OA16815A - RNAI agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases. - Google Patents

RNAI agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases. Download PDF

Info

Publication number
OA16815A
OA16815A OA1201400209 OA16815A OA 16815 A OA16815 A OA 16815A OA 1201400209 OA1201400209 OA 1201400209 OA 16815 A OA16815 A OA 16815A
Authority
OA
OAPI
Prior art keywords
rnai agent
ttr
subject
nucléotides
cell
Prior art date
Application number
OA1201400209
Inventor
Kallanthottathil G Rajeev
Tracy Zimmermann
Muthiah Manoharan
Martin Maier
Satyanarayana Kuchimanchi
Klaus CHARISSE
Original Assignee
Alnylam Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alnylam Pharmaceuticals filed Critical Alnylam Pharmaceuticals
Publication of OA16815A publication Critical patent/OA16815A/en

Links

Abstract

The present invention provides RNAi agents, e.g., double stranded RNAi agents, that target the transthyretin (TTR) gene and methods of using such RNAi agents for treating or preventing TTRassociated diseases.

Description

This application claims priority to U.S. Provisional Application No. 61/561,710, filed on November 18, 2011, U.S. Provisional Application No. 61/615,618, filed on March 26,2012, and U.S. Provisional Application No. 61/680,098, filed on August 6, 2012, the entire contents of each of which are hereby incorporated herein by reference.
Sequence Listing
The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on November 13, 2012, is named 121301WO.txt and is 541,508 bytes in size.
Background of the Invention
Transthyretin (TTR) (also known as prealbumin) is found in sérum and cerebrospinal fluid (CSF). TTR transports retînol-binding protein (RBP) and thyroxine (T4) and also acts as a carrier of retinol (vitamin A) through its association with RBP in the blood and the CSF. Transthyretin is named for its transport of thyroxine and retinol. TTR also fonctions as a protease and can cleave proteins including apoA-I (the major HDL apolipoprotein), amyloid β-peptide, and neuropeptide Y. See Liz, M.A. et al. (2010) IUBMB Life, 62(6):429-435.
TTR is a tetramer of four identical 127-amino acid subunits (monomers) that are rich in beta sheet structure. Each monomer has two 4-stranded beta sheets and the shape of a prolate ellipsoid. Antiparallel beta-sheet interactions link monomers into dimers. A short loop from each monomer forms the main dimer-dimer interaction. These two pairs of loops separate the opposed, convex beta-sheets of the dimers to form an internai channel.
The liver is the major site of TTR expression. Other significant sites of expression include the choroid plexus, retina (particularly the retinal pigment epithelium) and pancréas.
Transthyretin is one of at least 27 distinct types of proteins that is a precursor protein in the formation of amyloid fibrils. See Guan, J. et al. (Nov. 4, 2011) Current perspectives on cardiac amyloidosis, Am JPhysiol Heart Cire Physiol, doi: 10.1152/ajpheart.OO815.2011. Extracellular déposition of amyloid fibrils in organs and tissues is the hallmark of amyloidosis. Amyloid fibrils are composed of misfolded protein aggregates, which may resuit from either excess production of or spécifie mutations in precursor proteins. The amyloidogenic potential of TTR may be related to its extensive beta sheet structure; X-ray crystallographic studies indicate that certain amyloidogenic mutations destabilize the tetrameric structure ofthe protein. See, e.g., Saraiva M.J.M. (2002) Expert Reviews in Molecular Medicine, 4(12); 1 -11.
Amyloidosis is a general term for the group of amyloid diseases that are characterized by amyloid deposits. Amyloid diseases are classified based on their precursor protein; for example, the name starts with “A” for amyloid and is followed by an abbreviation of the precursor protein, e.g., ATTR for amloidogenic transthyretin. Ibid.
There are numerous TTR-associated diseases, most of which are amyloid diseases. Normal-sequence TTR is associated with cardiac amyloidosis in people who are elderly and is termed sentie systemic amyloidosis (SSA) (also called senile cardiac amyloidosis (SCA) or cardiac amyloidosis). SSA often is accompanîed by microscopie deposits in many other organs. TTR amyloidosis manîfests in various forms. When the peripheral nervous system is affected more prominently, the disease is termed familial amyloidotic polyneuropathy (FAP). When the heart is primarily involved but the nervous system is not, the disease is called familial amyloidotic cardiomyopathy (FAC). A third major type of TTR amyloidosis is leptomeningeal amyloidosis, also known as leptomeningeal or meningocerebrovascular amyloidosis, central nervous system (CNS) amyloidosis, or amyloidosis VII form. Mutations in TTR may also cause amyloidotic vitreous opacities, carpal tunnel syndrome, and euthyroid hyperthyroxinemia, which is a non-amyloidotic disease thought to be secondary to an increased association of thyroxine with TTR due to a mutant TTR molécule with increased affinity for thyroxine. See, e.g., Moses et al. (1982) J. Clin. Invest., 86, 2025-2033.
Abnormal amyloidogenic proteins may be either inherited or acquired through somatic mutations. Guan, J. et al. (Nov. 4,2011) Current perspectives on cardiac amyloidosis, Am JPhysiol Heart Cire Physiol, doùlO.l152/ajpheart.00815.2011. Transthyretin associated ATTR is the most frequent form of hereditary systemic amyloidosis. Lobato, L. (2003) J. Nephrol., 16:438-442. TTR mutations accelerate the process of TTR amyloid formation and are the most important risk factor for the development of ATTR. More than 85 amyloidogenic TTR variants are known to cause systemic familial amyloidosis. TTR mutations usually give rise to systemic amyloid déposition, with particular involvement of the peripheral nervous System, although some mutations are associated with cardiomyopathy or vitreous opacities. Ibid.
The V30M mutation is the most prévalent TTR mutation. See, e.g., Lobato, L. (2003) JNephrol, 16:438-442. The V122I mutation is carried by 3.9% ofthe Afiican American population and is the most common cause of FAC. Jacobson, D.R. et al. (1997) N. Engl. J. Med. 336 (7): 466-73. It is estimated that SSA affects more than 25% of the population over âge 80. Westermark, P. et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87 (7): 2843-5.
Accordingly, there is a need in the art for effective treatments for TTR-associated diseases.
Summary of the Invention
The présent invention provides RNAi agents, e.g., double stranded RNAi agents, targeting the Transthyretin (TTR) gene. The présent invention also provides methods of inhibiting expression of TTR and methods of treating or preventing a TTR-associated disease in a subject using the RNAi agents, e.g. double stranded RNAi agents, of the invention. The présent invention is based, at least in part, on the discovery that RNAi agents that comprise particular chemical modifications show a superior ability to inhibit expression of TTR. Agents including a certain pattern of chemical modifications (e.g., an altemating pattern) and a ligand are shown herein to be effective in silencing the activity of the TTR gene. Furthermore, agents including one or more motifs of three identical modifications on three consecutive nucléotides, including one such motif at or near the cleavage site of the agents, show surprisingly enhanced TTR gene silencing activity. When a single such chemical motif is présent in the agent, it is preferred to be at or near the cleavage région for enhancing of the gene silencing activity. Cleavage région is the région surrounding the cleavage site, i.e., the site on the target mRNA at which cleavage occurs.
Accordingly, in one aspect, the présent invention features RNAi agents, e.g., double stranded RNAi agents, for inhibiting expression of a transthyretin (TTR). The double stranded RNAi agent includes a sense strand complementary to an antisense strand. The antisense strand includes a région complementary to a part of an mRNA encoding transthyretin. Each strand has 14 to 30 nucléotides, and the double stranded RNAi agent is represented by formula (III): sense: 5’ np -Na -(X X X) rNb -Y Y Y -Nb -(Z Z Z)j -Na - nq 3’ antisense: 3’ np'-Na'-(X'X'X')k-Nb'-Y'Y'Y'-Nb'-(Z'Z'Z')i-Na'- nq' 5’ (III).
In Formula III, i, j, k, and l are each independently 0 or 1 ; p, p', q, and q' are each independently 0-6; each Nn and Na' independently represents an oligonucleotide sequence including 0-25 nucléotides which are either modified or unmodified or combinations thereof, each sequence including at least two differently modified nucléotides; each Nb and Nb' independently represents an oligonucleotide sequence including 0-10 nucléotides which are either modified or unmodified or combinations thereof; each np, np', nq, and nq' independently represents an overhang nucléotide; XXX, YYY, ZZZ, X'X'X', ΥΎΎ', and Z'Z'Z' each independently represents one motif of three identical modifications on three consecutive nucléotides; modifications on Nb differ from the modification on Y and modifications on Nb' differ from the modification on Y'. In some embodiments, the sense strand is conjugated to at least one ligand, e.g., at least one ligand, e.g., at least one ligand attached to the 3’ end of the sense strand. In other embodiments, the ligand may be conjugated to the antisense strand.
In some embodiments, i is 1 ; j is 1 ; or both i and j are 1.
In some embodiments, k is 1 ; 1 is 1 ; or both k and 1 are 1.
In some embodiments, i is 0; j is l.
In some embodiments, i is 1, j is 0.
In some embodiments, k is 0; 1 is 1.
In some embodiments, k is 1; 1 is 0.
In some embodiments, XXX is complementary to X'X'X', YYY is complementary to ΥΎΎ', and ZZZ is complementary to Z'Z'Z'.
In some embodiments, the YYY motif occurs at or near the cleavage site of the sense strand.
In some embodiments, the ΥΎΎ' motif occurs at the 11,12 and 13 positions of the antisense strand from the 5’-end.
In some embodiments, the Y' is 2'-O-methyl.
In some embodiments, the Y’ is 2’-fluoro.
In some embodiments, formula (III) is represented as formula (Ilia):
sense: 5’ np -Na -YYY -Nb -ZZZ -Na-nq 3’ antisense: 3’ np'-Na'-Y'Y'Y'-Nb'-Z'Z'Z'-Nn'nq' 5' (Ilia).
In formula Ilia, each Nb and Nb' independently represents an oligonucleotide sequence including 1-5 modified nucléotides.
In some embodiments, formula (III) is represented as formula (Illb):
sense: 5’ np-Na-X X X -Nb-Y Y Y -Na-nq 3’ antisense: 31 np'-Na'-X'X'X'-Nb'-Y'Y'Y'-Na'-nq' 5’ (Illb).
In formula Illb each Nb and Nb' independently represents an oligonucleotide sequence including 1-5 modified nucléotides.
In some embodiments, formula (III) is represented as formula (IIIc):
sense: 5’ np-Na-X X X -Nb-Y Y Y -Nb-Z Z Z -Nd-nlt 3'
antisense: 3' np'-Na'-X'X'X'-Nb'-Y'Y'Y'-Nb'-Z'Z'Z'-Na'-nq' 5’ (IIIc).
In formula IIIc, each Nb and -Nb' independently represents an oligonucleotide sequence including 1-5 modifïed nucléotides and each Na and Na' independently represents an oligonucleotide sequence including 2-10 modifïed nucléotides.
In many embodiments, the duplex région is 15-30 nucléotide pairs in length. In some embodiments, the duplex région is 17-23 nucléotide pairs in length, 17-25 nucléotide pairs in length, 23-27 nucléotide pairs in length, 19-21 nucléotide pairs in length, or 21-23 nucléotide pairs in length.
In certain embodiments, each strand has 15-30 nucléotides.
In some embodiments, the modifications on the nucléotides are selected from the group consisting of LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-alkyl, 2'-O-allyl, 2'-C15 allyl, 2'-fluoro, 2'-deoxy, 2’-hydroxyl, and combinations thereof. In some preferred embodiments, the modifications on the nucléotides are 2'-O-methyl or 2'-fluoro.
In some embodiments, the ligand is one or more N-acetylgalactosamine (GalNAc) dérivatives attached through a bivalent or trivalent branched linker. In particular embodiments, the ligand is
In some embodiments, the ligand is attached to the 3' end of the sense strand.
In some embodiments, the RNAi agent is conjugated to the ligand as shown in the following schematic
wherein X is O or S.
In some embodiments, the RNAi agent is conjugated to the ligand as shown in the following schematic
In some embodiments, the RNAi agent further includes at least one phosphorothioate or methylphosphonate intemucleotide lînkage. In some embodiments, the phosphorothioate or methylphosphonate intemucleotide linkage is at the 3’-terminal of one strand. In some embodiments, the strand is the antisense strand. In other embodiments, the strand is the sense strand.
In certain embodiments, the base pair at the l position of the 5'-end of the duplex is an AU base pair.
In some embodiments, the Y nucléotides contain a 2'-fluoro modification.
In some embodiments, the Y' nucléotides contain a 2'-O-methyl modification.
In some embodiments, p'>0. In some such embodiments, each n is complementary to the target mRNA. In other such embodiments, each n is noncomplementary to the target mRNA. In some embodiments, p, p’, q and q’ are 1-6. In some preferred embodiments, p’ = 1 or 2. In some preferred embodiments, p-2. In some such embodiments, q’=0, p=0, q=0, and p’ overhang nucléotides are complementary to the target mRNA. In other such embodiments, q’=0, p=0, q=0, and p’ overhang nucléotides are non-complementary to the target mRNA.
In some embodiments, the sense strand has a total of 21 nucléotides and the antisense strand has a total of 23 nucléotides.
In certain embodiments, linkages between np' inciude phosphorothioate linkages. In some such embodiments, the linkages between np' are phosphorothioate linkages.
In some embodiments, the RNAi agent is selected from the group of agents listed in Table 1.
In preferred embodiments, the RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547.
In an even more preferred embodiment, the RNAi agent is AD-51547 having the following structure:
5’- UfgGfgAfuUfuCfAfUfgUfaacCfaAfgAfL96-3’ (SEQ ID
5’- uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc-3’ (SEQ ID sense:
NO:2) antisense:
NO:3) wherein lowercase nucléotides (a, u, g, c) indicate 2*-O-methyl nucléotides; Nf (e.g., Af) indicates a 2’-fluoro nucléotide; s indicates a phosphothiorate linkage; L96 indicates a GalNAcî ligand.
In another aspect, the présent invention features a cell containing the RNAi agent for inhibiting expression of TTR.
In a further aspect, the présent invention features a pharmaceutical composition comprising an RNAi agent for inhibiting expression of TTR. In some embodiments, the pharmaceutical composition is a solution comprising the RNAi agent. In some embodiments, the solution comprising the RNAi agent is an unbuffered solution, e.g., saline solution or water. In other embodiments, the solution is a buffered solution, e.g., a solution of phosphate buffered saline (PBS). In other embodiments, the pharmaceutical composition is a liposome or a lîpid formulation. In some embodiments, the lipid formulation comprises a XTC or MC3.
In yet another aspect, the présent invention features methods of inhibiting expression of transthyretin (TTR) in a cell. The methods include contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell, thereby inhibiting expression of TTR in the cell.
In some embodiments, the expression of TTR is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%.
In other embodiments, the cell is contacted in vitro with the RNAi agent. In other embodiments, the cell is présent within a subject. In preferred embodiments, the subject is a human.
In further embodiments, the subject is a subject suffering fforn a TTR-associated disease and the effective amount is a therapeutîcally effective amount. In other embodiments, the subject is a subject at risk for developing a TTR-associated disease and the effective amount is a prophylactically effective amount. In some embodiments, a subject at risk for develping a TTR-associated disease is a subject who carnes a TTR gene mutation that is associated with the development of a TTR-associated disease.
In certain embodiments, the TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.
In some embodiments, the subject has a TTR-associated amyloidosis and the method reduces an amyloid TTR deposit in the subject.
In other embodiments, the RNAi agent is administered to the subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof. In certain embodiments, the RNAi agent is administered to the subject via subcutaneous or intravenous administration. In preferred embodiments, the RNAi agent is administered to the subject via subcutaneous administration. In some such embodiments, the subcutaneous administration includes administration via a subcutaneous pump or subcutaneous depot.
In certain embodiments, the RNAi agent is administered to the subject such that the RNAi agent is delivered to a spécifie site within the subject. In some embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancréas. In preferred embodiments, the site is the liver. In some embodiments, the delivery of the RNAi agent is mediated by asialoglycoprotein receptor (ASGP-R) présent in hépatocytes.
In some embodiments, the RNAi agent is administered at a dose of between about 0.25 mg/kg to about 50 mg/kg, e.g., between about 0.25 mg/kg to about 0.5 mg/kg, between about 0.25 mg/kg to about l mg/kg, between about 0.25 mg/kg to about 5 mg/kg, between about 0.25 mg/kg to about 10 mg/kg, between about 1 mg/kg to about 10 mg/kg, between about 5 mg/kg to about 15 mg/kg, between about 10 mg/kg to about 20 mg/kg, between about 15 mg/kg to about 25 mg/kg, between about 20 mg/kg to about mg/kg, between about 25 mg/kg to about 35 mg/kg, or between about 40 mg/kg to about 50 mg/kg.
In some embodiments, the RNAi agent is administered at a dose of about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg, about 11 mg/kg, about 12 mg/kg, about 13 mg/kg, about 14 mg/kg, about 15 mg/kg, about 16 mg/kg, about 17 mg/kg, about 18 mg/kg, about 19 mg/kg, about 20 mg/kg, about 21 mg/kg, about 22 mg/kg, about 23 mg/kg, about 24 mg/kg, about 25 mg/kg, about 26 mg/kg, about 27 mg/kg, about 28 mg/kg, about 29 mg/kg, 30 mg/kg, about 31 mg/kg, about 32 mg/kg, about 33 mg/kg, about 34 mg/kg, about 35 mg/kg, about 36 mg/kg, about 37 mg/kg, about 38 mg/kg, about 39 mg/kg, about 40 mg/kg, about 41 mg/kg, about 42 mg/kg, about 43 mg/kg, about 44 mg/kg, about 45 mg/kg, about 46 mg/kg, about 47 mg/kg, about 48 mg/kg, about 49 mg/kg or about 50 mg/kg.
In some embodiments, the RNAi agent is administered in two or more doses. In particular embodiments, the RNAi agent is administered at intervals selected from the group consisting of once every about 2 hours, once every about 3 hours, once every about 4 hours, once every about 6 hours, once every about 8 hours, once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, once every about 96 hours, once every about 120 hours, once every about 144 hours, once every about 168 hours, once every about 240 hours, once every about 336 hours, once every about 504 hours, once every about 672 hours and once every about 720 hours.
In other embodiments, the method further includes assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.
In preferred embodiments, admînistering the RNAi agent does not resuit in an inflammatory response in the subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN-γ, IL-10, IL-12 (p70), IL 1 β, IL-lra, IL-6, IL-8, IP-10, MCP-1, ΜΙΡ-Ια, MIP-Ιβ, TNFa, and any combinations thereof, in a sample from the subject.
In some embodiments, the RNAi agent is administered using a pharmaceutical composition
In preferred embodiments, the RNAi agent is administered in a solution. In some such embodiments, the siRNA is administered in an unbuffered solution. In one embodiment, the siRNA is administered in water. In other embodiments, the siRNA is administered with a buffer solution, such as an acetate buffer, a citrate buffer, a prolamine buffer, a carbonate buffer, or a phosphate buffer or any combination thereof. In some embodiments, the buffer solution is phosphate buffered saline (PBS).
In another embodiment, the pharmaceutical composition is a liposome or a lipid formulation comprising SNALP or XTC. In one embodiment, the lipid formulation comprises an MC3.
In another aspect, the invention provides methods of treating or preventing a TTR-associated disease in a subject. The methods include administering to the subject a therapeutically effective amount or prophylactically effective amount of an RNAi agent, e.g., a double stranded RNAi agent, thereby treating or preventing the TTR-associated disease in the subject.
In some embodiments, TTR expression in a sample derived from the subject is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60% or at least about 70% at least about 80%, or at least about 90%.
In some embodiments, the subject is a human.
In some embodiments, the subject is a subject suffering from a TTR-associated disease. In other embodiments, the subject is a subject at risk for developing a TTRassociated disease.
In some embodiments, the subject is a subject who cames s a TTR gene mutation that is associated with the development of a TTR-associated disease.
In certain embodiments, the TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (F AP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.
In some embodiments, the subject has a TTR-associated amyloidosis and the method reduces an amyloid TTR deposit in the subject.
In some embodiments, the RNAi agent is administered to the subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof. In certain embodiments, the RNAi agent is administered to the subject via subcutaneous or intravenous administration. In preferred embodiments, the RNAi agent is administered to the subject via subcutaneous administration. In some such embodiments, the subcutaneous administration includes administration via a subcutaneous pump or subcutaneous depot.
In certain embodiments, the RNAi agent is administered to the subject such that the RNAi agent is delivered to a spécifie site within the subject. In some such embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancréas. In preferred embodiments, the site is the liver. In some embodiments, the delivery of the RNAi agent is mediated by asialoglycoprotein receptor (ASGP-R) présent in hépatocytes.
In some embodiments, the RNAi agent is administered at a dose of between about 0.25 mg/kg to about 50 mg/kg, e.g., between about 0.25 mg/kg to about 0.5 mg/kg, between about 0.25 mg/kg to about 1 mg/kg, between about 0.25 mg/kg to about 5 mg/kg, between about 0.25 mg/kg to about 10 mg/kg, between about 1 mg/kg to about 10 mg/kg, between about 5 mg/kg to about 15 mg/kg, between about 10 mg/kg to about 20 mg/kg, between about 15 mg/kg to about 25 mg/kg, between about 20 mg/kg to about 30 mg/kg, between about 25 mg/kg to about 35 mg/kg, or between about 40 mg/kg to about 50 mg/kg.
In some embodiments, the RNAi agent is administered at a dose of about 0.25 mg/kg, about 0.5 mg/kg, about 1 mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg, about 11 mg/kg, about 12 mg/kg, about 13 mg/kg, about 14 mg/kg, about 15 mg/kg, about 16 mg/kg, about 17 mg/kg, about 18 mg/kg, about 19 mg/kg, about 20 mg/kg, about 21 mg/kg, about 22 mg/kg, about 23 mg/kg, about 24 mg/kg, about 25 mg/kg, about 26 mg/kg, about 27 mg/kg, about 28 mg/kg, about 29 mg/kg, 30 mg/kg, about 31 mg/kg, about 32 mg/kg, about 33 mg/kg, about 34 mg/kg, about 35 mg/kg, about 36 mg/kg, about 37 mg/kg, about 38 mg/kg, about 39 mg/kg, about 40 mg/kg, about 41 mg/kg, about 42 mg/kg, about 43 mg/kg, about 44 mg/kg, about 45 mg/kg, about 46 mg/kg, about 47 mg/kg, about 48 mg/kg, about 49 mg/kg or about 50 mg/kg.
In some embodiments, the RNAi agent is administered in two or more doses. In particular embodiments, the RNAi agent is administered at intervals selected from the group consisting of once every about 2 hours, once every about 3 hours, once every about 4 hours, once every about 6 hours, once every about 8 hours, once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, once every about 96 hours, once every about 120 hours, once every about 144 hours, once every about 168 hours, once every about 240 hours, once every about 336 hours, once every about 504 hours, once every about 672 hours and once every about 720 hours.
In other embodiments, the method further includes assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.
In preferred embodiments, administering the RNAi agent does not resuit in an inflammatory response in the subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN-γ, IL-10, IL-12 (p70), IL1 β, IL-lra, IL-6, IL-8, IP-10, MCP-1, ΜΙΡ-Ια, MIP-Ιβ, TNFa, and any combinations thereof, in a sample from the subject.
In some embodiments, the RNAi agent is administered using a pharmaceutical composition, e.g., a liposome.
In some embodiments, the RNAi agent is administered in a solution. In some such embodiments, the siRNA is administered in an unbuffered solution. In one embodiment, the siRNA is administered in saline or water. In other embodiments, the siRNA is administred with a buffer solution, such as an acetate buffer, a citrate buffer, a prolamine buffer, a carbonate buffer, or a phosphate buffer or any combination thereof. In some embodiments, the buffer solution is phosphate buffered saline (PBS).
In another aspect, the présent invention provides a method of inhibiting expression of transthyretin (TTR) in a cell, including contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell. In one aspect, the double stranded RNAi agent is selected from the group of agents listed in Table l, thereby inhibiting expression of transthyretin (TTR) in the cell.
In another aspect, the présent invention provides a method of inhibiting expression of transthyretin (TTR) in a cell, including contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell. In one aspect, the double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby inhibiting expression of transthyretin (TTR) in the cell.
In a further aspect, the présent invention provides a method of treating or preventing a TTR-associated disease in a subject, including administering to the subject a therapeutlcally effective amount or a prophylactically effective amount of an RNAi agent, e.g., a double stranded RNAi agent. In one aspect, the double stranded RNAi agent is selected from the group of agents listed in Table 1, thereby treating or preventing a TTR-associated disease in the subject.
In yet another aspect, the présent invention provides a method of treating or preventing a TTR-associated disease in a subject, including administering to the subject a therapeutlcally effective amount or a prophylactically effective amount of an RNAi agent, e.g., a double stranded RNAi agent. In one aspect, the double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby treating or preventing a TTR-associated disease in the subject.
In further aspects, the invention provides kits for performing the methods of the invention. In one aspect, the invention provides a kit for performing a method of inhibiting expression of transthyretin (TTR) in a cell comprising contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, in an amount effective to inhibit expression of said TTR in said cell, thereby inhibiting the expression of TTR in the cell. The kit comprises an RNAi agent and instructions for use and, optionally, means for administering the RNAi agent to the subject.
The présent invention is further illustrated by the following detailed description and drawins.
Brief Description of the Drawings
Figure 1 is a graph depicting that administering to mice a single subcutaneous dose of a GalNAc-conjugated RNAi agent targeting TTR resulted in dose-dependent suppression of TTR mRNA.
Figure 2 is a graph depicting that administering to mice a single subcutaneous dose of 7.5 mg/kg or 30 mg/kg of a GalNAc conjugated RNAi agent targeting TTR resulted in long lasting suppression of TTR mRNA.
Figure 3 depicts the human TTR mRNA sequence.
Figure 4 is a graph depicting improved silencing activity of RNAi agents modified relative to the parent AD-45163.
Figure 5 is a graph depicting improved silencing activity of RNAi agents modified relative to the parent AD-45165.
Figure 6 is a graph depicting improved free uptake silencing following 4 hour incubation with RNAi agents modified relative to the parent AD-45163.
Figure 7 is a graph depicting improved free uptake silencing following 24 hour incubation with RNAi agents modified relative to the parent AD-45163.
Figure 8 is a graph depicting improved free uptake silencing following 4 hour incubation with RNAi agents modified relative to the parent AD-45165.
Figure 9 is a graph depicting improved free uptake silencing following 24 hour incubation with RNAi agents modified relative to the parent AD-45165.
Figure 10 is a graph depicting silencing of TTR mRNA in transgenic mice that express hTTR V30M following administration of a single subcutaneous dose of RNAi agents AD-51544, AD-51545, AD-45163, AD-51546, AD-51547, or AD-45165.
Figure 11 is a graph depicting TTR protein suppression in transgenic mice that express hTTR V30M following administration of a single subcutaneous dose of 5 mg/kg or 1 mg/kg of RNAi agents AD-51544, AD-51545, or AD-45163.
Figure 12 is a graph depicting TTR protein suppression in transgenic mice that express hTTR V30M following administration of a single subcutaneous dose of 5 mg/kg or lmg/kgof RNAi agents AD-51546, AD-51547, or AD-45165.
Figure 13 depicts the protocol for post-dose blood draws in monkeys that received 5x5mg/kg RNAi agent (top line) or lx25mg/kg RNAi agent (bottom line).
Figure 14 is a graph depicting suppression of TTR protein in non-human primates following subcutaneous administration of ftve 5 mg/kg doses (top panel) or a single 25mg/kg dose (bottom panel) of AD-45163, AD-51544, AD-51545, AD-51546, or AD-51547.
Figure 15 is a graph depicting suppression of TTR protein in non-human primates following subcutaneous administration of AD-51547 at 2.5 mg/kg (white squares), 5 mg/kg (black squares) or 10 mg/kg (pattemed squares) per dose, or administration of PBS as a négative control (gray squares).
Detailed Description of the Invention
The présent invention provides RNAi agents, e.g., double stranded RNAi agents, and compositions targeting the Transthyretin (TTR) gene. The présent invention also provides methods of inhibiting expression of TTR and methods of treating or preventing a TTR-associated disease in a subject using the RNAi agents, e.g., double stranded RNAi agents, of the invention. The présent invention is based, at least in part, on the discovery that RNAi agents that comprise particular chemical modifications show a superior ability to inhibit expression of TTR. Agents including a certain pattern of chemical modifications (e.g., an altemating pattern) and a ligand are shown herein to be effective in silencing the activity of the TTR gene. Furthermore, agents including one or more motifs of three identical modifications on three consecutive nucléotides, including one such motif at or near the cleavage site of the agents, show surprisingly enhanced TTR gene silencing activity. When a single such chemical motif îs présent in the agent, it is preferred to be at or near the cleavage région for enhancing of the gene silencing activity. Cleavage région is the région surrounding the cleavage site, i.e., the site on the target mRNA at which cleavage occurs.
I. Définitions
As used herein, each of the following terms has the meaning associated with it in this section.
The term including is used herein to mean, and is used interchangeably with, the phrase including but not limited to.
The term or is used herein to mean, and is used interchangeably with, the term and/or, unless context clearly indicates otherwise.
As used herein, a “transthyretin” (“TTR”) refers to the well known gene and protein. TTR is also known as prealbumin, HsT265l, PALB, and TBPA. TTR functions as a transporter of retinol-binding protein (RBP), thyroxine (T4) and retinol, and it also acts as a protease. The liver sécrétés TTR into the blood, and the choroid plexus sécrétés TTR into the cerebrospinal fluid. TTR is also expressed in the pancréas and the retinal pigment epithelium. The greatest clinical relevance of TTR is that both normal and mutant TTR protein can form amyloid fibrils that aggregate into extracellular deposits, causing amyloidosis. See, e.g., Saraiva M.J.M. (2002) Expert Reviews in Molecular Medicine, 4(12):1-11 for a review. The molecular cloning and nucléotide sequence of rat transthyretin, as well as the distribution of mRNA expression, was described by Dickson, P.W. et al. (1985) J. Biol. Chem. 260(13)8214-8219. The Xray crystal structure of human TTR was described in Blake, C.C. et al. (1974) J Mol Biol 88,1-12. The sequence of a human TTR mRNA transcript can be found at National Center for Biotechnology Information (NCBI) RefSeq accession number NM_000371. The sequence of mouse TTR mRNA can be found at RefSeq accession number NM_013697.2, and the sequence of rat TTR mRNA can be found at RefSeq accession number NM_012681.1
As used herein, “target sequence” refers to a contiguous portion of the nucléotide sequence of an mRNA molécule formed during the transcription of a TTR gene, including mRNA that is a product of RNA processing of a primary transcription product.
As used herein, the tenn “strand comprising a sequence” refers to an oligonucleotide comprising a chain of nucléotides that is described by the sequence referred to using the standard nucléotide nomenclature.
G, C, A and U each generally stand for a nucléotide that contains guanine, cytosine, adenine, and uracil as a base, respectively. “T” and “dT” are used interchangeably herein and refer to a deoxyribonucleotide wherein the nucleobase is thymine, e.g., deoxyribothymine, 2’-deoxythymidine or thymidine. However, it will be understood that the term “ribonucleotide” or “nucléotide” or “deoxyribonucleotide” can also refer to a modified nucléotide, as further detailed below, or a surrogate replacement moiety. The skilled person is well aware that guanine, cytosine, adenine, and uracil may be replaced by other moîeties without substantially altering the base pairing properties of an oligonucleotide comprising a nucléotide bearing such replacement moiety. For example, without limitation, a nucléotide comprising inosine as its base may base pair with nucléotides containing adenine, cytosine, or uracil. Hence, nucléotides containing uracil, guanine, or adenine may be replaced in the nucléotide sequences of the invention by a nucléotide containing, for example, inosine. Sequences comprising such replacement moietîes are embodiments of the invention.
A “double stranded RNAi agent,” double-stranded RNA (dsRNA) molécule, also referred to as “dsRNA agent,” “dsRNA”, “siRNA”, “iRNA agent,” as used interchangeably herein, refers to a complex of ribonucleic acid molécules, having a duplex structure comprising two anti-parallel and substantially complementary, as defined below, nucleic acid strands. In general, the majority of nucléotides of each strand are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide and/or a modified nucléotide. In addition, as used in this spécification, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucléotides. Such modifications may include ail types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molécule, are encompassed by “RNAi agent” for the purposes of this spécification and claims.
In another embodiment, the RNAi agent may be a single-stranded siRNA that is introduced into a cell or organism to inhibit a target mRNA. Single-stranded RNAi agents bind to the RISC endonuclease Argonaute 2, which then cleaves the target mRNA. The single-stranded siRNAs are generally 15-30 nucléotides and are chemically modified. The design and testing of single-stranded siRNAs are described in U.S. Patent No. 8,101,348 and in Lima et al., (2012) Cell 150: 883-894, the entire contents of each of which are hereby incorporated herein by reference. Any of the antisense nucléotide sequences described herein may be used as a single-stranded siRNA as described herein or as chemically modified by the methods described in Lima et al., (2012) Cell 150;:883-894.
The two strands forming the duplex structure may be different portions of one larger RNA molécule, or they may be separate RNA molécules. Where the two strands are part of one larger molécule, and therefore are connected by an uninterrupted chain of nucléotides between the 3’-end of one strand and the 5’-end of the respective other strand forming the duplex structure, the connecting RNA chain is referred to as a “hairpin loop.” Where the two strands are connected covalently by means other than an uninterrupted chain of nucléotides between the 3’-end of one strand and the 5’-end of the respective other strand fonning the duplex structure, the connecting structure is referred to as a “linker.” The RNA strands may hâve the same or a different number of nucléotides. The maximum number of base pairs is the number of nucléotides in the shortest strand of the dsRNA minus any overhangs that are présent in the duplex. In addition to the duplex structure, an RNAÎ agent may comprise one or more nucléotide overhangs, The term “siRNA” is also used herein to refer to an RNAi agent as described above.
In another aspect, the agent is a single-stranded antisense RNA molécule. An antisense RNA molécule is complementary to a sequence within the target mRNA. Antisense RNA can inhibit translation in a stoichiometric manner by base pairing to the mRNA and physically obstructing the translation machinery, see Dias, N. et al., (2002) Mol Cancer Ther l :347-355. The antisense RNA molécule may hâve about 15-30 nucléotides that are complementary to the target mRNA. For example, the antisense RNA molécule may hâve a sequence of at least 15,16, 17,18,19, 20 or more contiguous nucléotides from one of the antisense sequences of Table 1.
As used herein, a “nucléotide overhang” refers to the unpaired nucléotide or nucléotides that protrude from the duplex structure of an RNAi agent when a 3’-end of one strand of the RNAi agent extends beyond the 5’-end of the other strand, or vice versa. “Blunt” or “blunt end” means that there are no unpaired nucléotides at that end of the double stranded RNAi agent, i.e., no nucléotide overhang. A “blunt ended” RNAi agent is a dsRNA that is double-stranded over its entire length, i.e., no nucléotide overhang at either end of the molécule. The RNAi agents of the invention include RNAi agents with nucléotide overhangs at one end (i.e., agents with one overhang and one blunt end) or with nucléotide overhangs at both ends.
The term “antisense strand” refers to the strand of a double stranded RNAi agent which includes a région that is substantially complementary to a target sequence (e.g., a human TTR mRNA). As used herein, the term “région complementary to part of an mRNA encoding transthyretin” refers to a région on the antisense strand that is substantially complementary to part of a TTR mRNA sequence. Where the région of complementarity is not fully complementary to the target sequence, the mismatches are most tolerated in the terminal régions and, if présent, are generally in a terminal région or régions, e.g., within 6, 5, 4, 3, or 2 nucléotides of the 5’ and/or 3’ terminus.
The term “sense strand,” as used herein, refers to the strand of a dsRNA that includes a région that is substantially complementary to a région of the antisense strand.
As used herein, the term “cleavage région” refers to a région that is located immediately adjacent to the cleavage site. The cleavage site is the site on the target at which cleavage occurs. In some embodiments, the cleavage région comprises three bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage région comprises two bases on either end of, and immediately adjacent to, the cleavage site. In some embodiments, the cleavage site specifically occurs at the site bound by nucléotides 10 and 11 of the antisense strand, and the cleavage région comprises nucléotides 11, 12 and 13.
As used herein, and unless otherwise indicated, the term “complementary,” when used to describe a first nucléotide sequence in relation to a second nucléotide sequence, refers to the ability of an oligonucleotide or polynucleotide comprising the first nucléotide sequence to hybridize and form a duplex structure under certain conditions with an oligonucleotide or polynucleotide comprising the second nucléotide sequence, as will be understood by the skilled person. Such conditions can, for example, be stringent conditions, where stringent conditions may înclude: 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA, 50°C or 70°C for 12-16 hours foilowed by washing. Other conditions, such as physiologically relevant conditions as may be encountered inside an organism, can apply. The skilled person will be able to détermine the set of conditions most appropriate for a test of complementarity of two sequences in accordance with the ultimate application of the hybridized nucléotides.
Sequences can be “fiilly complementary” with respect to each when there is base-pairing of the nucléotides of the first nucléotide sequence with the nucléotides of the second nucléotide sequence over the entîre length of the first and second nucléotide sequences. However, where a first sequence is referred to as “substantially complementary” with respect to a second sequence herein, the two sequences can be fiilly complementary, or they may form one or more, but generally not more than 4,3 or 2 mismatched base pairs upon hybridization, while retaining the ability to hybridize under the conditions most relevant to their ultimate application. However, where two oligonucleotides are designed to form, upon hybridization, one or more single stranded overhangs, such overhangs shall not be regarded as mismatches with regard to the détermination of complementarity. For example, a dsRNA comprising one oligonucleotide 21 nucléotides in length and another oligonucleotide 23 nucléotides in length, wherein the longer oligonucleotide comprises a sequence of 21 nucléotides that is fully complementary to the shorter oligonucleotide, may yet be referred to as “fully complementary” for the purposes described herein.
“Complementary” sequences, as used herein, may also include, or be formed entirely from, non-Watson-Crick base pairs and/or base pairs formed from non-natural and modifïed nucléotides, in as far as the above requirements with respect to their ability to hybridize are fulfilled. Such non-Watson-Crick base pairs includes, but not limited to, G:U Wobble or Hoogstein base pairing.
The terms “complementary,” “fully complementary” and “substantially complementary” herein may be used with respect to the base matching between the sense strand and the antisense strand of a dsRNA, or between the antisense strand of a dsRNA and a target sequence, as will be understood from the context of their use.
As used herein, a polynucleotide that is “substantially complementary to at least part of ’ a messenger RNA (mRNA) refers to a polynucleotide that is substantially complementary to a contiguous portion of the mRNA of interest (e.g., an mRNA encoding TTR) including a 5’ UTR, an open reading frame (ORF), or a 3’ UTR. For example, a polynucleotide is complementary to at least a part of a TTR mRNA if the sequence is substantially complementary to a non-interrupted portion of an mRNA encoding TTR.
The tenu “inhibiting,” as used herein, is used ïnterchangeably with “reducing,” “silencing,” “downregulating,” “suppressing” and other similar terms, and includes any level of inhibition.
The phrase “inhibiting expression of a TTR,” as used herein, includes inhibition of expression of any TTR gene (such as, e.g., a mouse TTR gene, a rat TTR gene, a monkey TTR gene, or a human TTR gene) as well as variants or mutants of a TTR gene. Thus, the TTR gene may be a wild-type TTR gene, a mutant TTR gene (such as a mutant TTR gene giving rise to systemic amyloid déposition), or a transgenic TTR gene in the context of a genetically manipulated cell, group of cells, or organism.
“Inhibiting expression of a TTR gene” includes any level of inhibition of a TTR gene, e.g., at least partial suppression of the expression of a TTR gene, such as an inhibition of at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%. at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.
The expression of a TTR gene may be assessed based on the level of any variable associated with TTR gene expression, e.g., TTR mRNA level, TTR protein level, retinol binding protein level, vitamin A level, or the number or extent of amyloid deposits. Inhibition may be assessed by a decrease in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).
The phrase “contacting a cell with an RNAi agent,” as used herein, includes contacting a cell by any possible means. Contacting a cell with an RNAi agent, e.g., a double stranded RNAi agent, includes contacting a cell in vitro with the RNAi agent or contacting a cell in vivo with the RNAi agent. The contacting may be done directly or indirectly. Thus, for example, the RNAi agent may be put into physical contact with the cell by the individual performing the method, or altematively, the RNAi agent may be put into a situation that will permit or cause it to subsequently corne into contact with the cell.
Contacting a cell in vitro may be done, for example, by incubating the cell with the RNAi agent. Contacting a cell in vivo may be done, for example, by injecting the RNAi agent into or near the tissue where the cell is located, or by injecting the RNAi agent into another area, e.g., the bloodstream or the subcutaneous space, such that the agent will subsequently reach the tissue where the cell to be contacted is located. For example, the RNAi agent may contain and/or be coupled to a ligand, e.g., a GalNAcj ligand, that directs the RNAi agent to a site of interest, e.g., the liver. Combinations of in vitro and in vivo methods of contacting are also possible. In connection with the methods of the invention, a cell might also be contacted in vitro with an RNAi agent and subsequently transplanted into a subject.
A patient or subject, as used herein, is intended to include either a human or non-human animal, preferably a mammal, e.g., a monkey. Most preferably, the subject or patient is a human.
A “TTR-associated disease,” as used herein, is intended to include any disease associated with the TTR gene or protein. Such a disease may be caused, for example, by excess production of the TTR protein, by TTR gene mutations, by abnormal cleavage of the TTR protein, by abnormal interactions between TTR and other proteins or other endogenous or exogenous substances. A “TTR-associated disease” includes any type of TTR amyloidosis (ATTR) wherein TTR plays a rôle in the formation of abnormal extracellular aggregates or amyloid deposits. TTR-associated diseases include senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, amyloidotic vitreous opacities, carpal tunnel syndrome, and hyperthyroxinemia. Symptoms of TTR amyloidosis include sensory neuropathy (e.g., paresthesia, hypesthesia in distal limbs), autonomie neuropathy (e.g., gastrointestinal dysfunction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomie insufficiency, cardiomyopathy, vitreous opacities, rénal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfunction, and comeal lattice dystrophy.
Therapeutîcally effective amount, as used herein, is intended to include the amount of an RNAi agent that, when administered to a patient for treating a TTR associated disease, is sufficient to effect treatment of the disease (e.g., by dîminishing, ameliorating or maintaining the existing disease or one or more symptoms of disease). The therapeutîcally effective amount may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, âge, weight, family history, genetic makeup, stage of pathological processes mediated by TTR expression, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.
“Prophylactically effective amount,” as used herein, is întended to include the amount of an RNAi agent that, when administered to a subject who does not yet expérience or display symptoms of a TTR-associated disease, but who may be predisposed to the disease, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Symptoms that may be ameliorated include sensory neuropathy (e.g., paresthesia, hypesthesia in distal limbs), autonomie neuropathy (e.g., gastrointestinal dysfonction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomie insufficiency, cardiomyopathy, vitreous opacities, rénal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfonction, and comeal lattice dystrophy. Amelioratîng the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The prophylactically effective amount may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, âge, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.
A therapeutically-effective amount or “prophylacticaly effective amount” also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. RNAi gents employed in the methods of the présent invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.
The term “sample,” as used herein, includes a collection of sîmilar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tîssues présent within a subject. Examples of biological fluids include blood, sérum and serosal fluids, plasma, cerebrospinal fluid, ocular fluids, lymph, urine, saliva, and the like. Tissue samples may include samples from tissues, organs or localized régions. For example, samples may be derived from particular organs, parts of organs, or fluids or cells within those organs. In certain embodiments, samples may be derived from the liver (e.g., whole liver or certain segments of liver or certain types of cells in the liver, such as, e.g., hépatocytes), the retina or parts of the retina (e.g., retinal pigment epithelium), the central nervous system or parts of the central nervous system (e.g., ventricles or choroid plexus), or the pancréas or certain cells or parts of the pancréas. In some embodiments, a “sample derived from a subject” refers tocerebrospinal fluid obtained from the subject. In preferred embodiments, a “sample derived from a subject” refers to blood or plasma drawn from the subject. In further embodiments, a “sample derived from a subject” refers to liver tissue (or subcomponents thereof) or retinal tissue (or subcomponents thereof) derived from the subject.
IL RNAi Agents
The présent invention provides RNAi agents with superior gene silencing activity. It is shown herein and in Provisional Application No. 61/561,710 (to which the présent application claims priority) that a superior resuit may be obtained by introducing one or more motifs of three identical modifications on three consecutive nucléotides into a sense strand and/or antisense strand of a RNAi agent, particularly at or near the cleavage site. The sense strand and antisense strand of the RNAi agent may otherwise be completely modified. The introduction of these motifs interrupts the modification pattern, if présent, of the sense and/or antisense strand. The RNAi agent also optionally conjugates with a GalNAc dérivative ligand, for instance on the sense strand. The resulting RNAi agents présent superior gene silencing activity.
The inventors surprisingly discovered that when the sense strand and antisense strand of the RNAi agent are completely modified, having one or more motifs of three identical modifications on three consecutive nucléotides at or near the cleavage site of at least one strand of a RNAi agent superiorly enhanced the gene silencing acitivity of the RNAi agent.
Accordingly, the invention provides RNAi agents, e.g., double stranded RNAi agents, capable of inhibiting the expression of a target gene (i.e., a TTR gene) in vivo. The RNAi agent comprises a sense strand and an antisense strand. Each strand of the
RNAi agent can range from 12-30 nucléotides in length. For example, each strand can be between 14-30 nucléotides in length, 17-30 nucléotides in length, 25-30 nucléotides in length, 27-30 nucléotides in length, 17-23 nucléotides in length, 17-21 nucléotides in length, 17-19 nucléotides in length, 19-25 nucléotides in length, 19-23 nucléotides in length, 19-21 nucléotides in length, 21-25 nucléotides in length, or 21-23 nucléotides in length.
The sense strand and antîsense strand typically form a duplex double stranded RNA (“dsRNA”), also referred to herein as an “RNAi agent.” The duplex région of an RNAi agent may be 12-30 nucléotide pairs in length. For example, the duplex région can be between 14-30 nucléotide pairs in length, 17-30 nucléotide pairs in length, 27-30 nucléotide pairs in length, 17-23 nucléotide pairs in length, 17-21 nucléotide pairs in length, 17-19 nucléotide pairs in length, 19-25 nucléotide pairs in length, 19-23 nucléotide pairs in length, 19- 21 nucléotide pairs in length, 21-25 nucléotide pairs in length, or 21-23 nucléotide pairs in length. In another example, the duplex région is selected from 15,16, 17,18,19, 20, 21, 22,23, 24,25,26, and 27.
In one embodiment, the RNAi agent may contain one or more overhang régions and/or capping groups of RNAi agent at 3’-end, or 5’-end or both ends of a strand. The overhang can be 1-6 nucléotides in length, for instance 2-6 nucléotides in length, 1-5 nucléotides in length, 2-5 nucléotides in length, 1-4 nucléotides in length, 2-4 nucléotides in length, 1-3 nucléotides in length, 2-3 nucléotides in length, or 1-2 nucléotides in length. The overhangs can be the resuit of one strand being longer than the other, or the resuit of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be other sequence. The first and second strands can also be joined, e.g., by additional bases to form a haîrpin, or by other non-base linkers.
The RNAi agents provided by the présent invention include agents with chemical modifications as disclosed, for example, in U.S. Provisional Application No. 61/561,710, filed on November 18,2011, International Application No.
PCT/US2011/051597, filed on September 15, 2010, and PCT Publication WO 2009/073809, the entire contents of each of which are incorporated herein by reference.
In one embodiment, the nucléotides in the overhang région of the RNAi agent can each independently be a modified or unmodified nucléotide including, but no limited to 2’-sugar modified, such as, 2-F, 2’-O-methyl, thymidine (T), 2'-0-methoxyethyl-5methyluridine (Teo), 2'-O-methoxyethyladenosine (Aeo), 2'-O-methoxyethyl-5methylcytidine (m5Ceo), and any combinations thereof. For example, TT can be an overhang sequence for either end on either strand. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be other sequence.
The 5’- or 3’- overhangs at the sense strand, antisense strand or both strands of the RNAi agent may be phosphorylated. In some embodiments, the overhang région contains two nucléotides having a phosphorothioate between the two nucléotides, where the two nucléotides can be the same or different. In one embodiment, the overhang is présent at the 3’-end of the sense strand, antisense strand or both strands. In one embodiment, this 3’-overhang is présent in the antisense strand. In one embodiment, this 3’-overhang is présent in the sense strand.
The RNAi agent may contain only a single overhang, which can strengthen the interférence activity of the RNAi, without affecting its overall stabiiity. For example, the single-stranded overhang is located at the 3'-terminal end ofthe sense strand or, altematively, at the 3'-terminal end of the antisense strand. The RNAi may also hâve a blunt end, located at the 5’-end ofthe antisense strand (or the 3’-end ofthe sense strand) or vice versa. Generally, the antisense strand of the RNAi has a nucléotide overhang at the 3’-end, and the 5’-end is blunt. While the Applicants are not bound by theory, the theoretical mechanism is that the asymmetric blunt end at the 5’-end ofthe antisense strand and 3’-end overhang of the antisense strand favor the guide strand loading into RISC process.
In one embodiment, the RNAi agent is a double ended bluntmer of 19 nt in length, wherein the sense strand contains at least one motif of three 2’-F modifications on three consecutive nucléotides at positions 7,8,9 from the 5’end. The antisense strand contains at least one motif of three 2’-O-methyl modifications on three consecutive nucléotides at positions 11, 12,13 from the 5’end.
In one embodiment, the RNAi agent is a double ended bluntmer of 20 nt in length, wherein the sense strand contains at least one motif of three 2’-F modifications on three consecutive nucléotides at positions 8,9,10 from the 5’end. The antisense strand contains at least one motif of three 2’-O-methyl modifications on three consecutive nucléotides at positions 11, 12, 13 from the 5’end.
In one embodiment, the RNAi agent is a double ended bluntmer of 21 nt in length, wherein the sense strand contains at least one motif of three 2’-F modifications on three consecutive nucléotides at positions 9,10,11 from the 5’end. The antisense strand contains at least one motif of three 2’-O-methyl modifications on three consecutive nucléotides at positions 11, 12, 13 from the 5’end.
In one embodiment, the RNAi agent comprises a 21 nucléotides (nt) sense strand and a 23 nucléotides (nt) antisense strand, wherein the sense strand contains at least one motif of three 2’-F modifications on three consecutive nucléotides at positions 9,10,11 from the 5’end; the antisense strand contains at least one motif of three 2’-O-methyl modifications on three consecutive nucléotides at positions 11, 12, 13 from the 5’end, wherein one end of the RNAi agent is blunt, while the other end comprises a 2 nt overhang. Preferably, the 2 nt overhang is at the 3’-end of the antisense. Optionally, the RNAi agent further comprises a ligand (preferably GalNAcj).
In one embodiment, the RNAi agent comprises a sense and an antisense strand, wherein the sense strand is 25-30 nucléotide residues in length, wherein starting from the 5' terminal nucléotide (position 1) positions 1 to 23 of the first strand comprise at least 8 ribonucleotides; antisense strand is 36-66 nucléotide residues in length and, starting from the 3' terminal nucléotide, comprises at least 8 ribonucleotides in the positions paired with positions 1- 23 of sense strand to form a duplex; wherein at least the 3 ' terminal nucléotide of antisense strand is unpaired with sense strand, and up to 6 consecutive 3' terminal nucléotides are unpaired with sense strand, thereby forming a 3' single stranded overhang of 1-6 nucléotides; wherein the 5' terminus of antisense strand comprises from 10-30 consecutive nucléotides which are unpaired with sense strand, thereby forming a 10-30 nucléotide single stranded 5' overhang; wherein at least the sense strand 5' terminal and 3' terminal nucléotides are base paired with nucléotides of antisense strand when sense and antisense strands are aligned for maximum complementarity, thereby forming a substantially duplexer! région between sense and antisense strands; and antisense strand is sufficiently complementary to a target RNA along at least 19 ribonucleotides of antisense strand length to reduce target gene expression when the double stranded nucleic acid is introduced into a mammalian cell; and wherein the sense strand contains at least one motif of three 2’-F modifications on three consecutive nucléotides, where at least one of the motifs occurs at or near the cleavage site. The antisense strand contains at least one motif of three 2’-O-methyl modifications on three consecutive nucléotides at or near the cleavage site.
In one embodiment, the RNAi agent comprises sense and antisense strands, wherein the RNAi agent comprises a first strand having a length which is at least 25 and at most 29 nucléotides and a second strand having a length which is at most 30 nucléotides with at least one motif of three 2’-O-methyl modifications on three consecutive nucléotides at position 11,12,13 from the 5’ end; wherein the 3’ end of the first strand and the 5’ end of the second strand form a blunt end and the second strand is 1-4 nucléotides longer at its 3’ end than the first strand, wherein the duplex région which is at least 25 nucléotides in length, and the second strand is sufficiently complemenatary to a target mRNA along at least 19 nt of the second strand length to reduce target gene expression when the RNAi agent is introduced into a mammalian cell, and wherein dicer cleavage of the RNAi agent preferentîally results in an siRNA comprising the 3’ end of the second strand, thereby reducing expression of the target gene in the mammal. Optionally, the RNAi agent further comprises a ligand.
In one embodiment, the sense strand of the RNAi agent contains at least one motif of three identical modifications on three consecutive nucléotides, where one of the motifs occurs at the cleavage site in the sense strand.
In one embodiment, the antisense strand of the RNAi agent can also contain at least one motif of three identical modifications on three consecutive nucléotides, where one of the motifs occurs at or near the cleavage site in the antisense strand
For RNAi agent having a duplex région of 17-23 nt in length, the cleavage site of the antisense strand is typically around the 10,11 and 12 positions from the 5’-end. Thus, the motifs of three identical modifications may occur at the 9, 10, 11 positions; 10, 11,12 positions; 11, 12, 13 positions; 12, 13,14 positions; or 13,14, 15 positions of the antisense strand, the count starting from the lst nucléotide from the 5’-end of the antisense strand, or, the count starting from the lsl paired nucléotide within the duplex région from the 5*- end of the antisense strand. The cleavage site in the antisense strand may also change according to the length of the duplex région of the RNAi from the 5’end.
The sense strand of the RNAi agent may contain at least one motif of three identical modifications on three consecutive nucléotides at the cleavage site of the strand; and the antisense strand may hâve at least one motif of three identical modifications on three consecutive nucléotides at or near the cleavage site of the strand. When the sense strand and the antisense strand form a dsRNA duplex, the sense strand and the antisense strand can be so aligned that one motif of the three nucléotides on the sense strand and one motif of the three nucléotides on the antisense strand hâve at least one nucléotide overlap, i.e., at least one of the three nucléotides of the motif in the sense strand forms a base pair with at least one of the three nucléotides of the motif in the antisense strand. Altematively, at least two nucléotides may overlap, or ail three nucléotides may overlap.
In one embodiment, the sense strand of the RNAi agent may contain more than one motif of three identical modifications on three consecutive nucléotides. The first motif should occur at or near the cleavage site of the strand and the other motifs may be wing modifications. The term “wing modification” herein refers to a motif occurring at another portion of the strand that is separated from the motif at or near the cleavage site of the same strand. The wing modification is either adajacent to the first motif or is separated by at least one or more nucléotides. When the motifs are immediately adjacent to each other than the chemistry of the motifs are distinct from each other and when the motifs are separated by one or more nucléotide than the chemistries can be the same or different. Two or more wing modifications may be présent. For instance, when two wing modifications are présent, each wing modification may occur at one end relative to the first motif which is at or near cleavage site or on either side of the lead motif.
Like the sense strand, the antisense strand of the RNAi agent may contain at least two motifs of three identical modifications on three consecutive nucléotides, with at least one ofthe motifs occurring at or near the cleavage site of the strand. This antisense strand may also contain one or more wing modifications in an alignment similar to the wing modifications that is présent on the sense strand.
In one embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two terminal nucléotides at the 3’-end, 5’-end or both ends of the strand.
In another embodiment, the wing modification on the sense strand or antisense strand of the RNAi agent typically does not include the first one or two paired nucléotides within the duplex région at the 3’-end, 5’-end or both ends of the strand.
When the sense strand and the antisense strand of the RNAi agent each contain at least one wing modification, the wing modifications may fall on the same end of the duplex région, and hâve an overlap of one, two or three nucléotides.
When the sense strand and the antisense strand of the RNAi agent each contain at least two wing modifications, the sense strand and the antisense strand can be so aligned that two modifications each from one strand fall on one end of the duplex région, having an overlap of one, two or three nucléotides; two modifications each from one strand fall on the other end of the duplex région, having an overlap of one, two or three nucléotides; two modifications one strand fall on each side of the lead motif, having an overlap of one, two or three nucléotides in the duplex région.
In one embodiment, every nucléotide in the sense strand and antisense strand of the RNAi agent, including the nucléotides that are part of the motifs, may be modified. Each nucléotide may be modified with the same or different modification which can include one or more alteration of one or both of the non-linking phosphate oxygens and/or of one or more of the linking phosphate oxygens; alteration of a constituent of the ribose sugar, e.g., of the 2' hydroxyl on the ribose sugar; wholesale replacement of the phosphate moiety with “dephospho” linkers; modification or replacement of a naturally occurring base; and replacement or modification of the ribose-phosphate backbone.
As nucleic acids are polymers of subunits, many of the modifications occur at a position which is repeated within a nucleic acid, e.g., a modification of a base, or a phosphate moiety, or a non-linking O of a phosphate moiety. In some cases the modification will occur at ail of the subject positions in the nucleic acid but in many cases it will not. By way of example, a modification may only occur at a 3’ or 5’ terminal position, may only occur in a terminal région, e.g., at a position on a terminal nucléotide or in the last 2,3,4, 5, or 10 nucléotides of a strand. A modification may occur in a double strand région, a single strand région, or in both. A modification may occur only in the double strand région of a RNA or may only occur in a single strand région of a RNA. For example, a phosphorothioate modification at a non-linking O position may only occur at one or both termini, may only occur in a terminal région, e.g., at a position on a terminal nucléotide or in the last 2, 3, 4, 5, or 10 nucléotides of a strand, or may occur in double strand and single strand régions, particularly at termini. The 5’ end or ends can be phosphorylated.
It may be possible, e.g., to enhance stability, to include particular bases in overhangs, or to include modified nucléotides or nucléotide surrogates, in single strand overhangs, e.g., in a 5’ or 3’ overhang, or in both. For example, it can be désirable to include purine nucléotides in overhangs. In some embodiments ail or some of the bases in a 3’ or 5’ overhang may be modified, e.g., with a modification described herein. Modifications can include, e.g., the use of modifications at the 2’ position of the ribose sugar with modifications that are known in the art, e.g., the use of deoxyribonucleotides, , 2’-deoxy-2’-fluoro (2’-F) or 2’-O-methyl modified instead of the ribosugar of the nucleobase, and modifications in the phosphate group, e.g., phosphorothioate modifications. Overhangs need not be homologous with the target sequence.
In one embodiment, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2’-methoxyethyl, 2’- O-methyl, 2*-Oallyl, 2’-C- allyl, 2’-deoxy, 2’-hydroxyl, or 2’-fluoro. The strands can contain more than one modification. In one embodiment, each residue of the sense strand and antisense strand is independently modified with 2*- O-methyl or 2’-fluoro.
At least two different modifications are typicaliy présent on the sense strand and antisense strand. Those two modifications may be the 2’- O-methyl or 2’-fluoro modifications, or others.
In one embodiment, the Na and/or Nb comprise modifications of an altemating pattern. The term “altemating motif’ as used herein refers to a motif having one or more modifications, each modification occurring on altemating nucléotides of one strand. The altematîng nucléotide may refer to one per every other nucléotide or one per every three nucléotides, or a similar pattern. For example, if A, B and C each represent one type of modification to the nucléotide, the altematîng motif can be “AB AB AB AB AB AB...,” “AABBAABBAABB...,” “AABAABAABAAB...,” “AAABAAABAAAB...,” “AAABBBAAABBB...,” or “ABC ABC ABC ABC...,” etc.
The type of modifications contained in the altematîng motif may be the same or different. For example, if A, B, C, D each represent one type of modification on the nucléotide, the altematîng pattern, i.e., modifications on every other nucléotide, may be the same, but each of the sense strand or antisense strand can be selected from several possibilities of modifications within the altematîng motif such as “AB AB AB.. “ACACAC..“BDBDBD...” or “CDCDCD..etc.
In one embodiment, the RNAi agent of the invention comprises the modification pattern for the altematîng motif on the sense strand relative to the modification pattern for the altematîng motif on the antisense strand is shifted. The shift may be such that the modified group of nucléotides of the sense strand corresponds to a differently modified group of nucléotides of the antisense strand and vice versa. For example, the sense strand when paired with the antisense strand in the dsRNA duplex, the altematîng motif in the sense strand may start with “ABABAB” from 5’-3’ of the strand and the altematîng motif in the antisense strand may start with “BABABA” from 5’-3’of the strand within the duplex région. As another example, the altematîng motif in the sense strand may start with “AABBAABB” from 5’-3* of the strand and the altematîng motif in the antisenese strand may start with “BBAABBAA” from 5’-3’ of the strand within the duplex région, so that there is a complété or partial shift of the modification patterns between the sense strand and the antisense strand.
In one embodiment, the RNAi agent comprises the pattern of the altematîng motif of 2'-O-methyl modification and 2’-F modification on the sense strand initially has a shift relative to the pattern of the altematîng motif of 2’-O-methyl modification and 2’F modification on the antisense strand initially, i.e., the 2'-O-methyl modified nucléotide on the sense strand base pairs with a 2’-F modified nucléotide on the antisense strand and vice versa. The 1 position of the sense strand may start with the 2'-F modification, and the 1 position of the antisense strand may start with the 2'- O-methyl modification.
The introduction of one or more motifs of three identical modifications on three consecutive nucléotides to the sense strand and/or antisense strand interrupts the initial modification pattern présent in the sense strand and/or antisense strand. This interruption of the modification pattern of the sense and/or antisense strand by introducing one or more motifs of three identical modifications on three consecutive nucléotides to the sense and/or antisense strand surprisingly enhances the gene silencing acitivty to the target gene.
In one embodiment, when the motif of three identical modifications on three consecutive nucléotides is introduced to any of the strands, the modification of the nucléotide next to the motif is a different modification than the modification of the motif. For example, the portion of the sequence containing the motif is “.. ,NaYYYNb...,” where “Y” représente the modification of the motif of three identical modifications on three consecutive nucléotide, and “Na” and “Nb” represent a modification to the nucléotide next to the motif “YYY” that is different than the modification of Y, and where Na and Nb can be the same or different modifications. Altnematively, Na and/or Nb may be présent or absent when there is a wing modification présent.
The RNAi agent may further comprise at least one phosphorothioate or methylphosphonate intemucleotide linkage. The phosphorothioate or methylphosphonate intemucleotide linkage modification may occur on any nucléotide of the sense strand or antisense strand or both in any position of the strand. For instance, the intemucleotide linkage modification may occur on every nucléotide on the sense strand or antisense strand; each intemucleotide linkage modification may occur in an altemating pattern on the sense strand or antisense strand; or the sense strand or antisense strand may contain both intemucleotide linkage modifications in an altemating pattern. The altemating pattern of the intemucleotide linkage modification on the sense strand may be the same or different from the antisense strand, and the altemating pattern of the intemucleotide linkage modification on the sense strand may hâve a shift relative to the altemating pattern of the intemucleotide linkage modification on the antisense strand.
In one embodiment, the RNAi comprises the phosphorothioate or methylphosphonate intemucleotide linkage modification in the overhang région. For example, the overhang région may contain two nucléotides having a phosphorothioate or methylphosphonate intemucleotide linkage between the two nucléotides. Intemucleotide linkage modifications also may be made to lînk the overhang nucléotides with the terminal paired nucléotides within duplex région. For example, at least 2, 3,4, or ail the overhang nucléotides may be linked through phosphorothioate or methylphosphonate intemucleotide linkage, and optionally, there may be additional phosphorothioate or methylphosphonate intemucleotide linkages linking the overhang nucléotide with a paired nucléotide that is next to the overhang nucléotide. For instance, there may be at least two phosphorothioate intemucleotide linkages between the terminal three nucléotides, in which two of the three nucléotides are overhang nucléotides, and the third is a paried nucléotide next to the overhang nucléotide. Preferably, these terminal three nucléotides may be at the 3’-end of the antisense strand.
In one embodiment, the RNAi agent comprises mismatch(es) with the target, within the duplex, or combinations thereof. The mistmatch can occur in the overhang région or the duplex région. The base pair can be ranked on the basis of their propensity to promote dissociation or melting (e.g., on the free energy of association or dissociation of a particular pairing, the simplest approach is to examine the pairs on an individual pair basis, though next neighbor or similar analysis can also be used). In terms of promoting dissociation: A:U is preferred over G:C; G:U is preferred over G:C; and I:C is preferred over G:C (I=inosine). Mismatches, e.g., non-canonical or other than canonical pairings (as described elsewhere herein) are preferred over canonical (A:T, A:U, G:C) pairings; and pairings which include a universal base are preferred over canonical pairings.
In one embodiment, the RNAi agent comprises at least one of the first 1,2, 3,4, or 5 base pairs within the duplex régions from the 5’- end of the antisense strand can be chosen independently from the group of: A:U, G:U, I:C, and mismatched pairs, e.g., non-canonical or other than canonical pairings or pairings which include a universal base, to promote the dissociation of the antisense strand at the 5’-end of the duplex.
In one embodiment, the nucléotide at the 1 position within the duplex région from the 5’-end in the antisense strand is selected from the group consisting of A, dA, dU, U, and dT. Altematively, at least one of the first 1,2 or 3 base pair within the duplex région from the 5’- end of the antisense strand is an AU base pair. For ex amp le, the first base pair within the duplex région from the 5’- end of the antisense strand is an AU base pair.
In one embodiment, the sense strand sequence may be represented by formula (I):
5' np-Na-(X X X )i-Nb-Y Y Y -Nb-(Z Z Z )j-Na-nq 3' (I) wherein:
i and j are each independently 0 or 1;
p and q are each independently 0-6;
each No independently représente an oligonucleotide sequence comprising 0-25 modified nucléotides, each sequence comprising at least two differently modified nucléotides;
each Nb independently représente an oligonucleotide sequence comprising 0-10 modified nucléotides;
each np and nq independently represent an overhang nucléotide;
wherein Nb and Y do not hâve the same modification; and
XXX, YYY and ZZZ each independently represent one motif of three identical modifications on three consecutive nucléotides. Preferably YYY is ail 2’-F modified nucléotides.
In one embodiment, the Na and/or Nb comprise modifications of altemating pattern.
In one embodiment, the YYY motif occurs at or near the cleavage site of the sense strand. For example, when the RNAi agent has a duplex région of 17-23 nucléotides in length, the ΥΥΎ motif can occur at or the vîcinity of the cleavage site (e.g.; can occur at positions 6, 7, 8, 7, 8, 9, 8, 9, 10, 9, 10, 11, 10, 11,12 or 11, 12, 13) of - the sense strand, the count starting from the lsl nucléotide, from the 5’-end; or optionally, the count starting at the lst paired nucléotide within the duplex région, from the 5’- end.
In one embodiment, i is l and j is 0, or i is 0 and j is l, or both i and j are l. The sense strand can therefore be represented by the following formulas:
5' np-Na-YYY-Nb-ZZZ-Na-nq 3' (la);
5' np-Na-XXX-Nb-YYY-Na-nq 3’ (Ib); or
5' np-Na-XXX-Nb-YYY-Nb-ZZZ-Na-nq 3’ (le).
When the sense strand is represented by formula (la), Nb represents an oligonucleotide sequence comprising 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucléotides. Each Na independently can represent an oligonucleotide sequence comprising 2-20, ΣΙ 5, or 2-10 modified nucléotides.
When the sense strand is represented as formula (Ib), Nb represents an oligonucleotide sequence comprising 0-10,0-7,0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucléotides. Each Na can independently represent an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucléotides.
When the sense strand is represented as formula (le), each Nb independently represents an oligonucleotide sequence comprising 0-10,0-7,0-5,0-4,0-2 or 0 modified nucléotides. Preferably, Nb is 0, 1, 2, 3,4, 5 or 6 Each Na can independently represent an oligonucleotide sequence comprising 2-20,2-15, or 2-10 modified nucléotides.
Each of X, Y and Z may be the same or different from each other.
In one embodiment, the antisense strand sequence of the RNAi may be represented by formula (II):
5' nq’-Na'-(Z’Z'Z')k-Nb'-Y'Y'Y'-Nb'-(X'XfX')j-N'a-np' 3’ (II) wherein:
k and 1 are each independently 0 or 1 ;
p’ and q’ are each independently 0-6;
each Na' independently represents an oligonucleotide sequence comprising 0-25 modified nucléotides, each sequence comprising at least two differently modified nucléotides;
each Nb' independently represents an oligonucleotide sequence comprising 0-10 modified nucléotides;
each np' and nq' independently represent an overhang nucléotide;
wherein Nb’ and Y’ do not hâve the same modification;
and
X'X'X', ΥΎΎ' and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucléotides.
In one embodiment, the Na* and/or Nb’ comprise modifications of altemating pattern.
The ΥΎΎ' motif occurs at or near the cleavage site of the antisense strand. For example, when the RNAi agent has a duplex région of 17-23 nt in length, the ΥΎΎ' motif can occur at positions 9,10, 11 ; 10, 11, 12; 11, 12, 13; 12, 13, 14 ; or 13, 14, 15 of the antisense strand, with the count starting from the lst nucléotide, from the 5’-end; or optionally, the count starting at the lsl paired nucléotide within the duplex région, from the 5’- end. Preferably, the ΥΎΎ' motif occurs at positions 11, 12, 13.
In one embodiment, ΥΎΎ' motif is ail 2’-OMe modified nucléotides.
In one embodiment, k is 1 and 1 is 0, or k is 0 and 1 is 1, or both k and 1 are 1.
The antisense strand can therefore be represented by the following formulas:
5' nq>-Na'-Z'Z'Z'-Nb'-Y'Y'Y'-Na'-np· 3’ (lia);
5’ nq-Na'-Y'Y'Y'-Nb'-X'X'X'-np· 3’ (Ilb); or
5’ nq-Na'- Z'Z'Z'-Nb'-Y'Y'Y'-Nb'- X'X'X'-Na'-np· 3' (Ile).
When the antisense strand is represented by formula (Ha), Nb représente an oligonucleotide sequence comprising 0-10, 0-7,0-10,0-7,0-5,0-4, 0-2 or 0 modified nucléotides. Each Na* independently représente an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucléotides.
When the antisense strand is represented as formula (Ilb), Nb’ représente an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or 0 modified nucléotides. Each Na’ independently represents an oligonucleotide sequence comprising 2-20,2-15, or 2-10 modified nucléotides.
When the antisense strand is represented as formula (Ile), each Nb’ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5,0-4,0-2 or 0 modified nucléotides. Each Na’ independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucléotides. Preferably, Nb is 0,1,2, 3,4, 5 or 6.
Each of X', Y' and Z' may be the same or different from each other.
Each nucléotide of the sense strand and antisense strand may be independently modified with LNA, HNA, CeNA, 2’-methoxyethyl, 2’-O-methyl, 2’-O-allyl, 2’-Callyl, 2’-hydroxyl, 2’-deoxy or 2’-fluoro. For example, each nucléotide of the sense strand and antisense strand is independently modified with 2’-O-methyl or 2’-fluoro. Each X, Y, Z, X', Y' and Z', in particular, may represent a 2’-O-methyl modification or a 2’-fluoro modification.
In one embodiment, the sense strand of the RNAi agent may contain YYY motif occurring at 9, 10 and 11 positions of the strand when the duplex région is 21 nt, the count starting from the lst nucléotide from the 5’-end, or optionaily, the count starting at the lst paired nucléotide within the duplex région, from the 5’- end; and Y represents 2’F modification. The sense strand may additionally contain XXX motif or ZZZ motifs as wing modifications at the opposite end of the duplex région; and XXX and ZZZ each independently represents a 2’-OMe modification or 2*-F modification.
In one embodiment the antisense strand may contain ΥΎΎ' motif occurring at positions 11, 12, 13 of the strand, the count starting from the lst nucléotide from the 5’-end, or optionaily, the count starting at the lsl paired nucléotide within the duplex région, from the 5’- end; and Y' represents 2’-O-methyl modification. The antisense strand may additionally contain X'X'X' motif or Z'Z'Z' motifs as wing modifications at the opposite end of the duplex région; and X'X'X' and each independently represents a 2’-OMe modification or 2’-F modification.
The sense strand represented by any one of the above formulas (la), (Ib) and (le) forms a duplex with a antisense strand being represented by any one of formulas (Ha), (Ilb) and (Ile), respectively.
Accordingly, the RNAi agents of the invention may comprise a sense strand and an antisense strand, each strand having 14 to 30 nucléotides, the RNAi duplex represented by formula (III):
sense: antisense:
5’ np -Na-(X X X)i -Nb- Y Y Y -Nb -(Z Z Z)j-Na-n<1 3’
3’ np’-Na’-ÎX’X'X'Jk-Nb’-Y'Y'Y'-Nb’-CZ'Z'Z'Ji-Na'-nq’ 5' (ΠΙ) wherein:
i, j, k, and 1 are each independently 0 or 1 ;
p, p', q, and q' are each independently 0-6;
» each Na and Na independently represents an oligonucleotide sequence comprising 0-25 modified nucléotides, each sequence comprising at least two differently modified nucléotides;
f each Nb and Nb independently represents an oligonucleotide sequence comprising 0-10 modified nucléotides;
wherein each np’, np, n^’, and nq independently represents an overhang nucléotide; and
XXX, YYY, ZZZ, X'X'X', ΥΎΎ', and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucléotides.
In one embodiment, i is 1 and j is 0; or i is 0 and j is 1 ; or both i and j are 1. In another embodiment, k is 1 and 1 is 0; k is 0 and 1 is 1 ; or both k and 1 are 1.
Exemplary combinations of the sense strand and antisense strand forming a RNAi duplex include the formulas below:
5’ np -Na -YYY -Nb -ZZZ -Na-nq 3’
3’ np’-Na’-Y'Y'Y'-Nb’-Z'Z'Z'-Na’nq 5’ (Ilia)
5' np-Na- X X X -Nb -Y Y Y - Ν,-η, 3’
3' np’-Na’-X'X'X'-Nb'-Y'Y'Y'-Na Χ 5’ (Illb)
5’ np -Na -XXX -Nb-Y Y Y -Nb- ZZZ -Na-nq 3'
3' np’-Na’-X'X'X'-Nb’-Y'Y'Y'-Nb’-Z'Z'Z'-Na-nq’ 5’ (IIIc)
When the RNAi agent is represented by formula (Ilia), each Nb independently represents an oligonucleotide sequence comprising 1-10, 1-7, 1-5 or 1-4 modified nucléotides. Each Na independently represents an oligonucleotide sequence comprising 2-20,2-15, or 2-10 modified nucléotides.
When the RNAi agent is represented as formula (Illb), each Nb, Nb’ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or Omodified nucléotides. Each Na independently represents an oligonucleotide sequence comprising 2-20, 2-15, or 2-10 modified nucléotides.
When the RNAi agent is represented as formula (IIIc), each Nb, Nb’ independently represents an oligonucleotide sequence comprising 0-10, 0-7, 0-10, 0-7, 0-5, 0-4, 0-2 or Omodified nucléotides. Each Na, Na independently represents an oligonucleotide sequence comprising 2-20,2-15, or 2-10 modified nucléotides. Each of »
Na, Na’, Nb and Nb independently comprises modifications of altemating pattem.
Each of X, Y and Z in formulas (III), (Ilia), (Illb) and (IIIc) may be the same or different from each other.
When the RNAi agent is represented by formula (III), (Ilia), (Illb) or (IIIc), at least one of the Y nucléotides may form a base pair with one of the Y' nucléotides. Alternativeiy, at least two of the Y nucléotides form base pairs with the corresponding Y' nucléotides; or ail three of the Y nucléotides ail form base pairs with the corresponding Y' nucléotides.
When the RNAi agent is represented by formula (Ilia) or (IIIc), at least one of the Z nucléotides may form a base pair with one of the Z' nucléotides. Alternativeiy, at least two of the Z nucléotides form base pairs with the corresponding Z' nucléotides; or ail three of the Z nucléotides ail form base pairs with the corresponding Z' nucléotides.
When the RNAi agent is represented as formula (Illb) or (IIIc), at least one of the X nucléotides may form a base pair with one of the X' nucléotides. Alternativeiy, at least two of the X nucléotides form base pairs with the corresponding X' nucléotides; or ail three of the X nucléotides ail form base pairs with the corresponding X' nucléotides.
In one embodiment, the modification on the Y nucléotide is different than the modification on the Y’ nucléotide, the modification on the Z nucléotide is different than the modification on the Z’ nucléotide, and/or the modification on the X nucléotide is different than the modification on the X’ nucléotide.
In one embodiment, the RNAi agent is a multimer containing at least two duplexes represented by formula (III), (Ilia), (Illb) or (IIIc), wherein the duplexes are connected by a linker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprise a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.
In one embodiment, the RNAi agent is a multimer containing three, four, five, six or more duplexes represented by formula (III), (Ilia), (Illb) or (IIIc), wherein the duplexes are connected by a lînker. The linker can be cleavable or non-cleavable. Optionally, the multimer further comprises a ligand. Each of the duplexes can target the same gene or two different genes; or each of the duplexes can target same gene at two different target sites.
In one embodiment, two RNAi agents represented by formula (III), (IHa), (Illb) or (IIIc) are linked to each other at the 5’ end, and one or both of the 3’ ends of the are optionally conjugated to to a ligand. Each of the agents can target the same gene or two different genes; or each of the agents can target same gene at two different target sites.
Various publications describe multimeric RNAi agents . Such publications include W02007/091269, US Patent No. 7858769, W02010/141511, W02007/117686, W02009/014887 and WO2011/031520 the entire contents of which are hereby incorporated herein by reference.
The RNAi agent that contains conjugations of one or more carbohydrate moieties to a RNAi agent can optimize one or more properties of the RNAi agent. In many cases, the carbohydrate moiety will be attached to a modified subunit of the RNAi agent. For example, the ribose sugar of one or more ribonucleotide subunits of a dsRNA agent can be replaced with another moiety, e.g., a non-carbohydrate (preferably cyclic) carrier to which is attached a carbohydrate ligand, A ribonucleotide subunit in which the ribose sugar of the subunit has been so replaced is referred to herein as a ribose replacement modification subunit (RRMS). A cyclic carrier may be a carbocyclic ring System, i.e,, ail ring atoms are carbon atoms, or a heterocyclîc ring System, i.e., one or more ring atoms may be a heteroatom, e.g., nitrogen, oxygen, sulfur. The cyclic carrier may be a monocyclic ring system, or may contain two or more rings, e.g. fused rings. The cyclic carrier may be a fully saturated ring system, or it may contain one or more double bonds.
The ligand may be attached to the polynucleotide via a carrier. The carriers include (i) at least one “backbone attachment point,” preferably two “backbone attachment points” and (ii) at least one “tethering attachment point.” A “backbone attachment point” as used herein refers to a functional group, e.g. a hydroxyl group, or generally, a bond available for, and that is suitable for incorporation of the carrier into the backbone, e.g., the phosphate, or modified phosphate, e.g., sulfur containing, backbone, of a ribonucleic acid. A “tethering attachment point” (TAP) in some embodiments refers to a constituent ring atom of the cyclic carrier, e.g., a carbon atom or a heteroatom (distinct from an atom which provides a backbone attachment point), that connects a selected moiety. The moiety can be, e.g., a carbohydrate, e.g. monosaccharide, disaccharide, trisaccharide, tetrasaccharide, oligosaccharide and polysaccharide. Optionally, the selected moiety is connected by an intervening tether to the cyclic carrier. Thus, the cyclic carrier will often include a functional group, e.g., an amino group, or generally, provide a bond, that is suitable for incorporation or tethering of another chemical entity, e.g., a ligand to the constituent ring.
The RNAi agents may be conjugated to a ligand via a carrier, wherein the carrier can be cyclic group or acyclic group; preferably, the cyclic group is selected from pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, piperidinyl, piperazînyl, [l,3]dioxolane, oxazolidinyl, isoxazolidinyl, morpholinyl, thiazolidinyl, isothiazolidînyl, quinoxalinyl, pyridazinonyl, tetrahydrofuryl and and decalin; preferably, the acyclic group is selected from serinol backbone or diethanolamine backbone.
In certain spécifie embodiments, the RNAi agent of the invention is an agent selected from the group of agents listed in Table 1 and consisting of D1000, D1001, D1002, D1003, D1004, D1005, D1006, D1007, D1008, D1009, D1010, D1011, D1012, D1013, D1014, D1015, D1016, D1017, D1018, D1019, D1020, D1021, D1022, D1023, D1024, D1025, D1026, D1027, D1028, D1029, D1030, D1031, D1032, D1033, D1034, D1O35, D1036, D1037, D1038, D1039, D1040, D1041, D1042, D1043, D1044, D1045, D1046, D1047, D1048, D1049, D1050, D1051, D1052, D1O53, D1054, D1055, D1056, D1057, D1O58, D1059, D1060, D1061, D1062, D1063, D1064, D1065, D1066, D1067, D1068, D1069, D1070, D1071, D1072, D1073, D1074, D1075, D1076, D1077, D1078, D1079, D1080, D1081, D1082, D1O83, D1084, D1085, D1086, D1087, D1088, D1089, D1090, D1091, D1092, D1093, D1094, D1095, D1096, D1097, D1098, D1099, DI 100, DI 101, D1102, DI 103, DI 104, DI 105, DI 106, DI 107, D1108, DI 109, DI 110, DI 111, DI 112, DI 113, DI 114, DI 115, DI 116, Dll 17, DI 118, D1119, DI 120, DI 121, DI 122, DI 123, DI 124, DI 125, D1126, DI 127, D1128, D1129, D1130, DI 131, DI 132, DI 133,
DI 134, DI 135, DI 136, DI 137, DI 138, DI 139, DI 140, DI 141, DI 142, DI 143, DI 144,
DI 145, DI 146, DI 147, DI 148, DI 149, DI 150, DI 151, DI 152, DI 153, DI 154, DI 155,
DI 156, DI 157, DI 158, DI 159, DI 160, DI 161, DI 162, DI 163, DI 164, DI 165, D1166,
DI 167, DI 168, DI 169, DI 170, DI 171, DI 172, DI 173, DI 174, DI 175, DI 176, DI 177,
DI 178, DI 179, DI 180, DI 181, DI 182, DI 183, DI 184, DI 185, DI 186, DI 187, DI 188,
DI 189, DI 190, DI 191, D1192, DI 193, DI 194, DI 195, DI 196, DI 197, DI 198, DI 199,
D1200, D1201, D1202, D1203, D1204, D1205, D1206, D1207, D1208, D1209, D1210,
D1211, D1212, D1213, D1214, D1215, D1216, D1217, D1218, D1219, D1220, D1221,
D1222, D1223, D1224, D1225, D1226, D1227, D1228, D1229, D1230, D1231, D1232,
D1233, D1234, D1235, D1236, D1237, D1238, D1239, D1240, D1241, D1242, D1243,
D1244, D1245, D1246, D1247, D1248, D1249, D1250, D1251, D1252, D1253, D1254,
D1255, D1256, D1257, D1258, D1259, D1260, D1261, D1262, D1263, D1264, D1265,
D1266, D1267, D1268, D1269, D1270, D1271, D1272, D1273, D1274, D1275, D1276,
D1277, D1278, D1279, D1280, D1281, D1282, D1283, D1284, D1285, D1286, D1287,
D1288, D1289, D1290, D1291, D1292, D1293, D1294, D1295, D1296, D1297, D1298,
D1299, D1300, D1301, D1302, D1303, D1304, D1305, D1306, D1307, D13O8, D1309,
D1310, D1311, D1312, D1313, D1314, D1315, D1316, D1317, D1318, D1319, D1320,
D1321, D1322, D1323, D1324, D1325, D1326, D1327, D1328, D1329, D1330, D1331,
D1332, D1333, D1334, D1335, D1336, D1337, D1338, D1339, D1340, D1341, D1342,
D1343, D1344, D1345, D1346, D1347, D1348, D1349, D135O, D1351, D1352, D1353,
D1354, D1355, D1356, D1357, D1358, D1359, D1360, D1361, D1362, D1363, D1364,
D1365, D1366, D1367, D1368, D1369, D1370, D1371, D1372, D1373, D1374, D1375,
D1376, D1377, D1378, D1379, D1380, D1381, D1382, D1383, D1384, D1385, D1386,
D1387, D1388, D1389, D1390, D1391, D1392, D1393, D1394, D1395, D1396, D1397,
D1398, D1399, D1400, D1401, D1402, D1403, D1404, DMOS, D1406, D1407, D1408,
D1409, D1410, D1411, D1412, D1413, D1414, D1415, D1416, D1417, D1418, D1419,
D1420, D1421, D1422, D1423, D1424, D1425, D1426, D1427, D1428, D1429, D1430,
D1431, D1432, D1433, D1434, D1435, D1436, D1437, D1438, D1439, D1440, D1441,
D1442, D1443, D1444, D1445, D1446, D1447, D1448, D1449, D1450, D1451, D1452,
D1453, D1454, D1455, D1456, D1457, D1458, D1459, D1460, D1461, D1462, D1463,
D1464, D1465, D1466, D1467, D1468, D1469, D1470, D1471, D1472, D1473, D1474,
D1475, D1476, D1477, D1478, D1479, D1480, DI481, D1482, D1483, D1484, D1485,
D1486, D1487, D1488, D1489, D1490, D1491, D1492, D1493, D1494, D1495, D1496,
D1497, D1498, D1499,. D1500, D1501, D1502, D1503, D1504, D1505, D1506,
D1507, D1508, D1509, D1510, D1511, D1512, D1513, D1514, D1515, D1516, D1517,
D1518, D1519, D1520, D1521, D1522, D1523, D1524, D1525, D1526, D1527, D1528,
D1529, D153O, D1531, D1532, D1533, D1534, D1535, D1536, D1537, D1538, D1539,
D1540, D1541, D1542, D1543, D1544, D1545, D1546, D1547, D1548, D1549, D1550,
D1551, D1552, D1553, D1554, D1555, D1556, D1557, D1558, D1559, D1560, D1561,
D1562, D1563, D1564, D1565, D1566, D1567, D1568, D1569, D1570, D1571, D1572,
D1573, D1574, D1575, D1576, D1577, D1578, D1579, D1580, D1581, D1582, D1583,
D1584, D1585, D1586, D1587, D1588, D1589, D1590, D1591, D1592, D1593, D1594,
D1595, D1596, D1597, D1598, D1599, D1600, D1601, D1602, D1603, D1604, D1605,
D1606, D1607, D1608, D1609, D1610, D1611, D1612, D1613, D1614, D1615, D1616,
D1617, D1618, D1619, D1620, D1621, D1622, D1623, D1624, D1625, D1626, D1627,
D1628, D1629, D1630, D1631, D1632, D1633, D1634, D1635, D1636, D1637, D1638,
D1639, D1640, D1641, D1642, D1643, D1644, D1645, D1646, D1647, D1648, D1649,
D1650, D1651, D1652, D1653, D1654, D1655, D1656, D1657, D1658, D1659, D1660,
D1661, D1662, D1663, D1664, D1665, D1666, D1667, D1668, D1669, D1670, D1671,
D1672, D1673, D1674, D1675, D1676, D1677, D1678, D1679, D1680, D1681, D1682,
D1683, D1684, D1685, D1686, D1687, D1688, D1689, D1690, D1691, D1692, D1693,
D1694, D1695, D1696, D1697, D1698, D1699, D1700, D1701, D1702, D1703, D1704,
D1705, D1706, D1707, D1708, D1709, D1710, D1711, D1712, D1713, D1714, D1715,
D1716, D1717, D1718, D1719, D1720, D1721, D1722, D1723, D1724, D1725, D1726,
D1727, D1728, D1729, D1730, D1731, D1732, D1733, D1734, D1735, D1736, D1737,
D1738, D1739, D1740, D1741, D1742, D1743, D1744, D1745, D1746, D1747, D1748,
D1749, D1750, D1751, D1752, D1753, D1754, D1755, D1756, D1757, D1758, D1759,
D1760, D1761, D1762, D1763, D1764, D1765, D1766, D1767, D1768, D1769, D1770,
D1771, D1772, D1773, D1774, D1775, D1776, D1777, D1778, D1779, D1780, D1781,
D1782, D1783, D1784, D1785, D1786, D1787, D1788, D1789, D1790, D1791, D1792,
D1793, D1794, D1795, D1796, D1797, D1798, D1799, D1800, D1801, D1802, D1803,
D1804, D1805, D1806, D1807, D1808, D1809, D1810, D1811, D1812, D1813, D1814,
Dl 815, D1816, D1817, D1818, D1819, D1820, D1821, D1822, D1823, D1824, D1825, D1826, D1827, D1828, D1829, D1830, D1831, D1832, D1833, D1834, D1835, D1836, D1837, D1838, D1839, D1840, D1841, D1842, D1843, D1844, D1845, D1846, D1847, D1848, D1849, D1850, D1851, D1852, D1853, D1854, D1855, D1856, D1857, D1858, D1859, D1860, D1861, D1862, D1863, D1864, D1865, D1866, D1867, D1868, D1869, D1870, D1871, D1872, D1873, D1874, D1875, D1876, D1877, D1878, D1879, D1880, D1881, D1882, D1883, D1884, D1885, D1886, D1887, D1888, D1889, D1890, D1891, D1892, D1893, D1894, D1895, D1896, D1897, D1898, D1899, D1900, D1901, D1902, D1903, D1904, D1905, D1906, D1907, D1908, D1909, D1910, D1911, D1912, D1913, D19I4, D1915, D1916, D1917, D1918, D1919, D1920, D1921, D1922, D1923, D1924, D1925, D1926, D1927, D1928, D1929, D1930, D1931, D1932, D1933, D1934, D1935, D1936, D1937, D1938, D1939, D1940, D1941, D1942, D1943, D1944, D1945, D1946, D1947, D1948, D1949, D195O, D1951, D1952, D1953, D1954, D1955, D1956, D1957, D1958, D1959, D1960, D1961, D1962, D1963, D1964, D1965, D1966, D1967, D1968, D1969, D1970, D1971, D1972, D1973, D1974, D1975, D1976, D1977, D1978, D1979, D1980, D1981, D1982, D1983, D1984, D1985, D1986, D1987, D1988, D1989, D1990, D1991, D1992, D1993, D1994, D1995, D1996, D1997, D1998, D1999, D2000, D2001, D2002, D2003, D2004, D2005, D2006, D2007, D2008, D2009, D2010, D2011, D2012, D2013, D2014, D2015, D2016, D2017, D2018, D2019, D2020, D2021, D2022, D2023, D2024, D2025, D2026, D2027, D2028, D2029, D2030, D2031, D2032, D2033, D2034, D2035, D2036, D2037, D2038, D2039, D2040, D2041, D2042, D2043, D2044, D2045, D2046, D2047, D2048, D2049, D2050, D2051, D2052, D2O53, D2054, D2055, D2056, D2057, D2058, D2059, D2060, D2061, D2062, D2063, D2064, D2065, D2066, D2067, D2068, D2069, D2070, D2071, D2072, D2073, D2074, D2075, D2076, D2077, D2078, D2079, D2080, D2081, D2082, D2083, D2084, D2085, D2086, D2087, D2088, D2089, D2090 and D2091.
These agents may further comprise a ligand, such as a GalNAc ligand.
Ligands
The RNAi agents of the invention, e.g., double stranded RNAi agents, may optionally be conjugated to one or more ligands. The ligand can be attached to the sense strand, antisense strand or both strands, at the 3’-end, 5’-end or both ends. For instance, the ligand may be conjugated to the sense strand. In preferred embodiments, the ligand is conjgated to the 3’-end of the sense strand. In one preferred embodiment, the ligand is a GalNAc ligand. In particularly preferred embodiments, the ligand is GalNAc3:
A wide variety of entities can be coupled to the RNAi agents of the présent invention. Preferred moieties are ligands, which are coupled, preferably covalently, either directly or indirectly via an intervening tether.
In preferred embodiments, a ligand alters the distribution, targeting or lifetime of the molécule into which it is incorporated. In preferred embodiments a ligand provides an enhanced affinity for a selected target, e.g., molécule, cell or cell type, compartment, receptor e.g., a cellular or organ compartment, tissue, organ or région of the body, as, e.g., compared to a species absent such a ligand. Ligands providing enhanced affinity for a selected target are also termed targeting ligands.
Some ligands can hâve endosomolytic properties. The endosomolytic ligands promote the lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell. The endosomolytic ligand may be a polyanionic peptide or peptidomimetic which shows pH-dependent membrane activity and fusogenicity. In one embodiment, the endosomolytic ligand assumes its active conformation at endosomal pH, The “active conformation is that conformation in which the endosomolytic ligand promûtes lysis of the endosome and/or transport of the composition of the invention, or its components, from the endosome to the cytoplasm of the cell. Exemplary endosomolytic ligands include the GALA peptide (Subbarao et al., Biochemistry, 1987,26: 2964-2972), the EALA peptide (Vogel et al., J. Am. Chem. Soc., 1996, 118: 1581-1586), and their dérivatives (Turk et al., Biochem. Biophys. Acta, 2002, 1559: 56-68). In one embodiment, the endosomolytic component may contain a chemical group (e.g., an amino acid) which will undergo a change in charge or protonation in response to a change in pH. The endosomolytic component may be linear or branched.
Ligands can improve transport, hybridization, and specificity properties and may also improve nuclease résistance of the résultant natural or modified oligoribonucleotide, or a polymeric molécule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.
Ligands in general can include therapeutic modifiers, e.g., for enhancing uptake; diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; and nuclease-resistance conferring moieties. General examples include lipids, steroids, vitamins, sugars, proteins, peptides, polyamines, and peptide mimics.
Ligands can include a naturally occurring substance, such as a protein (e.g., human sérum albumin (HSA), low-density lipoprotein (LDL), high-density lipoprotein (HDL), or globulin); a carbohydrate (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid); or a lipid. The ligand may also be a recombinant or synthetic molécule, such as a synthetic polymer, e.g., a synthetic polyamino acid, an oligonucleotide (e.g., an aptamer). Examples of polyamino acids include polyamino acid is a polylysine (P LL), poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyuréthane, poly(2-ethylacryllic acid), N-isopropylacrylamide polymers, or polyphosphazine. Example ofpolyamines include: polyethylenimine, polylysine (PLL), spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic lipid, cationic porphyrin, quatemary sait of a polyamine, or an alpha helical peptide.
Ligands can also include targeting groups, e.g,, a cell or tissue targeting agent, e.g., a lectin, glycoprotein, lipid or protein, e.g., an antibody, that binds to a specified cell type such as a kidney cell. A targeting group can be a thyrotropin, melanotropin, lectin, glycoprotein, surfactant protein A, Mucin carbohydrate, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, glycosylated polyaminoacids, multivalent galactose, transferrin, bisphosphonate, polyglutamate, polyaspartate, a lipid, cholestérol, a steroid, bile acid, folate, vitamin B12, biotin, an RGD peptide, an RGD peptide mimetic or an aptamer.
Other examples of ligands inciude dyes, intercalating agents (e.g., acridînes), cross-linkers (e.g., psoralene, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases or a chelator (e.g., EDTA), lipophilie molécules, e.g., cholestérol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, 1,3-B is-O(hexadecyl) glycerol, geranyloxyhexyl group, hexadecylglycerol, bomeol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid,03-(oleoyl)lîthocholic acid, O3-(oleoyl)cholenic acid, dimethoxytrityl, or phenoxazine)and peptide conjugates (e.g., antennapedia peptide, Tat peptide), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g., biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folie acid), synthetic ribonucleases (e.g., imidazole, bisimidazole, histamine, imidazole clusters, acridineimidazole conjugates, Eu3+ complexes of tetraazamacrocycles), dinitrophenyl, HRP, or AP.
Ligands can be proteins, e.g., glycoproteins, or peptides, e.g., molécules having a spécifie affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothélial cell, or bone cell. Ligands may also inciude hormones and hormone receptors. They can also inciude non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, multivalent lactose, multivalent galactose, N-acetyl-galactosamine, N-acetyl-gulucosamine multivalent mannose, multivalent fucose, or aptamers. The ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF-kB,
The ligand can be a substance, e.g., a drug, which can increase the uptake of the iRNA agent into the cell, for example, by disrupting the cell’s cytoskeleton, e.g., by dîsrupting the cell’s microtubules, microfilaments, and/or intermediate filaments. The drug can be, for example, taxon, vincristine, Vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinliolide A, indanocine, or myoservin.
The ligand can increase the uptake of the oligonucleotide into the cell by, for example, activating an inflammatory response. Exemplary ligands that would hâve such an effect include tumor necrosis factor alpha (TNFalpha), interleukin-1 beta, or gamma interferon.
In one aspect, the ligand is a lipid or lipid-based molécule. Such a lipid or lipidbased molécule preferably binds a sérum protein, e.g., human sérum albumin (HSA). An HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., a non-kidney target tissue of the body. For example, the target tissue can be the liver, including parenchymal cells of the liver. Other molécules that can bind HSA can also be used as ligands. For example, naproxen or aspirin can be used. A lipid or lipid-based ligand can (a) increase résistance to dégradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a sérum protein, e.g., HSA.
A lipid based ligand can be used to modulate, e.g., control the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.
In a preferred embodiment, the lipid based ligand binds HSA. Preferably, it binds HSA with a sufficient affinity such that the conjugate will be preferably distributed to a non-kidney tissue. However, it is preferred that the affinity not be so strong that the HSA-ligand binding cannot be reversed.
In another preferred embodiment, the lipid based ligand binds HSA weakly or not at ail, such that the conjugate will be preferably distributed to the kidney. Other moieties that target to kidney cells can also be used in place of or in addition to the lipid based ligand.
In another aspect, the ligand is a moiety, e.g, a vitamin, which is taken up by a target cell, e.g., a proliferating cell. These are particularly useful for treating disorders characterized by unwanted cell prolifération, e.g., of the malignant or non-malignant type, e.g., cancer cells. Exemplary vitamins include vitamin A, E, and K. Other exemplary vitamins include B vitamins, e.g., folie acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells. Also included are HAS, low density lipoprotein (LDL) and high-density lipoprotein (HDL).
In another aspect, the ligand is a cell-permeation agent, preferably a helical cellpermeation agent. Preferably, the agent is amphipathic. An exemplary agent is a peptide such as tat or antennopedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids. The helical agent is preferably an alpha-helical agent, which preferably has a lipophilie and a lipophobic phase.
The ligand can be a peptide or peptidomimetic. A peptidomimetic (also referred to herein as an oligopeptidomimetic) is a molécule capable of folding into a defined three-dimensional structure similar to a natural peptide. The peptide or peptidomimetic moiety can be about 5-50 amino acids long, e.g., about 5, 10, 15,20,25, 30, 35,40,45, or 50 amino acids long. A peptide or peptidomimetic can be, for example, a cell perméation peptide, cationic peptide, amphipathic peptide, or hydrophobie peptide (e.g., consisting primarily of Tyr, Trp or Phe). The peptide moiety can be a dendrimer peptide, constrained peptide or crosslinked peptide. In another alternative, the peptide moiety can include a hydrophobie membrane translocation sequence (MTS). An exemplary hydrophobie MTS-containing peptide îs REGF having the amino acid sequence AAVALLPAVLLALLAP (SEQ ID NO:4). An RFGF analogue (e.g., amino acid sequence AALLPVLLAAP) (SEQ ID NO:5) containing a hydrophobie MTS can also be a targeting moiety. The peptide moiety can be a “delivery” peptide, which can carry large polar molécules including peptides, oligonucleotides, and protein across cell membranes. For example, sequences from the HIV Tat protein (GRKKRRQRRRPPQ) (SEQ ID NO:6) and the Drosophila Antennapedia protein (RQIKIWFQNRRMKWK.K) (SEQ ID NO:7) hâve been found to be capable of functioning as delivery peptides. A peptide or peptidomimetic can be encoded by a random sequence of DNA, such as a peptide identified from a phage-display library, or one-bead-one-compound (OBOC) combinatorial library (Lam et al., Nature, 354:82-84, 1991). Preferably the peptide or peptidomimetic tethered to an iRNA agent via an incorporated monomer unit is a cell targeting peptide such as an arginine-glycine-aspartic acid (RGD)-peptide, or RGD mimic. A peptide moiety can range in length from about 5 amino acids to about 40 amino acids. The peptide moieties can hâve a structural modification, such as to increase stabiiity or direct conformational properties. Any of the structural modifications described below can be utilized.An RGD peptide moiety can be used to target a tumor cell, such as an endothélial tumor cell or a breast cancer tumor cell (Zitzmann et al., Cancer Res., 62:5139-43,2002). An RGD peptide can facilitate targeting of an iRNA agent to tumors of a variety of other tissues, including the lung, kidney, spleen, or liver (Aoki et al., Cancer Gene Therapy 8:783-787, 2001). Preferably, the RGD peptide will facilitate targeting of an iRNA agent to the kidney. The RGD peptide can be linear or cyclic, and can be modified, e.g., glycosylated or methylated to facilitate targeting to spécifie tissues. For example, a glycosylated RGD peptide can deliver an iRNA agent to a tumor cell expressing avÜ3 (Haubner et al., Jour. Nucl. Med., 42:326-336, 2001). Peptides that target markers enriched in proliferating cells can be used. For example, RGD containing peptides and peptidomimetics can target cancer cells, in particular cells that exhibit an integrin. Thus, one could use RGD peptides, cyclic peptides containing RGD, RGD peptides that include D-amino acids, as well as synthetic RGD mimics. In addition to RGD, one can use other moieties that target the integrin ligand. Generally, such ligands can be used to control proliferating cells and angiogeneis. Preferred conjugates of this type ofligand target PECAM-1, VEGF, or other cancer gene, e.g., a cancer gene described herein.
A “cell perméation peptide” is capable of permeating a cell, e.g., a microbial cell, such as a bacterial or fungal cell, or a mammalian cell, such as a human cell. A microbial cell-permeating peptide can be, for example, an α-helical linear peptide (e.g., LL-37 or Ceropin Pl), a disulfide bond-containing peptide (e.g., a -defensin, β-defensin or bactenecin), or a peptide containing only one or two dominating amino acids (e.g., PR-39 or indolicidin). A cell perméation peptide can also include a nuclear localization signal (NLS). For example, a cell perméation peptide can be a bipartite amphîpathic peptide, such as MPG, which is derived from the fusion peptide domain of HIV-l gp41 and the NLS of SV40 large T antigen (Simeoni et al., Nucl. Acids Res. 31:2717-2724, 2003).
In one embodiment, a targeting peptide can be an amphipathic α-helical peptide. Exemplary amphipathic α-helical peptides înclude, but are not limited to, cecropins, lycotoxins, paradaxins, buforin, CPF, bombinin-like peptide (BLP), cathelicidins, ceratotoxins, S. clava peptides, hagfish intestinal antimicrobial peptides (HFIAPs), magainines, brevinins-2, dermaseptins, melittins, pleurocidin, H2A peptides, Xenopus peptides, esculentinis-1, and caerins. A number of factors will preferably be considered to maintain the integrity of hélix stability. For example, a maximum number of hélix stabilization residues will be utilized (e.g., leu, ala, or lys), and a minimum number hélix destabilizatîon residues will be utilized (e.g., proline, or cyclic monomeric units. The capping residue will be considered (for example Gly is an exemplary N-capping residue and/or C-terminal amidation can be used to provide an extra H-bond to stabilize the hélix. Formation of sait bridges between residues with opposite charges, separated by i ± 3, or i ± 4 positions can provide stability. For example, cationic residues such as lysine, arginine, homo-arginine, omithine or histidine can form sait bridges with the anionic residues glutamate or aspartate.
Peptide and peptidomimetic ligands înclude those having naturally occurring or modified peptides, e.g., D or L peptides; α, β, or γ peptides; N-methyl peptides; azapeptides; peptides having one or more amide, i.e., peptide, linkages replaced with one or more urea, thiourea, carbamate, or sulfonyl urea linkages; or cyclic peptides.
The targeting ligand can be any ligand that is capable of targeting a spécifie receptor. Examples are: folate, GalNAc, galactose, mannose, mannose-6P, clusters of sugars such as GalNAc cluster, mannose cluster, galactose cluster, or an apatamer. A cluster is a combination of two or more sugar units. The targeting ligands also înclude integrin receptor ligands, Chemokine receptor ligands, transferrin, biotin, serotonin receptor ligands, PSMA, endothelin, GCPII, somatostatîn, LDL and HDL ligands. The ligands can also be based on nucleic acid, e.g., an aptamer. The aptamer can be unmodified or hâve any combination of modifications disclosed herein.
Endosomal release agents include imidazoles, poly or oligoimidazoles, PEIs, peptides, fusogenic peptides, polycaboxylates, polyacations, masked oligo or poly cations or anions, acetals, polyacetals, ketals/polyketyals, orthoesters, polymers with masked or unmasked cationic or anîonic charges, dendrimers with masked or unmasked cationic or anionic charges.
PK modulator stands for pharmacokinetic modulator. PK modulators include lipophiles, bile acids, steroîds, phospholipid analogues, peptides, protein binding agents, PEG, vitamins etc. Examplary PK modulators include, but are not limited to, cholestérol, fatty acids, cholic acid, lithocholic acid, dialkylglycerides, diacylglyceride, phospholipids, sphingolipids, naproxen, ibuprofen, vitamîn E, biotin etc. Oligonucleotides that comprise a number of phosphorothioate linkages are also known to bind to sérum protein, thus short oligonucleotides, e.g., oligonucleotides of about 5 bases, 10 bases, 15 bases or 20 bases, comprising multiple phosphorothioate linkages in the backbaone are also amenable to the présent invention as ligands (e.g., as PK modulating ligands).
In addition, aptamers that bind sérum components (e.g., sérum proteins) are also amenable to the présent invention as PK modulating ligands.
Other ligand conjugates amenable to the invention are described in U.S. Patent Applications USSN: 10/916,185, filed August 10,2004; USSN: 10/946,873, filed September 21, 2004; USSN: 10/833,934, filed August 3, 2007; USSN: 11/115,989 filed April 27, 2005 and USSN: 11/944,227 filed November 21, 2007, which are incorporated by reference in their entireties for all purposes.
When two or more ligands are présent, the ligands can all hâve same properties, all hâve different properties or some ligands hâve the same properties while others hâve different properties. For example, a ligand can hâve targeting properties, hâve endosomolytic activity or hâve PK modulating properties. In a preferred embodiment, all the ligands hâve different properties.
Ligands can be coupled to the oligonucleotides at various places, for example, 3’-end, 5’-end, and/or at an internai position. In preferred embodiments, the ligand is attached to the oligonucleotides via an intervening tether, e.g., a carrier described herein. The ligand or tethered ligand may be présent on a monomer when the monomer is incorporated into the growing strand. In some embodiments, the ligand may be incorporated via coupling to a “precursor” monomer after the “precursor” monomer has been incorporated into the growing strand. For example, a monomer having, e.g., an amino-terminâted tether (i.e., having no associated ligand), e.g., TAP-(CH2)nNH2 may be incorporated into a growing oligonucelotide strand. In a subséquent operation, i.e., after incorporation of the precursor monomer into the strand, a ligand having an electrophilic group, e.g., a pentafluorophenyl ester or aldéhyde group, can subsequently be attached to the precursor monomer by coupling the electrophilic group of the ligand with the terminal nucleophilïc group of the precursor monomer’s tether.
In another example, a monomer having a chemical group suitable for taking part in Click Chemistry reaction may be incorporated, e.g., an azide or alkyne terminated tether/linker. In a subséquent operation, i.e., after incorporation of the precursor monomer into the strand, a ligand having complementary chemical group, e.g. an alkyne or azide can be attached to the precursor monomer by coupling the alkyne and the azide together.
For double- stranded oligonucleotides, ligands can be attached to one or both strands. In some embodiments, a double-stranded iRNA agent contains a ligand conjugated to the sense strand. In other embodiments, a double-stranded iRNA agent contains a ligand conjugated to the antisense strand.
In some embodiments, ligand can be conjugated to nucleobases, sugar moieties, or intemucleosidic linkages of nucleic acid molécules. Conjugation to purine nucleobases or dérivatives thereof can occur at any position including, endocyclic and exocyclic atoms. In some embodiments, the 2-, 6-, 7-, or 8-positions of a purine nucleobase are attached to a conjugate moiety. Conjugation to pyrimidine nucleobases or dérivatives thereof can also occur at any position. In some embodiments, the 2-, 5-, and 6-positions of a pyrimidine nucleobase can be substituted with a conjugate moiety. Conjugation to sugar moieties of nucleosides can occur at any carbon atom. Example carbon atoms of a sugar moiety that can be attached to a conjugate moiety include die 2', 3', and 5' carbon atoms. The l'position can also be attached to a conjugate moiety, such as in an abasic residue. Intemucleosidic linkages can also bear conjugate moieties. For phosphorus-containing linkages (e.g., phosphodiester, phosphorothioate, phosphorodithiotate, phosphoroamidate, and the like), the conjugale moiety can be attached directly to the phosphores atom or to an O, N, or S atom bound to the phosphores atom. For amine- or amide-containing intemucleosidic linkages (e.g., PNA), the conjugate moiety can be attached to the nitrogen atom of the amine or amide or to an 5 adjacent carbon atom.
Any suitable ligand in the fïeld of RNA interférence may be used, although the ligand is typically a carbohydrate e.g. monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, polysaccharide.
Linkers that conjugate the ligand to the nucleic acid include those discussed above. For example, the ligand can be one or more GalNAc (Ύ-acetylglucosamine) dérivatives attached through a bivalent or trivalent branched iinker.
In one embodiment, the dsRNA of the invention is conjugated to a bivalent and trivalent branched linkers include the structures shown in any of formula (IV) - (VII):
p2A_Q2A_p2A
γ2Α_|_2Α
γ2Β_|_2Β p3A_ç3A _p3A p3B.q3B.r3B
Formula (IV)
Formula (V)
p4A_Q4A_p4A
p4B_Q4B_R4B
N
wherein:
q2A, q2B, q3A, q3B, q4A, q4B, q5A, q5B and q5C represent independently for each occurrence 0-20 and wherein the repeating unit can be the same or different;
p2A p2B p3A p3B p4A p4B p5A pSB pSC rp2A «p2B *p3A rp3B «p4A *p4A rp5B *p5C each independently for each occurrence absent, CO, NH, O, S, OC(O), NHC(O), CH2, CH2NH or CH2O;
Q2a, Q2B, Q3a, Q3B, Q4a, Q4B, Q5a, Q5B, Q5C are independently for each occurrence absent, alkylene, substituted alkylene wherin one or more methylenes can be interrupted or terminated by one or more of O, S, S(O), SO2, N(Rn), C(R’)=C(R”), C=C or C(O);
R2A, R2B, R3A, R3B, R4A, R4B, R5A, R5B, Rsc are each independently for each occurrence absent, NH, O, S, CH2, C(O)O, C(O)NH, NHCH(R°)C(O), -C(O)-CH(Ra)-
NH-, CO, CH=N-O, SS\P^ s—S \r^ or heterocyclyl;
L2a, L2b, L3a, L3b, L4a, L4b, L5a, L5B and L5C represent the ligand; i.e. each independently for each occurrence a monosaccharide (such as GalNAc), disaccharide, trisaccharide, tetrasaccharide, oligosaccharide, or polysaccharide; and
Ra is H or amino acid side chain.
Trivalent conjugating GalNAc dérivatives are particularly useful for use with RNAi agents for inhibiting the expression of a target gene, such as those of formula (VII):
wherein L5A, L5B and L5C represent a monosaccharide, such as GalNAc dérivative.
Examples of suitable bivalent and trivalent branched linker groups conjugating GalNAc dérivatives include, but are not limited to, the following compounds:
NHAc Ο , NHAc
In other embodiments, the RNAi agent of the invention is an agent selected from the group consisting of AD-45163, AD-45165, AD-51544, AD-51545, AD-51546, and AD-51547.
III. Pharmaceutical Compositions
The RNAi agents of the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other pharmaceuticals. The pharmaceutical compositions comprising RNAi agents of the invention may be, for example, solutions with or without a buffer, or compositions containing pharmaceutically acceptable carriers. Such compositions include, for example, aqueous or crystalline compositions, liposomal formulations, micellar formulations, émulsions, and gene therapy vectors.
In the methods of the invention, the RNAi agent may be administered in a solution. A free RNAi agent may be administered in an unbuffered solution, e.g., in saline or in water. Altematively, the free siRNA may also be administred in a suitable buffer solution. The buffer solution may comprise acetate, citrate, prolamine, carbonate, or phosphate, or any combination thereof. In a preferred embodiment, the buffer solution is phosphate buffered saline (PBS). The pH and osmolarity of the buffer solution containing the RNAi agent can be adjusted such that it is suitable for administering to a subject.
In some embodiments, the buffer solution further comprises an agent for controlling the osmolarity of the solution, such that the osmolarity is kept at a desired value, e.g., at the physiologie values of the human plasma. Solutés which can be added to the buffer solution to control the osmolarity include, but are not limited to, proteins, peptides, amino acids, non-metabolized polymers, vitamins, ions, sugars, métabolites, organic acids, lipids, or salts. In some embodiments, the agent for controlling the osmolarity of the solution is a sait. In certain embodiments, the agent for controlling the osmolarity of the solution is sodium chloride or potassium chloride.
In other embodiments, the RNAi agent is formulated as a composition that includes one or more RNAi agents and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” is intended to include any and ail solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonie and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
In one embodiment, the RNAi agent préparation includes at least a second therapeutic agent (e.g., an agent other than an RNA or a DNA). For example, an RNAi agent composition for the treatment of a TTR-associated disease, e.g., a transthyretinrelated hereditary amyloidosis (familial amyloid polyneuropathy, FAP), may include a known drug for the amelioration of FAP, e.g., Tafamidis (INN, or Fx-1006A or Vyndaqel).
A formulated RNAi agent composition can assume a variety of states. In some examples, the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (e.g., it contaîns less than 80, 50, 30, 20, or 10% of water). In another example, the RNAi agent is in an aqueous phase, e.g., in a solution that includes water.
The aqueous phase or the crystalline compositions can be incorporated into a delivery vehicle, e.g., a liposome (particularly for the aqueous phase) or a particle (e.g., a microparticle as can be appropriate for a crystalline composition). Generally, the RNAi agent composition is formulated in a manner that is compatible with the intended method of administration, as described herein. For example, in particular embodiments the composition is prepared by at least one of the following methods: spray drying, lyophîlization, vacuum drying, évaporation, fluid bed drying, or a combination of these techniques; or sonication with a lipid, freeze-drying, condensation and other selfassembly.
An RNAi agent préparation can be formulated in combination with another agent, e.g., another therapeutic agent or an agent that stabilizes RNAi agent, e.g., a protein that complexes with the RNAi agent to form an ÎRNP. Still other agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg2*), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.
In one embodiment, the RNAi agent préparation includes another siRNA compound, e.g., a second RNAi agent that can médiate RNAi with respect to a second gene, or with respect to the same gene. Still other préparation can include at least 3, 5, ten, twenty, fifty, or a hundred or more different RNAi agent species. Such RNAi agents can médiate RNAi with respect to a similar number of different genes.
The iRNA agents of the invention may be formulated for pharmaceutical use. Pharmaceutically acceptable compositions comprise a therapeutically-or prophylactically effective amount of one or more of the the dsRNA agents in any of the preceding embodiments, taken alone or formulated together with one or more pharmaceutically acceptable carriers (additives), excipient and/or diluents.
Methods of preparing pharmaceutical compositions of the invention include the step of bringing into association an RNAi agent of the présent invention with the carrier and, optionally, one or more accessory ingrédients. In general, the compositionsare prepared by uniformly and intimately bringing into association an RN Ai agent of the présent invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
The pharmaceutical compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; (2) parentéral administration, for example, by subcutaneous, intramuscular, intravenous or épidural injection as, for example, a stérile solution or suspension, or sustained-release formulation; (3) topical application, for example, as a cream, ointment, or a controlledrelease patch or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually; (6) ocularly; (7) transdermally; or (8) nasally. Delivery using subcutaneous or intravenous methods can be particularly advantageous.
The phrase pharmaceutically acceptable is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animais without excessive toxicity, irritation, allergie response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase pharmaceutically-acceptable carrier as used herein means a pharmaceutîcally-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnésium, calcium or zinc stéarate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the subject compound from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be acceptable in the sense of being compatible with the other ingrédients of the compositionand not injurious to the patient. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (l) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its dérivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnésium state, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnésium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonie saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) sérum component, such as sérum aibumin, HDL and LDL; and (22) other non-toxic compatible substances employed in pharmaceuticalcompositions.
The compositions may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of RNAi agent which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, and the particular mode of administration. The RNAi agent which can be combined with a carrier material to produce a single dosage form will generally be that amount of the RNAi agent which produces a desired effect, e.g., therapeutic or prophylactic effect. Generally, out of one hundred per cent, this amount will range from about 0.1 per cent to about ninety-nine percent of RNAi agent, preferably from about 5 per cent to about 70 per cent, most preferably from about 10 per cent to about 30 per cent.
In certain embodiments, a composition of the présent invention comprises an excipient selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, e.g., bile acids, and polymeric carriers, e.g., polyesters and polyanhydrides; and an RNAi agent of the présent invention. In certain embodiments, an aforementioned composition renders orally bioavailable an RNAi agent of the présent invention.
In some cases, in order to prolong the effect of an RNAi agent, it is désirable to slow the absorption of the agent from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the RNAi agent then dépends upon its rate of dissolution which, in tum, may dépend upon crystal size and crystalline form. Altematively, delayed absorption of a parenterally-administered RNAi agent may be accomplished by dissolving or suspending the agent in an oil vehicle.
Liposomes
An RNAi agent of the invention can be formulated for delivery in a membranous molecular assembly, e.g., a liposome or a micelle. As used herein, the term “liposome” 20 refers to a vesicle composed of amphiphilic lipids arranged in at least one bilayer, e.g., one bilayer or a plurality of bilayers. Liposomes include unilamellar and multilamellar vesicles that hâve a membrane formed from a lipophilie material and an aqueous interior. The aqueous portion contains the RNAi agent composition. The lipophilie material isolâtes the aqueous interior from an aqueous exterior, which typically does not 25 include the RNAi agent composition, although in some examples, it may. Liposomes are useful for the transfer and delivery of active ingrédients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internai aqueous 30 contents that include the RNAi agent are delivered into the cell where the RNAi agent can specifically bind to a target RNA and can médiate RNAi. In some cases the liposomes are also specificaliy targeted, e.g., to direct the RNAi agent to particular cell types.
A liposome containing an RNAi agent can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can hâve a high critical micelle concentration and may be nonionic. Exemplary détergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The RNAi agent préparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the RNAi agent and condense around the RNAi agent to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal préparation of RNAi agent.
If necessary a carrier compound that assiste in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleîc acid (e.g., spermine or spermidine). pH can also be adjusted to favor condensation.
Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as structural components of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can also include one or more aspects of exemplary methods described in Felgner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417, 1987; U.S. Pat. No. 4,897,355; U.S. Pat. No. 5,171,678; Bangham, et al. M. Mol. Biol. 23:238,1965; Oison, et al. Biochim. Biophys. Acta 557:9, 1979; Szoka, et al. Proc. Natl. Acad. Sci. 75: 4194,1978; Mayhew, et al. Biochim. Biophys. Acta 775:169,1984; Kim, étal. Biochim. Biophys. Acta 728:339, 1983; and Fukunaga, et al. Endocrinol. 115:757,1984. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer, et al. Biochim. Biophys. Acta 858:161, 1986). Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew, et al. Biochim. Biophys. Acta
775:169,1984). These methods are readily adapted to packaging RNAi agent préparations into liposomes.
Liposomes that are pH-sensitive or negatively-charged entrap nucleic acid molécules rather than complex with them. Since both the nucleic acid molécules and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid molécules are entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes hâve been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 19, (1992) 269-274).
One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed fforn mixtures of phospholipid and/or phosphatidylcholine and/or cholestérol.
Examples of other methods to introduce liposomes into cells in vitro and in vivo inciude U.S. Pat. No. 5,283,185; U.S. Pat. No. 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Felgner, J. Biol. Chem. 269:2550,1994; Nabel, Proc. Natl. Acad. Sci. 90:11307, 1993; Nabel, Human Gene Ther. 3:649,1992; Gershon, Biochem. 32:7143, 1993; and Strauss EMBO J. 11:417,1992.
In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver RNAi agents to macrophages.
Further advantages of liposomes inciude: liposomes obtained from natural phospholipids are biocompatible and biodégradable; liposomes can incorporate a wîde range of water and lipid soluble drugs; liposomes can protect encapsulated RNAi agents in their internai compartments from metabolism and dégradation (Rosoff, in Pharmaceutical Dosage Forrns, Lîeberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considérations in the préparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.
A posîtively charged synthetic cationic lipid, N-[l-(2,3-dioleyloxy)propyl]Ν,Ν,Ν-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fiising with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of RNAi agent (see, e.g., Felgner, P. L. et al., Proc. Natl. Acad. Sci., USA 8:7413-7417,1987 and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA),
A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. Lipofectin™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise posîtively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough posîtively charged liposomes are used, the net charge on the resulting complexes is also positive. Posîtively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, l,2-bis(oleoyloxy)-3,3-(trimethy1ammonia)propane (“DOTAP”) (Boehringer Mannheim, Indianapolis, Indiana) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.
Other reported cationic lipid compounds include those that hâve been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5carboxyspermylglycine dioctaoleoylamide (“DOGS”) (Transfectam™, Promega, Madison, Wisconsin) and dipalmitoylphosphatidylethanolamine 5-carboxyspermylamide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).
Another cationic lipid conjugate includes derivatization of the lipid with cholestérol (“DC-Chol”) which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., Biochim. Biophys. Res. Commun. 179:280,1991). Lipopolylysine, made by conjugatîng polylysine to DOPE, has been reported to be effective for transfection in the presence of sérum (Zhou, X. et al., Biochim. Biophys. Acta 1065:8,1991). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, California) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Maryland). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.
Liposomal formulations are particularly suited for topical administration, liposomes présent several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer RNAi agent into the skin. In some implémentations, liposomes are used for delivering RNAi agent to epidermal cells and also to enhance the pénétration of RNAi agent into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., Journal of Drug Targeting, 1992, vol. 2,405-410 and du Plessis et al.,Antivlral Research, 18, 1992, 259-265; Mannino, R. J. and FouldFogerite, S., Biotechniques 6:682-690,1988; Itani, T. et al. Gene 56:267-276. 1987; Nicolau, C. et al. Meth. Enz. 149:157-176,1987; Straubinger, R. M. and Papahadjopoulos, D. Meth. Enz. 101:512-527,1983; Wang, C. Y. and Huang, L., Proc. Natl. Acad. Sci. USA 84:7851-7855,1987).
Non-ionic liposomal Systems hâve also been examined to détermine their utility in the delivery of drugs to the skin, in particular Systems comprising non-ionic surfactant and cholestérol. Non-ionic liposomal formulations comprising Novasome I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and Novasome II (glyceryl distearate/ cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with RNAi agent are useful for treating a dermatological disorder.
Liposomes that include RNAi agent can be made highly déformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are a type of déformable liposomes. Transferosomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include RNAi agent can be delivered, for example, subcutaneously by infection in order to deliver RNAi agent to kératinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a sériés of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transferosomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without ffagmenting, and often self-loading.
Other formulations amenable to the présent invention are described in United States provîsional application serial Nos. 61/018,616, filed January 2, 2008; 61/018,611, filed January 2,2008; 61/039,748, filed March 26, 2008; 61/047,087, filed April 22, 2008 and 61/051,528, filed May 8,2008. PCT application no PCT/US2007/080331, filed October 3,2007 also describes formulations that are amenable to the présent invention.
Surfactants
Surfactants find wide application in formulations such as émulsions (including microemulsions) and liposomes (see above). RNAi agent (or a precursor, e.g., a larger dsîRNA which can be processed into a siRNA, or a DNA which encodes a siRNA or precursor) compositions can include a surfactant. In one embodiment, the siRNA is formulated as an émulsion that includes a surfactant. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in “Pharmaceutical Dosage Forms,” Marcel Dekker, Inc., New York, NY, 1988, p. 285).
If the surfactant molécule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants înclude nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.
If the surfactant molécule carries a négative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.
If the surfactant molécule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationïc surfactants include quatemary ammonium salts and ethoxylated amines. The quatemary ammonium salts are the most used members of this class.
If the surfactant molécule has the ability to carry either a positive or négative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid dérivatives, substituted alkylamides, N-alkylbetaines and phosphatides.
The use of surfactants in drug products, formulations and in émulsions has been reviewed (Rieger, in “Pharmaceutical Dosage Forms,” Marcel Dekker, Inc., New York, NY, 1988, p. 285).
Micelles and other Membranous Formulations
The RNAi agents of the invention can also be provided as micellar formulations. “Micelles” are defined herein as a particular type of molecular assembly in which amphipathic molécules are arranged in a spherical structure such that ail the hydrophobie portions of the molécules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobie.
A mixed micellar formulation suitable for delivery through transdermal membranes may be prepared by mixing an aqueous solution of the siRNA composition, an alkali métal Cg to C22 alkyl sulphate, and a micelle forming compound. Exemplary micelle forming compounds include lecithin, hyaluronic acid, pharmaceutically acceptable salts of hyaluronic acid, glycolic acid, lactic acid, chamomile extract, cucumber extract, oleic acid, linoleic acid, linolenic acid, monoolein, monooleates, monolaurates, borage oil, evening of primrose oil, menthol, trihydroxy oxo cholanyl glycine and pharmaceutically acceptable salts thereof, glycerin, polyglycerin, lysine, polylysine, triolein, polyoxyethylene ethers and analogues thereof, polidocanol alkyl ethers and analogues thereof, chenodeoxycholate, deoxycholate, and mixtures thereof. The micelle forming compounds may be added at the same time or after addition of the alkali métal alkyl sulphate. Mixed micelles will form with substantially any kind of mixing of the ingrédients but vîgorous mixing in order to provide smaller size micelles.
In one method a first micellar composition is prepared which contains the siRNA composition and at least the alkali métal alkyl sulphate. The first micellar composition is then mixed with at least three micelle forming compounds to form a mixed micellar composition. In another method, the micellar composition is prepared by mixing the siRNA composition, the alkali métal alkyl sulphate and at least one of the micelle forming compounds, followed by addition of the remaining micelle forming compounds, with vigorous mixing.
Phénol and/or m-cresol may be added to the mixed micellar composition to stabilize the formulation and protect against bacterial growth. Altematively, phénol and/or m-cresol may be added with the micelle forming ingrédients. An isotonie agent such as glycerin may also be added after formation of the mixed micellar composition.
For delivery of the micellar formulation as a spray, the formulation can be put into an aérosol dispenser and the dispenser is charged with a propellant. The propellant, which is under pressure, is in liquid form in the dispenser. The ratios of the ingrédients are adjusted so that the aqueous and propellant phases become one, Le., there is one phase. If there are two phases, it is necessary to shake the dispenser prior to dispensîng a portion of the contents, e.g., through a metered valve. The dispensed dose of pharmaceutical agent is propelled from the metered valve in a fine spray.
Propellants may include hydrogen-containing chlorofluorocarbons, hydrogencontaining fluorocarbons, dimethyl ether and diethyl ether. In certain embodiments, HFA 134a (1,1,1,2 tetrafluoroethane) may be used.
The spécifie concentrations of the essential ingrédients can be determined by relatively straightforward expérimentation. For absorption through the oral cavities, it is often désirable to increase, e.g., at least double or triple, the dosage for through injection or administration through the gastrointestinal tract.
Particles
In another embodiment, an RNAi agent of the invention may be incorporated into a particle, e.g., a microparticle, Microparticles can be produced by spray-drying, but may also be produced by other methods including lyophilization, évaporation, fluîd bed drying, vacuum drying, or a combination of these techniques.
IV. Methods For Inhibiting TTR Expression
The présent invention also provides methods of inhibiting expression of a transthyretin (TTR) in a cell. The methods include contacting a cell with an RNAi agent, e.g., double stranded RNAi agent, in an amount effective to inhibit expression of TTR in the cell, thereby inhibiting expression of TTR in the cell.
Contacting of a cell with an RNAi agent, e.g., a double stranded RNAi agent, may be done in vitro or in vivo. Contacting a cell in vivo with the RNAi agent includes contacting a cell or group of cells within a subject, e.g., a human subject, with the RNAi agent. Combinations of in vitro and in vivo methods of contacting a cell are also possible. Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In preferred embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc3 ligand, or any other ligand that directs the RNAi agent to a site of interest, e.g., the liver of a subject.
The term “inhibiting,” as used herein, is used interchangeably with “reducing,” “silencing,” “downregulating”, “suppressing”, and other similar terms, and includes any level of inhibition.
The phrase “inhibiting expression of a TTR” is intended to refer to inhibition of expression of any TTR gene (such as, e.g., a mouse TTR gene, a rat TTR gene, a monkey TTR gene, or a human TTR gene) as well as variants or mutants of a TTR gene. Thus, the TTR gene may be a wild-type TTR gene, a mutant TTR gene (such as a mutant TTR gene giving rise to amyloid déposition), or a transgenic TTR gene in the context of a genetically manipulated cell, group of cells, or organism.
“Inhibiting expression of a TTR gene” includes any level of inhibition of a TTR gene, e.g., at least partial suppression of the expression of a TTR gene. The expression of the TTR gene may be assessed based on the level, or the change in the level, of any variable associated with TTR gene expression, e.g., TTR mRNA level, TTR protein level, or the number or extent of amyloid deposits. This level may be assessed in an individual cell or in a group of cells, including, for example, a sample derived from a subject.
Inhibition may be assessed by a decrease in an absolute or relative level of one or more variables that are associated with TTR expression compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a predose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control).
In some embodiments of the methods of the invention, expression of a TTR gene is inhibited by at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%,at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%. at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%.
Inhibition of the expression of a TTR gene may be manifested by a réduction of the amount of mRNA expressed by a first cell or group of cells (such cells may be présent, for example, in a sample derived fforn a subject) in which a TTR gene is transcribed and which has or hâve been treated (e.g., by contacting the cell or cells with an RNAi agent of the invention, or by administering an RNAi agent of the invention to a subject in which the cells are or were présent) such that the expression of a TTR gene is inhibited, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or hâve not been so treated (control cell(s)). In preferred embodiments, the inhibition is assessed by expressing the level of mRNA in treated cells as a percentage of the level of mRNA in control cells, using the following formula:
(mRNA in control cells) - (mRNA in treated cells) * θθ0^ (mRNA in control cells)
Altematively, inhibition of the expression of a TTR gene may be assessed in terms of a réduction of a parameter that is functionally linked to TTR gene expression, e.g., TTR protein expression, retinol binding protein level, vitamin A level, or presence of amyloid deposits comprising TTR. TTR gene silencing may be determined in any cell expressing TTR, either constitutively or by genomic engineering, and by any assay known in the art. The liver is the major site of TTR expression. Other significant sites of expression include the choroid plexus, retina and pancréas.
Inhibition of the expression of a TTR protein may be manifested by a réduction in the level of the TTR protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject). As explained above for the assessment of mRNA suppression, the inhibiton of protein expression levels in a treated cell or group of cells may similarly be expressed as a percentage of the level of protein in a control cell or group of cells.
A control cell or group of cells that may be used to assess the inhibition of the expression of a TTR gene includes a cell or group of cells that has not yet been contacted with an RNAi agent of the invention. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an RNAi agent.
The level of TTR mRNA that is expressed by a cell or group of cells, or the level of circulating TTR mRNA, may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of TTR in a sample is determined by detectîng a transcribed polynucleotide, or portion thereof, e.g., mRNA of the TTR gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNeasy RNA préparation kits (Qiagen) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays (Melton et al., Nue. Acids Res. 12:7035), Northem blotting, in situ hybridization, and microarray analysis. Circulating TTR mRNA may be detected using methods the described in PCT/US2012/043584, the entire contents of which are hereby incorporated herein by reference.
In one embodiment, the level of expression of TTR is determined using a nucleic acid probe. The term probe, as used herein, refers to any molécule that is capable of selectively binding to a spécifie TTR. Probes can be synthesîzed by one of skill in the art, or derived from appropriate biological préparations. Probes may be specifically designed to be labeled. Examples of molécules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molécules.
Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southem or Northem analyses, polymerase chain reaction (PCR) analyses and probe arrays. One method for the détermination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molécule (probe) that can hybridize to TTR mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an Affymetrix gene chip array. A skilled artisan can readily adapt known mRNA détection methods for use in determining the level of TTR mRNA.
An alternative method for determining the level of expression of TTR in a sample involves the process of nucleic acid amplification and/or reverse transcriptase (to préparé cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sri. USA 88:189-193), self sustained sequence réplication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification System (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lîzardi et al. (1988) Bio/Technology 6:1197), rolling circle réplication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the détection of the amplified molécules using techniques well known to those of skill in the art. These détection schemes are especially useful for the détection of nucleic acid molécules if such molécules are présent in very low numbers. In particular aspects of the invention, the level of expression of TTR is determined by quantitative fluorogenic RT-PCR (i.e., the TaqMan™ System).
The expression levels of TTR mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as Northem, Southem, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722, 5,874,219, 5,744,305, 5,677,195 and 5,445,934, which are incorporated herein by reference. The détermination of TTR expression level may also comprise using nucleic acid probes in solution.
In preferred embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time PCR (qPCR). The use of these methods is described and exemplified in the Examples presented herein.
The level of TTR protein expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precîpitin reactions, absorption spectroscopy, a colorimétrie assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, Western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like.
In some embodiments, the efficacy of the methods of the invention can be monitored by detecting or monitoring a réduction in an amyloid TTR deposit. Reducing an amyloid TTR deposit, as used herein, includes any decrease in the size, number, or severity of TTR deposits, or to a prévention or réduction in the formation of TTR deposits, within an organ or area of a subject, as may be assessed in vitro or in vivo using any method known in the art. For example, some methods of assessîng amyloid deposits are described in Gertz, M.A. & Rajukumar, S.V. (Editors) (2010), Amyloidosis: Diagnosis and Treatment, New York: Humana Press. Methods of assessing amyloid deposits may include biochemical analyses, as well as visual or computerized assessment of amyloid deposits, as made visible, e.g., using immunohistochemical staining, fluorescent labeling, light microscopy, électron microscopy, fluorescence microscopy, or other types of microscopy. Invasive or noninvasive imaging modalities, including, e.g., CT, PET, or NMR/MRI imaging may be employed to assess amyloid deposits.
The methods of the invention may reduce TTR deposits in any number of tissues or régions of the body including but not limited to the heart, liver, spleen, esophagus, stomach, intestine (ileum, duodénum and colon), brain, sciatic nerve, dorsal root ganglion, kidney and retina.
The term “sample” as used herein refers to a collection of similar fluids, cells, or tissues isolated from a subject, as well as fluids, cells, or tissues présent within a subject. Examples of biological fluids include blood, sérum and serosal fluids, plasma, lymph, urine, cerebrospinal fluid, saliva, ocular fluids, and the like. Tissue samples may include samples from tissues, organs or localized régions. For example, samples may be derived fforn particular organs, parts of organs, or fluids or cells within those organis. In certain embodiments, samples may be derived from the liver (e.g., whole liver or certain segments of liver or certain types of cells in the liver, such as, e.g., hépatocytes), the retina or parts of the retina (e.g., retina! pigment epithelium), the central nervous System or parts of the central nervous System (e.g., ventricles or choroid plexus), or the pancréas or certain cells or parts of the pancréas. In preferred embodiments, a “sample derived from a subject” refers to blood or plasma drawn from the subject. In further embodiments, a “sample derived from a subject” refers to liver tissue or retinal tissue derived from the subject.
In some embodiments of the methods of the invention, the RNAi agent is administered to a subject such that the RNAi agent is delivered to a spécifie site within the subject. The inhibition of expression of TTR may be assessed using measurements of the level or change in the level of TTR mRNA or TTR protein in a sample derived from fluid or tissue from the spécifie site within the subject. In preferred embodiments, the site is selected from the group consisting of liver, choroid plexus, retina, and pancréas. The site may also be a subsection or subgroup of cells from any one of the aforementioned sites (e.g., hépatocytes or retinal pigment epithelium). The site may also include cells that express a particular type of receptor (e.g., hépatocytes that express the asialogycloprotein receptor).
V. Methods for Treating or Preventing a TTR-Associated Discase
The présent invention also provides methods for treating or preventing a TTRassociated disease in a subject. The methods include administering to the subject a therapeutically effective amount or prophylactically effective amount of an RNAi agent of the invention.
As used herein, a subject includes either a human or a non-human animal, preferably a vertebrate, and more preferably a mammal. A subject may include a transgenic organism. Most preferably, the subject is a human, such as a human suffering from or predisposed to developing a TTR-associated disease.
In some embodiments, the subject is suffering from a TTR-associated disease. In other embodiments, the subject is a subject at risk for developing a TTR-associated disease, e.g., a subject with a TTR gene mutation that is associated with the development of a TTR associated disease, a subject with a family history of TTR-associated disease, or a subject who has signs or symptoms suggesting the development of TTR amyloidosis.
A “TTR-associated disease,” as used herein, includes any disease caused by or associated with the formation of amyloid deposits in which the fibril precurosors consist of variant or wild-type TTR protein. Mutant and wild-type TTR give rise to various forms of amyloîd déposition (amyloidosis). Amyloidosis involves the formation and aggregation of misfolded proteins, resulting in extracellular deposits that impair organ fonction. Climîcal syndromes associated with TTR aggregation include, for example, senile systemic amyloidosis (SSA); systemic familial amyloidosis; familial amyloidotic polyneuropathy (FAP); familial amyloidotic cardiomyopathy (FAC); and leptomeningeal amyloidosis, also known as leptomeningeal or meningocerebrovascular amyloidosis, central nervous system (CNS) amyloidosis, or amyloidosis VII form.
In some embodiments of the methods of the invention, RNAi agents of the invention are administered to subjects suffering from familial amyloidotic cardiomyopathy (FAC) and senile systemic amyloidosis (SSA). Normal-sequence TTR causes cardiac amyloidosis in people who are elderly and îs termed senile systemic amyloidosis (SSA) (also called senile cardiac amyloidosis (SCA) or cardiac amyloidosis). SSA often is accompanied by microscopie deposits in many other organs. TTR mutations accelerate the process of TTR amyloid formation and are the most important risk factor for the development of clinically significant TTR amyloidosis (also called ATTR (amyloidosis-transthyretin type)). More than 85 amyloidogenic TTR variants are known to cause systemic familial amyloidosis.
In some embodiments of the methods of the invention, RNAi agents of the invention are administered to subjects suffering from transthyretin (TTR)-related familial amyloidotic polyneuropathy (FAP). Such subjects may suffer from ocular manifestations, such as vitreous opacity and glaucoma. It is known to one of skill in the art that amyloidogenic transthyretin (ATTR) synthesized by retinal pigment epithelium (RPE) plays important rôles in the progression of ocular amyloidosis. Previous studies hâve shown that panretinal laser photocoagulation, which reduced the RPE cells, prevented the progression of amyloid déposition in the vitreous, indicating that the effective suppression of ATTR expression in RPE may become a novel therapy for ocular amyloidosis (see, e.g., Kawaji, T., et al., Ophthalmology. ¢2010) 117: 552-555). The methods of the invention are usefol for treatment of ocular manifestations of TTR related FAP, e.g., ocular amyloidosis. The RNAi agent can be delivered in a manner suitable for targeting a particular tissue, such as the eye. Modes of ocular delivery include retrobulbar, subcutaneous eyelîd, subconjunctival, subtenon, anterior chamber or intravitreous injection (or internai injection or infusion). Spécifie formulations for ocular delivery include eye drops or ointments.
Another TTR-associated disease is hyperthyroxinemia, also known as “dystransthyretinemic hyperthyroxinemia” or “dysprealbuminemic hyperthyroxinemia”. This type of hyperthyroxinemia may be secondary to an increased association of thyroxine with TTR due to a mutant TTR molécule with increased affinity for thyroxine. See, e.g., Moses et al. (1982) J. Clin. Invest., 86,2025-2033.
The RNAi agents of the invention may be administered to a subject using any mode of administration known in the art, including, but not limited to subcutaneous, intravenous, intramuscular, intraocular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatîc, cerebrospinal, and any combinations thereof. In preferred embodiments, the agents are administered subcutaneously.
In some embodiments, the administration is via a depot injection. A depot injection may release the RNAi agent in a consistent way over a prolonged time period. Thus, a depot injection may reduce the frequency of dosing needed to obtain a desired effect, e.g., a desired inhibition of TTR, or a therapeutic or prophylactic effect. A depot injection may also provide more consistent sérum concentrations. Depot injections may include subcutaneous injections or intramuscular injections. In preferred embodiments, the depot injection is a subcutaneous injection.
In some embodiments, the administration is via a pump. The pump may be an extemal pump or a surgically implanted pump. In certain embodiments, the pump is a subcutaneously implanted osmotic pump. In other embodiments, the pump is an infusion pump. An infusion pump may be used for intravenous, subcutaneous, arterial, or épidural infusions. In preferred embodiments, the infusion pump is a subcutaneous infusion pump. In other embodiments, the pump is a surgically implanted pump that delivers the RNAi agent to the liver.
Other modes of administration include épidural, intracérébral, intracerebroventricular, nasal administration, intraarterial, intracardiac, intraosseous infusion, intrathecal, and intravitreai, and pulmonary. The mode of administration may be chosen based upon whether local or systemic treatment is desired and based upon the area to be treated. The route and site of administration may be chosen to enhance targeting.
In some embodiments, the RNAi agent is administered to a subject in an amount effective to inhibit TTR expression in a cell within the subject. The amount effective to inhibit TTR expression in a cell within a subject may be assessed using methods discussed above, including methods that involve assessment of the inhibition of TTR mRNA, TTR protein, or related variables, such as amyloid deposits.
In some embodiments, the RNAi agent is administered to a subject in a therapeutically or prophylactically effective amount.
Therapeutically effective amount, as used herein, is intended to include the amount of an RNAi agent that, when administered to a patient for treating a TTR assocîated disease, is sufficient to effect treatment of the disease (e.g., by diminishing, amelîorating or maintaining the existing disease or one or more symptoms of disease). The therapeutically effective amount may vary depending on the RNAi agent, how the agent is administered, the disease and its severity and the history, âge, weight, family history, genetic makeup, stage of pathological processes mediated by TTR expression, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.
“Prophylactically effective amount,” as used herein, is intended to include the amount of an RNAi agent that, when administered to a subject who does not yet expérience or display symptoms of a TTR-associated disease, but who may be predisposed to the disease, is sufficient to prevent or ameliorate the disease or one or more symptoms of the disease. Symptoms that may be ameliorated include sensory neuropathy (e.g., paresthesia, hypesthesia in distal limbs), autonomie neuropathy (e.g., gastrointestinal dysfonction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomie insufficiency, cardiomyopathy, vitreous opacities, rénal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfonction, and comeal lattice dystrophy. Amelîorating the disease includes slowing the course of the disease or reducing the severity of later-developing disease. The prophylactically effective amount may vary depending on the RNAi agent, how the agent is administered, the degree of risk of disease, and the history, âge, weight, family history, genetic makeup, the types of preceding or concomitant treatments, if any, and other individual characteristics of the patient to be treated.
A therapeutically-effective amount or “prophylacticaly effective amount” also includes an amount of an RNAi agent that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. RNAi agents employed in the methods of the présent invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.
As used herein, the phrases “therapeutically effective amount” and “prophylactically effective amount” also include an amount that provides a benefit in the treatment, prévention, or management of pathological processes or symptom(s) of pathological processes mediated by TTR expression. Symptoms ofTTR amyloidosis include sensory neuropathy (e.g. paresthesia, hypesthesia in distal limbs), autonomie neuropathy (e.g., gastrointestinal dysfonction, such as gastric ulcer, or orthostatic hypotension), motor neuropathy, seizures, dementia, myelopathy, polyneuropathy, carpal tunnel syndrome, autonomie insufficiency, cardiomyopathy, vîtreous opacifies, rénal insufficiency, nephropathy, substantially reduced mBMI (modified Body Mass Index), cranial nerve dysfonction, and comeal lattice dystrophy.
The dose of an RNAi agent that is administered to a subject may be tailored to balance the risks and benefits of a particular dose, for example, to achieve a desired level of TTR gene suppression (as assessed, e.g., based on TTR mRNA suppression, TTR protein expression, or a réduction in an amyloid deposit, as defined above) or a desired therapeutic or prophylactic effect, while at the same time avoiding undesirable side effects.
In one embodiment, the RNAi agent is administered at a dose of between about 0.25 mg/kg to about 50 mg/kg, e.g., between about 0.25 mg/kg to about 0.5 mg/kg, between about 0.25 mg/kg to about I mg/kg, between about 0.25 mg/kg to about 5 mg/kg, between about 0.25 mg/kg to about 10 mg/kg, between about 1 mg/kg to about 10 mg/kg, between about 5 mg/kg to about 15 mg/kg, between about 10 mg/kg to about 20 mg/kg, between about 15 mg/kg to about 25 mg/kg, between about 20 mg/kg to about mg/kg, between about 25 mg/kg to about 35 mg/kg, or between about 40 mg/kg to about 50 mg/kg.
In some embodiments, the RNAi agent is administered at a dose of about 0.25 mg/kg, about 0.5 mg/kg, about l mg/kg, about 2 mg/kg, about 3 mg/kg, about 4 mg/kg, about 5 mg/kg, about 6 mg/kg, about 7 mg/kg, about 8 mg/kg, about 9 mg/kg, about 10 mg/kg, about 11 mg/kg, about 12 mg/kg, about 13 mg/kg, about 14 mg/kg, about 15 mg/kg, about 16 mg/kg, about 17 mg/kg, about 18 mg/kg, about 19 mg/kg, about 20 mg/kg, about 21 mg/kg, about 22 mg/kg, about 23 mg/kg, about 24 mg/kg, about 25 mg/kg, about 26 mg/kg, about 27 mg/kg, about 28 mg/kg, about 29 mg/kg, 30 mg/kg, about 31 mg/kg, about 32 mg/kg, about 33 mg/kg, about 34 mg/kg, about 35 mg/kg, about 36 mg/kg, about 37 mg/kg, about 38 mg/kg, about 39 mg/kg, about 40 mg/kg, about 41 mg/kg, about 42 mg/kg, about 43 mg/kg, about 44 mg/kg, about 45 mg/kg, about 46 mg/kg, about 47 mg/kg, about 48 mg/kg, about 49 mg/kg or about 50 mg/kg.
X.
In some embodiments, the RNAi agent is administered in two or more doses. If desired to facilitate repeated or frequent infusions, implantation of a delivery device, e.g., a pump, semi-permanent stent (e.g., intravenous, intraperitoneal, intracistemal or intracapsular), or réservoir may be advisable. In some embodiments, the number or amount of subséquent doses is dépendent on the achievement of a desired effect, e.g., the suppression of a TTR gene, or the achievement of a therapeutic or prophylactic effect, e.g., reducing an amyloid deposit or reducing a symptom of a TTR-associated disease. ln some embodiments, the RNAi agent is administered according to a schedule. For example, the RNAi agent may be administered twice per week, three times per week, four times per week, or five times per week. In some embodiments, the schedule involves regularly spaced administrations, e.g., hourly, every four hours, every six hours, every eight hours, every twelve hours, daily, every 2 days, every 3 days, every 4 days, every 5 days, weekly, biweekly, or monthly. In other embodiments, the schedule involves closely spaced administrations followed by a longer period of time during which the agent is not administered. For example, the schedule may involve an initial set of doses that are administered in a relatively short period of time (e.g., about every 6 hours, about every 12 hours, about every 24 hours, about every 48 hours, or about every hours) followed by a longer time period (e.g., about l week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, or about 8 weeks) during which the RNAi agent is not administered. In one embodiment, the RNAi agent is initially administered hourly and is later administered at a longer interval (e.g., daily, weekly, biweekly, or monthly). In another embodiment, the RNAi agent is initially administered daily and is later administered at a longer interval (e.g., weekly, biweekly, or monthly). In certain embodiments, the longer interval increases over time or is determined based on the achievement of a desired effect. In a spécifie embodiment, the RNAi agent is administered once daily during a first week, followed by weekly dosing starting on the eighth day ofadministration. In another spécifie embodiment, the RNAi agent is administered every other day during a first week followed by weekly dosing starting on the eighth day of administration.
Any of these schedules may optionally be repeated for one or more itérations. Tlie number of itérations may dépend on the achievement of a desired effect, e.g., the suppression of a TTR gene, retinol binding protein level, vitamin A level, and/or the achievement of a therapeutic or prophylactic effect, e.g., reducing an amyloid deposit or reducing a symptom of a TTR-associated disease.
In some embodiments, the RNAi agent is administered with other therapeutic agents or other therapeutic regimens. For example, other agents or other therapeutic regimens suitable for treating a TTR-associated disease may include a liver transplant, which can reduce mutant TTR levels in the body; Tafamîdis (Vyndaqel), which kinetically stabilizes the TTR tetramer preventing tetramer dissociation required for TTR amyloidogenesis; and dîuretics, which may be employed, for example, to reduce edema in TTR amyloidosis with cardiac involvement.
In one embodiment, a subject is administered an initial dose and one or more maintenance doses of an RNAi agent. The maintenance dose or doses can be the same or lower than the initial dose, e.g., one-half of the initial dose. A maintenance regimen can include treating the subject with a dose or doses ranging from 0.01 pg to 15 mg/kg of body weight per day, e.g., 10 mg/kg, 1 mg/kg, 0.1 mg/kg, 0.01 mg/kg, 0.001 mg/kg, or 0.00001 mg/kg of bodyweight per day. The maintenance doses are, for example, administered no more than once every 2 days, once every 5 days, once every 7 days, once every 10 days, once every 14 days, once every 21 days, or once every 30 days. Further, the treatment regimen may last for a period of time which will vary depending upon the nature of the particular disease, its severity and the overall condition of the patient. In certain embodiments the dosage may be delivered no more than once per day, e.g., no more than once per 24, 36,48, or more hours, e.g., no more than once every 5 or 8 days. Following treatment, the patient can be monitored for changes in his/her condition. The dosage of the RNAi agent may either be increased in the event the patient does not respond significantly to current dosage levels, or the dose may be decreased if an alleviation of the symptoms of the disease state is observed, if the disease state has been ablated, or if undesired side-effects are observed.
VI. Kits
The présent invention also provides kits for performing any of the methods of the invention. Such kits include one or more RNAi agent(s) and instructions for use, e.g., instructions for inhibiting expression of a TTR in a cell by contacting the cell with the RNAi agent(s) in an amount effective to inhibit expression of the TTR. The kits may optionally further comprise means for contacting the cell with the RNAi agent (e.g., an injection device), or means for measuring the inhibition of TTR (e.g., means for measuring the inhibition of TTR mRNA or TTR protein). Such means for measuring the inhibition of TTR may comprise a means for obtaining a sample from a subject, such as, e.g., a plasma sample. The kits of the invention may optionally further comprise means for admînistering the RNAi agent(s) to a subject or means for determining the therapeutically effective or prophylactically effective amount.
This invention is further illustrated by the following examples which should not be construed as limiting. The contents of ail references and published patents and patent applications cited throughout the application are hereby incorporated herein by reference.
EXAMPLES
Examplc 1: Inhibition of TTR with TTR-GalNAc conjugates
A single dose of the TTR RNAi agent AD-43527 was administered to mice subcutaneously and TTR mRNA levels were determined 72 hours post administration.
The mouse/rat cross-reactive GalNAc-conjugate, AD-43527, was chosen for in vivo évaluation in WT C57BL/6 mice for silencing of TTR mRNA in liver. The sequence of each strand of AD-43527 is shown below.
Strand: s= sense; as= antisense
Duplex # Strand Olîgo # Sequence 5' to 3'
AD-43527 s A89592 AfaCfaGfuGfuUfcüfuGfcUfcUfaüfaAfL96 (SEQ ID NO: 8)
as A- 83989 uüfaüfaGfaGfcAfaGfaAfcAfcUfgüfusüfsu (SEQ ID NO: 9
L96 = GalNAc3; lowercase nts (a,u,g,c) are 2'-0-methyl nucléotides, Nf (i.e., Af) is a 2'-fluoro nucléotide
The ligand used was GalNAcj:
This GalNAc3 ligand was conjugated to the 3’-end of the sense strand using the linker and tether as shown below:
following schematic:
Additional RNAi agents that target TTR and hâve the following sequences and modifications were synthesized and assayed.
Mouse/rat cross reactive TTR RNAi agents
Duplex Sense strand 5-3' Antisense strand 5-3’
AD43528 AfaCfaGfuGfuUfcUfuGfcUfcüfaUfa AIQ11L96 (SEQ IDNO; 10) uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu (SEQ1DNO: 11)
Human/cyno cross reactive TTR RNAi agents; parent duplex is AD-18328 [having a sense strand 5’-3’ sequence of GuAAccAAGAGuAuuccAudTdT (SEQ ID NO: 12) and antisense strand 5’ to 3’ sequence of AUGGAAuACUCUUGGUuACdTdT (SEQ ID NO: 13) with the following modifications: altematîng 2'F/2’OMe w/2 PS on AS.
Duplex Sense strand 5'-3' Antisense strand 5'-3'
^DT 45163 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfL96 (SEQ ID NO: 14) aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa (SEQ ID NO: 16)
AD45164 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUIQl 1L96 (SEQIDNO: 15) aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa (SEQ ID NO: 17)
L96 = GalNAc3; lowercase nts (a,u,g,c) are 2’-O-methyl nucléotides, Nf (i.e., Af) is a 2’fluoro nucléotide; Q11 is cholestérol; s is phosphorothioate.
AD-43527 was administered to female C57BL/6 mice (6-10 weeks, 5 per group) via subcutaneous injection at a dose volume of ΙΟμΙ/g at a dose of 30,15, 7.5, 3.5, 1.75 or 0.5 mg/kg of AD-43527. Control animais received PBS by subcutaneous injection at the same dose volume.
After approximately seventy two hours, mice were anesthetized with 200 μΐ of ketamine, and then exsanguinated by severing the right caudal artery. Liver tissue was collected, flash-frozen and stored at -80°C until processing.
Efficacy of treatment was evaluated by measurement of TTR mRNA in the liver at 72 hours post-dose. TTR liver mRNA levels were assayed utilizing the Branched DNA assays- QuantiGene 1.0 (Panomics). Briefly, mouse liver samples were ground and tissue lysâtes were prepared. Liver lysis mixture (a mixture of 1 volume of lysis mixture, 2 volume of nuclease-free water and 10μ1 of Proteinase-K/ml for a final concentration of 20mg/ml) was incubated at 65 °C for 35 minutes. 5μΙ of liver lysate and 95μ1 of working probe set (TTR probe for gene target and GAPDH for endogenous control) were added into the Capture Plate. Capture Plates were incubated at 53 °C ±1 °C (aprx. 16-20hrs). The next day, the Capture Plates were washed 3 times with IX Wash Buffer (nuclease-free water, Buffer Component 1 and Wash Buffer Component 2), then dried by centrifuging for 1 minute at 240g. 100μ1 of Amplifier Probe mix per well was added into the Capture Plate, which was sealed with aluminum foil and incubated for 1 hour at 46°C ±1°C. Following a 1 hour incubation, the wash step was repeated, then 100μ1 of Label Probe mix per well was added. Capture plates were incubated at 46 °C ±1 °C for 1 hour. The plates were then washed with IX Wash Buffer, dried and 100μ1 substrate per well was added into the Capture Plates. Capture Plates were incubated for 30 minutes at 46°C followed by incubation for 30 minutes at room température. Plates were read using the SpectraMax Luminometer following incubation. bDNA data were analyzed by subtracting the average background from each duplicate sample, averaging the résultant duplicate GAPDH (control probe) and TTR (experimental probe) values, and then computing the ratio: (experimental probebackground)/(control probe-background). The average TTR mRNA level was calculated for each group and normalized to the PBS group average to give relative TTR mRNA as a % of the PBS control group.
The results are shown in Figure 1. The GalNAc conjugated RNAi agent targeting TTR had an ED50 of approximately 5 mg/kg for TTR mRNA knockdown. These results demonstrate that GalNAc conjugated RNAi agents that target TTR are effective at inhibiting expression of TTR mRNA.
Example 2: Inhibition of TTR with TTR-GalNAc conjugatcs is durable
Mice were administered a subcutaneous dose (either 7.5 or 30.0 mg/kg) of AD43527, a GalNAc conjugated RNAi agent that targets TTR. The TTR mRNA levels in the liver were evaluated at 1, 3, 5, 7, 10, 13,15, 19,26, 33, and 41 days post treatment using the method described in Example 1.
The results are shown in Figure 2. At day 19, administration of 30.0 mg/kg GalNAc conjugated RNAi agents still showed about 50% silencing. Full recovery of expression occurred at day 41.
These results demonstrated that the inhibition provided by GalNAc conjugated siRNA targeting TTR is durable, lasting up to 3, 5, 7, 10, 13, 15, 19, 26 or 33 days post treatment.
Example 3. RNA Synthesis and Duplex Annealing
1. Oligonucleotide Synthesis
Oligonucleotides were synthesized on an AKTAoligopilot synthesizer or an ABI 394 synthsîzer. Commercially available controlled pore glass solid support (dT-CPG, 500Â, Prime Synthesis) and RNA phosphoramidites with standard protecting groups, 5’O-dimethoxytrityl N6-benzoyl-2’-/-butyldimethylsilyl-adenosine-3’-O-N,N’diisopropyl-2-cyanoethylphosphoramidite, 5*-O-dimethoxytrityl-N4-acetyl-2’-fbutyldimethylsilyl-cytidine-3’-O-N,N’-diisopropyl-2-cyanoethylphosphoramidite, 5'-Odimethoxytrityl-N2—isobutryl-2’-/-butyldimethylsilyl-guanosine-3’-O-N,N’-diisopropyl2-cyanoethylphosphoramidite, and 5’-<9-dimethoxytrityl-2’-/-butyldimethylsilyl-uridine3’-0-N,N’-diisopropyl-2-cyanoethylphosphoramidite (Pierce Nucleic Acids Technologies) were used for the oligonucleotide synthesis unless otherwise specified. The 2’-F phosphoramidites, 5’-O-dimethoxytrityl-N4-acetyl-2’-fluro-cytidine-3’-O
N,N*-diisopropyl-2-cyanoethyl-phosphoramidite and 5’-(9-dimethoxytrityl-2’-flurouridine-3’-0-N,N’-diisopropyl-2-cyanoethyl-phosphoramidite were purchased from (Promega). Ail phosphoramidites were used at a concentration of 0.2M in acetonitrile (CH3CN) except for guanosine which was used at 0.2M concentration in 10% THF/ANC (v/v). Coupling/recycling time of 16 minutes was used. The activator was 5-ethyl thiotetrazole (0.75M, American International Chemicals), for the PO-oxidation Iodine/Water/Pyridine was used and the PS-oxidation PADS (2 %) in 2,6-lutidine/ACN (1:1 v/v) was used.
Ligand conjugated strands were synthesized using a solid support containing the corresponding ligand. For example, the introduction of a carbohydrate moiety/ligand (for e.g., GalNAc) at the 3’-end of a sequence was achieved by starting the synthesis with the corresponding carbohydrate solid support. Similarly a cholestérol moiety at the 3’-end was introduced by starting the synthesis on the cholestérol support. In general, the ligand moiety was tethered to Zra»s-4-hydroxyprolinol via a tether of choice as described in the previous examples to obtain a hydroxyprolinol-ligand moiety. The hydroxyprolinol-ligand moiety was then coupled to a solid support via a succinate linker or was converted to phosphoramidite via standard phosphitylation conditions to obtain the desired carbohydrate conjugale building blocks. Fluorophore labeied siRNAs were synthesized from the corresponding phosphoramidite or solid support, purchased from Biosearch Technologies. The oleyl lithocholic (GalNAc)î polymer support made in house at a loadîng of 38.6 pmol/gram. The Mannose (Man)3 polymer support was also made in house at a loadîng of 42.0 pmol/gram.
Conjugation of the ligand of choice at the desired position, for example at the 5’end of the sequence, was achieved by coupling of the corresponding phosphoramidite to the growing chain under standard phosphoramidite coupling conditions unless otherwise specified. An extended 15 minute coupling of 0.1M solution of phosphoramidite in anhydrous CHjCN in the presence of 5-(ethylthio)-l//-tetrazole activator to a solid bound oligonucleotide. Oxidation of the intemucleotide phosphite to the phosphate was carried out using standard îodine-water as reported in Beaucage, S.L. (2008) Solidphase synthesis of siRNA oligonucleotides. Curr. Opin. Drug Discov. Devel., 11, 203216; Mueller, S., Wolf, J. and Ivanov, S.A. (2004) Current Strategies for the Synthesis of RNA. Curr, Org. Synth., 1,293-307; Xia, J., Noronha, A., Toudjarska, I., Li, F., Akinc, A., Braich, R., Frank-Kamenetsky, M., Rajeev, K.G., Egli, M. and Manoharan, M. (2006) Gene Silencing Activity of siRNAs with a Ribo-difluorotoluyl Nucléotide. ACS Chem. Biol., 1, 176-183 or by treatment with fôrAbutyl hydroperoxide/acetonitrile/water (10: 87: 3) with a 10 minute oxidation wait time conjugated oligonucleotide. Phosphorothioate was introduced by the oxidation of phosphite to phosphorothioate by using a sulfur transfer reagent such as DDTT (purchased from AM Chemicals), PADS and or Beaucage reagent The cholestérol phosphoramidite was synthesized in house, and used at a concentration of 0.1 M in dichloromethane. Coupling time for the cholestérol phosphoramidite was 16 minutes.
2. Deprotection- I (Nucleobase Deprotcction)
After completion of synthesis, the support was transferred to a 100 ml glass bottle (VWR). The oligonucleotide was cleaved from the support with simultaneous deprotection of base and phosphate groups with 80 mL of a mixture of ethanolic ammonia [ammonia: éthanol (3:1)] for 6.5h at 55°C. The bottle was cooled briefly on ice and then the ethanolic ammonia mixture was filtered into a new 250 ml bottle. The CPG was washed with 2 x 40 mL portions of ethanol/water (1:1 v/v). The volume of the mixture was then reduced to ~ 30 ml by roto-vap. The mixture was then frozen on dry ice and dried under vacuum on a speed vac.
3. Deprotection-II (Removal of 2’ TBDMS group)
The dried residue was resuspended in 26 ml of triethylamine, triethylamine trihydrofluoride (TEA.3HF) or pyridine-HF and DMSO (3:4:6) and heated at 60°C for 90 minutes to remove the teri-butyldimethylsilyl (TBDMS) groups at the 2’ position. The reaction was then quenched with 50 ml of 20mM sodium acetate and pH adjusted to 6.5, and stored in freezer until purification.
4. Analysis
The oligonucleotides were analyzed by high-performance liquid chromatography (HPLC) prior to purification and sélection of buffer and column dépends on nature of the sequence and or conjugated ligand.
5. HPLC Purification
The ligand conjugated oligonucleotides were purified by reverse phase préparative HPLC. The unconjugated oligonucleotides were purified by anion-exchange HPLC on a TSK. gel column packed in house. The buffers were 20 mM sodium phosphate (pH 8.5) in 10% CH3CN (buffer A) and 20 mM sodium phosphate (pH 8.5) in 10% CH3CN, IM NaBr (buffer B). Fractions containing iull-length oligonucleotides were pooled, desalted, and lyophilized. Approximately 0.15 OD ofdesalted oligonucleotidess were diluted in water to 150 μΐ and then pipetted in spécial vials for CGE and LC/MS analysis. Compounds were finally analyzed by LC-ESMS and CGE.
6. RNAi Agent préparation
For the préparation of an RNAi agent, equimolar amounts of sense and antisense strand were heated in lxPBS at 95°C for 5 minutes and slowly cooled to room température. The integrity of the duplex was confirmed by HPLC analysis. Table 1 below reflects the RNAi agents which target human or rodent TTR mRNA.
Table 1: RNAi Agents and Results of In Vitro Screening
Duplex ID SID SEQ ID NO: Sense strand (S) ASID SEQ ID NO: Antisense strand (AS) % of mRNA remained conc. of siRNA IC50 (nM)
lnM 0.1 nM 0.01 nM
D1000 S1OOO 18 AfuGfuAfaCfcAfAfGfaGfuAfuUfcCfasu AS1000 1110 AfUfgGfaAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.03 0.1 0.47 0.006
D1001 S1001 19 AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1001 1111 aUfsgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.03 0.10 0.49 0.0065
D1002 S1002 20 AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1002 1112 aUfgGfAfAfuAfcUfcuuGfgsüfuAfcAfusGfsa 0.04 0.10 0.46 0.0068
D1003 S1003 21 AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1003 1113 aUfgGfAfAfuAfcUfcuuGfgUfsuAfcAfusGfsa 0.05 0.12 0.56 0.0073
D1004 S1004 22 a UGu a ACccAGagUAu uCCasu AS1004 1114 AUggAAuaCUcuUGguUAcaUsGsa 0.07 0.13 0.44 0.008
D1005 S1OO5 23 AfuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1005 1115 aUfgGfAfAfuAfcUfcuuGfgsUfsuAfcAfusGfsa 0.06 0.11 0.53 0.0093
D1006 S1006 24 AfuGfuAfAfccAfAfGfaGfuAfuUfcCfasUf AS1006 1116 a UfgGfaAfu AfcUfcuuGfGf uuAfcAf usGfsa 0.05 0.16 0.55 0.0095
D1007 S1OO7 25 AfuGfuAfAfCfcAfAfGfaGfuAfuUfcCfasUf AS1007 1117 a UfgGfa AfuAfcUfcuuGfgu uAfcAf usGfsa 0.05 0.14 0.48 0.0098
D1008 S1008 26 auguaaccaadGadGudAudAcdGasu AS 1008 1118 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.07 0.11 0.33 0.010
D1009 S1009 27 UfgGfGfAfuUfuCfAfUfgUfaAfcCfAfAfgsAf AS1009 1119 uCfuugGfuUfaCfaugAfaAfuccCfasUfsc 0.03 0.14 0.56 0.0101
D1010 S1010 28 UfgGfgau Ufu CfAfUfgUfaAfcCfa AfgsAf AS1010 1120 uCfuUfgGfuUfaCfaugAfaAfUfCfcCfasUfsc 0.03 0.14 0.65 0.0101
D1011 S1011 29 aUfGfu AfAfccAfAfGfa Gfu Af u UfcCfasUf AS 1011 1121 aUfgGfa Afu AfcUfcuuGfGfu u Afca U fsgsa 0.06 0.10 0.55 0.011
D1012 S1012 30 UfgGfgAfuUfu CfAfUfgUfa acCfa AfgsAf AS1012 1122 uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc 0.04 0.13 0.54 0.0114
D1013 S1013 31 auguaaccaadGadGudAudAcdGasu AS1013 1123 aUfgGfaAfuAfcUfcUfugdGucfradCadTsgsa 0.11 0.19 0.49 0.011
D1014 S1014 32 AfuGfuaaCfcAfAfGfaGfuAfu UfcCfasUf AS1014 1124 aUfgGfaAfuAfcUfcuuGfgUfUfAfcAfusGfsa 0.04 0.16 0.59 0.013
D1015 S1O1S 33 Afugu AfaccAfaGfd AGfdTAdT udCcdAsu AS1015 1125 dAUdGgdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa 0.07 0.15 0.51 0.013
D1O16 S1016 34 auGfu AfaCfcAfAfGfaGfu Afu UfcCfasUf AS1016 1126 aUfgGfaAfuAfcUfcuuGfgUfuAfcAfUfsGfsa 0.05 0.14 0.64 0.013
D1017 S1017 35 UfGfggAfuUfuCfAfUfgUfAfAfcCfaAfgsAf AS1017 1127 uCfu UfgGfuuaCfaugAfaAfu CfCfcasUfsc 0.09 0.41 0.74 0.0133
D1O18 S1018 36 AfuguAfaCfcAfAfGfaGfuAfuüfcCfasUf AS1018 1128 aUfgGfaAfuAfcUfcuuGfgUfuAfCfAfusGfsa 0.03 0.14 0.61 0.014
D1019 51019 37 AfuGfuAfaccAfAfGfaGfuAfuUfcCfasUf AS1019 1129 aUfgGfaAfuAfcUfcuuGfGfUfuAfcAfusGfsa 0.02 0.2 0.7 0.014
D1020 51020 38 AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf A51020 1130 asUfsgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.04 0.16 0.67 0.0156
01021 S1021 39 aUfguAfAfccAf AfgagUfa Ufu CfcasUf AS1021 1131 aUfGfgAfaUfaCfUfCfuuGfGfuuAfCfaUfsgsa 0.11 0.24 0.64 0.016
01022 S1022 40 dTdGggdAdTuudCdAugdTdAacdCdAagsdA AS1022 1132 udCdTugdGdTuadCdAugdAdAaudCdCcasdTsc 0.08 0.27 0.64 0.0161
D1023 S1023 41 AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1023 1133 aUfgsGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.03 0.19 0.63 0.0163
01024 S1024 42 UfgGfgAfuUfuCfAfUfguaAfcCfaAfgsAf AS1024 1134 uCfuUfgGfuUfAfCfaugAfaAfuCfcCfasUfsc 0.05 0.25 0.69 0.0164
D1025 S1025 43 UfgGfgAfuUfuCfAfUfgUfAfAfcCfa AfgsAf AS1025 1135 uCfuUfgGfuuaCfaugAfaAfuCfcCfasUfsc 0.04 0.18 0.75 0.0166
01026 51026 44 UfgGfgAfuUfuCfAfUfgUfaAfcCfaAfgsAf AS1026 1136 uCfuUfgGfuUfaCfaugAfaAfuCfcCfasUfsc 0.04 0.19 0.66 0.0178
D1027 S1O27 45 UfgGfgAfuUfuCfAfUfgüfaAfccaAfgsAf AS1027 1137 uCfuUfGfGfuUfaCfaugAfaAfuCfcCfasUfsc 0.04 0.19 0.69 0.018
0102S S1028 46 dAdTgudAdAccdAdAgadGdTaudTdCcasdT AS1028 1138 adTdGgadAdTacdTdCuudGdGuudAdCausdGsa 0.15 0.29 0.72 0.018
D1029 51029 47 AdTGdTAdACdCAdAGdAGdTAdTUdCCdAsU AS1029 1139 dAUdGGdAAdTAdCUdCUdTGdGUdTAdCAdTsGsdA 0.1 0.27 0.61 0.018
D1030 S1030 48 UfgGfGfAfuuuCfAfUfgUfaAfcCfaAfgsAf AS1030 1140 uCfuUfgGfuUfaCfaugAfAfAfuccCfasUfsc 0.04 0.21 0.64 0.0187
D1031 S1031 49 AfuGfuAfAfccAfAfGfAfGfuAfuuccAfsu AS1031 1141 AfUfGfGfAfAfuAfCfUfCfUfuGfGfuuAfcAfusGfsa 0.06 0.15 0.62 0.019
D1032 51032 50 AfsuGf uAfaCfcAfAfGfaGf uAfu ucCfasUf AS1O32 1142 asUfgGfAfAfuAfcUfcuuGfgUfsuAfcAfusGfsa 0.09 0.34 0.78 0.021
01033 S1033 51 UfgGfgAf uUf uCfa UfGf Ufa acCfa AfgsAf AS1033 1143 uCfuUfgGfUfUfacaUfgAfaAfuCfcCfasUfsc 0.06 0.26 0.57 0.0212
D1034 51034 52 Af uGf u AfAfccAfaGfaGfu Afu UfcCfasUf AS1034 1144 aUfgGfa Afu Af cUfcUfu GfGfuu AfcAfusGfsa 0.11 0.39 0.82 0.0216
D1035 S1035 53 UfgGfgAfu uuCfAfUfgUfa AfcCfaAfgsAf AS1035 1145 uCfuUfgGfuUfaCfaugAfAfAfuCfcCfasUfsc 0.04 0.16 056 0.0222
D1036 S1036 54 UfgGfGfAfuUfuCfaUfgUfaAfcCfAfAfgsAf AS1036 1146 uCfuugGfuUfaCfaUfgAfaAfuccCfasUfsc 0.06 0.31 0.78 0.0234
D1037 S1037 55 UfgGfGfAfuUfuCfAfUfgUfaAfcCfaAfgsAf AS1037 1147 u Cfu UfgGfu UfaCfa ugAfa AfuccCfasUfsc 0.03 0.14 0.62 0.0235
D1038 S1038 56 UfGfggAfUfuuCfAfugUfAfacCfAfagsAf AS1038 1148 uCfUfugGfUfuaCfAfugAfAfauCfCfcasUfsc 0.09 0.39 0.78 0.0239
D1039 S1039 57 AfuGf uAfaCfcAfAfGfaGfu Afu ucCfasUf AS1039 1149 aUfgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.03 0.14 059 0.025
D1040 S1040 58 AfuGfuAfaCfcAfAfGfaGfu Afu UfccasUf AS1040 1150 aUfGfGfaAfuAfcUfcuuGfgUfu AfcAfusGfsa 0.03 0.13 0.56 0.025
01041 S1041 59 AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1041 1151 asUfgGfAfAfuAfcUfcuuGfgUfu AfcAfusGfsa 0.06 0.27 0.79 0.0252
D1042 S1042 60 UfgGfgAfuuuCfAfUfgUfAf AfcCfaAfgsAf AS1042 1152 uCf u UfgGf uua CfaugAfAfAf uCfcCfasUfsc 0.05 0.27 0.67 0.0259
D1043 51043 61 Afu Gfu AfaCfcAfAfGfaGfuau UfcCfasUf AS1043 1153 aUfgGfaAfUfAfcUfcuuGfgUfuAfcAfusGfsa 0.02 0.16 0,63 0.027
D1044 S1044 62 AfsuGfuAfaCfcAfAfGfaGfuAfuucCfasUf AS1044 1154 asUfgGfAfAfuAfcUfcuuGfgsUfsuAfcAfusGfsa 0.06 0.30 0.81 0.0271
D1045 S1045 63 aUfguAfAfccAfAfgaGfGfauUfCfcasUf AS 1045 1155 a UfGfgaAf UfacUfCfu uGfGfuu Af CfaUfsgsa 0.12 0.29 0.8 0.028
D1046 S1046 64 AfuGfu AfaCfcAfAfGfagu Afu UfcCfasUf AS1046 1156 a U fgGfaAfuAfCf UfcuuGfgUfu AfcAfusGfsa 0.03 0.15 0.59 0.030
D1047 51047 65 UfgGfGfAfu UfuCfa UfgUfAfAfcCfaAfgsAf AS1047 1157 uCfuUfgGfuuaCfaUfgAfaAfuccCfasUfsc 0.08 0.44 0.83 0.0324
D1048 S1048 66 AfuGfu AfaCfcAfAfGfaGfu Afu UfcCfasUf AS1043 Ü58 aUfgGfaAfuAfcUfcuuGfgUfuAfcAfusGfsa 0.07 0.23 0.67 0.036
01049 51049 67 AfuGfuAfAfccAfAfGfAfGfuAf u uccAfsu AS1049 1159 AfUfGfGfAfAfuAfCfUfCfUfUfGfGfUfuAfCfAfusGfsa 0.08 0.23 0.73 0.037
01050 S1050 68 UfgGfgAfuuuCfa UfgUfa AfcCfAfAfgsAf AS1050 1160 uCfuugGfuUfaCfaUfgAfAfAfuCfcCfasUfsc 0.06 0.29 0.78 0.0372
D1051 S1051 69 AfuGfuAfaccaagaguAfuUfcCfasUf AS1051 1161 a UfgGfaAfud AcdTcdT udGgdT uAf cAfusgsa 0.12 0.41 0.86 0.040
D1O52 S1052 70 AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu AS1052 1162 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.1 0.22 0.72 0.042
D1053 S1053 71 AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu A51053 1163 dAUdGGdAAfuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0.09 0.31 0.69 0.044
D1054 51054 72 AfuGfuAfaCfcAfaGfadGdTAfuUfcdCdAsUf AS1054 1164 adTdGGfaAfudAdCUfcUfuGfgUfuAfcAfusGfsa 0.1 0.45 0.75 0.047
D1055 S1055 73 AfuguAfaccAfaGfaGfdTAdTUdCcdAsu A51055 1165 dAUdGGdAadTAfcUfcUfuGfgUfuAfcAfusGfsa 0.12 0.26 0.7 0.049
D1056 51056 74 AuGuAaCcAaGaGuAuUcCasU AS1056 1166 aUgGaAuAcUcUuGgUuAcAusGsa 0.08 0.24 0.65 0.050
D10S7 51057 75 AfuguAfaccAfagaGfuauUfccasUf AS1057 1167 aUfGfGfaAfUfAfcUfCfUfuGfGfUfuAfCfAfusGfsa 0.14 0.42 0.62 0.051
01058 S1058 76 AfuGfuAfaccaagaguAfuUfcCfasUf AS1058 1168 a UfgGfaAfud AcdTcdTudGgdTuAfcAfusGfsa 0.12 0.36 0.86 0.053
D1059 S1059 77 AfuguAfaccAfaGfdAGfdTAdTUdCcdAsu AS1059 1169 dAUdGGdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa 0.09 0.27 0.7 0.054
01060 51060 78 adTgud Ad AccdAdAgagdT adTudCcasdT AS1060 1170 adTdGgdAadTadCdTdCuudGdGuudAdCadTsgsa 0.11 0.37 0.66 0.056
01061 S1061 79 AfuGfuAfaCfcAfaGfdAdGuAfuUfcdCdAsUf AS1061 1171 adT dGGfaAfu AfdCdT cUfuGfgUfu AfcAfusGfsa 0.1 0.31 0.77 0.059
01062 S1062 80 AfuguAfaccAfaGfdAGfdTAdTudCcdAsu AS1O62 1172 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.1 0.27 0.65 0.059
01063 51063 81 a dTdG uadAdCccdAdGagdTd AuudCdCasu AS1063 1173 dAdTggdAdAuadCdTcudTdGgudTdAcadTsdGsa 0.12 0.44 0.82 0.064
01064 51064 82 AfuGfuAfaCfcAfaGfaGfdTdAuUfcdCdAsUf AS1064 1174 adTdGGfaAfdTdAcUfcUfuGfgUfuAfcAfusGfsa 0.12 0.32 0.83 0.064
01065 51065 83 AfuguAfaccAfaGfaGfdTAdTudCcdAsu AS1065 1175 dAUdGgdAadTAfcUfcUfuGfgUfuAfcAfusGfsa 0.13 0.34 0.72 0.066
D1066 51066 84 AfuGfu Afa CfcAfaGfaGfu dAdTUfcdCdAsUf AS1066 1176 adTdGGfadAdTAfcUfcUfuGfgUfuAfcAfusGfsa 0.11 0.33 0.72 0.067
D1067 S1067 85 AfuguAfaccAfaGfaGfdTAdTUdCcdAsu AS1067 1177 aUfgGfaAfuAfcUfcUfiiGfgUfu AfcAfusGfsa 0.11 0.37 0.62 0.070
D1068 51068 86 AfuguAfaccAfaGfaGfdTAdTUdCcdAsu AS1068 1178 dAUdGGdAAuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0.16 0.33 0.64 0.072
D1069 S1069 87 a UfGfua AfCfccAfGfagUfAf uuCfCfasu AS1069 1179 AfUfggAfAfuaCfUfcuUfGfguUfAfcaUfsGfsa 0.14 0.43 0.73 0.074
D1070 51070 88 AfuGfu Afa CfCfAfaGfagu Afu UfcCfasUf AS1070 1180 aUfgGfaAfuAfCfUfcUfuggUfuAfcAfusGfsa 0.08 0.42 0.94 0.075
01071 S1071 89 UfgGfgAfuuuCfa UfgUfa AfcCfa AfgsAf AS1071 1181 uCfuUfgGfuUfaCfaUfgAfAfAfuCfcCfasUfsc 0.14 0.28 0.83 0.0797
D1072 51072 90 AfuGfuAfaCfcAfaGfAfGfuauUfcCfasUf AS1072 1182 a UfgGfaAf UfAfcucUfuGfgUfuAfcAfusGfsa 0.05 0.26 0.8 0.082
D1073 S1073 91 AfuGfuAfaCfcAfaGfadGdTdAdTUfcCfasUf AS1073 1183 aUfgGfadAdTdAdCUfcUfuGfgUfuAfcAfusGfsa 0.12 0.41 0.73 0.083
01074 51074 92 AfUfguAfAfccAfAfgaGfUfauUfCfcasUf AS1074 1184 aUfGfgaAfUfacUfCfuuGfGfuuAfCfausGfsa 0.14 0.44 0.75 0.086
D1075 S1075 93 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1075 1185 BÜfgGfdAdAdTdAcUfcUfuGfgUfuAfcAfusGfsa 0.1 0.41 0.72 0.088
01076 S1076 94 AfuGfuAfaCfcAfaGfaGfudAdT dTdCCfasUf AS1076 1186 aUfgdGdAdAdTAfcUfcUfuGfgUfuAfcAfusGfsa 0.15 0.45 0.86 0.088
D1077 S1077 95 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasu AS1077 1187 AfUfgGfaAfuAfcUfcUfuGfgüfuAfcAfusGfsa 0.08 0.46 0.95 0.092
01078 51078 96 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1078 1188 dAUdGGdAadTAfcUfcüfuGfgUfuAfcAfusGfsa 0.09 0.32 0.76 0.093
01079 S1079 97 AfuguAfaccAfaGfaGfdTadTudCcdAsu AS1079 1189 dAudGgdAadTAfcUfcUfuGfgUfuAfcAfusGfsa 0.14 0.38 0.76 0.095
D1080 51080 98 AfuGfuAfaCfcAfaGfAfGfuAfuucCfasUf AS1080 1190 aUfgGfAfAfuAfcucUfuGfgüfuAfcAfusGfsa 0.05 0.42 0.86 0.099
D1081 S1081 99 AfuGfuAfaCfcAfaGfaGfuAfuUfdCdCdAstfT AS 1031 1191 d AdTdG dGa Afu AfcUfcUf uGfgüf u AfcAf usGfsa 0.17 0.47 0.9 0.105
D1082 S1082 100 AfuGfu Afacca agagu Af u UfcCfasüf AS1082 1192 aUfgGfaAfudACfudCUfudGGfudTAfcAfusgsa 0.12 0.44 0.83 0.106
D1083 51083 101 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaslIf AS1083 1193 BdTdGGfaAfdTdAcüfcUfuGfgUfuAfcAfusGfsa 0.11 0.34 0.74 0.109
D1084 S1084 102 AfuGfuAfAfCfcAfaGfaGfuauUfcCfasUf A51084 1194 aUfgGfaAfUfAfcUfcUfuGfguuAfcAfusGfsa 0.1 0.45 0.93 0.117
D108S S1085 103 AfuGfUfAfaCfcAfaGfaGfuauUfcCfasüf AS1085 1195 BUfgGfaAfUfAfcUfcUfuGfgUfuacAfusGfsa 0.07 0.42 0.78 0.120
D1086 S1086 104 aUfguAfAfccAfAfgaGfuAfuUfcCfasUf A51086 1196 aUfgGfaAfuAfcUfCfuuGfGfuuAfCfaUfsgsa 0.17 0.45 0.83 0.1197
D1087 S1087 105 AfuGfuAfaCfcAfaGfaGfUfAfuUfcCfasu AS1087 1197 AfUfgGfaAfuacUfcUfuGfgüfuAfcAfusGfsa 0.05 0.3 0.7 0.120
D1088 51088 106 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1088 1198 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusgsa 0.11 0.46 0.8 0.120
01089 51089 107 AfuGfuAfaCfcAfaGfaGfUfAfuüfcCfasUf AS1089 1199 aUfgGfaAfuacUfcUfuGfgUfuAfcAfusGfsa 0.14 0.49 0.85 0.122
01090 S1090 108 AfuGfuAfaCfcAfaGfaGfuauUfcCfasüf AS1090 1200 aUfgGfaAfllfAfcUfcUfuGfgUfuAfcAfusGfsa 0.1 0.41 0.85 0.125
01091 51091 109 AfuguAfaccAfaGfaGfdTAdTudCcdAsu AS1091 1201 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.16 0.38 0.77 0.125
01092 S1092 110 AfuGfuAfaCfcAfaGfAfGfuAfuüfcCfasu AS1092 1202 AfüfgGfaAfuAfcucUfuGfgUfuAfcAfusGfsa 0.05 0.31 0.93 0.126
01093 S1093 111 auGfuAfaCfcAfaGfAfGfuAfuUfcCfasUf AS1093 1203 aUfgGfaAfuAfcucüfuGfgUfuAfcAfUfsGfsa 0.06 0.33 0.9 0.135
01094 S1094 112 AfuGf uAfaCfcAfaGfaGfüfAfu U fccasUf AS1094 1204 BUfGfGfaAfuacUfcUfuGfgUfuAfcAfusGfsa 0.07 0.39 0.85 0.142
01095 S1095 113 AfuGfuAfaCfcAfaGfAfGfuAfuüfcCfasUf A5109S 1205 aUfgGfaAfuAfcucüfuGfgUfuAfcAfusGfsa 0.09 0.39 0.76 0.146
□1096 S1096 114 AfuGf uAfaCfcAfaGfaGfUfAfu ucCfasUf AS1096 1206 aUfgGfAfAfuacUfcUfuGfgUfuAfcAfusGfsa 0.06 0.38 0.85 0.147
D1097 S1097 115 AfuGfUfAfaCfcAfaGfaGfuAfuucCfasUf AS1097 1207 aüfgGfAfAfuAfcUfcUfuGfgUfuacAfusGfsa 0.12 0.47 0.87 0.147
01098 51098 116 AfuGfu AfaCfcAfaGfaGfuAfUfüfccasUf AS1098 1208 aUfGfGfaauAfcUfcUfuGfgUfuAfcAfusGfsa 0.06 0.42 0.85 0.151
D1099 51099 117 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1099 1209 dAUdGGdAadlAfdCUfcUfuGfgUfuAfcAfusGfsa 0.16 0.41 0.85 0.152
D1100 51100 118 AfuguAfaccAfaGfaGfuAfuUfcCfasüf AS1100 1210 aUfgGfaAfuAfcUfcUfuGfgüfuAfcAfusGfsa 0.15 0.48 0.72 0.152
D1101 51101 119 AfuGf uAfa CfcAfaGfAfGfuAfuüfccasUf AS1101 1211 aUfGfGfaAfuAfcucUfuGfgüfuAfcAfusGfsa 0.06 0.38 0.94 0.158
D1102 S1102 120 AfuGfuAfaccaagaguAfuUfcCfasUf AS1102 1212 aUfgGfaAfuAfdCuCftfTuGfdGuüfacAfusGfsa 0.21 0.45 0.89 0.162
D1103 S1103 121 AfuGfuaaCfCfAfaGfaGfuAfuUfcCfasUf AS1103 1213 aUfgGfaAfuAfcUfcUfuggUfUfAfcAfusGfsa 0.14 0.49 0.95 0.163
DI 104 S1104 122 AfuGfuAfaccAfaGfaGfUfAfuUfcCfasUf AS1104 1214 aUfgGfaAfuacUfcUfuGfGfUfuAfcAfusGfsa 0.06 0.36 0.92 0.163
D1105 S1105 123 AfuGfuAfaCfcAfaGfaGfuAfuucCfasUf AS1105 1215 aUfgGfAfAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.1 0.45 0.84 0.167
D1106 51106 124 AfuGfuaaCfcAfaGfAfGfuAfuüfcCfasUf AS 1106 1216 aUfgGfaAfuAfcucUfuGfgUfUfAfcAfusGfsa 0.09 0.43 0.91 0.170
D1107 S1107 125 AfuGfuAfaccAfaGfAfGfuAfuUfcCfasUf AS1107 1217 aUfgGfaAfuAfcucUfuGfGfUfuAfcAfusGfsa 0.09 0.46 1 0.171
DI 108 51108 126 AfuguAfaccAfaGfaGfcfTadTudCcdAsu AS1108 1218 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.11 0.39 0.71 0.176
D1109 SI 109 127 AfuGf UfAfaCfcAfaGfaGfu Afu U fccasUf AS1109 1219 aUfGfGfaAfuAfcUfcUfuGfgUfuacAfusGfsa 0.1 0.43 0.9 0.180
D111O S1110 128 AfuGfuAfaCfcAfaGfaguAfUfUfcCfasUf AS1110 1220 aUfgGfaauAfCfUfcUfuGfgUfuAfcAfusGfsa 0.06 0.42 0.88 0.182
Dllll Sllll 129 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1111 1221 dAUdGGdAAuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0.18 0.49 0.79 0.183
D1112 S1112 130 AfuGfüfAfaccAfaGfaGfuAfuUfcCfasUf AS1112 1222 aUfgGfaAfuAfcUfcUfuGfGfUfuacAfusGfsa 0.14 0.48 0.85 0.195
DI 113 S1113 131 AfuGfuAfaCfcAfaGfagu Afu UfcCfasUf AS1113 1223 aUfgGfaAfuAfCfUfcUfuGfgUfuAfcAfusGfsa 0.09 0.41 0.85 0.201
D1114 SI 114 132 auGfuAfaCfcAfaGfaGfUfAfu UfcCfasUf AS1114 1224 aUfgGfaAfuacUfcUfuGfgUfuAfcAfUfsGfsa 0.05 0.44 0.94 0.201
D1115 S1115 133 Afugu Afa CfcAfaGf aGf UfAfu UfcCfasUf AS1115 1225 aUfgGfaAfuacUfcUfuGfgUfuAfCfAfusGfsa 0.08 0.41 0.96 0.204
D1116 S1116 134 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1116 1226 adTdGGfadAdTAfcUfcUfuGfgUfuAfcAfusGfsa 0.15 0.47 0.79 0.208
01117 S1117 135 AfuGfuaaCfcAfaGfaGfUfAfuUfcCfasUf AS1117 1227 aUfgGfaAfuacüfcUfuGfgUfUfAfcAfusGfsa 0.08 0.42 0.92 0.224
D1118 51118 136 auguaaccaagaguauuccasu AS1118 1228 AfUfGfGfAfAfUfAfCfUfCfUfUfGfGfUfUfAfCfAfUfsgsa 0.19 0.5 0.87 0.303
D1119 S1119 137 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1119 1229 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.14 0.55 0.89
D1120 S1120 138 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1120 1230 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.19 0.63 0.72
D1121 SI 121 139 AfuGfuAfaccAfaGfaGfu Af uUfcCfasU f AS1121 1231 aUfgGfaAfuAfcUfcUfuGfGfUfuAfcAfusGfsa 0.14 0.61 0.91
D1122 S1122 140 AfUfGfu Afa CfcAfaGf aGf u Afu UfccasUf AS1122 1232 aUfGfGfaAfuAfcUfcUfuGfgUfuAfcausGfsa 0.14 0.54 0.95
D1123 51123 141 auGfuAfAfCfcAfaGfaGfuAfuUfcCfasUf AS1123 1233 aUfgGfaAfuAfcUfcUfuGfguuAfcAfUfsGfsa 0.13 0.61 0.97
01124 S1124 142 AfuGfuAfaCfcAfaGfaGfuAfUfUfcCfasUf AS1124 1234 aUfgGfaauAfcUfcUfuGfgUfuAfcAfusGfsa 0.14 0.56 0.94
DI 125 S1125 143 AfuGfuAfaCfcaaGfaGfuAfuUfcCfasUf AS1125 1235 aUfgGfaAfuAfcUfcUfUfGfgUfuAfcAfusGfsa 0.21 0.74 0.95
01126 S1126 144 AfUfGfu Afa CfcAfaGfaGf u Afu ucCfasUf AS1126 1236 a UfgGfAfAfu AfcUfcUfuGfgUf uAfca usGfsa 0.2 0.69 0.91
01127 S1127 145 Afugu AfAf CfcAfaGfaGf u Afu UfcCfasUf AS1127 1237 a UfgGfaAfuAfcUfcUfuGfgu u Af CfAfusGfsa 0.17 0.7 0.96
01128 S1128 146 AfUfGfu Afa CfcAfaGfaGf uAfu UfcCfasUf AS 1128 1238 aUfgGfaAfuAfcUfcUfuGfgUfuAfcausGfsa 0.19 0.62 0.85
D1129 S1129 147 AfuGfuAfaCfcAfaGfaGfuAfuUfCfCfasUf AS1129 1239 aUfgga Afu AfcUfcUfuGfgUfu AfcAfusGfsa 0.23 0.76 0.98
D1130 S1130 148 AfuGfuAfaCfcAfagaGfu Afu UfcCfasUf AS 1130 1240 aUfgGfa AfuAfcUfCfUfu GfgUfu AfcAfusGfsa 0.21 0.64 0.9
D1131 S1131 149 AfuGfuAfAfCfcaaGfaGfuAfuUfcCfasUf AS1131 1241 aUfgGfaAfuAfcUfcUfüfGfguuAfcAfusGfsa 0.17 0.7 1.01
D1132 S1132 150 AfuGfUfAfaCfcAfa GfaGfu Afu UfcCfasUf AS1132 1242 aUfgGfaAfuAfcUfcUfuGfgUfuacAfusGfsa 0.17 0.58 0.87
01133 51133 151 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfAfsUf AS1133 1243 augGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.33 0.89 1.05
01134 S1134 152 AfUfGfuAfaCfcAfaGfaguAfuUfcCfasUf AS1134 1244 aUfgGfa AfuAfCfUfcUfuGfgUfuAfcausGfsa 0.16 0.64 0,96
01135 51135 153 AfuGfUfAfaCfcAfaGfaguAfuUfcCfasUf AS1135 1245 aUfgGfa Afu AfCfUfcUfu GfgUfu acAfusGfsa 0.12 0.53 0.96
01136 SI 136 154 AfuGfu AfAfCfcAfagaGfu Afu UfcCfasUf AS1136 1246 aUfgGfa AfuAfcUfCfUfu Gfgu u AfcAfusGfsa 0.16 0.58 0.98
D1137 S1137 155 AfuGf u AfAfCfcAfaGfaGfuAfu UfcCfasUf AS1137 1247 aUfgGfaAfuAfcUfcUfuGfguuAfcAfusGfsa 0.16 0.6 0.91
D1138 S1138 156 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1138 1248 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsAf 0.1 0.54 0.91
01139 S1139 157 AfUfGfuAfaCfcAfagaGfuAfuUfcCfasUf AS1139 1249 aUfgGfaAfuAfcUfCfUfuGfgUfuAfcausGfsa 0.24 0.68 0.98
01140 51140 158 AfuGfUfAfaCfcAfagaGfuAfuUfcCfasUf AS1140 1250 aUfgGfaAfuAfcUfCf UfuGfgUfua cAfu sGfsa 0.13 0.75 0.9
DI 141 S1141 159 AfuGfuAfAfCfcAfaGfaguAfuUfcCfasUf AS1141 1251 aUfgGfaAfuAfCfUfcUfuGfguuAfcAfusGfsa 0.15 0.52 1.05
DI 142 SI 142 160 AfuGfuAfaCfCfAfaGfaGfuAfuUfcCfasUf AS1142 1252 aUfgGfaAfuAfcUfcUfuggUfuAfcAfusGfsa 0.16 0.66 0.89
D1143 S1143 161 auGfu AfaCfcAfaGfa Gf u Afu UfcCfasUf AS1143 1253 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfUfsGfsa 0.12 0.51 0.89
D1144 SI 144 162 AfUfGfuAfaCfcaaGfaGfuAfuUfcCfasUf AS1144 1254 aUfgGfaAfuAfcUfcUfUfGfgUfuAfcausGfsa 0.25 0.71 0.95
D1145 SI 145 163 AfuGfUfAfaCfcaaGfaGfuAfuUfcCfasUf AS1145 1255 aUfgGfaAfuAfcUfcUfUfGfgUfuacAfusGfsa 0.17 0.74 0.98
DI 146 51146 164 AfuguAfaCfcAfaGfaGfuAfuUfcCfasUf AS1146 1256 aUfgGfaAfuAfcUfcUfuGfgUfuAfCfAfusGfsa 0.11 0.51 0.86
DI 147 S1147 165 AfuGfuAfaCfcAfaGfaGfuAfuUfccasUf AS1147 1257 aUfGfGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.1 0.52 0.83
D1148 S1148 166 AfUfGfuAfaccAfaGfaGfuAfuUfcCfasUf AS1148 1258 aUfgGfaAfuAfcUfcUfuGfGfUfuAfcausGfsa 0.14 0.63 0.98
D1149 S1149 167 AfuGfuAfAfCfcAfaGfaGfuAfuucCfasUf AS1149 1259 aUfgGfAfAfuAfcUfcUfuGfguuAfcAfusGfsa 0.13 0.58 0.88
DI 150 S1150 168 Afu Gfua aCfcAfaGfaGf u Af uUfcCfa sUf AS1150 1260 aUfgGfaAfuAfcUfcUfuGfgUfUfAfcAfusGfsa 0.15 0.62 0.94
D1151 S1151 169 AfUfGfuaaCfcAfaGfaGfuAfuUfcCfasUf AS1151 1261 aUfgGfaAfuAfcUfcUfuGfgUfUfAfcausGfsa 0.18 0.73 0.94
D1152 S1152 170 auGfUfAfaCfcAfaGfaGfu Afu UfcCfasUf AS1152 1262 aUfgGfaAfuAfcUfcUfuGfgUfuacAfUfsGfsa 0.13 0.53 0.97
D1153 S1153 171 AfuGfu AfAfCfcAfa GfaGfu Af uUfccasUf AS1153 1263 aUfGfGfaAfuAfcUfcUfuGfguuAfcAfusGfsa 0.13 0.53 0.98
01154 S1154 172 UfgGfgAfuUfuCfaUfgUfaAfcCfaAfgsAf AS1154 1264 uCfuU fgGfuUfa CfaUfgAfaAf uCfcCfa sUfsc 0.09 0.5 0.78
D1155 S1155 173 UfgGf GfAfuu uCfa UfgUfAfAfcCfaAf gsAf AS1155 1265 uCfuüfgGfuuaCfaUfgAfAfAfuccCfasUfsc 0.13 0.62 0.89
ιοο
D1156 S1156 174 UfgGfgAfu uu CfaUfGf UfaAfcCfa AfgsAf AS1156 1266 uCfuUfgGfuUfacaUfgAfAfAfuCfcCfasUfsc 0.12 0.65 0.85
D1157 S1157 175 UfgGfgAfu UfuCfa UfgUfAfAfcCfaAfgsAf AS1157 1267 uCfuUfgGfuuaCfaUfgAfaAfuCfcCfasUfsc 0.11 0.54 0.85
D1158 51158 176 UfgGfgAfu uu CfaUfgUfAfAfcCfaAfgsAf AS1158 1268 uCfuUfgGfuuaCfaUfgAfAfAfuCfcCfasUfsc 0.13 0.53 0.8
D1159 S1159 177 UfGfggAfUf u UfcAfuGf uAfAfccAfAfgsAf A51159 1269 uCfuuGfGfuuAfcAfuGaAfauCfCfcasUfsc 0.59 0.89 0.81
D116O S1160 178 UfGfggAfUfuuCfaUfgUfAf AfcCfaAfgsAf A51160 1270 uCfu UfgGfu uaCfaUfgAfAfa uCfCfcasUfsc 0.16 0.72 0.9
01161 51161 179 UfgGfgAfu UfucaUfGfUfaAfcCfaAfgsAf AS1161 1271 uCfu UfgGfu UfacaUfGfAfaAfuCfcCfasUfsc 0.27 0.69 0.86
D1162 51162 180 AfuGfuAfaCfcaaGfaGfUfAfuUfcCfasUf AS1162 1272 aUfgGfaAfuacUfcUfUfGfgUfuAfcAfusGfsa 0.12 0.6 0.95
D1163 S1163 181 AfuGfuAfaccAfaGfaGfuAfufufcCfasUf AS1163 1273 aUfgGfaauAfcUfcUfuGfGfUfuAfcAfusGfsa 0.05 0.56 1.02
DI 164 S1164 182 AfuGfuAfaCfcAfagaGfUfAfuUfcCfasUf AS 1164 1274 aUfgGfaAfuacUfCfUfuGfgUfuAfcAfusGfsa 0.13 0.55 1
DI 165 SI 165 183 AfuGfuAfaCfcaaGfaGfuAfUfUfcCfasUf AS1165 1275 aUfgGfaauAfcUfcUfUfGfgUfuAfcAfusGfsa 0.09 0.6 0.97
01166 51166 184 AfuguAfaCfCfAfaGfaGfuAfuUfcCfasUf AS1166 1276 aUfgGfaAfuAfcUfcUfuggUfuAfCfAfusGfsa 0.15 0.59 0.91
D1167 51167 185 AfuGfuAfaCfcAfaga Gfu AfUf UfcCfasUf AS1167 1277 a UfgGfaau AfcUf CfUfuGfgUfuAfcAfusGfsa 0.11 0.59 1
01168 51168 186 AfuGfuAfaCfCfAfagaGfuAfuUfcCfasUf AS1168 1278 aUfgGfaAfuAfcUfCfUfuggUfuAfcAfusGfsa 0.13 0.57 0.94
01169 S1169 187 auGfuAfaCfcAfaGfaGfuAfUfUfcCfasüf AS1169 1279 a UfgGfaa uAfcUfcUfuGfgUfu AfcAfUfsGfsa 0.08 0.5 0.9
D1170 51170 188 AfuguAfaCfcAfaGfaGfuAfUf UfcCfasUf AS1170 1280 a UfgGfaa uAfcUfcUfuGfgUfu AfCfAfusGfsa 0.06 0.53 0.91
D1171 S1171 189 auGfuAfaCfcAfaGfaGfuAfuUfCfCfasUf AS1171 1281 a UfggaAf uAfcUfcUfuGfgUfu AfcAfUfsGfsa 0.07 0.56 0.89
D1172 51172 190 AfuGfuAfaCfCfAfaGfaGfuAfuucCfasUf AS1172 1282 aUfgGfAfAfuAfcUfcUfuggUfuAfcAfusGfsa 0.13 0.59 0.98
D1173 51173 191 AfuGfuAfaCfcaaGfAfGfuAfuUfcCfasUf AS1173 1283 aUfgGfaAfuAfcucUfUfGfgUfuAfcAfusGfsa 0.2 0.65 1.03
D1174 S1174 192 AfuGfuaaCfcAfaGfaGfuAfUfUfcCfasUf AS1174 1284 aUfgGfaauAfcUfcUfuGfgUfUfAfcAfusGfsa 0.07 0.51 0.95
01175 51175 193 Afugu Afa CfcAfaGfaGfu AfuUfCfCfasUf AS1175 1285 aUfggaAfuAfcUfcUfuGfgUfuAfCfAfusGfsa 0.2 0.53 0.76
D1176 S1176 194 a uGfu AfaCfcAfaGfa Gfu Afu UfcCfAfsUf AS1176 1286 augGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.74 0.98 0.81
D1177 S1177 195 AfuGfuAfaCfcAfaGfaGfuAfu ucCfAfsUf AS1177 1287 augGfAfAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.43 0.64 0.88
DI 178 S1178 196 auguaaccAfaGfaGfuAfiiUfcCfasUf A51178 1288 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.17 0.49 0.81
D1179 S1179 197 AfuGfuaaCfcAfaGfaGfuAfuUfCfCfasUf AS1179 1289 aUfggaAfuAfcUfcUfuGfgUfUfAfcAfusGfsa 0.22 0.65 0.73
01180 51180 198 AfuguAfaCfcAfaGfaGfuAfuUfcCfAfsUf AS1180 1290 augGfaAfuAfcUfcUfuGfgUfuAfcAfUfsGfsa 0.6 1.09 0.8
D1181 51181 199 auGfuAfaCfcAfaGfaGfuAfuUfccasu AS1181 1291 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.3 0.78 0.78
01182 51182 200 auguaaccaaGfaGfuAfuUfcCfasUf AS1182 1292 a UfgGfa AfuAfcUfcUfuGfgUfu AfcAfusGfsa 0.3S 0.73 0.84
ΙΟΙ
D1183 S1183 201 AfuGfuAfaccAfaGfaGfuAfuUfCfCfasUf AS1183 1293 aUfggaAfuAfcUfcUfuGfGfUfuAfcAfusGfsa 0.19 0.6 0.94
D1184 S1184 202 AfuGfuaaCfcAfaGfaGfu Af u UfcCfAfsUf AS1184 1294 augGfaAfuAfcUfcUfuGfgUfuAfCfAfusGfsa 0.61 1.08 0.8
D1185 S1185 203 auGfuAfaCfcAfaGfaGfuAfuuccasu AS1185 1295 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.16 0.52 0.72
D1186 S1186 204 auguaaccaagaGfuAfuUfcCfasUf AS1186 1296 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.2 0.53 0.74
D1187 S1187 205 AfuGfu Afa CfcaaGfaGfu Afu UfCfCfasUf A51187 1297 aUfggaAfuAfcUfcUfUfGfgUfuAfcAfusGfsa 0.34 0.66 0.85
D1188 51188 206 AfuGfuAfaccAfaGfa Gfu Af u UfcCfAfsUf AS1188 1298 augGfaAfuAfcUfcUfuGfgUfUfAfcAfusGfsa 0.61 0.98 1.02
D1189 S1189 207 AfuGfuAfaCfcAfaGfaGfuAfuuccasu AS1189 1299 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.3 0.73 0.85
D1190 S1190 208 auguaaccaagaguauuccasu AS1190 1300 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.28 0.69 0.78
DI 191 S1191 209 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1191 1301 aUfgGfaAfuAfcUfcUfugdGudTadCadTsgsa 0.33 0.88 0.64
D1192 SI 192 210 AfuGfuAfaCfcAfagaGfuAfuUfCfCfasUf AS1192 1302 aUfggaAfuAfcUfCfUfuGfgUfuAfcAfusGfsa 0.31 0.64 0.83
DI 193 S1193 211 AfuGfuAfaCfcaaGfaGfuAfuUfcCfAfsUf AS1193 1303 augGfaAfuAfcUfcUfuGfGfUfuAfcAfusGfsa 0.64 0.82 0.92
D1194 SI 194 212 AfuGfuAfaCfcAfaGfaGfuauuccasu AS1194 1304 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.21 0.62 0.77
01195 S1195 213 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1195 1305 aUfgGfaAfuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0.17 0.7 0.95
DI 196 51196 214 AfuGfuAfaCfcAfaGfaguAfuUfCfCfasUf AS1196 1306 aUfggaAfuAfCfUfcUfuGfgUfuAfcAfusGfsa 0.19 0.71 0.65
D1197 SI 197 215 AfuGfuAfaCfcAfagaGfuAfuUfcCfAfsUf AS1197 1307 augGfaAfuAfcUfcUfüfGfgUfuAfcAfusGfsa 0.64 0.82 0.93
DI 198 SI 198 216 auguAfaCfcAfaGfaGfuAfuUfccasu AS1198 1308 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.19 0.65 0.72
D1199 SI 199 217 AfuGfuAfaCfcAfaGfaGfuauUfCfCfasUf AS1199 1309 aUfggaAfUfAfcUfcUfuGfgUfuAfcAfusGfsa 0.15 0.52 0.64
D1200 S1200 218 AfuGfu AfaCfcAfaGfaguAfuUfcCfAfsUf AS1200 1310 augGfaAfuAfcUfCfUfuGfgUfuAfcAfusGfsa 0.48 0.74 0.92
01201 $1201 219 auguAfaCfcAfaGfaGfuAfuUfcCfasu AS1201 1311 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.17 0.71 0.77
01202 S1202 220 AfuGfuAfaCfcAfaGfaGfuauUfcCfAfsUf AS1202 1312 augGfaAfuAfCfUfcUfuGfgUfuAfcAfusGfsa 0.43 0.69 0.85
D1203 S1203 221 auguaaCfcAfaGfaGfuAfuUfcCfasUf AS1203 1313 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.14 0.61 0.76
D1204 S1204 222 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1204 1314 adTdGGfaAfudAdCUfcUfuGfgUfuAfcAfusGfsa 0.16 0.56 0.89
D1205 S120S 223 AfuGf uAfaCfcAfaGfaGfdTdAdT dTcCfasUf AS 1205 1315 aUfgGfdAdAdTdAcUfcUfuGfgUfuAfcAfusGfsa 0.13 0.57 0.9
D1206 S1206 224 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1206 1316 adTdGdG dAAf uAfcUfcUf uGfgUfu AfcAfusGfsa 0.29 0.73 0.89
01207 S1207 225 AfuGfu AfaCfcAfaGfaGfuAfuUfcCfasUf AS1207 1317 adTdGGfaAfuAfdCdTcUfuGfgUfuAfcAfusGfsa 0.16 0.56 0.78
D1208 S1208 226 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1208 1318 a UfdG dGd AdAu AfcUfcUfuGfgUfu AfcAfusGfsa 0.22 0.67 0.89
D1209 S1209 227 AfuguAfaccAfaGfaGfu Af u UfcCfasUf AS1209 1319 aUfgGfaAfuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0.14 0.55 0.78
102
D1210 S1210 228 AfuGfuAfaCfcAfaGfaGfuAfu UfcCfasUf AS1210 1320 aUfgdGdAdAdTAfcUfcUfuGfgUfuAfcAfusGfsa 0.14 0.5 0.84
D1211 S1211 229 AfuGfu AfaCfcAfaGfaGfuAfu UfcCfasUf AS1211 1321 aUfgGfadAdTdAdCUfcUfuGfgUfuAfcAfusGfsa 0.14 0.59 0.72
D1212 S1212 230 auguaaccaaGfaGfuAfuUfcCfasUf AS1212 1322 aUfgGfaAfuAfcUfcUfugdGudTadCadTsgsa 0.21 0.74 0.77
D1213 S1213 231 AfuGfuAfaCfcAfaGfaGfuAfudTdCdCdAsUf AS1213 1323 adTdGdGdAAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.15 0.53 0.91
D1214 S1214 232 aUfgUfaAfcCfaAfgAfgUfaUfuCfcAfsu AS1214 1324 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.12 0.71 0.87
D1215 S1215 233 AfuGfuAfaCfcAfaGfaGfuAfdTdTdCdCasUf AS1215 1325 aUfdGdGdAdAuAfcUfcUfuGfgUfuAfcAfusGfsa 0.18 0.67 0.97
D1216 S1216 234 AfuGfuAfaccaagaguAfuUfcCfasUf AS1216 1326 aUfgGfaAfuacucuuggUfuAfcAfusgsa 0.36 0.87 1.07
D1217 S1217 235 AfuGfuAfaccaagaguAfuUfcCfasUf AS1217 1327 aUfgGfaAfuAfCfUfCfUfuGfGfuuAfcAfusgsa 0.37 0.73 1.03
D1218 S1218 236 AfUfguAfAfccAfAfgaGfUfauUfCfcasUf AS1218 1328 aUfGfgaAfUfacUfCfuuGfGfuuAfCfausGfsa 0.23 0.42 0.84
D1219 S1219 237 AfuGfuAfaccaagaguAfuUfcCfasUf AS1219 1329 aUfgGfaAfuaCfUfcUfUfgGfuuAfcAfusgsa 0.43 0.71 1.03
D1220 S1220 238 AfuGfuAfaccaagaguAfuUfcCfasUf AS1220 1330 aUfgGfaAfuAfcUfCfUfuGfGfuuAfcAfusgsa 0.37 0.63 0.99
01221 S1221 239 AfuGfuAfaccaagaguAfuUfcCfasUf AS1221 1331 aUfgGfaAfuAfcUfCfUfuGfGfuUfacAfusgsa 0.29 0.84 0.88
D1222 S1222 240 AfuGfuAfaccaagaguAfuUfcCfasUf AS1222 1332 a UfgGfaAf ua Cfu CfuUfgGfuuAfcAf usgsa 0.31 0.8 0.99
D1223 S1223 241 auGfuAfAfccAfaGfagUfaUfUfcCfasUf AS1223 1333 aUfgGfaaUfaCfUfcUfuGfGfuuAfcAfAfsgsa 0.09 0.52 0.82
D1224 S1224 242 AfuGfuAfaccaagaguAfuUfcCfasUf AS 1224 1334 a UfgGfaAfuadCu dCudïgdGuu AfcAfusgsa 0.22 0.79 1
D1225 S1225 243 auGfuaAfccAfagAfguAfuuCfcasUf AS1225 1335 aUfGfgAfAfuAfCfuCfUfuGfGfuUfAfcAfUfsGfsa 0.31 0.76 0.84
D1226 S1226 244 AfuGfu AfaccaagaguAfu UfcCfasUf AS1226 1336 aUfgGfaAfuadCUfcdTUfgdGuuAfcAfusgsa 0.26 0.64 0.87
D1227 S1227 245 augUfaacCfaagAfguaUfuccAfsu AS 1227 1337 aUfgGfAfaUfAfCfuCfUfUfgGfUfUfaCfAfUfsGfsa 0.33 0.79 0.81
D1228 S1228 246 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1228 1338 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.464 0.932 0.978
D1229 S1229 247 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS 1229 1339 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.453 1.047 1.178
D1230 S1230 248 AfuGfuAfaCfcAfaGfaGfuAfu UfcCfasUf AS 1230 1340 aUfgGfaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.831 0.967 1.151
D1231 S1231 249 auGfu AfAf CfcAfaGfaGfu Afu UfcCfasu AS 1231 1341 AfüfgGfaAfuAfcUfcUfuGfguuAfcAfUfsGfsa 0.09 0.5 1.07
D1232 S1232 250 AfuGfu AfaCfCfAfaGfaGfu Afu UfcCfasu AS1232 1342 AfUfgGfaAfuAfcUfcUfuggUfuAfcAfusGfsa 0.11 0.54 1.1
D1233 S1233 251 AfuGfuAfaCfcAfaGfaGfuAfu UfCf Cfasu AS 1233 1343 Af UfggaAfuAfcUfcUf uGfgU fuAfcAfusGfsa 0.19 0.61 0.74
D1234 S1234 252 aUfgUfaAfcCfaAfgAfgUfaUfuCfcAfsu AS1234 1344 AfuGfgAfaUfaCfuCfuUfgGfuUfaCfaUfsgsAf 0.22 0.61 0.98
D1235 S1235 253 aUfgUfaAfcCfaAfgAfgUfaUfuCfcAfsu AS 1235 1345 AfuGfgAfaUfaCfuCfuUfgGfuUfaCfaUfsgsAf 0.27 0.69 0.92
D1236 S1236 254 AfuGfuAfa CfcAfaGfaGfu AfuUfcCfasUf AS1236 1346 AfuGfgAfaUfaCfuCfuUfgGfuUfaCfaUfsgsAf 0.54 1.08 0.8
103
D1237 S1237 255 augUfaAfccaAfgAfguaUfuCfcasu AS 1237 1347 AfUfGfgAfaUfAfCfuCfuUfGfGfuUfaCfAfUfsgsa 0.29 0.61 0.79
D1233 S1238 256 AfugUfaAfccaAfgAfguaUfuCfcasu AS1238 1348 AfUfGfgAfaUfAfCfuCfuUfGfGfuUfaCfAfusgsa 0.31 0.6 0.88
D1239 S1239 257 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1239 1349 dAUdGGdAauAfclIfcUfuGfgUfuAfcAfusGfsa 0.2 0.67 0.85
D1240 S1240 258 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1240 1350 dAUdGgdAauAfcUfcUfuGfgüfuAfcAfusGfsa 0.23 0.58 0.68
D1241 S1241 259 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS 1241 1351 dAudGgdAauAfcUfcüfuGfgUfuAfcAfusGfsa 0.25 0.65 0.78
01242 S1242 260 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1242 1352 d AU dGgdAa dTAfcUfcUf uGfgUf u AfcAfusGfsa 0.18 0.64 0.84
D1243 S1243 261 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS 1243 1353 dAUdGGdAAfuAfcUfcUfuGfGfUfuAfCfAfusGfsa 0.19 0.72 0.87
D1244 S1244 262 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS 1244 1354 dAUdGgdAadTAfdCUfcUfuGfgUfuAfcAfusGfsa 0.16 0.55 0.8
D1245 S1245 263 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1245 1355 dAUdGGdAAuAfcUfcUfuGfgUfuAfcAfusGfsa 0.22 0.51 0.9
D1246 S1246 264 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS 1246 1356 dAudGgdAadTAfcUfcUfuGfgUfuAfcAfusGfsa 0.27 0.78 0.66
D1247 S1247 265 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfasUf AS1247 1357 dAdTdGdGaAfuAfcUfcUfuGfgUfuAfcAfusGfsa 0.16 0.57 0.97
D1248 S1248 266 AfacaAfuguUfcUfuGfdCUdCudAudAsa AS 1248 1358 dTUdAudAgdAGfcAfaGfaAfcAfcUfgUfusUfsu 0.06 0.09 0.36 0.0047
D1249 S1249 267 AfaCfaGfuGfuUfcUfuGfCfUfcUfaUfasa AS1249 1359 UfUfaUfaGfagcAfaGfaAfcAfcUfgUfusUfsu 0.06 0.10 0.47 0.005
D1250 S1250 268 AfaCfaGfuGfu UfcUfugcUfc UfAfUfasAf AS1250 1360 uUfa uaGfaGfCfAfa G fa AfcAfcUfgUfus Ufsu 0.07 0.14 0.55 0.005
D1251 S1251 269 AfaCfaGfuGfuUfcUfuGfcucUfAfUfasAf AS1251 1361 uUfauaGfAfGfcAfaGfaAfcAfcUfgUfusUfsu 0.07 0.14 0.49 0.006
D12S2 S1252 270 CAGuGuucuuGcucuAuAAdTdT AS1252 1362 UuAuAGAGcAAGAAcACUGdTdT 0.006
D1253 51253 271 AfaCfaGfuGfuUfcUfugcUfCfUfaUfasAf AS1253 1363 uUfaUfagaGfCfAfaGfaAfcAfcUfgUfusUfsu 0.05 0.12 0.43 0.006
D1254 S1254 272 AfaCfaGfuGfuUfCfUfuGfcUfcUfaUfasa AS1254 1364 UfUfaUfaGfaGfcAfagaAfcAfcUfgUfusUfsu 0.06 0.13 0.39 0.006
D1255 S1255 273 AfaCfaGfuGfu UfcUfuGfcUfCfUfaUfasa AS1255 1365 UfUfaUfagaGfcAfaGfaAfcAfcUfgUfusUfsu 0.08 0.17 0.48 0.007
D1256 S1256 274 AfaCfaGfuGfuUfcUfUfGfcUfcUfaUfasa AS1256 1366 UfUfaUfaGfaGfcaaGfaAfcAfcUfgUfusUfsu 0.08 0.14 0.40 0.007
D12S7 S12S7 275 AfaCfaGfuGfuUfcUfuGfcUfCfUfaUfasAf AS1257 1367 uUfaUfagaGfcAfaGfaAfcAfcUfgUfusUfsUf 0.07 0.12 0.40 0.007
D1258 51258 276 AfaCfaguGfuUfCfUfuGfcUfcUfaUfasAf AS1258 1368 uUfaUfaGfaGfcAfagaAfcAfCfUfgUfusUfsu 0.08 0.13 0.41 0.007
01259 S1259 277 AfaCfAfGfuGfuUfcUfuGfcucUfaUfasAf AS1259 1369 uUfaUfaGfAfGfcAfaGfaAfcAfcugUfusUfsu 0.05 0.11 0.35 0.008
01260 S1260 278 AfacaGfuGfuUfCfUfuGfcUfcUfaUfasAf AS1260 1370 uUfaUfaGfaGfcAfagaAfcAfcUfGfUfusUfsu 0.06 0.12 0.40 0.008
D1261 S1261 279 Afaca GfuGfuUfcUfuGfcUfCfUfa UfasAf AS1261 1371 uUfaUfagaGfcAfaGfaAfcAfcUfGfüfusUfsu 0.06 0.13 0.42 0.008
D1262 S1262 280 AfaCfaGfuGfuUfcUfuGfcucUfaUfasAf AS1262 1372 uUfaUfaGfAfGfcAfaGfaAfcAfcUfgUfusUfsu 0.06 0.13 0.37 0.008
D1263 S1263 281 CAGuGuucuuGcucuAuAAdTdT AS1263 1373 UuAuAGAGcAAGAAcACUGdTdT 0.008
104
D1264 S1264 282 AfaCfaGfuGfuUfcUfuGfCfUfcUfauasAf AS1264 1374 uUfAfUfaGfagcAfaGfaAfcAfcUfgUfusUfsu 0.07 0.12 050 0.008
D1265 S1265 283 AfaCfaGfuguUfCfUfuGfcUfcUfaUfasAf AS1265 1375 uUfaUfaGfaGfcAfagaAfCfAfcUfgUfusUfsu 0.12 0.13 0.48 0.009
D1266 S1266 284 AfacaGfuGfuUfcUfuGfcUfcUfAfUfasAf AS1266 1376 uUfauaGfaGfcAfaGfaAfcAfcUfGfUfiisUfsu 0.07 0.15 0.51 0.009
D1267 S1267 285 AfacaAfuguUfcUfuGfdCudCudAudAsa AS1267 1377 dTudAudAgdAGfcAfaGfaAfcAfcAfgUfusUfsu 0.06 0.14 0.48 0.0088
D1268 S1268 286 AfaCfaGfuGfuUfCfUfuGfcucUfaUfasAf AS1268 1378 uUfaUfaGfAfGfcAfagaAfcAfcUfgUfusUfsu 0.05 0.09 0.35 0.009
01269 S1269 287 CAGuGuucuuGcucuAuAAdTdT AS1269 1379 UuAuAGAGcAAGAAcACUGdTdT 0.009
D1270 S1270 288 aaCfaGfuGfuUfcUfuGfcUfCfUfaUfasAf AS1270 1380 uUfa UfagaGfcAfaGfaAfcAfcUfgUf UfsUfsu 0.07 0.14 0.49 0.009
D1271 S1271 289 AfaCfaGfUfGfuUfcUfuGfcucUfaUfasAf AS1271 1381 uUfaUfaGfAfGfcAfaGfaAfcacUfgUfusUfsu 0.06 0.10 0.36 0.009
D1272 S1272 290 CAGuGuucuuGcucuAuAAdTdT AS1272 1382 UuAuAGAGcAAGAAcACUGdTdT 0.009
D1273 S1273 291 AfaCfaGfUfGfuUfcUfuGfcUfcUfaUfasAf AS1273 1383 uUfaUfaGfaGfcAfaGfaAfcacUfgUfusUfsUf 0.06 0.13 0.51 0.009
D1274 S1274 292 AfaCfaGfuGfuUfCfUfuGfcUfcuaUfasAf AS1274 1384 uUfa UfAfGfaGf cAfaga AfcAfcUfgUfusUfsu 0.06 0.12 0.46 0.010
D1275 S1275 293 cAGuGuucuuGcucuAuAAdTdT AS1275 1385 UuAuAGAGcAAGAAcACUGdTdT 0.010
D1276 S1276 294 AfaCfaGfuGfuUfCfUfuGfcUfcUfauasAf AS1276 1386 uUfAfUfaGfaGfcAfagaAfcAfcUfgUfusUfsu 0.06 0.14 0.47 0.010
D1277 S1277 295 AfaCfaguGfuUfcUfuGfcUfCfUfaUfasAf AS1277 1387 u Ufa UfagaGfcAfaGfa AfcAfCfUfgUfusUfsu 0.07 0.15 0.50 0.010
D1278 S1278 296 AfaCfaGfuGfuUfCfUfugcUfcUfaUfasAf AS1278 1388 u Ufa UfaGfaGfCfAfaga AfcAfcUfgU f usUfsu 0.06 0.13 0.43 0.010
D1279 S1279 297 CAGuGuucuuGcucuAuAAdTdT AS1279 1389 UuAuAGAGcAAGAAcACUGdTdT 0.010
D1280 S1280 298 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasa AS1280 1390 Uf Ufa UfaGfaGfcAfaGfa AfcAfcUfgUf usu su 0.06 0.14 0.45 0.010
D1281 S1281 299 AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasa AS1281 1391 UfUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsu 0.07 0.18 0.46 0.011
D1282 S1282 300 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf AS1282 1392 uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.07 0.15 0.55 0.011
D1283 S1283 301 AfaCfaGfuGfu U fcUfuGfcucUfa UfasAf AS1283 1393 uUfaUfaGfAfGfcAfaGfaAfcAfcUfgUfususu 0.07 0.12 0.45 0.011
D1284 S1284 302 AfacaGfuGfuUfcUfuGfcUfcUfa UfasAf AS1284 1394 uUfaUfaGfaGfcAfaGfaAfcAfcUfGfUfusUfsu 0.06 0.13 0.48 0.011
D1285 S1285 303 AfAfCfaGfuGfuUfcUfuGfcucUfaUfasAf AS1285 1395 uUfaUfaGfAfGfcAfaGfaAfcAfcUfguusUfsu 0.06 0.11 0.40 0.011
D1286 S1286 304 AfaCfAfGfuGfuUfcUfuGfcUfcUfauasAf AS1286 1396 uUfAfUfaGfaGfcAfaGfaAfcAfcugUfusUfsu 0.06 0.16 0.47 0.011
D1287 S1287 305 AfaCfaGfuGfu UfcUfugcUfcUfaUfasAf AS1287 1397 uUfaUfaGfaGfCfAfaGfaAfcAfcUfgUfususu 0.07 0.19 0.46 0.012
D1288 S1288 306 AfaCfaGfuGfuUfcUfugcUfcUfa UfasAf AS1288 1398 uUfaUfaGfaGfCfAfaGfaAfcAfcUfgUfusUfsu 0.06 0.17 0.46 0.012
D1289 S1289 307 AfaCfaGfuGfuUfcUfUfGfcucUfa UfasAf AS1289 1399 uUfaUfaGfAfGfcaaGfaAfcAfcUfgUfusUfsu 0.05 0.09 0.31 0.012
D1290 S1290 308 AfAfCfaGfuGfuUfcUfuGfcUfcUfaUfasa AS 1290 1400 UfUfaUfaGfaGfcAfaGfaAfcAfcUfguusUfsu 0.06 0.16 0.49 0.013
105
D1291 S1291 309 AfaCfaGfuGfuUfCfUfuGfcUfcUfaUfasAf AS1291 1401 uUfa UfaGfaGfcAfaga AfcAfcUfgUfusUfsUf 0.06 0.11 0.32 0.013
D1292 51292 310 AfaCfAfGfuGfuUfcUfugcUfcUfaUfasAf AS 1292 1402 uUfa UfaGfaGfCfAfaGfa AfcAfcugUfusUfsu 0.06 0.14 0.44 0.013
D1293 S1293 311 AfaCfaGfUfGfuUfcUfuGfcUfcUfaUfasa AS1293 1403 UfUfaUfaGfaGfcAfaGfaAfcacUfgUfusUfsu 0.07 0.16 0.39 0.013
D1294 51294 312 AfaCfAfGfuGfuUfcUfuGfcUfcuaUfasAf AS1294 1404 u U fa UfAfGfaGfcAfaGfa AfcAfcugUfusUfsu 0.07 0.18 0.41 0.014
01295 51295 313 AfaCfaGfUfGfuüfcUfuGfcUfcuaUfasAf AS1295 1405 uU fa UfAfGfaGfcAfaGfa AfcacUfgUfusUfsu 0.07 0.18 0.47 0.014
D1296 S1296 314 adAdCagdTdGuudCdTugdCdTcudAdTasa AS 1296 1406 dTdTaudAdGagdCdAagdAdAcadCdTgucfTsdTsu 0.12 0.21 0.68 0.0146
D1297 S1297 315 AfacaGfUfGfuUfcUfuGfcUfcUfaUfasAf AS1297 1407 uUfaUfaGfaGfcAfaGfaAfcacUfGfUfusUfsu 0.06 0.15 0.50 0.016
D1298 S1298 316 AfaCfaGfUfGfuUfcUfuGfcUfcUfauasAf AS1298 1408 uUfAfUfaGfaGfcAfaGfaAfcacUfgUfusUfsu 0.08 0.17 0.50 0.016
D1299 S1299 317 AfaCfaguGfuüfcUfuGfcUfcUfaUfasAf AS1299 1409 u Ufa UfaGfaGfcAfaGfaAfcAfCfUfgUfususu 0.07 0.16 0.50 0.018
01300 51300 318 AfaCfaGfuGfuUfcUfUfGfcUfcUfauasAf AS 13 00 1410 uUfAfUfaGfaGfcaaGfaAfcAfcUfgUfusUfsu 0.06 0.12 0.43 0.020
D1301 S1301 319 AfaCfaGfUfGfuUfcUfugcUfcUfaUfasAf AS1301 1411 uUfaUfaGfaGfCfAfaGfa AfcacUfgUfusUfsu 0.07 0.17 0.45 0.021
01302 51302 320 AfaCfaGfuguUfcUfUfGfcUfcUfa UfasAf AS1302 1412 uUfaUfaGfaGfcaaGfaAfCfAfcUfgUfusUfsu 0.06 0.14 0.49 0.021
D1303 51303 321 AfAfCfaguGfuUfcUfuGfcUfcUfaUfasAf AS1303 1413 uUfaUfaGfaGfcAfaGfaAfcAfCfUfguusUfsu 0.07 0.24 0.51 0.022
01304 51304 322 AfaCfaGfuGfuucUfuGfcUfcU fa UfasAf A51304 1414 uUfaUfaGfaGfcAfaGfAfAfcAfcUfgUfususu 0.09 0.27 0.47 0.033
01305 S1305 323 aadCdAgudGdTucdTdTgcdTdCuadTdAsa AS1305 1415 udïadTdAgadGdCaadGdAacdAdCugdTdTsusu 0.19 0.36 0.86 0.045
01306 S1306 324 AfacaGfuguUfcUfuGfdCUdCUdAudAsa AS1306 1416 dTU dAUd AGfaGfcAfaGfa AfCfAfcUfGf UfusUf su 0.08 0.22 0.61
01307 S1307 325 AfacaGfuguUfcUfdTGfdCUdCUdAudAsa AS1307 1417 dTUdAUdAGfaGfcAfaGfaAfCfAfcUfGfUfusUfsu 0.13 0.39 0.84
01308 S1308 326 AfacaGfuguUfcUfuGfdCUdCUdAudAsa AS1308 1418 dTUdAUdAgdAGfcAfaGfaAfcAfcUfgUfusUfsu 0.09 0.13 0.48
01309 51309 327 AfacaGf ugu UfcUf dTGfdCUdCU dAudAsa AS1309 1419 dTUdAUdAgdAGfdCAfaGfaAfcAfcUfgUfusUfsu 0.07 0.13 0.58
01310 S1310 328 AfacaAfuguUfcUfdTGfdCUdCudAudAsa AS 1310 1420 dTU dAudAgdAGfdCAfaGfa AfcAfcAfgUfusUfsu 0.07 0.14 0.55
D1311 S1311 329 AfaCfaAfuGfuUfcUfuGfcUfcUfdAdTdAsdA AS1311 1421 dTdTdAdTaGfaGfcAfaGfaAfcAfcAfgUfusUfsu 0.10 0.30 0.66
01312 S1312 330 AfacaGfuguUfcUfuGfdCUdCUdAudAsa AS1312 1422 dTUdAUdAgdAGfcAfaGfaAfcAfcUfgUfusUfsu 0.09 0.13 0.48
D1313 51313 331 AfAfCfaGfuGfuucUfuGfcUfcUfaUfasAf AS1313 1423 uUfaUfaGfaGfcAfaGfAfAfcAfcUfguusUfsu 0.14 0.38 0.74
D1314 S1314 332 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf AS1314 1424 uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.07 0.19 0.54
D1315 51315 333 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf AS1315 1425 uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.07 0.15 0.55
D1316 51316 334 AfaCfaGfuGfuUfcUfuGfcUfcUfauasAf AS1316 1426 uUfAfUfaGfaGfcAfaGfaAfcAfcUfgUfususu 0.07 0.16 0.53
D1317 S1317 335 AfacaGfuGfuUfcUfuGfcUfcUfaUfasAf AS1317 1427 uUfaUfaGfaGfcAfaGfaAfcAfcUfGfUfususu 0.07 0.16 0.55
106
D1318 51318 336 AfAfCfaGfuguUfcUfuGfcUfcUfaUfasAf AS1318 1428 uUfaUfaGfaGfcAfaGfaAfCfAfcUfguusUfsu 0.10 0.32 0.61
D1319 S1319 337 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfasAf AS1319 1429 uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfususu 0.08 0.16 0.53
01320 51320 338 AfaCfaGfuGfuUfcUfuGfcUfcUfa UfasAf AS 1320 1430 uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfususu 0.08 0.16 0.61
D1321 S1321 339 AfaCfaGfuGfuUfcUfuGfcUfCfUfaUfasAf AS1321 1431 uUfaUfagaGfcAfaGfaAfcAfcUfgüfusUfsu 0.06 0.14 0.58
01322 S1322 340 AfaCfaGfuGfuUfcuuGfcUfcUfaUfasAf AS1322 1432 uUfaUfaGfaGfcAfAfGfaAfcAfcUfgUfus Ufsu 0.15 0.49 0.84
D1323 S1323 341 AfaCfaGfuGfuUfcUfuGfcUfcuaUfasAf AS1323 1433 uUfaUfAfGfaGfcAfaGfaAfcAfcUfgUfususu 0.07 0.20 0.62
D1324 S1324 342 AfAfCfaGfuGfuUfcUfuGfcUfcUfaUfasAf AS 1324 1434 uUfaUfaGfaGfcAfaGfaAfcAfcUfguusUfsu 0.08 0.25 0.78
D1325 S1325 343 AfAfCfaGfuGfuUfcUfuGfcUfcUfaUfasAf AS 1325 1435 uUfaUfaGfaGfcAfaGfaAfcAfcUfguusUfsu 0.08 0.18 0.80
D1326 S1326 344 Afa CfaGfuGfuUfcUfuGfcUfcUfAf UfasAf AS 1326 1436 uüfauaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.07 0.21 0.66
D1327 S1327 345 AfaCfaGfuGfuucUfuGfcUfcUfaUfasAf AS 1327 1437 uUfaUfaGfaGfcAfaGfAfAfcAfcUfgUfusUfsu 0.10 0.31 0.70
D1328 51328 346 AfAf CfaGfuGfu UfcUfuGfcUfcUfau asAf AS 1328 1438 uUfAfUfaGfaGfcAfaGfaAfcAfcUfguusUfsu 0.07 0.15 0.55
D1329 51329 347 AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasAf AS 13 29 1439 uUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsu 0.08 0.19 0.71
D1330 S1330 348 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfAfsAf AS1330 1440 uuaUfa GfaGfcAfaGfa AfcAf cU fgUfusUfsu 0.09 0.27 0.76
01331 S1331 349 AfaCfaGfuguUfcUfuGfcUfcUfaUfasAf AS1331 1441 u Ufa UfaGfaGfcAfaGfaAf CfAfcUfgUfusUfsu 0.07 0.21 0.65
D1332 S1332 350 AfAfCfaGfuGfuUfcUfuGfcUfcuaUfasAf AS1332 1442 uUfaUfAfGfaGfcAfaGfaAfcAfcUfgiiusUfsu 0.07 0.17 0.53
D1333 S1333 351 AfaCfaGfUfGfuUfcUfuGfcUfcUfaUfasAf AS1333 1443 uUfaUfaGfaGfcAfaGfaAfcacUfgUfusUfsu 0.08 0.25 0.73
D1334 S1334 352 AfaCfaguGfuUfcUfuGfcUfcUfaUfasAf AS1334 1444 uUfaUfaGfaGfcAfaGfaAfcAfCfUfgUfusUfsu 0.07 0.18 0.54
01335 S1335 353 AfaCfaGfuGfuUfcuuGfcUfcUfaUfasAf AS1335 1445 uUfa UfaGfaGfcAfAfGfaAfcAfcUfgUf ususu 0.14 0.38 0.57
D1336 S1336 354 AfaCfaGfuGfUfUfcUfuGfcUfcUfa UfasAf AS1336 1446 uUfaUfaGfaGfcAfaGfaacAfcUfgUfusUfsu 0.16 0.50 0.96
D1337 S1337 355 AfaCfaGfuGfuUfcUfuGfcUfcU fa uas Af AS1337 1447 uUfAfUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.08 0.19 0.54
D1338 S1338 356 AfAfCfaGfuGfuUfcUfugcUfcUfaUfasAf AS1338 1448 uUfaUfaGfaGfCfAfaGfaAfcAfcUfguusUfsu 0.08 0.20 0.69
D1339 S1339 357 AfaCfaGfuGfuUfCfUfuGfcUfcUfaUfasAf AS1339 1449 uUfaUfaGfaGfcAfagaAfcAfcUfgUfusUfsu 0.07 0.16 0.55
D1340 S1340 358 AfaCfaGfuGfuUfcUfuGfcUfcuaUfasAf AS 1340 1450 uUfaUfAfGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.08 0.17 0.57
D1341 S1341 359 AfaCfaGfuguUfcUfu GfcUfcUfa UfasAf AS 1341 1451 uUfaUfaGfaGfcAfaGfaAfCfAfcUfgUfususu 0.08 0.22 0.63
D1342 S1342 360 AfAfCfaGfuGfuUfcuuGfcUfcUfaUfasAf AS1342 1452 uUfaUfaGfaGfcAfAfGfaAfcAfcUfguusUfsu 0.21 0.56 0.86
D1343 S1343 361 AfacaGfuGfUfUfcUfuGfcUfcUfa UfasAf AS1343 1453 uUfaUfaGfaGfcAfaGfaacAfcUfGfUfusUfsu 0.14 0.37 0.73
01344 S1344 362 AfaCfaGfuGfuucUfUfGfcUfcUfaUfasAf AS1344 1454 uUfaUfaGfaGfcaaGfAfAfcAfcUfgUfusUfsu 0.08 0.20 0.66
107
D1345 S1345 363 AfaCfAfGfuGfuUfcuuGfcUfcUfaUfasAf AS1345 1455 uUfa UfaGfaGfcAfAfGfaAfcAfcugUfusUfsu 0.12 0.34 0.73
01346 51346 364 AfaCfaGfuGfUfUfcUfuGfcUfcUfauasAf AS1346 1456 uUfAfUfaGfaGfcAfaGfaacAfcUfgUfusUfsu 0.16 0.42 0.90
01347 S1347 365 AfaCfaGfuGfUfUfcUfuGfcUfcUfaUfasAf AS1347 1457 uUfaUfaGfaGfcAfaGfaacAfcUfgUfusUfsUf 0.17 0.43 0.85
01348 S1348 366 AfaCfAfGfuGfuucUfuGfcUfcUfaUfasAf AS1348 1458 uUfaUfaGfaGfcAfaGfAfAfcAfcugUfusUfsu 0.08 0.21 0.58
01349 S1349 367 AfaCfaGfuGfUfUfcUfuGfcUfcuaUfasAf AS1349 1459 uUfaUfAfGfaGfcAfaGfaacAfcUfgUfusUfsu 0.21 0.39 0.88
D135O S1350 368 AfaCfaguGfuUfcUfUfGfcUfcUfaUfasAf AS1350 1460 uUfaUfaGfaGfcaaGfaAfcAfCfUfgUfusUfsu 0.06 0.13 0.52
01351 S1351 369 AfaCfAfGf ugu UfcUfuGfcUfcUfaUfasAf AS1351 1461 uUfaUfaGfaGfcAfaGfaAfCfAfcugUfusUfsu 0.08 0.21 0.58
D1352 S1352 370 AfaCfaGf UfGfu Ufcuu GfcUfcUfaUfasAf AS1352 1462 uUfaUfaGfaGfcAfAfGfaAfcacUfgUfusUfsu 0.18 0.49 0.84
D1353 51353 371 AfaCfaGf uGfUfUfcUfuGfcucUfaUfasAf AS1353 1463 uUfaUfaGfAfGfcAfaGfaacAfcUfgUfusUfsu 0.11 0.25 0.68
D1354 S1354 372 AfacaGfuGfuUfcUfUfGfcUfcUfaUfasAf AS1354 1464 uUfaUfaGfaGfcaaGfaAfcAfcUfGfüfusUfsu 0.07 0.15 0.52
D1355 S1355 373 AfaCfaGfUfGfuucUfu GfcUfcUfaUfasAf AS1355 1465 uUfaUfaGfaGfcAfaGfAfAfcacUfgUfusUfsu 0.10 0.26 0.63
D1356 S1356 374 AfaCfaGfuGfUfUfcUfugcUfcUfaUfasAf AS1356 1466 uUfa UfaGfaGfCfAfaGfaacAfcU fgUfusUfsu 0.16 0.33 0.79
D1357 S1357 375 Afa CfAfGfuGfu UfcUfuGfcUfcUfaUfasAf AS1357 1467 uUfaUfaGfaGfcAfaGfaAfcAfcugUfusUfsUf 0.09 0.19 0.51
D1358 51358 376 Afa CfaGfuGfUf U fcuuGfcUfcUfaUfasAf AS1358 1468 uUfaUfaGfaGfcAfAfGfaacAfcUfgUfusUfsu 0.22 0.48 0.71
D1359 S1359 377 AfaCfaGfuGfuUfcUfüfGfcUfcUfaUfasAf AS1359 1469 uUfaUfaGfaGfcaaGfaAfcAfcUfgUfusUfsUf 0.10 0.17 0.61
D1360 S1360 378 AfaCfaguGfUfUfcUfuGfcUfcUfaUfasAf AS1360 1470 uUfa UfaGfaGfcAfaGfaacAfCf UfgUfusU fsu 0.14 0.40 0.87
01361 S1361 379 Afa CfaGfuGfu UfcUf UfGfcUfcuaUf asAf AS1361 1471 uUfaUfAfGfaGfcaaGfaAfcAfcUfgUfusUfsu 0.07 0.14 0.52
D1362 S1362 380 aa CfaGfuGfu UfcUfuGfCfUfcUfaUfasAf AS1362 1472 uUfaUfaGfagcAfaGfaAfcAfcUfgUfUfsUfsu 0.10 0.28 0.81
01363 S1363 381 Afa CfaGfuGfu ucUfuGfcUfcUfAf U fasAf AS 1363 1473 uUfauaGfaGfcAfaGfAfAfcAfcUfgUfusUfsu 0.06 0.16 0.68
01364 51364 382 AfaCfaGfuGfuUfcUfugcUfcUfaUfAfsAf AS1364 1474 uua UfaGfaGfCfAfaGfaAfcAfcUfgUfusUfsu 0.09 0.26 0.67
01365 51365 383 aacaguguucuugcucuauasa AS1365 1475 uUfaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.20 0.59 0.95
01366 S1366 384 Afa CfaGfuGfuUfcU fuGfCfUfcUfauasAf AS1366 1476 uUfAfUfaGfagcAfaGfaAfcAfcUfgUfusUfsu 0.06 0.13 0.53
01367 S1367 385 AfaCfaGfuGfuUfcUfuGfCfUfcUfaUfasAf AS1367 1477 uUfaUfaGfagcAfaGfaAfcAfcUfgUfusUfsUf 0.08 0.16 0.53
D1368 S1368 386 AfaCfaGfuguUfcUfuGfcUfcUfAfU fasAf AS1368 1478 uUfauaGfaGfcAfaGfaAfCfAfcUfgUfusUfsu 0.07 0.15 0.54
D1369 S1369 387 AfaCfaGfuGfuUfcuuGfcUfcUfaUfAfsAf AS1369 1479 uuaUfaGfaGfcAfAfGfaAfcAfcUfgUfusUfsu 0.23 0.56 0.89
01370 S1370 388 AfaCfaGfuGfuUfcUfuGfCfUfcuaUfasAf AS1370 1480 uUfa UfAfGfagcAfaGfa AfcAfcUfgUfusüfsu 0.06 0.12 0.55
D1371 S1371 389 Afa CfaGfuGfuUfcUfuGfCfUfcuaUf asAf AS1371 1481 uUfa UfAfGfagcAfaGfa AfcAfcU fgUfusUfsu 0.07 0.18 0.58
I08
D1372 51372 390 AfaCfaguGfuUfcUfuGfcUfcUfAfUfasAf AS1372 1482 uUfauaGfaGfcAfaGfaAfcAfCfUfgUfusUfsu 0.06 0.15 0.56
D1373 S1373 391 Afa CfaGfuGfu ucUfuGfcUfcUfaUfAfsAf AS1373 1483 uuaUfaGfaGfcAfaGfAfAfcAfcUfgUfusUfsu 0.21 0.51 0.89
D1374 S1374 392 AfacaGfuguUfcUfuGfcUfcUfaUfasAf AS1374 1484 uUfaUfaGfaGfcAfaGfaAfCfAfcUfGfUfusUfsu 0.08 0.21 0.64
D1375 S1375 393 AfaCfaGfuGfuUfcuuGfCfUfcUfaUfasAf AS1375 1485 uUfaUfaGfagcAfAfGfaAfcAfcUfgUfusUfsu 0.15 0.40 0.94
D1376 S1376 394 AfaCfaGfuGfuUfcuuGfCfUfcUfaUfasAf AS1376 1486 uUfaUfaGfagcAfAfGfaAfcAfcUfgUfusUfsu 0.13 0.40 0.96
D1377 S1377 395 AfaCfaGfuGfuUfcUfuGfcUfCfUfauasAf AS1377 1487 uUfAfUfagaGfcAfaGfaAfcAfcUfgUfusUfsu 0.08 0.17 0.64
D1378 S1378 396 Afa CfaGf ugu UfcUf uGfcUfcUfaUfAfsAf AS1378 1488 uuaUfaGfaGfcAfaGfaAfCfAfcUfgUfusUfsu 0.18 0.50 0.97
D1379 S1379 397 Afa CfaGfuGfu ucUfuGfCfUfcUfaUfasAf AS1379 1489 uUfaUfaGfagcAfaGfAfAfcAfcUfgUfusUfsu 0.08 0.24 0.79
D1380 S1380 398 aa CfaGfuGfu UfcUfuGfcUfcUfAf UfasAf AS1380 1490 uUfauaGfa GfcAfaGfa AfcAfcUfgUfUfsUfsu 0.07 0.14 0.58
D1381 S1381 399 Afa CfaguGfu UfcUf UGfcUfcUfaUfAfsAf AS1381 1491 uuaUfaGfa GfcAfaGfa AfcAf Cf UfgUfusUfsu 0.11 0.34 0.96
D1382 S1382 400 AfaCfaGfugu UfcUf uGfCf UfcUfaUfasAf AS1382 1492 uUfaUfaGfagcAfaGfaAfCfAfcUfgUfusUfsu 0.08 0.18 0.69
D1383 S1383 401 AfaCfaGfuGfiiUfcuuGfcUfCfUfaUfasAf AS1383 1493 u Ufa UfagaGfcAfAfGfaAfcAfcUfgUf usUfsu 0.14 0.38 0.85
D1384 S1384 402 Afa CfaGfuGfu UfcUfuGfcUfcUfAfUfasAf AS 13 84 1494 uUfauaGfaGfcAfaGfaAfcAfcUfgUfusUfsUf 0.07 0.16 0.54
D1385 S1385 403 AfacaGfuGfuUfcUfuGfcUfcUfaUfAfsAf AS 1385 1495 uuaUfaGfaGfcAfaGfaAfcAfcUfGfUfusUfsu 0.08 0.20 0.75
D1386 S1386 404 aacagugu ucUfuGfcUcUau dAsa AS 13 86 1496 u UfdAUdAGfa GfcAfaGfa adCad CudGdTdTsusu 0.25 0.56 0.90
D1387 S1387 405 Afa CfaguGfu UfcUf uGfCf UfcUfaUfasAf AS 1387 1497 u Ufa UfaGf agcAfaGfa AfcAfCf UfgUfusUfsu 0.08 0.19 0.70
D1388 S1388 406 Afa CfaGfuGfu ucUfuGfcUf CfUfa Ufa sAf AS1388 1498 u Ufa UfagaGfcAfaGfAfAfcAfcUfgUf usUfsu 0.08 0.14 0.60
D1389 S1389 407 Afa CfaGfuGfu UfcUf uGfcUfcuaUfAfsAf AS1389 1499 uuaUfAfGfaGfcAfaGfeAfcAfcUfgUfusUfsu 0.08 0.19 0.62
D1390 S1390 408 aaCfaGf uGfu UfcUfuGfcUfcUfaUfAfsAf AS 1390 1500 uuaUfaGfaGfcAfaGfaAfcAfcUfgUfUfsUfsu 0.08 0.27 0.76
D1391 S1391 409 aacaguguucdTudGcdTcdTadTasa AS 1391 1501 u UfdAUdAGfaGfcAfaGfaadCa dCu dGudTsusu 0.18 0.36 0.81
D1392 S1392 410 AfacaGfuGfuUfcUfuGfCfUfcUfaUfasAf AS 1392 1502 uUfaUfaGfagcAfaGfaAfcAfcUfGfUfusUfsu 0.07 0.17 0.55
D1393 S1393 411 AfaCfaGfuguUfcUfuGfcUfCfUfaUfasAf AS 1393 1503 uUfaUfaga GfcAfa Gf a AfCfAfcUfgUfusUf su 0.07 0.15 0.57
D1394 S1394 412 AfaCfaGfuGfuUfcuuGfcUfcUfAfUfasAf AS 1394 1504 uUfauaGfaGfcAfAfGfaAfcAfcUfgUfusUfsu 0.26 0.68 1.06
D1395 S1395 413 AfaCfaGfuGfuUfcUfuGfcucUfaUfAfsAf AS1395 1505 uuaUfaGfAfGfcAfaGfaAfcAfcUfgUfusUfsu 0.06 0.18 0.58
01396 S1396 414 AfaCfaGfuGfuUfcUfuGfcUfcUfaUfAfsAf AS 1396 1506 uuaUfaGfaGfcAfaGfaAfcAfcUfgUfusUfsUf 0.09 0.27 0.73
D1397 S1397 415 AfaCfaAfuGfuUfcUfuGfcdAdCdTdAUfasAf AS1397 1507 uUfadTdAdGdAGfcAfaGfaGfcAfcAfgUfusUfsu 0.20 0.51 0.73
01398 S1398 416 AfacaGfuguUfcuuGfcucUfauasAf AS1398 1508 uUfAfUfaGfAfGfcAfAfGfaAfCfAfcUfGfUfusUfsu 0.13 0.34 0.86
109
D1399 S1399 417 dAacadGugucfTcuudGcucdTauasdA AS 1399 1509 udTdAdTadGdAdGcdAdAdGadAdCdAcdTdGdTusdTsu 0.24 0.42 0.82
D1400 S1400 418 AfaCfaAfuGfuüfcUfuGfdCdAdCdTaUfasAf AS1400 1510 uUfaUfdAdGdAdGcAfaGfaGfcAfcAfgUfusüfsu 0.49 0.85 0.78
D14O1 S1401 419 AfaCfaAfuGfuUfcUfudGdCdAdCUfaüfasAf AS1401 1511 uUfaUfadGdAdGdCAfaGfaGfcAfcAfgüfusüfsu 0.67 0.83 0.85
D14O2 S1402 420 aaCfAfguGfUfucüfUfgcUfCfuaUfAfsa AS 1402 1512 uUfaUfAfgaGfCfaaGfAfacAfCfugUfüfsusu 0.18 0.47 0.80
D1403 S1403 421 AfaCfaAfuGfuüfcUfuGfcdAdCUfadTdAsAf AS1403 1513 udTdAUfadGdAGfcAfaGfaGfcAfcAfgUfusUfsu 0.73 0.89 0.77
D1404 S1404 422 aacAgugUucuUgcuCuauAsa AS1404 1514 uUaUAgAGCaAGAaCACuGUUsusu 0.12 0.39 0.79
D1405 S1405 423 AacaGuguUcuuGcucUauasA AS1405 1515 u UAUaGAGcAAGa ACAcU G U usUsu 0.12 0.37 0.77
D1406 S1406 424 AfaCfaAfuGfuUfcUfudGdCAfcüfadTdAsAf AS1406 1516 udTd AUfaGfadG dCAfaGfa GfcAfcAfgU f usUfsu 0.59 0.93 0.89
D1407 51407 425 aACagUGuuCUugCUcuAUasa AS1407 1517 UUauAGagCAagAAcaCUguUsUsu 0.09 0.16 0.55
D1408 51408 426 AfaCfaAf uGfu UfctlfuGfcAfcdT dAdTdAs Af AS1408 1518 ucfTdAdTdAGfaGfcAfaGfaAfcAfcAfgUfusUfsu 0.22 0.64 0.86
D1409 S1409 427 aaCAguGUucU UgcU CuaU Asa AS1409 1519 uUaUAgaGCaaGAacACugUUsusu 0.13 0.31 0.76
D1410 S1410 428 AfaCfaAfuGfuUfcUfuGfcAfdCdTdAdTdAsAf AS1410 1520 udTdAdTdAdGaGfcAfaGfaGfcAfcAfgUfusüfsu 0.77 0.94 0.93
D1411 S1411 429 aacAfgugUfucuUfgcuCfuauAfsa AS1411 1521 uUfaUfAfgAfGfCfaAfGfAfaCfAfCfuGfüfUfsusu 0.23 0.53 1.04
D1412 51412 430 aacdAgugdïucudTgcudCuaudAsa AS1412 1522 udTadTdAgdAdGdCadAdGdAadCdAdCudGdTdTsusu 0.30 0.64 0.90
D1413 51413 431 Afa CfaGf uGfu UfcüfuGfcUfcüfaUf asa AS1413 1523 UfUfaüfaGfaGfcAfaGfaAfcAfcUfgUfusUfsu 0.09 0.19 0.63
D1414 51414 432 Afa CfaGf uGfUfUfcüfuGfcUfcüfa Ufasa AS1414 1524 UfUfaUfaGfaGfcAfaGfaacAfcüfgUfusUfsu 0.11 0.28 0.66
D1415 S1415 433 AfaCfaGfuGfuüfcUfuGfCfUfcUfaüfasa AS1415 1525 UfUfaUfaGfagcAfaGfaAfcAfcUfgUfusUfsu 0.06 0.13 0.53
D1416 51416 434 a a cagugu ucuugcticuauasa AS1416 1526 UfUfAfUfAfGfAfGfCfAfAfGfAfAfCfAfCfUfGfUfUfsusu 0.20 0.53 0.99
D1417 S1417 435 Afa CfaGfuGfuUfcUfuGfcUfcUfAfUfasa AS1417 1527 UfUfauaGfaGfcAfaGfaAfcAfcüfgUfusUfsu 0.07 0.17 0.53
D1418 S1418 436 aAfCfagUfGfuuCfUfugCfUfcuAfUfasa A51418 1528 UfUfa uAfGfagCfAfagAfAfcaCfUfguüfsUfsu 0.08 0.20 0.70
D1419 51419 437 AfaCfAfGfuGfuUfcUfuGfcUfcUfaUfasAf AS1419 1529 u UfaUfaGfaGfcAf aGfaAfcAfcugUfus UfsUf 0.08 0.20 0.70
D1420 51420 438 GfaCfuUfcUfcCfUfCfcAfgugGfaCfcUfL96 AS1420 1530 aGfgUfcCfAfCfuGfgagGfaGfaAfgllfcsCfsc
D1421 51421 439 GfaCfuUfcUfcCfUfCfcAfgUfGfGfaCfcUfL96 AS1421 1531 aGfgüfccaCfuGfgagGfaGfaAfgUfcsCfsc
D1422 S1422 440 AfcUfuCfuCfcUfCfCfaGfuggAfcCfuGfL96 AS1422 1532 cAfgGfuCfCfAfcüfggaGfgAfgAfaGfusCfsc
D1423 S1423 441 AfcUfuCfuCfcUfCfCfaGfuGfGfAfcCfuGfl96 AS1423 1533 cAfgGfuccAfcUfggaGfgAfgAfaGfusCfsc
D1424 51424 442 CfuUfcUfcCfuCfCfAfgUfggaCfcUfgAfL96 AS1424 1534 uCfaGfgUfCfCfaCfuggAfgGfaGfaAfgsUfsc
01425 S1425 443 CfuUfcUfcCfuCfCfAfgUfgGfAfCfcUfgAfL96 AS1425 1535 uCfaGfgucCfaCfuggAfgGfaGfaAfgsUfsc
no
D1426 S1426 444 Ufu CfuCfcUfcCfAfGfu GfgacCfuGfaAfL96 AS1426 1536 uUfcAfgGfüfCfcAfcugGfaGfgAfgAfasGfsu
D1427 S1427 445 UfuCfuCfcUfcCfAfGfuGfgAfCfCfuGfaAfL96 AS1427 1537 UÜfcAfgguCfcAfcugGfaGfgAfgAfasGfsu
01428 S1428 446 UfcUfcCfuCfcAfGfUfgGfaccUfgAfaGfL96 AS1428 1538 cUfuCfaGfGfUfcCfacuGfgAfgGfaGfasAfsg
D1429 S1429 447 UfcUfcCfllCfcAfGfUfgGfaCfCfUfgAfaGfL96 AS1429 1539 cUfuCfaggUfcCfacuGfgAfgGfaGfasAfsg
D1430 S1430 448 CfijCfcUfcCfaGfUfGfgAfccuGfaAfgGfL96 AS1430 1540 cCfuUfcAfGfGfuCfcacUfgGfaGfgAfgsAfsa
D1431 S1431 449 CfuCfcUfcCfaGfUfGfgAfcCfüfGfaAfgGfL96 AS1431 1541 cCfuUfcagGfuCfcacUfgGfaGfgAfgsAfsa
01432 S1432 450 UfcCfuCfcAfgUfGfGfaCfcugAfaGfgAfL96 AS1432 1542 uCfcUfuCfAfGfgUfccaCfuGfgAfgGfasGfsa
D1433 S1433 451 UfcCfu CfcAfgUfGfGfaCfcUfGfAfa GfgAfL96 AS1433 1543 uCfcUfucaGfgUfccaCfuGfgAfgGfasGfsa
D1434 S1434 452 CfcUfcCfaGfuGfGfAfcCfugaAfgGfaCfL96 AS1434 1544 gUfcCfuUfCfAfgGfuccAfcUfgGfaGfgsAfsg
D1435 S1435 453 CfcUfcCfaGfuGfGfAfcCfuGfAfAfgGfaCfL96 AS1435 1545 gUfcCfuucAfgGfuccAfcUfgGfaGfgsAfsg
D1436 S1436 454 CfuCfcAfgUfgGfAfCfcUfgaaGfgAfcGfL96 AS1436 1546 cGfuCfcUfUfCfaGfgucCfaCfuGfgAfgsGfsa
D1437 S1437 455 CfuCfcAfgUfgGfAfCfcUfgAfAfGfgAfcGfL96 AS1437 1547 cGfuCfcuuCfaGfgucCfaCfuGfgAfgsGfsa
D1438 S1438 456 UfcCfaGfuGfgAf CfCfuGfaagGfa CfgAfL96 AS1438 1548 uCfgUfcCfUfUfcAfgguCfcAfcUfgGfasGfsg
D1439 S1439 457 UfcCfaGfuGfgAf CfCfuGfaAfGfGfa CfgAfL96 AS1439 1549 uCfgUfccuUfcAfgguCfcAfcUfgGfasGfsg
D1440 S1440 458 CfcAfgUfgGfaCfCfUfgAfaggAfcGfaGfL96 AS1440 1550 cUfcGfuCfCfUfuCfaggUfcCfaCfuGfgsAfsg
D1441 S1441 459 CfcAfgUfgGfaCfCfUfgAfaGfGfAfcGfaGfL96 AS1441 1551 cUfcGfuccUfuCfaggUfcCfaCfuGfgsAfsg
D1442 S1442 460 CfaGfuGfgAfcCfUfGfaAfggaCfgAfgGfL96 AS 1442 1552 cCfuCfgUfCfCfuUfcagGfuCfcAfcUfgsGfsa
D1443 S1443 461 CfaGfuGfgAfcCfUfGfaAfgGfAfCfgAfgGfL96 AS1443 1553 cCfuCfgucCfuUfcagGfuCfcAfcUfgsGfsa
D1444 S1444 462 AfgUfgGfaCfcUfGfAfaGfgacGfaGfgGfL96 AS1444 1554 cCfcUfcGfUfCfcUfucaGfgUfcCfaCfusGfsg
D1445 S1445 463 AfgUfgGfaCfcUfGfAfaGfgAfCfGfaGfgGfL96 AS1445 1555 cCfcUfcguCfcUfucaGfgUfcCfaCfusGfsg
D1446 S1446 464 GfuGfgAfcCfuGfAfAfgGfacgAfgGfgAfL96 AS1446 1556 uCfcCfuCfGfUfcCfuucAfgGfuCfcAfcsUfsg
D1447 S1447 465 GfuGfgAfcCfuGfAfAfgGfaCfGfAfgGfgAfL96 AS1447 1557 uCfcCfucgUfcCfuucAfgGfuCfcAfcsUfsg
D1448 S1448 466 UfgGfaCfcüfgAfAfGfgAfcgaGfgGfaUfL96 AS1448 1558 aUfcCfcUfCfGfuCfcuuCfaGfgUfcCfasCfsu
D1449 S1449 467 UfgGfaCf CüfgAfAfGfgAfcGfAfGfgGfa U f L96 AS1449 1559 aUfcCfcucGfuCfcuuCfaGfgUfcCfasCfsu
D1450 51450 468 GfgAfcCfuGfaAfGfGfaCfgagGfgAfuGfL96 AS1450 1560 cAfuCfcCfUfCfgUfccuUfcAfgGfuCfcsAfsc
D1451 S1451 469 GfgAfcCfuGfaAfGfGfaCfgAfGfGfgAfuGfL96 AS1451 1561 cAfu CfccuCfgUfccu UfcAfgGfuCfcsAfsc
D1452 S1452 470 GfaCfcUfgAfaGfGfAfcGfaggGfaUfgGfL96 AS1452 1562 cCfaUfcCfCfUfcGfuccUfuCfaGfgUfcsCfsa
D1453 S1453 471 GfaCfcUfgAfaGfGfAfcGfaGfGfGfaüfgGfLSG AS1453 1563 cCfaUfcccüfcGfuccUfuCfaGfgUfcsCfsa
01454 S1454 472 AfcCfuGfaAfgGfAfCfgAfgggAfuGfgGfL96 AS1454 1564 cCfcAfuCfCf Cfu CfgucCfu UfcAfgGf usCf sc
D1455 S1455 473 AfcCfuGfaAfgGfAfCfgAfgGfGfAfuGfgGfL96 AS1455 1565 cCfcAfuccCfuCfgucCfuUfcAfgGfusCfsc
D14S6 S1456 474 CfcUfgAfaGfgAfCfGfaGfggaüfgGfgAf L9 6 AS1456 1566 uCfcCfaUfCfCfcUfcguCfcUfuCfaGfgsUfsc
D1457 S1457 475 CfcUfgAfaGfgAfCfGfaGfgGfAfUfgGfgAfL96 AS1457 1567 uCfcCfaucCfcüfcguCfcUfuCfaGfgsüfsc
D1458 S14S8 476 CfuGfaAfgGfaCfGfAfgGfgauGfgGfaUfL96 AS1458 1568 aüfcCfcAfUfCfcCfucgUfcCfuUfcAfgsGfsu
D1459 S1459 477 CfuGfaAfgGfaCfGfAfgGfgAfUfGfgGfaUfL96 AS1459 1569 aUfcCfcauCfcCfucgUfcCfuUfcAfgsGfsu
D1460 S1460 478 UfgAfaGfgAfcGfAfGfgGfaugGfgAfuUfL96 AS1460 1570 aAfuCfcCfAfUfcCfcucGfuCfcUfuCfasGfsg
D1461 S1461 479 UfgAfaGfgAfcGfA(GfgGfaUfGfGfgAfuUfL96 AS1461 1571 aAfuCfccaUfcCfcucGfuCfcUfuCfasGfsg
D1462 S1462 480 GfaAfgGfaCfgAfGfGfgAfuggGfaUfuüfL96 AS1462 1572 aAfaUfcCfCfAfuCfccuCfgüfcCfuUfcsAfsg
D1463 S1463 481 GfaAfgGfaCfgAfGfGfgAfuGfGfGfaUfuüfL96 AS1463 1573 a AfaUfcccAfuCf ccuCfgüfcCfu UfcsAf sg
D1464 51464 482 AfaGfgAfcGfaGfGfGfaUfgggAfuüfuCfL96 AS1464 1574 gAfaAfuCfCfCfaUfcccüfcGfuCfcUfusCfsa
D1465 51465 483 AfaGfgAfcGfaGfGfGf aU fgGfGfAfu UfuCf L96 AS1465 1575 gAfa AfuccCfa UfcccUfcGfu CfcüfusCfsa
D1466 S1466 484 AfgGfaCfgAfgGfGfAfuGfggaUfuUfcAfL96 AS1466 1576 uGfaAfaUfCfCfcAfuccCfuCfgUfcCfusUfsc
D1467 51467 485 AfgGfaCfgAfgGf GfAf uGfgGfAfUfu UfcAfL96 AS1467 1577 uGfaAfaucCfcAfuccCfuCfgUfcCfusUfsc
D1468 S1468 486 GfgAfcGfaGfgGfAfUfgGfgauUfuCfaUfL96 AS1468 1578 aUfgAfa AfUf CfcCfa ucCfcUfcGfuCfcsUfsu
D1469 S1469 487 GfgAfcGfaGfgGfAfUfgGfgAfUfUfuCfaUfL96 AS1469 1579 aUfgAfaauCfcCfaucCfcUfcGfuCfcslIfsu
D1470 S1470 488 GfaCfgAfgGfgAfUfGfgGfauuUfcAfuGfL96 AS1470 1580 cAfuGfaAfAfUfcCfcauCfcCfuCfgUfcsCfsu
D1471 S1471 489 GfaCfgAfgGfgAfUfGfgGfaUfüfüfcAfuGfLSS AS1471 1581 cAfuGfaaaüfcCfcauCfcCfuCfgUfcsCfsu
D1472 51472 490 AfcGfaGfgGfaUfGfGfgAfuuuCfaüfgUfL96 AS1472 1582 aCfaüfgAiAfAfuCfccaUfcCfcUfcGfusCfsc
D1473 51473 491 AfcGfaGfgGfaUfGfGfgAfuUfUfCfaUfgUfL96 AS1473 1583 aCfaUfgaaAfuCfccaüfcCfcUfcGfusCfsc
D1474 S1474 492 CfgAfgGfgAfuGfGfGfaüfuucAfuGfuAfL96 AS1474 1584 uAf cAfu GfAfAfaUfcccAfuCfcCfuCfgsUfsc
D1475 S1475 493 CfgAfgGfgAfuGfGfGfaUfuUfCfAfuGfiiAfL96 AS1475 1585 uAf cAfuga Afa UfcccAfu CfcCfu CfgsUfsc
D1476 S1476 494 GfaGfgGfaUfgGfGfAfuUfucaUfgüfaAfL96 AS1476 1586 uUfaCfaUfGfAfaAfuccCfaUfcCfcUfcsGfsu
01477 S1477 495 GfaGfgGfaUfgGfGfAfuUfuCfAfUfgüfaAfL96 AS1477 1587 uUfaCfaugAfaAfuccCfaUfcCfcUfcsGfsu
01478 51478 496 AfgGfgAfuGfgGfAfUfuUfcauGfuAfaCfL96 AS1478 1588 gUfuAfcAfUfGfaAfaucCfcAfuCfcCfusCfsg
D1479 S1479 497 AfgGfgAfuGfgGfAfUfuüfcAfUfGfuAfaCfL96 AS1479 1589 gUfuAfcauGfaAfaucCfcAfuCfcCfusCfsg
112
D1480 S1480 498 GfgGfaUfgGfgAfUfUfuCfaugUfaAfcCfL96 AS1480 1590 gGfuUfaCfAfUfgAfaauCfcCfaUfcCfcsUfsc
01481 S1481 499 GfgGfa UfgGfgAf Uf UfuCfa UfGfUfa AfcCf L96 AS1481 1591 gGfuUfacaUfgAfaauCfcCfaUfcCfcsUfsc
D1482 S1482 500 GfgAfuGfgGfaUfUfUfcAfuguAfaCfcAfL96 AS1482 1592 uGfgUfuAfCfAfuGfaaaUfcCfcAfuCfcsCfsu
D1483 S1483 501 GfgAfuGfgGfaUf Uf UfcAfuGf UfAfa CfcAfl96 AS1483 1593 uGfgUfuacAfuGfaaaUfcCfcAfuCfcsCfsu
D1484 S1484 502 GfaUfgGfgAfuUfUfCfaUfguaAfcCfaAfL96 AS1484 1594 uUfgGfuUfAfCfaUfgaaAfuCfcCfaUfcsCfsc
D1485 S1485 503 GfaUfgGfgAfuUfUfCfaUfgUfAfAfcCfaAfL96 AS1485 1595 uUfgGfuuaCfa Ufgaa Afu CfcCfaUfcsCfsc
D1486 S1486 504 Af uGfgGfa U fuüfCfAfuGfu aa CfcAfaGf L96 AS1486 1596 cUfuGfgUfUfAfcAfugaAfaUfcCfcAfusCfsc
D1487 S1487 505 AfuGfgGfaUfuUfCfAfuGfuAfAfCfcAfaGfL96 AS1487 1597 cUfuGfguuAfcAfugaAfaUfcCfcAfusCfsc
D1488 S1488 506 UfgGfgAf u UfuCfAfUfgUfa acCfa AfgAf L96 AS1488 1598 uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc
D1489 S1489 507 UfgGfgAfuUfuCfAfUfgUfaAfCfCfaAfgAfL96 AS1489 1599 uCfuUfgguUfaCfaugAfaAfuCfcCfasUfsc
D1490 51490 508 GfgGfaUfuUfcAfUfGfuAfaccAfaGfaGfL96 AS1490 1600 cUfcUfuGfGfUfuAfcauGfaAfaUfcCfcsAfsu
D1491 S1491 509 GfgGfa UfuUfcAfUfGfuAfaCfCfAfaGfaGfL96 AS1491 1601 cUfcUf uggUfuAfcau Gfa Afa UfcCfcsAfsu
D1492 S1492 510 GfgAfuUfuCfaUfGfUfaAfccaAfgAfgUfL96 AS1492 1602 aCfuCfuüfGfGfu UfacaUfgAfa Afu CfcsCf sa
D1493 S1493 511 GfgAfuUfuCfa UfGfUfa AfcCfAfAfgAfgUfL96 AS1493 1603 aCfuCfuugGfuUfacaUfgAfaAfuCfcsCfsa
D1494 S1494 512 GfaUfuüfcAfuGfUfAfaCfcaaGfaGfuAfL96 AS1494 1604 u AfcUfcUfUfGfgUfuacAfuGfaAfa UfcsCfsc
01495 S1495 513 GfaUfuUfcAfuGfUfAfaCfcAfAfGfaGfuAfL96 AS1495 1605 uAfcUfcuuGfgUfuacAfuGfaAfaUfcsCfsc
D1496 S1496 514 AfuUfuCfaUfgUfAfAfcCfaagAfgUfaUfL96 AS1496 1606 aUfaCfuCfUfUfgGfuuaCfaUfgAfaAfusCfsc
D1497 S1497 515 AfuUfuCfaUfgUfAfAfcCfaAfGfAfgUfaUfL96 AS1497 1607 a UfaCfucuUfgGfu uaCfa U fgAfa Af usCfsc
D1498 51498 516 UfuUfcAfuGfuAfAfCfcAfagaGfuAfuUfL96 AS1498 1608 aAfuAfcUfCfUfuGfguuAfcAfuGfaAfasUfsc
D1499 S1499 517 UfuUfcAfuGfuAfAfCfcAfaGfAfGfuAfuUfL96 AS1499 1609 aAfuAfcucUfuGfguuAfcAfuGfaAfasUfsc
01500 S1500 518 UfuCfa UfgUfaAfCfCfaAfgagUfaUfuCfL96 AS1500 1610 gAfaUfaCfUfCfuUfgguUfaCfaUfgAfasAfsu
01501 S1501 519 UfuCfa UfgUfa AfCfCfaAfgAf GfUfa UfuCf L96 AS 1501 1611 gAfaUfacuCfu Ufggu UfaCfaUfgAfasAfsu
01502 S1502 520 UfcAfuGfu AfaCfCfAfa GfaguAf u UfcCfL96 AS 1502 1612 gGfaAfuAfCfUfcUfuggUfuAfcAfuGfasAfsa
D15O3 51503 521 UfcAfuGfuAfaCfCfAfaGfaGfUfAfuUfcCfL96 AS1503 1613 gGfaAfuacUfcUfuggUfuAfcAfuGfasAfsa
D1504 S1504 522 CfaUfgUfaAfcCfAfAfgAfguaUfuCfcAfL96 AS1504 1614 uGfgAfaUfAfCfuCfuugGfuUfa Cfa UfgsAfsa
DISOS S1505 523 Cfa UfgUfa AfcCfAfAfgAfgUfAfUfu CfcAf L96 AS1505 1615 uGfgAfauaCfuCfuugGfuUfaCfaUfgsAfsa
01506 51506 524 AfuGfu AfaCfcAfAfGfaGfuauUfcCfaUfL96 AS1506 1616 aUfgGfaAfUfAfcUfcuuGfgUfuAfcAfusGfsa
ll3
D1507 51507 525 AfuGfuAfaCfcAfAfGfaGfuAfUfUfcCfaUflS6 AS1507 1617 aUfgGfaauAfcUfcuuGfgüfuAfcAfusGfsa
D1508 51508 526 UfgUfaAfcCfaAfGfAfgUfauuCfcAfuUfL96 AS 1508 1618 a Afu GfgAfAfUfaCfucuUfgGfuUfaCfasUfsg
D1509 S1509 527 UfgUfaAfcCfaAfGfAfgUfaUfUfCfcAfuUfL96 AS1509 1619 aAfuGfgaaUfaCfucuUfgGfuUfaCfasUfsg
D1510 S1510 528 GfuAfaCfcAfaGfAfGfuAfuucCfaUfuUfL96 AS1510 1620 aAfaUfgGfAfAfuAfcucUfuGfgUfuAfcsAfsu
D1511 S1511 529 GfuAfaCfcAfaGfAfGfuAfuUfCfCfaUfuUfL96 AS1511 1621 aAfaUfggaAfuAfcucUfuGfgUfuAfcsAfsu
D1512 51512 530 Ufa AfcCfa AfgAfGfUfa UfuccAfuUfu UfL96 AS1512 1622 aAfaAfuGfGfAfaUfacuCfuUfgGfuUfasCfsa
DIS 13 S1513 531 Ufa AfcCfaAfgAfGf Ufa UfuCfCfAfu U fuUf L96 AS1513 1623 aAfaAfuggAfaUfacuCfuUfgGfuUfasCfsa
DIS 14 $1514 532 Afa CfcAfaGfaGf UfAf uUfcca UfuUf uUfL96 AS1514 1624 aAfaAfaUfGfGfaAfuacUfcUfuGfgUfusAfsc
D1515 S1515 533 AfaCfcAfaGfaGfUfAfuUfcCfAfUfuUfuUfL96 AS1515 1625 aAfaAfaugGfaAfuacUfcUfuGfgUfusAfsc
D1S16 SIS 16 534 AfcCfaAfgAfgUfAfUfuCfcauUfuUfuAfL96 AS1516 1626 uAfaAfaAfUfGfgAfauaCfuCfuUfgGfusUfsa
D1517 S1517 535 AfcCfaAfgAfgUfAfUfuCfcAfUfUfuUfuAfL96 AS 1517 1627 u AfaAfaa uGf gAfa uaCf uCfu UfgGfu sUfsa
DIS 18 S1518 536 CfcAfaGfaGfuAfUfUfcCfauuUfuUfaCfL96 AS1518 1628 gUfaAfaAfAfUfgGfaauAfcUfcUfuGfgsUfsu
D1519 51519 537 CfcAfaGfaGfuAfUfUfcCfaUfUfUfuUfaCfL96 AS1519 1629 gUfaAfaa aU fgGfaau Af cUfcUfuGfgsüfsu
D1520 S1520 538 CfaAfgAfgUfaUfUfCfcAfuuuUfuAfcUfL96 AS1520 1630 aGfuAfaAfAfAfuGfgaa Ufa Cfu Cfu UfgsGfsu
D1521 S1521 539 CfaAfgAfgUfaüfUfCfcAfuUfUfUfuAfcüfL96 AS1521 1631 aGfuAfaaaAfu GfgaaUfaCfuCfu UfgsGfsu
D1522 S1522 540 AfaGfaGfu Afu UfCf CfaUfuuu UfaCfuAfL96 AS1522 1632 uAfgUfaAfAfAfaUfggaAfuAfcUfcUfusGfsg
D1523 S1523 541 AfaGfaGfuAfuUfCfCfaUfuUfUfUfaCfuAfL96 AS1S23 1633 uAfgUfaaaAfaUfggaAfuAfcUfcUfusGfsg
D1524 S1524 542 AfgAfgUfaUfuCfCfAfuUfuuuAfcUfaAfL96 AS1524 1634 uUfaGfuAfAfAfaAfuggAfaUfaCfuCfusUfsg
D1525 S1525 543 AfgAfgUfa Uf uCfCfAfuUfu Uf UfAfcUfaAf L96 AS1525 1635 uUfaGfuaaAfaAfuggAfaUfaCfuCfusUfsg
D1526 S1526 544 GfaGfuAf u UfcCfAfUfuUfu uaCf uAfa AfL96 AS1526 1636 uUfuAfgUfAfAfaAfaugGfaAfuAfcUfcsUfsu
D1527 S1S27 545 GfaGfuAfu UfcCfAfUfuUfu UfAfCfu Afa Af L96 AS1527 1637 uUfuAfguaAfaAfaugGfaAfuAfcUfcsUfsu
D1528 S1S28 546 AfgUfaUfuCfcAfUfUfuUfuacUfaAfaGfL96 AS1528 1638 cUfuUfaGfUfAfaAfaauGfgAfaUfaCfusCfsu
D1529 S1529 547 AfgUfa UfuCfcAfUf UfuUf uAfCf Ufa Afa GfL96 AS1529 1639 cUfuüfaguAfaAfaauGfgAfaUfaCfusCfsu
D1530 S1S30 548 Gfu Afu UfcCfa UfUfUfuUfacu Afa AfgCfL96 AS1530 1640 gCfuUfuAfGfUfaAfaaaUfgGfaAfuAfcsUfsc
D1531 S1531 549 GfuAfuUfcCfaUfUfUfuUfaCfUfAfaAfgCfL96 AS1531 1641 gCfuUfuagUfaAfaaaUfgGfaAfuAfcsUfsc
D1532 S1532 550 UfaUfuCfcAfuUfUfUfuAfcuaAfaGfcAfl96 AS1532 1642 uGfcUfuUfAfGfu Afaaa Afu GfgAfa UfasCfsu
D1533 S1533 551 UfaUf uCfcAfu Uf UfUfu AfcUfAfAfa GfcAf L96 AS1533 1643 uGfcUfuuaGfuAfaaaAfuGfgAfaUfasCfsu
114
01534 S1534 552 AfuUfcCfaUfuUfUfUfaCfuaaAfgCfaGfL96 AS 1534 1644 cUfgCfuUfUfAfgUfaaaAfaUfgGfaAfusAfsc
01535 S1535 553 AfuUfcCfaUfuUfUfUfaCfuAfAfAfgCfaGfL96 AS 1535 1645 cUfgCfu uu AfgUfaaaAfa UfgGfa AfusAfsc
D1536 S1536 554 UfuCfcAfuUfuUfUfAfcUfaaaGfcAfgUfL96 AS1536 1646 aCfuGfcUfUfUfaGfuaaAfaAfuGfgAfasUfsa
D1537 S1537 555 UfuCfcAfuUfuUfUfAfcUfaAfAfGfcAfgUfL96 AS1537 1647 aCfuGfcuuUfaGfuaaAfaAfuGfgAfasUfsa
D1538 S1538 556 UfcCfaUfuUfuUfAfCfuAfaagCfaGfuGfL96 AS1538 1648 cAfcUfgCfUfUfuAfguaAfaAfaUfgGfasAfsu
D1539 51539 557 UfcCfaUfuUfu UfAfCf uAfa AfGfCfa GfuGf L96 AS1539 1649 cAfcUfgcuUfuAfguaAfaAfaüfgGfasAfsu
D1540 S1540 558 CfcAfuUfuUfuAfCfUfaAfagcAfgUfgUfL96 AS1540 1650 aCfaCfuGfCfUfuUfaguAfaAfaAfuGfgsAfsa
D1541 51541 559 CfcAfuUfuUfuAfCfUfaAfaGfCfAfgUfgUfl96 AS1541 1651 aCfaCfugcUfuUfaguAfaAfaAfuGfgsAfsa
D1542 S1542 560 CfaUfuUfuUfaCfüfAfaAfgcaGfuGfuUfl96 AS1542 1652 aAfcAfcUfGfCfuUfuagUfaAfaAfaUfgsGfsa
D1543 51543 561 CfaUfuUfu UfaCfUfAfa AfgCfAfGfuGfu UfL96 AS1543 1653 aAfcAfcugCfuUfuagUfaAfaAfaUfgsGfsa
D1544 S1544 562 AfuUfuUfuAfcUfAfAfaGfcagUfgUfuUfL96 AS1544 1654 aAfaCfaCfUfGfcUfuuaGfuAfaAfaAfusGfsg
D1545 S1545 563 AfuUfuüfuAfcUfAfAfaGfcAfGfUfgUfuUfL96 AS1545 1655 aAfaCfacuGfcUfuuaGfuAfaAfaAfusGfsg
01546 S1546 564 UfuüfuUfaCfuAfAfAfgCfaguGfuUfuUfL96 AS1546 1656 aAfaAfcAfCfUfgCfuuuAfgUfaAfaAfasUfsg
01547 51547 565 UfuUfuUfaCfuAfAfAfgCfaGfUfGfuUfuUfL96 AS1547 1657 aAfaAfcacUfgCfuuuAfgUfaAfaAfasUfsg
01548 S1548 566 Ufu UfuAfcUfa AfAfGfcAfgugUfuUfu CfL96 AS1548 1658 gAfaAfaCfAfCfuGfcuuUfaGfuAfaAfasAfsu
D1549 S1549 567 Ufu UfuAfcUfa AfAfGfcAfgUfGfUfu UfuCfL96 AS1549 1659 gAfaAfacaCfuGfcuuUfaGfuAfaAfasAfsu
DIS 50 S1550 568 UfuUfaCfuAfaAfGfCfaGfuguUfuUfcAfL96 AS1550 1660 uGfaAfaAfCfAfcUfgcuUfuAfgUfaAfasAfsa
D1551 S1551 569 Ufu UfaCfu Afa AfGfCfaGfuGfUfUfu UfcAf L96 AS1551 1661 uGfaAfaacAfcUfgcuUfuAfgüfaAfasAfsa
D15S2 51552 570 UfuAfcUfaAfaGfCfAfgUfguuUfuCfaCfL96 AS1552 1662 gUfgAfaAfAfCfaCfugcUfuUfaGfuAfasAfsa
D1553 S1553 571 UfuAfcUfaAfaGfCfAfgUfgUfUfUfuCfaCfL96 AS1553 1663 gUfgAfa a a CfaCf ugcUfuUfa Gfu AfasAfsa
D1554 S1554 572 UfaCfuAfa AfgCfAfGfuGfu uu UfcAfcCf L96 AS 1554 1664 gGfuGfaAfAfAfcAfcugCfuUfuAfgUfasAfsa
D1555 51555 573 UfaCfuAf a AfgCfAfGfuGfu U f UfUfcAfcCfL96 AS 1555 1665 gGfuGfaaaAfcAfcugCfuUfuAfgUfasAfsa
D1556 S1556 574 AfcUfa AfaGfcAfGfUfgUfuu uCfaCfcUfL96 AS 1556 1666 aGfgUfgAfAfAfaCfacuGfcUfuUfaGfusAfsa
D1557 51557 575 AfcUfaAfaGfcAfGfUfgUfuUfUfCfaCfcUfL96 AS 1557 1667 aGfgUfgaaAfaCfacuGfcUfuUfaGfusAfsa
D1558 51558 576 CfuAfa AfgCfaGf UfGfu Ufu ucAfcCfuCfL96 AS 1558 1668 gAfgGf uGfAfAfa AfcacUfgCfu U f uAfgsUfsa
D1559 S1559 577 CfuAfa AfgCfaGf UfGfu Ufu UfCfAfcCfuCf L96 AS 1559 1669 gAfgGfugaAfaAfcacUfgCfuUfuAfgsUfsa
D1560 S1560 578 UfaAfaGfcAfgUfGfUfuUfucaCfcUfcAfL96 AS1560 1670 uGfaGfgUfGfAfaAfacaCfuGfcUfuUfasGfsu
us
D1561 S1561 579 UfaAfaGfcAfgUfGfUfuUfuCfAfCfcüfcAfL96 AS1561 1671 uGfaGfgugAfaAfacaCfuGfcUfuUfasGfsu
D1562 S1562 580 AfaAfgCfaGfuGfUfUfuUfcacCfuCfaüfL96 A51562 1672 aUfgAfgGfUfGfaAfaacAfcUfgCfuUfusAfsg
D1563 51563 581 AfaAfgCfaGfuGfUfUfuUfcAfCfCfuCfaUfL96 AS1563 1673 aUfgAfgguGfaAfaacAfcUfgCfuUfusAfsg
D1564 S1S64 582 AfaGfcAfgUfgUfUfUfuCfaccUfcAfuAfL96 AS1564 1674 uAfuGfaGfGfUfgAfaaaCfaCfuGfcUfusUfsa
01565 S1565 583 AfaGfcAfgUfgUfUfUfuCfaCfCfUfcAfuAfL96 AS1565 1675 uAfuGfaggUfgAfaaaCfaCfuGfcUfusUfsa
D1566 S1566 584 AfgCfaGf uGfu Uf Uf UfcAfccu CfaUfaU f L96 AS1566 1676 aUfaUfgAfGfGfuGfaaaAfcAfcUfgCfusUfsu
D1567 S1567 S85 AfgCfaGfuGfuUfUfUfcAfcCfUfCfaUfaUfL96 AS1567 1677 aUfaUfgagGfuGfaaaAfcAfcUfgCfusUfsu
D1568 S1568 586 GfcAfgUfgUfuUfUfCfaCfcucAfuAfuGfL96 AS1568 1678 cAfuAfuGfAfGfgUfgaaAfaCfaCfuGfcsUfsu
D1569 S1569 587 GfcAfgUfgUfuUfUfCfaCfcUfCfAfuAfuGfL96 AS1569 1679 cAfuAfugaGfgUfgaaAfaCfaCfuGfcsUfsu
D1570 S1570 588 CfaGfuGfuUfuUfCfAfcCfucaUfaUfgCfL96 AS1570 1680 gCfaUfaUfGfAfgGfugaAfaAfcAfcUfgsCfsu
D1571 S1571 589 CfaGfu GfuUfu UfCfAfcCfuCfAf UfaUfgCf L96 AS 1571 1681 gCfaUfaugAfgGfugaAfaAfcAfcUfgsCfsu
D1572 S1572 590 AfgUfgUfuUfuCfAfCfcUfcauAfuGfcUfL96 AS1572 1682 aGfcAfuAfUfGfaGfgugAfaAfaCfaCfusGfsc
D1573 S1573 591 AfgUfgUfuUfuCfAfCfcUfcAfUfAfuGfcUfL96 AS1573 1683 aGfcAfua uGfaGfgugAfa AfaCfa CfusGfsc
D1574 S1574 592 GfuGfu Uf uUfcAfCfCfuCfaua UfgCf uAfLS 6 AS 1574 1684 uAfgCfaUfAfUfgAfgguGfaAfaAfcAfcsUfsg
D1575 S1575 593 GfuGfuUfuUfcAfCfCfuCfaUfAfUfgCfuAfL96 AS1575 1685 uAfgCfaua UfgAfggu Gfa Afa AfcAfcsUfsg
01576 51576 594 UfgUfuUfuCfaCfCfUfcAfuauGfcUfaUfL96 AS1576 1686 aUfaGfcAfUfAfuGfaggUfgAfaAfaCfasCfsu
01577 S1577 595 UfgUfu UfuCfaCfCf UfcAfu AfUfGfcUfa UfL96 AS 1577 1687 aUfaGfcauAfuGfaggUfgAfaAfaCfasCfsu
01578 S1578 596 GfuUfuUfcAfcCfUfCfaUfaugCfuAfuGfL96 AS 1578 1688 cAfuAfgCfAfUfaUfgagGfuGfaAfaAfcsAfsc
01579 51579 597 GfuUfuUfcAfcCfUfCfaUfaUfGfCfuAfuGfL96 AS 1579 1689 cAfu Afgca UfaUfgagGfuGfa Afa AfcsAfsc
D1580 S1580 598 UfuUfuCfaCfcUfCfAfuAfugcUfaUfgUfL96 AS1580 1690 aCfaUfaGfCfAfuAfugaGfgUfgAfaAfasCfsa
01581 S1581 599 Ufu Uf uCfaCfcUf CfAfu Af uGfCfUfaUfgU fL96 AS1581 1691 aCfaUfagcAfuAfugaGfgUfgAfaAfasCfsa
D1582 51582 600 UfuUfcAfcCfuCfAfUfaUfgcuAfuGfuUfL96 A51582 1692 aAfcAf uAfGfCfa Ufau gAfgGfuGfaAfasAfsc
D1583 S1583 601 Ufu UfcAfcCfuCfAfUfaUfgCfUfAfuGfu UfL9 6 AS1583 1693 aAfcAfuagCfaUfaugAfgGfuGfaAfasAfsc
D1584 S1584 602 Ufu Cfa CfcUfcAf UfAfuGfcua UfgUfu AfL9 6 AS1584 1694 uAfaCfaUfAfGfcAfuauGfaGfgUfgAfasAfsa
D1585 51585 603 Ufu Cfa CfcUfcAfUfAfuGfcUfAfUfgUfuAfL96 AS1585 1695 uAfaCfauaGfcAfuauGfaGfgUfgAfasAfsa
D1586 S1586 604 UfcAfcCfuCfaUfAfUfgCfuauGfuUfaGfL96 AS1586 1696 cUfa AfcAfUfAfgCfaua UfgAfgGfu GfasAfsa
D1587 51587 605 UfcAfcCfuCfaUfAfUfgCfuAfUfGfuUfaGfL96 AS1587 1697 cUfaAfcauAfgCfauaUfgAfgGfuGfasAfsa
116
D1588 S1588 606 CfaCfcUfcAfuAfUfGfcUfaugUfuAfgAfL96 AS1588 1698 uCfuAfaCfAfUfaGfcauAfuGfaGfgUfgsAfsa
D1S89 S1589 607 CfaCfcUfcAfuAfüfGfcUfaUfGfUfuAfgAfL96 AS 1589 1699 uCfuAfacaUfaGfcauAfuGfaGfgUfgsAfsa
D1590 S1590 608 AfcCfuCfaUfaUfGfCfuAfuguUfaGfaAfL96 AS1590 1700 uUfcUfaAfCfAfuAfgcaUfaUfgAfgGfusGfsa
D1591 S1591 609 AfcCfuCfaUfaUfGfCfuAfuGfUfUfaGfaAfL96 AS1591 1701 uUfcUfaacAfuAfgcaUfaUfgAfgGfusGfsa
D1592 S1592 610 CfcUfcAfuAfuGfCfUfaUfguuAfgAfaGfL96 AS 1592 1702 cUfuCfuAfAfCfaUfagcAfuAfuGfaGfgsUfsg
D1593 S1593 611 CfcüfcAfuAfuGfCfUfaUfgUfUfAfgAfaGfL96 AS1593 1703 cüfuCfuaaCfaUfagcAfuAfuGfaGfgsUfsg
D1594 S1594 612 CfuCfaUfaUfgCfUfAfuGfuuaGfaAfgUfL96 AS1594 1704 aCfu UfcUfAfAfcAfuagCfaUfa UfgAfgsGfsu
D1595 S1S95 613 CfuCfaUfaUfgCfUfAfuGfuUfAfGfaAfgUfL96 AS1595 1705 aCfu Ufcua AfcAfuagCfaUfaUfgAfgsGf su
D1596 S1596 614 UfcAfuAfuGfcllfAfUfgUfuagAfaGfuCfL96 AS1596 1706 gAfcUfuCfUfAfaCfauaGfcAfuAfuGfasGfsg
D1597 51597 615 UfcAfuAfuGfcUfAfUfgUfuAfGfAfaGfuCfL96 AS1597 1707 gAfcUfucuAfaCfauaGfcAfuAfuGfasGfsg
D1598 S1598 616 CfaUfaUfgCfuAfUfGfuUfagaAfgUfcCfL96 AS1598 1708 gGfaCfuUfCfUfaAfcauAfgCfaUfaUfgsAfsg
D1599 S1599 617 Cfa UfaUfgCf uAfUf GfuUfa GfAfAfgUfcCf L96 AS1599 1709 gGfaCfuucUfaAfcauAfgCfaüfaUfgsAfsg
D1600 51600 618 AfuAfuGfcUfaUfGfUfuAfgaaGfuCfcAfL96 AS1600 1710 uGfgAfcUfUfCfuAfacaUfaGfcAfuAfusGfsa
D1601 51601 619 AfuAfuGfcUfaUfGfUfuAfgAfAfGfuCfcAfL96 AS1601 1711 uGfgAfcuuCfuAfacaUfaGfcAfuAfusGfsa
D1602 51602 620 UfaUfgCfuAfuGfUfUfaGfaagUfcCfaGfL96 AS1602 1712 cUfgGfaCfUfUfcUfaacAfuAfgCfaUfasUfsg
01603 S1603 621 UfaüfgCfuAfuGfUfUfaGfaAfGfUfcCfaGfL96 AS1603 1713 cUfgGfacuüfcUfaacAfuAfgCfaUfasUfsg
01604 S1604 622 AfuGfcUfaUfgUfUfAfgAfaguCfcAfgGfL96 AS 1604 1714 cCfuGfgAfCfUfuCfuaaCfaUfaGfcAfusAfsu
D1605 S1605 623 AfuGfcUfaUfgUfUfAfgAfaGfUfCfcAfgGfL96 AS1605 1715 cCfuGfgacUfu Cfu aa CfallfaGfcAfusAfsu
D1606 S1606 624 UfgCfuAfuGfuUfAfGfaAfgucCfaGfgCfL96 A51606 1716 gCfcUfgGfAfCfuUfcuaAfcAfuAfgCfasUfsa
D1607 S1607 625 UfgCfuAfuGfuUfAfGfaAfgUfCfCfaGfgCfL96 AS1607 1717 gCfcUfggaCfuUfcuaAfcAfuAfgCfasUfsa
D1608 51608 626 GfcUfaUfgUfuAfGfAfaGfuccAfgGfcAfL96 AS1608 1718 uGfcCfuGfGfAfcUfucuAfaCfaUfaGfcsAfsu
D1609 51609 627 GfcUfa UfgUfuAfGfAfaGfu CfCfAfgGfcAfL9 6 AS1609 1719 uGfcCfaggAfcUfucuAfaCfaUfaGfcsAfsu
D1610 S1610 628 CfuAfuGfuUfaGfAfAfgUfccaGfgCfaGfL96 AS1610 1720 cUfgCfcUfGfGfaCfuucUfaAfcAfuAfgsCfsa
01611 S1611 629 CfuAfuGfuUfaGfAfAfgUfcCfAfGfgCfaGfL96 AS1611 1721 cüfgCfcugGfa Cfu ucUfa AfcAfuAfgsCfsa
01612 S1612 630 Ufa UfgUfuAfgAfAfGfuCfcagGfcAfgAfL9 6 AS1612 1722 uCfuGfcCf UfGfgAfcuu Cfu AfaCfa UfasGfsc
D1613 S1613 631 UfaUfgUfuAfgAfAfGfuCfcAfGfGfcAfgAfL96 AS1613 1723 uCfuGfccuGfgAfcuuCfuAfaCfaUfasGfsc
01614 S1614 632 AfuGfuUfaGfaAfGfUfcCfaggCfaGfaGfL96 AS1614 1724 cUfcUfgCfCfUfgGfacuUfcUfaAfcAfusAfsg
1I7
01615 S1615 633 AfuGfuUfaGfaAfGfUfcCfaGfGfCfaGfaGfL96 AS1615 1725 cUfcUfgccUfgGfacuUfcUfaAfcAfusAfsg
D1616 S1616 634 UfgUfuAfgAfaGfUfCfcAfggcAfgAfgAfL96 AS1616 1726 uCfuCfuGfCfCfuGfgacUfuCfuAfaCfasUfsa
D1617 S1617 635 UfgUfuAfgAfaGfUfCfcAfgGfCfAfgAfgAfL96 AS1617 1727 uCfuCfugcCfuGfgacUfuCfuAfaCfasUfsa
D1618 51618 636 GfuUfaGfaAfgUfCfCfaGfgcaGfaGfaCfL96 A51618 1728 gUfcUfcUf GfCfcUfggaCfu U fcUfa AfcsAfsu
D1619 S1619 637 GfuUfaGfaAfgUfCfCfaGfgCfAfGfa GfaCfL96 AS1619 1729 gUfcUfcugCfcUfgga Cfu UfcUfa AfcsAfsu
D1620 S1620 638 UfuAfgAfaGfuCfCfAfgGfcagAfgAfcAfL96 AS1620 1730 uGfuCfuCfUfGfcCfuggAfcUfuCfuAfasCfsa
D1621 S1621 639 UfuAfgAfaGfuCfCfAfgGfcAfGfAfgAfcAfL96 AS1621 1731 uGfuCfucuGfcCfuggAfcUfuCfuAfasCfsa
D1622 S1622 640 UfaGfaAfgUfcCfAfGfgCfagaGfaCfaAfL96 AS1622 1732 uUfgUfcUfCfUfgCfcugGfaCfuUfcUfasAfsc
D1623 S1623 641 UfaGfaAfgUfcCfAfGfgCfaGfAfGfaCfaAfL96 AS1623 1733 uUfgUfcucUfgCfcugGfa Cfu UfcUfasAfsc
01624 S1624 642 AfgAfaGf uCfcAfGfGfcAfgagAfcAfa UfL96 AS1624 1734 aUfuGfuCfUfCfuGfccuGfgAfcUfuCfusAfsa
D1625 S1625 643 AfgAfaGfuCfcAfGfGfcAfgAfGfAfcAfaUfL96 AS1625 1735 aUfuGfucuCfiiGfccuGfgAfcUfuCfusAfsa
D1626 S1626 644 GfaAfgUfcCfaGfGfCfaGfagaCfaAfuAfL96 AS1626 1736 uAfuUfgUfCfUfcUfgccUfgGfaCfuUfcsUfsa
D1627 S1627 645 GfaAfgUfcCfaGfGfCfaGfaGfAfCfaAfuAfL96 AS1627 1737 uAfuUfgucUfcUfgccUfgGfaCfuUfcsUfsa
D1628 S1628 646 AfaGfuCfcAfgGfCfAfgAfgacAfaUfaAfL96 AS1628 1738 uUfaUfuGfUfCfuCfugcCfuGfgAfcUfusCfsu
D1629 S1629 647 AfaGfuCfcAfgGfCfAfgAfgAfCfAfaüfaAfL96 AS1629 1739 uUfaUfuguCfuCfugcCfuGfgAfcUfusCfsu
D1630 S1630 648 AfgUfcCfaGfgCfAfGfaGfa ca Afu Afa Af L96 AS1630 1740 uüfuAfuUfGfUfcUfcugCfcUfgGfaCfusUfsc
01631 S1631 649 AfgUfcCfaGfgCfAfGfaGfaCfAfAfuAfaAfL96 AS1631 1741 uUfuAfuugUfcUfcugCfcUfgGfaCfusUfsc
D1632 S1632 650 GfuCfcAfgGfcAfGfAfgAfca a UfaAfaAf L96 AS1632 1742 uUfuUfaUfUfGfuCfucuGfcCfuGfgAfcsUfsu
D1633 S1633 651 Gfu CfcAfgGfcAfGfAfgAfcAfAf UfaAfaAf L96 AS1633 1743 uUfuUfauuGfuCfucuGfcCfuGfgAfcsüfsu
D1634 S1634 652 UfcCfaGfgCfaGfAfGfaCfaa uAfa AfaCfL96 AS1634 1744 gUfuUfuAfUfUfgUfcucUfgCfcUfgGfasCfsu
D1635 S1635 653 UfcCfaGfgCfaGfAfGfaCfaAfüfAfaAfaCfL96 AS1635 1745 gUfuUfuauUfgUfcucUfgCfcUfgGfasCfsu
D1636 S1636 654 CfcAfgGfcAfgAfGfAfcAfa ua AfaAfcAfL96 AS1636 1746 uGfuUfuUfAfUfuGfucuCfuGfcCfuGfgsAfsc
D1637 S1637 655 CfcAfgGfcAfgAfGfAfcAfa Uf AfAfaAfcAf L96 AS1637 1747 uGfu Ufuua UfuGf ucuCfuGfcCfuGfgsAfsc
D1638 S1638 656 CfaGfgCfaGfaGfAfCfaAfuaa AfaCfaUfL96 AS1638 1748 aUfgUfuUfUfAfuUfgucUfcUfgCfcUfgsGfsa
D1639 S1639 657 CfaGfgCfaGfaGfAfCfaAfuAfAfAfaCfaUfL96 AS1639 1749 a UfgUfu uuAfu UfgucUfcüfgCfcUfgsGfsa
D1640 S1640 658 AfgGfcAfgAfgAfCfAfaUfaaaAfcAfuUfL96 AS1640 1750 aAfuGfuUfUfUfaUfuguCfuCfuGfcCfusGfsg
D1641 S1641 659 AfgGfcAfgAfgAfCfAfaUfaAfAfAfcAfuUfL96 AS1641 1751 aAfuGfuuuUfaUfuguCfuCfuGfcCfusGfsg
118
D1642 S1642 660 GfgCfaGfaGfaCfAfAfu AfaaaCfa Ufu CfL96 AS1642 1752 gAfaUfgUfUfUfuAfuugUfcUfcUfgCfcsUfsg
D1643 S1643 661 GfgCfaGfaGfaCfAfAfuAfaAfAfCfaUfuCfL96 AS1643 1753 gAfa Ufguu Ufu Afu ugUfcUfcUfgCfcsUfsg
D1644 S1644 662 GfcAfgAfgAfcAfAfUfaAfaacAfuUfcCfL96 AS1644 1754 gGfaAfuGfUfUfuUfauuGfuCfuCfuGfcsCfsu
D1645 S1645 663 GfcAfgAfgAfcAfAfUfaAfaAfCfAfuUfcCfL96 AS1645 1755 gGfaAfuguUfuUfauuGfuCfuCfuGfcsCfsu
D1646 51646 664 CfaGfaGfaCfaAfUfAfaAfacaUfuCfcUfL96 AS1646 1756 aGfgAfaUfGfUfuUfuauUfgUfcUfcUfgsCfsc
D1647 S1647 665 CfaGfaGfaCfaAfUfAfaAfaCfAfUfuCfcUfL96 AS1647 1757 aGfgAfaugUfuUfuauUfgüfcUfcUfgsCfsc
D1648 S1648 666 AfgAfgAfcAfa UfAfAfa Afcau UfcCfuGfL96 AS1648 1758 cAfgGfa Af UfGfuUf uua U f uGfuCfuCfusGf se
D1649 S1649 667 AfgAfgAfcAfaUfAfAfaAfcAfUfUfcCfuGfL96 A51649 1759 cAfgGfa a uGfu Ufuua UfuGfuCfuCf usGfsc
D1650 S1650 668 GfaGfaCfa Afu AfAfAf aCfa uu CfcUfgUfL96 AS1650 1760 aCfaGfgAfAfUfgUf uu u Afu UfgUfcUfcsUfsg
D1651 S1651 669 GfaGfaCfaAfuAfAfAfaCfaUfUfCfcUfgUfL96 AS1651 1761 aCfaGfgaaUfgUfuuuAfuUfgUfcUfcsUfsg
D1652 S1652 670 AfgAfcAfa U fa AfAfAfcAfuucCfuGfuGf L96 AS1652 1762 cAfcAfgGfAfAfuGfuuuUfaüfuGfuCfusCfsu
D1653 S1653 671 AfgAfcAfaUfaAfAfAfcAfuUfCfCfuGfuGfL96 AS1653 1763 cAfcAfggaAfuGfuuuUfaUfuGfuCfusCfsu
D1654 S1654 672 GfaCfaAfuAfaAfAfCfaUfuccUfgUfgAfL96 AS1654 1764 uCfaCfaGfGfAfaUfguu UfuAfu UfgüfcsUf sc
D1655 S1655 673 GfaCfaAfuAfaAfAfCfaUfuCfCfUfgUfgAfL96 AS1655 1765 uCfaCfaggAfaUfguuUfuAfuUfgUfcsUfsc
D1656 S1656 674 AfcAfa Ufa AfaAfCfAfuUfccuGf uGf aAf 19 6 AS1656 1766 uUfcAfcAfGfGfa AfuguUfu Ufa UfuGfusCfsu
D1657 51657 675 AfcAfaUfaAfaAfCfAfuUfcCfUfGfuGfaAfL96 AS16S7 1767 u UfcAfcagGfaAfugu Ufu Ufa UfuGfusCfsu
D1658 S1658 676 CfaAfuAfaAfaCfAfUfuCfcugUfgAfaAfL96 AS1658 1768 uUfuCfaCfAfGfgAfaugUfuUfuAfuUfgsUfsc
D1659 S1659 677 CfaAfuAfaAfaCfAfUfuCfcUfGfUfgAfaAfL96 AS1659 1769 uUfuCfacaGfgAfaugUfuUfuAfuUfgsUfsc
D1660 S1660 678 Afa UfaAfa AfcAfUf UfcCfuguGfa AfaGfL96 AS1660 1770 cUfu UfcAfCfAfgGfaauGfu UfuUfaUfusGfsu
D1661 S1661 679 Afa Ufa Afa AfcAfUf UfcCfuGf UfGfa AfaGfl9 6 AS1661 1771 cUfu UfcacAfgGfa a uGfuUfu Ufa Uf usGfsu
D1562 51662 680 AfuAfaAfaCfaUfUfCfcUfgugAfaAfgGfL96 AS1662 1772 cCfuUfuCfAfCfaGfgaaUfgUfuUfuAfusUfsg
D1653 S1663 681 AfuAfaAfaCfaUfUfCfcUfgUfGfAfaAfgGfL96 AS1663 1773 cCfuUfucaCfaGfgaaUfgUfuUfuAfusüfsg
D1664 S1664 682 Ufa Afa AfcAfu UfCfCfuGfuga AfaGfgCfL96 AS1664 1774 gCfcUfuUfCfAfcAfggaAfuGfuUfuUfasUfsu
D1665 S1665 683 UfaAfaAfcAfuUfCfCfuGfuGfAfAfaGfgCfL96 AS1665 1775 gCfcUfuucAfcAfggaAfuGfuUfuUfasUfsu
D1666 S1666 684 Afa Afa CfaUfu CfCf UfgUfgaaAfgGfcAfL96 AS1666 1776 uGfcCfuUfUfCfa CfaggAfa UfgUfuUfusAfsu
D1667 S1667 685 AfaAfaCfaUfuCfCfUfgUfgAfAfAfgGfcAfL96 AS1667 1777 uGfcCfuuuCfaCfaggAfaUfgUfuUfusAfsu
D1668 S1668 686 Afa AfcAfu UfcCfUfGfuGfaaaGfgCfaCfL96 AS1668 1778 gUfgCfcUfUfUfcAfcagGfaAfuGfu U f usUfsa
119
D1669 51669 687 AfaAfcAfuUfcCfUfGfuGfaAfAfGfgCfaCfL96 AS1669 1779 gUfgCfcuuUfcAfcagGfaAfuGfuUfusUfsa
D1670 51670 688 AfaCfaUfuCfcUfGfUfgAfaagGfcAfcUfL96 AS1670 1780 aGfuGfcCfUfUfuCfacaGfgAfaUfgUfusUfsu
D1671 S1671 689 AfaCfaUfuCfcUfGfUfgAfaAfGfGfcAfcUfL96 AS1671 1781 aGfuGfccuUfuCfacaGfgAfaUfgUfusUfsu
D1672 S1672 690 AfcAfuUfcCfuGfUfGfaAfaggCfaCfuUfL96 AS1672 1782 aAfgUfgCfCfUfuUfcacAfgGfaAfuGfusUfsu
D1673 S1673 691 AfcAfuUfcCfuGfUfGfaAfaGfGfCfaCfuUfL96 AS1673 1783 aAfgUfgccUfuUfcacAfgGfaAfuGfusUfsu
D1674 S1674 692 CfaUfuCfcUfgUfGfAfaAfggcAfcUfuUfL96 AS1674 1784 aAfaGfuGfCfCfuUfucaCfaGfgAfaUfgsUfsu
D1675 51675 693 CfaUfuCfcUfgUfGfAfaAfgGfCfAfcUfuUfL96 AS1675 1785 aAfaGfugcCfuUfucaCfaGfgAfaUfgsUfsu
D1676 S1676 694 AfuUfcCfuGfuGfAfAfaGfgcaCfuUfuUfL96 AS1676 1786 aAfaAfgUfGfCfcUfuucAfcAfgGfaAfusGfsu
D1677 S1677 695 AfuUfcCf uGfuGfAfAfaGfgCfAfCfu UfuUf L9 6 AS1677 1787 aAfaAfgugCfcUfuucAfcAfgGfaAfusGfsu
D1678 51678 696 UfuCfcUfgUfgAfAfAfgGfcacUfuUfuCfL96 AS1678 1788 gAfaAfaGfUfGfcCfuuuCfaCfaGfgAfasUfsg
D1679 S1679 697 UfuCfcUfgUfgAfAfAfgGfcAfCfUfuUfuCfL96 AS1679 1789 gAfaAfaguGfcCfuuuCfaCfaGfgAfasUfsg
D1680 51680 698 UfcCfuGfuGfaAfAfGfgCfacuUfuUfcAfL96 AS1680 1790 uGfaAfaAfGfUfgCfcuuUfcAfcAfgGfasAfsu
D1681 S1681 699 UfcCfuGfuGfaAfAfGfgCfaCfUfUfuUfcAfL96 AS1681 1791 uGfa Af aagUfgCfcuu UfcAfcAfgGfasAfsu
D1682 S1682 700 CfcUfgUfgAfaAfGfGfcAfcuuUfuCfaUfL96 AS1682 1792 a UfgAfaAfAfGfuGfccu UfuCfaCfaGfgsAfsa
01683 S1683 701 CfcUfgUfgAfaAfGfGfcAfcUfUfUfuCfaUfL96 AS1683 1793 a UfgAfaaaGfu Gfccu UfuCfaCfa GfgsAfsa
01684 S1684 702 CfuGfuGfaAfaGfGfCfaCfuuuUfcAfuUfL96 AS1684 1794 aAfuGfaAfAfAfgUfgccUfuUfcAfcAfgsGfsa
01685 S1685 703 CfuGfuGfaAfaGfGfCfaCfuUfUfUfcAfuUfL96 AS1685 1795 aAfuGfaaaAfgUfgccUfuUfcAfcAfgsGfsa
D1686 51686 704 UfgUfgAfaAfgGfCfAfcUfuuuCfaUfuCfL96 AS1686 1796 gAfa UfgAfAfAfaGfu gcCfuUfuCfa CfasGfsg
01687 S1687 705 UfgUfgAfaAfgGfCfAfcUfuUfUfCfaUfuCfL96 AS1687 1797 gAfaUfgaaAfaGfugcCfuUfuCfaCfasGfsg
D1688 S1688 706 GfuGfaAfaGfgCfAfCfuUfuucAfuUfcCfL96 AS1688 1798 gGfaAfuGfAfAfaAfgugCfcUfuUfcAfcsAfsg
D1689 51689 707 GfuGfaAfaGfgCfAfCfuUfuUfCfAfuUfcCfL96 AS1689 1799 gGfa Afuga Afa AfgugCfcUfu UfcAfcsAfsg
D1690 S169O 708 UfgAfaAfgGfcAfCfUfuUfucaUfuCfcAfL96 AS 1690 1800 uGfgAfaUfGfAfaAfaguGfcCfuUfuCfasCfsa
D1691 51691 709 UfgAfaAfgGfcAfCfUfuUfuCfAfUfuCfcAfL96 A51691 1801 uGfgAfaugAfaAfaguGfcCfuUfuCfasCfsa
D1692 S1692 710 GfaAfaGfgCfaCfUfUfuUfcauUfcCfaCfL96 AS1692 1802 gUfgGfaAfUfGfaAfaagUfgCfcUfuUfcsAfsc
D1693 S1693 711 G fa AfaGfgCfaCfUf Ufu UfcAf UfUfcCf a CfL96 AS1693 1803 gUfgGfaauGfaAfaagUfgCfcUfuUfcsAfsc
D1694 S1694 712 Afa AfgGfcAfcUfUf UfuCfa uuCfcAfcUf L96 AS1694 1804 aGfuGfgAfAfUfgAfaa a GfuGfcCfuUfusCfsa
D1695 S1695 713 AfaAfgGfcAfcUfUfUfuCfaUfUfCfcAfcUfL96 AS1695 1805 aGfuGfga aUfgAfa aa GfuGfcCfuUfusCfsa
120
01696 S1696 714 AfaGfgCfaCfuUfUfUfcAfuucCfaCfuUfL96 AS1696 1806 a AfgUfgGfAfAfuGfa aaAfgUfgCfcU fusUfsc
D1697 S1697 715 AfaGfgCfaCfuUfUfUf cAfu UfCfCfa Cfu Uf L96 AS1697 1807 aAfgUfggaAfuGfaaaAfgUfgCfcUfusUfsc
D1698 S1698 716 AfgGfcAfcUfuUfUfCfaUfuccAfcüfuUfL96 AS1698 1808 aAfaGfuGfGfAfaUfgaaAfaGfuGfcCfusUfsu
D1699 S1699 717 AfgGfcAfcUfuUfUfCfaUfuCfCfAfcUfuUfL96 AS1699 1809 aAfaGfuggAfaUfgaaAfaGfuGfcCfusUfsu
D1700 S1700 718 GfgCfaCfuUfuUfCfAfuUfccaCfuUfuAfL96 AS1700 1810 uAfaAfgUfGfGfaAfugaAfaAfgUfgCfcsUfsu
D1701 S1701 719 GfgCfaCfuUfuUfCfAfuUfcCfAfCfuUfuAfL96 AS1701 1811 uAfaAfgugGfaAfugaAfaAfgUfgCfcsUfsu
D1702 51702 720 GfcAfcUfuUfuCfAfUfuCfcacUfuUfaAfL96 AS1702 1812 uUfaAfaGfUfGfgAfaugAfaAfaGfuGfcsCfsu
01703 S1703 721 GfcAfcUfuUfuCfAfUfu CfcAfCfUfu Ufa AfL96 A51703 1813 uUfaAfaguGfgAfaugAfaAfaGfuGfcsCfsu
D1704 51704 722 CfaCfuUfuUfcAfUfUfcCfacuUfuAfaCfL96 AS1704 1814 gUfuAfaAfGfUfgGfaauGfaAfaAfgUfgsCfsc
D1705 S1705 723 CfaCfuUfuUfcAfUfUfcCfaCfUfUfuAfaCfL96 AS1705 1815 gUfuAfaagUfgGfaauGfaAfaAfgUfgsCfsc
D1706 S1706 724 AfcUfuUfuCfaUfUfCfcAfcuuUfaAfcUfL96 AS1706 1816 aGfu Ufa AfAfGfuGfgaa UfgAfaAf aGf usGfsc
D1707 51707 725 AfcUfuUfuCfaUfUfCfcAfcUfUfUfaAfcUfL96 AS1707 1817 aGfuUfaaaGfuGfgaaUfgAfaAfaGfusGfsc
D1708 51708 726 CfuUfuUfcAfuUfCfCfaCfuuuAfaCfuUfL96 AS1708 1818 aAfgUfuAfAfAfgUfggaAfuGfaAfaAfgsUfsg
01709 S1709 727 CfuUfuUfcAfuUfCfCfaCfuUfUfAfaCfuUfL96 AS1709 1819 aAfgUfuaaAfgUfggaAfuGfaAfaAfgsUfsg
D1710 51710 728 UfuUfuCfaUfuCfCfAfcUfuuaAfcUfuGfL96 AS1710 1820 cAfaGfuUfAfAfaGfuggAfaUfgAfaAfasGfsu
D1711 51711 729 UfuUfu CfaUfuCfCfAf cUfu UfAfAfcUf uGf L96 AS1711 1821 cAfaGfuuaAfaGfuggAfaUfgAfaAfasGfsu
01712 51712 730 UfuUfcAfuUfcCfAfCfuUfuaaCfuUfgAfL96 AS1712 1822 uCfaAfgUfUfAfaAfgugGfaAfuGfaAfasAfsg
D1713 S1713 731 UfuUfcAfuUfcCfAfCfuUfuAfAfCfuUfgAfL96 AS1713 1823 uCfaAfguuAfaAfgugGfaAfuGfaAfasAfsg
01714 S1714 732 UfuCfaUfuCfcAfCfUfuUfaacUfuGfaUfL96 AS1714 1824 aUfcAfaGfUfUfaAfaguGfgAfaUfgAfasAfsa
01715 S1715 733 UfuCfaUfuCfcAfCftJfuUfaAfCfUfuGfaUfL96 AS1715 1825 aUfcAfaguUfaAfaguGfgAfaUfgAfasAfsa
01716 51716 734 UfcAfuUfcCfaCf Uf UfuAfa eu UfgAfu Uf L96 AS1716 1826 aAfuCfaAfGfUfuAfaagUfgGfaAfuGfasAfsa
D1717 S1717 735 UfcAfuUfcCfaCfUfUfuAfaCfUfUfgAfuUfL96 AS1717 1827 aAfuCfaagUfuAfaagUfgGfaAfuGfasAfsa
D1718 51718 736 CfaUfuCfcAfcUfUfUfaAfcuuGfaUfuUfL96 AS1718 1828 aAfaUfcAfAfGfuUfaaaGfuGfgAfaUfgsAfsa
D1719 51719 737 CfaUfuCfcAfcUfUfUfaAfcUfUfGfaUfuUfL96 AS1719 1829 a AfaUfcaaGf u UfaaaGfuGfgAfa UfgsAfsa
D1720 S1720 738 AfuUfcCfaCfuUfUfAfaCfuugAfuüfuUfL96 AS1720 1830 aAfaAfuCfAfAfgUfuaaAfgUfgGfaAfusGfsa
D1721 S1721 739 AfuUfcCfaCfuUfUfAfaCfuUfGfAfuUfuUfL96 AS 1721 1831 aAfaAfucaAfgUfuaaAfgUfgGfaAfusGfsa
D1722 S1722 740 UfuCfcAfcUfu UfAfAfcUfugaUfu UfuUfL96 AS1722 1832 aAfaAfaUfCfAfaGfuuaAfaGfuGfgAfasUfsg
121
D1723 S1723 741 U fuCfcAfcUfu UfAfAfcUfuGfAf Ufu UfuUf 196 AS1723 1833 aAfaAfaucAfaGfuuaAfaGfuGfgAfasUfsg
D1724 51724 742 UfcCfaCfuUfuAfAfCfuUfgauUfuUfuUfL96 AS1724 1834 aAfaAfaAfUfCfaAfguuAfaAfgUfgGfasAfsu
D1725 S1725 743 UfcCfaCfuUfuAfAfCfuUfgAfUfUfuUfuUfL96 AS1725 1835 a Afa Afaa uCfaAfguuAfa AfgUfgGfa sAfsu
D1726 S1726 744 CfcAfcUfuUfaAfCfUfuGfauuUfuUfuAfL96 AS1726 1836 uAfaAfaAfAfUfcAfaguUfaAfaGfuGfgsAfsa
D1727 S1727 745 CfcAfcUfuUfaAfCfUfuGfaUfUfUfuUfuAfL96 AS1727 1837 uAfaAfaaaUfcAfaguüfaAfaGfuGfgsAfsa
D1728 S1728 746 CfaCfuUfuAfaCfUfUfgAfuuuUfuUfaAfL96 AS1728 1838 uUfaAfaAfAfAfuCfaagUfuAfaAfgUfgsGfsa
D1729 S1729 747 CfaCfuUfuAfaCfUfUfgAfuUfUfUfuUfaAfL96 AS1729 1839 uUfaAfaaaAfuCfaagUfuAfaAfgUfgsGfsa
D1730 S1730 748 AfcUfuUfaAfcUfUfGfaUfuuuUfuAfaAfL96 AS1730 1840 uUfuAfaAfAfAfaUfcaaGfuUfaAfaGfusGfsg
D1731 S1731 749 AfcUfu UfaAfcUf UfGfaUf u UfUf Ufu AfaAf L9 6 AS1731 1841 uUfuAfaaaAfaUfcaaGfuUfaAfaGfusGfsg
D1732 S1732 750 CfuUfuAfaCfuUfGfAfuUfuuuUfaAfaUfL96 AS1732 1842 aüfuUfaAfAfAfaAfucaAfgUfuAfaAfgsUfsg
D1733 S1733 751 CfuUfuAfaCfuUfGfAfuUfuUfUfUfaAfaUfL96 AS1733 1843 a U f uUfaaa Afa AfucaAfgUf u Afa AfgsUfsg
D1734 S1734 752 UfuUfaAfcUfuGfAfUfuUfuuuAfaAfuUfL96 AS1734 1844 aAfuUfuAfAfAfaAfaucAfaGfuUfaAfasGfsu
D1735 S1735 753 UfuUfaAfcUfuGfAfUfuUfuUfUfAfaAfuUfL96 AS1735 1845 aAfuUfuaaAfaAfaucAfaGfuUfaAfasGfsu
D1736 S1736 754 Uf uAfaCfu UfgAfUfUfuUfu ua AfaUf uCf L96 AS1736 1846 gAfaUfuUfAfAfaAfaauCfaAfgUfuAfasAfsg
D1737 S1737 755 Uf UAfaCfu UfgAfUfUfuUfu UfAfAfaUf uCf L9 6 AS1737 1847 gAfa Uf uua AfaAf aa uCfaAfgUfu AfasAfsg
D1738 S1738 756 UfaAfcUfuGfaUfUfUfuUfuaaAfuUfcCfL96 AS1738 1848 gGfaAfuUfUfAfa Afa aa UfcAf aGfu UfasAfsa
D1739 S1739 757 UfaAfcUfuGfaUfUfUf uUfu AfAfAfu U fcCfL96 AS1739 1849 gGfaAfuuuAfaAfaaaUfcAfaGfuUfasAfsa
D1740 S1740 758 AfaCfuUfgAfuUfUfUftiüfaaaUfuCfcCfL96 AS1740 1850 gGfgAfaUfUfUfaAfaaaAfuCfaAfgUfusAfsa
D1741 S1741 759 AfaCfuUfgAfuUfUfUfuUfaAfAfUfuCfcCfL96 AS1741 1851 gGfgAfauuUfaAfaaaAfuCfaAfgUfusAfsa
D1742 S1742 760 AfcUfuGfaUfuUfUfUfuAfaauUfcCfcUfL96 AS1742 1852 aGfgGfaAfUfUfuAfaaaAfaUfcAfaGfusUfsa
D1743 S1743 761 AfcUfuGfaUfuUfUfUfuAfaAfUfUfcCfcUfL96 AS1743 1853 aGfgGfaauUfuAfaaaAfaUfcAfaGfusUfsa
D1744 S1744 762 CfuUfgAfuUfuUfUfUfaAfauuCfcCfuUfl96 AS1744 1854 aAfgGfgAfAfUfuUfaaaAfaAfuCfaAfgsUfsu
D1745 S1745 763 CfuUfgAfuUfuUfUfUfaAfaUfUfCfcCfuUfL96 AS1745 1855 aAfgGfgaaUfuUfaaaAfaAfuCfaAfgsUfsu
D1746 S1746 764 UfuGfaUfuUfuUfUfAfaAfuucCfcUfuAfL96 AS1746 1856 uAfaGfgGfAfAfuUfuaaAfaAfaUfcAfasGfsu
D1747 S1747 765 UfuGfaUfuUfuUfUfAfaAfuUfCfCfcUfuAfL96 AS1747 1857 uAfaGfggaAfuUfuaaAfaAfaUfcAfasGfsu
D1748 51748 766 UfgAfuUfuUfuUfAfAfaUfuccCfuUfaUfL96 AS1748 1858 a U fa AfgGfGf Afa Uf uu a Afa Afa AfuCfasAfsg
D1749 51749 767 UfgAfuUfuUfuUfAfAfaUfuCfCfCfuUfaUft96 AS1749 1859 aUfaAfgggAfaUfuuaAfaAfaAfuCfasAfsg
122
D1750 51750 768 GfaUfuUfuUfuAfAfAfuUfcccUfuAfuUfL96 AS1750 1860 aAfuAfaGfGfGfaAfuuuAfaAfaAfaUfcsAfsa
01751 S1751 769 GfaUfuUfuUfuAfAfAfu UfcCfCf Ufu Afu Uf L96 AS1751 1861 aAfuAfaggGfaAfuu uAfa Afa Afa UfcsAfsa
D1752 S1752 770 AfuUfuUfuUfaAfAfUfuCfccuüfaUfuGfL96 AS1752 1862 cAfaUfaAfGfGfgAfauuUfaAfaAfaAfusCfsa
D1753 S1753 771 AfuUf uUfuUfaAfAf Ufu CfcCfUfUfa UfuGfL96 AS1753 1863 cAfa UfaagGfgAfau uUfa AfaAfaAf usCfsa
D1754 S1754 772 UfuUfuUfuAfaAfUfUfcCfcuuAfuUfgUfL96 AS1754 1864 aCfaAfuAfAfGfgGfaauUfuAfaAfaAfasUfsc
D1755 S1755 773 UfuUf uUfii Afa AfUfUfcCfcUfUfAfu UfgUfL9 6 AS1755 1865 aCfaAfuaaGfgGfaauUfuAfaAfaAfasUfsc
D1756 S1756 774 UfuUfuUfaAfaüfUfCfcCfuuaUfuGfuCfL96 AS1756 1866 gAfcAfa UfAfAfgGfgaa UfuUfa Afa AfasAf su
D1757 S1757 775 UfuUfuUfaAfaUfUfCfcCfuüfAfUfuGfuCfL96 AS1757 1867 gAfcAfaua AfgGfgaaUfu Ufa AfaAfasAfsu
D1758 S1758 776 UfuUfuAfaAfuüfCfCfcUfuauUfgUfcCfL96 AS1758 1868 gGfaCfaAfUfAfaGfggaAfuUfuAfaAfasAfsa
D1759 S1759 777 UfuUfuAfaAfuUfCfCfcUfuAfUfUfgUfcCfL96 AS1759 1869 gGfaCfaau AfaGfgga Afu Ufu AfaAfasAfsa
D1760 S1760 778 UfuUfaAfaUfuCfCfCfuUfauuGfuCfcCfL96 AS1760 1870 gGfgAfcAfAfUfaAfgggAfaUfu UfaAfasAf sa
D1761 S1761 779 UfuUfaAfaUfuCfCfCfuUfaUfUfGfuCfcCfL96 AS1761 1871 gGfgAfcaaUfaAfgggAfaUfuUfaAfasAfsa
D1762 S1762 780 Ufu Afa Afu UfcCfCf Ufu Afu ugUfcCfcUf L96 AS1762 1872 aGfgGfaCfAfAfuAfaggGfaAfuUfuAfasAfsa
D1763 S1763 781 Ufu Afa Afu UfcCfCf Ufu Afu UfGfUfcCfcUfLSG AS1763 1873 aGfgGfacaAfuAfaggGfaAfuUfuAfasAfsa
D1764 S1764 782 Ufa Afa UfuCfcCfUfUfaUf ugu CfcCfuUfL96 AS1764 1874 aAfgGfgAfCfAfaUfaagGfgAfaUfuUfasAfsa
D1765 S1765 783 UfaAfa UfuCfcCfUfUfaUf uGf Uf CfcCfu UfL96 AS1765 1875 aAfgGfgacAfaUfaagGfgAfaUfuUfasAfsa
DI 766 S1766 784 AfaAfuUfcCfcUfUfAfuUfgucCfcUfuCfL96 AS1766 1876 gAfaGfgGfAfCfaAfuaaGfgGfaAfuUfusAfsa
D1767 S1767 785 Afa AfuUfcCfcUfUfAfu UfgUfCfCf c Ufu CfL96 AS1767 1877 gAfaGfggaCfa Af u aa GfgGfa Af u U fusAfsa
D1768 S1768 786 AfaUfuCfcCfuUfAfUfuGfuccCfuUfcCfL96 AS1768 1878 gGfaAfgGfGfAfcAfauaAfgGfgAfaUfusUfsa
D1769 S1769 787 AfaUfuCfcCfuUfAfUfuGfuCfCfCfuUfcCfL96 AS1769 1879 gGfa AfgggAfcAfaua AfgGfgAfa UfusUfsa
D1770 S1770 788 Afu UfcCfcUfuAf Uf UfgUfcccUf uCf cAfL96 AS1770 1880 uGfgAfaGfGfGfaCfaauAfaGfgGfaAfusUfsu
D1771 S1771 789 Afu UfcCfcUfuAfUf UfgUfcCfCfUfu CfcAfL96 AS1771 1881 uGfgAfaggGfaCfa auAfa GfgGfaAfusUfsu
D1772 S1772 790 UfuCfcCfuUfaUfUfGfuCfccuUfcCfaAfL96 AS1772 1882 uUfgGfaAfGfGfgAfcaaUfaAfgGfgAfasUfsu
D1773 S1773 791 UfuCfcCfuUfaUfUfGfuCfcCfUfUfcCfaAfL96 AS1773 1883 uUfgGfaagGfgAfcaaUfaAfgGfgAfasUfsu
D1774 S1774 792 UfcCfcUfuAfuUfGfUfcCfcuuCfcAfaAfL96 AS1774 1884 uUfuGfgAfAfGfgGfacaAfuAfaGfgGfasAfsu
D177S S1775 793 UfcCfcUfuAfuUfGfUfcCfcUfUfCfcAfaAfL96 AS1775 1885 uUfuGfgaaGfgGfacaAfuAfaGfgGfasAfsu
D1776 S1776 794 CfcCfuUfaUfuGfUfCfcCfuucCfaAfaAfL96 AS1776 1886 uUfuUfgGfAfAfgGfgacAfaUfaAfgGfgsAfsa
123
D1777 S1777 795 CfcCfuUfaUfuGfUfCfcCfuUfCfCfaAfaAfL96 AS1777 1887 uUfuUfggaAfgGfgacAfaUfaAfgGfgsAfsa
D1778 S1778 796 CfcUfuAfuUfgUfCfCfcUfuccAfaAfaAfl96 AS1778 1888 uUfu Ufu GfGfAfaGfgga Cfa AfuAfaGfgsGfsa
D1779 S1779 797 CfcUfuAfuUfgUfCfCfcUfuCfCfAfaAfaAfL96 AS1779 1889 uUfuUfuggAfaGfggaCfaAfuAfaGfgsGfsa
D1780 S1780 798 CfuUfaUfuGfuCfCfCfuUfccaAfaAfaAfL96 AS1780 1890 uUfuUfuUfGfGfaAfgggAfcAfaUfaAfgsGfsg
D1781 S1781 799 CfuUfaUfuGfuCfCfCfuUfcCfAfAfaAfaAfL96 AS1781 1891 uUfuüfuugGfaAfgggAfcAfaUfaAfgsGfsg
D1782 S1782 800 UfuAfuUfgUfcCfCfUfuCfcaaAfaAfaAfL96 AS1782 1892 uUfuUfuUfUfGfgAfaggGfaCfaAfuAfasGfsg
D1783 S1783 801 UfuAfuUfgUfcCfCfUfuCfcAfAfAfaAfaAfL96 AS1783 1893 uUfu Ufu uuGfgAfaggGfaCfaAfu AfasGfsg
D1784 S1784 802 UfaUfuGfuCfcCfUfUfcCfaaaAfaAfaAfL96 AS1784 1894 uUfuUfu Uf Uf UfgGfaagGfgAfcAfa UfasAfsg
D1785 S1785 803 UfaUfuGfuCfcCfUfUfcCfaAfAfAfaAfaAfL96 AS1785 1895 uUfuUfuuuUfgGfaagGfgAfcAfaUfasAfsg
D1786 S1786 804 AfuUfgUfcCfcUfUfCfcAfaaaAfaAfaGfL96 AS1786 1896 cUfuüfuUfUfUfuGfgaaGfgGfaCfaAfusAfsa
D1787 S1787 805 AfuUfgUfcCfcUfUfCfcAfaAfAfAfaAfaGfL96 AS1787 1897 cUf uUfu uu Uf uGfga aGfgGfaCfa Afus Afsa
D1788 S1788 806 UfuGfuCfcCfuUfCfCfaAfaaaAfaAfgAfL96 AS1788 1898 uCfuUfuUfUfUfuUfggaAfgGfgAfcAfasUfsa
D1789 S1789 807 UfuGfu CfcCfu UfCf Cfa Afa AfAfAfaAfgAf L96 AS1789 1899 uCfuUfuuuUfuUfggaAfgGfgAfcAfasUfsa
D1790 S1790 808 UfgUfcCfcUfuCfCfAfaAfaaaAfaGfaGfL96 AS1790 1900 cUfcUfu Uf UfUfu UfuggAfaGfgGfa CfasAfsu
D1791 S1791 809 UfgUfcCfcUfuCfCfAfaAfaAfAfAfaGfaGfL96 AS1791 1901 cUfcUfuuuUfuUfuggAfaGfgGfaCfasAfsu
01792 S1792 810 GfuCfcCfuUfcCfAfAfaAfaaaAfgAfgAfL96 AS1792 1902 uCfuCfuUfUfUfuUfuugGfaAfgGfgAfcsAfsa
D1793 S1793 811 GfuCfcCfuUfcCfAfAfaAfaAfAfAfgAfgAfL96 AS1793 1903 uCfuCfuuuUfuUfuugGfaAfgGfgAfcsAfsa
D1794 S1794 812 UfcCfcUfuCfcAfAfAfaAfaaaGfaGfaAfL96 AS1794 1904 uUfcUfcUfUfUfuUfuuuGfgAfaGfgGfasCfsa
D1795 S1795 813 UfcCfcUfu CfcAfAfAfa Afa AfAfGfaGfa AfL96 AS1795 1905 uUfcUfcuuUfuUfuuuGfgAfaGfgGfasCfsa
D1796 S1796 814 CfcCfuUfcCfaAfAfAfaAfaagAfgAfaUfL96 AS1796 1906 aUfuCfuCfUfUfuUfuuuUfgGfaAfgGfgsAfsc
D1797 S1797 815 CfcCfuUfcCfaAfAfAfaAfaAfGfAfgAfaUfL96 AS1797 1907 aUfuCfucuUfuUfuuuUfgGfaAfgGfgsAfsc
D1798 S1798 816 CfcüfuCfcAfaAfAfAfaAfagaGfaAfuCfL96 AS1798 1908 gAfuUfcUfCfUfuUfuuuUfuGfgAfaGfgsGfsa
D1799 S1799 817 CfcUfu CfcAfaAfAfAfaAfaGfAfGfa Afu CfL96 AS1799 1909 gAfuUfcucUfuUfuuuUfuGfgAfaGfgsGfsa
D1800 51800 818 CfuUfcCfaAfaAfAfAfaAfgagAfaUfcAfL96 AS 1800 1910 uGfaUfuCfUfCfuUfuuuUfuUfgGfaAfgsGfsg
D1801 51801 819 CfuUfcCfaAfaAfAfAfaAfgAfGfAfaUfcAfL96 AS1801 1911 uGfaUfucuCfuUfuuuUfuUfgGfaAfgsGfsg
D1802 51802 820 UfuCfcAfaAfaAfAfAfaGfagaAfuCfaAfL96 AS1802 1912 uUfgAfuUfCfUfcUfuuuUfuUfuGfgAfasGfsg
D1803 51803 821 UfuCfcAfaAfaAfAfAfaGfaGfAfAfuCfaAfL96 AS1803 1913 uUfgAfuucUfcUfuuuUfuUfuGfgAfasGfsg
124
D1804 51804 822 UfcCfaAfaAfaAfAfAfgAfgaaUfcAfaAfL96 AS1804 1914 uUfuGfaUfUfCfuCfuu uUfu UfuUfgGfa sAfsg
D1805 S1805 823 UfcCfaAfaAfaAfAfAfgAfgAfAfUfcAfaAfL96 AS1805 1915 uUfuGfauuCfuCfu uu Uf uUfu UfgGfasAfsg
D1806 $1806 824 CfcAfaAfaAfaAfAfGfaGfaauCfaAfaAfL96 AS1806 1916 u Ufu UfgAf UfUfcUfcuu UfuUfu UfuGfgsAfsa
D1807 S1807 825 CfcAfaAfaAfaAfAfGfaGfaAfUfCfaAfaAfL96 AS 1807 1917 uUfuUfgauüfcUfcuuUfuUfuUfuGfgsAfsa
01808 S1808 826 CfaAfaAfaAfaAfGfAfgAfaucAfaAfaUfL96 AS1808 1918 aUfuUfuGfAfUfu Cfucu UfuUfu UfuUfgsGfsa
01809 $1809 827 CfaAfaAfaAfaAfGfAfgAfaUfCfAfaAfaUfL96 AS1809 1919 aUfuUfugaüfuCfucuüfuUfu UfuUfgsGfsa
01810 S1810 828 AfaAfaAfaAfaGfAfGfaAfucaAfaAfuüfL96 AS1810 1920 aAfuUfuUfGfAfuüfcucUfuUfuUfuUfusGfsg
01811 $1811 829 AfaAfaAfaAfaGfAfGfaAfuCfAfAfaAfuüfL96 AS1811 1921 aAfuUfuugAfuUfcucüfuUfuUfuUfusGfsg
D1812 S1812 830 AfaAfaAfaAfgAfGfAfaüfcaaAfaUfuUfL96 AS1812 1922 aAfaUfuUfUfGfaUfucuCfuUfuUfuUfusUfsg
D1813 $1813 831 AfaAfa AfaAfgAfGfAfaUfcAfAfAfaUfuUfL96 AS1813 1923 aAfaUfuuuGfaUfucuCfuUfuUfuUfusüfsg
D1814 S1814 832 Afa AfaAfaGfaGfAfAfuCfaaa Afu Ufu Uf L96 AS1814 1924 aAfaAfuUfUfUfgAfuucUfcUfuUfuüfusUfsu
01815 $1815 833 AfaAfa AfaGfaGfAfAfu Cfa AfAfAfu UfuUf L96 AS1815 1925 aAfaAfuuuUfgAfuucUfcüfuUfu UfusUfsu
D1816 S1816 834 AfaAfaAfgAfgAfAfUfcAfaaaUfuUfuAfL96 AS1816 1926 uAfaAfaUfUfüfuGfauuCfuCfu Ufu UfusUfsu
D1817 S1817 835 AfaAfaAfgAfgAfAfUfcAfaAfAfUfuUfuAfL96 AS1817 1927 uAfaAfauuUfuGfauuCfuCfuUfuUfusUfsu
01818 51818 836 Afa AfaGfaGfaAfüfCfa Afaauüfu UfaCf L96 AS1818 1928 gUfaAfa AfUf UfuUfgau UfcUfcUfu UfusUfsu
01819 S1819 837 AfaAfaGfaGfaAfUfCfaAfaAfUfUfuUfaCfL96 AS1819 1929 güfaAfaauUfuUfgauUfcUfcUfuUfusUfsu
D1820 S1820 838 AfaAfgAfgAfaUfCfAfaAfauuUfuAfcAfL96 AS1820 1930 uGfu AfaAfAfUfu UfugaUfuCf u Cfu UfusUfsu
01821 S1821 839 AfaAfgAfgAfaUfCfAfaAfaUfUfUfuAfcAfL96 AS1821 1931 uGfuAfaaaUfuUfugaUfuCfuCfuUfusUfsu
D1822 S1822 840 AfaGfaGfaAfuCfAfAfaAfuuuUfaCfaAfL96 AS1822 1932 uUfgUfaAfAfAfuüfuugAfuUfcUfcUfusUfsu
D1823 S1823 841 AfaGfaGfaAfuCfAfAfaAfuUfUfUfaCfaAfL96 AS 1823 1933 uUfgUfaaaAfuüfuugAfuUfcUfcUfusUfsu
D1824 S1824 842 AfgAfgAfa UfcAfAfAfaUfu uuAf cAfaAf L96 AS1824 1934 uUfuGfuAfAfAfaüfuuuGfaUfuCfuCfusUfsu
D1825 $1825 843 AfgAfgAfa UfcAfAfAfaüfu Uf UfAfcAfaAfL96 AS1825 1935 uüfuGfuaaAfaUfuuuGfaUfuCfuCfusUfsu
D1826 S1826 844 GfaGfaAfuCfaAfAfAfuUfuuaCfaAfaGfL96 AS1826 1936 cUf U UfgUfAfAfaAf u uu UfgAf uUfcüfcsüfsu
D1827 $1827 845 GfaGfaAfuCfaAfAfAfuUfuUfAfCfaAfaGfL96 AS1827 1937 cUfuUfguaAfaAfuuuUfgAfuüfcUfcsUfsu
D1828 S1828 846 AfgAfaUfcAfaAfAfUfuUfuacAfaAfgAfL96 AS1828 1938 uCfuüfuGfUfAfaAfauuUfuGfaUfuCfusCfsu
D1829 $1829 847 AfgAfaUfcAfaAfAfUfuUfuAfCfAfaAfgAfL96 AS1829 1939 uCfuüfugu AfaAfa u uUfuGfa UfuCfusCfsu
D1830 S1830 848 GfaAfuCfaAfaAfUfUfuUfacaAfaGfaAfL96 AS1830 1940 uUfcUfuUfGfUfaAfaauUf uUfgAfu U fcsUfsc
125
D1831 S1831 849 GfaAfuCfaAfaAfUfüfuUfaCfAfAfaGfaAfL96 AS1831 1941 uUfcUfuugUfaAfaauUfuUfgAfuUfcsUfsc
D1832 S1832 850 AfaUfcAfaAfaUfUfUfuAfcaaAfgAfaUfL96 AS1832 1942 aUfu CfuUfUfGfu Afaaa Ufu UfuGfa UfusCfsu
D1833 S1833 851 AfaUfcAfa Afa UfUfUfuAfcAfAfAfgAfaUf L96 AS1833 1943 aUfuCfuuuGfuAfaaaUfuUfuGfaUfusCfsu
D1834 S1834 852 AfuCfaAfaAfuUfUfUfaCfaaaGfaAfuCfL96 AS1834 1944 gAfu UfcUfUf UfgUfaaa AfuUfu UfgAfusUfsc
D1835 S1835 853 AfuCfaAfaAfuUfUfUfaCfaAfAfGfaAfuCfLSÔ AS1835 1945 gAfuUfcuuUfgUfaaaAfuUfuUfgAfusUfsc
D1836 S1836 854 UfcAfaAfaUfuUfUfAfcAfaagAfaUfcAfL96 AS1836 1946 uGfaUfuCfUfUfuGfuaaAfaUfuUfuGfasUfsu
D1837 51837 855 UfcAfa Afa UfuUfUfAfcAfa AfGfAfa UfcAfL96 AS1837 1947 uGfaUfucuUfuGfuaaAfaUfuUfuGfasUfsu
D1838 S1838 856 CfaAfaAfuUfuUfAfCfaAfagaAfuCfaAfL96 AS1838 1948 uUfgAfuUfCfUfuUfguaAfaAfuUfuUfgsAfsu
D1839 S1839 857 Cfa Afa Afu UfuUfAfCfa AfaGfAfAfu Cfa AfL96 AS 1839 1949 uUfgAfuucUfu Ufgua AfaAf uUfu UfgsAfsu
D1840 51840 858 Afa Afa UfuUfuAfCfAfa Afgaa UfcAfa AfL96 AS1840 1950 uUfuGfaUfUfCfuUfuguAfaAfaUfuUfusGfsa
01841 51841 859 AfaAfaUfuUfuAfCfAfaAfgAfAfUfcAfaAfL96 AS1841 1951 uUfuGfauuCfuUfuguAfaAfaUfuUfusGfsa
01842 51842 860 AfaAfuUfuUfaCfAfAfaGfaauCfaAfaGfL96 AS1842 1952 cUfuUfgAfUfUfcUfuugUfaAfaAfuUfusUfsg
D1843 S1843 861 AfaAfuUfuUfaCfAfAfaGfaAfUfCfaAfaGfL96 AS1843 1953 cUfuUfgauUfcUfuugUfaAfaAfuUfusUfsg
D1844 51844 862 AfaUfuUfuAfcAfAfAfgAfaucAfaAfgGfL96 AS1844 1954 cCfuUfuGfAfUfuCfuuuGfuAfaAfaUfusUfsu
D1845 S1845 863 AfaUfuUfuAfcAfAfAfgAfaUfCfAfaAfgGfL96 AS1845 1955 cCfuUfugaUfu Cfu uuGfu AfaAfa UfusUfsu
D1846 S1846 864 AfuUfuUfa Cfa AfAfGfa Afuca Afa GfgAfL96 AS1846 1956 uCfcUfu UfGfAfu UfcuuUfgUfaAfaAfusUfsu
D1847 51847 865 Afu Ufu Ufa CfaAfAfGfa AfuCfAfAfaGfgAf L96 AS1847 1957 uCfcUfuugAfuUfcuuUfgUfaAfaAfusUfsu
D1848 51848 866 UfuUfuAfcAfaAfGfAfaUfcaaAfgGfaAfL96 AS1848 1958 uUfcCfu UfUfGfaUfucu UfuGf uAfa AfasUfsu
D1849 S1849 867 UfuUfuAfcAfaAfGfAfaUfcAfAfAfgGfaAfL96 AS1849 1959 uUfcCfu uu Gfa Ufucu UfuGfu Afa AfasUfsu
D1850 S1850 868 UfuUfaCfaAfaGfAfAfuCfaaaGfgAfaUfL96 AS1850 1960 aUfuCfcUfUfUfgAfuucUfuUfgUfaAfasAfsu
D1851 51851 869 Ufu UfaCfa AfaGfAfAf uCfa AfAfGfgAfaUfL9 6 AS1851 1961 aUfuCfcuuUfgAfuucUfuUfgUfaAfasAfsu
D18S2 51852 870 UfuAfcAfaAfgAfAfUfcAfaagGfaAfuUfL96 AS1852 1962 aAfuUfcCfUfUfuGfauuCfuUfuGfuAfasAfsa
D1853 51853 871 UfuAfcAfaAfgAfAfUfcAfaAfGfGfaAfuüfL96 AS1853 1963 aAfu Ufccu UfuGfa uuCfuUfuGfu AfasAfsa
D1854 S1854 872 UfaCfaAfaGfaAfUfCfaAfaggAfaUfuCfL96 AS1854 1964 gAfa UfuCf CfUfu UfgauUfcUfuUfgUfasAfsa
D1855 S1855 873 UfaCfaAfaGfaAfUfCfaAfaGfGfAfaUfuCfL96 AS1855 1965 gAfa Ufuccüf uUfgau UfcUfuUfgUfasAfsa
D1856 51856 874 AfcAfaAfgAfaUfCfAfaAfggaAfuUfcUfL96 AS1856 1966 aGfa Af uUfCfCfu Ufuga UfuCfu U f uGfusAfsa
01857 S1857 875 AfcAfaAfgAfaUfCfAfaAfgGfAfAfuUfcUfL96 AS1857 1967 aGfaAfuucCfuUfugaUfuCfuUfuGfusAfsa
126
D1858 S1858 876 CfaAfaGfaAfuCfAfAfaGfgaaUfuCfuAfL96 AS1858 1968 uAfgAfaUfUfCfcUfuugAfuUfcUfuUfgsUfsa
D18S9 S1859 877 CfaAfaGfaAfuCfAfAfaGfgAfAfUfuCfuAfL96 AS1859 1969 uAfgAfauuCfcUf uugAfu UfcUfu U fgsUfsa
D1860 S1860 878 Afa AfgAfa UfcAfAfAfgGfaau UfcUfaGf L96 AS1860 1970 cUfaGfaAfUfUfcCfuuuGfaUfuCfuUfusGfsu
D1861 S1861 879 Afa AfgAfa UfcAfAfAfgGfaAfüf UfcUfa GfL96 AS1861 1971 cUfaGfaauUfcCfuuuGfaUfuCfuUfusGfsu
D1862 S1862 880 AfaGfaAfuCfaAfAfGfgAfauuCfuAfgAfL96 AS1862 1972 uCfuAfgAfAfUfuCfcuu UfgAfu UfcUf usUfsg
D1863 S1863 881 AfaGfaAfuCfaAfAfGfgAfaUfUfCfuAfgAfL96 AS1863 1973 uCfuAfgaaUfuCfcuuUfgAfuUfcUfusUfsg
D1864 S1864 882 AfgAfa UfcAfaAfGfGfaAfuucUfaGfaAfL96 AS1864 1974 u UfcUfaGfAfAfuUfccu UfuGfaUfuCfusUfsu
D1865 S1865 883 AfgAfa UfcAfaAfGfGfaAfuUfCfUfaGfaAfL96 AS1865 1975 u UfcUfaga Afu Ufccu UfuGfa UfuCf usUfsu
01866 S1866 884 GfaAfuCfaAfaGfGfAfaUfucuAfgAfaAfL96 AS1866 1976 u UfuCfuAfGfAfaUfuccUfu UfgAfuUfcsUfsu
D1867 S1867 885 GfaAfuCfaAfaGfGfAfaUfuCfUfAfgAfaAfL96 AS1867 1977 uUfuCfuagAfaUfuccUfuUfgAfuUfcsUfsu
01868 S1868 886 AfaUfcAfaAfgGfAfAfuUfcuaGfaAfaGfL96 AS1868 1978 cUfu UfcUfAfGfa Afu ucCfu UfuGfa UfusCfsu
D1869 S1869 887 AfaUfcAfaAfgGfAfAfuUfcUfAfGfaAfaGfL96 AS1869 1979 cUfuüfcuaGfaAfuucCfuUfuGfaUfusCfsu
D1870 S1870 888 AfuCfaAfaGfgAfAfUfuCfuagAfaAfgUfL96 AS1870 1980 aCfuUfuCfUfAfgAfauuCfcUfuUfgAfusUfsc
D1871 S1871 889 AfuCfaAfaGfgAfAfUfuCfuAfGfAfaAfgUfL96 AS1871 1981 aCfuUfucuAfgAfauuCfcUfuUfgAfusUfsc
D1872 S1872 890 UfcAfaAfgGfaAfUfUfcUfagaAfaGfuAfL96 AS1872 1982 uAfcUfuUfCfUfaGfaauUfcCfuUfuGfasUfsu
D1873 S1873 891 UfcAfaAfgGfaAfUfUfcUfaGfAfAfaGfuAfL96 AS1873 1983 uAfcUfuucUfaGfaauUfcCfuUfuGfasUfsu
D1874 S1874 892 Cfa AfaGfgAfa Uf UfCf u AfgaaAfgUfaUfL96 AS1874 1984 aUfaCfuUfUfCfuAfgaaUfuCfcUfuUfgsAfsu
D1875 S1875 893 Cfa AfaGfgAfaUf UfCf u AfgAfAfAfgU fa UfL96 AS1875 1985 aUfaCfuuuCfuAfgaaUfuCfcUfuUfgsAfsu
01876 S1876 894 AfaAfgGfaAfuUfCfUfaGfaaaGfuAfuCfL96 AS1876 1986 gAfuAfcUfUfUfcUfagaAfuUfcCfuUfusGfsa
D1877 S1877 895 AfaAfgGfaAfuUfCfUfaGfaAfAfGfuAfuCfL96 AS1877 1987 gAfuAfcu uUfcUfagaAfu UfcCfu UfusGfsa
D1878 S1878 896 AfaGfgAfa UfuCfUfAfgAfaagUfaUfcUfL96 AS1878 1988 aGfaUfaCfUfUfuCfuagAfaUfuCfcUfusUfsg
D1879 S1879 897 AfaGfgAfaUfuCfUfAfgAfaAfGfUfaUfcUfL96 AS1879 1989 aGfaUfacuUfuCfuagAfaUfuCfcUfusUfsg
D1880 S1880 898 AfgGfaAfuUfcUfAfGfaAfaguAfuCfuGfL96 AS1880 1990 cAfgAfuAfCfUfuUfcuaGfaAfuUfcCfusUfsu
D1881 S1881 899 AfgGfaAfuUfcUfAfGfaAfaGfUfAfuCfuGfL96 AS1881 1991 cAfgAfuacUfu UfcuaGfa Afu UfcCfusUfsu
D1882 S1882 900 GfgAfa UfuCfu AfGfAfa AfguaUfcUfgGfLS 6 AS1882 1992 cCfaGfaUfAf Cfu Ufucu AfgAfa Uf uCfcsUfsu
D1883 S1883 901 GfgAfaUfuCfuAfGfAfaAfgUfAfUfcUfgGfL96 AS1883 1993 cCfaGfaua CfuUfucu AfgAfaUfu CfcsUfsu
D1884 S1884 902 Gf a Af uUfcUfaGfAfAfa Gf uau Cf uGfgGf L96 AS1884 1994 cCfcAfgAfUfAfcUfuucUfaGfaAfuUfcsCfsu
127
D1885 S1885 903 GfaAfuUfcUfaGfAfAfaGfuAfUfCfuGfgGfL96 AS1885 1995 cCfcAfgauAfcUfuucUfaGfaAfuUfcsCfsu
D1886 51886 904 AfaUfuCfuAfgAfAfAfgUfaucUfgGfgCfL96 AS1886 1996 gCfcCfaGfAfUfaCfuuuCfuAfgAfaUfusCfsc
D1887 51887 905 AfaUfuCfuAfgAfAfAfgUfaUfCfUfgGfgCfL96 AS1887 1997 gCfcCfagaUfaCfuuuCfuAfgAfaUfusCfsc
D1888 S1888 906 Afu UfcUfaGfaAfAfGfu AfucuGfgGfcAfL96 AS 1888 1998 uGfcCfcAfGfAfu Afcu uUfcUfaGfa AfusUfsc
D1889 51889 907 Afu UfcüfaGfaAfAfGf uAfu CfUfGfgGfcAf 196 AS1889 1999 uGfcCfcagAfuAfcuuUfcUfaGfa AfusUfsc
D1890 51890 908 Ufu Cfu AfgAfaAfGfUfa UfcugGfgCfaGfL9 6 AS 1890 2000 cUfgCfcCfAfGfaUfacuUfuCfuAfgAfasUfsu
D1891 S1891 909 Ufu CfuAfgAfaAfGf Ufa UfcUfGfGfgCfaGfL96 AS 1891 2001 cUfgCfccaGfaUfacuUfuCfuAfgAfasUfsu
D1892 S1892 910 UfcUfaGfaAfaGfüfAfuCfuggGfcAfgAfL96 AS1892 2002 uCfuGfcCfCfAfgAfuacUfuUfcUfaGfasAfsu
D1893 S1893 911 UfcUfaGfaAfaGf UfAfu CfuGfGfGfcAfgAf L96 AS1893 2003 uCfuGfcccAfgAfuacUfu UfcUfaGfasAfsu
D1894 S1894 912 CfuAfgAfaAfgUfAfUfcUfgggCfaGfaAfL96 AS1894 2004 uUfcUfgCfCfCfaGfauaCfuUfuCfuAfgsAfsa
D1895 S1895 913 CfuAfgAfaAfgUfAfUfcUfgGfGfCfaGfaAfL96 AS 1895 2005 uUfcUfgccCfaGfauaCfuUfuCfuAfgsAfsa
D1896 S1896 914 UfaGfaAfaGfuAfUfCfuGfggcAfgAfaCfL96 AS1896 2006 gUfu CfuGfCf CfcAfga u AfcUfuUfcU fa sGfsa
D1897 S1897 915 UfaGfaAfaGfuAfUfCfuGfgGfCfAfgAfaCfL96 AS1897 2007 gUfu CfugcCfcAfga u AfcUfuUfcUfa sGfsa
D1898 S1898 916 AfgAfaAfgUfaUfCfUfgGfgcaGfaAfcGfL96 AS1898 2008 cGf uUfcUfGf CfcCfaga Ufa CfuUfu CfusAfsg
D1899 S1899 917 AfgAfaAfgUfaUfCfUfgGfgCfAfGfaAfcGfL96 AS1899 2009 cGf uUfcugCfcCfaga UfaCfu Ufu CfusAfsg
D1900 S1900 918 GfaAfaGfuAfuCfUfGfgGfcagAfaCfgCfL96 AS1900 2010 gCfgUfuCfUfGfcCfcagAfuAfcUfuUfcsUfsa
D1901 S1901 919 GfaAfaGfuAfuCfUfGfgGfcAfGfAfaCfgCfL96 AS1901 2011 gCfgUfucuGfcCfcagAfuAfcUfuUfcsUfsa
D1902 S1902 920 AfaAfgUfa UfcUfGfGfgCfaga AfcGfcUf L96 A51902 2012 aGfcGfuUfCfUfgCfccaGfaUfaCfuUfusCfsu
D1903 51903 921 AfaAfgUfaUfcUfGfGfgCfaGfAfAfcGfcUfLS6 AS1903 2013 aGfcGfuucUfgCfccaGfaUfaCfuUfusCfsu
D1904 S1904 922 AfaGfuAfuCfuGfGfGfcAfga aCfgCfuAfL9 6 AS1904 2014 uAfgCfgUfUfCfuGfcccAfgAfuAfcUfusUfsc
D1905 S1905 923 AfaGfuAfuCfuGfGfGfcAfgAfAfCfgCfuAfL96 AS1905 2015 uAfgCfguu Cfu GfcccAfgAfuAfcUfusUfsc
D1906 51906 924 AfgUfaUfcUfgGfGfCfaGfaacGfcUfaGfL96 AS1906 2016 cUfaGfcGfUfUfcUfgccCfaGfaUfaCfusUfsu
D1907 S1907 925 AfgUfaUfcUfgGfGfCfaGfaAfCfGfcUfaGfL96 AS1907 2017 cUfaGfcguUfcUfgccCfaGfaUfaCfusUfsu
D1908 S1908 926 GfuAfuCfuGfgGfCfAfgAfacgCfuAfgGfL96 AS1908 2018 cCfuAfgCfGfUfuCfugcCfcAfgAfuAfcsUfsu
D1909 S1909 927 GfuAfuCfuGfgGfCfAfgAfaCfGfCfuAfgGfL96 AS 1909 2019 cCfuAfgcgUfuCfugcCfcAfgAfuAfcsUfsu
D1910 S1910 928 UfaUfcUfgGfgCfAfGfaAfcgcUfaGfgAfL96 AS1910 2020 uCfcUfaGfCfGfuUfcugCfcCfaGfaUfasCfsu
D1911 51911 929 UfaUfcUfgGfgCfAfGfaAfcGfCfUfaGfgAfL96 AS1911 2021 u CfcUfagcGfuUfcugCfcCfaGfaUfasCf su
128
D1912 S1912 930 AfuCfu GfgGfcAfGfAfa CfgcuAfgGfaGfL96 AS1912 2022 cUfcCfuAfGfCfgUfucuGfcCfcAfgAfusAfsc
D1913 S1913 931 AfuCfuGfgGfcAfGfAfaCfgCfUfAfgGfaGfL96 AS1913 2023 cUfcCfuagCfgUfucuGfcCfcAfgAfusAfsc
D1914 S1914 932 UfcUfgGfgCfaGfAfAfcGfcuaGfgAfgAfL96 AS1914 2024 uCfuCfcUfAfGfcGfuucUfgCfcCfaGfasUfsa
D1915 51915 933 UfcUfgGfgCfaGfAfAfcGfcüfAfGfgAfgAfL96 AS1915 2025 uCfuCfcuaGfcGfuucUfgCfcCfaGfasUfsa
D1916 51916 934 CfuGfgGfcAfgAfAfCfgCfuagGfaGfaGfL96 AS 1916 2026 cUfcUfcCfUfAfgCfguuCfuGfcCfcAfgsAfsu
D1917 S1917 935 CfuGfgGfcAfgAfAfCfgCfuAfGfGfaGfaGfL96 AS 1917 2027 cUfcUfccuAfgCfguuCfuGfcCfcAfgsAfsu
D1918 51918 936 UfgGfgCfaGfaAfCfGfcUfaggAfgAfgAfL96 AS 1918 2028 uCfuCfuCfCfUfaGfcguUfcUfgCfcCfasGfsa
D1919 S1919 937 UfgGfgCfaGfaAfCfGfcUfaGfGfAfgAfgAfL96 AS 1919 2029 uCfuCfuccUfaGfcguUfcUfgCfcCfasGfsa
D1920 S1920 938 GfgGfcAfgAfaCfGfCfuAfggaGfaGfaUfL96 AS 1920 2030 aUfcUfcUfCfCfuAfgcgUfuCfuGfcCfcsAfsg
D1921 S1921 939 GfgGfcAfgAfaCfGfCfuAfgGfAfGfaGfaUfL96 AS 1921 2031 aUfcUfcucCfuAfgcgUfuCfuGfcCfcsAfsg
01922 S1922 940 GfgCfaGfaAfcGfCfUfaGfgagAfgAfuCfL96 AS 1922 2032 gAfuCfuCfUfCfcUfagcGfuUfcUfgCfcsCfsa
01923 S1923 941 GfgCfaGfaAfcGfCfUfaGfgAfGfAfgAfuCfL96 AS 1923 2033 gAfuCfucuCfcUfagcGfuUfcUfgCfcsCfsa
01924 51924 942 GfcAfgAfaCfgCfUfAfgGfagaGfaUfcCfL96 AS1924 2034 gGfaUfcUfCfUfcCfuagCfgUfuCfuGfcsCfsc
D1925 S1925 943 GfcAfgAfaCfgCfUfAfgGfaGfAfGfaUfcCfL96 AS1925 2035 gGfaUfcucUfcCfuagCfgUfu Cfu GfcsCfsc
D1926 51926 944 CfaGfaAfcGfcUfAfGfgAfgagAfuCfcAfL96 AS1926 2036 uGfgAfuCfUfCfuCfcuaGfcGfuUfcUfgsCfsc
D1927 S1927 945 CfaGfaAfcGfcUfAfGfgAfgAfGfAfuCfcAfL96 AS1927 2037 uGfgAfucuCfuCfcuaGfcGfuUfcUfgsCfsc
D1928 S1928 946 AfgAfaCfgCfuAfGfGfaGfagaUfcCfaAfL96 AS1928 2038 u UfgGfaUf CfUfcUfccuAfgCfgUfu CfusGfsc
D1929 S1929 947 AfgAfaCfgCfuAfGfGfaGfaGfAfUfcCfaAfL96 AS1929 2039 u UfgGfa ucUfcUfccuAfgCfgUf uCfusGfsc
D1930 S1930 948 GfaAfcGfcU faGfGfAfgAfga uCfcAf a AfL96 AS1930 2040 u UfuGfgAf UfCfuCfuccUfaGfcGfu UfcsUfsg
D1931 S1931 949 GfaAfcGfcUfa GfGfAfgAfgAf UfCfcAfaAfL96 AS1931 2041 u UfuGfgauCfu CfuccUfaGfcGf uUfcsUfsg
D1932 S1932 950 AfaCfgCfuAfgGfAfGfaGfaucCfaAfaUfL96 AS1932 2042 aUfuUfgGfAfUfcUfcucCfuAfgCfgUfusCfsu
D1933 S1933 951 AfaCfgCfuAfgGfAfGfaGfaUfCfCfaAfaUfL96 AS1933 2043 aUfuUfggaUfcUfcucCfuAfgCfgUfusCfsu
D1934 51934 952 AfcGfcUfaGfgAfGfAfgAfuccAfaAfuUfL96 AS 19 34 2044 aAfuUfuGfGfAfuCfucuCfcUfaGfcGfusUfsc
D1935 S1935 953 AfcGfcUfaGfgAfGfAfgAfuCfCfAfaAfuUfL96 AS1935 2045 a Afu UfuggAf uCfucuCfcUfaGfcGfu sUfsc
D1936 51936 954 CfgCfuAfgGfaGfAfGfaUfccaAfaUfuUfL96 AS1936 2046 aAfaUfuUfGfGfaUfcucUfcCfuAfgCfgsUfsu
D1937 S1937 955 CfgCfuAfgGfaGfAfGfaUfcCfAfAfaUfuUfL96 AS1937 2047 aAfaUfuugGfaUfcucUfcCfuAfgCfgsUfsu
D1938 S1938 956 GfcUfaGfgAfgAfGfAfu Cfcaa Afu Uf uCf L96 AS1938 2048 gAfaAfu UfUfGfgAfu cuCfuCfcUfaGfcsGfsu
129
D1939 S1939 957 GfcUfaGfgAfgAfGfAfuCfcAfAfAfuUfuCfl-96 AS 1939 2049 gAfaAfu uuGfgAfu cuCf uCfcUfaGfcsGfsu
D1940 S1940 958 CfuAfgGfaGfaGfAfUfcCfaaaUfuUfcCfL96 AS 19 40 2050 gGfaAfaUfUfUfgGfaucUfcUfcCfuAfgsCfsg
D1941 51941 959 CfuAfgGfaGfaGfAfUfcCfaAfAfUfuUfcCfL96 AS 1941 2051 gGfaAfauuUfgGfaucUfcUfcCfuAfgsCfsg
D1942 S1942 960 UfaGfgAfgAfgAfUfCfcAfaauUfuCfcAfL96 AS 1942 2052 uGfgAfaAfUfUfuGfgauCfuCfuCfcUfasGfsc
D1943 S1943 961 UfaGfgAfgAf gAf UfCfcAfa AfUfUfu CfcAf L96 AS1943 2053 uGfgAfaauUfuGfgauCfuCfuCfcUfasGfsc
D1944 S1944 962 AfgGfaGfaGfa UfCf Cfa Afau uUfcCfaUfL96 AS1944 2054 aUfgGfaAfAfUfuUfggaUfcUfcUfcCfusAfsg
D1945 51945 963 AfgGfaGfaGfaUfCfCfaAfaUfUfUfcCfaUfL96 AS1945 2055 aUfgGfaaaUfuUfggaUfcUfcUfcCfusAfsg
D1946 S1946 964 GfgAfgAfgAfuCfCfAfaAfuuuCfcAfuUfL96 AS 1946 2056 aAfuGfgAfAfAfuUfuggAfuCfuCfuCfcsUfsa
D1947 S1947 965 GfgAfgAfgAfuCfCfAfaAfuUfUfCfcAfuUfL96 AS1947 2057 aAfuGfgaaAfuUfuggAfuCfuCfuCfcsUfsa
D1948 S1948 966 GfaGfaGfaUfcCfAfAfaUfuucCfaUfuGfL96 AS1948 2058 cAfaUfgGfAfAfaUfuugGfaUfcUfcUfcsCfsu
01949 S1949 967 GfaGfaGfaUfcCfAfAfa UfuUfCfCfa UfuGfL96 AS1949 2059 cAfaUfggaAfaUfuugGfaUfcUfcUfcsCfsu
01950 S1950 968 AfgAfgAfuCfcAfAfAfuUfuccAfuUfgUfL96 AS1950 2060 aCfaAfuGfGfAfaAfuuuGfgAfuCfuCfusCfsc
D1951 S1951 969 AfgAfgAfuCfcAfAfAfuUfuCfCfAfuUfgUfL96 AS1951 2061 aCfaAfuggAfaAfuuuGfgAfuCfuCfusCfsc
D1952 51952 970 GfaGfa UfcCfaAfAfUfuUfccaU f uGfuCf L96 AS1952 2062 gAfcAfaUfGfGfaAfauuUfgGfaUfcUfcsUfsc
D1953 S1953 971 GfaGfaUfcCfaAfAfUfuUfcCfAfUfuGfuCfL96 AS1953 2063 gAfcAfaugGfaAfauuUfgGfaUfcUfcsUfsc
D1954 S1954 972 AfgAf u CfcAfa Af UfUfuCfcauUfgUfcUfL96 AS1954 2064 aGfaCfaAfUfGfgAfaauUfuGfgAfuCfusCfsu
D1955 51955 973 AfgAfuCfcAfaAfUfUfuCfcAfUfUfgUfcUfL96 AS1955 2065 a GfaCf aa uGfgAfa a uUf uGfgAfu CfusCfsu
D1956 S1956 974 GfaUfcCfaAfaUfUfUfcCfauuGfuCfuUfL96 AS1956 2066 aAfgAfcAfAfUfgGfaaaUfuUfgGfaUfcsUfsc
D1957 S1957 975 GfaUfcCfaAfaUfUfUfcCfaUfUfGfuCfuUfL96 AS1957 2067 a AfgAfca a UfgGfaaa UfuUfgGfa UfcsUfsc
D1958 S1958 976 AfuCfcAfaAfu UfUfCfcAf uugUfcUf uGfL96 AS1958 2068 cAfaGfaCfAfAfuGfgaaAfuUfuGfgAfusCfsu
D1959 S1959 977 AfuCfcAfaAfuUfUfCfcAfuUfGfUfcUfuGfL96 AS 1959 2069 cAfaGfacaAfuGfgaaAfuUfuGfgAfusCfsu
D1960 S1960 978 UfcCfaAfaUfuUfCfCfaUfuguCfuUfgCfL96 AS 1960 2070 gCfaAfgAfCfAfaUfggaAfaUfuUfgGfasUfsc
D1961 S1961 979 UfcCfaAfa UfuUfCfCfa Ufu GfUfCfuUfgCfL96 AS 1961 2071 gCfaAfgacAfaUfggaAfaUfuUfgGfasUfsc
D1962 51962 980 CfcAfaAfuUfuCfCfAfuUfgucUfuGfcAfL96 AS 1962 2072 uGfcAfaGfAfCfaAfuggAfaAfuUfuGfgsAfsu
D1963 51963 981 CfcAfaAfuUfuCfCfAfuUfgUfCfUfuGfcAfL96 AS1963 2073 uGfcAfagaCfaAfuggAfaAfuUfuGfgsAfsu
D1964 S1964 982 CfaAfaUfuUfcCfAfUfuGfucuUfgCfaAfL96 AS1964 2074 uUfgCfaAfGfAfcAfaugGfaAfaUfuUfgsGfsa
D1965 51965 983 CfaAfaUfuUfcCfAfUfuGfuCfUfUfgCfaAfL96 A51965 2075 u UfgCfaagAfcAfa ugGfa Afa UfuUfgsGfsa
130
01966 S1966 984 AfaAfuUfuCfcAfUfUfgUfcuuGfcAfaGfL96 AS1966 2076 cUfuGfcAfAfGfaCfaauGfgAfaAfuUfusGfsg
D1967 51967 985 AfaAfuUfuCfcAfUfUfgUfcUfUfGfcAfaGfL96 AS1967 2077 cUfuGfcaaGfaCfaauGfgAfaAfuUfusGfsg
D1968 51968 986 AfaUfuUfcCfaUfUfGfuCfuugCfaAfgCfL96 AS 1968 2078 gCfuUfgCfAfAfgAfcaaUfgGfaAfaUfusUfsg
D1969 S1969 987 Afa UfuUfcCfaUfUfGfuCfuUfGf Cfa AfgCfL96 AS1969 2079 gCfuUfgcaAfgAfcaaUfgGfaAfaUfusUfsg
D1970 S1970 988 AfuUfuCfcAfuUfGfUfcUfugcAfaGfcAfL96 AS 1970 2080 uGfcUfuGfCfAfaGfacaAfuGfgAfaAfusUfsu
D1971 S1971 989 AfuUfuCfcAfuUfGfUfcUfuGfCfAfaGfcAfL96 AS1971 2081 uGfcUfugcAfaGfacaAfuGfgAfaAfusUfsu
01972 51972 990 UfuUfcCfaUfuGfUfCfuUfgcaAfgCfaAfL96 AS1972 2082 uUfgCfuUfGfCfaAfgacAfaUfgGfaAfasUfsu
D1973 S1973 991 UfuUfcCfa Uf uGf UfCfu UfgCfAfAfgCfa AfL96 AS1973 2083 uUfgCfuugCfaAfgacAfaUfgGfaAfasUfsu
D1974 51974 992 UfuCfcAfuüfgUfCfUfuGfcaaGfcAfaAfL96 AS1974 2084 uUfuGfcUfUfGfcAfagaCfaAfuGfgAfasAfsu
01975 S1975 993 UfuCfcAfuUfgUfCfUfuGfcAfAfGfcAfaAfL96 AS1975 2085 uUfuGfcuuGfcAfagaCfaAfuGfgAfasAfsu
D1976 S1976 994 UfcCfaUfuGfuCfUfUfgCfaagCfaAfaGfL96 AS1976 2086 cUfuUfgCfUfUfgCfaagAfcAfaUfgGfasAfsa
D1977 S1977 995 UfcCfa UfuGfuCf Uf UfgCfa AfGfCfa Af a GfL96 AS1977 2087 cUfuUfgcuUfgCfaagAfcAfaUfgGfasAfsa
D1978 S1978 996 CfcAfuUfgUfcUfUfGfcAfagcAfaAfgCfL96 AS 1978 2088 gCfu Uf uGf CfUfuGfca a GfaCfa AfuGfgsAfsa
D1979 51979 997 CfcAfuUfgUfcUfUfGfcAfaGfCfAfaAfgCfL96 AS 1979 2089 gCfu Uf ugcUfu Gfcaa GfaCfaAfüGfgsAfsa
D1980 51980 998 CfaUfuGfuCfuUfGfCfaAfgcaAfaGfcAfL96 AS1980 2090 uGfcUfuUfGfCfu UfgcaAfgAfcAfa UfgsGfsa
01981 S1981 999 CfaUfuGfuCfuUfGfCfaAfgCfAfAfaGfcAfL96 AS1981 2091 uGfcUfuugCf u UfgcaAfgAfcAfa UfgsGfsa
D1982 S1982 1000 AfuUfgUfcUfuGfCfAfaGfcaaAfgCfaCfL96 AS1982 2092 gUfgCfu UfUfGfcUfugcAfaGfa Cfa AfusGfsg
01983 S1983 1001 AfuUfgUfcUfuGfCfAfaGfcAfAfAfgCfaCfL96 AS1983 2093 gUfgCfuuuGfcUfugcAfaGfaCfaAfusGfsg
01984 S1984 1002 UfuGfuCfuUfgCfAfAfgCfaaaGfcAfcGfL96 AS1984 2094 cGfuGfcUfUfUfgCfuugCfaAfgAfcAfasUfsg
01985 S1985 1003 UfuGfuCfuUfgCfAfAfgCfaAfAfGfcAfcGfL96 AS1985 2095 cGfuGfcuuUfgCfu ugCfa AfgAfcAfasUfsg
D1986 S1986 1004 UfgUfcUfuGfcAfAfGfcAfaagCfaCfgUfL96 AS 1986 2096 aCfgUfgCfUfUfuGfcuuGfcAfaGfaCfasAfsu
01987 51987 1005 UfgUfcUfuGfcAfAfGfcAfaAfGfCfaCfgUfL96 AS 1987 2097 aCfgUfgcuUfuGfcuuGfcAfaGfaCfasAfsu
01988 S1988 1006 GfuCfuUfgCfaAfGfCfaAfagcAfcGfuAfL96 AS 1988 2098 uAfcGfuGfCfUfuUfgcuUfgCfaAfgAfcsAfsa
01989 S1989 1007 GfuCfuUfgCfaAfGfCfaAfaGfCfAfcGfuAfL96 AS1989 2099 uAfcGfugcUfuUfgcuUfgCfaAfgAfcsAfsa
D1990 S1990 1008 UfcUf uGfcAfaGfCfAfa Afgca CfgUfa Uf L96 AS1990 2100 aUfaCfgUfGfCfuUfugcUfuGfcAfaGfasCfsa
D1991 51991 1009 UfcUfuGfcAfaGfCfAfaAfgCfAfCfgUfaUfL96 AS1991 2101 aUfaCfgugCfuUfugcUfuGfcAfaGfasCfsa
01992 51992 1010 CfuUfgCfaAfgCfAfAfaGfcacGfuAfuUfL96 AS1992 2102 aAfuAfcGfUfGfcUfuugCfuUfgCfaAfgsAfsc
131
D1993 S1993 1011 CfuUfgCfaAfgCfAfAfaGfcAfCfGfuAfuUfL96 AS1993 2103 aAfuAfcguGfcUfuugCfuUfgCfaAfgsAfsc
D1994 S1994 1012 UfuGfcAfaGfcAfAfAfgCfacgUfaUfuAfL96 AS1994 2104 uAfaUfaCfGfUfgCfuuuGfcUfuGfcAfasGfsa
D1995 S1995 1013 UfuGfcAfaGfcAfAfAfgCfaCfGfUfaUfuAfLS6 AS1995 2105 uAfaUfacgUfgCfuuuGfcUfuGfcAfasGfsa
D1996 S1996 1014 UfgCfaAfgCfaAfAfGfcAfcguAfuUfaAfL96 AS1996 2106 uUfaAfuAfCfGfuGfcuuUfgCfuUfgCfasAfsg
D1997 S1997 1015 UfgCfaAfgCfaAfAfGfcAfcGfUfAfuUfaAfL96 AS1997 2107 uUfaAfuacGfuGfcuuUfgCfuUfgCfasAfsg
D1998 S1998 1016 GfcAfaGfcAfaAfGfCfaCfgua Ufu Afa AfL96 AS1998 2108 u UfuAfaUfAfCfgUfgcu UfuGfcUfuGfcsAfsa
01999 51999 1017 GfcAfaGfcAfaAfGfCfaCfgUfAfUfuAfaAfL96 A51999 2109 uUfuAfauaCfgUfgcuUfuGfcUfuGfcsAfsa
D2000 S2000 1018 CfaAfgCfaAfaGfCfAfcGfuauUfaAfaUfL96 AS2000 2110 aUfuUfaAfUfAfcGfugcUfuUfgCfuUfgsCfsa
D2001 52001 1019 CfaAfgCfaAfaGfCfAfcGfuAfUfUfaAfaUfL96 AS2001 2111 aUfuUfaauAfcGfugcUfuUfgCfuUfgsCfsa
D2002 S2002 1020 AfaGfcAfaAfgCfAfCfgUfauuAfaAfuAfL96 AS2002 2112 uAfuUfuAfAfUfaCfgugCfuUfuGfcUfusGfsc
D2003 S2003 1021 AfaGfcAfaAfgCfAfCfgUfaUfUfAfaAfuAfL96 AS2003 2113 uAfuüfuaaUfaCfgugCfuUfuGfcUfusGfsc
D2004 S2004 1022 AfgCfaAfaGfcAfCfGfuAfuuaAfaUfaUfL96 AS2004 2114 aUfaUfuUfAfAfuAfcguGfcUfuUfgCfusUfsg
D2005 S2005 1023 AfgCfa AfaGfcAfCfGf uAfuUfAfAfa Ufa UfL96 AS200S 2115 aUfaUfuuaAfuAfcguGfcUfuUfgCfusUfsg
D2006 S2006 1024 GfcAfaAfgCfa CfGfUfa UfuaaAf uAfuGf L96 AS2006 2116 cAfuAfuUfUfAfaUfacgUfgCfuUfuGfcsUfsu
02007 S2007 1025 GfcAfaAfgCfaCfGf Ufa Ufu AfAfAfu AfuGf L96 AS2007 2117 cAfuAfuuuAfaUfacgUfgCfuUfuGfcsUfsu
D2008 S2008 1026 CfaAfaGfcAfcGfUfAfuUfaaaUfaUfgAfL96 AS2008 2118 uCfaUfaUfUfUfaAfuacGfuGfcUfuUfgsCfsu
D2009 S2009 1027 CfaAfaGfcAfcGfUfAfuUfaAfAfUfaUfgAfL96 AS2009 2119 uCfaUfauuUfaAfuacGfuGfcUfuUfgsCfsu
02010 S2010 1028 AfaAfgCfaCfgUfAfUfuAfaauAfuGfaUfL96 AS2010 2120 aUfcAfuAfUfUfuAfauaCfgUfgCfuUfusGfsc
02011 S2011 1029 AfaAfgCfaCfgUfAfUfuAfaAfUfAfuGfaUfL96 AS2011 2121 aUfcAfuauUfuAfauaCfgUfgCfuUfusGfsc
D2012 S2012 1030 AfaGfcAfcGfuAfUfUfaAfauaUfgAfuCfL96 AS2012 2122 gAfuCfaUfAfUfuUfaauAfcGfuGfcUfusUfsg
D2013 52013 1031 AfaGfcAfcGfuAfUfUfaAfaUfAfUfgAfuCfL96 AS2013 2123 gAfuCfauaUfuUfaauAfcGfuGfcUfusUfsg
D2014 52014 1032 AfgCfa CfgUfaUfUfAfa Afua uGfa UfcUf L96 AS2014 2124 aGfa Uf cAfUfAfu UfuaaUfa CfgUfgCfusUfsu
D2015 S2015 1033 AfgCfaCfgUfaUfUfAfaAfuAfUfGfaUfcUfL96 AS2015 2125 aGfaUfcauAfuUfuaaUfaCfgUfgCfusüfsu
D2016 52016 1034 GfcAfcGfuAfuUfAfAfaUfaugAfuCfuGfL96 AS2016 2126 cAfgAfuCfAfUfaUfuuaAfuAfcGfuGfcsUfsu
D2017 52017 1035 GfcAfcGfuAfuUfAfAfaUfaUfGfAfuCfuGfL96 AS2017 2127 cAfgAfucaUfaUfuuaAfuAfcGfuGfcsUfsu
D2018 52018 1036 CfaCfgUfaUfuAfAfAfuAfugaUfcUfgCfL96 AS2018 2128 gCfaGfaUfCfAfuAfuuuAfaUfaCfgUfgsCfsu
D2019 S2019 1037 CfaCfgUfaUfuAfAfAfuAfuGfAfUfcUfgCfL96 AS2019 2129 gCfaGfaucAfuAfuuuAfaUfaCfgUfgsCfsu
132
D2020 S2020 1038 AfcGfuAfuUfaAfAfUfaUfgauCfuGfcAfL96 AS2020 2130 uGfcAfgAfUfCfa Ufauu Ufa AfuAfcGfusGfsc
D2021 S2021 1039 AfcGfuAfuUfaAfAfüfaUfgAfUfCfuGfcAfL96 AS2021 2131 uGfcAfga uCfaUfau uUfa Afu Af cGf usGfsc
D2022 S2022 1040 CfgUfaUfuAfaAfUfAfuGfaucUfgCfaGfL96 AS2022 2132 cUfgCfaGfAfUfcAfuauUfuAfaUfaCfgsUfsg
D2023 S2023 1041 CfgUfaUfuAfaAfUfAfuGfaUfCfUfgCfaGfL96 AS2023 2133 cUfgCfagaUfcAfuauUfuAfaUfaCfgsUfsg
D2024 S2024 1042 GfuAfuUfaAfaUfAfUfgAfucuGfcAfgCfL96 AS2024 2134 gCfuGfcAfGfAfuCfauaUfuUfaAfuAfcsGfsu
D2025 S2025 1043 GfuAfuUfaAfaUfAfUfgAfuCfUfGfcAfgCfL96 AS2025 2135 gCfuGfcagAfuCf aua Ufu Ufa Af u AfcsGfsu
D2026 S2026 1044 Ufa Ufu AfaAfuAf UfGfaUfcugCfaGfcCfL96 AS2026 2136 gGfcUfgCfAfGfaUfcauAfuUfuAfaUfasCfsg
D2027 S2027 1045 UfaUfuAfaAfuAfUfGfaUfcUfGfCfaGfcCfL96 AS2027 2137 gGfcUfgcaGfaUfcauAfuUfuAfaUfasCfsg
02028 S2028 1046 AfuUfaAfaUfaUfGfAfuCfugcAfgCfcAfL96 AS2028 2138 uGfgCfuGfCfAfgAfucaUfaUfuUfaAfusAfsc
D2029 S2029 1047 AfuUfaAfaUfaUfGfAfuCfuGfCfAfgCfcAfL96 AS2029 2139 uGfgCf ugcAfgAf uca UfaUfuUfaAfu sAfsc
D2030 S2030 1048 UfuAfaAfuAfuGfAfUfcUfgcaGfcCfaUfL96 AS2030 2140 aUfgGfcUfGfCfaGfaucAfuAfuUfuAfasUfsa
D2031 S2031 1049 UfuAfaAfuAfuGfAfUfcUfgCfAfGfcCfaUfL96 AS2031 2141 aUfgGfcugCfaGfaucAfuAfuUfuAfasUfsa
02032 S2032 1050 UfaAfaUfaUfgAfUfCfuGfcagCfcAfuUfL96 AS2032 2142 aAfuGfgCf UfGfcAfga uCfa UfaUfu UfasAfsu
02033 S2033 1051 UfaAfaUfaUfgAfUfCfuGfcAfGfCfcAfuUfL96 AS2033 2143 aAfuGfgcuGfcAfgauCfaUfaUfuUfasAfsu
D2034 S2034 1052 AfaAfuAfuGfaUfCfUfgCfagcCfaUfuAfL96 AS2034 2144 uAfaUfgGfCfüfgCfagaUfcAfuAfuUfusAfsa
D2035 S2035 1053 AfaAfuAfuGfaUfCfUfgCfaGfCfCfaUfuAfL96 AS2035 2145 uAfaUfggcUfgCfagaUfcAfuAfuUfusAfsa
02036 S2036 1054 AfaUfaUfgAfuCfUfGfcAfgccAfuUfaAfL96 AS2036 2146 uUfaAfuGfGfCfuGfcagAfuCfaUfaUfusUfsa
D2037 S2037 1055 AfaUfaUfgAfuCfUfGfcAfgCfCfAfuUfaAfL96 AS2037 2147 uUfaAfuggCfuGfcagAfuCfaUfaUfusUfsa
D2038 S2038 1056 Af uAf uGfaUfcUfGfCfaGfcca UfuAfaAf L96 AS2038 2148 uUfuAfaUfGfGfcUfgcaGfaUfcAfuAfusUfsu
D2039 S2039 1057 AfuAfuGfaUfcUfGfCfaGfcCfAfUfuAfaAfL96 AS2039 2149 uUfuAfaugGfcUfgcaGfaUfcAfuAfusUfsu
D2040 S2040 1058 UfaUfgAfuCfuGfCfAfgCfcauUfaAfaAfL96 AS2040 2150 uUfuUfaAfUfGfgCfugcAfgAfuCfaUfasUfsu
D2041 S2041 1059 UfaUfgAfuCfu GfCfAfgCfcAfUfUfa AfaAf L9 6 AS2041 2151 uUfuUfaauGfgCfugcAfgAfuCfaUfasUfsu
D2042 S2042 1060 AfuGfaUfcUfgCfAfGfcCfauuAfaAfaAfL96 AS2042 2152 uUfuUfuAfAfUfgGfcugCfaGfaUfcAfusAfsu
D2043 S2043 1061 AfuGfaUfcUfgCfAfGfcCfaUfUfAfaAfaAfL96 AS2043 2153 uUfuUfuaaUfgGfcugCfaGfaUfcAfusAfsu
D2044 S2044 1062 UfgAfuCfuGfcAfGfCfcAfuuaAfaAfaGfL96 AS2044 2154 cUfuUfuUfAfAfuGfgcuGfcAfgAfuCfasUfsa
D2045 S2045 1063 UfgAfuCfuGfcAfGfCfcAfuUfAfAfaAfaGfL96 AS2045 2155 cUfuUfuuaAfuGfgcuGfcAfgAfuCfasUfsa
D2046 S2046 1064 GfaUfcUfgCfaGfCfCfaUfuaaAfaAfgAfL96 AS2046 2156 uCfuUfu Uf UfAfa UfggcUfgCfaGfa UfcsAfsu
133
D2047 S2047 1055 GfaUfcUfgCfaGfCfCfaUfuAfAfAfaAfgAfL96 AS2047 2157 uCfuUfuuuAfaUfggcUfgCfaGfaUfcsAfsu
D2048 S2048 1066 AfuCfuGfcAfgCfCfAfuUfaaaAfaGfaCfL96 AS2048 2158 gUfcUfuUfUfUfaAfuggCfuGfcAfgAfusCfsa
D2049 S2049 1067 AfuCfuGfcAf gCfCfAf uUfa AfAfAfa GfaCfL96 AS2049 2159 gUfcUfuuuUfaAfuggCfuGfcAfgAfusCfsa
D2050 S2050 1068 UfcUfgCfaGfcCfAfUfuAfaaaAfgAfcAfL96 A52050 2160 uGfuCfuUfUfUfuAfaugGfcUfgCfaGfasUfsc
D2051 S2051 1069 UfcUfgCfaGfcCfAfllftiAfaAfAfAfgAfcAfL96 AS2051 2161 uGfuCfuuuUfuAfaugGfcUfgCfaGfasUfsc
D2052 S2052 1070 CfuGfcAfgCfcAfUfUfaAfaaaGfaCfaCfL96 AS2052 2162 gUfgUfcUfUfUfuUfaauGfgCfuGfcAfgsAfsu
D20S3 S2053 1071 CfuGfcAfgCfcAfUfUfaAfaAfAfGfaCfaCfL96 AS2053 2163 gUfgUfcu uUfuUfaa uGfgCfuGfcAf gsAfsu
D20S4 S2054 1072 UfgCfaGfcCfaUfUfAfaAfaagAfcAfcAfL96 AS2054 2164 uGfuGfuCfUfUfuUfuaaUfgGfcUfgCfasGfsa
D2055 S205S 1073 UfgCfaGfcCfaUfUfAfaAfaAfGfAfcAfcAfL96 AS2055 2165 uGfuGfucuUfuUfuaaUfgGfcüfgCfasGfsa
D2056 S2056 1074 GfcAfgCfcAfuUfAfAfaAfagaCfaCfaUfL96 AS2056 2166 aUfgUfgUfCfUfuUfuuaAfuGfgCfuGfcsAfsg
D2057 S2057 1075 GfcAfgCfcAfuUfAfAfaAfaGfAfCfaCfaUfL96 AS2057 2167 a UfgUfgucUfuUfu ua AfuGfgCf uGfcsAfsg
D20S8 S2058 1076 CfaGf cCfa Uf u AfAfAfaAfgacAfcAf u Uf L96 AS2058 2168 aAfuGfuGfUfCfuUfuuuAfaUfgGfcüfgsCfsa
D2059 S2059 1077 CfaGfcCfa UfuAfAfAfa AfgAfCfAf cAfu Uf L96 AS2059 2169 aAfuGfuguCfuUfuuuAfaUfgGfcUfgsCfsa
D2060 S2060 1078 AfgCfcAfuUfaAfAfAfaGfacaCfaUfuCfL96 AS2060 2170 gAfaUfgUfGfUfcUfuuuUfaAfuGfgCfusGfsc
D2061 S2061 1079 AfgCfcAfu UfaAfAfAfaGfaCfAfCfaUf uCfL9 6 AS2061 2171 gAfaUfjgugUfcUfuuuUfaAfuGfgCfusGfsc
D2062 S2062 1080 GfcCfaUfuAfaAfAfAfgAfcacAfuUfcUfL96 AS2062 2172 aGfaAfuGfUfGfuCfuuuUfuAfaUfgGfcsUfsg
D2063 S2063 1081 GfcCfaUfuAfaAfAfAfgAfcAfCfAfuüfcUfL96 AS2063 2173 aGfaAfuguGfuCfuuuUfuAfaUfgGfcsUfsg
D2064 S2064 1082 CfcAfuUfaAfaAfAfGfaCfacaUfuCfuGfL96 AS2064 2174 cAfgAfaüfGfUfgUfcuuUfuUfaAfuGfgsCfsu
D2065 S2065 1083 CfcAf uUfaAfa AfAfGfa CfaCfAfUf u CfuGfL96 AS2065 2175 cAfgAfaugUfgUfcuuUfuUfaAfuGfgsCfsu
D2066 S2066 1084 CfaUfuAfaAfaAfGfAfcAfcauUfcUfgUfL96 AS2066 2176 aCfaGfaAfUfGfuGfucuUfuUfuAfaUfgsGfsc
D2067 S2067 1085 CfaUfuAfaAfaAfGfAfcAfcAfUfUfcUfgUfL96 AS2067 2177 a CfaGfaauGfuGfu eu UfuUfu AfaUfgsGfsc
D2068 S2068 1086 AfuUfa Afa AfaGfAfCfa CfauuCfuGfuAf L96 AS2068 2178 uAfcAfgAfAfUfgUfgucUfuUfuUfaAfusGfsg
D2069 S2069 1087 AfuUfa AfaAfaGfAfCfa Cfa UfUfCfuGfuAfL96 AS2069 2179 uAfcAfgaaUfgUfgucUfuUfuUfaAfusGfsg
D2070 S2070 1088 UfuAfaAfaAfgAfCfAfcAfuucUfgUfaAfL96 AS2070 2180 uUfaCfaGfAfAfuGfuguCfuUfuUfuAfasUfsg
D2071 S2071 1089 UfuAfaAfaAfgAfCfAfcAfuUfCfUfgUfaAfL96 AS2071 2181 uUfaCfagaAfuGfuguCfuUfuUfuAfasUfsg
D2072 S2072 1090 U fa Afa Afa GfaCfAfCfaUf ucuGfu Afa AfL96 AS2072 2182 uUfuAfcAfGfAfaUfgugUfcUfuUfuUfasAfsu
02073 S2073 1091 UfaAfaAfaGfaCfAfCfaüfuCfUfGfuAfaAfL96 AS2073 2183 uUfuAfcagAfaUfgugUfcUfuUfuUfasAfsu
134
D2074 S2074 1092 AfaAfaAfgAfcAfCfAfu UfcugüfaAfa AfL96 AS2074 2184 uUfu UfaCfAfGfa Af ugu GfuCfu UfuUfusAfsa
D2075 52075 1093 AfaAfaAfgAfcAfCfAfuUfcUfGfUfaAfaAfL96 AS2075 2185 uUfuUfacaGfaAfuguGfuCfuUfuUfusAfsa
D2076 52076 1094 AfaAfaGfaCfaCfAfUfuCfuguAfaAfaAfL96 AS2076 2186 uUfuUfuAfCfAfgAfaugUfgUfcUfuUfusUfsa
D2077 S2077 1095 AfaAfaGfaCfaCfAfUfuCfuGfUfAfaAfaAfL96 AS2077 2187 u Ufu UfuacAfgAfaugUfgUfcUfu Uf usUfsa
D2078 S2078 1096 AfaAfgAfcAfcAfUfüfcUfguaAfaAfaAfL96 AS2078 2188 uUfuUfuUfAfCfaGfaauGfuGfuCfuUfusUfsu
D2079 52079 1097 AfaAfgAfcAfcAfUfUfcUfgUfAfAfaAfaAfL96 AS2079 2189 u Ufu UfuuaCfaGfaauGfu GfuCfu UfusUfsu
D2080 S2080 1098 Afa GfaCf a CfaUfUfCfuGf uaa Afa Afa AfL9 6 AS2080 2190 uUfuüfuUfUfAfcAfgaaUfgUfgUfcUfusUfsu
02081 S2081 1099 AfaGfaCfaCfaUfUfCfuGfuAfAfAfaAfaAfL96 AS2081 2191 uUfuUfuuuAfcAfgaaUfgUfgUfcUfusUfsu
02082 52082 1100 AfgAfcAfcAfulIfCfUfgUfa a a Afa Af a Af L96 AS2082 2192 uUfuUfuUfUfUfaCfagaAfuGfuGfuCfusUfsu
02083 S2083 1101 AfgAfcAfcAfuüfCfUfgUfaAfAfAfaAfaAfL96 AS2083 2193 uUfuUfuuuUfaCfagaAfuGfuGfuCfusüfsu
02084 S2084 1102 GfaCfaCfaUfuCfUfGfuAfaaaAfaAfaAfL96 AS2084 2194 uUfuUfuUfUfUfuAfcagAfaUfgUfgUfcsUfsu
02085 52085 1103 GfaCfaCfaUfuCfUfGfuAfaAfAfAfaAfaAfL96 AS2085 2195 uUfuUfuuuUfuAfcagAfaUfgUfgUfcsUfsu
D2086 S2086 1104 AfcAfcAfuUfcUfGfUfaAfaaaAfaAfaAfL96 AS2086 2196 uUfuUfuUfUfUfuUfacaGfaAfuGfuGfusCfsu
D2087 S2087 1105 AfcAfcAfuUfcUfGfUfaAfaAfAfAfaAfeAfL96 AS2087 2197 uUfuUfuuuUfuUfacaGfaAfuGfuGfusCfsu
D2088 S2088 1106 CfaCfaUfuCfuGfUfAfaAfaaaAfaAfaAfL96 AS2088 2198 uUfuUfuUfUfUfuUfuacAfgAfaUfgUfgsUfsc
D2089 S2089 1107 CfaCfaUfuCfuGfUfAfaAfaAfAfAfaAfaAfL96 AS2089 2199 uUfuUfuuuUfuUfuacAfgAfaUfgUfgsUfsc
D2090 S2090 1108 AfcAfuUfcUfgUfAfAfaAfaaaAfaAfaAfL96 AS2090 2200 uUfuUfuUfUfUfuUfuuaCfaGfaAfuGfusGfsu
D2091 52091 1109 AfcAfuUfcUfgUfAfAfaAfaAfAfAfaAfaAfL96 AS2091 2201 uUfuUfuuuUfuUfuuaCfaGfaAfuGfusGfsu
Lowercase nucléotides (a, u, g, c) are 2’-O-methyl nucléotides; Nf (e.g., Af) is a 2’-fluoro nucléotide; s îs a phosphothiorate linkage;
L96 indicates a GalNAca ligand.
135
Example 4: In vitro screening of RNAi Agents
Cell culture and transfections
Human Hep3B cells or rat H.I1.4.E cells (ATCC, Manassas, VA) were grown to near confluence at 37 °C in an atmosphère of 5% CO2 in RPMI (ATCC) supplemented with 10% FBS, streptomycin, and glutamine (ATCC) before being released from the plate by trypsinization. Transfection was carried out by adding 14.8 μΐ of Opti-MEM plus 0.2 μΐ of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat # 13778150) to 5 μΐ of siRNA duplexes per well into a 96-well plate and incubated at room température for 15 minutes. 80 μΐ of complété growth media without antibiotic containing ~2 xl04 Hep3B cells were then added to the siRNA mixture. Cells were incubated for either 24 or 120 hours prior to RNA purification. Single dose experiments were performed at lOnM and 0.1 nM final duplex concentration and dose response experiments were done using 8,4 fold serial dilutions with a maximum dose of lOnM final duplex concentration.
Total RNA isolation using DYNABEADS mRNA Isolation Kit (Invitrogen, part #: 61012)
Cells were harvested and lysed in 150 μΐ of Lysis/Binding Buffer then mixed for 5 minutes at 850rpm using an Eppendorf Thermomixer (the mixing speed was the same throughout the process). Ten microliters of magnetic beads and 80 μΐ Lysis/Binding Buffer mixture were added to a round bottom plate and mixed for 1 minute. Magnetic beads were captured using magnetic stand and the supematant was removed without disturbing the beads. After removing the supematant, the lysed cells were added to the remaining beads and mixed for 5 minutes. After removing the supematant, magnetic beads were washed 2 times with 150 μΐ Wash Buffer A and mixed for 1 minute. Beads were capture again and supematant removed. Beads were then washed with 150 μΐ Wash Buffer B, captured and supematant was removed. Beads were next washed with 150 μΐ Elution Buffer, captured and supematant removed. Beads were allowed to dry for 2 minutes. After drying, 50 μΐ of Elution Buffer was added and mixed for 5 minutes at 70°C. Beads were captured on magnet for 5 minutes. 40 μΐ of supematant was removed and added to another 96 well plate.
136 cDNA synthesis using ABI High capacity cDNA reverse transcription kit (Applied Biosystems, Foster Citv, CA, Cat #4368813)
A master mix of 1 μΐ 10X Buffer, 0.4μ1 25X dNTPs, 1 μΐ Random primers, 0.5 μΐ Reverse Transcriptase, 0.5 μΐ RNase inhibitor and 1.6μ1 of H2O per reaction were added into 5 μΐ total RNA. cDNA was generated using a Bio-Rad C-1000 or S-1000 thermal cycler (Hercules, CA) through the following steps: 25 °C 10 min, 37 °C 120 min, 85 °C 5 sec, 4 °C hold.
Real time PCR
2μ1 of cDNA were added to a master mix containing 0.5μ1 GAPDH TaqMan Probe (Applied Biosystems Cat #4326317E (human) Cat # 4308313 (rodent)), 0.5μ1 TTR TaqMan probe (Applied Biosystems cat # HS00174914 jnl (human) cat # Rn00562124_ml (rat)) and 5μ1 Lightcycier 480 probe master mix (Roche Cat #04887301001) per well in a 384 well plate (Roche cat # 04887301001). Real time PCR was done in a Roche LC 480 Real Time PCR machine (Roche). Each duplex was tested in at least two independent transfections and each transfection was assayed in duplicate, unless otherwise noted.
To calculate relative fold change, real time data were analyzed using the AACt method and normalized to assays performed with cells transfected with lOnM AD-1955, or mock transfected cells. IC50S were calculated using a 4 parameter fit model using XLFit and normalized to cells transfected with AD-1955 (sense sequence: cuuAcGcuGAGuAcuucGAdTsdT (SEQ ID NO: 2202); antisense sequence: UCGAAGuCUcAGCGuAAGdTsdT (SEQ ID NO: 2203)) or naïve cells over the same dose range, or to its own lowest dose. IC50S were calculated for each individual transfection as well as in combination, where a single IC50 was fit to the data from both transfections.
The results of gene silencing of the exemplary siRNA duplex with various motif modifications of the invention are shown in Table 1 above.
137
Example 5: In vitro Silencing Activity of Chemically Modified RNAi Agents that Target TTR
The following experiments demonstrated the bénéficiai effects of chemical modifications, including the introduction of triplet repeat motifs, together with a GalNAc3 ligand, on the silencing activity of RNAi agents that target TTR. The sequences of the agents investigated are provided in Table 2 below. The régions of complementarity to the TTR mRNA are as follows: the région of complementarity of RNAi agents AD-45165, AD-51546 and AD-51547 is GGATGGGATTTCATGTAACCAAGA (SEQ ID NO: 2204) and the région or complemetarity of RNAi agents AD-45163, AD-51544, and AD-51545 is TTCATGTAACCAAGAGTATTCCAT (SEQ ID NO: 2205).
Protocol for assessment of ICsn in Hep3B cells
The IC50 for each modified siRNA was determined in Hep3B cells (a human hepatoma cell line) by standard reverse transfection using Lipofectamine RNAiMAX. In brief, reverse transfection was carried out by adding 5 pL of Opti-MEM to 5 pL of siRNA duplex per well into a 96-well plate along with 10 pL of Opti-MEM plus 0.5 pL of Lipofectamine RNAiMax per well (Invitrogen, Carlsbad CA. cat # 13778-150) and incubating at room température for 15-20 minutes. Following incubation, 100 pL of complété growth media without antibiotic containing 12,000-15,000 Hep3B cells was then added to each well. Cells were incubated for 24 hours at 37°C in an atmosphère of 5% CO2 prior to lysis and analysis of TTR and GAPDH mRNA by bDNA (Quantigene). Seven different siRNA concentrations ranging from lOnM to 0.6pM were assessed for IC50 détermination and TTR/GAPDH for siRNA transfected cells was normalized to cells transfected with 1 OnM Luc siRNA. The results are shown in Table 2.
Protocol for assessment of free-uptake IC50
Free uptake silencing in primary cynomolgus hépatocytes was assessed following incubation with TTR siRNA for either 4 hours or 24 hours. Silencing was measured at 24 hours from the initial exposure. In brief, 96-well culture plates were coated with 0.05%-0.1% collagen (Sigma C3867-1 VL) at room température, 24 hours
138 prior to the start of the experiment. On the day of assay, siRNAs were diluted in prewarmed Plating Media consisting of DMEM supplemented with GIBCO’s Maintenance Media Kit (Serum-Free, Life Technologies CM4000), and added to the collagen-coated 96-well culture plates. Cryopreserved primary cynomolgus hépatocytes were rapidly thawed in a 37°C water bath, and immediately diluted in Plating Media to a concentration of 360,000 cells/mL, A volume of cell suspension was gently pipetted on top of the pre-plated siRNAs such that the final cell count was 18,000 cells/well, The plate was lightly swirled to mix and spread cells evenly across the wells and placed in a 37°C, 5% CO2 incubator for 24 hours prior to lysis and analysis of TTR and GAPDH mRNA by bDNA (Quantigene, Affymetrix). In the case of the 4h incubation with siRNA, the media was decanted after 4 hours of exposure to the cells, and replaced with fresh Plating Media for the remaining 20 hours of incubation. Downstream analysis for TTR and GAPDH mRNA was the same as described above. For a typical dose réponse curve, siRNAs were titrated from luM to 0.24nM by 4 fold serial dilution.
139
Table 2: In vitro Activity Summary for Altemating TTR-GalNAc and Variants with Triplet Motifs
Duplex ID S (5’-3’) AS (5’-3”) Free-Uptake IC50 (μΜ) Hep3B IC50 (nM)
4h 2411
AD-45I63 AfuGfuAfaCfcAfaGfaGfuAfuUfcCfaUfL96 (SEQ ID NO: 2206) aUfgGfaAfuAfcUfcUfuGfgUfûAfcAfusGfsa (SEQIDNO: 2212) 0.04101 0.00820 0.0115
AD-51544 AfuGfuAfaCfcA£AfGfaGfuAfuucCfaUfL96 (SEQ ID NO: 2207) aUfgGfAfAfuAfcUfcuuGfgUfuAfcAfusGfsa (SEQIDNO: 2213) 0.00346 0.00374 0.0014
AD-51545 AfuGfuAfAfCfcAfAfGfaGfuAfuUfcCfaUfL96 (SEQIDNO: 2208) aUfgGfaAfiiAfcUfcuuGfguuAfcAfusGfsa (SEQIDNO: 2214) 0.00395 0.00389 0.0018
AD-45165 U fgGfgAfiiUfuCfaU fgUfaAfcCfaAfgAfL96 (SEQIDNO: 2209) uCfuUfgGfuUfaCfaUfgAfaAfuCfcCfasUfsc (SEQ ID NO: 2215) 0.02407 0.00869 0.0112
AD-51546 UfgGfGfAfuUfuCfAfUfgUfaAfcCfAfAfgAfL96 (SEQ ID NO: 2210) uCfuugGfuUfaCfaugAfaAfuccCfasUfsc (SEQIDNO: 2216) 0.00317 0.00263 0.0017
AD-51547 UfgGfgAfuUfiiCfAfUfgUfaacCfaAfgAfL96 (SEQIDNO: 2211) uCfuUfgGfUfUfaCfaugAfaAfuCfcCfasUfsc (SEQ ID NO: 2217) 0.00460 0.00374 0.0028
Lowercase nucléotides (a, u, g, c) indicate 2’-O-methyl nucléotides; Nf (e.g,, Af) indicates a 2’-fluoro nucléotide; s indicates a phosphothiorate linkage;
L96 indicates a GalNAcj ligand; bold nucléotides indicate changes relative to the corresponding parent agent. Each bold nucléotide is at the center of a triplet motif.
140
The results are provided in Table 2 and demonstrate that modified RNAi agents that target TTR provide enhanced silencing activity.
Results: Improved Activity of Modified RNAi Agents
Parent RNAi agents with altemating chemical modifications and a GalNAcj ligand provided an ICjo in Hep3B cells of about 0.01 nM. As shown in Figures 4-5 and in Table 2, agents modified relative to the parent agents, for example, by the addition of one or more repeating triplets of 2’-fluoro and 2’-O-methyl modifications, showed unexpectedly enhanced silencing activity, achieving IC50 values in Hep3B cells that were 5-8 fold better than the corresponding parent agent.
Results: Free Uptake ICgnS in Hep3B cells
As shown in Table 2 and Figures 6-7, RNAi agents modified relative to the parent AD-45163 also showed enhanced free uptake silencing. The modified agents showed more than double the silencing activity of the parent after a 24 hour incubation period and nearly 10 times the silencing activity of the parent after a 4 hour incubation period.
As shown in Table 2 and Figures 8-9, RNAi agents modified relative to the parent AD-45165 also showed enhanced free uptake silencing. The modified agents showed 2-3 times the silencing activity of the parent after a 24 hour incubation period and 5-8 times the silencing activity of the parent after a 4 hour incubation period.
Taken collectively, these results demonstrate that the modified RNAi agents presented herein, e.g., AD-51544, AD-51545, AD-51546, and AD-51547, ail showed unexpectedly good inhibition of TTR mRNA in in vitro silencing experiments.
141
Example 6: TTR mRNA silencing and TTR Protein Suppression in Transgenic Mice
To assess the efficacy of the RNAi agents AD-45163, AD-51544, AD-51545, AD45165, AD-51546, and AD-51547, these agents were administered to transgenic mice that express human transthyretin with the V30M mutation (see Santos, SD., Femaandes, R., and Saraiva, MJ. (2010) Neurobiology ofÀging, 31, 280-289). The V30M mutation is known to cause familial amyloid polyneuropathy type I in humans. See, e.g., Lobato, L. (2003) JNephrol., 16(3):438-42.
The RNAi agents (in PBS buffer) or PBS control were administered to mice (2 male and 2 female) of 18-24 months of âge in a single subcutaneous dose of 5 mg/kg or 1 mg/kg. After approximately 48 hours, mice were anesthetized with 200 μΙ of ketamine, and then exsanguinated by severing the right caudal artery. Whole blood was isolated and plasma was isolated and stored at -80°C until assaying. Liver tissue was collected, flash-frozen and stored at -80°C until processing.
Efficacy of treatment was evaluated by (i) measurement of TTR mRNA in liver at 48 hours post-dose, and (ii) measurement of TTR protein in plasma at pre-bleed and at 48 hours post-dose. TTR liver mRNA levels were assayed utilizing the Branched DNA assays- QuantiGene 2.0 (Panomîcs cat #: QS0011). Briefly, mouse liver samples were ground and tissue lysâtes were prepared. Liver lysis mixture (a mixture of 1 volume of lysîs mixture, 2 volume of nuclease-free water and lOul of Proteinase-K/ml for a final concentration of 20mg/ml) was incubated at 65 °C for 35 minutes. 20μ1 of Working Probe Set (TTR probe for gene target and GAPDH for endogenous control) and 80ul of tissue-lysate were then added into the Capture Plate. Capture Plates were incubated at 55 °C ±1 °C (aprx. 16-20hrs). The next day, the Capture Plates were washed 3 times with IX Wash Buffer (nuclease-free water, Buffer Component 1 and Wash Buffer Component 2), then dried by centrifuging for 1 minute at 240g. 100μ1 of pre-Amplifier Working Reagent was added into the Capture Plate, which was sealed with aluminum foil and incubated for 1 hour at 55°C ±1°C. Following 1 hour incubation, the wash step was repeated, then 100μ1 of Amplifier Working Reagent was added. After 1 hour, the wash and dry steps were repeated, and 100μ1 of Label Probe was added. Capture plates
142 were incubated 50 °C ±1 °C for 1 hour. The plate was then washed with IX Wash Buffer, dried and ΙΟΟμΙ Substrate was added into the Capture Plate. Capture Plates were read using the SpectraMax Luminometer following a 5 to 15 minute incubation. bDNA data were analyzed by subtracting the average background from each triplicate sample, averaging the résultant triplicate GAPDH (control probe) and TTR (experimental probe) values, and then computing the ratio: (experimental probe-background)/(control probebackground).
Plasma TTR levels were assayed utilizing the commercially available kit “AssayMax Human Prealbumin ELISA Kit” (AssayPro, St. Charles, MO, Catalog # EP3010-1) according to manufacturer’s guidelines. Briefly, mouse plasma was diluted 1:10,000 in IX mix diluents and added to pre-coated plates along with kit standards, and incubated for 2 hours at room température foilowed by 5X washes with kit wash buffer. Fifty microliters of biotinylated prealbumin antibody was added to each well and incubated for 1 hr at room température, foilowed by 5X washes with wash buffer, Fifty microliters of streptavidin-peroxidase conjugate was added to each well and plates were incubated for 30 minutes at room température foilowed by washing as previously described. The reaction was developed by the addition of 50 μΐ/well of chromogen substrate and incubation for 10 minutes at room température with stopping of reaction by the addition of 50 μΐ/well of stop solution. Absorbance at 450 nm was read on a Versamax microplate reader (Molecular Devices, Sunnyvale, CA) and data were analyzed utilizing the Softmax 4.6 software package (Molecular Devices).
The results are shown in Figures 10-12. Figure 10 shows that the RNAi agents modified relative to the parent agents AD-45163 and AD-45165 showed RNA silencing activity that was similar or more potent compared with that of the parent agents. Figure 11 shows that the agents AD-51544 and AD-51545 showed dose dépendent silencing activity and that the silencing activity of these agents at a dose of 5mg(kg was similar to that of the corresponding parent AD-45163. Figure 12 shows that the agents AD-51546 and AD-51547 also showed dose-dependent silencing activity. Furthermore, the silencing activity of AD-51546 and AD-51547 at a dose of 5mg/kg was superior to that of the corresponding parent AD-45165.
143
Example 7: Sérum and Liver Pharmacokinetic Profiles of RNAi Agents that Target TTR in Mîce
To assess the pharmacokinetic profiles of the RNAi agents AD-45163, AD51544, AD-51545, AD-51546, and AD-51547, these agents, in PBS buffer, were administered to C57BL/6 mice using a single IV bolus or subcutaneous (SC) administration. The plasma concentrations and liver concentrations of the agents were assessed at various timepoints after the administration.
The plasma pharmacokinetic parameters are presented in Tables 3 and 4 below.
The mean résident time (MRT) in plasma was about 0.2 hours after IV dosing and about 1 hour after SC dosing. At a dose of 25 mg/kg, the agents AD-51544, AD-51545, AD51546, and AD-51547 showed similar plasma pharmacokinetic properties. Each of these agents had more than 75% bioavailability from the subcutaneous space. Their bioavailability was superior to that of the parent agent AD-45163 that was administered at a higher dose of 30 mg/kg. The subcutaneous bioavailability of AD-51544 and AD51547 was about 100%, whereas that of AD-51545 was 90% and that of and AD-51546 was 76%.
144
Table 3: Summary of Plasma PK Parameter Estimâtes After SC Administration of TTR-GalNAc siRNAs in Mice
Parameter 30 mpk AD45163 (h/c TTRGalNAc) 25 mpk AD51544 (h/c TTRGalNAc) 25 mpk AD51545 (h/c TTRGalNAc) 25 mpk AD51546 (h/c TTRGalNAc) 25 mpk AD51547 (h/c TTRGalNAc)
Plasma Tmax (h) 0.25 1 0.5 1 0.5
Plasma Cmax (pg/mL) 9.6 11.7 10.9 11.7 12.1
Plasma AUC (h*pg/mL) 12.4 21.9 19.9 20.9 25.3
Fsc(%) 79 100 90.1 76.0 99.2
145
Table 4: Plasma siRNA PK Parameters in Mice after an IV Bolus or
SC Dose of AD-51544, 51545, 51546 or 51547 at 25 mg/kg
Test Article AD-51544 AD-51545 AD-51546 AD-51547
siRNA Dose (mg/kg) 25 25 25 25
Route of Administration IV SC IV SC IV SC IV SC
tmax (h) 0.083 1 0.083 0.5 0.083 1 0.083 0.5
Cmax (pg/mL) 96.5= 11.7 108= 10.9 128= 10.9 123= 12.1
AUCo last (h-pg/mL) 21.6 21.9 22.1 19.9 27.5 20.9 25.5 25.3
MRTo-w(h) 0.17 1.2 0.16 1.1 0.22 1.4 0.19 1.3
Apparent t1/23 (h)b ND ND ND 0.49 ND 1.2 ND 0.56
Fsc (%> - 102 - 90.1 - 76.0 - 99.2
a: Concentration at the 1« sampling time (5 min) after IV dosing b: Apparent élimination half-life (t1/2^) could not be determined (ND) for ail 4 test articles after IV dosing as the terminal phase of the concentration-time profiles was not well defined, as a resuit, the t^#-associât ed PK parameters (eg, AUCo_œ, CL and Vss) were not reported. c: SC bioavailability, calculated as percentage ratio of AUCo-tæa after SC and IV dosing at 25 mg/kg
146
The results also indicated that the RNAi agents AD-45163, AD-51544, AD51545, AD-51546, and AD-51547 achieved similar or higher concentrations in the liver when administered subcutaneously than when administered by IV bolus. The liver pharmacokinetic parameters are presented in Tables 5 and 6 below. The peak concentration (Cmax) and area under the curve (AUCo-iast) in the liver were two to three times higher after subcutaneous administration as compared with IV administration of the same agent at the same dose. Liver exposures were highest for AD-51547 and lowest for AD-51545. The mean résident time (MRT) and élimination half-life were longer for AD-51546 and AD-51547 compared with AD-51544 and AD-51545. Following subcutaneous administration, the approximate MRTs were 40 hours for AD51546 and 25 hours for AD-51547, whereas the MRTs for AD-51544 and AD-51545 were lower (about 6-9 hours). The élimination half life of AD-51546 and AD-51547 was also higher (41-53 hours) than was the élimination half life of AD-51544 and AD15 51545 (6-10 hours).
147
Table 5: Summary of Liver PK Parameter Estimâtes After SC Administration of TTR-GalNAc siRNAs in Mice
Parameter 30 mpk AD45163 (h/c TTRGalNAc) 25 mpk AD51544 (h/c TTRGalNAc) 25 mpk AD51545 (h/c TTRGalNAc) 25 mpk AD51546 (h/c TTRGalNAc) 25 mpk AD51547 (h/c TTRGalNAc)
Liver Tmax (h) 8 4 4 2 8
Liver Cmax (pg/g) 313 126 80 117 174
Liver AUC (hWg) 4519 1092 763 2131 4583
148
Table 6: Liver siRNA PK Parameters in Mice after an IV Bolus or SC Dose of AD-51544, 51545,51546 or 51547 at 25 mg/kg
Test Article AD-51544 AD-51545 AD-51546 AD-51547
siRNA Dose (mg/kg) 25 25 25 25
Route of Administration IV SC IV SC IV SC IV SC
Fnax (h) 1 4 1 4 4 2 2 8
cmax (gg/g) 67.9 126 37.0 80.5 35.3 117 73.8 174
AUC0]ast (h-pg/g) 632 1092 324 763 984 2131 1429 4583
MRT0.last(h) 8.7 6.5 5.9 8.5 45.7 40.2 29.4 25.3
Apparent t1/2B (h) 8.1 8.2 5.7 10.0 51.1 45.3 41.1 52.7
149
Examplc 8: In vitro Stabilïty of RNAi Agents in Monkey Sérum
The sérum stability of RNAi agents AD-51544, AD-51545, AD-51546, and AD51547 was also assessed in monkeys. The results demonstrated that the antisense and sense strands of AD-51544, AD-51545, and AD-51547 showed sérum stability over a period of about 24 hours (data not shown).
Example 9: RNAi Agents Produce Lasting Suppression of TTR Protein in NonHuman Primates
The RNA silencing activity of RNAi agents AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547 was assessed by measuring suppression of TTR protein in sérum of cynomologous monkeys following subcutaneous administration of five 5 mg/kg doses (one dose each day for 5 days) or a single 25mg/kg dose. Pre-dose TTR protein levels in sérum were assessed by averaging the levels at 11 days prior to the first dose, 7 days prior to the first dose, and 1 day prior to the first dose. Post-dose sérum levels of TTR protein were assessed by determining the level in sérum beginning at 1 day after the final dose (i.e., study day 5 in the 5x5 mg/kg group and study day 1 in the 1x25 mg/kg group) until 49 days after the last dose (i.e., study day 53 in the 5x5 mg/kg group and study day 49 in the 1x25 mg/kg group). See Figure 13.
TTR protein levels were assessed as described in Example 6. The results are shown in Figure 14 and in Tables 7 and 8.
A maximal suppression of TTR protein of up to about 50% was achieved in the groups that received 25 mg/kg of AD-45163, AD-51544, AD-51546, and AD-51547 (see Table 8). A greater maximal suppression of TTR protein of about 70% was achieved in the groups that received 5x5 mg/kg of AD-45163, AD-51544, AD-51546, and AD-51547 (see Table 7). The agent AD-51545 produced a lesser degree of suppression in both administration protocols. Significant suppression of about 20% or more persisted for up to 49 days after the last dose of AD-51546 and AD-51547 in both the 1x25 mg/kg and 5x5 mg/kg protocols. Generally, better suppression was achieved in the 5x5 mg/kg protocol than in the 1x25 mg/kg protocol.
150
Table 7 Fraction Sérum Transthyretin Relative to Pre-dose in Cynomolgus Monkeys ( 5 mg/kg daily for 5 days)
D-ll D-7 D-l D5 D7 D9 Dll D14 D18 D22 D26 D32 D39 D46 D53
AD45163 0.98 0.99 1.03 0.71 0.52 0.40 0.34 0.27 0.31 0.39 0.48 0.64 0.68 0.81 0.88
AD51544 1.02 0.99 0.99 0.60 0.47 0.37 0.35 0.39 0.48 0.58 0.66 0.74 0.83 0.91 0.92
AD51545 1.03 0.97 1.00 0.73 0.65 0.63 0.69 0.68 0.78 0.87 0.97 1.00 1.03 1.06 1.09
AD51546 1.01 0.97 1.02 0.59 0.42 0.35 0.30 0.32 0.43 0.58 0.66 0.77 0.92 0.93 0.97
AD51547 0.99 0.99 1.02 0.74 0.54 0.41 0.34 0.34 0.39 0.49 0.51 0.53 0.65 0.70 0.77
Table i : Fraction Sérum Transthyretin Relative to Pre-dose in Cynomo gus Monkeys (25 mg/kg
D-ll D-7 D-l DI D3 D5 D7 D10 D14 D18 D22 D28 D35 D42 D49
AD45163 1.04 1.01 0.95 0.99 0.84 0.67 0.57 0.44 0.45 0.51 0.58 0.66 0.72 0.78 0.85
AD51544 1.01 1.04 0.95 0.92 0.69 0.57 0.49 0.48 0.56 0.65 0.69 0.77 0.83 0.87 0.94
AD51545 0.98 1.02 0.99 0.87 0.77 0.69 0.71 0.72 0.84 0.90 0.92 0.99 1.00 1.00 1.00
AD51546 1.04 1.03 0.93 0.89 0.71 0.62 0.53 0.50 0.55 0.70 0.70 0.69 0.72 0.79 0.84
AD51547 0.96 1.03 1.01 1.19 0.90 0.70 0.54 0.48 0.50 0.50 0.52 0.58 0.62 0.70 0.72
151
Example 10: Tolerability of RNAi Agents that Target TTR
In Cytokine Evaluation in Whole Blood Assay
To assess the tolerability of RNAi agents that target TTR (including AD-45163, AD-51544, AD-51545, AD-51546, and AD-51547), each agent was tested in a whole blood assay using blood from three human donors. The agents were either 300 nM DOTAP transfected or 1 μΜ without transfection reagent (ffee siRNA). There was less than a two fold change for the following cytokines/chemokines: G-CSF, IFN-γ, IL-10, IL-12 (p70), IL1 β, IL-Ira, IL-6, IL-8, IP-10, MCP-1, ΜΙΡ-Ια, MIP-Ιβ, TNFa. (Results not shown).
In Vivo Evaluation
To assess in vivo tolerability, RNAi agents were injected subcutaneously in CD1 mice at a dose of 125 mg/kg. No cytokine induction was observed at 2,4, 6,24, or 48 hours after subcutaneous injection of AD-45163. No significant cytokine induction was observed at 6 or 24 hours after subcucutaneous injection of AD-51544, AD-51545, AD51546, or AD-51547.
To further assess in vivo tolerability, multiple RNAi agents (including AD45163, AD-51544, AD-51545, AD-51546, and AD-51547) were tested by subcutaneous injection of 5 and 25 mg in non-human primates (cynomologous monkeys) with dose volumes between 1-2 ml per site. No erythema or edema was observed at injection sites.
Single SC Dose Rat Tolerability Study
To assess toxicity, rats were injected with a single subcutaneous dose of 100, 250,500, or 750 mg/kg of AD-45163 (see Table 9). The following assessments were made: clinical signs of toxicity, body weight, hematology, clinical chemistry and coagulation, organ weights (liver & spleen); gross and microscopie évaluation (kidney, liver, lung, lymph node, spleen, testes, thymus, aorta, heart, intestine (small and large).
152
Table 9: Single SC Dose Rat Tolerability Study: 100, 250, 500 & 750 mg/kg of AD45163 in Sprague Dawley Rats
Group Dose Level (mg/kg) i Dose Volume (iml/kg) Route & Regimen No. Male Sprague Dawley Rats Day of Necropsy
PBS 0 10 SC Injection Day 1 (2 sites) 7/group (5 Tox animais, 2TK animais) Day 4
AD-45163 Parent 100
250
500
750
The results showed no test article-related clinical signs of toxicity, effects on body weight, organ weights, or clinical chemistry. No histopathology was observed in heart, kidneys, testes, spleen, liver, and thymus. There was a non-adverse, slight test article-related increase in WBC (|68%, primarily attributed to increase in NEUT and MONO) at 750 mg/kg. These results indicate that a single-dose of up to 750 mg/kg is well tolerated in rats.
Tolerability of Repeated Subcutaneous Administrations in Rats
To assess the tolerability of repeated subcutaneous administrations of AD-45163, daily subcutaneous injections of 300 mg/kg were given for 5 days, and a necropsy was performed on day 6. The study design is shown in Table 10,
153
Table 10: Five Day Repeat Dose Tolerability Study in Rat
Group Dose Level (kmg/kg Conc (mg/mL) No of Tox Animais Nx Day 6
PBS 0 0 2M, 2F 2M, 2F
AD-45163 300 150 2M, 2F 2M, 2F
The following outcome variables were assessed: clinical signs, body weîghts, hematology, clinical chemistry and coagulation, organ weights, gross and microscopie évaluation (liver, spleen, kidney, heart, GI tract and first and last injection site). The results showed no test article-related clinical signs, body weight or organ weight effects, and also no test article-related findings in clinical hematology or chemistry. There was a possible slight prolongation of activated partial thromboplastin time (APTT) on day 6 (20.4 vs. 17.4 sec). Histopathology reveaied no test article-related findings in the liver, spleen, heart, and GI tract. In the kidney, minimal to slight hypertrophy of the tubular epithelium (not adverse) was observed. At the last injection site, there was minimal multifocal mononuclear infiltration, not adverse. These results indicate that five daily 300 mg/kg doses of the parent RNAi agent AD-45163 are well tolerated in rats.
Example 11: RNAi Agents Produce Lasting Suppression of TTR Protein in NonHuman Primates
The RNA silencing activity of RNAi agent AD-51547 was assessed by measuring suppression of TTR protein in the sérum of cynomologous monkeys following subcutaneous administration of a “loading phase” of the RNAi agent: five daily doses of either 2.5 mg/kg, 5 mg/kg or 10 mg/kg (one dose each day for 5 days) followed by a “maintenance phase” of the RNAi agent: weekly dosing of either 2.5 mg/kg, 5 mg/kg or 10 mg/kg for 4 weeks. Pre-dose TTR protein levels in sérum were assessed by averaging the levels at 11 days prior to the first dose, 7 days prior to the first dose, and 1 day prior to the first dose. Post-dose sérum levels of TTR protein were assessed by determining the Ievel in sérum relative to pre-dose beginning at 1 day after
154 the loading phase was completed until 40 days after the last dose of the maintenance phase (i.e., study day 70),
TTR protein levels were assessed as described in Example 6, The results are shown in Figure 15.
A maximal suppression of TTR protein of up to about 80% was achieved in ail of the groups that received either 2.5 mg/kg, 5 mg/kg or 10 mg/kg of AD-51547. Nadir knockdown was achieved in ail of the groups by about day 14, the suppression sustained at nadir knockdown levels with a weekly maintenance dose of either 2.5 mg/kg, 5 mg/kg or 10 mg/kg of AD-51547. The levels of TTR had not retumed to baseline more than 40 days after the day of administration of the last maintenance dose for the 5 and 2.5 mg/kg dose levels.
155
Equivalents:
Those skilled in the art will recognize, or be able to ascertain using no more than routine expérimentation, many équivalents to the spécifie embodiments and methods described herein. Such équivalents are intended to be encompassed by the scope of the 5 following claims.

Claims (112)

  1. We claim:
    1. A double stranded RNAi agent comprising a sense strand complementary to an antisense strand, wherein said antisense strand comprises a région complementary to part of an mRNA encoding transthyretin (TTR), wherein each strand has about 14 to about 30 nucléotides, wherein said double stranded RNAi agent is represented by formula (III):
    sense: 5’ np -Na -(X X X)j-Nb -Y Y Y -Nb -(Z Z Z)j -Na - nq 3' antisense: 3' np'-Na'-(X'X'X')k-Nb'-Y'Y'Y'-Nb'-(Z'Z'Z')j-Na'- nq' 5’ (HI) wherein:
    i, j, k, and 1 are each independently 0 or 1 ;
    p, p’, q, and q' are each independently 0-6;
    each Na and Na' independently represents an oligonucleotide sequence comprising 0-25 nucléotides which are either modified or unmodified or combinations thereof, each sequence comprising at least two differently modified nucléotides;
    each Nb and Nb' independently represents an oligonucleotide sequence comprising 0-10 nucléotides which are either modified or unmodified or combinations thereof;
    each np, np', nq, and nq' independently represents an overhang nucléotide;
    XXX, ΥΎΥ, ZZZ, X'X'X', ΥΎΎ', and Z'Z'Z' each independently represent one motif of three identical modifications on three consecutive nucléotides;
    modifications on Nb differ from the modification on Y and modifications on Nb' differ from the modification on Y'; and wherein the sense strand is conjugated to at least one ligand.
    157
  2. 2. The RNAi agent of claim 1, wherein i is 1 ; j is 1 ; or both i and j are 1.
  3. 3. The RNAi agent of claim 1, wherein k is 1 ; 1 is 1 ; or both k and 1 are 1.
  4. 4. The RNAi agent of claim 1, wherein XXX is complementary to X'X'X', YYY is complementary to ΥΎΎ', and ZZZ is complementary to Z'Z'Z'.
  5. 5. The RNAi agent of claim 1, wherein the YYY motif occurs at or near the cleavage site of the sense strand.
  6. 6. The RNAi agent of claim 1, wherein the ΥΎΎ* motif occurs at the 11, 12 and 13 positions of the antisense strand from the 5'-end.
  7. 7. The RNAi agent of claim 6, wherein the Y' is 2'-O-methyl.
  8. 8. The RNAi agent of claim 1, wherein formula (III) is represented as formula (Ilia):
    sense: 5' np -Na -YYY -Nb -ZZZ -Na-nq 3’ antisense: 3' np'-Na'-Y'Y'Y'-Nb'-Z'Z'Z'-Na'nq' 5' (Ilia) wherein each Nb and Nb' independently represents an oligonucleotide sequence comprising 1-5 modified nucléotides.
  9. 9. The RNAi agent of claim 1, wherein formula (III) is represented as formula (Illb):
    sense: 5’ np-Na-X X X -Nb-Y Y Y -Na-nq 3' antisense: 3' np'-Na'-X'X'X'-Nb'-Y'Y'Y'-N0'-nq' 5’ (Illb) wherein each Nb and Nb' independently represents an oligonucleotide sequence comprising 1-5 modified nucléotides.
  10. 10. The RNAi agent claim 1, wherein formula (III) is represented as formula (IIIc):
    sense: 5’ np-Na-X X X -Nb-Y Y Y -Nb-Z Z Z -Na-nq 3’
    158 antisense: 3' np'-Na'-X'X'X'-Nb'-Y'Y'Y'-Nb'-Z'Z'Z'-N0'-nq' 5’ (IIIc) wherein each Nb and Nb' independently represents an oligonucleotide sequence comprising l-5 modified nucléotides and each Na and Na' independently represents an oligonucleotide sequence comprising 2-10 modified nucléotides.
  11. 11. The RNAi agent of claim 1, wherein the duplex région is 15-30 nucléotide pairs in length,
  12. 12. The RNAi agent of claim 11, wherein the duplex région is 17-23 nucléotide pairs in length.
  13. 13. The RNAi agent of claim 11, wherein the duplex région is 17-25 nucléotide pairs in length.
  14. 14. The RNAi agent of claim 11, wherein the duplex région is 23-27 nucléotide pairs in length.
  15. 15. The RNAi agent of claim 11, wherein the duplex région is 19-21 nucléotide pairs in length.
  16. 16. The RNAi agent of claim 13, wherein the duplex région is 21-23 nucléotide pairs in length.
  17. 17. The RNAi agent of claim 1, wherein each strand has 15-30 nucléotides.
  18. 18. The RNAi agent of claim 1, wherein the modifications on the nucléotides are selected from the group consisting of LNA, HNA, CeNA, 2'-methoxyethyl, 2'-O-alkyl, 2'-O-allyl, 2'-C- allyl, 2'-fluoro, 2'-deoxy, 2’-hydroxyI, and combinations thereof.
  19. 19. The RNAi agent of claim 18, wherein the modifications on the nucléotides are 2'-O-methyl,2'-fluoro or both.
  20. 20. The RNAi agent of claim 1, wherein the ligand is one or more GalNAc dérivatives attached through a bivalent or trivalent branched linker.
    159
  21. 22. The RNAi agent of claim 1, wherein the ligand is attached to the 3’ end of the sense strand.
    5
  22. 23. The RNAi agent of claim 22, wherein the RNAi agent is conjugated to the ligand as shown in the following schematic wherein X is O or S.
    10 23a. The RNAi agent of claim 23, wherein the RNAi agent is conjugated to the ligand as shown in the following schematic
    160
  23. 24. The RNAi agent of claim l further comprising at least one phosphorothioate or methylphosphonate intemucleotide linkage.
  24. 25. The RNAi agent of claim 24, wherein the phosphorothioate or
    5 methylphosphonate intemucleotide linkage is at the 3’-terminal of one strand.
  25. 26. The RNAi agent of claim 25, wherein said strand is the antisense strand.
  26. 27. The RNAi agent of claim 25, wherein said strand is the sense strand.
  27. 28. The RNAi agent of claim l, wherein the base pair at the l position of the 5’-end of the antisense strand of the duplex is an AU base pair.
    10
  28. 29. The RNAi agent of claim l, wherein the Y nucléotides contain a 2’-fluoro modification.
  29. 30. The RNAi agent of claim l, wherein the Y’ nucléotides contain a 2’-O-methyl modification.
  30. 31. The RNAi agent of claim 1, wherein p'>0.
    15
  31. 32. The RNAi agent of claim 1, wherein p'=2.
  32. 33. The RNAi agent of claim 32, wherein q’=0, p=0, q=0, and p’ overhang nucléotides are complementary to the target mRNA.
  33. 34. The RNAi agent of claim 32, wherein q’=0, p=0, q=0, and p’ overhang nucléotides are non-complementary to the target mRNA.
    161
  34. 35. The RNAi agent of claim 32, wherein the sense strand has a total of 21 nucléotides and the antisense strand has a total of 23 nucléotides.
  35. 36. The RNAi agent of any one of claims 31-35, wherein at least one np' is linked to a neighboring nucléotide via a phosphorothioate linkage.
  36. 37. The RNAi agent of claim 36, wherein ail np' are linked to neighboring nucléotides via phosphorothioate linkages.
  37. 38. The RNAi agent of claim 1 selected from the group of RNAi agents listed in Table 1.
  38. 39. The RNAi agent of claim 1 selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547.
  39. 40. The RNAi agent of claim 39, wherein the RNAi agent is AD-51547.
  40. 41. A cell containing the double stranded RNAi agent of any one of claims 1 to 40.
  41. 42. A pharmaceutical composition comprising an RNAi agent of any one of claims 1 to 40.
  42. 43. The pharmaceutical composition of claim 42, wherein RNAi agent is administered in an unbuffered solution.
  43. 44. The pharmaceutical composition of claim 43, wherein said unbuffered solution is saline or water.
  44. 45. The pharmaceutical composition of claim 42, wherein said siRNA is administered with a buffer solution.
  45. 46. The pharmaceutical composition of claim 45, wherein said buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.
    162
  46. 47. The pharmaceutical composition of claim 46, wherein said buffer solution is phosphate buffered saline (PBS).
  47. 48. The pharmaceutical composition of claim 42, wherein said pharmaceutical composition is a liposome.
  48. 49. The pharmaceutical composition of claim 42, wherein said pharmaceutical composition is a lipid formulation.
  49. 50. A method of inhibiting expression of a transthyretîn (TTR) in a cell comprising contacting said cell with an RNAi agent of any one of daims 1 to 40 or with a pharmaceutical composition of any one of daims 42 to 49 in an amount effective to inhibit expression of said TTR in said cell, thereby inhibiting expression of said transthyretîn (TTR) in said cell.
  50. 51. The method of claim 50, wherein expression of said TTR is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%.
  51. 52. The method of claim 50, wherein said cell is contacted in vitro with said RNAi agent.
  52. 53. The method of claim 50, wherein said cell is présent within a subject.
  53. 54. The method of claim 53, wherein said subject is a human.
  54. 55. The method of claim 53, wherein said subject is suffering from a TTR-associated disease and said effective amount is a therapeutically effective amount.
  55. 56. The method of claim 53, wherein said subject is a subject at risk for developing a
    TTR-associated disease and said effective amount is a prophylactically effective amount.
  56. 57. The method of claim 56, wherein said subject carries a TTR gene mutation that is associated with the development of a TTR-associated disease.
    163
  57. 58. The method of claim 55 or 56, wherein said TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.
  58. 59. The method of claim 53, wherein said subject has a TTR-associated amyloidosis and said method reduces an amyloid TTR deposit in said subject.
  59. 60. The method of claim 53, wherein said RNAi agent is administered to said subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof.
  60. 61. The method of claim 53, wherein said RNAi agent is administered to said subject via subcutaneous, intramuscular or intravenous administration.
  61. 62. The method of claim 61, wherein said subcutaneous administration comprises administration via a subcutaneous pump or subcutaneous depot.
  62. 63. The method of claim 53, wherein said RNAi agent is administered to said subject, such that said RNAi agent is delivered to a spécifie site within said subject.
  63. 64. The method of claim 63, wherein said site is selected from the group consisting of liver, choroîd plexus, retina, and pancréas.
  64. 65. The method of claim 63, wherein said site is the liver,
  65. 66. The method of claim 63, wherein delivery of said RNAi agent is mediated by an asialoglycoprotein receptor (ASGP-R) présent in hépatocytes.
  66. 67. The method of claim 53, wherein said RNAi agent is administered at a dose of 0.05-50 mg/kg.
  67. 68. The method of claim 53, wherein said RNAi agent is administered in two or more doses.
    164
  68. 69. The method of claim 68, wherein said RNAi agent is administered at intervals selected from the group consisting of once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, and once every about 96 hours.
  69. 70. The method of claim 53, further comprising assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.
  70. 71. The method of claim 53, wherein administering said RNAi agent does not resuit in an inflammatory response in said subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN-γ, IL-10, IL-12 (p70), IL 1 β, IL-lra, IL-6, IL-8, IP-10, MCP-1, ΜΙΡ-Ια, MIP-Ιβ, TNFa, and any combinations thereof, in a sample from said subject.
  71. 72. The method of claim 53, wherein said RNAi agent is administered using a pharmaceutical composition.
  72. 73. The method of claim 72, wherein said siRNA is administered in an unbuffered solution.
  73. 74. The method of claim 73, wherein said unbuffered solution is saline or water.
  74. 75. The method of claim 72, wherein said siRNA is administered with a buffer solution.
  75. 76. The method of claim 75, wherein said buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.
  76. 77. The method of claim 76, wherein said buffer solution is phosphate buffered saline (PBS).
  77. 78. The method of claim 72, wherein said pharmaceutical composition is a liposome.
    165
  78. 79. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeutically effective amount or a prophylactically effective amount of an RNAi agent of any one of daims 1 to 40 or a pharmaceutical composition of any one of daims 42 to 49, thereby treating or preventing said TTR-associated disease in said subject.
  79. 80. The method of claim 79, wherein TTR expression in a sample derived from said subject is inhibited by at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90%.
  80. 81. The method of claim 79, wherein said subject is a human.
  81. 82. The method of claim 79, wherein said subject is a subject suffering from a TTRassociated disease.
  82. 83. The method of daim 79, wherein said subject is a subject at risk for developing a TTR-associated disease.
  83. 84. The method of claim 79, wherein said subject carries a TTR gene mutation that is associated with the development of a TTR-associated disease.
  84. 85. The method of claim 79, wherein said TTR-associated disease is selected from the group consisting of senile systemic amyloidosis (SSA), systemic familial amyloidosis, familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy (FAC), leptomeningeal/Central Nervous System (CNS) amyloidosis, and hyperthyroxinemia.
  85. 86. The method of claim 79, wherein said subject has a TTR-associated amyloidosis and said method reduces an amyloid TTR deposit in said subject.
  86. 87. The method of claim 79, wherein said RNAi agent is administered to said subject by an administration means selected from the group consisting of subcutaneous, intravenous, intramuscular, intrabronchial, intrapleural, intraperitoneal, intraarterial, lymphatic, cerebrospinal, and any combinations thereof.
    166
  87. 88. The method of claim 79, wherein said RNAi agent is administered to said subject via subcutaneous, intramuscular or intravenous administration.
  88. 89. The method of claim 88, wherein said subcutaneous administration comprises administration via a subcutaneous pump or subcutaneous depot.
  89. 90. The method of claim 79, wherein said RNAi agent is administered to said subject, such that said RNAi agent is delivered to a spécifie site within said subject.
  90. 91. The method of claim 90, wherein said site is selected from the group consisting of liver, choroid plexus, retina, and pancréas.
  91. 92. The method of claim 90 wherein said site is the liver.
  92. 93. The method of claim 90, wherein delivery of said RNAi agent is mediated by an asialoglycoprotein receptor (ASGP-R) présent in hépatocytes.
  93. 94. The method of claim 79, wherein said RNAi agent is administered at a dose of 0.05-50 mg/kg.
  94. 95. The method of claim 79, wherein said RNAi agent is administered in two or more doses.
  95. 96. The method of claim 95, wherein said RNAi agent is administered at intervals selected from the group consisting of once every about 12 hours, once every about 24 hours, once every about 48 hours, once every about 72 hours, and once every about 96 hours.
  96. 97. The method of claim 79, further comprising assessing the level of TTR mRNA expression or TTR protein expression in a sample derived from the subject.
  97. 98. The method of claim 79, wherein administering said RNAi agent does not resuit in an inflammatory response in said subject as assessed based on the level of a cytokine or chemokine selected from the group consisting of G-CSF, IFN-γ, IL-10, IL-12 (p70), IL1 β, IL-Ira, IL-6, IL-8, IP-10, MCP-1, ΜΙΡ-Ια, MIP-Ιβ, TNFa, and any combinations thereof, in a sample from said subject.
    167
  98. 99. The method of claim 79, wherein said RNAi agent is administered using a pharmaceutical composition.
  99. 100. The method of claim 99, wherein said siRNA is administered in an unbuffered solution.
  100. 101. The method of claim 100, wherein said unbuffered solution is saline or water.
  101. 102. The method of claim 99, wherein said siRNA is administered with a buffer solution.
  102. 103. The method of claim 102, wherein said buffer solution comprises acetate, citrate, prolamine, carbonate, or phosphate or any combination thereof.
  103. 104. The method of claim 103, wherein said buffer solution is phosphate buffered saline (PBS).
  104. 105. The method of claim 99, wherein said pharmaceutical composition is a liposome.
  105. 106. A method of inhibiting expression of transthyretin (TTR) in a cell, comprising contactîng said cell with a double stranded RNAi agent in an amount effective to inhibit expression of TTR in said cell, wherein said double stranded RNAi agent is selected from the group of RNAi agents listed in Table 1, thereby inhibiting expression of transthyretin (TTR) in said cell.
  106. 107. A method of inhibiting expression of transthyretin (TTR) in a cell, comprising contactîng said cell with a double stranded RNAi agent in an amount effective to inhibit expression of TTR in said cell, wherein said double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby inhibiting expression of transthyretin (TTR) in said cell.
  107. 108. A method of inhibiting expression of transthyretin (TTR) in a cell, comprising contactîng said cell with a double stranded RNAi agent in an amount effective to inhibit expression of TTR in said cell, wherein said double stranded RNAi agent is AD-51547, thereby inhibiting expression of transthyretin (TTR) in said cell.
    168
  108. 109. A method of treating or preventing a TTR-assocîated disease in a subject, comprising administering to said subject a therapeuticaliy effective amount or a prophylactically effective amount of a double stranded RNAi agent, wherein said double stranded RNAi agent is selected from the group of agents listed in Table 1, thereby treating or preventing a TTR-associated disease in said subject.
  109. 110. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeuticaliy effective amount or a prophylactically effective amount of a double stranded RNAi agent, wherein said double stranded RNAi agent is selected from the group consisting of AD-51544, AD-51545, AD-51546, and AD-51547, thereby treating or preventing a TTR-associated disease in said subject.
  110. 111. A method of treating or preventing a TTR-associated disease in a subject, comprising administering to said subject a therapeuticaliy effective amount or a prophylactically effective amount of a double stranded RNAi agent, wherein said double stranded RNAi agent is AD-51547, thereby treating or preventing a TTR-associated disease in said subject.
  111. 112. A kit for performing the method of claim 45, comprising
    a) said RNAi agent, and
    b) instructions for use.
  112. 113. A kit for performing the method of claim 73, comprising
    a) said RNAi agent,
    b) instructions for use, and
    c) optionally, means for administering said RNAi agent to said subject.
OA1201400209 2011-11-18 2012-11-16 RNAI agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases. OA16815A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61/561,710 2011-11-18
US61/615,618 2012-03-26
US61/680,098 2012-08-06

Publications (1)

Publication Number Publication Date
OA16815A true OA16815A (en) 2016-01-04

Family

ID=

Similar Documents

Publication Publication Date Title
US20230010288A1 (en) Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
EP2880162B1 (en) Modified rnai agents
WO2015042564A1 (en) Methods for treating or preventing transthyretin (ttr) associated diseases
US20220072028A1 (en) Methods for the treatment of trinucleotide repeat expansion disorders associated with msh3 activity
US20230042436A1 (en) Methods for the treatment of trinucleotide repeat expansion disorders associated with mlh3 activity
OA16815A (en) RNAI agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases.
US20230041178A1 (en) Methods for the treatment of trinucleotide repeat exapnsion disorders associated with ogg1 activity
RU2804776C2 (en) AGENTS FOR RNAi, COMPOSITIONS AND METHODS OF THEIR USE FOR THE TREATMENT OF DISEASES ASSOCIATED WITH TRANSTHYRETIN (TTR)