OA16310A - Vertical ring high gradient magnetic separator. - Google Patents

Vertical ring high gradient magnetic separator. Download PDF

Info

Publication number
OA16310A
OA16310A OA1201300085 OA16310A OA 16310 A OA16310 A OA 16310A OA 1201300085 OA1201300085 OA 1201300085 OA 16310 A OA16310 A OA 16310A
Authority
OA
OAPI
Prior art keywords
insulating pad
pad strips
coil
gradient magnetic
winding coil
Prior art date
Application number
OA1201300085
Inventor
Zhaolian; WANG
Yuzhou Zhou
Hongli Jia
Fengliang Liu
Liangliang Zeng
Shichang LIU
Original Assignee
Shandong Huate Magnet Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Huate Magnet Technology Co., Ltd filed Critical Shandong Huate Magnet Technology Co., Ltd
Publication of OA16310A publication Critical patent/OA16310A/en

Links

Abstract

A vertical ring high gradient magnetic separator, including an excitation winding coil (11) and a coil housing (12), wherein the winding coil (11) is submerged in the cooling liquid of the coil housing (12), the winding coil (11) is of a multilayer structure, and a gap through which the cooling liquid can pass is formed among each layer or a plurality of layers of the winding coil (11). The winding coil (11) of the vertical ring high gradient magnetic separator has rapid heat dissipation capability in the cooling liquid and can ensure that the winding coil (11) keeps a relatively low temperature during operation so as to obtain a relatively high magnetic field strength.

Description

[0003] The présent application relates to the technical field of minerai séparation equipment, and particularly to a vertical ring high gradient magnetic separator.
BACKGROUND OFTHE INVENTION [0004] One of the conventional main methods for wet separating weak magnetic minerais is to separate materials by using a vertical ring high gradient magnetic separator.
[0005] The vertical ring high gradient magnetic separator is a kind of device for wet separating weak magnetic minerais using a higher magnetic field generated by a cooled wînding coil having a lower température. The séparation principle of the vertical ring high gradient magnetic separator is as follows: the magnetic field generated by the winding coil passes through upper and lower magnetic yokes to form a magnetic circuit; a rotary ring mounted with a magnetic medium is provided in a space between the upper and lower magnetic yokes and the winding coil. A lower part of the rotary ring is immerged in ore slurry, and along with the rotation of the rotary ring, the magnetized medium absorbs magnetic minerai particles onto a surface of the magnetic medium.
[0006] After the rotary ring brings the magnetic medium immerged in the ore slurry to leave the ore slurry and rotâtes by a certain angle, pressure water provided at the top of the «
r
X rotary ring flushes the magnetic minerai particles into a concentrate collection apparatus to achieve the séparation of materials.
[0007] A higher magnetic field is required to realize the séparation of the weak magnetic i minerais and many associated minerais, and the magnetic field is mainly generated b y the | winding coil. From a technical perspective, when the winding coil has same parameters, such as the number of tums, wire diameter, material, current, voltage, the higher the température ri se of the coil is, the greater the wire résistance is, and the greater the thermal decay of the magnetic field is, and also the insulation of the coil déclinés graduaily.
[0008] At présent, the cooling way of the vertical ring high gradient coil mainly includes an inner-cooling way and an extemal-coolîng way.
[0009] The inner-cooling way uses a copper hollow conducting wire, and cooling water is introduced into the conducting wire to take away heat. Since the water contains some impurities, during a long-term using process, the cooling water is easy to form lîmescale to block the hole of the coil, thereby causing a high failure rate. In addition, the cooling water after being used drains away directly, which causes a serious waste of water resources, and there are also other disadvantages, such as high consumption of copper, high cost and complicated process.
[0010] In the extemal-coolîng way, the coil is immerged in cooling oil, the cooling oil circulâtes outside the winding coil to dîssipate heat by a cooling apparatus in the circulation circuit. The cooling effect of this cooling way mainly dépends on two aspects: the capability of the cooling oil of taking away the heat of the winding coil timely, and the capability of the cooling apparatus of dissipating heat of the cooling oil. As for the first aspect, the existing formed winding coil generally forms an compact unity, and only the external of the winding coil can in contact with the cooling oil directly, therefore, the cooling oil can only take away !
the heat at the outer surface of the winding coil timely, and the heat generated inside the winding coil can only be transferred to the external of the winding coil first and then is transferred to the cooling oil. Due to the restriction of heat conduction efficiency, a lot of heat may accumulated inside the winding coil and can not be dissipated, thereby causing the rise of the overall température of the winding coil and réduction of the magnetic field strength.
[0011] Therefore, a technical problem to be solved by those skilled in the art is to improve the heat dissipation capability of the winding coil of the vertical ring high gradient magnetic
separator in the coolant so as to ensure the winding coil maintaining a lower température during operation, thereby obtaining a higher magnetic field strength.
SUMMARY OF THE INVENTION [0012] An object of the présent application is to provide a vertical ring high gradient magnetic separator. A winding coil of the vertical ring high gradient magnetic separator has a rapid heat dissipation capability in coolant, which ensures the winding coil maintaining a lower température during operation, thereby obtaining a higher magnetic field strength.
10013] For realizing the above object, the présent application provides a vertical ring high gradient magnetic separator including an exciting winding coil and a coil casing, wherein the winding coil is immerged in coolant in the coil casing and the winding coil is of a multî-layer structure, and an insulating member is provided between each layer or a plurality of layers of the winding coil to form gaps through which the coolant passes.
[0014] Preferably, the insulating member includes first insulating pad strips located between 15 each layer or a plurality of layers of the winding coil, which are arranged inclînedly with respect to a flow direction ofthe coolant and are spaced apart from each other.
|0015] Preferably, second insulating pad strips are further provided for connecting the first insulating pad strips, the second insulating pad strips are arranged intersecting with the first insulating pad strips and are embedded in notches of the first insulating pad strips.
[0016] Preferably, the second insulating pad strips are arranged along the flow direction of the coolant, and each hâve a thickness less than or equal to a depth of each of the notches of the first insulating pad strips.
[0017] Preferably, the first insulating pad strips are of a double-layer structure or a multi-layer structure, wherein a layer, intersecting with the second insulating pad strips, of 25 each of the first insulating pad strips is of a multi-segment structure, and a space between adjacent segments of the layer forms each of the notches.
[0018] Preferably, third insulating pad strips are vertically provided between an inner side of the winding coil and an annular inner wall of the coil casing and are spaced apart from each other, and liquid guiding notches spaced apart from each other are provided on a side, close to 30 the annular inner wall, of each of the third insulating pad strips.
« ’ « [0019] Preferably, the third insulating pad strips are fixed to the annular inner wall.
[0020] Preferably, a liquid inlet and a liquid outlet of the coil casîng are located at two ends of the coil casing respectively.
[0021] Preferably, a liquid inlet and a liquid outlet of the coil casing are located at a same end of the coil casing, and a baffle is provided inside the coil casing for separating the liquid inlet from the liquid outlet.
[0022] Preferably, a liquid compensating tank in communication with the coil casing is mounted at an upper portion of the coil casing and a moisture-proof breather is mounted at an air inlet of the liquid compensating tank.
[0023] The vertical ring high gradient magnetic separator provided by the présent application makes further improvements on the basis of the prior art. The wîndîng coil of the vertical ring high gradient magnetic separator is of a multi-layer structure, and an insulating member is provided between each layer or a plurality of layers of the wînding coil to form gaps through which the coolant can pass. In this way, after entering into the coil casing via the liquid inlet during operation, the coolant may flow between each layer or a plurality of layers of the wînding coil, so that the contact area between the coolant and the winding coil multiplies, the coolant may be in contact with the winding coil at different positions sufficiently to exchange heat, and then the coolant carrying the heat flows toward the liquid outlet along the gaps so as to take away the heat générâted by the winding coil, this rapid heat dissipation capability can ensure the winding coil maintaining a lower température during operation, thereby obtaining a higher magnetic field strength.
[0024] In an embodiment, the insulating member includes first insulating pad strips, and first insulating pad strips between each layer or a plurality of layers of the winding coil are arranged inclinedly with respect to the flow direction of the coolant and are spaced apart from each other. Since the first insulating pad strips are arranged inclinedly with respect to the flow direction of the coolant and are spaced apart from each other, a plurality of relatively independent coolant channels may be formed between each layer or a plurality of layers of the winding coil, such that the coolant can flow through the winding coil along the channels without generating turbulent flow. In addition, the inclined arrangement can reduce the résistance for the coolant on one hand, such that the coolant can flow through the winding coil smoothly, and can obtain a longer channel length on the other hand, such that the coolant and t
r ' » « the winding coil may be in contact with each other sufficîently to exchange heat.
[0025] In another embodîment, third insulating pad strips are vertically provided between the inner side of the winding coil and the annular inner wall of the coil casing and are spaced apart from each other, and liquid guiding notches spaced apart from each other are provided on a side, close to the annular inner wall, of each of the third insulating pad strips. In this way, the coolant enters into a liquid înletting chamber of the coil casing via the liquid inlet, then flows inclinedly along the gaps of the winding coil, and then may flow to an oil retuming chamber smoothly via the liquid guiding notches of the third insulating pad strips.
BRIEF DESCRIPTION OF THE DRAWINGS [0026] Figure l is a partial sectional view of a vertical ring high gradient magnetic separator according to an embodîment of the présent application, wherein arrows in the figure indicate a flow direction of cooling oil and a flow direction of the ore-flushing water respectively;
[0027] Figure 2 is a left view of the vertical ring high gradient magnetic separator in Fig. I, wherein the part of a winding coil is a sectional view;
[0028] Figure 3 is a full sectional schematic view of the winding coil and a coil casing shown in Fig. I ;
[0029] Figure 4 is a partial enlarged schematic view of part l in Fig. 3;
[0030] Figure 5 is a schematic view taken along line A-A of Fig. 3;
[0031] Figure 6 is a partial enlarged schematic view of part II in Fig. 5;
[0032] Figure 7 is a partial schematic view showing the connection between first insulating pad strips and second insulating pad strips;
[0033] Figure 8 is a schematic view taken along line A-A of Fig. 7;
[0034] Figure 9 is a sectional view showing another connection between the first insulating pad strips and the second insulating pad strips;
[0035] Figure 10 is a top view of another winding coil and another coil casing; and [0036] Figure 11 is a partial enlarged schematic view of part III in Fig. 10.
[0037] Reference numerals in Fig. I to 11:
[0038] l. machine frame
3. lower magnetic yoke
5. ore feeding bucket
7. concentrate collection apparatus
9. tailings box
11. winding coîl
12- 1. oil inlet
13- 1. first însulating pad strip
13-3. third insulating pad strip
14. baffle
16. breather
2. upper magnetic yoke
4. rotary ring
6. water flushing bucket
8. medium box
10. pulsating box
12. coil casing
12- 2. oil outlet
13- 2. second insulating pad stripe
13-3-1. liquid guiding notches
15. oil compensating tank
DETAILED DESCRIPTION OFTHE INVENTION [0039] The object of the présent application is to provide a vertical ring high gradient magnetic separator. A winding coil of the vertical ring high gradient magnetic separator has a rapid heat dissipation capability in coolant, which ensures the winding coil maintaining a lower température during operation, thereby obtaining a higher magnetic field strength.
[0040] For those skilled în the art to better understand technical solutions of the présent application, the présent application is further described in detail below in conjunction with accompanying drawings and embodiments.
|0041] Terms indicating the directions and positions, such as “up, down, left and right”, are based on the position relationshîp of the drawings, should not be interpreted as absolute limitation to the protection scope of the présent application. Simîlarly, terms “first” and “second” herein are only used to facilitate describing, to distinguîsh different components having the same name, and are not intended to indicate the order or the primary or secondary relationshîp.
[0042] Reference îs made to Figs. I and 2. Fig. I is a partial sectional view of a vertical ring high gradient magnetic separator according to an embodiment of the présent application, wherein arrows in the figure indicate a flow direction of cooling oil and a flow direction of
the ore-flushing water respectively; and Fig. 2 is a left view of the vertical ring high gradient magnetic separator in Fig. 1, wherein the part of a winding coil is a sectional view.
10043] In an embodiment, a machine frame 1 is provided in a vertical ring high gradient magnetic separator. An upper magnetic yoke 2 and a lower magnetic yoke 3 are mounted on an upper portion of the machine frame 1. Two bearing seats of a rotary ring 4 are mounted on the upper magnetic yoke 2, and a ring body of the rotary ring 4 is located between the upper magnetic yoke 2 and the lower magnetic yoke 3. An ore feedîng bucket 5, a water flushing bucket 6 and a concentrate collection apparatus 7 are provided in an internai space between two sides of the ring body, and a medium box 8 is provided at the periphery of the rotary ring
4. During the continuous rotation of the rotary ring 4, the medium box 8 is continuously brought into the ore slurry between the upper magnetic yoke 2 and the lower magnetic yoke 3 to adsorb magnetic particles.
[0044] After rotary ring 4 brings the magnetic medium immerged in the ore slurry to leave the ore slurry and rotâtes by a certain angle, pressure water provided at the top of the rotary ring flushes the magnetic minerai particles into a concentrate collection apparatus 7 to achieve the séparation of materials.
[0045] A tailings box 9 is provided at a lower portion ofthe machine frame 1, a liquid level of the ore slurry in the tailings box 9 continuously fluctuâtes up and down under the action of a pulsatîng box 10, so as to achieve the flushing of the particles absorbed in the medium box 8, thereby împroving the concentrate grade.
[0046] Reference is made to Figs. 3 to 6. Fig. 3 is a full sectional schematic view of the winding coil and a coil casing shown in Fig. 1; Fig. 4 is a partial enlarged schematic view of part 1 in Fig. 3; Fig. 5 is a schematic view taken along line A-A of Fig. 3; and Fig. 6 is a partial enlarged schematic view of part II in Fig. 5.
[0047] As shown in figures, an exciting winding coil 11 is surroundingly mounted on a magnetic pôle, having an inner arc, of the lower magnetic yoke 3. The winding coil 11 is of a rectangular annular structure and is mounted in a hermetic coil casing 12, the coil casing 12 is made of a non-magnetic material, and the winding coil 11 is immerged in cooling oil (or other insulating coolant) in the coil casing 12. An oil inlet 12-1 and an oil outlet 12-2 are provided at middle portions of two ends of the coil casing 12, and the coil casing 12 îs connected to an extemal cooling apparatus through pipes, so that the cooling apparatus can cool the cooling oil.
[0048] The winding coil 11 is of a multi-layer structure, an insulating member is provided between each layer of the winding coil to form gaps through which the cooling oil can pass. The insulating member includes first insulating pad strips 13-1, the first insulating pad strips 13-3 between each layer of the winding coil is arranged inclinedly with respect to a flow direction of the cooling oil and are spaced apart from each other.
[0049] Specifically (see Fig. 5), the first insulating pad strips 13-1 are symmetrically distributed along a connecting line between the oil inlet 12-1 and the oil outlet 12-1. Taking the first insulating pad strips 13-1 located at an upper side as an example, firstly, the first insulating pad strips 13-1 are arranged inclinedly upwardly from the oil inlet 12-1 with respect to the flow direction of the cooling oil and are parallel to each other; and after tuming, the first insulating pad strips 13-1 are arranged inclinedly from an outer side of the winding coil toward an inner side of the winding coil with respect to the flow direction of the cooling oil and are parallel to each other, until reaching the oil outlet 12-2.
[0050] Except for the tuming portion of the coil, an included angle between each of the first insulating pad strips 13-1 and conducting wires of the winding coil 11 is generally between 35°-70°, and normally it can be designed as 45°.
|0051| Since the first insulating pad strips 13-1 are arranged inclinedly with respect to the flow direction of the cooling oil and are spaced apart from each other, a plurality of relatively independent cooling oil channels may be formed between each layer of the winding coil such that the cooling oil can flow through the winding coil 11 along the channels without generating turbulent flow. In addition, the inclined arrangement can reduce the résistance for the cooling oil on one hand, such that the cooling oil can flow through the winding coils 11 smoothly, and can obtain a longer channel length on the other hand, such that the cooling oil and the winding coil 11 may be in contact with each other sufficîently to exchange heat.
[0052] It should be noted that, the first insulating pad strips 13-1 being arranged inclinedly with respect to the flow direction of cooling oil and being spaced apart from each other is only one embodiment. According to actual needs, the first insulating pad strips 13-1 can also be arranged vertically with respect to the flow direction of cooling oil and are spaced apart from each other, i.e. the extending direction of the first insulating pad strips 13-1 îs maintained perpendicular to the extending direction of the conducting wires of the winding »
» »
coil, gaps through which the cooling oil can pass can also be formed between the winding coil.
[0053] Référencé is made to Figs. 7 and 8. Fig. 7 is a partial schematic view showing the connection between first insulating pad strips and second insulating pad strips; and Fig. 8 is a schematic view taken along line A-A of Fig. 7.
[0054] For preventing the first insulating pad strips 13-1 from moving in use, second insulating pad strips 13-2 may be further provided. One or a plurality of notches, matching a sectional shape of the second insulating pad strips 13-2, are provided at a bottom of each of the first insulating pad strips 13-1. The second insulating pad strips 13-2 are arranged substantially along the flow direction of the cooling oil. The second insulating pad strips 13-2 are arranged intersecting with the first insulating pad strips 13-1 and are embedded in the notches of the first insulating pad strips 13Ί such that the first insulating pad strips 13-1 are connected integrally, and the first insulating pad strips I3-l and the second insulating pad strips 13-2 intersect with each other to form a net structure so as to effectively fîx the first insulating pad strips 13-1, thereby preventing failure caused by the moving of the first insulating pad strips 13-1.
[0055] The length of each of the second insulating pad strips 13-2 is determined according to the number of the first insulating pad strips 13-1 to be connected by each of the second insulating pad strips 13-2. Here, a short second insulating pad strip 13-2 and a long second insulating pad strip 13-2 are provided at each side of the rectangular winding coil 11, and a thickness of each of the second insulating pad strips 13-2 is less than (or equal to) a depth of each of the notches of the first insulating pad strips 13-1 so as to ensure the integrity of channels formed by the first insulating pad strips 13-1 spaced apart from each other, thereby preventing the channels from being communicated with each other to form turbulent flow.
[0056] As an idéal solution, the first insulating pad strips 13-1 and the second insulating pad strips 13-2 may be formed integrally. Of course, without considering the turbulent flow, the first insulating pad strips 13-l and the second insulating pad strips 13-2 can also be directly stacked together or can be connected with each other by bonding or bundling.
[0057] Référencé is made to Fig. 9. Fig. 9 is a sectional view showing another connection between the first insulating pad strips and the second insulating pad strips.
» « [0058] The first insulating pad strips 13-1 are of a double-layer (or multi-layer) structure, and each of the layers are bonded together, wherein a layer, intersecting with the second insulating layer pad strips 13-2, of each of the first insulating pad strips 13-1 includes multiple segments, and a space between adjacent segments forms each of the notches. In this way, a 5 process for forming notches on the first insulating pad strips 13-1 is omitted, thereby further reducing the manufacturing difficulty.
[0059] Reference is made to Fig. 4 and Fig. 6 again. Fig. 4 is a partial enlarged schematic view of part I in Fig. 3; and Fig. 6 is a partial enlarged schematic view of part II in Fig. 5.
[0060] Third insulating pad strips 13-3 arc vertîcally provided between an inner side of the 10 winding coil 11 and an annular inner wall of the coil casing 12 and are spaced apart from each other. The third insulating pad strips 13-3 are fixed to the annular inner wall of the coil casing 12, and liquid guiding notches 13-3-1 spaced apart from each other are provided on a side, close to the annular inner wall, of each of the third insulating pad strips 13-3.
[0061| Thus, after entering into an oil inletting chamber of the coil casing 12 via the oil 15 inlet 12-1 and flowing inclinedly through the gaps between the layers of the winding coil 11, the cooling oil can flow to an oil returning chamber smoothly via the liquid guiding notches 13-3-1 of the third insulating pad strips 13-3.
[0062| When the vertical ring high gradient magnetic separator is in operation, after entering into the coil casing 12 via the oil inlet 12-1, the cooling oil can flow between each 20 layer or a plurality of layers of the winding coil, so that the contact area between the cooling oil and the winding coil 11 multiplies. The cooling oîl may be în contact with the winding coil 11 at different positions sufficiently to exchange heat, and then the cooling oil carrying the heat flows toward the oil outlet 12-2 along the gaps so as to take away the heat generated by the winding coil 11, this rapid heat dissipation capabîlity can ensure the winding coil 11 25 maintaining a lower température during operation, thereby obtaining a hîgher magnetic field strength.
[0063] Reference is made to Figs. 10 and 11. Fig. 10 is a top view of another winding coil and another coil casing; and Fig. 11 is a partial enlarged schematic view of part III in Fig. 10.
[0064] In another embodiment, the oîl inlet 12-1 and the oil outlet 12-2 of the coil casing 12 30 are located at a same end of the coil casing 12, a baffle 14 is provided inside the coil casing 12 to separate the oil inlet 12-1 from the oil outlet 12-2, and the baffle 14 is fixedly connected to the coil casing 12, and a rubber strip (not shown) is provided at a portion, jointing with the windingcoil 11, ofthe baffle 14.
[0065] Unlike the first embodiment, in this embodiment, after entering into the coil casing
12, the cooling oil flows to the oil outlet 12-2 after flowing around the cooling oil, instead of flowing to the oil outlet 12-2 from two sides of the winding coil 11. Therefore, the first insulating pad strips 13-1 are of a non-symmetrical structure and are arranged inclinedly in a clockwise manner with respect to the flow direction of the cooling oil, and other structures are the same as those in the first embodiment, which can refer to the above description.
[0066] For preventing oil overflowing or oil shortage of the cooling oil when expanding with heat or contracting with cold, an oil compensating tank 15 in communication with the coil casing 12 is provided at an upper portion of the coil casing 12. The oil compensating tank 15 can compensate oil at any time according to different températures of the cooling oil in the circulation System so as to ensure the circulation system having sufficient cooling oil.
[0067] A breather 16 in communication with a casing of the oil compensating tank 15 is mounted on the oil compensating tank 15, materials for preventing entering of moist air is provided in the breather 16. When the oil increases or decreases, the breather 16 mounted on the oil compensating tank 15 can filter the air entering into the oil compensating tank at any time, so as to prevent the air containing water from entering into the cooling oil, thereby ensuring the winding coil 11 having a higher insulating property.
100681 The conducting wire of the wire winding coil 11 can be a solid copper wire, an aluminum wire or wires made of other materials. The cross-section of the conducting wire can be rectangular or other shapes, and an extemal surface of the conducting wire is covered with a high-temperature résistant insulating material.
[0069] The above vertical ring high gradient magnetic separator is only one embodiment, the spécifie structure thereof is not limited to the above description, and various embodiments can be obtained by making spécifie adjustments on the basis of the above embodiment according to actual needs. For example, a plurality of layers of the winding coil 11 can form one group, the insulating member is provided between each group to form gaps through which the cooling oil may pass, or the insulating member can be provided in a manner of combing one layer and a plurality of layers. There are many implémentation manners, which will not be illustrated herein.
[0070J The vertical ring high gradient magnetic separator provide by the présent application is described in detail hereinabove. The principle and the embodiments of the présent application are illustrated herein by spécifie examples. The above description of examples is 5 only intended to help the understanding of the spirit of the présent application. It should be noted that, for the person skilled in the art, many modifications and improvements may be made to the présent application without departing from the principle of the présent application, and these modifications and improvements are also deemed to fall into the protection scope of the présent application defined by the claims.

Claims (10)

1. A vertical ring high gradient magnetic separator, comprising an exciting winding coil (11) and a coil casing (12), the winding coil (11) being immerged in codant in the coil casing (12) , wherein the winding coil (11) îs of a miilti-layer structure, and an insulatîng member is provided between each layer or a plurality of layers of the winding coil (11) to form gaps through which the coolant passes.
2. The vertical ring high gradient magnetic separator according to claim 1, wherein the insulatîng member comprises first insulating pad strips (13-1) located between each layer or a plurality of layers of the winding coil (11), which are arranged inclinedly with respect to a flow direction of the coolant and are spaced apart from each other.
3. The vertical ring high gradient magnetic separator according to claim 2, further comprising second insulating pad strips (13-2) connecting the first insulating pad strips (13-1), the second insulating pad strips (13-2) are arranged intersecting with the first insulating pad strips (13-1) and are embedded in notches ofthe first insulating pad strips (13-1).
4. The vertical ring high gradient magnetic separator according to claim 3, wherein the second insulating pad strips (13-2) are arranged along the flow direction of the coolant and each hâve a thickness less than or equal to a depth of each of the notches of the first insulating pad strips (13-1).
5. The vertical ring high gradient magnetic separator according to claim 3, wherein the first insulating pad strips (13-1) are of a double-layer structure or a multi-layer structure, a layer, intersecting with the second insulating pad strips (13-2), of each of the first insulating pad strips (13-1) is of a multi-segment structure, and a space between adjacent segments of the layer forms each of the notches.
6. The vertical ring high gradient magnetic separator according to claim 3, wherein third insulating pad strips (l 3-3) are vertically provided between an inner side of the winding coil (11) and an annular inner wall of the coil casing (12) and are spaced apart from each other, and liquid guiding notches (13-3-1) spaced apart from each other are provided on a side, close to the annular inner wall, of each of the third insulating pad strips ( 13-3).
7. The vertical ring high gradient magnetic separator according to claim 6, wherein the third insulating pad strips (13-3) are fixed to the annular inner wall.
8. The vertical ring high gradient magnetic separator according to any one of claims 1 to 7, wherein a liquid inlet (12-1) and a liquid outlet (12-2) of the coil casing (12) are located at two ends ofthe coil casing (12) respectively.
9. The vertical ring high gradient magnetic separator according to any one of claims 1 to 7, wherein a liquid inlet (12-1) and a liquid outlet (12-2) of the coil casing (12) are located at a same end of the coil casing (12), and a baffle (14) is provided inside the coil casing (12) for separating the liquid inlet (12-1) from the liquid outlet (12-2).
10. The vertical ring high gradient magnetic separator according to any one of claims 1 to 7, wherein a liquid compensating tank (15) in communication with the coil casing (12) is mounted at an upper portion of the coil casing (12) and a moisture-proof breather (16) is mounted at an air inlet of the liquid compensating tank (15).
OA1201300085 2011-08-15 2011-11-21 Vertical ring high gradient magnetic separator. OA16310A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110233277.5 2011-08-15
CN201120295548.5 2011-08-15

Publications (1)

Publication Number Publication Date
OA16310A true OA16310A (en) 2015-04-24

Family

ID=

Similar Documents

Publication Publication Date Title
US9079190B2 (en) Vertical ring high gradient magnetic separator
CN203951281U (en) There is the electric motor of self-support type housing
US9373988B2 (en) Assemblies and methods for cooling electric machines
CN104247233B (en) Linear electronic device
JP2017511116A (en) Induction motor with transverse liquid-cooled rotor and stator
JP7449592B2 (en) Axial flux machine stator cooling mechanism
EP3024004A1 (en) Air-cooled reactor
CN102357411B (en) Vertical ring high gradient magnetic separator
US9531242B2 (en) Apparatuses and methods for cooling electric machines
CN103415431A (en) Control device for vehicle
JP2010252507A (en) Stator of rotary electric machine, and method of cooling the same
CN111354543A (en) Magnetic assembly and power module
CN202207627U (en) Vertical ring high-gradient magnetic separator
CN104170216A (en) Electric machine having a phase separator
JP7031480B2 (en) Cooling system for power converters
OA16310A (en) Vertical ring high gradient magnetic separator.
CA2796512C (en) Vertical ring high gradient magnetic separator
CN210743737U (en) Transformer heat radiation structure
US20100194233A1 (en) Air core stator installation
CN107612271B (en) Linear motor primary and processing method of linear motor primary cooling structure
CN209526574U (en) A kind of electric machine iron core
CN108970806B (en) A kind of excitation coil structure of vertical ring high-gradient magnetic separator
CN211720395U (en) Liquid cooling structure of high-speed permanent magnet synchronous motor
CN219068014U (en) Liquid cooling device and linear motor
CN216162560U (en) Liquid cooling motor structure