, 2H), 5.76 (dd, J = 37.3, 11.0 Hz. 2H). 4.19 (q, J= 6.9 Hz, 1H), 4.143.97 (m, 1H), 3.80 (s. 3H), 3.79-3.68 (m, 1H), 2.27 (s, 6H), 1.47 (d, J = 6.9 Hz, 3H)
39C E 694 (M+) (CDCI3) 8.58 (s, 1H), 8.48 (s, 1H), 8.24 (d, J = 8.3 Hz, 2H), 7.87 (d. J= 8.3 Hz, 2H), 7.83 (s, 1H), 7.81 (d, J = 9.1 Hz, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.23-6.99 (m, 3H), 5.77 (dd. J = 36.4,11.0 Hz. 2H), 4.19 (q, J = 6.9 Hz, 1H), 4.14-3.97 (m, 1H), 3.84-3.65 (m. 1H), 2.31 (s, 6H), 1.47 (d. J = 6.9 Hz, 3H)
120
ID Synthesis Method MS mp (°C) ’HNMR(O)1
40C E 654 (M+) (CDCI3) 8.57 (s, 1H), 8.48 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 9.0 Hz, 2H), 7.72 (s, 1H), 7.38 (d, J = 8.4 Hz, 2H), 6.62 (s, 2H), 5.70 (s, 2H), 3.79 (s, 3H), 2.27 (s, 6H), 1.20 (s, 9H)
41C E 670 (M+) (CDCI3) 8.58 (s, 1 H), 8.49 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.84 (s, 1 H), 7.80 (d, J = 9.0 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.23-6.96 (m, 3H), 5.77 (dd, J = 27.4,10.9 Hz, 2H), 4.07 (q, J = 6.9 Hz, 1H), 3.78-3.70 (m, 1H), 3.66-3.39 (m, 3H), 3.35 (S, 3H), 2.31 (s, 6H), 1.42 (d, J= 6.9 Hz, 3H)
42C E 700 (M+) (CDCI3) 8.58 (s, 1 H), 8.48 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.80 (d, J = 9.1 Hz, 2H), 7.71 (s, 1 H), 7.39 (d, J = 8.3 Hz, 2H), 6.63 (s, 2H), 5.76 (dd, J = 27.8, 10.9 Hz, 2H), 4.07 (q, J =6.9 Hz, 1 H), 3.79 (s, 3H), 3.79-3.70 (m, 1H), 3.63-3.45 (m, 3H), 3.35 (s, 3H), 2.27 (s, 6H), 1.42 (d, J = 6.9 Hz, 3H)
43C E 666 (M+) (CDCI3) 8.57 (s, 1 H), 8.49 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.87 (d, J= 8.3 Hz, 2H). 7.79 (d, J= 9.1 Hz, 2H), 7.74 (s, 1H), 7.38 (d, J = 8.3 Hz, 2H), 6.62 (s, 2H), 5.71 (s, 2H), 3.79 (s, 3H), 2.85-2.65 (m, 1H), 2.27 (s, 6H), 1.98-1.51 (m, 8H)
121
ID Synthesis Method MS mp (°C) ’H NMR (□)’
44C E 668 (M+) (CDCI3) 8.59 (s, 1H), 8.55 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.84-7.74 (m, 3H), 7.38 (d, J= 8.4 Hz, 2H), 6.63 (S, 2H), 5.85-5.73 (m, 2H), 4.54-4.47 (m, 1H), 4.03(dd, J~ 14.7, 6.9 Hz, 1H), 3.91 (dd, J= 13.8,7.4 Hz, 1H), 3.79 (s, 3H), 2.27 (s, 6H), 2.09-1.83 (m, 4H)
45C E 746 (M+H) 132-137 (CDCh) 8.68 (s, 1H), 8.49 (s, 1H), 8.24 (d, J = 8.3 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H), 7.88 (d, J- 8.3 Hz, 2H), 7.81 (d, J= 8.5 Hz, 2H), 7.73 (s, 1 H), 7.35 (s, 5H), 6.64 (s, 2H), 5.78 (s, 2H), 5.24 (s, 1H), 5.12 (s, 2H), 4.04 (d, J = 5.5 Hz, 2H), 3.80 (s, 3H), 2.28 (s, 6H)
46C E 624 108-113 (CDCh) 8.68 (s, 1H), 8.50 (s, 1H), 8.24 (d, J = 8.3 Hz, 2H), 7.98-7.69 (m, 7H), 6.63 (s, 2H), 5.71 (s, 2H), 3.80 (s, 3H), 2.59 (heptet, J = 7.0 Hz, 1 H), 2.29 (d, J = 6.9 Hz, 6H), 1.16 (d, J =7.0 Hz, 6H)
47C E 149-151 (acetone-de) 9.20 (s, 1H), 8.52 (s, 1H), 8.40 - 8.21 (m, 2H), 8.21 - 8.01 (m, 4H), 7.61 (d, J = 8.3 Hz, 2H), 7.32 - 6.94 (m, 3H), 3.83 (s, 2H), 2.34 (s, 6H)
48C E 599 (M+H) 128-137 (acetone-de) 9.18 (s, 1H), 8.83 (s, 1H), 8.67 - 7.82 (m, 8H), 7.60 (d, J = 8.4 Hz, 2H), 6.78 (s, 2H), 3.99 - 3.72 (m, 3H), 2.41 2.20 (m, 6H)
49C E 619 (M+H) 177-185 (methanol-di) 9.23 (s, 1H), 8.62 (s, 1 H), 8.29 (m, 2H), 8.17 - 7.98 (m, 4H), 7.60 7.45 (m, 2H), 7.41 - 7.19 (m, 3H), 4.22 (s, 2H), 2.34 (s, 6H)
122
ID Synthesis Method MS mp(°C) ’H NMR(Ü)1
SOC E 635 (M+H) 193-196 (methanol-t/4) 9.23 (s, 1H), 8.57 (s, 1H), 8.28 (m, 3H), 8.09 - 7.98 (m, 4H), 7.50 (m, 4H), 4.19 - 4.11 (m, 2H), 3.85 (s, 3H), 2.36 (s, 3H)
51C E 649 (M+H) 176-179 (methanol-^) 9.23 (s, 1 H). 8.60 (s, 1 H). 8.30 (m, 2H), 8.14 - 8.00 (m, 4H), 7.52 (m, 2H). 6.81 (s, 2H), 4.22 (s, 2H), 3.84-3.81 (m, 3H), 2.33 (s, 6H)
52C E 599 (M+H) 168-178 (methanol-d4) 9.21 (s, 1H), 8.44 (s, 1H), 8.27 (d, J = 8.1 Hz, 2H), 8.09 - 7.98 (m, 4H), 7.52 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.7 Hz, 2H), 6.97 (d, J =8.8 Hz, 2H), 5.40 (s, 1H), 4.37-4.13 (m, 2H), 3.79 (s, 3H), 1.79 (m, 3H)
53C E 617 (M+H) 168-170 (methanol-cf4) 9.21 (s, 1H), 8.44 (m, 1H), 8.28 (d, J = 8.2 Hz, 2H), 8.11 - 7.99 (m, 4H), 7.52 (d, J= 8.4 Hz, 2H), 7.25 (m, 2H), 7.14 (t, J = 8.5 Hz, 1 H), 5.42 (m, 1 H), 4.25 (m, 2H), 3.88 (s, 3H), 1.75 (m, 3H)
54C E 569 (M+H) 167-170 (methanol-d4) 9.23 (s, 1H), 8.46 (s, 1H), 8.27 (m, 2H), 8.05 (m, 4H). 7.57 - 7.39 (m, 7H), 5.41 (m, 1H), 4.24 (m, 2H), 1.79 (m, 3H)
SSC E 624 (M+H) 90-97 (methanol-d4) 9.12 (s, 1 H), 8.46 (s, 1H), 8.14 (m, 2H), 7.99 (m, 3H), 7.78 (s, 1H), 7.49 (d, J= 8.5 Hz, 2H), 7.12 (m, 3H), 3.69 (s, 2H), 3.22 - 2.80 (m, 2H), 2.25 (s, 6H). 2.03 (s, 2H), 1.93 -1.66 (m, 1 H), 0.92 (m, J = 9.7 Hz, 6H)
123
ID Synthesis Method MS mp (°C) 1H NMR(O)1
56C E 765 (M+H) 148-151 (methanol-d4) 9.18 (s, 1H), 8.59 (s, 1H). 8.30 (d, J= 8.1 Hz, 2H), 8.12 (m, 2H), 8.07 - 8.00 (m, 2H), 7.58 - 7.43 (m, 2H), 7.33 (dd, J = 8.6,6.5 Hz, 1 H), 7.25 (d, J = 7.6 Hz, 2H), 4.02 (m, 2H), 3.97-3.75 (m, 2H), 3.21 (d, J- 6.9 Hz, 2H), 2.90 (m, 1H), 2.59 (m, 1H), 2.35 (s, 6H), 1.84 (m, 2H), 1.781.63 (m, 2H), 1.44 (s, 9H), 1.29 (m, 3H)
57C E 737 (M+H) 151-153 (methanol-d4) 9-20 (s, 1H), 8.65 (s, 1H), 8.30 (m, 2H), 8.21 - 7.96 (m, 4H), 7.53 (d, J - 8.4 Hz, 2H), 7.35 (dd, J- 8.5,6.5 Hz, 1H), 7.28 (d, J = 7.5 Hz, 2H), 4.44 (s, 2H), 3.91 - 3.40 (m, 9H), 2.38 (s, 6H), 1.50 (s, 9H)
58C E 725 (M+H) 125-127 (methanol-d4) 9.18 (s, 1H), 8.61 (s, 1H), 8.31 (m, 2H), 8.14 (m, 2H), 8.06 (d, J- 9.0 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.32 (dt, J = 26.0, 7.0 Hz, 3H), 4.02 (s, 2H), 3.38 3.34 (m, 2H), 3.22 - 3.03 (m, 2H), 2.37 (s, 6H), 1.74 (m, 2H), 1.45 (s, 9H)
59C E 755 (M+H) 147-149 (methanol-d4) 9.18 (s, 1H), 8.62 (s, 1H), 8.38 - 7.97 (m, 6H), 7.51 (d, J - 8.4 Hz, 2H), 7,32 (dd, J= 8.5,6.6 Hz, 1H), 7.25 (d, J- 7.6 Hz, 2H), 4.40 (s, 1 H). 4.06 (m, 2H), 3.91 - 3.74 (m, 2H). 3.56-3.41 (m, 1H), 2.36 (s, 6H), 1.44 (s, 9H)
60C E 755 (M+H) 136-139 (methanol-d4) 9.16 (s, 1H), 8.58 (s, 1H), 8.28 (d, J - 7.4 Hz, 2H), 8.16-7.76 (m, 4H), 7.52 (p, J= 8.8 Hz, 2H), 6.83 (m, 2H), 4.04 (d, J- 8.5 Hz, 2H), 3.90-3.73 (m, 3H), 3.55- 3.37 (m, 2H), 3.14-2.75 (m, 3H), 2.30 (s, 6H), 1.99-1.80 (m, 2H), 1.43-1.31 (m, 2H)
124
ID Synthesis Method MS mp (°C) ’HNMR(n)1
61C E 738 (M+H) 70-79 dec (methanol-d4) 9.12 (s, 1H), 8.12 - 8.07 (m, 2H), 8.02 - 7.96 (m, 2H), 7.55 - 7.50 (m, 2H). 7.50 - 7.45 (m, 2H), 7.43 (d, J = 7.7 Hz, 1H), 7.31 (d, J= 7.6 Hz, 2H), 4.03 (s, 2H), 3.25 (dt, J- 15.5, 7.0 Hz, 4H), 2.84 (s, 3H), 2.04 (s, 6H), 1.81 -1.66 (m, 2H), 1.44 (S. 9H)
62C K 665 (M+H) 110-120 (methanol-d4) δ 9.18 (s, 1H), 8.56 (m, 1H), 8.26 (m, 2H), 8.16 - 7.84 (m, 4H), 7.52 (m, 2H), 7.27 (m, 1H), 7.22 (m, 2H), 4.00 (s, 2H), 3.28 (m, 3H), 3.06 - 2.83 (m, 1H), 2.75 (t, J = 12.2 Hz, 1H), 2.34 (s, 6H), 2.21 1.83 (m, 4H), 1.72 (m, 1H), 1.47-1.19 (m, 2H)
63C K 655 (M+H) 98-110 (methanol-d4) 9.18 (s, 1H), 8.63 (s, 1H), 8.28 (m, 2H), 8.13 - 7.97 (m, 4H), 7.51 (d, J = 8.3 Hz, 2H), 7.31 (dd, J = 8.5, 6.5 Hz, 1H), 7.24 (d, J = 7.6 Hz, 2H), 4.32 - 4.07 (m, 3H), 3.98-3.81 (m, 1H), 3.72 (s, 1H), 2.35 (s, 6H)
64C K 655 (M+H) 83-112 (methanol-d4) 9.19 (s, 1H), 8.58 (s, 1H), 8.28 (m, 2H), 8.14-7.97 (m, 4H), 7.51 (m, 2H), 6.78 (s, 2H), 4.00 (m, 2H), 3.81 (s, 3H), 3.10 - 2.93 (m, 4H), 2.30 (s, 6H), 1.91 (m, 2H)
65C K 667 (M+H) 128 dec (methanol-cf4) 9.20 (s, 1H), 8.65 (s, 1H), 8.27 (m 2H), 8.11 - 7.99 (m, 4H), 7.52 (d, J = 8.3 Hz, 2H), 6.78 (s, 2H), 4.40 (s, 2H), 3.87 (m, 4H), 3.53 (s, 3H), 2.32 (s, 6H), 1.33 (m, 4H)
125
ID Synthesis Method MS mp (°C) 1HNMR(D)1
66C K 625 (M+H) 100-105 (methanol-d*) 9.20 (s, 1 H). 8.56 (s, 1H), 8.27 (m, 2H), 8.12 - 7.99 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H), 7.24 (m, 4H), 3.99 (s, 2H), 3.42 (m, 2H), 3.05 (m, 2H), 2.36 (s, 6H), 1.99-1.88 (m, 2H)
67C K 636 (M+H) 237-240 dec (methanol-d4) 9.20 (s, 1H), 8.74 (s, 1 H). 8.33-8.25 (m, 2H), 8.12-7.98 (m, 4H), 7.53 (d, J = 8.3 Hz, 2H), 7.33 (dd, J = 8.5, 6.4 Hz. 1H), 7.26 (d, J =7.5 Hz, 2H), 4.55 (s, 2H), 3.92 (m, 4H), 3.37 (m, 2H). 3.31 (m, 2H), 2.38 (s, 6H)
69C F 581 (M+H) 188-190 (CDCI3) 8.56 (s, 1H), 8.33 (s, 1H). 8.22 (d, J = 8.1 Hz. 2H), 7.90 - 7.70 (m, 4H), 7.39 (d, J = 8.7 Hz, 2H), 6.72 (s, 2H), 4.01 (s, 2H), 3.87-3.73 (s, 3H), 2.18 (s, 6H)
70C F 592 (M+) 134-138 (CDCIg) 8.65 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.83 (m, 4H), 7.50 (d, J = 8.1 Hz, 2H), 7.45 - 7.38 (m, 3H), 4.05 (s, 2H)
71C F 551 (M+H) 104-111 (CDCI3) 8.62 (s, 1H), 8.32 (s, 1 H), 8.23 (d, J = 8.3 Hz, 2H), 7.88 - 7.74 (m, 4H), 7.40 (d, J = 8.3 Hz, 2H), 7.34 - 7.26 (m. 1H), 7.20 (d, J = 7.5 Hz, 2H), 4.02 (s, 2H), 2.22 (s, 6H)
72C F 565 (M+H) 118-121 (CDCIa) 8.58 (s. 1H), 8.33 (s. 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.81 (m, 4H), 7.40 (d, J = 8.3 Hz. 2H), 7.01 (d. J= 0.4 Hz, 2H). 4.01 (s, 2H), 2.34 (s. 3H), 2.17 (s, 6H)
126
ID Synthesis Method MS mpCC) 1HNMR(D)1
73C F 565 (M+H) 145-150 (CDCIj) 8.58 (s, 1H), 8.30 (s, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.81 (m, 2H), 7.49 (d, J- 4.0 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.34 (s, 1 H), 7.18 (d, J = 7.8 Hz, 1 H), 4.01 (d, J = 1.4 Hz. 1H), 2.83 (heptet. J - 6.8 Hz. 1H), 1.23 (t, J =6.6 Hz, 3H).
74C G 682 (M+H) 190-193 (methanol-d4) 9-20 (s, 1H), 8.38 (s, 1H), 8.31 - 8.24 (m, 2H), 8.08 - 8.00 (m. 2H), 7.95 - 7.88 (m, 2H), 7.55 - 7.48 (m. 3H), 7.48 - 7.36 (m. 5H), 7.31 (d, J = 7.7 Hz, 2H), 3.60 (q, J = 7.2 Hz, 4H), 2.20 (s, 6H), 1.07 (t, J = 7.2 Hz. 6H);
75C G 617 (M+) (CDCI3) 8.56 (s. 1H), 8.23 (s, 1H), 8.19 (d. J - 8.4 Hz. 2H), 7.84-7.73 (m. 5H), 7.41-7.33 (m, 3H), 7,21 (d. J = 7.2 Hz. 2H), 7.16 (s, 1 H), 7.12 (d. J = 3.2 Hz, 1 H), 2.20 (s, 6H).
76C G 711 (M+) (CDCI3) 8.56 (s. 1H), 8.25 (s, 1H), 8.20 (d, J = 8.4 Hz, 2H). 7.80 (dd. J = 8.7, 5.6 Hz. 4H). 7.48-7.34 (m, 8H), 7.26 (d, J= 7.7 Hz, 2H), 7.08 (s, 1H). 2.20 (s. 6H)
77C G 655 (M+H) 261-263 (methanol-d4) 9.14 (s. 1H). 8.21-8.13 (m, 3H), 8.06 - 7.99 (m, 2H), 7.86 - 7.75 (m. 4H), 7.50 (d, J= 8.3 Hz, 2H), 7.28 - 7.18 (m, 3H), 7.14 (d. J = 7.9 Hz, 2H), 6.72 (s, 1H), 0.09--0.09 (m, 6H)
78C G 694 (M+H) (CDCh) 8.55 (s. 1H). 8.22 (s, 1H), 8.18 (d, J - 8.3 Hz, 2H), 7.79 (dd, J = 8.7, 5.1 Hz, 4H), 7.37 (d. J = 9.0 Hz. 2H), 7.23-6.94 (m, 7H), 6.26 (s. 1 H), 2.17 (s. 6H)
127
ID Synthesis Method MS mp (°C) 1HNMR(D)1
79C G 678 (M+H) (CDCI3) 8.55 (S, 1 H). 8.23 (s. 1 H), 8.19 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 8.7 Hz, 4H), 7.43 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 8.9 Hz, 2H), 7.23-7.16 (m, 3H), 7.08 (d, J = 7.4 Hz, 2H), 6.35 (s, 1H), 2.18 (s, 6H)
80C G 609 (M+H) 215-219 (methanol-cf4) 9.23 (s, 1H), 8.40 (s, 1H), 8.26 (m, 2H), 8.22 (s, 1 H), 8.07 - 8.00 (m, 3H), 7.91 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.3 Hz, 2H), 6.90 (s, 1H), 3.88 (s, 3H), 2.13 (s, 6H)
81C I 551 (M+H) 209-213 (CDCh) 9.42 (s, 1H), 8.59 (s, 1H), 8.28 (d, J = 8.4 Hz, 2H), 8.01 (d, J= 8.3 Hz, 2H), 7.80 - 7.77 (m, 2H), 7.43 - 7.34 (m, 2H), 7.07 (d, J = 7.5 Hz, 2H), 6.98 (dd, J = 8.2,6.7 Hz, 1H), 3.90 (s, 2H), 2.17 (s, 6H)
82C I 565 (M+H) 225-232 (CDCI3) 9.46 (s, 1H), 8.60 (s, 1H), 8.29 (d, J - 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H), 7.89 - 7.76 (m, 2H), 7.40 (d, J = 8.3 Hz, 2H), 6.88 (s, 2H), 3.90 (s, 2H), 2.28 (s, 3H), 2.13 (s, 6H).
83C l 581 (M+H) 211-215 (CDCh) 9.44 (s, 1H), 8.60 (s, 1H), 8.30 (d, J = 8.4 Hz, 2H), 8.02 (d, J- 8.4 Hz, 2H), 7.82 (d, J = 9.1 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 6.63 (S, 2H), 3.90 (s, 2H), 3.78 (s. 3H), 2.15 (s, 6H)
84C I 591 250 dec (CDCI3) 9.42 (s, 1 H), 8.40 (s, 1 H), 8.18 (d, J = 8.24 Hz, 2H), 8.07 (d, J= 8.28 Hz, 2H), 7.89 (d, J = 8.24 Hz, 2H), 7.76 (d, J = 8.28 Hz, 2H), 7.64-7.58 (m, 3H), 4.42 (s, 2H)
128
ID Synthesis Method MS mp(°C) 1HNMR(d)’
85C l 551 (M+H) 146-149 (CDCI3) δ 9.36 (s, 1 H), 8.60 (s, 1H), 8.30 (d. J - 8.4 Hz, 2H), 8.01 (d, J = 8.4 Hz. 2H), 7.86 - 7.77 (m, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.32 (dd, J - 6.9. 2.3 Hz. 1H). 7.24 7.12 (m, 2H), 6.91 (dd, J = 7.1, 2.0 Hz. 1H). 3.93 (s, 2H), 3.15 - 2.97 (m, 1H), 1.21 (d, J = 6.9 Hz. 6H)
86C J 566 (M+H) 163-169 (CDCI3) δ 8.81 (bs, 1 H), 8.57 (s, 1H), 8.20 (d, J = 8.3 Hz, 2H), 7.87 - 7.75 (m. 4H), 7.39 (d. J= 8.3 Hz, 2H), 7.32-7.25 (m, 1 H). 7.10 (2dt. J « 7.4,1.5 Hz. 2H), 6.83 (d, J- 6.5 Hz, 1H), 3.96 (t, J= 6.1 Hz, 2H). 3.13 (heptet, J = 6.9 Hz. 1 H), 2.99 - 2.88 (m, 2H), 2.49 - 2.36 (m, 2H), 1.29 -1.21 (m. 6H).
87C J 550 (M+H) 187-189 (CDCI3) δ 8.81 (s, 1H), 8.66 (s, 1 H), 8.21 (d, J = 8.3 Hz, 2H), 7.92 (d, J - 8.4 Hz, 2H). 7.81 (t. J - 10.2 Hz, 4H), 7.30 - 7.26 (m, 2H), 7.17 - 7.04 (m. 1H), 6.83 (d, J = 6.4 Hz, 1H), 3.96 (t, J- 6.1 Hz, 2H), 3.13 (heptet, J= 6.9 Hz, 1H), 2.97 - 2.90 (m, 2H), 2.47 - 2.38 (m, 2H), 1.25 (d, J = 7.5 Hz, 6H).
88C F 579.2 (M+H) 178-182 (CDCI3) δ 8.58 (s, 1H). 8.30 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.82 (dd, J- 8.7, 7.2 Hz, 4H), 7.48 (dd, J = 4.1,1.3 Hz. 2H). 7.40 (d, J- 8.3 Hz. 2H), 7.37- 7.30 (m, 1H), 7.17 (m, 1H), 4.23(dq, J~ 14.5, 7.2 Hz, 1H). 2.83 (dd, J =14.6, 6.9 Hz, 1H), 1.79 (d. J = 7.2Hz, 3H). 1.22 (ddd, J = 12.1, 6.9, 1.9 Hz, 6H).
129
ID Synthesis Method MS mp(°C) ’HNMRÎD)1
89C F 559 (M+H) 205-206 (CDCI3) δ 8.58 (s, 1 H), 8.32 (s, 1H), 8.23 (d. J = 8.4 Hz, 2H), 7.90 - 7.75 (m, 4H), 7.52 7.44 (m. 1 H), 7.40 (d, J = 8.3 Hz. 2H). 7.10 (dd, J = 8.6, 7.4 Hz, 2H), 4.04 (s. 2H).
90C F 566 (M+H) 148-151 (CDClj) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J = 8.3 Hz, 2H), 7.82 (t, J = 8.5 Hz. 4H), 7.46 - 7.31 (m. 3H), 7.25 - 7.18 (m. 2H), 4.02 (s, 2H), 2.53 (q, J = 7.6 Hz. 2H), 2.21 (s, 3H), 1.26-1.16 (m, 3H).
91C F 554 (M+H) 227-235 (CDCI3) δ 8.58 (s, 1H), 8.36 (s, 1H). 8.23 (d, J = 8.3 Hz, 2H). 7.88 - 7.76 (m, 4H). 7.49 7.35 (m. 3H), 7.01 (dd, J= 8.5, 2.5 Hz. 1H), 6.96 (dd, J = 7.8,1.0 Hz, 1 H), 6.91 (t, J = 2.2 Hz, 1H), 3.98 (s, 2H), 3.85 (s, 3H).
92C F 554 (M+H) 104-108 (CDCI3) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.22 (d, J = 8.4 Hz. 2H), 7.86 - 7.77 (m. 4H). 7.50 7.43 (m, 1H). 7.40 (d, J = 8.3 Hz, 2H), 7.32 - 7.27 (m, 1H). 7.14 - 7.04 (m, 2H), 4.01 (d, J = 17.2 Hz, 1H), 3.94 (d. J = 17.3 Hz, 1H). 3.84 (s, 3H).
93C F 572 (M+H) 183-186 (CDCI3) δ 8.58 (s, 1H), 8.31 (s, 1 H), 8.278.18 (m, 2H), 7.88 - 7.77 (m. 4H). 7.43 7.37 (m, 3H), 7.34 (t, J = 7.8 Hz, 1H), 7.30 7.26 (m, 1H), 4.07 (d, J = 17.4 Hz, 1H), 4.00 (d, J =17.4 Hz, 1H), 2.29 (s, 3H).
94C F 552 (M+H) 134-136 (CDCI3) δ 8.58 (s. 1H), 8.31 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H). 7.86 - 7.78 (m, 4H), 7.49 7.32 (m, 5H), 7.24- 7.18 (m, 1H), 4.06 3.94 (m, 2H). 2.56 (q, J =7.6 Hz, 2H), 1.26 -1.18(m, 3H).
130
ID Synthesis Method MS mp (°C) ’HNMRiO)1
95C F 576.1 (M+H) 195-201 (CDCI3) Ô 8.59 (d, J = 4.8 Hz, 1H), 8.26 (m, 3H), 7.89 - 7.74 (m, 4H), 7.52 - 7.31 (m, 4H), 7.24 - 7.13 (m, 1 H), 4.05 (d, J = 0.9 Hz, 2H).
96C F 600 (M+H) 182-185 (300 MHz, CDCI3) δ 8.58 (s, 1H), 8.33 (d, J = 7.9 Hz, 1 H). 8.24 (s, 1H), 8.21 (s, 1H), 7.86 - 7.76 (m, 4H), 7.53 (t, J = 5.9 Hz, 3H), 7.44 - 7.29 (m, 8H), 3.80 - 3.73 (m, 1 H), 3.59-3.51 (m, 1H).
97C F 567 (M+H) 234-236 (CDCI3) Ô 8.57 (s, 1H), 8.37 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.89 - 7.73 (m, 4H), 7.45 7.29 (m, 3H), 6.79 (dd, J = 8.2, 2.2 Hz, 1H), 6.70 (d, 1H), 6.57 (s, 1H), 3.96 (s, 2H), 2.98 (s. 6H)
98C F 612 (M+H) 225-226 (CDCIa) δ 8.55 (s, 1H), 8.29 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 7.86 - 7.71 (m, 4H), 7.42 7.23 (m, 3H), 6.63 (d, J = 8.5 Hz, 2H), 4.07 (q, J = 7.0 Hz, 4H), 3.94 (s, 2H), 1.31 (t, J = 7.0 Hz, 6H)
99C F 679 (ΜΗ) 230-231 (CDCI3) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.89 - 7.77 (m, 4H), 7.70 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.29-7.20 (m, 1H), 4.04 (s, 2H)
100C F 602 (M+H) 118-120 (CDCIa) δ 8.58 (s, 1H), 8.30 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.93 - 7.70 (m, 4H), 7.39 (d, J= 9.0 Hz, 2H), 7.28 (t, 1H), 7.19 (d, J = 7.7 Hz, 2H), 4.01 (s, 2H), 2.21 (s, 6H).
I3l
ID Synthesis Method MS mp (°C) 1HNMR(n)’
101C F 583 (M+H) 106-107 (CDCI3) δ 8.60 (s, 1H), 8.32 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.89 - 7.74 (m, 4H). 7.39 (d, J = 8.3 Hz, 2H), 6.56 (s, 1H), 4.01 (s. 2H), 3.94 (s. 3H). 2.32 (s, 3H), 2.16 (s, 3H)
102C F 589 (ΜΗ) 123-126 (CDCI3) δ 8.27 (s, 1H). 7.95-7.71 (m. 5H), 7.60 (d, J = 1.3 Hz, 1 H), 7.53 - 7.43 (m, 4H), 7.45 - 7.32 (m, 3H), 4.04 (s, 2H)
103C F 551 (M+H) 194-196 (CDCI3) 5 8.28 (s. 1H), 7.93 (dd, J = 5.4, 4.1 Hz, 3H), 7.78 (m, 4H), 7.36 - 7.23 (m, 3H), 7.19 (d, J = 7.6 Hz, 2H), 6.81 (d, J - 2.5 Hz, 1H), 4.00(8, 2H), 2.21 (s, 6H)
104C F 551 (M+H) 100-102 (CDCI3) δ 8.27 (s, 1H), 8.16 (s, 1H), 8.03 (s, 1 H), 7.80 - 7.71 (m, 4H), 7.57 (d, J = 8.3 Hz, 2H), 7.30 (dd, J = 28.7, 5.8 Hz, 3H). 7,19 (d, J = 7.6 Hz, 2H), 4.01 (s, 2H), 2.21 (s, 6H)
105C F 586 (M+H) 209-211 (CDCI3) δ 8.58 (s, 1 H), 8.31 (s, 1H), 8.23 (d, J = 7.8 Hz, 2H), 7.82 (m, 4H), 7.39 (d, J = 8.0 Hz, 2H), 7.19 (s, 2H), 4.01 (s, 2H), 2.19 (s, 6H)
106C F 558 (M+H) 180-182 (CDCI3) 5 8.58 (s, 1H), 8.30 (s, 1H), 8.22 (d, J = 8.2 Hz, 2H), 7.81 (m, 4H), 7.58 (dd. J = 6.0, 3.3 Hz, 1H), 7.43 (ddd, J = 23.4, 11.3, 5.5 Hz, 5H), 4.02 (dd, J = 29.9,17.4 Hz, 2H)
107C F 596 (M+H) 227-232 (CDCI3) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.22 (dd, J* 10.0, 8.6 Hz, 4H), 7.82 (m. 4H). 7.49 (d, J = 8.5 Hz, 2H). 7.40 (d, J = 8.6 Hz, 2H), 4.42 (q, J= 7.1 Hz, 2H), 4.00 (s, 2H), 1.41 (t, J =7.1 Hz, 3H)
132
ID Synthesis Method MS mp (°C) 1HNMR(D)’
108C F 580 (M+H) 167-171 (CDCI3) δ 8.58 (s, 1 H). 8.28 (d, J = 15.0 Hz, 1 H), 8.23 (d, J = 8.3 Hz, 2H), 7.87 - 7.76 (m, 4H), 7.53 - 7.30 (m, 5H). 7.18 (ddd, J 7.8,4.2,1.2 Hz, 1 H), 4.03 - 3.98 (m, 2H), 2.53 (dd, J =14.1,7.0 Hz, 1H), 1.77-1.56 (m, 2H). 1.26 -1.16 (m, 3H). 0.78 (td, J 7.4, 2.3 Hz, 3H).
109C F 652 (M+H) 105-111 (CDCI3) δ 8.25 (s, 1 H), 7.73 (d, J = 7.4 Hz, 4H), 7.55 - 7.43 (m, 2H), 7.43 - 7.36 (m, 1H), 7.10 (t, J = 11.6 Hz, 4H), 4.90 - 4.79 (m, 1H), 4.04 (s, 2H), 3.76 (s, 3H), 3.73 3.62 (m, 1 H). 3.52 - 3.35 (m, 1H)
110C F 611 (M+H) Oii (CDCI3) δ 8.25 (s, 1 H). 7.82 - 7.64 (m, 4H), 7.30 (t, 1H), 7.22 - 6.99 (m, 6H), 4.83 (dd, J = 12.8, 6.5 Hz, 1H), 4.00 (s, 2H), 3.89 3.59 (m, 4H), 3.44 (dd, J= 17.2, 6.5 Hz, 1H), 2.20 (s, 6H).
111c F 580 (M+H) 209-210 (CDCI3) δ 8.58 (s, 1 H). 8.30 (s, 1 H), 8.23 (d, J = 8.4 Hz, 2H), 7.86 - 7.77 (m, 4H), 7.39 (t, J- 7.8 Hz, 3H), 7.34 - 7.27 (m, 1H), 7.20 (d, J = 7.4 Hz, 1H), 4.03 (s, 2H), 2.86 - 2.71 (m, 1 H). 2.21 (s, 3H), 1.21 (2d, J= 6.7 Hz, 6H).
112C F 564 (M+H) 154-158 (CDCI3) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.87 - 7.75 (m, 4H), 7.43 7.33 (m, 4H), 7.26 - 7.19 (m, 2H), 4.02 (s, 2H), 1.86-1.77 (m, 1 H), 0.90 - 0.83 (m, 2H), 0.77 - 0.68 (m, 1 H), 0.67 - 0.59 (m, 1H).
133
ID Synthesis Method MS mp (’C) ’HNMR(n)1
113C F 538 (M+H) 111-116; 210-212 (Acetone-De) δ 9.20 (s, 1H), 8.28 (d, J = 8.2 Hz, 3H), 8.13 (d, J = 9.0 Hz, 2H), 7.94 (d, J - 8.2 Hz, 2H), 7.60 (d, J= 8.8 Hz, 2H), 7.39 (t, J - 17.1 Hz, 4H), 4.15 (q, J - 17.3 Hz, 2H), 2.23 (S, 3H)
114C F 568 (M+H) 203-205 (CDCI3) δ 8.58 (s, 1H), 8.33 (s, 1H), 8.22 (d, J = 8.3 Hz, 2H), 7.88 - 7.67 (m, 4H), 7.38 (d, J- 8.4 Hz, 2H), 7.14(d, J- 8.3 Hz, 1H), 6.87 (d, J - 8.9 Hz, 2H), 3.98 (s, 2H), 3.83 (s, 3H), 2.20 (s, 3H)
115C F 554 (M+H) 261-264 (CDCI3) δ 8.58 (s, 1H), 8.35 (s, 1H), 8.23 (d, J - 8.2 Hz, 2H), 7.82 (m, 4H), 7.40 (d, J8.6 Hz, 2H), 7.30 (d, 2H), 7.03 (d, J = 8.8 Hz, 2H), 3.97 (s, 2H), 3.86 (s, 3H)
116C F 568 (M+H) 92-97 (CDCI3) δ 8.58 (s, 1H), 8.31 (s. 1H), 8.22 (d. J = 8.3 Hz, 2H), 7.88 - 7.72 (m, 4H), 7.48 7.32 (m, 3H), 7.31 - 7.20 (m, 1H), 7.13 6.97 (m, 2H), 4.09 (q, J = 7.0 Hz, 2H), 3.95 (t, J- 11.7 Hz, 2H), 1.33 (t, J= 7.0 Hz, 3H).
117C F 539 (M+H) 127-132 (CDCI3) δ 8.59 (s, 1H), 8.54 (dd, J ~ 4.8,1.3 Hz, 1H), 8.28 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.84 - 7.77 (m, 4H), 7.77 - 7.72 (m, 1H), 7.38 (dd, J~ 7.7, 5.0 Hz, 3H), 4.02 (d, J =1.2 Hz, 2H), 2.30 (s, 3H)
118C F 539 (M+H) 215 (dec) (CDCl3) δ 8.67 (s, 1H), 8.59 (s, 1H), 8.24 (d, J - 8.4 Hz, 2H), 7.99 (d, J- 8.4 Hz, 1H), 7.84 (dd, J - 8.3, 3.8 Hz, 4H), 7.80 (s, 1H), 7.42 - 7.39 (m, 3H), 4.03 (d, J - 1.3 Hz, 2H), 2.26 (S, 3H).
134
ID Synthesis Method MS mp(°C) ’H NMR(D)1
119C F 580 (M+H) 124-138 (CDCl3) δ 8.58 (s, 1H), 8.29 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.88 - 7.77 (m. 4H), 7.48 7.34 (m, 5H), 7.23 - 7.18 (m, 1H), 4.06 3.93 (m, 2H), 2.40 (qd, J = 14.2,7.3 Hz, 2H), 1.94 -1.81 (m, 1 H), 0.89 (d, J = 6.6 Hz, 6H).
120C F 549.7 (M+H) 153-159 (CDCI3) δ 8.67 (s, 1H), 8.30 (s, 1H), 8.24 (d, J = 8.3 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H), 7.82 (m, 3H), 4.01 (d, J= 1.5 Hz, 2H), 3.80 - 3.64 (m, 2H), 2.91 - 2.76 (m, 2H), 1.30 1.14 (m, 6H)
121C F 578 (M+H) 143-147; 148-151 (CDCl3) δ 8.57 (d, J =7.4 Hz, 1H), 8.30 (s, 1 H), 8.23 (d, J = 8.4 Hz, 2H), 7.87 - 7.78 (m, 4H), 7.49 - 7.33 (m, 5H), 7.29 - 7.26 (m, 1H), 6.03 (s, 1H), 3.95 (s. 2H), 1.84 (d. J = 1.3 Hz, 3H), 1.71 (d, J = 1.2 Hz, 3H).
122C F 579.3 (M+1) 169-171 (CDCI3) δ 8.58 (s, 1H). 8.24-8.18 (m, 2H), 7.99- 7.94 (m, 2H), 7.84 - 7.78 (m, 2H), 7.47 (dd, J= 5.0, 1.1 Hz, 2H),7.40 (d, J8.3 Hz, 2H), 7.34 (ddd, J = 7.9, 5.1, 3.7 Hz, 1 H), 7.18 (d, J = 7.6 Hz, 1 H), 4.00 (d, J ~ 1.5 Hz, 2H), 3.72 (dd, J= 7.0, 5.1Hz, 2H), 2.94 - 2.80 (m, 1H), 2.22 (s. 3H), 1.23 (m, 9H).
123C F 553 (M+H) 130-135 (CDCI3) δ 8.62 (s, 1H), 8.54 (d. J =3.2 Hz, 1H), 8.28 - 8.19 (m, 3H), 7.82 (d, J = 8.8 Hz, 5H), 7.43 - 7.37 (m, 3H), 4.02 (s, 2H), 2.63 (d, J= 7.6 Hz, 2H). 1.22 (s. 3H)
135
ID Synthesis Method MS mp CC) Ή NMR(O)1
124C F 608 (M+H) 140-145 (CDCIa) δ 8.58 (s, 1H), 8.29 (s, 1 H), 8.23 (d, J = 8.4 Hz, 2H), 7.89 - 7.75 (m, 4H), 7.58 7.51 (m, 1 H). 7.49 - 7.36 (m, 5H), 4.04 (d, J - 17.4 Hz, 1H), 3.97 (d, J = 17,4 Hz, 1H).
125C F 580 (M+H) 130-140 (CDCI3) 0 8.58 (s, 1H), 8.31 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.86 - 7.78 (m, 4H), 7.65 (dd, J = 8.1,1.4 Hz, 1 H), 7.49 - 7.42 (m, 1 H), 7.40 (d, J = 8.3 Hz, 2H), 7.35 (dt, J = 7.6,1.5 Hz, 1H), 7.05 (dd, J= 7.8, 1.5 Hz, 1H), 3.95 (s, 2H), 1.38 (s, 9H).
126C F 590 (M+H) 175-177 (CDCIa) δ 8.58 (s, 1H). 8.29 (s. 1H), 8.23 (d, J - 8.4 Hz, 2H). 7.87 - 7.77 (m, 4H), 7,52 (ddd, J = 8.1, 6.0, 3.4 Hz, 1H), 7.44 - 7.34 (m, 5H), 6.46 (t, JHF - 73.5 Hz, 1H), 4.05 3.95 (m, 2H).
127C F 578 (M+H) 112-115 (CDCIa) 5 8.58 (s, 1H). 8.32 (s. 1H). 8.22 (d, J - 8.3 Hz, 2H), 7.87 - 7.75 (m, 4H), 7.43 7.32 (m, 4H), 7.26 - 7.24 (m, 2H), 4.23 (q, J - 7.3 Hz, 1 H), 1.85 -1.78 (m, 4H), 0.90 0.78 (m, 2H), 0.78 - 0.69 (m, 1H), 0.65 0.55 (m, 1H).
128C F 580 (M+H) 164-171 (CDCIa) δ 8.58 (s, 1H), 8.29 (d, J =7.8 Hz, 1 H), 8.22 (d, J = 8.3 Hz, 2H), 7.88 - 7.74 (m, 4H), 7.48-7.30 (m, 5H), 7.20 (t, J = 11.1 Hz, 1H), 4.26-4.14 (m, 1H), 2.502.46 (m, 2H), 1.79 (d, J =7.3 Hz, 3H), 1.69 -1.56 (m, 2H), 0.93 (t, J =7.3 Hz, 3H).
129C F 606 (M+H) 140-142 (CDCIa) δ 8.58 (s, 1H), 8.30 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.87 - 7.76 (m, 4H), 7.53 7.47 (m, 2H), 7.44 - 7.35 (m, 3H), 4.27 (q, J = 7.3 Hz, 1H), 1.82 (d, J =7.3 Hz, 3H).
136
ID Synthesis Method MS mp (°C) 1H NMR(C)1
130C F 590 (M+H) 93-97; 191-194 (CDCIj) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.22 (d, J = 8.4 Hz, 2H), 7.88 - 7.76 (m, 4H), 7.48 7.34 (m, 4H), 7.20 (tt, J= 12.4,6.1 Hz, 1H), 4.35-4.18 (m, 1H), 1.81 (2d, J = 7.3 Hz, 3H).
131C F 572 (ΜΗ) 93-98; 185-186 (CDCIj) δ 8.58 (s, 1H), 8.32 (s, 1H), 8.26 8.20 (m, 2H), 7.86 - 7.78 (m, 4H), 7.53 7.42 (m, 1H), 7.40 (d, J = 8.3 Hz, 2H), 7.09 (t, J = 8.1 Hz, 2H), 4.26 (q, J = 7.3 Hz, 1 H), 1.80 (d, J = 7.3 Hz, 3H).
132C J 552 (M+H) 193-196 (CDCIj) δ 8.56 (s, 1H), 8.22 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.80 (ddd, J = 9.5,6.9, 4.9 Hz, 4H), 7.43 - 7.33 (m, 4H), 7.31 - 7.21 (m, 2H), 4.05 (td, J = 9.4, 7.1 Hz. 1H), 3.97 - 3.87 (m, 1 H), 3.42 - 3.33 (m, 1 H), 3.33 3.24 (m, 1H), 3.12 (heptet, J = 6.8 Hz. 1H), 1.27 (d, J = 6.8 Hz, 3H), 1.22 (d, J = 6.9 Hz, 3H).
133C J 538 (M+H) 167-169 (CDCIj) δ 8.55 (d, J = 7.1 Hz, 1H), 8.23 (s, 1H), 8.17 (d, J = 8.4 Hz, 2H), 7.80 (dt, J = 11.4,6.2 Hz. 4H). 7.43 - 7.23 (m, 6H). 4.00 (s. 2H). 3.32 (s, 2H), 2.67 (q, J = 7.6 Hz, 2H). 1.25 (dd, J = 9.6, 5.5 Hz, 3H).
134C J 536 (M+H) 217-220; 230-232 (CDCIj) δ 8.65 (s, 1H), 8.22 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.94 - 7.88 (m, 2H), 7.817.78 (m, 4H), 7.41 (dd, J= 7.8,1.5 Hz, 1H). 7.39 - 7.33 (m, 1H), 7.30 - 7.24 (m, 1H), 7.23 (dd, J = 7.8,1.5 Hz, 1 H), 4.09 - 4.02 (m, 1 H), 3.98 - 3.88 (m, 1 H), 3.43 - 3.24 (m, 2H), 3.12 (heptet, J = 6.9 Hz, 1H), 1.27 (d, J = 6.8 Hz, 3H), 1.22 (d, J = 6.9 Hz, 3H).
137
ID Synthesis Method MS mp (°C) Ή NMR(C)’
135C J 566 (M+H) 167-169 (CDCIs) δ 8.56 (s, 1H), 8.19 (dd, J = 12.7, 9.0 Hz, 3H). 7.84 - 7.74 (m, 4H), 7.37 (dd, J = 14.9, 6.1 Hz, 4H), 7.26 (s, 1H), 7.21 (d, J = 7.6 Hz, 1 H). 4.17 - 3.85 (m, 2H), 3.42 3.22 (m, 2H), 2.82 (d, J = 23.6 Hz, 1H), 1.80 -1.55 (m, 2H), 1.23 (2d, J= 6.9 Hz, 3H), 0.82 (2t, J = 7.4 Hz, 3H).
136C J 552 (M+H) 143-147 (CDCb) δ 8.56 (s, 1 H), 8.22 (s, 1H). 8.17 (d, J = 8.4 Hz, 2H), 7.84 - 7.74 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 7.5 Hz, 1H), 7.19 (d, J = 6.4 Hz, 1H), 7.15 (d, J = 7.3 Hz, 1 H), 3.92 (qt, J = 10.1,7.3 Hz, 2H), 3.43 3.28 (m, 2H), 2.72 - 2.51 (m, 2H), 2.27 (s, 3H), 1.25 (t, J =7.6 Hz, 3H).
137C J 554 (M+H) 183-186 (CDCI3) δ 8.56 (d, J = 5.3 Hz, 1H), 8.26 (s, 1 H), 8.17 (d, J = 8.4 Hz, 2H), 7.84-7.74 (m. 4H), 7.39 (d, J= 8.3 Hz, 2H), 7.18 (d, J = 8.5 Hz, 1H), 6.81 (dt, J= 8.4, 2.9 Hz, 2H), 3.96 (t, J = 6.6 Hz, 2H), 3.81 (s, 3H), 3.30 (t, J = 6.9 Hz, 2H), 2.28 (s, 3H).
138C J 568 (M+H) 231-233 (CDCI3) δ 8.56 (d, J = 5.4 Hz, 1H), 8.25 (s, 1H), 8.17 (d, J= 8.4 Hz, 2H), 7.84-7.72 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 6.67 (s. 2H), 3.92 - 3.85 (m, 2H), 3.79 (s, 3H), 3.34 (t, J =7.1 Hz, 2H), 2.25 (S, 6H).
139C J 552 (M+H) 195-197 (CDCb) δ 8.56 (s, 1H), 8.24 (s, 1H), 8.17 (d, J = 8.3 Hz, 2H), 7.83 - 7.73 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 6.95 (s, 2H), 3.90 (t, J = 7.1 Hz, 2H), 3.35 (t, J= 7.1 Hz, 2H), 2.30 (s, 3H), 2.23 (s, 6H).
138
ID Synthesis Method MS mp(°C) ’H NMR (□)’
140C J 540 (M+H) 181-184 (CDCI3) δ 8.56 (s, 1H), 8.24 (s, 1H), 8.17 (d, J = 8.3 Hz. 2H), 7.84 - 7.75 (m. 4H). 7.43 7.36 (m, 3H), 7.30 (ddd, J = 12.6,6.9, 3.1 Hz. 1H), 7.06 - 6.97 (m, 2H), 4.04 (t, J - 7.0 Hz, 2H), 3.86 (s, 3H), 3.29 (t, J = 7.0 Hz, 2H).
141C J 524 (M+H) 173-176 (CDCh) δ 8.56 (s, 1H), 8.25 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.83 - 7.75 (m, 4H), 7.39 (d. J = 8.3 Hz, 2H), 7.34 - 7.23 (m, 4H), 4.01 (t, J = 6.9 Hz, 2H), 3.32 (t, J = 6.9 Hz, 2H), 2.31 (s, 3H).
142C J 538 (M+H) 210-213 (CDCh) δ 8.56 (s, 1H), 8.23 (s, 1H), 8.17 (d, J= 8.4 Hz, 2H), 7.84-7.74 (m, 4H), 7.39 (d, J = 8.3 Hz. 2H), 7.22 - 7.10 (m, 3H), 3.92 (t, J ~ 7.1 Hz, 2H), 3.36 (t, J = 7.1 Hz, 2H), 2.28 (s, 6H).
143C J 562 (M+H) 221-224 (CDCh) δ 8.56 (s, 1H), 8.23 (s, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.83 - 7.74 (m, 4H), 7.38 (d, J ~ 8.3 Hz, 2H), 7.30 (dt, 7.4, 4.8 Hz, 2H), 7.15 - 7.09 (m, 1H), 4.05 (ddd, J- 9.4, 7.3, 5.2 Hz, 1 H). 4.00 - 3.89 (m, 1H), 3.46 3.30 (m, 2H).
144C J 586 (M+H) 117-123; 134-138 (300 MHz, CDCh) δ 8.56 (d, J = 4.3 Hz, 1H), 8.34 (s, 1H), 8.21 (s. 1 H), 8.18 (s, 1H), 7.81 (dd, J- 8.9,2.3 Hz, 4H). 7.52 (d, J6.7 Hz. 1H), 7.50 - 7.31 (m, 10H), 3.53 3.49 (m, 2H), 2.95 - 2.90 (d, J = 6.8 Hz, 2H).
139
ID Synthesis Method MS mp (°C) ’HNMR(D)1
145C J 550 (M+H) 207-209 (CDCl3) δ 8.56 (S, 1H), 8.26 (s, 1H), 8.18 (d, J = 8.3 Hz, 2H), 7.84 - 7.74 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.32 - 7.21 (m, 3H), 7.01 (dd, J ~ 8.9, 2.5 Hz, 1H), 4.12 - 4.04 (s, 2H), 3.34 (t. J- 6.9 Hz, 2H). 2.09 -1.98 (m, 1H), 0.95 (dd. J = 8.5,1.7 Hz, 2H), 0.72 (bs, 2H).
146C J 554 (M+H) 141-144 (CDCI3) δ 8.56 (d, J= 5.2 Hz, 1 H), 8.24 (s, 1 H), 8.17 (d. J = 8.3 Hz, 2H), 7.80 (dt, J 8.2, 4.6 Hz, 4H). 7.45 - 7.36 (m. 3H). 7.30 7.24 (m. 1H). 7.05 - 6.95 (m. 2H), 4.13 4.02 (m. 4H). 3.28 (t. J = 7.0 Hz, 2H), 1.44 1.35 (m, 3H).
147C J 540 (M+H) 168-170 (CDCI3) δ 8.57 (S. 1H). 8.37 (s, 1H). 8.21 (d, J - 8.3 Hz, 2H), 7.87 - 7.76 (m. 4H). 7.40 (d, J= 8.4 Hz, 2H), 7.29 (dd, J= 14.2, 6.0 Hz, 1H), 7.24 (d. J= 2.3 Hz, 1H), 7.097.02 (m, 1H), 6.72 (dd, J= 8.0, 2.1 Hz. 1H), 4.20 (t, J= 6.9 Hz. 2H), 3.83 (d, J = 8.7 Hz. 3H), 3.24 (t, J =6.9 Hz, 2H).
148C J 546 (M+H) 213-216 (CDCI3) δ 8.56 (s. 1 H). 8.24 (s, 1H). 8.18 (d. J = 8.3 Hz. 2H), 7.80 (dt, J= 4.0, 2.5 Hz. 4H), 7.39 (d, J = 8.3 Hz. 2H), 7.30 (ddd, J = 8.5, 7.4, 4.2 Hz. 1H), 7.05 - 6.97 (m, 2H), 4.02 (t, J= 6.9 Hz, 2H), 3.36 (t, J= 6.9 Hz, 2H).
149C J 612 (M+H) 200-203 (CDCI3) δ 8.56 (s, 1H), 8.18 (d, J =2.6 Hz, 2H), 8.16 (s, 1H), 7.80 (dt. J = 8.3,4.7 Hz, 4H), 7.71 (t, J = 8.6 Hz, 2H), 7.47 (t. J = 7.7 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 4.184.07 (m. 1 H), 3.93 - 3.84 (m, 1 H), 3.46 (td. J = 10.7, 7.3 Hz, 1H), 3.35 - 3.25 (m, 1H).
140
ID Synthesis Method MS mp (°C) 1HNMR(n)1
150C J 566 (M+H) 169-172 (CDCIa) δ 8.56 (s, 1H), 8.22 (s, 1 H), 8.17 (d, J = 8.4 Hz, 2H), 7.80 (dt, J = 11.5, 6.2 Hz, 4H), 7.39 (d, J - 8.3 Hz, 2H), 7.31 - 7.27 (m, 3H), 7.26-7.24 (m, 1H), 4.10-3.89 (m, 2H), 3.38-3.32 (m, 2H), 2.48 (s, 2H), 2.01-1.84 (m, 1 H), 0.91 (d, J = 6.2 Hz, 6H).
151C J 564 (M+H) 149-153 (CDCI3) δ 8.57 (s, 1 H), 8.25 (s, 1H), 8.18 (d, J - 8.3 Hz, 2H), 7.99 (s, 1 H), 7.81 (dt, J 8.3, 4.5 Hz, 4H), 7.39 (dd, J - 6.1, 3.5 Hz, 3H), 7.33 - 7.27 (m, 2H), 6.21 (s, 1H), 3.92 (t, J- 6.9 Hz, 2H), 3.26 (t, J = 6.8 Hz, 2H), 1.89(d, J= 1.1 Hz, 3H), 1.79(d, J® 1.1 Hz, 3H).
152C J 576 (M+H) 161-163 (CDCI3) δ 8.57 (s, 1H), 8.23 - 8.16 (m, 3H), 7.83 - 7.77 (m, 4H), 7.48 (dd, J - 7.5, 2.0 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.33 (dt, J - 7.2, 2.1 Hz, 2H), 7.28 (dd, J =9.8,1.9 Hz, 1H), 6.52 (t, Jhf- 74.1 Hz, 1H), 4.06 (t, J = 6.9 Hz, 2H), 3.33 (t, J = 6.9 Hz, 2H).
153C J 594 (M+H) 195-197 (CDCI3) δ 8.57 (s, 1H), 8.25 (s, 1 H), 8.19 (d, J = 8.4 Hz, 2H), 7.81 (dt, J = 4.1,2.6 Hz, 4H), 7.58-7.52 (m, 1H), 7.42-7.33 (m, 5H), 4.05 (t, J= 6.9 Hz, 2H), 3.31 (t, J= 6.9 Hz, 2H).
154C J 538 (M+H) 164-167 CDCl3) δ 8.56 (S, 1H), 8.23 (d, J = 9.8 Hz, 1 H), 8.17 (d, J = 8.3 Hz, 2H), 7.84 - 7.74 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.35 7.27 (m, 3H), 7.19 (s, 1H), 3.54-3.31 (m, 1 H), 3.07 - 2.93 (m, 1 H), 2.31 (d, J = 9.0 Hz, 3H), 1.62 -1.56 (m, 1H), 1.31-1.19 (m. 3H).
I4l
ID Synthesis Method MS mp (°C) 1HNMR(0)1
155C J 566 (M+H) 201-204 Two Isomers (CDCI3) δ 8.56 (s, 2H), 8.18 (dd, J = 10.8. 7.4 Hz, 6H), 7.84 - 7.73 (m, 8H), 7.45 - 7.30 (m. 8H), 7.30 - 7.23 (m, 2H), 7.20 (d, J= 6.7 Hz, 1H). 7.12 (dd, J = 7.8,1.2 Hz, 1 H), 4.43 - 4.33 (m, 1 H). 4.16 (dd, J = 12.6, 6.3 Hz, 1H), 3.48 (dt, J = 13.3, 6.7 Hz, 1H), 3.37 (dd, J= 10.8, 6.2 Hz, 1H). 3.24 (dt, J = 13.7, 6.9 Hz, 1H), 3.08 - 2.92 (m, 3H), 1.33 -1.16 (m, 18H).
156C J 566 (M+H) 105-110 (CDCI3) δ 8.56 (s, 1H), 8.20 (d, J= 3.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.84-7.73 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.25 7.09 (m, 3H), 4.39 - 4.23 (m, 1H), 3.53 3.35 (m, 1H), 3.04 - 3.00 (m, 1H), 2.782.49 (m, 2H), 2.28 (2s, 3H), 1.34 -1.08 (m, 6H).
157C J 592 (M+H) 175-176 (CDCh) δ 8.56 (d, J = 0.6 Hz, 1H), 8.21 (s, 1H), 8.17 (d, J = 8.2 Hz, 2H), 7.82 - 7.77 (m, 4H), 7.49 - 7.35 (m, 4H), 7.30 - 7.28 (m. 1 H), 4.64 - 4.57 (m, 1 H), 3.44 (dd, J = 10.2,6.3 Hz, 1H), 3.16-3.01 (m. 1H), 1.27 (d, J =6.3 Hz, 3H).
158C J 572 (M+H) 99-102 Two Isomers (CDCI3) δ 8.56 (s, 2H), 8.20 (s, 2H), 8.19 - 8.12 (m, 4H), 7.84 - 7.73 (m, 8H), 7.39 (d, J = 8.3 Hz, 4H). 7.36 - 7.29 (m, 2H), 7.25 - 7.17 (m. 4H), 4.78 - 4.55 (m, 1H), 4.35 (dt, J= 9.4, 6.3 Hz, 1H), 3.48 (dd, J= 10.7, 6.5 Hz, 1H), 3.38 (dd, J = 10.7, 6.2 Hz, 1 H), 3.11 (dd, J = 10.7, 9.4 Hz, 1H), 3.01 (dd, J= 10.7, 8.3 Hz, 1H), 2.35 (s, 3H), 2.30 (s, 3H), 1.26 (d, J= 6.3 Hz, 3H), 1.21 (d, J =6.4 Hz, 3H)
I42
ID Synthesis Method MS mp (°C) Ή NMR (□)’
159C J 607 (M+H) 85 (dec) (CDCI3) δ 8.56 (s, 1H), 8.18 (dd, J = 11.9, 5.3 Hz, 3H), 7.79 (dd, J - 8.7, 6.5 Hz, 4H), 7.47 (dd, J = 7.8,2.3 Hz. 1H), 7.42-7.32 (m, 5H), 4.48-4.29 (m, 1H), 3.45 (dd, J = 10.7, 6.4 Hz, 1H), 2.98 (dd, J= 10.7, 7.1 Hz, 1 H), 1.26 (d, J =6.3 Hz. 3H)
160C J 626 (M+H) 93 (dec) Two Isomers (CDCI3) δ 8.56 (s, 2H), 8.19 8.12 (m, 6H), 7.84-7.73 (m, 10H), 7.71 (d, J = 8.2 Hz, 2H), 7.47 (t, J= 8.0 Hz, 2H). 7.39 (d. J = 8.3 Hz, 4H), 4.76 - 4.64 (m, 1 H), 4.48 (dd, J = 14.6, 6.3 Hz, 1 H), 3.43 (dd, J = 10.6, 6.2 Hz, 1 H), 3.29 (dd, J = 10.5, 5.5 Hz, 1H), 3.16-3.00 (m, 2H), 1.27 (d, J= 6.4 Hz, 3H), 1.17 (d, J = 6.4 Hz, 3H)
161C J 566 (M+H) 105 (dec) (CDCI3) δ 8.56 (s, 1H), 8.22 (s, 1H). 8.16 (d, J = 8.4 Hz, 2H), 7.83 - 7.70 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 6.94 (d, J= 9.3 Hz, 2H), 4.43 - 4.22 (m, 1H), 3.42 (dd, J = 10.8, 6.5 Hz, 1H), 3.00 (dd, J= 10.8, 8.5 Hz, 1 H). 2.30 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 1.20 (d, J =6.3 Hz, 3H)
162C J 568 (M+H) 100 (dec) (CDCI3) δ 8.56 (s, 1H), 8.24 (s, 1 H). 8.17 (d, J = 8.4 Hz, 2H), 7.83 - 7.73 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.18 - 7.09 (m. 1 H), 6.86 - 6.76 (m, 2H), 4.33 - 4.19 (m, 1H), 3.82 (s, 3H), 3.47 - 3.38 (m, 1H), 3.00 2.99 (m, 1 H). 2.29 - 2.27 (m, 3H). 1.33 1.15 (m, 3H)
143
ID Synthesis Method MS mp (°C) 1H NMR(D)1
163C J 580 (M+H) 92-102 (CDCI3) δ 8.56 (s. 2H), 8.18 (dd, J = 10.7, 5.3 Hz, 6H), 7.84 - 7.74 (m, 8H), 7.42 7.30 (m, 8H), 7.23 - 7.10 (m, 2H), 4.37 (dd, J =19.5, 13.6 Hz, 1H), 4.16 (dd, J = 13.1, 6.6 Hz, 1 H). 3.56 - 3.42 (m, 1H), 3.34 (dd, J - 10.8, 6.0 Hz, 1 H). 3.08 - 2.87 (m, 3H). 2.70 (dd, J = 16.0,7.0 Hz, 1H), 1.71 - 1.56 (m, 4H), 1.34-1.25 (m, 6H), 1.24-1.14 (m, 6H), 0.93-0.73 (m, 6H)
164C J 589 (M+H) 80(dec) (CDCI3) δ 8.56 (s, 1H), 8.22 - 8.14 (m, 3H), 7.84 - 7.76 (m, 4H), 7.42 - 7.27 (m, 6H), 6.51 (t, JHF = 74.3 Hz, 1H), 4.52-4.31 (m, 1H), 3.44 (dd, J = 10.8, 6.5 Hz, 1H), 2.99 (dd, J- 10.8, 7.6 Hz, 1H), 1.25(d, J=6.3 Hz, 3H)
165C J 580 (M+H) 143 (dec) Two Isomers (CDCI3) δ 8.56 (s, 2H), 8.22 (s, 1H), 8.20 (s, 1H), 8.16 (d, J- 8.3 Hz, 4H), 7.84 - 7.74 (m, 8H), 7.58 (ddd, J = 9.7, 8.0,1.7 Hz, 2H), 7.39 (d, J = 8.4 Hz, 4H), 7.36 - 7.27 (m, 4H), 7.15 (dd. J =7.7,1.6 Hz, 1 H), 7.09(dd, J- 7.6,1.7 Hz, 1 H). 4.38 -4.22 (m, 2H), 3.61 (dd, J- 10.8, 7.0 Hz, 1H), 3.24 (dd, J = 10.7, 5.6 Hz, 1H). 3.072.94 (m, 1H), 2.91 (dd. J= 10.8,1.5 Hz, 1H), 1.47-1.38 (m, 24H)
166C J 552 (M+H) 93 (dec) (CDCI3) δ 8.56 (s, 1H), 8.21 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.84 - 7.73 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.32-7.28 (m, 3H), 7.20 (s, 1H). 4.20-4.06 (m, 1H), 3.41 (s, 1H), 3.05 (dd, J= 10.8, 8.2 Hz, 1H), 2.31 32.30 (m, 3H), 1.66 (s, 2H). 0.90 - 0.88 (m, 3H)
144
ID Synthesis Method MS mp (°C) ’H NMR(D)’
167C J 586 (M+H) 105 (dec) Two Isomers (CDCI3) δ 8.56 (s, 2H), 8.20 (s, 2H), 8.16 (d, J = 8.3 Hz, 4H), 7.83-7.74 (m. 8H), 7.43-7.28 (m, 6H). 7.21 (dd, J = 5.4, 3.3 Hz, 4H), 4.49 - 4.36 (m, 1 H), 4.17 4.05 (m, 1H), 3.49 (dd, J = 10.7, 6.6 Hz, 1H), 3.40 (dd, J= 10.7, 6.3 Hz, 1H), 3.10 (dd, J= 10.7, 9.4 Hz, 1H), 3.04 (dd, J = 10.8, 8.2 Hz, 1H), 2.34 (s, 3H), 2.30 (s, 3H), 1.73-1.48 (m. 4H), 0.91 (m, 6H)
168C J 560 (M+H) 199-200 (CDCIa) δ 8.56 (s, 1H), 8.18 (m„ 2H), 7.79 (m, 4H), 7.47 (dd, J = 7.8, 2.3 Hz, 1H), 7.42 - 7.32 (m, 5H), 4.48 - 4.29 (m. 1H). 3.45 (dd, J = 10.7, 6.4 Hz, 1H), 2.98 (dd, J = 10.7, 7.1 Hz, 1 H), 1.26 (d, J - 6.3 Hz, 3H)
169C G 623 (M+H) Oil (CDCI3) δ 10.45 (s, 1H), 8.59 (s, 1 H), 8.25 (d, J= 8.3 Hz, 2H), 7.88 (d, J = 8.3 Hz, 2H), 7.81 (d, J= 8.9 Hz, 2H), 7.61 (t, J = 7.5 Hz, 2H), 7.40 (d, J = 8.7 Hz. 2H), 7.11 (t, J = 8.0 Hz, 1H), 5.71 (d, J= 1.1 Hz, 1H), 2.35 (s, 3H) ’9F NMR (376 MHz, CDCI3) δ -58.02, -62.31
170C G 606 (M+H) 157-159 (CDCI3) δ 8.56 (s, 1 H), 8.19 - 8.14 (m, 3H), 7.79 (m, 4H), 7.56 - 7.46 (m, 2H), 7.46 7.43 (m, 2H), 7.39 (d, J = 8.3 Hz, 2H). 5.88 (d, J = 1.3 Hz, 1 H), 1.86 (d, J = 1.2 Hz, 3H)
171C G 558 (M+H) 236-237 (CDCh) δ 8.56 (s, 1H), 8.19 (d, J= 5.9 Hz, 2H), 8.16 (s, 1H). 7.83-7.76 (m, 4H), 7.45 (tt, J= 8.4, 6.1 Hz, 1H), 7.39 (d, J= 8.3 Hz, 2H), 7.10 (dd, J = 8.5, 7.3 Hz, 2H), 5.90 (d, J =1.3 Hz, 1H), 1.92 (s, 3H)
145
ID Synthesis Method MS mp (°C) ’H NMR(d)1
172C G 580 (M+H) 103-108 (CDCI3) δ 8.56 (d. J= 3.7 Hz, 1H), 8.21 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.84-7.72 (m, 4H), 7.39 (d, J = 8.3 Hz. 2H). 6.72 (s, 2H), 5.89 (d, J = 1.3 Hz, 1 H), 3.82 (s, 3H), 2.14 (s, 6H), 1.75 (d, J= 1.2 Hz, 3H).
173C G 536 (M+H) 87 (dec) (CDCI3) δ 8.56 (s, 1H), 8.19-8.15 (m. 3H), 7.82 - 7.75 (m, 4H), 7.43 - 7.30 (m, 5H), 7.24 (d, J= 7.3 Hz, 1H), 5.88 (s. 1H). 2.21 (s,3H), 1.80 (d, J = 1.2 Hz, 3H)
174C G 570 (M+H) 95 (dec) (CDCI3) δ 8.56 (s. 1H). 8,20-8.12 (m, 3H), 7.83 - 7.74 (m, 4H), 7.43 - 7.36 (m, 3H). 7.32 (t, J =7.7 Hz. 1H), 7.29-7.27 (m, 1H), 5.92 (d, J = 1.3 Hz, 1H). 2.26 (s, 3H), 1.81 (d, J =1.2 Hz, 3H)
175C G 550 (M+H) 132-136 (CDCI3) δ 8.56 (d, J = 5.0 Hz. 1H), 8.21 8.13 (m. 3H), 7.83 - 7.74 (m, 4H), 7.39 (d, J = 8.2 Hz. 2H), 7.29 - 7.23 (m, 1H), 7.19 (d, J = 7.7 Hz, 2H), 5.92 (d, J =1.3 Hz, 1H). 2.18 (s, 6H), 1.75 (d, J= 1.2 Hz. 3H).
176C G 564 (M+H) 123-138 (CDCI3) δ 8.56 (s, 1 H), 8.19 - 8.14 (m, 3H), 7.83 - 7.75 (m, 4H), 7.49 - 7.43 (m, 2H), 7.39 (d, J = 8.3 Hz, 2H), 7.33 (ddd, J = 7.8, 5.9, 3.0 Hz, 1H), 7.19-7.17 (m, 1H), 5.88 (d, J = 1.3 Hz, 1 H), 2.96 - 2.76 (m, 1 H), 1.81 (d, J = 1.2 Hz, 3H), 1.24 (t, J = 6.4 Hz, 3H), 1.22-1.16 (m, 3H).
146
ID Synthesis Method MS mp (°C) 1HNMR(D)’
177C J 566 (M+H) 185-187 (CDCIj) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.05 (s, 1 H), 7.84 - 7.77 (m, 2H), 7.74 (d, J= 8.3 Hz, 2H), 7.42 - 7.35 (m, 3H). 7.32 (dd, J = 10.6, 4.3 Hz, 1H), 7.28-7.24 (m, 1 H), 7.18 (dd. J = 7.8,1.4 Hz, 1 H), 3.80 - 3.69 (m, 1H), 3.59 - 3.48 (m, 1H), 3.11 (dd, J = 13.2, 6.8 Hz, 3H), 2.41 - 2.27 (m, 2H), 1.22 (t, J =5.6 Hz, 6H).
178C J 580 (M+H) 186-190 (CDCIs) δ 8.55 (d, J = 3.6 Hz, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.06 (s, 1H), 7.84-7.77 (m, 2H). 7.74 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 9.0 Hz, 3H), 7.32 (td, J = 7.5,1.4 Hz, 1H), 7.26 (s, 1 H). 7.17 (t, J = 7.1 Hz, 1H), 3.69 - 3.26 (m, 1H), 3.55 - 3.37 (m, 1H), 3.182.98 (m, 2H), 2.93-2.80 (m, 1H), 2.47 (d, J = 35.9 Hz, 1H), 1.31-1.12 (m, 9H).
179C J 550 (M+H) 212-213 (CDCI3) δ 8.64 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.06 (s. 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.38 (dd, J = 7.8,1.6 Hz, 1 H), 7.33 (td, J = 7.5,1.4 Hz, 1 H), 7.29 - 7.23 (m, 1 H), 7.18 (dd, J =7.8,1.4 Hz, 1H), 3.78-3.72 (m, 1 H), 3.59 - 3.48 (m, 1 H), 3.18 - 3.04 (m, 3H), 2.40 - 2.30 (m, 2H), 1.26 -1.20 (m, 6H).
180C J 566 (M+H) 127-133 (300 MHz, CDCIj) δ 8.55 (s. 1H), 8.13 (d, J = 8.3 Hz, 2H), 8.05 (s, 1H), 7.76 (dd, J = 17.0, 8.7 Hz, 4H), 7.37 (t, J = 8.4 Hz, 2H), 7.18 (dd, J = 12.7, 9.6 Hz, 3H), 3.54 - 3.49 (m, 2H), 3.12 - 3.08 (m, 2H), 2.70 - 2.55 (m, 2H), 2.39 - 2.31 (m, 2H), 2.28 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H).
147
ID Synthesis Method MS mp (°C) ’HNMRÎD)1
181C J 582 (M+H) 170-174 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.3 Hz, 2H). 8.08 (s, 1H), 7.84 - 7.76 (m, 2H), 7.74 (d. J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 6.65 (s, 2H), 3.79 (s, 3H), 3.52 - 3.45 (m, 2H), 3.10 - 3.07 (m. 2H), 2.38-2.31 (d. J 5.7 Hz, 2H), 2.25 (s, 6H).
182C J 552 (M+H) 148-155; 166-168 (300 MHz, CDCh) δ 8.55 (d, J = 1.0 Hz, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.05 (s, 1H), 7.83 - 7.76 (m, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 9.0 Hz, 2H), 7.14 - 7.09 (m, 3H), 3.51 (dd, J = 9.1, 3.5 Hz, 2H), 3.15 - 3.03 (m, 2H), 2.36 (s, 2H), 2.28 (s, 6H).
183C J 580 (M+H) 159-162 (CDCI3) δ 8.55 (d, J = 3.7 Hz, 1H), 8.14 (d. J = 8.4 Hz, 2H). 8.03 (d, J = 19.3 Hz, 1H), 7.84 - 7.77 (m, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.32 (d, J 3.8 Hz, 2H), 7.25 (d, J = 6.6 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H). 3.76 (ddd, J = 24.2, 12.0, 5.9 Hz, 1H), 3.58-3.46 (m, 1H), 3.11 (dd, J = 15.3, 6.1 Hz, 2H), 2.82 (dd, J 14.6, 7.2 Hz, 1H), 2.41 - 2.29 (m, 2H), 1.71-1.55 (m, 2H), 1.20 (d, J = 6.8 Hz, 3H), 0.87-0.76 (m, 3H).
184C J 566 (M+H) 194-198 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.07 (s, 1H), 7.83 - 7.76 (m, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.40 (t, J = 10.1 Hz, 2H), 6.93 (s, 2H), 3.53 - 3.47 (m, 2H), 3.12 - 3.05 (m, 2H), 2.34 (dt, J = 11.7, 5.8 Hz, 2H), 2.30 (s, 3H), 2.23 (s, 6H).
148
ID Synthesis Method MS mp (°C) ’HNMR(D)1
185C J 552 (M+H) 157-160 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz. 2H), 8.06 (s, 1H), 7.83 - 7.77 (m, 2H), 7.74 (d. J= 8.3 Hz. 2H), 7.38 (d. J= 8.3 Hz, 2H), 7.36 - 7.27 (m, 3H), 7.23 - 7.19 (m, 1 H), 3.74 (m, 1 H). 3.50 (m, 1 H), 3.10 (d, J = 5.9 Hz, 2H), 2.64 (q, J = 7.6 Hz, 2H), 2.40 2.29 (m, 2H), 1.28 -1.21 (m, 3H).
186C J 564 (M+H) 173-177 (CDCI3) δ 8.55 (S, 1H), 8.14 (d, J= 8.4 Hz, 2H), 8.09 (s, 1H), 7.83 - 7.77 (m, 2H), 7.81 - 7.77 (m, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.24 - 7.22 (m, 3H), 7.05 - 6.95 (m, 1H), 3.77-3.63 (m, 2H), 3.14 - 3.07 (m, 2H), 2.45 - 2.29 (m, 2H), 2.09 -1.92 (m, 1H), 0.97 - 0.82 (m, 3H), 0.53 (bs, 1 H).
187C J 593 (M+H) 180-182 (300 MHz, CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 4.9 Hz, 1H), 7.77 (dd, J = 11.4, 8.6 Hz, 4H), 7.39 (t, J= 8.1 Hz, 4H), 7.21 (dd, J= 13.2, 5.6 Hz, 1H), 3.65 - 3.58 (m, 2H), 3.09 (t, J = 5.5 Hz, 2H), 2.45-2.35 (m, 2H).
188C J 576 (M+H) 209-212 (CDCI3) δ 8.56 (s, 1H). 8.15 (d, J= 8.4 Hz, 2H), 8.07 (s, 1H), 7.79 (ddd, J = 15.8, 7.8, 5.8 Hz, 4H), 7.38 (d, J= 8.3 Hz, 2H), 7.31 - 7.21 (m, 2H), 7.10 (ddd, J = 9.7, 7.8, 2.0 Hz, 1 H), 3.64 (t, J = 5.4 Hz, 2H), 3.11 (t, J = 6.0 Hz, 2H), 2.46 - 2.33 (m, 2H).
189C J 560 (M+H) 217-219 (CDCI3) δ 8.56 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.08 (s, 1H), 7.83 - 7.74 (m, 4H), 7.38 (d, J = 8.3 Hz, 2H), 7.31-7.21 (m, 1H), 7.03 - 6.94 (m, 2H), 3.72 - 3.62 (m, 2H). 3.15-3.07 (m, 2H), 2.40-2.34 (m, 2H).
149
ID Synthesis Method MS mp (°C) ’HNMRiD)1
190C J 626 (M+H) 190-193 (CDCI3) δ 8.55 (s, 1 H). 8.14 (d, J = 8.3 Hz, 2H), 8.00 (s, 1H), 7.83-7.73 (m, 4H), 7.71 (d, J= 8.1 Hz, 1H), 7.67 (d, J- 7.7 Hz, 1H), 7.40 (dd, J = 15.8, 8.2 Hz, 3H), 3.79-3.69 (m, 1H), 3.55 - 3.49 (m, 1H), 3.16 - 3.04 (m, 2H), 2.47-2.31 (m, 2H).
191C J 554 (M+H) 150-155 (CDCI3) δ 8.54 (d, J - 4.3 Hz, 1H), 8.13 (d, J = 8.3 Hz, 2H), 8.05 (d, J = 6.3 Hz, 1H), 7.77 (dd, J- 15.4, 8.7 Hz, 4H), 7.38(d, J = 8.3 Hz, 2H), 7.29 (dd, J = 8.0,4.8 Hz, 2H), 7.04-6.93 (m, 2H), 3.85 (s, 3H), 3.653.61 (m, 2H), 3.10-3.06 (m, 2H), 2.362.28 (s, 2H).
192C J 568 (M+H) 164-167; 168-173 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.09 (s, 1H), 7.82 - 7.77 (m, 2H), 7.74 (d, J =6.7 Hz, 2H), 7.38 (d, J- 8.3 Hz, 2H), 7.13 (d, J= 8.3 Hz, 1H), 6.79 (dd, J- 11.9, 3.3 Hz, 2H), 3.81 (s, 3H), 3.74 - 3.66 (m, 1 H), 3.57 - 3.48 (m, 1 H). 3.12 - 3.04 (m, 2H), 2.36 - 2.30 (m, 2H), 2.25 (s, 3H).
193C J 580 (M+H) 155-158 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J- 8.4 Hz, 2H), 8.04 (s, 1H), 7.83 - 7.77 (m, 2H), 7.74 (d, J= 8.4 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H), 7.31 -7.24 (m, 3H), 7.23-7.20 (m, 1H), 3.82-3.71 (m, 1H), 3.56-3.47 (m, 1H), 3.17 - 3.02 (m, 2H), 2.46 (t, J - 6.7 Hz, 2H), 2.39 - 2.27 (m, 2H), 1.99 (heptet, J = 6.8 Hz, 1H), 0.95-0.92 (m, 6H).
194C J 600 (M+H) 102-108 (CDCi3) δ 8.56 (s, 1H), 8.17 (m 3H), 7.80 (m, 4H), 7.52 - 7.47 (m, 2H), 7.47 - 7.31 (m, 9H), 3.42 - 3.05 (m. 2H), 2.86 (bs, 2H), 2.04-1.71 (m, 2H).
150
ID Synthesis Method MS mp (°C) ’HNMR(n)1
195C J 538 (M+H) 159-162 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.3 Hz, 2H). 8.08 (S, 1H), 7.84 - 7.77 (m, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.31 - 7.19 (m, 4H), 3.81 - 3.47 (m, 2H), 3.20 - 3.00 (m, 2H), 2.35 (dt, J = 11.7, 5.8 Hz, 2H), 2.28 (s, 3H).
196C J 572 (M+H) 140-143 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J = 8.1 Hz, 2H), 8.05 (s, 1H), 7.80 (d, J = 8.9 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.33 (dd, J= 6.1, 3.4 Hz, 1H), 7.21 - 7.15 (m, 2H), 3.72 - 3.66 (m, 1H), 3.55 - 3.41 (m, 1H), 3.16 - 3.05 (m, 2H), 2.48 - 2.34 (m, 2H), 2.32 (s, 3H).
197C J 578 (M+H) 151-155 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J= 8.2 Hz, 2H), 8.06 (s, 1H), 7.80 (d, J= 8.9 Hz, 2H), 7.75 (d, J - 8.2 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 7.29 (dd, J= 10.7, 4.6 Hz, 4H), 6.20 (s, 1H), 3.59-3.48 (m. 2H), 3.10-3.01 (m, 2H), 2.34-2.20 (m, 2H). 1.90 (s, 3H), 1.78 (s, 3H).
198C J 539 (M+H) 186-189 (CDCI3) δ 8.56 (s, 1H), 8.36 (dd, J = 4.8,1.3 Hz, 1H), 8.15 (d, J = 8.3 Hz, 2H), 8.09 (s, 1H), 7.78 (m, 4H), 7.54 (dd, J- 7.5, 0.9 Hz. 1 H), 7.37 (d. J = 8.5 Hz, 2H), 7.13 (dd, J - 7.4, 4.8 Hz, 1H), 3.87 (t, J = 5.7 Hz, 2H), 3.12-3.03 (m, 2H), 2.40-2.32 (m, 2H), 2.24 (s, 3H).
199C J 608 (M+H) 207-208 (CDCI3) δ 8.55 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.05 (s, 1H), 7.83 - 7.78 (m. 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.43 - 7.36 (m, 3H), 7.34 (t, J = 4.7 Hz, 3H), 3.71 - 3.64 (m, 2H), 3.12 - 3.06 (m, 2H), 2.39 - 2.30 (m, 2H).
I5l
ID Synthesis Method MS mp (°C) 1HNMR(D)’
200C J 590 (M+H) 170-172 (CDCI3) δ 8.56 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.03 (s, 1H), 7.83 - 7.77 (m, 2H), 7.76 (d, J - 8.3 Hz, 2H), 7.42 - 7.27 (m, 6H), 6.74 - 6.29 (m, 1 H), 3.70 - 3.64 (m, 2H), 3.13 - 3.06 (m, 2H), 2.40 - 2.31 (m, 2H).
201C J 626 (M+H) 190-193 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J - 8.3 Hz, 2H), 8.00 (s, 1H), 7.83 - 7.73 (m, 4H). 7.71 (d, J - 8.1 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.40 (dd, J - 15.8, 8.2 Hz, 3H), 3.79 - 3.69 (m, 1H), 3.55 - 3.49 (m, 1H), 3.16 - 3.04 (m. 2H), 2.47-2.31 (m, 2H).
202C J 554 (M+H) 231-234 (CDCI3) δ 8.56 (s, 1H), 8.19 - 8.08 (m, 3H), 7.84 - 7.72 (m, 4H), 7.39 (d, J = 8.4 Hz, 2H), 7.25 - 7.20 (m, 2H), 6.96 - 6.88 (m. 2H), 3.83 (s, 3H), 3.76 - 3.68 (m, 2H), 3.13 - 3.03 (m, 2H), 2.39 - 2.27 (m. 2H).
203C J 631 (M+H) 200-201 (CDCI3) δ 8.56 (s, 1H), 8.15 (d, J~ 8.2 Hz, 2H), 8.06 (s, 1H), 7.83 - 7.77 (m, 2H), 7.75 (d, J- 8.2 Hz. 2H), 7.39 (d, J~ 8.5 Hz, 2H), 7.28 - 7.25 (m, 2H), 3.51 - 3.42 (m, 2H), 3.14 - 3.05 (m, 2H), 2.35 (s, 2H), 2.25 (s, 6H).
204C J 568 (M+H) 193-196 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J- 8.4 Hz, 2H), 8.09 (s, 1 H), 7.84 - 7.77 (m, 2H), 7.75 (d. J - 8.4 Hz, 2H), 7.38 (d, J= 8.3 Hz, 2H), 7.08 (t, J = 4.0 Hz. 2H), 6.88 (d, J ~ 8.6 Hz, 1 H). 3.82 (s, 3H), 3.66 - 3.58 (m, 2H), 3.11 - 3.03 (m, 2H), 2.36 - 2.27 (m, 5H).
152
ID Synthesis Method MS mp(°C) 1H NMR(D)1
205C J 539 (M+H) Oil (CDCI3) δ 8.55 (s, 1H), 8.45 (dd, J =4.8, 1.6 Hz, 1H), 8.18-8.12 (m, 2H), 8.06 (s, 1H), 7.82 - 7.72 (m, 4H), 7.53 (dd, J = 7.9, 1.6 Hz, 1H), 7.40 - 7.33 (m, 2H), 7.24 - 7.18 (m, 1H), 3.63 (br s, 2H), 3.18 - 3.03 (m, 2H), 2.51 (s 3H), 2.35 (dt, J = 11.7, 5.7 Hz, 2H)
206C J 554 (M+H) 177-178 (CDCI3) δ 8.56 (s, 1 H), 8.16 (d, J= 8.9 Hz, 3H), 7.84 - 7.73 (m, 4H), 7.39 (d, J = 8.8 Hz, 2H), 7.30 (t, J = 8.1 Hz, 1 H), 6.95 6.85 (m, 2H), 6.78 (dt, J = 11.1, 5.5 Hz, 1H), 3.81 (s, 3H), 3.79-3.73 (m, 2H), 3.123.04 (m, 2H), 2.38 - 2.28 (m, 2H).
2070 J 596 (M+H) 171-173 (CDCI3) δ 8.57 (s, 1H), 8.23 - 8.13 (m, 3H), 8.06 (d, J= 8.5 Hz, 2H), 7.80 (dd, J = 8.5, 4.5 Hz, 4H), 7.39 (d, J =8.5 Hz, 4H), 4.38 (q, J= 7.2 Hz, 2H), 3.82 (t, J= 6.0 Hz, 2H), 3.14 - 3.03 (m. 2H), 2.37 (s, 2H), 1.40 (t, J = 7.1 Hz, 3H).
208C J 568 (M+H) 171-173 (CDCI3) δ 8.55 (s, 1H), 8.14 (d, J= 8.3 Hz, 2H), 8.07 (s, 1H), 7.84-7.77 (m, 2H), 7.75 (d, J= 8.3 Hz, 2H), 7.38 (d. J= 8.3 Hz, 2H), 7.32 - 7.23 (m, 2H), 6.99 (ddd, J = 8.3, 5.5, 1.4 Hz, 2H), 4.08 (q, J= 7.0 Hz, 2H), 3.693.57 (m, 2H), 3.16-3.02 (m, 2H), 2.32 (dt, J = 11.7, 5.9 Hz, 2H), 1.39 (t, J= 7.0 Hz, 3H).
153
ID Synthesis Method MS mp (°C) 1HNMR(C)1
209C J 550 (M+H) 212-213 (CDCI3) δ 8.64 (s, 1H), 8.15 (d, J = 8.4 Hz, 2H), 8.06 (s, 1H), 7.91 (d, J =8.5 Hz, 2H), 7.79 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.38 (dd, J = 7.8, 1.6 Hz, 1H), 7.33 (td, J = 7.5, 1.4 Hz, 1H), 7.29 - 7.23 (m, 1H), 7.18 (dd, J = 7.8,1.4 Hz, 1 H), 3.78 - 3.72 (m, 1H), 3.59 - 3.48 (m, 1 H), 3.18 - 3.04 (m, 3H), 2.40 - 2.30 (m, 2H), 1.26 -1.20 (m, 6H).
210C J 580 (M+H) 136-139 (CDCIa) δ 8.55 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 8.07 (s, 1H), 7.83 - 7.77 (m, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.55 - 7.49 (m, 1 H), 7.38 (d, J = 8.3 Hz, 2H), 7.32 - 7.26 (m, 2H), 7.19-7.13 (m, 1H), 3.72 (ddd, J = 12.9, 9.3, 3.8 Hz, 1H), 3.60 - 3.51 (m, 1H), 3.15 (ddd, J= 13.3, 9.4,4.0 Hz, 1 H), 3.103.01 (m, 1 H), 2.51 - 2.36 (m, 1H), 2.36 2.22 (m, 1H), 1.43 (s, 9H).
211C J 566 (M+H) 100-106 (CDCIa) δ 8.55 (s, 1H), 8.15 (d, J- 8.4 Hz, 2H), 8.10 (s, 1H), 7.79 (dt, J = 10.4, 5.8 Hz, 4H), 7.38 (d, J = 8.3 Hz, 2H), 7.11 (s, 3H), 3.85 - 3.78 (m, 2H), 3.20 - 3.12 (m, 2H), 2.30 (s, 6H), 2.13 - 2.07 (m, 2H), 1.871.82 (m,2H).
212C J 580 (M+H) 186-188 (CDCIa) δ 8.55 (s, 1H), 8.19 - 8.10 (m, 3H), 7.79 (dt, J= 10.7, 5.9 Hz, 4H), 7.38 (dd, J = 8.5, 2.6 Hz, 3H), 7.30 (td, J = 7.5, 1.4 Hz, 1 H), 7.23 (td, J =7.5,1.7 Hz, 1H), 7.13 (dd, J = 7.8,1.4 Hz, 1H), 3.94 (bs, 2H), 3.24 - 3.02 (m, 3H), 2.13 - 2.05 (m, 2H), 1.84 - 1.73 (m, 2H), 1.24 (t, J = 10.5 Hz, 6H).
154
ID Synthesis Method MS mp (°C) ’HNMR(n)1
213C J 580 (M+H) 123-127 (CDCI3) δ 8.55 (s, 1H), 8.13 (d, J= 8.4 Hz. 2H), 8.03 (d, J- 4.4 Hz, 1H), 7.83 - 7.76 (m. 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.38 (d. J = 8.4 Hz, 2H), 7.24 - 7.15 (m, 2H), 7.12 (dd. J = 11.9,4.6 Hz, 1 H), 3.82 - 3.71 (m, 1 H), 3.30 - 3.18 (m. 1 H), 3.07 - 2.94 (m, 1 H). 2.72 - 2.40 (m, 3H), 2.30-2.16 (m, 4H), 1.30-1.12 (m, 6H).
214C J 622 (M+H) 160-162 (CDCh) δ 8.55 (s, 1H), 8.15 (d. J- 8.4 Hz, 2H), 8.06 (s, 1H), 7.83 - 7.72 (m, 4H). 7.38 (m, 3H), 7.34 (dd, J= 2.9. 1.5 Hz, 3H), 3.58 (ddd, J= 12.3, 3.9,1.4 Hz. 1H). 3.39 (dd, J = 12.2, 9.2 Hz, 1H), 3.04 (ddd, 12.2, 3.9,1.4 Hz. 1H), 2.84 (dd. J= 12.2, 9.5 Hz, 1 H), 2.61 - 2.42 (m, 1 H), 1.18 (d, J - 6.7 Hz, 3H)
215C J 640 (M+H) 116 (dec) (CDCh) δ 8.55 (s, 1H), 8.14 (dd, J- 8.3,1.5 Hz, 2H), 8.00 (d, J - 4.0 Hz, 1 H). 7.84 7.72 (m, 4H), 7.72 - 7.63 (m, 2H). 7.45 7.32 (m, 3H), 3.60 - 3.44 (m, 1H), 3.37 3.27 (m, 1H), 3.03 - 2.92 (m, 1H), 2.92 2.82 (m, 1H), 2.69-2.54 (m. 1H), 1.191.12 (m, 3H)
216C J 622 (M+H) 132-135 (CDCh) δ 8.55 (s, 1H), 8.14 (d, J= 8.4 Hz, 2H), 8.02 (s, 1H). 7.82 - 7.71 (m. 4H), 7.44 - 7.30 (m, 6H), 3.87 (d, J = 6.3 Hz, 1H), 3.23 (td, J = 11.9, 3.8 Hz, 1 H). 3.07 - 2.94 (m. 1H), 2.54-2.43 (m, 1H), 2.19 (ddd, J = 13.9,9.0, 5.0 Hz, 1H), 1.31 (d, J= 6.6 Hz, 3H)
155
ID Synthesis Method MS mp (’C) ’HNMR(ü)1
217C J 640 (M+H) 93 (dec) Two isomers (CDCIj) δ 8.55 (s, 2H), 8.14 (dd, J = 8.4,2.7 Hz, 4H), 7.98 (d, J = 4.2 Hz. 2H), 7.83 - 7.72 (m, 8H), 7.67 (dt, J = 12.9, 7.4 Hz, 4H), 7.40 (dd, J = 15.3, 8.1 Hz, 6H), 4.17 (s, 1H), 3.96 (td, J = 6.6, 3.1 Hz, 1H), 3.24-3.12 (m, 2H), 3.12-3.01 (m, 2H), 2.41 (dddd, J = 10.8,10.0, 8.9,4.2 Hz, 2H), 2.30 - 2.15 (m, 2H), 1.24 (d, J = 6.7 Hz, 3H), 1.04 (d, J = 6.7 Hz, 3H)
218C J 580 (M+H) 95 (dec) (CDCIj) δ 8.55 (s, 1H), 8.18 - 8.10 (m, 2H). 8.05 (s, 1H), 7.83 - 7.76 (m, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.41 - 7.37 (m, 2H), 6.93 (d, J= 9.4 Hz, 2H), 3.76 (dd, J= 10.8, 4.6 Hz, 1 H), 3.29 - 3.16 (m, 1 H), 2.99 (ddd, J = 12.2, 5.9, 3.9 Hz, 1H), 2.54 - 2.37 (m, 1H), 2.31 (s, 3H), 2.22 (d, J = 6.4 Hz, 7H), 1.19 (d, J = 6.7 Hz, 3H)
219C J 592 (M+H) 100 (dec) (CDCIj) δ 8.55 (s, 1 H), 8.14 - 8.06 (m, 3H), 7.91 - 7.65 (m, 4H), 7.44 - 7.37 (m, 2H), 7,16 - 7.09 (m, 1H), 6.93 - 6.77 (m. 2H), 4.06 - 3.64 (m, 4H), 3.31 - 3.16 (m, 1 H), 3.02-2.92 (m, 1H), 2.51 -2.40 (m, 1H), 2.25-2.17 (m, 4H), 1.41-1.14 (m, 3H)
156
ID Synthesis Method MS mp (’C) ’HNMR(D)1
220C J 593 (M+H) 95 (dec) Two isomers: (CDCI3) δ 8.55 (s, 1H), 8.16 8.09 (m, 2H), 8.01 (m, 1H), 7.86 - 7.76 (m, 2H), 7.76 - 7.70 (m, 2H), 7.64 - 7.28 (m, 4H), 7.24 - 7.14 (m, 2H), 4.08 - 3.65 (m, 1 H), 3.37 - 3.15 (m, 1 H), 3.09 - 2.92 (m, 1H), 2.80 (td, J = 14.2, 6.8 Hz, 1 H). 2.45 m. 1 H), 2.35 - 2.09 (m, 1 H), 1.76 -1.58 (m, 1 H). 1.48 -1.35 (m, 2H), 1.27 -1.19 (m, 2H), 1.19-1.13 (m, 2H), 1.06 - 0.92 (m. 1H), 0.92-0.72 (m, 3H)
221C J 603 (M+H) 113 (dec) (400 MHz, CDCI3) δ 8.56 (s, 1H), 8.20 8.10 (m, 2H), 8.00 (s, 1 H). 7.83 - 7.77 (m, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.42 - 7.28 (m, 6H), 6.72 - 6.25 (m, 1 H). 3.90 (d, J = 6.4 Hz. 1H). 3.24 (td, J= 12.0, 3.6 Hz, 1H). 3.05 - 2.93 (m, 1 H), 2.49 (tt, J = 11.7, 4.0 Hz, 1H), 2.21 (td, J = 8.7,4.4 Hz, 1H), 1.29 (d, J = 6.6 Hz, 3H)
222C J 594 (M+H) 124 (dec) (CDCh) δ 8.55 (s, 1H), 8.14 (dd, J= 8.4, 2.1 Hz, 2H), 8.05 (d. J =2.8 Hz, 1H), 7.87 7.72 (m, 4H), 7.61 - 7.49 (m, 1 H), 7.38 (d, J = 8.3 Hz, 2H). 7.33 - 7.21 (m, 2H), 7.15 7.05 (m, 1 H), 3.79 - 3.68 (m, 1 H), 3.51 3.29 (m, 1H), 3.12 - 2.93 (m, 1H). 2.66 2.52 (m, 1 H), 2.18 - 2.12 (m, 1 H), 1.43 (m, 12H)
223C L 566 (M+H) 75-87 (CDCI3) δ 8.58 (s, 1H). 8.21 (d, J- 8.4 Hz, 2H), 8.16 (S. 1H), 7.85 - 7.77 (m, 4H), 7.40 . (d, J = 8.3 Hz, 2H), 7.23 (dd, J = 8.4, 6.6 Hz, 1 H), 7.15 (d, J = 7.5 Hz, 2H), 3.24 3.14 (m, 4H), 2.18 (s, 6H).
157
ID Synthesis Method MS mp (°C) 1HNMR(n)’
224C L 580 (M+H) 118 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J =8.4 Hz, 2H), 8.16 (s, 1H), 7.85-7.75 (m, 4H), 7.46 - 7.36 (m, 4H), 7.33 - 7.26 (m, 1H), 7.10 (d, J = 7.6 Hz, 1H), 3.26 - 3.14 (m, 4H), 2.81 (sept, J= 6.9 Hz, 1H), 1.21 (t, J= 7.2 Hz, 6H).
225C L 580 (M+H) 111 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J - 8.4 Hz, 2H), 8.15 (s, 1H), 7.86 - 7.76 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.29 (t, J = 7.6 Hz, 1 H), 7.21 - 7.15 (m, 2H), 3.27 - 3.10 (m, 4H), 2.50 (q, J = 7.5 Hz, 2H), 2.18 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H).
226C L 573 (M+H) 196-200 (CDCI3) δ 8.57 (s, 1H), 8.24 - 8.16 (m, 3H), 7.85 - 7.76 (m, 4H), 7.43 - 7.34 (m, 3H), 7.03 (dd, J = 8.5, 7.4 Hz, 2H), 3.21 (s, 4H)
227C L 586 (M+H) Oil (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J - 8.3 Hz, 2H), 8.15 (s, 1H), 7.81 (t, J = 9.1 Hz, 4H), 7.43 - 7.31 (m, 3H), 7.28 - 7.21 (m, 2H), 3.36 - 3.07 (m, 4H), 2.24 (s, 3H); 19F NMR (376 MHz, CDCI3) δ -58.02
228C L 640 (M+H) 99 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J = 8.3 Hz, 2H), 8.11 (s, 1H), 7.81 (dd, J- 11.5, 4.7 Hz, 4H), 7.72 (dd, J= 17.3, 8.0 Hz, 2H), 7.51 (dd, J = 10.0, 5.4 Hz, 1 H), 7.39 (d, J = 8.3 Hz, 2H), 3.36-3.03 (m, 4H)
229C L 622 (M+H) 95 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J =8.4 Hz, 2H), 8.13 (s, 1 H), 7.80 (dt, J = 5.5,4.9 Hz, 4H), 7.44 - 7.34 (m, 6H), 3.29 - 3.10 (m, 4H)
158
ID Synthesis Method MS mp (°C) 1H NMR(D)1
230C L 594 (M+H) 94 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J = 8.3 Hz, 2H), 8.14 (d, J = 15.4 Hz, 1H), 7.83 - 7.76 (m, 4H), 7.43 - 7.37 (m, 4H), 7.32 - 7.26 (m. 1 H). 7.16 - 7.09 (m. 1 H). 3.24-3.12 (m, 4H), 2.61 - 2.44 (m, 1 H), 1.75 -1.50 (m. 2H), 1.17 (dd, J = 6.9, 3.3 Hz, 3H). 0.87 -0.73 (m, 3H)
231C L 582 (M+H) 105 (dec) (CDCI3) δ 8.58 (s, 1H), 8.22 (s, 1H), 8.19 (d, J = 5.0 Hz, 2H), 7.81 (dd, J = 8.7, 5.5 Hz, 4H), 7.40 (d, J = 8.3 Hz, 2H). 7.05 (d, J = 8.3 Hz, 1H), 6.90-6.76 (m, 2H), 3.83 (s, 3H), 3.22 - 3.11 (m, 4H), 2.16 (s. 3H)
232C L 593 (M+H) 120 (dec) (CDCI3) δ 8.57 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H). 8.16 (s, 1 H), 7.81 (dd, J = 8.7, 5.3 Hz, 4H), 7.58 (dd, J = 8.1,1.5 Hz, 1 H), 7.38 (dd. J = 13.2, 5.1 Hz, 3H), 7.33 - 7.27 (m, 1 H), 7.02 - 6.96 (m, 1H), 3.37 - 3.01 (m, 4H), 1.36 (s. 9H)
233C L 604 (M+H) 92 (dec) (CDCI3) δ 8.58 (s, 1H), 8.21 (d, J = 8.4 Hz, 2H), 8.14 (s, 1H), 7.86 - 7.72 (m, 4H), 7.48 - 7.28 (m, 6H), 6.40 (t, JHF= 74.3 Hz, 1H), 3.25-3.11 (m, 4H)
240C J 538 (M+H) 113-116 (300 MHz, CDCb) δ 8.57 (s, 1H), 8.31 (s, 1H), 8.21 (s, 1H), 8.18 (s, 1H), 7.86-7.76 (m, 4H), 7.48-7.31 (m, 4H), 7.31 - 7.20 (m, 2H), 4.92 (s, 2H), 3.42 - 3.27 (m, 1 H), 1.31 (s, 3H),1.28(s, 3H)
159
ID Synthesis Method MS mp(°C) ’HNMR(n)1
241C J 524 (M+H) Oil (CDCI3) δ 8.56 (s, 1H), 8.29 (s, 1H), 8.19 (d, J= 8.4 Hz, 2H), 7.83 - 7.76 (m, 4H), 7.39 (d, J= 8.3 Hz, 2H), 7.18 (dd, J = 8.4, 6.6 Hz, 1H), 7.09 (d, J = 7.7 Hz, 2H), 4.87 (s, 2H), 2.40 (S, 6H); 19F NMR (376 MHz, CDCb) δ -58.04
242C J 554 (M+H) 147-159 (CDCb) δ 8.57 (S, 1H), 8.30 (s, 1H), 8.19 (d, J = 8.3 Hz, 2H), 7.84 - 7.76 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 6.62 (s, 2H), 4.84 (s, 2H), 3.78 (s, 3H), 2.37 (s, 6H)
243C J 538 (M+H) 131-135 (CDCb) δ 8.57 (s, 1H), 8.29 (s, 1 H), 8.19 (d, J = 8.4 Hz, 2H), 7.85 - 7.76 (m, 4H), 7.39 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 7.6 Hz, 1 H), 7.17 - 7.08 (m, 2H), 4.88 (q, J = 4.1 Hz, 2H), 2.87-2.65 (m, 2H), 2.40 (s, 3H), 1.28 (t, J = 7.5 Hz, 3H)
244C J 564 (M+H) 145-146 (CDCI3) δ 8.57 (s, 1H), 8.31 (s, 1H), 8.19 (d, J = 8.3 Hz, 2H), 7.83 - 7.79 (m, 4H), 7.42 7.38 (m, 4H), 7.31 - 7.27 (m, 1H), 5.02 (s, 2H)
245C J 532 (M+H) 144-146 (CDCb) δ 8.58 (s, 1H), 8.34 (s, 1H), 8.20 (d, J = 8.3 Hz, 2H), 7.81 (d, J = 8.8 Hz, 4H), 7.40 (d, J = 8.3 Hz, 2H), 7.31 - 7.23 (m, 1H), 7.03 - 6.97 (m, 2H), 5.05 (s, 2H)
246C J 544 (M+H) 157-160 (CDCb) δ 8.57 (s, 1H), 8.30 (s, 1H), 8.19 (d, J= 8.3 Hz, 2H), 7.84 - 7.77 (m, 4H), 7.39 (d, J = 8.2 Hz, 2H), 7.34 - 7.28 (m, 1 H), 7.25-7.15 (m, 2H), 5.19 (s, 1H), 4.81 (s, 1H), 2.46 (s, 3H)
160
ID Synthesis Method MS mp (°C) ’HNMRÎC)1
247C J 587 ((M+H]*) 79-85 (CDCIa) Ô 8.58 (s, 1H), 8.31 (s, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.86 - 7.78 (m, 4H), 7.49 7.28 (m, 5H), 7.26-7.21 (m, 1H), 4.93 (s, 2H), 3.35 (dt, J- 13.7,6.9 Hz, 1H), 1.30 (d, J = 6.9 Hz, 6H); 19F NMR (376 MHz, CDCI3) δ -85.90, -87.84
248C J 551 ([M+H]*) - (CDCI3) δ 8.60-8.58 (m, 1H), 8.28 - 8. ï 4 (m, 2H), 8.00 - 7.91 (m, 2H), 7.82 (tdd, J = 5.5, 3.5, 1.7 Hz, 2H), 7.53 - 7.25 (m, 4H), 7.11 - 6.91 (m, 2H), 4.94 (s, 2H), 3.26 (dt, J = 13.8, 6.9 Hz, 1H), 2.60 - 2.37 (m, 3H), 1.31-1.17 (m, 6H); 19F NMR (376 MHz, CDCI3) δ -58.02
249C J 533 ([M+H]*) 73-90 (CDCI3) δ 8.53 (s, 1H), 8.31 (s, 1H), 8.18 (d, J =8.3 Hz, 2H), 7.80 (d, J= 8.3 Hz, 2H), 7.57 (d, J- 2.1 Hz, 1H), 7.50-7.43 (m, 3H), 7.33 (dtd, J= 9.1,7.8,1.5 Hz, 2H), 7.21 (ddd, J- 13.8,7.9, 3.5 Hz, 2H), 4.93 (s, 2H), 3.41 - 3.27 (m, 1H), 1.30 (d, J = 6.9 Hz, 6H); 19F NMR (376 MHz, CDCI3) δ -49.65
161
ID Synthesis Method MS mp CC) 1HNMR(Q)1
250C J 555 ([M+H]*) - (DMSO-de) δ 9.44 (s, 1H), 8.27 (s. 1H). 8.21 - 8.12 (m, 2H), 8.13 - 8.06 (m, 2H), 7.85 7.75 (m, 2H). 7.67-7.60 (m. 2H), 7.46 (td, J = 8.1, 5.8 Hz, 1H), 7.18-7.31 (m, 2H), 5.05 (s, 2H), 3.22 - 3.32 (m, 1H), 1.25 (d, J = 6.8 Hz, 6H); 1®F NMR (376 MHz, DMSO-de) δ -56.95, -120.51
251C J 555 «M+HD (DMSO-de) δ 9.44 (s, 1H), 8.32 (s, 1H), 8.21 - 8.13 (m, 2H), 8.13 - 8.05 (m, 2H), 7.89 7.79 (m, 2H), 7.70 - 7.59 (m, 2H), 7.54 7.40 (m, 2H), 7.19 (td, J = 8.5, 2.8 Hz, 1H), 5.16 (s, 2H), 3.29 (hept. J = 6.9 Hz, 1H), 1.23 (d, J =6.8 Hz, 6H); ’®F NMR (376 MHz, DMSO-de) δ -56.97, -115.87
252C J 555 ([M+H]*) (DMSO-de) δ 9.44 (s, 1H), 8.28 (s, 1 H), 8.21 -8.13 (m, 2H), 8.13-8.05 (m, 2H), 7.857.78 (m, 2H), 7.67 - 7.61 (m, 2H), 7.58 (dd, J = 8.8, 5.6 Hz, 1 H), 7.26 (dd, J = 10.4,3.0 Hz, 1 H), 7.12 (ddd, J - 8.8, 8.0, 3.0 Hz, 1 H), 5.10 (s, 2H), 3.32 - 3.21 (m, 1 H), 1.24 (d, J =6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -56.96, -112.55
162
ID Synthesis Method MS mp (°C) ’HNMRÎD)1
253C J 555 ([M+H]*) (DMSO-de) δ 9.43 (s, 1H), 8.30 (s, 1H), 8.18 - 8.12 (m, 2H), 8.12 - 8.05 (m, 2H), 7.85 7.77 (m, 2H), 7.68 - 7.58 (m, 2H), 7.40 (dd, J= 8.0,1.3 Hz, 1H), 7.32 (td, J= 8.1, 5.9 Hz, 1H), 7.17 (ddd. J = 11.7, 8.2, 1.3 Hz, 1 H), 5.13 (s, 2H), 3.32 - 3.23 (m, 1 H), 1.35 (dd, J =7.0,1.3 Hz, 6H); WF NMR (376 MHz, DMSO-de) δ -56.96,-112.92
254C J 523 ([M+H]*) (DMSO-de) δ 9.46 (s, 1H), 8.34 (s, 1 H), 8.22 - 8.15 (m, 2H), 8.15 - 8.06 (m, 2H), 7.90 7.80 (m, 2H), 7.70 - 7.62 (m, 2H). 7.63 7.55 (m, 1 H), 7.42 - 7.24 (m, 3H), 5.16 (s, 2H), 2.79 (q, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H); 19F NMR (376 MHz, DMSO-de) δ -56.95
255C J 539 ([M+H]*) (DMSO-de) δ 9.57 (s, 1H), 8.33 (s, 1 H). 8.26 - 8.12 (m, 4H), 8.05 - 7.95 (m, 2H), 7.89 7.79 (m, 2H), 7.55 - 7.39 (m, 2H), 7.19 (td. J = 8.5, 2.8 Hz, 1H), 5.16 (s, 2H), 3.23 3.32 (m, 1 H), 1.23 (d, J = 6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-dfl) δ -60.81,-115.86
163
ID Synthesis Method MS mp (°C) 1H NMR(O)1
256C J 605 ([M+H]*) (DMSO-de) δ 9.45 (s, 1H), 8.32 (s, 1 H), 8.20 - 8.14 (m, 2H), 8.14 - 8.07 (m, 2H), 7.91 7.78 (m, 2H), 7.68 - 7.59 (m, 2H), 7.47 (ddd, J = 15.2,9.4,4.6 Hz, 2H), 7.19 (td, J = 8.5, 2.8 Hz, 1H), 5.16 (s, 2H), 3.32 - 3.24 (m, 1H), 1.23 (d, J = 6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -85.18, -86.91,-115.87
257C J 639 ([M+H]*) (DMSO-de) δ 9.54 (s, 1H), 8.33 (s, 1H), 8.29 - 8.21 (m, 2H), 8.21 - 8.15 (m, 2H), 7.93 (d, J = 8.5 Hz, 2H), 7-89 -7.79 (m, 2H), 7,47 (ddd, J= 15.1,9.4, 4.6 Hz, 2H), 7.19 (td, J = 8.5, 2.8 Hz, 1H), 5.16 (s, 2H). 3.32 - 3.23 (m, 1H), 1.23 (d, J =6.8 Hz, 6H; 19F NMR (376 MHz, DMSO-de) δ -75.06 (d, J =7.5 Hz),-115.87, -181.30 (p, J =7.8 Hz)
258C J 689 ([M+H]*) - (DMSO-de) δ 9.55 (s, 1H), 8.33 (s, 1 H), 8.28 - 8.20 (m. 2H), 8.21 - 8.15 (m, 2H), 7.98 7.89 (m, 2H), 7.88-7.80 (m, 2H), 7.47 (ddd, J= 15.2,9.4,4.6 Hz, 2H), 7.19 (td, J = 8.5, 2.8 Hz, 1H), 5.16 (s, 2H), 3.31 - 3.25 (m, 1H), 1.23 (d, J =6.8 Hz, 6H); 19F NMR (376 MHz, DMSO-de) δ -72.98--73.71 (m), -78.73 (d, J= 12.8 Hz), -115.87, -120.53--121.42 (m), -182.23 (dt, J =25.7,15.5 Hz)
164
ID Synthesis Method MS mp (°C) ’H NMR(C)’
259C J 535 ([M+H]*) (DMSO-de) δ 9.49 (s, 1H), 8.32 (s, 1H), 8.24 - 8.13 (m, 2H), 8.12-8.03 (m, 2H), 7.917.75 (m, 4H), 7.47 (ddd, J = 15.2, 9.4, 4.6 Hz, 2H), 7.19(td, J- 8.5, 2.8 Hz, 1H), 5.16 (s, 2H), 3.31 - 3.23 (m, 1 H), 2.04 (t, J 18.9 Hz, 3H), 1.23 (d, J =6.8 Hz, 6H);
19F NMR (376 MHz, DMSO-de) δ -84.17, -115.86
260C J 589 ([M+H]*) (DMSO-de) δ 9.57 (s, 1 H), 8.33 (s, 1H), 8.24 (d, J = 8.5 Hz, 2H), 8.20 - 8.15 (m, 2H), 7.96 (d, J - 8.6 Hz. 2H), 7.90 - 7.78 (m, 2H), 7.54 - 7.39 (m, 2H), 7.19 (td, J = 8.5, 2.8 Hz, 1H), 5.16 (s, 2H), 3.32 - 3.23 (m, 1H), 1.24 (d, J =6.8 Hz, 6H); ’®F NMR (376 MHz, DMSO-de) δ -84.02 (t, J =2.3 Hz), -113.41, -115.87
261C J 539 ([M+H]*) - (DMSO-de) δ 9.57 (s, 1H), 8.28 (s, 1H), 8.23 - 8.15 (m, 4H), 8.01 - 7.98 (m, 2H), 7.86-7.78 (m, 2H), 7.58 (dd, J= 8.8, 5.6 Hz, 1H). 7.26 (dd, J~ 10.4, 3.0 Hz, 1H), 7.13 (ddd, J= 8.7,8.0, 3.0 Hz. 1H), 5.10 (s, 2H), 3.28 (td, J= 6.8,1.8 Hz, 1 H), 1.24 (d. J = 6.8 Hz, 6H);
9F NMR (376 MHz, DMSO-de) δ -60.81,-112.54
NMR spectral data were acquired using a 400 MHz instrument unless otherwise noted.
Table 4A: Anaiytical Data for Opticaily Active Compounds In Table 3
165
ID Séparation Method MS Chiral Purity (%) 1HNMR(0)’
234C A 571 (M+H) 98.73 (CDCI3) δ 8.58 (S, 1H), 8.31 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.87 - 7.78 (m, 4H), 7.41 (t, J = 6.3 Hz, 3H), 7.37 - 7.31 (m, 1H), 7.28 (d, J = 7.0 Hz, 1 H), 4.09 - 3.98 (m, 2H), 2.29 (s, 3H)
235C A 571 (M+H) 95.75 (CDCI3) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J ~ 8.3 Hz, 2H), 7.87 - 7.78 (m, 4H), 7.41 (dd, J =7.0,5.6 Hz, 3H), 7.34 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 6.0 Hz, 1 H), 4.09 - 3.98 (m, 2H), 2.29 (s, 3H)
236C A 565 (M+H) 96.32 (CDCI3) δ 8.58 (s, 1H), 8.31 (s, 1H), 8.23 (d, J= 8.4 Hz, 2H), 7.81 (dd, J= 11.7, 5.1 Hz, 4H), 7.40 (d, J = 8.4 Hz, 2H), 7.35 (t, J = 7.7 Hz, 1 H). 7.24 - 7.18 (m, 2H), 4.02 (s, 2H), 2.53 (q, J =7.5 Hz, 2H), 2.21 (s, 3H), 1.21 (t, J =7.6 Hz, 3H)
237C A 565 (M+H) 92.33 (CDCI3) δ 8.58 (S, 1H), 8.31 (s, 1H), 8.23 (d, J = 8.4 Hz, 2H), 7.81 (dd, J = 11.7.5.1 Hz, 4H), 7.40 (d, J = 8.3 Hz, 2H), 7.35 (dd, J~ 10.4,4.9 Hz, 1H), 7.24 - 7.20 (m, 2H), 4.02 (s, 2H), 2.59 - 2.45 (m, 2H), 2.21 (s, 3H), 1.21 (t, J = 7.6 Hz, 3H)
238C B 579 (M+H) 95.41 (CDCI3) δ 8.58 (s, 1H), 8.29 (d, J = 3.9 Hz, 1H), 8.23 (d, J - 8.4 Hz, 2H), 7.82 (t, J = 8.8 Hz, 4H), 7.40 (d, J = 8.3 Hz, 3H), 7.31 (d, J= 6.9 Hz, 1H), 7.19 (dd, J= 7.6, 5.2 Hz. 1H), 4.03 (s, 2H), 2.83-2.73 (m, 1H), 2.21 (s, 3H), 1.25-1.18 (m, 6H)
166
ID Séparation Method MS Chiral Purity (%) 1HNMR(D)1
239C B 579 (M+H) 92.68 (CDClj) δ 8.58 (s, 1 H), 8.30 (s, 1H), 8.22 (t, J = 8.7 Hz, 2H), 7.82 (t, J = 8.7 Hz, 4H), 7.40 (d, J = 8.2 Hz, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 7.3 Hz, 1 H), 4.03 (s, 2H), 2.83-2.73 (m, 1H), 2.21 (s, 3H), 1.25-1.18 (m,6H)
NMR spectral data were acquired using a 400 MHz Instrument unless otherwise noted.
Table 5: Bioioglcal Results
Compoun d Number % Mortality CEW50 □g/cm* % Mortality BAW50 □g/cma % Mortality GPA200 ppm
1C A A D
2C A A D
3C A A D
4C A A B
5C A A B
6C A A D
7C A D D
8C A A B
9C A A D
10C A A D
11C A A D
167
Com pou η d Number % Mortality CEW50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA200 ppm
12C A A B
13C A A B
14C A A B
15C A A A
16C A A D
17C A A B
18C A A B
19C A A B
20C A A D
21C C C D
22C A A B
23C A A D
24C A A B
25C A A D
26C C C D
27C A A B
28C A A B
29C A A B
30C A A B
31C A A B
168
Compoun d Number % Mortality CEW50 □fl/cm1 % Mortality BAW50 □g/cmJ % Mortality GPA 200 ppm
32C C C B
33C A A B
34C C C B
35C A A B
36C A A D
37C A A D
38C A A D
39C C C D
40C A A B
41C A A D
42C A A D
43C A A B
44C A A D
45C A A C
46C A A D
47C A A B
48C A A C
49C A A B
50C A A C
51C A A D
169
Compoun d Number % Mortality CEW50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA200 ppm
52C D B B
53C D B B
54C A A D
55C A A D
56C A A C
57C A A B
58C A A B
59C A A B
60C A A D
61C A A C
62C A A B
63C A A D
64C A A D
65C A A B
66C A A B
67C A A D
68C A A B
69C A A C
70C A A D
71C A A D
170
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA200 ppm
72C A A B
73C A A B
74C A A D
75C A A B
76C A A B
77C A A B
78C A A B
79C A A B
80C A A D
81C A A D
82C A A C
83C A A C
84C A A D
85C A A B
86C A A D
87C C C B
88C A A B
89C A A D
90C A A B
91C D D C
I7l
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW 50 □g/cm2 % Mortality GPA200 ppm
92C A A B
93C A A D
94C A A D
95C A A B
96C A A B
97C A A C
98C C A C
99C A A C
100C A A C
101C A A C
102C A A C
103C A A C
104C A A C
105C A A C
106C A A C
107C D D C
108C A A D
109C A A C
110C A A C
111c A A B
172
Compoun d Number % Mortallty CEW 50 □g/cm2 % Mortallty BAW50 □g/cm2 % Mortallty GPA200 ppm
112C A A B
113C A A C
114C A A C
115C D B C
116C A A C
117C A A D
118C A A D
119C A A D
120C A A C
121C A A B
122C A A C
123C A A C
124C A A C
125C A A C
126C A A C
127C A A C
128C A A C
129C A A C
1300 A A C
1310 A A D
173
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA 200 ppm
132C A A B
133C A A B
134C A A C
135C A A D
136C A A D
137C A A D
138C A A B
139C A A B
140C A A B
141C A A D
142C A A D
143C A A C
144C A A C
145C A A B
146C A A B
147C A A B
148C A A C
149C A A D
150C A A D
151C A A B
174
Compoun d Number % Mortallty CEW 50 □g/cm’ % Mortallty BAW50 □g/cm1 % Mortallty GPA 200 PPm
152C A A C
153C A D C
154C A A B
155C A A D
156C A A B
157C A A B
158C A A B
159C A A C
160C A A C
161C A A C
162C A A C
163C A A C
164C A A C
165C A A C
166C A A C
167C A A c
168C A A D
169C A A C
170C A A C
171C A A C
I75
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW50 □g/cma % Mortality GPA 200 PPm
172C A A D
173C A A D
174C A A B
175C A A D
176C A A C
177C A A D
178C A A D
179C A A D
180C A A B
181C A A B
182C A A B
183C A A D
184C A A D
185C A A D
186C A A B
187C A A D
188C A A B
189C A A B
190C A A B
191C A A D
176
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW 50 □g/cm2 % Mortality GPA 200 ppm
192C A A B
193C A A B
194C A A B
195C A A B
196C A A D
197C A A D
198C A A D
199C A A C
200C A A C
201C A A B
202C A A B
203C A A B
204C A A B
205C A A B
206C A A D
207C d D C
208C A A D
209C A A D
21 OC A A C
211C A A D
177
Compoun d Number % Mortality CEW 50 □g/cm2 % Mortality BAW50 □g/cm2 % Mortality GPA 200 ppm
212C A A D
213C A A B
214C A A C
215C A A C
216C A A C
217C A A c
218C A A c
219C A A c
220C A A c
221C A A c
222C A A c
223C A A c
224C A A B
225C A A C
226C A A C
227C A A C
228C A A c
229C A A c
230C A A c
231C A A c
178
Compoun d Number % Mortality CEW50 □g/cm* % Mortality BAW50 □g/cmJ % Mortality GPA 200 ppm
232C A A C
233C A A C
234C A A C
235C A A C
236C A A C
237C A A C
238C A A C
239C A A C
240C A A C
241C A A C
242C A A C
243C A A D
244C A A D
245C A A D
246C A A C
247C A A C
248C A A C
249C A A C
250C A A C
251C A A C
179
Compoun d Number % Mortality CEW50 □fl/cm’ % Mortality BAW50 □g/cm1 % Mortality GPA200 ppm
252C A A C
253C A A C
254C A A C
255C A A C
256C A A C
257C A A C
258C A B C
259C A A C
260C A A C
261C A A C
180

Claims (7)

  1. WE CLAIM
    1.
    A molécule according to Formula Two RI
    Ah Y\
    N3xR5
    Formula
  2. 2 wherein:
    5 (a) Art is substituted phenyl having one or more substituents independently selected from Ct-Ce haioalkyl and Cj-Cô haloalkoxy, (b)
    Het is 1,2,4-triazolyl (c) Αγϊ is phenyl;
    (d) RI is H or Cj-Ce alkyl;
    (g) R4 is phenyl substituted with one or more substituents independently selected from F, Cl, Br, I, and Cj-Cô alkyl;
    (h) R5 is a 1 membered saturated hydrocarbyl linkage.
    15 2. A molécule according to claim 1 wherein said molécule is selected from
    240C /*»N -lXA'-'C 241C /^N A-n-n^n , -o 242C /*»N L//': -Q o—
    181
    243C 244C /*»Ν -45 245C λ=ν F-O 246C /^Ν 45 247C Λ®Ν 248C Λ-Ν 249C /=Ν. _ S-Λ 0'O'Kn^^N'^yS F-hor F 250C ^/^ν·ν^Ν F 45
    182
    251C 'XHVi Xn' bA 252C kA Xn F 253C ,,J<«O-<Vi *? F 254C FS/ PX °ONnV1 <Μ·/η 255C 256C A-O-vÇx s ·ΝΑί 257C F F~-7-F /=\
    183
    258C F F \__Δ-f \ ''‘’N >-ô-f 259C . F /=\ /^N 260C À» 261C F
  3. 3. A composition comprising a molécule according to ciaims l or 2 and a carrier.
  4. 4. A composition according to claim 3 further comprising at least one other compound
  5. 5 selected from the Insecticide Group, Acaricide Group, Nematicide Group, Fungicide Group, Herbicide Group, AI Group, or Synergist Group.
    5. A composition according to claim 3 further comprising a seed.
    10
  6. 6. A composition according to claim 3 and at least one compound that has a mode of action selected from acetylcholinesterase inhibitor, sodium channel modulator, chitin biosynthesis inhibitor, GABA-gated chloride channel antagonist, GABA and glutamate-gated chloride channel agonist, acétylcholine receptor agonist, MET I inhibitor, Mg-stimu!ated ATPase inhibitor, nicotinic acétylcholine receptor, Midgut membrane disrupter, oxidative
    15 phosphorylation disrupter, and ryanodine receptor (RyRs).
    184
  7. 7. A process comprising applying a composition according to claim 3 to an area to control a pest, in an amount sufficient to control such pest.
OA1201400345 2012-02-02 2013-01-23 Pesticidal compositions and processes related thereto. OA17013A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61/594,054 2012-02-02

Publications (1)

Publication Number Publication Date
OA17013A true OA17013A (en) 2016-02-26

Family

ID=

Similar Documents

Publication Publication Date Title
US8916183B2 (en) Pesticidal compositions and processes related thereto
US9018136B2 (en) Pesticidal compositions and processes related thereto
US9018388B2 (en) Pesticidal compositions and processes related thereto
US8604211B2 (en) Pesticidal compositions
US9107410B2 (en) Pesticidal compositions and processes related thereto
US20160135464A1 (en) Pesticidal compositions and processes related thereto
OA17013A (en) Pesticidal compositions and processes related thereto.
OA19159A (en) Pesticidal Compositions and Processes Related Thereto
OA16500A (en) Pesticidal compositions and processes related thereto.
OA17014A (en) Pesticidal compositions and processes related thereto.
NZ613659B2 (en) Pesticidal compositions and processes related thereto