NZ774862B2 - Method and apparatuses for screening - Google Patents

Method and apparatuses for screening Download PDF

Info

Publication number
NZ774862B2
NZ774862B2 NZ774862A NZ77486219A NZ774862B2 NZ 774862 B2 NZ774862 B2 NZ 774862B2 NZ 774862 A NZ774862 A NZ 774862A NZ 77486219 A NZ77486219 A NZ 77486219A NZ 774862 B2 NZ774862 B2 NZ 774862B2
Authority
NZ
New Zealand
Prior art keywords
screen
screening
approximately
screen basket
openings
Prior art date
Application number
NZ774862A
Other versions
NZ774862A (en
Inventor
James R Colgrove
Clifford C Smith
Original Assignee
Derrick Corporation
Filing date
Publication date
Priority claimed from US16/151,909 external-priority patent/US11213857B2/en
Application filed by Derrick Corporation filed Critical Derrick Corporation
Priority claimed from PCT/US2019/054743 external-priority patent/WO2020072932A2/en
Publication of NZ774862A publication Critical patent/NZ774862A/en
Publication of NZ774862B2 publication Critical patent/NZ774862B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/31Self-supporting filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/01Filters with filtering elements which move during the filtering operation with translationally moving filtering elements, e.g. pistons
    • B01D33/03Filters with filtering elements which move during the filtering operation with translationally moving filtering elements, e.g. pistons with vibrating filter elements
    • B01D33/0307Filters with filtering elements which move during the filtering operation with translationally moving filtering elements, e.g. pistons with vibrating filter elements with bag, cage, hose, tube, sleeve or the like filtering elements
    • B01D33/033Filters with filtering elements which move during the filtering operation with translationally moving filtering elements, e.g. pistons with vibrating filter elements with bag, cage, hose, tube, sleeve or the like filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/28Strainers not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/18Drum screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/18Drum screens
    • B07B1/185Drum screens provided with exchangeable sieve panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • B07B1/4609Constructional details of screens in general; Cleaning or heating of screens constructional details of screening surfaces or meshes
    • B07B1/4645Screening surfaces built up of modular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B2230/00Specific aspects relating to the whole B07B subclass
    • B07B2230/01Wet separation

Abstract

Methods and apparatuses for screening/filtering, and particularly to the use of improved screen baskets to be used in methods and systems for sorption of metals from metal-containing ore. A screening apparatus, comprising: a static vertical screen basket forming a plurality of grid openings; a plurality of screens secured over the grid openings, the screens forming a screening surface located on the outside of the screen basket; wherein the screening surface is configured to separate an oversized material from an undersized material by allowing undersized material to flow into the screen basket while preventing oversize material from entering the screen basket, wherein each screen has a synthetic screening surface having openings having sizes in a range from approximately 35 microns to approximately 4,000 microns and surface elements having a thickness T of between approximately 45 microns and 1000 microns, and wherein each synthetic screening surface is configured to separate carbon or resin from a slurry of carbon-in-leach (CIL), carbon-in-pulp (CIP), or resin-in-leach (RIL) material as fluid flows from outside the screen basket to inside the screen basket due, at least in part, to a static pressure differential between fluid outside relative to fluid inside the screen basket such that carbon or resin is retained on the synthetic screening surface.

Description

Methods and apparatuses for screening/filtering, and particularly to the use of improved screen baskets to be used in methods and systems for sorption of metals from metal-containing ore.
A screening apparatus, comprising: a static vertical screen basket forming a plurality of grid openings; a plurality of screens secured over the grid openings, the screens forming a screening surface located on the outside of the screen basket; wherein the screening surface is configured to separate an oversized material from an undersized material by allowing undersized material to flow into the screen basket while preventing oversize material from entering the screen basket, wherein each screen has a synthetic screening surface having openings having sizes in a range from approximately 35 microns to approximately 4,000 microns and surface elements having a thickness T of between approximately 45 microns and 1000 microns, and wherein each synthetic screening surface is configured to separate carbon or resin from a slurry of carbon-in-leach (CIL), carbon-in-pulp (CIP), or resin-in-leach (RIL) material as fluid flows from outside the screen basket to inside the screen basket due, at least in part, to a static pressure differential between fluid outside relative to fluid inside the screen basket such that carbon or resin is retained on the synthetic screening surface.
NZ 774862 B2 METHOD AND APPARATUSES FOR SCREENING Cross-Reference to Related Applications This application claims priority to U.S. Patent Application No. 16/151,909, which is a continuation-in-part of U.S. Patent Application No. 16/001,755, filed June 6, 2018, which claims the benefit of U.S. Patent Application No. 62/515,964, filed June 6, 2017, and U.S. Patent Application No. 62/615,302, filed January 9, 2018, the contents of each of which are incorporated by reference herein and the priority of each of which are hereby claimed.
Brief Description of Drawings Various aspects and features of the present disclosure are described herein with reference to the drawings. Like numbers refer to like, but not necessarily the same or identical, elements throughout. shows a side view of a screen basket, according to an example embodiment of the present disclosure. shows a top view of a screen basket, according to an example embodiment of the present disclosure. shows a top-side perspective view of a screen basket, according to an example embodiment of the present disclosure. shows a plan view of a polyurethane screen for use with a basket cage, according to an example embodiment of the present disclosure. shows a view of the polyurethane screen of opposite the plan view of according to an example embodiment of the present disclosure. shows a side view of a polyurethane screen for use with a basket cage, according to an example embodiment of the present disclosure. is a partial top view showing attachment of screen members to a basket frame, according to an example embodiment of the present disclosure. shows a portion of the polyurethane screen shown in shows an enlarged view of a portion of the polyurethane screen shown in shows a fragmentary side cross-sectional view of a polyurethane screen, according to an example embodiment of the present disclosure. shows an enlarged view of a portion of the fragmentary cross-sectional view shown in shows an enlarged fragmentary cross-sectional view taken substantially along line 10-10 of showing a cross-sectional configuration of a modified shape of the first members with reinforcement members, according to an example embodiment of the present disclosure. shows an enlarged fragmentary cross-sectional view similar to that of , but showing first members without reinforcement members, according to an example embodiment of the present disclosure. shows an exploded isometric view of a portion of a polyurethane screen according to an example embodiment of the present disclosure, having reinforcement members integral with the first and second members. shows an exploded view of a use of a screen basket according to an example embodiment of the present disclosure, in an embodiment of a screen separator apparatus. shows a side cross-sectional view of an example embodiment of use of a screen basket, according to an example embodiment of the present disclosure, in an embodiment of a screen separator apparatus. shows a perspective view of an example of a basket cage in accordance with an example embodiment of the disclosure.
A shows a perspective view of an example screen basket that includes multiple screening cartridge assemblies attached to a basket cage, according to an example embodiment of the present disclosure.
B shows a fragmentary perspective view of the screen basket shown in A, featuring multiple screening cartridge assemblies, according to an example embodiment of the present disclosure.
C shows a fragmentary perspective view of an interior portion of the screen basket shown in A, featuring the multiple screening cartridge assemblies, according to an example embodiment of the present disclosure. shows a fragmentary cross-sectional view of example screening cartridge assemblies mounted on a grid frame, according to an example embodiment of the present disclosure.
A shows a perspective view of an example of a screening cartridge assembly, according to an example embodiment of the present disclosure.
B shows cross-sectional and side views of the example screening cartridge assembly shown in A. Example dimensions, in units of inches, are presented in the views. The disclosure is not limited to such dimensions, and other dimensions can be contemplated.
A shows a perspective view of an example of a case of a screening cartridge assembly, according to an example embodiment of the present disclosure.
B shows cross-sectional and side views of the example case shown in A. Example dimensions, in units of inches, are presented in the views. The disclosure is not limited to such dimensions, and other dimensions can be contemplated.
C illustrates an example of multiple cases affixed to a grid frame of a basket cage, according to an example embodiment of the present disclosure.
A shows an example of a screen assembly element, according to an example embodiment of the present disclosure.
B illustrates cross-sectional and side views of the example screen assembly element shown in A. Example dimensions, in units of inches, are presented in the views.
The disclosure is not limited to such dimensions, and other dimensions can be contemplated.
A shows a perspective view of an example of a framework unit of a screen assembly, according to an example embodiment of the present disclosure.
B shows top and side views of the example framework unit shown in FIG.
A shows an example of a screen element of a screen assembly, according to an example embodiment of the present disclosure.
B shows top and side views of the example screen element shown in FIG.
C is an enlarged top view of a portion of a screen element, according to an example embodiment of the present disclosure.
A shows another example of a screen assembly element, according to an example embodiment of the present disclosure.
B shows side views of the example screen assembly element shown in FIG. shows an example of a cartridge screen element, according to an example embodiment of the present disclosure. shows an example of a bottom case portion of the cartridge screen element shown in .
Description of Embodiments The present disclosure relates to apparatuses and methods for filtering, and particularly to the use of improved screen baskets to be used in methods and systems for sorption of metals from metal-containing ore. Embodiments of the present disclosure may be utilized with carbon-in-pulp (CIP), carbon-in-leach (CIL), and resin-in-leach (RIL) systems, among others. CIL and CIP systems are, for example, two counter-current methods for adsorbing leached gold from a pulp stream onto activated carbon. In such CIL and CIP processes, a plurality of adsorption tanks are placed in a series. Pulp flows continuously from the first tank of this series to the last tank. Simultaneously, carbon is pumped counter-current from the last tank of the series to the first tank. CIP and CIP processes differ in the extent to which gold is leached prior to carbon adsorption. For example, in CIL operation, carbon is added to the leaching tanks, and the leaching reaction and adsorption occur simultaneously. In contrast, in the CIP process, the majority of the leachable gold is leached out before the first adsorption stage.
A description of a general process of recovering gold from a gold-bearing ore, employing a combined cyanidation and adsorption treatment, may be found in U.S. Patent No. 4,188,208. Although embodiments of the present disclosure are generally discussed with reference to gold or carbon, embodiments of the present disclosure may be equally applied to processes for recovering silver, iron, nickel, and other metals from the appropriate ore. The recovery of any metal from a mined ore is within the scope of the present disclosure.
A description of existing metal screen baskets and methods of use thereof in the above-described CIP processes may be found in U.S. Patent No. 5,238,117. The process described in U.S. Patent No. 5,238,117 have generally become known in the art as "NKM" vertically swept interstage screening processes, and the screen baskets used therein have generally become known in the art as NKM screen baskets. Generally, such NKM screen baskets include a metal support frame provided with a wedge wide screen wrapped around a peripheral sidewall thereof. The wedge wire screen is used to filter materials from a metal-rich pulp. The screen basket is attached to an NKM screening device, and a lower portion of this NKM screening device, including the attached NKM screen basket, is immersed in a tank containing carbon-in-pulp material. Impellers on the NKM screening device cause the pulp in the tank to follow through the wedge wire screen and into the interior of the NKM screen.
However, the wedge wire screen has a very low open screening area, which leads to inefficient screening. The low open screening area also leads to clogging. Clogging, in turn, forces increased volumes of pulp to flow through the unclogged areas of the wedge wire screen, which increases the wear rate of the screen. Additionally, the individual wires that form the wedge wire screens tend to deteriorate or break over time due to forces encountered during screening processes, such as sweeping of internal and external propulsion blades.
In exemplary embodiments of the present disclosure, an improved screen basket device for screening material is provided. The device comprises a support frame having a substantially closed bottom and an open top, and a substantially cylindrical sidewall support portion extending between the bottom and top of the support frame. The support frame may be metal, such as stainless steel. A polyurethane screen sidewall extends around and is supported by the sidewall support portion. The polyurethane screen sidewall comprises a high open-area polyurethane screen. In certain embodiments, the polyurethane screen sidewall substantially encloses the sidewall support portion between the closed bottom and open top to thereby provide a maximized screening area. The polyurethane screen sidewall may be affixed to an outer periphery of the sidewall support portion.
The polyurethane screen sidewall may be formed from a plurality of individual polyurethane screen members. These individual polyurethane screen members may be aligned adjacent to one another to provide a generally continuous screening area across the screen sidewall. In one example, the plurality of individual polyurethane screen members may include eight individual polyurethane screen members. In such embodiments, these eight individual polyurethane screen members may be arranged such that four of the screen members are on a lower half of the support frame and four of the screen members are on an upper half of the support frame.
In certain embodiments, the substantially closed bottom may be provided with a centralized aperture that allows receipt of the drive shaft of an NKM apparatus.
The high open-area polyurethane screen member, in certain embodiments, comprises a flexible molded polyurethane body; screen openings in the body; a set of first, substantially parallel flexible members defining opposite first sides of the screen openings; a set of second, substantially parallel flexible members defining second opposite sides of the screen openings, whereby the second members are substantially perpendicular to the second members; a set of third, substantially parallel members having multiple first members therebetween; a set of fourth, substantially parallel members having multiple second members therebetween; side edge portions substantially parallel at opposite sides of the body, between which the third members therein extend; and a first end portion and a second end portion substantially parallel at opposite ends of the body, between which the fourth members therein extend, whereby the end portions are substantially perpendicular to the edge portions. Screen openings in the flexible molded polyurethane body of the polyurethane screen member may be about 0.044 mm to about 4.000 mm between inner surfaces of the first members, and about 0.044 mm to about 60.000 mm between inner surfaces of the second members.
The polyurethane screen member can also include reinforcement members molded integrally within at least one of the first and third members and at least one of the second and fourth members. In some embodiments, the reinforcement members integrally formed within the first members may have a substantially uniform thickness having a magnitude in the range of about 0.006 inches to about 0.015 inches. The reinforcement members molded integrally with the second members may have a substantially uniform thickness having a magnitude in a range of about 0.015 inches to about 0.040 inches. The reinforcement members may be embodied in, for example, rods that can be molded integrally with the members. The reinforcement members may also be embodied in, for example, aramid fibers that are at least one of a twisted and a woven multistrand, with the fibers having a linear density of about 55 denier to about 2840 denier.
The side edge portions of the polyurethane screen member may be configured for use in attaching the screen member to the support frame. A plurality of enlarged polyurethane ribs can be integrally formed on an exterior surface of the polyurethane screen body, with the ribs arranged substantially vertical relative to the sidewall support portion. Each of the plurality of ribs may extend substantially from a top to a bottom of the polyurethane screen member.
In further embodiments of the present disclosure, a basket cage may be provided that includes a tubular, or substantially cylindrical grid frame with multiple openings. The multiple openings in the grid frame can be arranged in a square lattice, and each one (or, in some embodiments, at least some) of the multiple openings can have a square shape. In an example embodiment, the multiple openings can include 264 square openings. A subset of the multiple openings can be defined by longitudinal members and transversal members. A second subset of the multiple openings can be defined by longitudinal members and transversal segments of a first annular section of the grid frame, and, similarly, a third subset of the multiple openings can be defined by longitudinal members and transversal segments of a second annular section of the grid frame.
The basket cage may feature flanges at the top and bottom of the cage. The top flange and openings can permit or otherwise facilitate mounting a plate or another type of cover on the flange. In addition or in other embodiments, the flange and openings can permit or otherwise facilitate mounting the basket cage into a screen separator machine (e.g., an NKM vertically swept interstage apparatus).
The basket cage can be utilized in a separation process to separate specific particulate matter from slurry or another type of fluid source. To that end, in one embodiment, screening cartridge assemblies can be mounted to the basket cage, where the screening cartridge assemblies can permit or otherwise facilitate the separation of specific particulate matter from the slurry.
Each one of the screening cartridge assemblies can be mounted or otherwise affixed to a respective group of grid members that define, at least in part, a respective opening of the grid frame. For openings in a row about the longitudinal axis of the grid frame, a group of grid members that support a first one of the screening cartridge assembles can have a common grid member with another group of grid members that support a second one of the screening cartridge assemblies.
In some embodiments, each one of the multiple screening cartridge assemblies mounted or affixed to the grid frame includes a screening assembly and a case (or another type of container) configured to receive and hold the screen assembly. In some embodiments, the case can be embodied in a single injection molded piece integrally formed by means of injection molding a polyurethane, a thermoset polymer, or other types of polymer. Example embodiments of the injection molded piece and the process of forming the injection molded piece are discussed in more detail in the disclosures of U.S. Patent Application No. 13/800,826, U.S.
Patent No. 9,409,209, U.S. Patent No. 9,884,344, U.S. Patent Application No. 15/851,009, U.S.
Patent Application No. 15/965,195, and the cross-references included therein, which are hereby incorporated by reference herein in their entireties.
The screen assembly has, in some embodiments, three individual screen units. The case includes a first opening configured to receive and/or fit the screen assembly within the case, and a second opening that permits exposing a screening surface of the screen assembly to an exterior of the grid frame. The case also includes ridges that extend from a first edge of the case, near the first opening, to an opposing second edge of the case. The ridges and respective portions of the case form respective recesses that permit or otherwise facilitate mounting (e.g., gripping or clipping) the case to the grid frame.
The entirety or substantially the entirety of the grid frame of the screen basket can be covered with screening cartridge assemblies in operation of a separation process. As such, in an example embodiment, 264 screening cartridge assemblies can be mounted to the respective 264 square openings in the grid frame.
Further, the case can include an attachment frame section and a holder frame section.
The holder frame section can receive and/or hold the screen assembly formed by screen units.
The attachment frame section can include a set of ridges that form respective recesses, which in turn permit or otherwise facilitate attachment (e.g., by clipping, clutching, or otherwise engaging) of the screening cartridge assembly to a grid frame.
Screen cartridges according to the present disclosure may be any suitable shape for attachment to a grid frame of a basket cage. For example and without limitation, the screen cartridges may be of a square shape, or rectangular, or ovular, or any other shape. Although example embodiments may provide for screen cartridges that are shaped to substantially match the grid openings of the grid frame (i.e., a square screen cartridge on a grid frame with square grid openings), screen cartridges of varying shapes may be affixed to grid openings a different shape. Similarly, the grid frame of the basket cage may be of any suitable shape for screening.
Screen elements and screen cartridges according to the embodiments discussed herein resist wear, abrasion, bending, and chemicals better than metal, and thus tend to last longer than wedge wire frames in CIL processes. Screen elements as discussed herein also allow for the formation of significantly smaller screen openings than those of conventional wedge wire frames, which in turn improves screening efficiency. Use of the screen members as described herein provides for significantly larger screening areas, and significantly reduces blinding as compared to conventional wedge wire screen baskets. In use, screen elements and screen cartridges as described herein also allow for a substantially consistent distance between the external propulsion blades of the screening apparatus and the screening cartridge assembly, thereby reducing clogging and elongating the life of the screen elements.
Referring now to the embodiment shown in FIGS. 1 to 5, the screen basket 1 of the present disclosure comprises a basket frame structure 510 that has a high open-area polyurethane screen 600 attached thereto.
As indicated in the basket frame 510 generally has a cylindrical configuration, although other shapes may be used. The basket frame 510 may preferably be formed of stainless steel, although other materials may be used. The frame has an upper end 511 and a lower end 515, and includes a plurality of vertical support members 530 forming a vertical support portion extending between the upper and lower ends 511, 515 of the frame 510. As shown in the vertical support portion of the frame 510 has an interior side 521 and an exterior side 522.
As shown in the support of the basket frame 510 may be formed from a plurality of the vertical support members 530 and a plurality of horizontal support members 550.
The embodiment shown in includes four primary support members 531 spaced along a periphery of the frame 510, along with a plurality of secondary support members 542 spaced between the primary support members 531. Together, the primary and secondary support members 531, 542 join the upper and lower ends 511, 515 of the frame 510 in a spaced arrangement. The horizontal support members 550 may be provided by a plurality of annular rings or curved sections that are joined end-to-end to form a plurality of annular rings in a spaced relationship throughout the basket frame 510.
As shown in each of the vertical support members 531 may include an interior strut portion 532. The interior strut portion 532 may, in turn, include apertures 534 therethrough.
The horizontal support members 550 pass through the apertures 534, thus maintaining the horizontal support members 550 in a stacked and spaced arrangement.
As shown in the top view of the upper end 511 of the frame 510 is provided with an opening to allow for use in receiving and processing materials within the screen basket 1.
The lower end 515 of the frame 510 is provided with a substantially solid or closed bottom 516 for retaining materials in the screen basket 1 during processing. The substantially closed bottom 516 may be provided with a centralized aperture 517 for use in operational arrangements with shafts of processing machines, as discussed in more detail below.
Embodiments of the disclosure may include a high open-area polyurethane screen 600 attached to a periphery of the frame 510, thereby forming a screen basket 1 having an open top, a substantially solid or closed bottom 516, and a polyurethane screen sidewall 601.
Polyurethane screen 600 may be provided in the form of separate, smaller screen members 10, due to potential size constraints in the molding process of the polyurethane screen 600. For example, as in the embodiment shown in polyurethane screen 600 may feature a plurality of separate screen members 10. Each screen member 10 is attached to the vertical support of the frame 510.
FIGS. 4 to 6 show features of an example embodiment of a screen member 10 configured for use in forming the polyurethane screen sidewall 601 of a screen basket 1. FIGS. 4 to 5 show the exterior and interior sides of an embodiment of the screen member 10, respectively, while shows a side view of an embodiment of the screen member 10. The screen member 10 may comprise polyurethane screens described in more detail in the following patents and patent publications, which share a common assignee with the present disclosure and are incorporated by reference herein: U.S. Patent No. 8,584,866; U.S. Patent No. 9,010,539; U.S.
Patent No. 9,375,756; U.S. Patent No. 9,403,192; U.S. Patent Application Publication No. 2015/0197827A1; and U.S. Patent Application Publication No. 2016/0303611A1.
As shown in FIGS. 4 to 7, an embodiment of the present disclosure may provide for a screen member 10 with a body 12 of molded polyurethane having unperforated side edge portions 14, 16. Side edge portions 14, 16 may each have an integral side ridge portion 29 for use in sealing adjacent screen members 10 to one another and for securing screen members 10 to the basket frame 510, as shown in Each side edge portion 14, 16 may include a cast-in structural member for use in reinforcing the side ridge portion 29. Side edge portions 14, 16 may also be formed without cast-in structural members or may include other structural members.
Side ridge portions 29 may be in any suitable shape for attachment to a basket frame 510. In an exemplary embodiment, side ridge portions 29 may include a formed member, e.g., a metal member that is bent to a desired shape, e.g., a U-shape member, an L-shape member, a C-shape member, or the like. The formed member may be attached to the polyurethane body by heating, pressing, mechanical, chemical, molding, and/or any other suitable method or arrangement.
Body 12 of screen member 10 also includes a lower edge portion 18 and an upper edge portion 20, which, in combination with side edge portions 14, 16, define an outer border of the screen member 10. In certain embodiments, side ridge portion 29 may extend the entire length between upper edge portion 20 and lower edge portion 18.
Body 12 further includes an exterior surface 22 and an interior surface 24. depicts an exterior surface 22 of the body 12 when screen member 10 is affixed to the basket frame 510, as shown, for example, in and depicts an interior surface 24 of the body 12 when screen member is affixed to the basket frame 510 as shown, for example, in Body 12 includes first members 101 and second members 102 forming screen openings 26, as shown in detail in and . First members 101 and second members 102 may, in some embodiments, be configured to include reinforcement members 50, as discussed in more detail below. As shown in the side view of screen element 10 may further include vertical ribs 28 on the exterior surface 22 of screen element 10. Screen element 10 may, however, not include vertical ribs 28 in certain embodiments of the present disclosure.
Body 12 may further include third members 203 and fourth members 204. Third members 203 and fourth members 204, and vertical ribs 28 if present, may also include reinforcement members 50, discussed in more detail below. Third members 203, fourth members 204, and vertical ribs 28 may, however, not include reinforcement members 50 in certain embodiments of the present disclosure. Third members 203 and fourth members 204 are generally configured to provide support to the screen openings 26 formed by first and second members 101, 102. shows a portion of an embodiment of screen element 10, with depicting an enlarged view of a portion of As shown in the detail view of , first and second members 101, 102 form a first integrally molded grid structure 100 that defines screen openings 26. Third and fourth members 203, 204 may form a second integrally molded grid structure 200, and fifth and sixth members 305 and 306, respectively, may in turn form a third integrally molded grid structure 300.
Reinforcement members 50 may be incorporated into desired members of the screen element 10. Reinforcement members 50 provide stability to screen element 10 by preventing the side edges 14, 16 from deforming and/or hour-glassing. In an exemplary embodiment, reinforcement members 50 may be integrated (such as by molding integrally) with the appropriate members. Reinforcement members 50 may be made of plastic, metal, polymer, or any other suitable material with the necessary structural properties. For example, the reinforcement members 50 may be embodied in rods that are molded integrally with the screen members. The reinforcement members 50 may also be embodied in aramid fibers that are at least one of a twisted multistrand and a woven multistrand, such that the fibers act as wicks to absorb the polyurethane molded around it, thereby providing a strong bond therewith. The twisted or woven multistrand fibers may have a linear density of about 55 denier to about 2840 denier, and may preferably be approximately 1500 denier. When an aramid fiber is used in embodiments of the present disclosure, it may be a set of aramid fibers commercial obtainable under the trademark KEVLAR® of the DuPont Company. Reinforcement members 50 may also be at least one of the aramid fibers commercially obtainable under the commercial names TWARON, SULFRON, TEIJINCONEX, and TECHNORA of the Teijin Company. The flexibility of the aramid fibers provides a flexible reinforcement system for the molded polyurethane, which is able to return to its original molded shape after the necessary bending and flexing that occurs during handling and installation. In certain embodiments, reinforcement members 50 may be tensioned before polyurethane is molded around it.
Referring back to the example embodiment shown in FIGS. 4 to 5, and the detail view shown in grid structures 200 and 300 include bi-directionally integrally molded members forming support grids within the members. Due to the properties of the reinforcement members 50 and the configuration of the bi-directional grid structure, the members may have a relatively small size and thus provide for increased open screening area. The grid structures provide screen strength and support for openings 26 during vibratory loading, and significantly increase open screening area.
As shown in the detail view of , first members 101 may extend transversely between side edge portions 14, 16, in a manner substantially parallel with each other. Second members 102 may extend transversely between the lower edge portion 18 and the upper edge portion 20, in a manner substantially parallel with each other and substantially perpendicular to first members 101. In certain embodiments, second members 102 may have a thickness greater than that of the first members 101 to provide additional structural support to screen openings 26.
As referred to above, and as shown in the exploded isometric view of , first members 101 and/or second members 102 may include reinforcement members 50, and may or may not be supported by additional support members or support grid structures. For example, as shown in which depicts a fragmentary cross-sectional view of body 12 of screen member , body 12 has first and second members 101, 102 with bi-directional reinforcement members 50 molded integrally therewith. Reinforcement members 50 molded integrally therewith first members 101 have a thickness in the range of about 0.006 inches to about 0.015 inches.
Reinforcement members 50 molded integrally therewith second members 102 (not shown) have a thickness in the range of about 0.015 inches to about 0.040 inches. Such configurations may be beneficial for screening applications requiring screens with larger screen openings.
Embodiments of the present disclosure may incorporate reinforcement members 50 in any one of first, second, third, and fourth members 101, 102, 203, 204, as well as ribs 28, and may be incorporated into either all or a portion of the first, second, third, and fourth members 101, 102, 203, 204 and rib members 28.
As shown in and detail , screen openings 26 may be elongated, with a greater length dimension along sides and between ends thereof than the width dimensions.
Screen openings 26 may be approximately 0.044 mm to about 4.0 mm in width, the width being the dimension between the inner surfaces of adjacent first members 101. Screen openings 26 may be approximately 0.44 mm to about 60 mm in length, the length being the dimension between the inner surfaces of adjacent second members 102. Screen openings 26 may additionally have a variety of different shapes. For example, screen openings 26 may have a rectangular shape, or a square shape, or an ovular shape, or any other shape that may be formed by the first and second members 101, 102. The overall dimensions of screen element 10 may be about 1.2 meters by 1.6 meters, or may be of any other desired size. It may be understood that all dimensions set forth herein are by way of example only, and not of limitation.
Referring briefly to and , screen openings 26 may diverge downwardly between exterior surface 22 and interior surface 24, with the first members 101 being substantially in the shape of inverted trapezoids. This general trapezoidal shape of first members 101 prevents blinding in screen element 10 and overall polyurethane screen 600. First members 101 may include reinforcement members 50 molded integrally therewith, as shown in , or may optionally not include reinforcement members 50 molded integrally therewith, as shown in .
As illustrated in the detail view of , third and fourth members 203, 204 may have a thickness greater than first and second members 101, 102. The increased thickness of third and fourth members 203, 204 may provide additional structural support to first and second members 101, 102. As shown in the example embodiment of FIGS. 8 and 8A, third members 203 may extend transversely between the side edge portions 14, 16 in a manner substantially parallel with each other, and may have multiple first members 101 featured therebetween.
Fourth members 204 may extend transversely between lower edge portion 18 and upper edge portion 20 in a manner substantially parallel with each other, and may have multiple second members 102 featured therebetween. Reinforcement members 50 may be molded integrally with third and fourth members 203, 204. Third and fourth members 203, 204 may be configured to have a minimal thickness through inclusion of reinforcement members 50, while maintaining the necessary structural support for screen openings 26 formed by first and second members 101, 102 during vibratory screening applications. The bi-directional support system provided by third and fourth members 203, 204 and the added support of reinforcement members 50 integrated therein, where included, greatly reduces the thickness of the support members and provides for increased open screening area and overall screen efficiencies.
Body 12 may further include a plurality of vertical ribs 28. In the embodiment shown in FIGS. 4 to 6, a series of nine ribs 28 may be provided. Ribs 28 may have a thickness greater than that of third and fourth members 203, 204, and may have a portion extending away from the interior surface 24 of body 12. As shown in ribs 28 may also be provided extending away from the exterior surface 522 of body 12 and thus providing vertical support along the exterior screen sidewall 601. The greater thickness and positioning of ribs 28 provides additional structural support to first and second members 101, 102.
Ribs 28 may extend transversely between the lower edge portion 18 and the upper edge portion 20 in a manner substantially parallel to each other, and may have multiple fourth members 204 therebetween. Ribs 28 may, additionally and in the alternative, extend transversely between the side edge portions 14, 16 in a manner substantially parallel to each other, and may have multiple third members 203 therebetween. Ribs 28 may have reinforcement members 50 molded integrally therein. Ribs 28 may be provided for additional support to screen openings 26, and may be configured to have a minimal thickness through inclusion of reinforcement members 50, while providing the necessary structural support to maintain screen openings 26 during vibratory screening applications. Like third and fourth members 203, 204, provision of a support system of ribs 28 greatly reduces the thickness of the support members and provides for increased open screening area and overall screen efficiencies.
Various configurations of reinforcement members 50 may be provided in the support rib members 28 to add stability to screen member 10. Reinforcement members 50 provided in the support rib members 28 may be an aramid fiber (or individual filaments thereof), a naturally occurring fiber, or other material having relatively large tensile strength with relatively small cross-sectional areas.
Each element of screen element 10 able to incorporate such reinforcement members 50 may include zero, one, or multiple reinforcement members 50, and the reinforcement members 50 used therein may be of different sizes and materials. Reinforcement members 50 may be located in the bottom halves of the members so as not to be exposed relatively early during the life of the screen element 10, as the upper surface of the screen may wear.
The inclusion of the reinforcement members 50, as well as the support framework of the bi-directional support members, allows the first members 101, as well as second members 102, to be relatively thin, creating larger screen openings. Embodiments as described herein have relatively large tensile strengths with relatively small cross-sectional areas. The making of the support members and the thin first members 101 results in the screen member 10 and overall screen 600 having a greater percentage of open area, which, in turn, increases the capacity of the system. Open screening areas according to the embodiments described herein may range, for example, from about 40 percent to about 46 percent of the screen.
According to an embodiment of the present disclosure, a vibratory screen 10 includes a flexible molded polyurethane body 12 having substantially parallel side edge portions 14, 16 at opposite ends of body 12, as well as a lower edge portion 18 substantially perpendicular to the side edge portions 14, 16, and an upper edge portion 20 substantially perpendicular to the side edge portions 14, 16 and opposite the lower edge portion 18. Polyurethane body 12 further includes an exterior surface 22 and interior surface 24. First and second members 101, 102 are provided, forming screening openings 26. The first members 101 extend between the side edge portions 14, 16, and the second members 102 extend between the lower and upper edge portions 18, 20. The body 12 may also include third and fourth members 203, 204, with the third and fourth members 203, 204 having a thickness greater than that of first and second members 101, 102. Third members 203 run substantially parallel to each other and extend transversely between the side edge portions 14, 16, and have multiple first members 101 featured therebetween.
Fourth members 204 run substantially parallel to each other and extend transversely between lower and upper edge portions 18, 20, and have multiple second members 102 featured therebetween. Reinforcement members 50 may be molded integrally with the third and/or fourth members 203, 204, and additionally reinforcement members or rods may be molded integrally with fourth members 204. Body 12 also includes ribs 28. Ribs 28 may be substantially parallel to each other and extend transversely between the side edge portions 14, 16. Ribs 28 may also be substantially parallel to each other and extend transversely between the lower and upper edge portions 18, 20. Ribs 28 have a thickness greater than the third and fourth members 203, 204, and may include reinforcement members 50 molded integrally therewith. Body 12 may additionally feature fifth and sixth members 305, 306. Fifth members 305 run substantially parallel to each other and extend transversely between the side edge portions 14, 16, and have multiple third members 203 featured therebetween. Sixth members 306 run substantially parallel to each other and extend transversely between lower and upper edge portions 18, 20, and have multiple fourth members 204 featured therebetween. Reinforcement members 50 may be molded integrally with the fifth and/or sixth members 305, 306, and additionally reinforcement members or rods may be molded integrally with sixth members 306.
Screen members according to this embodiment may have open screening areas greater than 40 percent, and mesh sizes ranging from approximately 0.375 mesh to approximately 400 mesh. By way of example, screens tested having the aforementioned configurations included a 43 mesh size screen, a 140 mesh size screen, and a 210 mesh size screen. Each of these screens had open screening areas ranging from approximately 40 percent to approximately 46 percent. Such large screening areas for such relatively fine mesh sizes are achieved through the relatively strong and thin grid framework created by the third, fourth, fifth, and sixth members 203, 204, 305, 306, and by reinforcement members molded integrally therewith.
In the aforementioned embodiments and examples, the size of each grid unit formed by the intersection of the third and fourth members 203, 204 is approximately 1 inch by 1 inch.
Generally, grid units may be larger for screens with larger screen openings and grid units may be smaller for screens with smaller screen openings. This principle may be generally applicable for each example embodiment discussed herein. Grid units may also have a generally rectangular shape, or may have any other suitable shape for supporting the screen openings.
The use of polyurethane screen members 10 as described herein to form a screen sidewall 601 on a basket frame has significant advantages over conventional wedge wire screens.
Polyurethane screen members 10 as described herein resist wear, abrasion, bending, and chemicals better than metal, and thus tend to last longer than wedge wire frames in CIL processes. Polyurethane also allows for the formation of significantly smaller screen openings than those of conventional wedge wire frames, which in turn improves screening efficiency. Use of the polyurethane screen members 10 as described herein provides for significantly larger screening areas, and significantly reduces blinding as compared to conventional wedge wire screen baskets.
In operation, the screen basket 1 described herein may be used with known CIP and CIL devices and processes, such as those described in U.S. Patent No. 5,238,117. For example, as shown in FIGS. 13 to 14, the screen basket 1 is attached below a volute portion of an NKM vertically swept interstage apparatus. A drive shaft of the NKM apparatus passes from the top to the bottom of the screen basket 1, and through the centralized opening in the closed bottom of the screen basket 1. A gearbox and motor is positioned above the volute to power the drive shaft. A launder interface is situated above the polyurethane screen and volute interface to receive flow of pulp discharge.
With the screen basket 1 attached to the NKM apparatus, the lower portion of the NKM device, including the screen basket 1, is inserted into and suspended over a large adsorption tank containing slurry of pulp to be processed. The level of the pulp in the tank is higher than the level of the fluid in the screen basket 1. This arrangement causes the pulp to naturally flow through the screen of the screen basket 1 in an effort to equalize the fluid levels in the pulp tank and the screen basket 1. Blades on the outside of the NKM unit rotate within the tank around an outer periphery of the screen sidewall of the screen basket 1. The outside blades also assist in preventing particles from clogging the exterior side of the polyurethane screen, such as by carbon and pulp. The pulse and sweeping action reduces the possibility of carbon and near size material blinding the screen openings. Impeller blades located on the inside of the screen, such as on the drive shaft, serve to keep particles in suspension and drive pulp upward toward the volute and launder.
During the process, pulp flows upward through the inside of the screen basket 1.
Carbon is retained in the screen. The pulp exists via the launder interface situated above the polyurethane screen and volute interface.
In these processes, it can be seen that the continuous rotation of interior and exterior blades in the vicinity of the polyurethane screen, together with the flow of large volumes of pulp through the openings of the polyurethane screen, subjects the screen to substantial wear and tear.
The polyurethane screens and the arrangement of the screen basket described herein are designed to withstand significant wear and tear and to substantially outperform existing wire screen baskets in CIP and CIL processes.
Although the screen basket 1 has been described for use in a CIP or CIL process, the relatively small openings and relatively large screening area of the polyurethane screen members described herein allow the screen basket 1 to be used for other purposes, such as water filtration and desalination. illustrates a perspective view of an example of a basket cage 1500 in accordance with an additional embodiment of the disclosure. The basket cage 1500 includes a grid frame 1510 that is tubular (or has substantially cylindrical symmetry) with respect to a longitudinal axis and has multiple openings 1513. As such, the grid frame 1510 has a height and a diameter. As an illustration, the height can have a magnitude in a range from about 23 in (about 58 cm) to about 122 in (about 310 cm). As another illustration, the diameter can have a magnitude in a range from about 10 in (about 25.4 cm) to about 73 in (about 185.4 cm). In an example embodiment, the height has a magnitude of about 80 in (about 203.2 cm) and the diameter has a magnitude of about 50 in (about 127 cm). It is noted that the disclosure is not limited to such illustrative magnitudes of height and/or diameter, and other sizes of the grid frame 1510 can be contemplated. Additionally, the grid frame 1510 is not limited to a tubular or cylindrical symmetry, but can be shaped in any configuration suitable for screening, and particularly for carbon retention screening as discussed herein. Grid frame 1510 may also be formed from any material providing sufficient structure for the screening process and sufficient support for the screening cartridges that will be attached to the grid frame 1510. For example, grid frame 1510 may be formed of a metal or metallic alloy, such as stainless steel, or may be a thermoplastic material sufficient to support the screening cartridges. In embodiments featuring a thermoplastic grid frame 1510, the grid frame 1510 may comprise a single injection-molded piece. In other embodiments, the grid frame 1510 may be formed of separable pieces connected together to form the grid frame 1510.
In certain embodiments, the grid frame 1510 can be formed in the desired shape by bending a perforated sheet onto itself, around the longitudinal axis, and joining opposing edges of the perforated sheet. The joined opposing edges can form a longitudinal seam 1515. In some embodiments, the perforated sheet can be formed from a metal or metallic alloy (e.g., stainless steel), and the opposing edges can be joined by welding. In other embodiments, the perforated sheet can be formed from a rigid plastic, and the opposing edges can be joined by laser welding and/or gluing with a suitable adhesive. The multiple openings 1513 in the grid frame 1510 can be arranged in a square lattice, and each one (or, in some embodiments, at least some) of the multiple openings 1513 can have a square shape. Multiple openings 1513 may have shapes other than a square shape, such as a rectangular shape, an ovular shape, a circular shape, and so forth.
Moreover, multiple openings 1513 are not required to have a consistent shape throughout the grid frame 1510. For example, some embodiments may feature alternating rectangular openings of varying sizes to form the overall grid frame 1510. In an example embodiment, the multiple openings 1513 can include 264 square openings. A subset of the multiple openings can be defined by longitudinal members 1511 and transversal members 1512. Openings in such a subset may be referred to as inner openings. A second subset of the multiple openings can be defined by longitudinal members 1511 and transversal segments of a first annular section 1512a of the grid frame 1510. Similarly, a third subset of the multiple openings can be defined by longitudinal members 1511 and transversal segments of a second annular section 1512b of the grid frame 1510. The second subset and the third subset of openings can be referred to as outer openings.
The first annular section 1512a and the second annular section 1512b can embody or otherwise can constitute respective opposing end portions of the grid frame 1510, along the longitudinal axis. A flange 1520 can be affixed or otherwise attached to an end of the first annular section 1512a. The flange 1520 can include multiple first openings 1525. The flange 1520 and first openings 1525 can permit or otherwise facilitate mounting a plate or another type of cover on the flange 1520. In addition or in other embodiments, the flange 1520 and first openings 1525 can permit or otherwise facilitate mounting the basket cage 1500 into a screen separator machine (e.g., an NKM vertically swept interstage apparatus, as shown in and ). In addition, a second flange 1530 can be affixed or otherwise attached to the second annular section 1512b. The second flange 1530 can include multiple second openings 1535.
The flange 1530 and second openings 1535 can permit or otherwise facilitate mounting the basket cage 1500 into a screen separator machine (e.g., an NKM vertically swept interstage apparatus, as shown in and ), and/or affixing an exterior wiper assembly of the screen separator machine (not shown).
As is illustrated in , the basket cage 1500 can also include an opening in a vicinity of the second end of the grid frame 1510, near the second flange 1530. A pipe member 1540 can be assembled on the vicinity of the opening. The opening and the pipe member 1540 can form an outlet that can permit or otherwise facilitate the egress of a slurry from the interior of the basket cage 1500 when it needs to be drained upon removal.
Similar to other screen baskets of this disclosure, the basket cage 1500 in combination with screening elements can be utilized in a separation process to separate specific particulate matter from slurry or another type of fluid source. To that end, in one embodiment, screening cartridge assemblies can be mounted to the basket cage 1500, where the screening cartridge assemblies can permit or otherwise facilitate the separation of specific particulate matter from the slurry. Specifically, as an illustration, A presents a perspective view of an example of a screen basket 1600 that includes multiple screening cartridge assemblies 1610 in accordance with one or more embodiments of the disclosure. The multiple screening cartridge assemblies include a first screening cartridge assembly 1610a, a second screening cartridge assembly 1610b, and a third screening cartridge assembly 1610c. Each one of the screening cartridge assemblies 1610a, 1610b, 1610c can be mounted or otherwise affixed to a respective group of grid members that define, at least in part, a respective opening of the grid frame 1510. Screening cartridge assemblies 1610 may be removable, such that screening cartridge assemblies may be mounted to basket cage 1500 and subsequently removed easily from basket cage 1500 for maintenance or repair, or may be permanently affixed to basket cage 1500. For openings in a row about the longitudinal axis of the grid frame 1510, a group of grid members that support a first one of the screening cartridge assembles 1610a and 1610b can have a common grid member with another group of grid members that support a second one of the screening cartridge assemblies 1610a and 1610b. More specifically, in one example, the first screening cartridge assembly 1610a can grip or otherwise attach to a first longitudinal member and a second longitudinal member of the grid frame 1510. In addition, the second screening unit 1610b can grip or otherwise attach to the second longitudinal member and a third longitudinal member.
In some embodiments, each one of the multiple screening cartridge assemblies mounted or affixed to the grid frame 1510 includes a screening assembly and a case (or another type of container) configured to receive and hold the screen assembly. In some embodiments, the case can be embodied in a single injection molded piece integrally formed by means of injection molding a polyurethane, a thermoset polymer, or other types of polymers. Example embodiments of the injection molded piece and the process of forming the injection molded piece are discussed in more detail in the disclosures of U.S. Patent Application No. 13/800,826, U.S. Patent No. 9,409,209, U.S. Patent No. 9,884,344, U.S. Patent Application No. 15/851,009, U.S. Patent Application No. 15/965,195, and the cross-references included therein, which are hereby incorporated by reference herein in their entireties. The case and screening assembly held therein may be of any shape and structure suitable for mounting to the grid frame. In some embodiments, the case and screening assembly may be substantially rectangular. In other embodiments, the case and screening assembly may have a square shape, or may be of an ovular shape, or may have a triangular shape, or so forth.
As is illustrated in B, screening cartridge assembly 1610a includes a case 1630a and a screen assembly having three screen units 1640a. It is noted that the disclosure is not limited to three screen units and, in some embodiments, less or additional screen units can be implemented. For a defined size of a screen unit, a larger number of screen units results in a case 1630a with larger dimensions, thus resulting in a larger screening cartridge assembly. Larger screening cartridge assemblies may be utilized in grid frames having larger grid openings.
The case 1630a includes a first opening configured to receive and/or fit the screen assembly within the case 1630a. The case 1630a also includes a second opening that permits exposing a screening surface of the screen assembly to an exterior of the grid frame 1510. The screening surface can be embodied in or can include, for example, a substantially seamless and planar surface including multiple screening openings having, for example, a substantially uniform size and/or substantially uniform shape. The multiple screening openings can have rectangular shape, square shape, circular shape, a combination thereof, or the like. In addition, as is illustrated in C, the case 1630 also includes ridges 1650a that extend from a first edge of the case 1630a, near the first opening, to an opposing second edge of the case 1630a.
The ridges 1650a and respective portions of the case 1630a form respective recesses that permit or otherwise facilitate mounting (e.g., gripping or clipping) the case 1630a to the grid frame 1510. Case 1630a may be permanently mounted to the grid frame 1510 by use of the ridges 1650a and respective portions of the case 1630a, or may be removably mounted to the grid frame 1510, such that the case 1630a may be removed as required for maintenance or repair.
Similarly, screening cartridge assembly 1610b includes a case 1630b and a screen assembly having three screen units 1640b. As mentioned, the disclosure is not limited to three screen units and, in some embodiments, less or additional screen units can be implemented. The case 1630b also includes a first opening configured to receive and/or fit the screen assembly within the case 1630b. The case 1630b also includes a second opening that permits exposing a screening surface of the screen assembly to an exterior of the grid frame 1510. The screening surface can be embodied in or can include, for example, a substantially seamless and planar surface including multiple screening openings having, for example, a substantially uniform size and/or substantially uniform shape. In addition, as is illustrated in C, the case 1630b further includes ridges 1650b that extend from a first edge of the case 1630b, near the first openings, to an opposing second edge of the case 1630b. The ridges 1650b and respective portions of the case 1630b can form respective recesses that permit or otherwise facilitate mounting (e.g., gripping or clipping) the case 1630b to the grid frame 1510. In regards to the screen assembly contained in the case 1630b, as is further illustrated in C and , each one of the screen units 1640b includes a framework unit having one or more screen elements affixed to a surface of the framework unit, and the screen units 1640b can be mechanically joined or otherwise secured together to form the screen assembly. To that end, each one of the screen units 1640, such as is illustrated with reference to 1640b, can include one or more fasteners that can permit or otherwise facilitate fastening a first one of the screen units (e.g., screen unit 1640a) to a second one of the screen units (e.g., 1640b). Regardless of the mechanism for adjoining the screen units 1640b, the respective screen elements of the screen units 1640 can form the screening surface that can be exposed to slurry in the exterior of the grid frame 1510.
In some embodiments, each one (or, in other embodiments, at least one) of the screen elements can be embodied in a single injection molded piece integrally formed by means of injection molding of a thermoplastic material. Example thermoplastic materials and the processes of creating the example thermoplastic materials used as the screen elements in the present disclosure are discussed in detail in the disclosures of U.S. Patent Application No. 13/800,826, U.S. Patent No. 9,409,209, U.S. Patent No. 9,884,344, U.S. Patent Application No. /851,009, U.S. Patent Application No. 15/965,195, and the cross-references included therein, which are incorporated by reference herein in their entireties.
Screening cartridge assembly 1610c, like screening cartridge assemblies 1610a, 1610b, also includes a case 1630c and screen assembly having three screen units (not depicted in B). As mentioned, the disclosure is not limited to three screen units and, in some embodiments, less or additional screen units can be implemented. The case 1630c also includes a first opening configured to receive and/or fit the screen assembly within the case 1630c. The case 1630c also includes a second opening that permits or otherwise facilitates exposing a screening surface of the screen assembly to an exterior of the grid frame 1510. The screening surface can be embodied in or can include, for example, a substantially seamless and planar surface including multiple screening openings having, for example, a substantially uniform size and/or substantially uniform shape. In addition, as is illustrated in C, the case 1630c further includes ridges 1650c that extend from a first edge of the case 1630c, near the first opening, to an opposing second edge of the case 1630c. The ridges 1650c and respective portions of the case 1630c form respective recesses that permit or otherwise facilitate mounting (e.g., gripping or clipping) the case 1630c to the grid frame 1510. illustrates the mechanical coupling of the screening cartridge assembly 1610a and the screening cartridge assembly 1610b to transversal grid members of the grid frame 1510. As mentioned, ridges 1650a permit or otherwise facilitate mounting the screening cartridge assembly 1610a to the grid frame 1510. Likewise, ridges 1650b permit or otherwise facilitate mounting the screening cartridge assembly 1610b to the grid frame 1510.
The screening cartridge assembly 1610a and the screening cartridge assembly 1610b include respective screen assemblies. The screen assembly contained in the cartridge assembly 1610a includes three screen units 1640a in accordance with embodiments described herein. The other screen assembly contained in the cartridge assembly 1610b also includes three screen units in accordance with embodiments described herein. As mentioned, the disclosure is not limited to screen assemblies having three screen units and, in some embodiments, less or additional screen units can be implemented. Screen assemblies having different number of screen units also can be implemented.
In connection with the screen assembly contained in the case 1630c, as is further illustrated in C, each one of the screen units that constitutes the screen assembly includes a framework unit having a screen element affixed to a surface of the framework unit. The screen units can be mechanically joined or otherwise secured together to form the screen assembly. To that end, in an embodiment, each one of the screen units can include one or more fasteners that can permit or otherwise facilitate fastening a first one of the screen units to a second one of the screen units. Regardless of the mechanism for adjoining the screen units, the respective screen elements of the screen units 1640 can form the screening surface that can be exposed to the exterior of the grid frame 1510.
It is noted that while three screening cartridge assemblies are illustrated in FIGS. 16A to 16C and , the entirety or substantially the entirety of the grid frame 1510 of the screen basket 1600 can be covered for operation in a separation process. As such, in an example embodiment, 264 screening cartridge assemblies can be mounted to the respective 264 square openings 1513 in an embodiment of grid frame 1510.
A illustrates a perspective view of an example of a screening cartridge assembly 1800, in accordance with one or more embodiments of the present disclosure. The exemplified screening cartridge assembly 1800 includes a case 1810 and a screen assembly having three screen units 1830. As mentioned, the disclosure is not limited to three screen units and, in some embodiments, less or additional screen units can be implemented. The case 1810 has a generally arcuate shape, and includes a first opening configured to receive and/or fit the screen assembly within the case 1810. The case also includes a first ridge 1820a and a second ridge 1820b. Each one of the ridge 1820a and the ridge 1820b extends from a vicinity of a first, top edge of the case 1810 to a vicinity of an opposing second, bottom edge of the case 1810. In use, the arcuate shape of case 1810 allow for a substantially consistent distance between the external propulsion blades of the screening apparatus and the screening cartridge assembly, thereby reducing clogging and elongating the life of the screen elements.
Similar to other screening cartridge assemblies of this disclosure, as is illustrated in the top cross-sectional view 1850 of screening cartridge assembly 1800 shown in B, each one of the screen units 1830 can include two end framework units 1855 and a single medial framework unit 1857, each of the two end framework units 1855 and the single medial framework unit 1857 having a screen element 1860 affixed to a respective surface of the framework units.
The screen units 1830 can be mechanically joined or otherwise secured together to form the screen assembly. To that end, in an embodiment, each one of the screen units 1830 can include one or more fasteners that can permit or otherwise facilitate fastening a first one of the screen units 1830 to a second one of the screen units 1830. Regardless of the mechanism for adjoining the screen units, the respective screen elements of the screen units 1830 can form a screening surface of the screening cartridge assembly 1800. The case 1810 also includes an opening that permits exposing at least a portion of the screening surface, as is shown in the side view 1890 of screening cartridge assembly 1800 in B.
As is illustrated in the cross-sectional views 1850 and 1870 shown in B, the case 1810 can include an attachment frame section 1852 and a holder frame section 1854. The attachment frame section 1852 and the holder frame section 1854 are also illustrated in the perspective view of the case 1810 shown in A. The holder frame section 1854 can receive and/or hold the screen assembly formed by screen units 1830. To that end, in some embodiments, the holder frame section 1854 includes an opening 1910, and internal sidewalls including sidewall 1920, sidewall 1930, and sidewall 1940. Other internal sidewalls are not visible in the perspective view of A. For instance, as is shown in the cross-sectional view 1950 of case 1810 shown in B, a sidewall 1960 opposite the sidewall 1920 and a sidewall 1980 opposite the sidewall 1930 also are included in the internal sidewalls of the holder frame section 1854. The sidewall 1920, in connection with sidewalls 1930 and 1980, can define a first opening, and the opposing sidewall 1960, in connection with sidewalls 1930 and 1980, can define a second opening. The second opening can have a cross-sectional area greater than the cross-sectional area of the first opening in order to mitigate undesired reduction of screening area. The smaller cross-section can provide greater mechanical stability for a screen assembly arranged within the case 1810. The first opening and the second opening can permit the flow of particulate matter from the exterior to the interior of a screening cartridge assembly including the case 1810. The particulate matter can be screened or otherwise separated by such a screen assembly. Specifically, the particulate matter can be separated from slurry external to a screen basket apparatus having a screening cartridge assembly including the screen assembly, and can flow to an internal region of the screen basket apparatus as intended or required for the screening application (e.g., CIL process, CIP process, ore treatment, water desalinization, or the like).
As is further illustrated in cross-sectional views 1870 and 1970 in B and B, respectively, the holder frame section 1854 can include a ridge 1872 near the opening configured to receive a screen assembly, and a ridge 1874 near a base of the case 1810.
In addition, with further reference to A, the attachment frame section 1852 includes internal sidewalls, including sidewall 1946 and sidewall 1948, as well as other sidewalls respectively opposite thereto. One of such opposing sidewalls can be gleaned in the side view 1990 in B. Specifically, sidewall 1992 is opposite sidewall 1946. The attachment frame section 1852 also includes the ridge 1820a and the ridge 1820b. In one embodiment, the ridge 1820a and the ridge 1820b and respective portions of the attachment frame section 1852 form respective recesses 1856. Such recesses, as mentioned, can permit or otherwise facilitate mounting (e.g., clipping, clutching, or otherwise engaging) the screening cartridge assembly 1800 to a grid frame of this disclosure, such as grid frame 1510 disclosed hereinbefore. As an illustration, C presents four cases 1810 mounted adjacent to each one another on a grid frame 1510. Respective four screen assemblies can be inserted or otherwise fitted into the four cases 1810 in order to form four screening cartridges and assemble a screen basket for numerous separation processes, such as CIL process, CIP process, water filtration and desalinization, and the like.
A illustrates an example of a screen assembly 2000 in accordance with one or more embodiments of the disclosure. The exemplified screen assembly 2000 can be arranged or otherwise fitted within a case 1810 or any other case described herein in order to form a screening cartridge assembly in accordance with this disclosure. Consistent with other screen assemblies disclosed herein, the screen assembly 2000 includes three framework units, which may include two end framework units 1855 and a single medial framework unit 1857, each of the end framework units 1855 and medial framework unit 1857 including screen elements 1860 affixed thereto. The disclosure is not limited to three framework units 1855, 1857 and/or a specific number of screen elements 1860 per framework unit 1855, 1857. In some embodiments, two screen elements 1860 may be affixed thereto to each of three framework units 1855, 1857.
In some embodiments, less or additional framework units 1855, 1857 and/or screen elements 1860 can be implemented. Each one (or, in some embodiments, at least one) of the framework units 1855, 1857 can be embodied in a single injection molded piece integrally formed by means of injection molding of a polymer. The framework units 1855, 1857 can be mechanically joined or otherwise secured together to form the screen assembly 2000. To that end, in an embodiment, each one of the framework units 1855, 1857 can include one or more fasteners that can permit or otherwise facilitate fastening a first one of the framework units 1855, 1857 to a second one of the framework units 1855, 1857. Regardless of the mechanism that is utilized or otherwise relied upon to join framework units, the joined framework units 1855, 1857 form a first segmented edge member and an opposing second segmented edge member (not visible in A). The joined framework units 1855, 1857 also includes a first monolithic edge member and a second monolithic edge member (not visible in A) corresponding, respectively, to edge members of the outer framework units 1855, 1857.
Screen elements 1860 affixed to each one of the framework units 1855, 1857 can form a screening surface of the screen assembly 2000 and a screening cartridge assembly that includes the screen assembly 2000. The screening surface can be essentially seamless, as is illustrated in cross-sectional views 2050 and 2070 of screen assembly 2000 in B. In some embodiments, as is illustrated in the side view 2090 of screen assembly 2000 in B, each one (or, in other embodiments, at least one) of the screen elements 1860 can include four adjacent sections having respective groups of screening openings. Such sections may be separated by support members (represented with dashed lines in the plan view 2090). The disclosure is not limited to screen elements having four sections and, in some embodiments, less or additional sections having screening openings can be implemented.
A illustrates a perspective view of medial framework unit 1857 in accordance with one or more embodiments of the disclosure. The medial framework unit 1857 is elongated, and includes longitudinal side members 2138 opposite and substantially parallel to one another.
The medial framework unit 1857 also includes transversal side members 2136 opposite and substantially parallel to one another. Each one of the transversal side member 2136 is substantially perpendicular to the longitudinal side members 2138. As mentioned, the medial framework unit 1857 can include fastening mechanisms that permit or otherwise facilitate mechanically joining or otherwise securing together the medial framework unit 1857 and another framework unit (either an end framework unit 1855 or a medial framework unit 1857).
Specifically, in some embodiments, the fastening mechanisms can be assembled or otherwise formed on respective portions of the longitudinal side members 2138, with the transversal side members 2136 free from fastening mechanisms. As is illustrated in A, in at least one of such embodiments, the fastening mechanisms can be embodied in or can include clips 2142 and clip apertures 2140. The medial framework unit 1857 and another framework unit (e.g., end framework unit 1855) also having clips 2142 and clip apertures 2140 can be mechanically joined or otherwise secured together along their respective longitudinal side members 2138. To that end, in one embodiment, a clip 2142 of the medial framework unit 1857 can be passed into a clip aperture 2140 of the other framework unit until extended members of the clip 2142 extend beyond the clip aperture 2140 and a longitudinal side member of the other framework unit. As the clip 2142 is pushed into the clip aperture 2140, extended members of the clip 2142 can be forced together until a clipping portion of each extended member is beyond the longitudinal side member of the other framework unit, allowing the clipping portions to engage an interior portion of the longitudinal side member of the other framework unit. When the clipping portions are engaged into the clip aperture 2140, longitudinal side members of two independent framework units can be side by side and secured together (e.g., mechanically joined). The framework units can be separated by applying a force to the extended members of the clips such that the extended members are moved towards each other allowing for the clipping portions to pass out of the clip aperture 2140. Although the fasteners described herein and shown in drawings are clips and clip apertures, the disclosure is not limited in that respect and alternative fasteners and alternative forms of clips and/or apertures can be used, including other mechanical arrangements, adhesives, The medial framework unit 1857 also includes longitudinal support members 2146 and transversal support members 2148. Each one of the longitudinal support members 2146 is substantially parallel to longitudinal side members 2138 and is substantially perpendicular to the transversal side members 2136. Each one of the transversal support member 2148 is substantially parallel to transversal side members 2136 and is substantially perpendicular to the longitudinal support members 2146. The longitudinal support members 2146 and transversal support members 2148 define, at least in part, multiple grid openings within the medial framework unit 1857. In addition, the longitudinal support members 2146 and the transversal support members 2148 can provide mechanical stability to a screen element that is affixed to the medial framework unit 1857.
The medial framework unit 1857 also can include second transversal support members 2145 substantially perpendicular to the longitudinal side members 2138. As is illustrated in FIGS. 21A and the side view 2170 in B, the second transversal support members 2145 can be distributed across the grid openings in the medial framework unit 1857.
The second transversal support members 2145 can provide further mechanical stability to the screen element that is affixed to the medial framework unit 1857.
In order to permit or otherwise facilitate affixing one or more screen elements to the medial framework unit 1857, attachment members 2144 and several adhesion arrangements are included in the medial framework unit 1857. As is illustrated in side view 2190 of medial framework unit 1857 shown in B, a first adhesion arrangement includes multiple fusion bars 2172 assembled (e.g., formed) on surfaces of the longitudinal side members 2138. As is shown in the top view 2150 of medial framework unit 1857 of B, a second adhesion arrangement includes multiple fusion bars 2152 assembled (e.g., formed) on surfaces of the transversal side members 2136 and transversal support members 2148. As is shown in the side view 2170 of medial framework unit 1857 of B, a third adhesion arrangement includes multiple fusion bars 2176. In some embodiments, fusion bars 2176 can have a height that is less than a height of the fusion bars 2172, and also less than a height of the fusion bars 2152.
In some embodiments, the attachment members 2144 can permit or otherwise facilitate aligning a screen element for laser welding to the medial framework unit 1857 or another type of framework unit disclosed herein. The attachment members 2144 and/or the various fusion bars can be melted during laser welding.
End framework units 1855 can have similar structure to that of a medial framework unit 1857. Fastening mechanisms in an end framework unit 1855 can be included in a single longitudinal side member of the framework unit 1855.
In some embodiments, a screen element can be embodied in or can include the screen element 1860 as is illustrated in A. The screen element 1860 includes first side portions 2220 and second side portions 2222 that form a seamless periphery. The first side portions 2220 are substantially parallel to one another, and each one of the first side portions 2220 is substantially perpendicular to the second side portions 2222. Similarly, the second side portions 2222 are substantially parallel to one another, and each one of the second side portions 2222 is substantially perpendicular to the first side portions 2220. Each one of the side portions 2220 is configured to rest on and be affixed to transversal side members (e.g., members 2136) of a framework unit 1855, 1857 (e.g., medial framework unit 1857) in accordance with embodiments of this disclosure. As such, each one of the side portions 2220 can include cavities configured to receive or otherwise engage fusion bars on a surface of the transversal side members. Similarly, side portions 2222 are configured to rest on longitudinal side members of a framework unit 1855, 1857 (e.g., framework unit 1857) in accordance with this disclosure. Thus, each one of the side portions 2222 includes cavities configured to receive or otherwise engage fusion bars on a respective surface of the longitudinal side members.
The screen element 1860 also includes several support members. More specifically, the screen element 1860 includes support members 2230 and support members 2238. Support members 2230 are substantially collinear and substantially perpendicular to support members 2238. Support members 2238 also are substantially collinear. The screen element 1860 also includes supports members 2240 that extend from a first one of the side portions 2222 to a second one of the second side portions 2222. Each one of the support members 2230, 2238, and 2240 are configured to rest on or be affixed to respective support members of a framework unit 1855, 1857, such as medial framework unit 1857. Thus, each one of the support members 2230, 2238, and 2240 includes cavities configured to receive or otherwise engage fusion bars on a respective surface of support members of the framework unit.
The screen element 1860 further includes attachment apertures 2224. One of the attachment apertures 2224 is positioned essentially at the center of the screen element 1860.
Other attachment apertures 2224 are positioned at respective corners of the seamless periphery of the screen element 1860. Regardless of position in the screen element 1860, each one (or, in some embodiments, at least one) of the attachment apertures 2224 is configured to permit or otherwise facilitate passage of an elongated attachment member 2144 (e.g., see A) can pass through the attachment aperture 2224. In one or more of such embodiments, the attachment apertures 2224 may include a tapered bore that may be filled when a portion of the elongated attachment member 2144 above a screening surface of the screen element 1860 is melted, fastening screen element 1860 to the medial framework unit 1857 or to another type of framework unit disclosed herein. In other embodiments, the attachment apertures 2224 can be configured without a tapered bore, permitting formation of a bead on a screening surface 2013 of the screen element 1860 when a portion of an elongated attachment member 2144 above such a screening surface is melted, fastening the screen element 1860 to the medial framework unit 1857 or to another type of framework unit disclosed herein. The screen element 1860 can cover a half portion of the medial framework unit 1857 (or another type of framework unit disclosed herein), and each one of the four sections included in the screen element 1860 can respectively cover four grid openings of the medial framework unit 1857.
The screening surface 2213 has multiple screening openings. Each one (or, in some embodiments, at least some) of the multiple screening opening can be elongated and can have a defined length L and defined width W (e.g., see C and related description below) having respective magnitudes based on the screening application (e.g., CIL process, CIP process, ore treatment, water desalinization, or the like) in which the screen element 1860 is utilized.
As is illustrated in A and B (depicting top and side views 2250, 2270, and 2290 of screen element 1860), the multiple openings can be arranged in sections, with screening openings in a section arranged in a lattice. Each one of the sections is defined, at least in part, by support members 2230, 2238, and 2240 of the screen element 1860. In one embodiment, screening openings that are adjacent to a periphery of the screen element 1860 can be defined by longitudinal bars parallel to first side portions of the screen element 1860, transversal bars perpendicular to the longitudinal bars, and segments of edges of side portions of the screen element 1860. In addition, screen openings that are in the interior portion of a section can be defined by longitudinal bars and transversal bars. Longitudinal bars define a major side of the elongated openings, and transversal bars define a minor side of elongated openings.
C is an enlarged top view of a portion of a screen element, according to an example embodiment of the present disclosure. C illustrates features common to various screens of the disclosure, such as screen 1860 shown in FIGS. 22A and 22B. As shown in C, a screen element includes surface elements 84 running parallel to the screen element end portions 2220 and forming screening openings 86. Surface elements 84 have a thickness T, which may vary depending on the screening application and configuration of the screening openings 86. In this example, screening openings 86 are elongated slots having a length L and a width W, which may be varied for a chosen configuration. Thickness T of surface elements 84 may be approximately 43 µm to approximately 1000 µm (i.e., 0.0017 inches to 0.0394 inches) depending on the open screening area desired and the width W of screening openings 86.
In some embodiments, the multiple screening openings may have a substantially uniform length L having a magnitude in a range from about 300 µm to 4000 µm (i.e., 0.0118 inches to 0.1575 inches). In addition, the multiple screening openings may have a substantially uniform width W having a magnitude in a range from about 35 µm to about 4000 µm (i.e., 0.0014 inches to 0.1575 inches). As an illustration, in some embodiments, the magnitude of width W may be approximately equal to one of 43 µm (i.e., 0.0017 inches), 74 µm (i.e., 0.0029 inches), 90 µm (i.e., 0.0035 inches), 104 µm (i.e., 0.0041 inches), 125 µm (i.e., 0.0049 inches), 150 µm (i.e., 0.0059 inches), 180 µm (i.e., 0.0071 inches), 500 µm (i.e., 0.0197 inches), 700 µm (i.e., 0.0276 inches), or 1000 µm (i.e., 0.0394 inches = 1 mm). In an example embodiment, the multiple screening openings may have a substantially uniform length L having a magnitude of about 500 µm (i.e., 0.0197 inches).
Table 1. (below) illustrates several example configurations of surface elements 84 and screening openings 86.
Example # L (inches) W (inches) T (inches) 1 0.1295 0.0182 0.0283 2 0.1295 0.0214 0.0252 3 0.1295 0.0262 0.0241 Table 1.
Table 2. (below) illustrates further example configurations of surface elements 84 and screening openings 86. In this example, surface elements 84 have a fixed thickness T = 0.014 inches. Screening openings 86 have a fixed length L = 0.076 inches and variable width W. As may be expected, for a fixed number of screen openings 86, the percent open area decreases with the width W of each screen opening 86. In this example, the percent open area varies from a minimum of 6.2% open area, for the smallest width W = 0.0017 inches, to a maximum of 23.3% open area for the largest width W = 0.0071 inches. mesh W (inches) T (inches) L (inches) % open area 80 0.0071 0.014 0.076 23.3 100 0.0059 0.014 0.076 20.3 120 0.0049 0.014 0.076 17.6 140 0.0041 0.014 0.076 13.4 170 0.0035 0.014 0.076 12.2 200 0.0029 0.014 0.076 10.3 230 0.0025 0.014 0.076 9.1 270 0.0021 0.014 0.076 7.9 325 0.0017 0.014 0.076 6.2 Table 2.
Table 3. (below) illustrates further example configurations of surface elements 84 and screening openings 86. Table 3 illustrates the effect of reducing the length L of screening openings 86 and reducing the width T of surface elements 84 so that screen element 1860 may include more screen elements. In this example, surface elements 84 have a fixed thickness T = 0.007 inches. Screening openings 86 have a fixed length L = 0.046 inches and variable width W.
The resulting percent open area varies from a minimum of 10.1% open area, for the smallest width W = 0.0017 inches, to a maximum of 27.3% open area for the largest width W = 0.0071 inches. Thus, the maximum percent open area is increased from 23.3% to 27.3% by reducing T from 0.014 inches to 0.007 inches, and by reducing L from 0.076 inches to 0.046 inches, as seen by comparing the results of Table 3 with those of Table 2. As mentioned above, the increase in maximum percent open area occurs because, when the screening openings 86 and surface features are reduced in size, more screening openings may be included on screen element 1860. mesh W (in) T (in) L (in) % open area 80 0.0071 0.007 0.046 27.3 100 0.0059 0.007 0.046 25.2 120 0.0049 0.007 0.046 23.1 140 0.0041 0.007 0.046 20.5 170 0.0035 0.007 0.046 18.5 200 0.0029 0.007 0.046 16.5 230 0.0025 0.007 0.046 14.9 270 0.0021 0.007 0.046 12.8 325 0.0017 0.007 0.046 10.1 Table 3.
Table 4. (below) illustrates further example configurations of surface elements 84 and screening openings 86. Table 4 shows that the trend may be continued. In this example, surface elements 84 have a fixed thickness T = 0.005 inches. Screening openings 86 have a fixed length L = 0.032 inches and variable width W. The resulting percent open area varies from a minimum of 12.1% open area, for the smallest width W = 0.0017 inches, to a maximum of 31.4% open area for the largest width W = 0.0071 inches. Thus, by reducing T from 0.007 inches to 0.005 inches, and by reducing L from 0.046 inches to 0.032 inches, the maximum percent open area is increased from 27.3% to 31.4%, as seen by comparing the results of Table 4 with those of Table mesh W (in) T (in) L (in) % open area 80 0.0071 0.005 0.032 31.4 100 0.0059 0.005 0.032 29.3 120 0.0049 0.005 0.032 27.0 140 0.0041 0.005 0.032 24.1 170 0.0035 0.005 0.032 22.0 200 0.0029 0.005 0.032 19.7 230 0.0025 0.005 0.032 16.4 270 0.0021 0.005 0.032 14.7 325 0.0017 0.005 0.032 12.1 Table 4.
As is illustrated in FIGS. 23A and 23B, some embodiments may include fastening mechanisms in framework units (either medial framework units 2357 or end framework units 2355) that can permit or otherwise facilitate assembling a screen assembly 2300 that has certain curvature. In one of such embodiments, the fastening mechanisms can include clips and clip apertures such that the screen assembly 2300 that is assembled is curved rather than substantially planar, as shown in the side views 2350, 2570, and 2390 of curved screen assembly 2300 shown in B. and illustrate an alternative embodiment of a cartridge assembly 2400 for use in a screening basket of the disclosure. Cartridge assembly 2400 includes a detachable case with top case portion 2410 and a separate bottom case portion 2411. Top case portion 2410 and bottom case portion 2411 each include attachment mechanisms 2440 that may be detachably engaged with apertures 2445 featured on the top case portion 2410 and bottom case portion 2411. In use, screen assembly having screen units 2430 may be fitted into a top or bottom case portion 2410, 2411, and the opposing case portion may then be fitted around the screen assembly with screening units 2430. Attachment mechanisms 2440 engage the apertures 2445, securing the screen assembly with screening units 2430 securely within the case.
Detachable case with top case portion 2410 and bottom case portion 2411 includes substantially the same features as case 1810 discussed herein, including an attachment frame section, holder frame section, and ridges. As shown in the perspective view of bottom case portion 2411 illustrated in , attachment frame section 2452 includes internal sidewalls and attachment ridges 2420a and 2420b permit or otherwise facilitate mounting (e.g., clipping, clutching, or otherwise engaging) the screening cartridge assembly 2410 to a grid frame of this disclosure, such as grid frame 1510. Holder frame section 2454 can receive and/or hold the screen assembly formed by screen units, in a manner substantially similar to that of holder frame section 1854 of case 1800 discussed in more detail herein.
Top case portion 2410 and bottom case portion 2411 may each be formed of a single injection molded piece integrally formed by means of injection molding a polyurethane, a thermoset polymer, or other types of polymer. Due to the relative simplicity of separate top case portion 2410 and bottom case portion 2411, as related to a single case (such as case 1810), the top case portion 2410 and bottom case portion 2411 may more easily be created by an injection- molding process. Example embodiments of the injection molded process are discussed in more detail in the disclosures of U.S. Patent Application No. 13/800,826, U.S. Patent No. 9,409,209, U.S. Patent No. 9,884,344, U.S. Patent Application No. 15/851,009, U.S. Patent Application No. /965,195, and the cross-references included therein, which are incorporated by reference herein in their entireties.
While the embodiments of the present disclosure are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the embodiments of the present disclosure is not limited to them.
Many variations, modifications, additions, and improvements are possible. The above description should therefore not be construed as limiting, but merely as exemplifications of particular embodiments.
Claims

Claims (46)

What is claimed is:
1. A screening apparatus, comprising: a static vertical screen basket forming a plurality of grid openings; a plurality of screens secured over the grid openings, the screens forming a screening surface located on the outside of the screen basket; wherein the screening surface is configured to separate an oversized material from an undersized material by allowing undersized material to flow into the screen basket while preventing oversize material from entering the screen basket, wherein each screen has a synthetic screening surface having openings having sizes in a range from approximately 35 microns to approximately 4,000 microns and surface elements having a thickness T of between approximately 45 microns and 1000 microns, and wherein each synthetic screening surface is configured to separate carbon or resin from a slurry of carbon-in-leach (CIL), carbon-in-pulp (CIP), or resin-in-leach (RIL) material as fluid flows from outside the screen basket to inside the screen basket due, at least in part, to a static pressure differential between fluid outside relative to fluid inside the screen basket such that carbon or resin is retained on the synthetic screening surface.
2. The screening apparatus of claim 1, wherein the screens are formed by injection molding of a thermoplastic material.
3. The screening apparatus of claim 2, wherein the screens include a plurality of screening openings having a length L along a first direction that has a magnitude in a range from about 300 µm to about 4000 µm, and a width W along a second direction that has a magnitude in a range of about 35 µm to about 4000 µm.
4. The screening apparatus of claim 3, wherein the thickness T of the surface elements extends along the second direction and has a magnitude in a range from approximately 70 µm to approximately 400 µm, and wherein the screens have an open screening area of approximately 17% to approximately 35% of a total area of a screening surface.
5. The screening apparatus of claim 4, wherein: the length L of the screening openings is approximately 3290 microns; the width W of the screening openings is approximately 462 microns; and the surface element thickness T is approximately 720 microns.
6. The screening apparatus of claim 4, wherein: the length L of the screening openings is approximately3290 microns; the width W of the screening openings is approximately 544 microns; and the surface element thickness T is approximately 640 microns.
7. The screening apparatus of claim 4, wherein: the length L of the screening openings is approximately 3290 microns; the width W of the screening openings is approximately 665 microns; and the surface element thickness T is approximately 612 microns.
8. The screening apparatus of claim 1, wherein the synthetic screening surface is a thermoset material.
9. The screening apparatus of claim 1, wherein the synthetic screening surface is a thermoplastic material.
10. The screening apparatus of claim 1, wherein the screens include a plurality of screening openings each having a length L along a first direction that has a magnitude in a range from approximately 0.7 mm to approximately 2 mm, and a width W along a second direction that has a magnitude in a range of about 35 µm to about 150 µm.
11. The screening apparatus of claim 1, wherein the screens include openings having a shape that is approximately rectangular, square, circular, or oval.
12. The screening apparatus of claim 1, wherein the synthetic screening surface includes a polyurethane material.
13. The screening apparatus of claim 12, wherein the screen basket has a flat configuration.
14. The screening apparatus of claim 12, wherein the screen basket has a cylindrical configuration.
15. A method of filtering a material, the method comprising: introducing a screen basket assembly into a pulp stream in a screening apparatus having a tank containing a slurry of carbon-in-leach (CIL), carbon-in-pulp (CIP), or resin-in-leach (RIL) material, the slurry containing resin or activated carbon, the screen basket assembly including a first side, a second side, and a synthetic screening surface on an exterior surface of the screen basket assembly located on the first side of the screen basket assembly, the synthetic screening surface having openings having sizes in a range from approximately 35 microns to approximately 4,000 microns and surface elements having a thickness T of between approximately 45 microns and 1000 microns; generating a static pressure differential between fluid on the first side of the screen basket assembly relative to fluid on the second side of the screening assembly to thereby cause fluid to flow from the first side to the second side of the screen basket assembly; filtering the slurry through the screen basket assembly from the first side of the screen basket assembly to the second side of the screen basket assembly to thereby remove resin or carbon from the slurry such that the resin or carbon is retained on the synthetic screening surface.
16. The method of claim 15, wherein the screen basket assembly includes screen elements that are formed by injection molding or hot casting.
17. The method of claim 15, wherein the synthetic screening surface is a thermoset material.
18. The method of claim 15, wherein the synthetic screening surface includes a thermoplastic material.
19. The method of claim 15, wherein the synthetic screening surface includes a polyurethane material.
20. The method of claim 15, wherein the synthetic screening surface has a corrugated shape.
21. The method of claim 15, wherein the screen basket assembly includes a plurality of separate screen members.
22. The method of claim 15, wherein generating the differential pressure further comprises causing a level of fluid outside the screen basket apparatus to have a greater height than a level of fluid inside the screen basket apparatus.
23. The method of claim 15, wherein the synthetic screening surface has an open screening area of approximately 17% to approximately 35% of a total area of the synthetic screening surface.
24. A screen basket apparatus, comprising: a substantially vertical grid frame having a plurality of grid openings; a screen secured over grid openings, the screen forming a synthetic screening surface located on the outside of the grid frame; wherein the synthetic screening surface is configured to separate an oversized material from an undersized material by allowing undersize material to flow into the screen basket while preventing oversize material from entering the screen basket, and wherein the synthetic screening surface includes screening openings on an exterior surface of the screen basket that are configured to prevent carbon or resin particles that are present in a slurry of carbon-in-leach (CIL), carbon-in-pulp (CIP) or resin-in-leach (RIL) from entering an interior volume of the screen basket when the basket is submerged in a slurry of CIL, CIP or RIL material, the screening openings having sizes in a range from approximately 35 microns to approximately 4,000 microns, wherein the synthetic screening surface has an open screening area of approximately 17% to approximately 35% of a total area of a screening surface.
25. The basket apparatus of claim 24, wherein the synthetic screening surface includes a thermoset material.
26. The screen basket apparatus of claim 24, wherein the synthetic screening surface includes a polyurethane material.
27. The screen basket apparatus of claim 26, wherein the screening openings have a smallest size in a range from approximately 0.044 mm to approximately 4 mm.
28. The screen basket apparatus of claim 27, wherein the screening openings have a length in a range from approximately 0.044 mm to approximately 4 mm and a width in a range from approximately 0.044 mm to approximately 60 mm.
29. The screen basket apparatus of claim 24, wherein the synthetic screening surface includes a thermoplastic material.
30. The screen basket apparatus of claim 29, wherein the screening openings have a smallest size in a range from approximately 35 microns to approximately 150 microns.
31. The screening apparatus of claim 30, wherein the screening openings each having a length that has a magnitude in a range from approximately 0.7 mm to approximately 2 mm, and a width that has a magnitude in a range of approximately 35 microns to approximately 150 microns.
32. The screen basket apparatus of claim 24, wherein the screen includes a plurality of separate screen members.
33. The screen basket apparatus of claim 32, wherein each of the separate screen members includes a molded polyurethane body having screen openings and unperforated side edge portions, wherein each side edge portion includes a cast-in structural member that is configured to mechanically couple with a transversal member or a longitudinal member of the grid frame to thereby attach the separate screen member to the grid frame.
34. The screen basket apparatus of claim 32, wherein each screen member is a thermoplastic single injection-molded piece.
35. The screen basket apparatus of claim 24, wherein the synthetic screening surface has a corrugated shape.
36. The screen basket apparatus of claim 24, wherein the screen covers a plurality of the openings of the grid frame.
37. The screen basket apparatus of claim 24, wherein the grid frame has a cylindrical configuration.
38. The screen basket apparatus of claim 24, wherein the screen is replaceable.
39. The screen basket apparatus of claim 38, wherein the screen is a component of a replaceable screen assembly.
40. The screen basket apparatus of claim 39, wherein the replaceable screen assembly includes a case that is configured to hold the screen within the case.
41. The screen basket apparatus of claim 40, wherein the case includes a holder frame section configured to receive the screen.
42. The screen basket apparatus of claim 41, wherein the case further includes an attachment frame section seamlessly integrated with the holder frame section, the attachment frame section including a first elongated ridge and a second elongated ridge opposite and substantially parallel to the first elongated ridge, wherein a first recess is formed between the first ridge and a first portion of the attachment frame, and wherein a second recess is formed between the second ridge and a second portion of the attachment frame.
43. The screen basket apparatus of claim 42, wherein the first recess is configured to engage at least one of a first transversal member or a first longitudinal member of the grid frame, and wherein the second recess is configured to engage at least one of a second transversal member and a second longitudinal member of the grid frame.
44. The screen basket apparatus of claim 24, wherein the screen includes an exterior surface and an interior surface and the screen openings have a diverging width that increases with distance from the exterior surface to the interior surface.
45. The screen basket apparatus of claim 44, wherein the screen openings have a trapezoidal shape.
46. The screen basket apparatus of claim 24, wherein the synthetic screening surface includes surface elements having a thickness T of between approximately 45 microns and 1000 microns.
NZ774862A 2019-10-04 Method and apparatuses for screening NZ774862B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/151,909 US11213857B2 (en) 2017-06-06 2018-10-04 Method and apparatus for screening
PCT/US2019/054743 WO2020072932A2 (en) 2018-10-04 2019-10-04 Method and apparatuses for screening

Publications (2)

Publication Number Publication Date
NZ774862A NZ774862A (en) 2023-09-29
NZ774862B2 true NZ774862B2 (en) 2024-01-04

Family

ID=

Similar Documents

Publication Publication Date Title
CA3114902C (en) Method and apparatuses for screening
US11213857B2 (en) Method and apparatus for screening
AU2019355180B2 (en) Method and apparatuses for screening
NZ774862B2 (en) Method and apparatuses for screening
OA20184A (en) Method and apparatuses for screening.
NZ760189B2 (en) Light detection devices with protective liner and methods related to same
OA19382A (en) Method and apparatuses for screening.
NZ760189A (en) A respiratory pressure treatment system
US20230294022A1 (en) Method and apparatuses for screening
EA045182B1 (en) METHOD AND DEVICES FOR SCREENING
EA044418B1 (en) METHOD AND DEVICE FOR SORTING
WO2023211913A1 (en) Method and apparatuses for screening