NZ766265B2 - Sandwich panel and building module - Google Patents

Sandwich panel and building module

Info

Publication number
NZ766265B2
NZ766265B2 NZ766265A NZ76626520A NZ766265B2 NZ 766265 B2 NZ766265 B2 NZ 766265B2 NZ 766265 A NZ766265 A NZ 766265A NZ 76626520 A NZ76626520 A NZ 76626520A NZ 766265 B2 NZ766265 B2 NZ 766265B2
Authority
NZ
New Zealand
Prior art keywords
module
panel
building
building module
region
Prior art date
Application number
NZ766265A
Other versions
NZ766265A (en
Inventor
David Stonyer Michael
Original Assignee
Reve Architecture Limited
Filing date
Publication date
Application filed by Reve Architecture Limited filed Critical Reve Architecture Limited
Priority to NZ766265A priority Critical patent/NZ766265B2/en
Priority to AU2020239680A priority patent/AU2020239680B2/en
Priority to US16/948,685 priority patent/US11713573B2/en
Priority to CN202110744925.7A priority patent/CN113944234A/en
Priority to CA3124217A priority patent/CA3124217A1/en
Priority to EP21185128.2A priority patent/EP3971356A1/en
Publication of NZ766265A publication Critical patent/NZ766265A/en
Publication of NZ766265B2 publication Critical patent/NZ766265B2/en
Priority to AU2023201796A priority patent/AU2023201796B2/en
Priority to US18/188,922 priority patent/US20230294369A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • B29C2045/14188Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure trimming the article in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C2045/1693Making multilayered or multicoloured articles shaping the first molding material before injecting the second molding material, e.g. by cutting, folding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/002Making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0019Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/022Foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/06Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions for securing layers together; for attaching the product to another member, e.g. to a support, or to another product, e.g. groove/tongue, interlocking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/14Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements being composed of two or more materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B1/3205Structures with a longitudinal horizontal axis, e.g. cylindrical or prismatic structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/34Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/34Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability
    • E04B1/3408Extraordinarily-supported small buildings
    • E04B1/3412Extraordinarily-supported small buildings mainly supported by a central column or footing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34846Elements not integrated in a skeleton the supporting structure consisting of other specified material, e.g. of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/348Structures composed of units comprising at least considerable parts of two sides of a room, e.g. box-like or cell-like units closed or in skeleton form
    • E04B1/34815Elements not integrated in a skeleton
    • E04B1/34853Elements not integrated in a skeleton the supporting structure being composed of two or more materials
    • E04B1/54
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other
    • E04B1/6104Connections for building structures in general of slab-shaped building elements with each other the overlapping ends of the slabs connected together
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1924Struts specially adapted therefor
    • E04B2001/1933Struts specially adapted therefor of polygonal, e.g. square, cross section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • E04B2001/1924Struts specially adapted therefor
    • E04B2001/1936Winged profiles, e.g. with a L-, T-, U- or X-shaped cross section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2457Beam to beam connections
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3258Arched structures; Vaulted structures; Folded structures comprised entirely of a single self-supporting panel
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • E04B2001/748Honeycomb materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/04Material constitution of slabs, sheets or the like of plastics, fibrous material or wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/06Material constitution of slabs, sheets or the like of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/10Load-carrying floor structures formed substantially of prefabricated units with metal beams or girders, e.g. with steel lattice girders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/20Roofs consisting of self-supporting slabs, e.g. able to be loaded
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/20Roofs consisting of self-supporting slabs, e.g. able to be loaded
    • E04B7/22Roofs consisting of self-supporting slabs, e.g. able to be loaded the slabs having insulating properties, e.g. laminated with layers of insulating material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/20Roofs consisting of self-supporting slabs, e.g. able to be loaded
    • E04B7/22Roofs consisting of self-supporting slabs, e.g. able to be loaded the slabs having insulating properties, e.g. laminated with layers of insulating material
    • E04B7/225Roofs consisting of self-supporting slabs, e.g. able to be loaded the slabs having insulating properties, e.g. laminated with layers of insulating material the slabs having non-structural supports for roofing materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/205Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics of foamed plastics, or of plastics and foamed plastics, optionally reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/24Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20
    • E04C2/243Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products laminated and composed of materials covered by two or more of groups E04C2/12, E04C2/16, E04C2/20 one at least of the material being insulating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/292Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/296Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/322Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with parallel corrugations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/324Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with incisions or reliefs in the surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels
    • E04C2/384Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels with a metal frame
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/46Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose specially adapted for making walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/50Self-supporting slabs specially adapted for making floors ceilings, or roofs, e.g. able to be loaded
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2002/001Mechanical features of panels
    • E04C2002/004Panels with profiled edges, e.g. stepped, serrated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • E04C2002/3444Corrugated sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • E04C2002/3444Corrugated sheets
    • E04C2002/3455Corrugated sheets with trapezoidal corrugations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/02Dwelling houses; Buildings for temporary habitation, e.g. summer houses

Abstract

Provided are sandwich panels and building modules which can be joined together to construct a building and associated methods of constructing such panels and modules and of using such sandwich panels and building modules in construction. The sandwich panels comprise a foam insulating core and metal joists within a thermoplastic skin. The sandwich panels are prefabricated off-site and allow for faster assembly on-site. joists within a thermoplastic skin. The sandwich panels are prefabricated off-site and allow for faster assembly on-site.

Description

SANDWICH PANEL AND BUILDING MODULE This invention relates to a sandwich panel and a building module which can be joined together to uct a building.
BACKGROUND OF THE INVENTION The uction industry in New Zealand faces a number of unique challenges in ing affordable g. The field of building prefabrication attempts to address some of these challenges.
Prefabricated dwellings can be constructed in a y and then transported to a site. This offers the advantage that weather and travel of construction professionals are not factors in the construction process. One downside is that the design of prefabricated dwellings is limited by the mode of transport and route to the construction site, in New Zealand predominantly by truck and possibly by rail. This introduces limitations of width and height of the load to be transported, with the limitation of length being defined by the vehicle.
These limitations are y addressed in one of two ways: by designing the dwelling to fit onto a single truck, known as a “tiny house” or by designing the building as modules to be fitted together on-site.
An advantage of a prefabricated dwelling design is that if the New Zealand Ministry of Building, Innovation and Employment (MBIE) approves the design, they will grant a multiproof building consent on the design. This means a building consent application corresponding to the multi-proof t documents must be approved by the ng t ity without questions within 10 days.
Prefabricated dwelling designs made in a factory using conventional ents, for example timber framed construction, are offered as factory-made dwellings and also as kitsets for constructing on-site. Nookhomes.co.nz offer such transportable homes in both Factory-made dwellings using conventional timber-framed construction use a large number of components and are labour-intensive to assemble, whether on-site or in a factory.
Transporting assembled dwellings introduces a number of additional challenges.
A sandwich panel or structural insulated panel (SIP) is a structure comprising three layers; a core of low-density insulating material such as polyurethane (PUR) and an outer skin each side of the core. Sandwich panels can thus provide ated structural and cladding systems. Their strength and light weight means they can span large distances, making them particularly useful for wall and roof systems in commercial or industrial ngs; their use is less common in domestic buildings. Sandwich panels are usually flat and elongate in form, although curved sandwich panels are also available for installation on curved roofs. In use, a side edge of the elongate form is fixed to the side edge of an adjacent panel. For this reason the side edges of the panels are usually designed with complementary es to fix together, often employing screw fixings.
As used herein, the term “sandwich panel” means a structure comprising three layers; a core of low-density insulating material and an outer skin each side of the core.
SUMMARY OF THE INVENTION In a first broad aspect, the present ion provides a sandwich panel comprising metal joists within its outer skin.
In an embodiment, the sandwich panel comprises a thermoplastic skin, preferably HDPE, and an insulating core comprising a foamed al, preferably a polyurethane foam.
In an embodiment, the metal joists are steel joists with a tophat profile.
In an embodiment, a surface of the sandwich panel has a ribbed profile to accommodate the metal joists.
In an embodiment, the metal joists are joined to one another by a cross member fixed n the metal joists, the cross member ably being a 100mm steel tophat joist rivet fixed to the joists at 600mm centres.
In an ment, the profile of one side edge is complementary to the profile of the other side edge, such that two adjacent modules can be joined together without fixings, preferably wherein one side edge comprises a lip and the other side edge comprises a complementary crest.
In a second broad , the present invention provides a building module which is a sandwich panel sing a first region which es part of the roof structure of a building, a second region which provides part of the wall structure of the building, and a third region which provides part of the floor structure of the building.
In an embodiment, the first and third regions of the sandwich panel are a sandwich panel according to the first aspect.
In an embodiment, the first and third regions are substantially planar and the second region is curved in substantially a semicircle, such that the building module is generally U-shaped.
In an embodiment, the building module has a slot extending from the end of the third region towards the second region to accommodate a metal support, and a hole at the juncture of the second and third regions to receive a metal support.
In a third broad aspect, the present invention provides a method for constructing a sandwich panel, comprising: a. g a skin of the sandwich panel from a thermoplastic in a rotary oven and allowing the thermoplastic to set/cure; b. Once the skin is set/cured, demoulding the skin and removing at least one end of the panel; c. inserting metal joists into the panel; d. Filling the panel with a foamed material and allowing the foamed material to harden; e. Once the foamed material is hardened, g the excess foamed al flush with the cut panel end(s).
In an embodiment, the metal joists are joined to one another by a cross member fixed between the metal joists the cross member preferably being a 100mm steel tophat joist rivet fixed to the joists at 600mm centres.
In an embodiment, the sandwich panel comprises first and third regions which are substantially planar and a second region curved in substantially a semicircle, such that the building module is generally ed, and n in step b) both ends of the panel are removed to insert steel joists.
In an embodiment, in step d) the U-shaped panel is stood vertically and the foamed al is poured in from the top of the U in a controlled manner to fill the entire cavity of sandwich panel without gaps.
In an embodiment, after step (e) the panel is capped by using a custom heating plate to melt the end of the panel and affixing a thermoplastic end plate, optionally the thermoplastic end plate is the end plate which was removed in step b).
In an embodiment, the foamed material is a polyurethane foam.
In a fourth broad aspect, the present ion es a method for ucting a sandwich panel, comprising: a. Extruding a skin of the sandwich panel from a thermoplastic in an extrusion b. Optionally, heating the extrusion and bending the extrusion around a form; c. allowing the thermoplastic to set/cure; d. inserting metal joists into the panel; e. Filling the panel with a foamed material and allowing the foamed al to harden; f. Once the foamed material is hardened, g the excess foamed material flush with the panel end(s).
In an embodiment, the metal joists are joined to one another by a cross member fixed between the metal joists, the cross member preferably being a 100mm steel tophat joist rivet fixed to the joists at 600mm centres.
In an embodiment, the sandwich panel comprises first and third regions are substantially planar and a second region curved in substantially a semicircle, such that the building module is generally U-shaped.
In an embodiment, in step d) the U-shaped panel is stood vertically and the foamed material is poured in from the top of the U in a lled manner to fill the entire cavity of sandwich panel without gaps.
In an embodiment, after step (f) the panel is capped with a thermoplastic end plate using a heat welding process.
In a fifth broad aspect, the present invention es a method for constructing a building from a plurality of modules ing to the second aspect, n one side edge of said modules comprises a lip and the other side edge of said modules comprises a complementary crest, the method comprising: a. Fixing a first module in place with respect to the ground; b. Aligning a lip of the second module with a complementary crest of the first module, and sliding the second module onto the first module; c. Optionally, fixing the second module in place with respect to the ground; d. Aligning a lip of the third module with a complementary crest of the second module, and sliding the third module onto the second module; e. Repeating steps (c) and (d) until the ity of modules are installed; f. Fixing the last module in place with respect to the ground.
In an embodiment, every second module is fixed with respect to the ground.
In an embodiment, the building module comprises substantially planar first and third regions, and the second region is curved in substantially a semicircle, such that the building module is generally U-shaped, and the building module has a slot extending from the end of the third region towards the second region to accommodate a metal support, and a hole at the juncture of the second and third regions to e a metal t, and the method for fixing the modules to the ground comprises inserting screw piles into the ground at positions which will correspond to the end of the slot of each module which is to be fixed to the ground, to form a first row of screw piles; and ing screw piles into the ground at positions which will correspond to the hole of each module which is to be fixed to the ground, to form a second row of screw piles.
In an embodiment, the method further comprises fixing a bearer beam to each screw pile in the first row, and fixing another bearer beam to each screw pile in the second row.
In an embodiment, the method further comprises installing a post to each screw pile in the first row, and fixing a beam to the top of the posts in the first row, prior to step (a).
In an embodiment, the method r comprises installing a post to each screw pile in the second row, and fixing a beam to the top of the posts in the first row, after step (f).
DESCRIPTION OF THE DRAWINGS shows cross section views of sandwich panels according to two preferred embodiments of the invention. shows a perspective view of a building module ing to a preferred ment of the invention. shows a perspective view of a building module according to another preferred embodiment of the invention. shows a plan view of a building structural system comprising the building module of Fig. 2B. shows a plan view of a series of building modules according to an embodiment of the invention.
Fig. 5 shows a front elevation of the building structural system shown in Fig. 3. shows a perspective view of a building constructed from the building module of Fig. 2A or 2B. shows an exemplary plan view of a building as shown in Fig. 3.
ED DESCRIPTION Preferred embodiments of the invention will now be described with reference to the drawings.
Sandwich panel Fig. 1 shows a cross n view of sandwich panels 100 and 200. ch panels 100, 200 have a width W of 2175 and 2000 mm respectively, although it will be understood by persons skilled in the art that other widths can be chosen. The depth D of sandwich panels 100, 200 is shown in Fig. 1, and in this example is on the order of 260 mm. While the length L of ch panels 100, 200 is not shown in the cross section drawings of Fig. 1, it will be understood by persons skilled in the art that sandwich panels usually function as a simply supported beam and sometimes as a cantilever beam, and that known principles of beam design can be applied to determine the required depth D of the sandwich panel with reference to a given length L, and vice versa.
The sandwich panel has a core 110, 210, and a thermoplastic skin 120, 220. The lightweight core comprises a foamed al which provides rigidity to the panel. This can be for example a polyurethane foam. A preferred material for the thermoplastic skin is polyethylene, for example high-density polyethylene (HDPE) or linear low-density polyethylene (LLDPE). Thermoplastics have a number of advantages, including that they can easily be moulded into simple or complex , and can be heat welded together. The thickness of the thermoplastic skin 120, 220 in this example is about 5 mm. The thermoplastic skin can be formed in a number of ways, including but not limited rotational moulding, ion, and vacuum forming, as is known to persons skilled in the art.
In sandwich panels known in the art, the side edges of the panels are usually ed with complementary profiles to fix together, often employing screw fixings. The sandwich panel of the invention comprises a lip 126/226 which fits over a crest 127/227 of an adjacent sandwich panel.
Sandwich panels 100, 200 comprise steel joists 130, 230. In these examples, steel joists 130, 230 have a profile known as MS Tophat, generally an inverted V-shape with a flat top and protruding flanges on the bottom which can e fixings (Fig. 1). le steel joists are available from cial suppliers including Metalcraft Roofing and Steel and Tube Holdings Ltd. An advantage of using a commercial steel joist is that span tables are already available.
One side of the thermoplastic skin 120, 220 has a ribbed profile 122, 222 to odate steel joists 130, 230. The other side of the thermoplastic skin has a flat profile 124, 224.
Steel joists in sandwich panels 100, 200 have a spacing J of 290 mm centres and 400 mm centres tively, although the person skilled in the art will appreciate that other spacings are possible. In a preferred embodiment, the steel joists have a cross member rivet-fixed above the joists at 600mm centres (not shown in Fig. 1). This ensures that the steel joists sit hard into the troughs in the positions shown in Fig. 1. The cross member can be for example a 100 mm steel tophat joist.
Ribbed profile 122, 222 can be described as a deep ribbed profile, where the depth of the ribs is at least half of the depth D of the panel (i.e. D2 ≤ 0.5 D). In the embodiments shown, D2 is 103 mm and D is 260 mm.
While s 130, 230 are formed from steel, it is contemplated that aluminium joists could also be used. The high strength-to-weight ratio of steel and aluminium makes these materials particularly le to form the joists. The person skilled in the art will understand that the joists need not have MS Tophat profiles, but can be any shape which allows them to function as a beam, including for example open web steel joists and rectangular hollow sections. Similarly, there is no need to provide a ribbed profile in the plastic skin in order to accommodate the steel joists. The ribbed profile matching the profile of the joists 130, 230 provides advantages in forming the sandwich panel or building module of the invention, as bed below.
Once formed, the ch panel of the invention is encapsulated by the thermoplastic skin, which provides weathertightness and durability to the panel. In conjunction with the foamed material, the metal/steel joists provide the thermoplastic-skin panel with greater rigidity, enabling the panel to span greater lengths between supports.
Building module With reference to Fig. 2A, a Building module 10 which is a sandwich panel is shown.
Building module 10 comprises a first region 11 which provides part of the roof structure of a building, a second region 12 which provides part of the wall ure of the building, and a third region 13 which provides part of the floor structure of the building.
It is generally ed that the floor region of the building module will be flat for functional reasons. While the preferred embodiment advantageously has a roof region d at 3 degrees to allow for rain runoff and a curved wall region, as discussed further herein, other arrangements are contemplated.
Regions 11 and 13 possess the structure of a sandwich panel 200, comprising steel joists and a foamed material as shown in Fig. 1, ribbed profile for the outer skin, flat profile for the inner skin, and lip 226 (Fig. 2) which fits over crest 227 of an adjacent building module.
Region 12 comprises a thermoplastic skin having a cross section corresponding with regions 11/13, but filled with foamed material only. Curved wall region 12 is non-loadbearing and therefore does not have steel joists.
Fig. 2B shows another building module 20, generally corresponding to ng module 10 and comprising first region 11, a second region 12, and third region 13. Building module 20 further comprises slot 21 in region 13, and hole 22 at the junction of s 12 and 13. The purpose of slot 21 and hole 22 is described below with reference to a preferred way of constructing a building. The steel joists inside each module 20 run parallel with, and flank the slot and hole in each panel. Where interrupted by slot 21, the cross members inside each module will not cross the entire panel.
In the embodiments shown, building modules 10 and 20 have a width W of 2000 mm, although it will be appreciated that other widths can be used.
A number of building modules can be fitted together to provide the floor, wall and roof structure, cladding and tion of a building of d length L, being a multiple of the building module width W. A method for constructing a building from building modules 20 is described in detail below.
Method for forming sandwich panel and building module The thermoplastic skin of sandwich panel 100, 200 or building module 10 or 20 can be formed by rotational moulding. This es forming a skin of the sandwich panel from a thermoplastic in a rotary oven. This results in a completely enclosed hollow skin 120, 220.
Rotational moulding ovens are available to fabricate larger items such as storage containers, water tanks and playground equipment. The building module of the invention can be formed in a single piece in a large rotary oven. In the preferred embodiment, the length of building module 10 is on the order of 7 , and height on the order of 3 metres. A suitable oven is available at, for example, New Zealand company ay International.
Once the skin is set/cured, it can be demoulded. To insert the steel joists into the sandwich panel, one end of the panel is sliced off, the joists can then be slid into place. In the case of a sandwich panel which is a building module 10, the ends of roof region 11 and floor region 13 of the building module are sliced off, the joists can then be slid into place in regions 11 and 13. As mentioned above, in the red ment, the steel joists are fixed to one another using a cross member, which can be for example a 100mm steel tophat joist cross member rivet fixed above the joists at a regular spacing, e.g. at 600mm s, ensuring that the steel joists sit hard into the troughs.
Once the steel joists are inserted, the panel is filled with a foamed material, in the preferred embodiment a polyurethane foam, ensuring that the entire cavity of the sandwich panel is filled. For the U-shaped building module of the invention, this may be achieved by orienting the panel with regions 11 and 13 pointing upwards and then pouring or injecting the foamed material. Once the foamed material has hardened, the excess material is cut flush with the cut panel end. The end of the panel can then be sealed by heat welding, either using the previously removed end of the panel, or using a custom-made capping, that is then heat-sealed using a custom heating plate to melt the cut end and reseal.
Another way to form the plastic skin is by extrusion. Either the entire skin 120, 220 can be extruded through a die to provide the desired profile of the skin, or separate parts of the skin can be formed by extrusion, for e ribbed side 222 and flat side 224, which can then be welded together. The joists can then be inserted and the ends sealed as in the rotational moulding process. To form building module 10 or 20, the extrusion must be bent or wrapped around a form while in a plastic state.
It will be appreciated by the person skilled in the art that the sandwich panel 100, 200 can be used to form a roof, floor or wall. While the ribbed profile forms the exterior of ng module 10 or 20, a planar sandwich panel having the cross section shown in Fig. 1 can be used with the ribbed profile facing either the interior or the exterior of a building.
Method for ucting a building using the building module The person skilled in the art will appreciate that the building modules of the invention can be coupled to one another and fixed to the ground in a number of ways to construct a ng. One preferred method is described as follows.
In the preferred embodiment, a screw pile system is used. Screw piles formed from steel are available from, for example, Katana Foundations (NZ). Screw piles have ages in that they are easy to position and quick to install. They also e no te placing and are suitable for deep to soft soil conditions found throughout New Zealand. They can be removed, allowing for the proposed building to be relocated or recycled at end of life. In the method of the example, screw piles are led in the ground in a grid arrangement, and will each support a steel post P. Screw pile extensions can be coupled to the top of a screw pile above ground. As used herein, the term “screw pile” refers to a screw pile either with or without a screw pile extension.
The method of the example uses building modules 20, which slide onto each other as described further below. Slots 21 and holes 22 are useful in the construction method, but once the building structural system has been erected, all slots 21, and all unused holes 22, are filled in with moulded inserts of the appropriate shape to fit slot 21 and hole 22.
Figs. 3 and 4 show the grid arrangement of steel posts P at positions P1, P2 etc. Slots 21 and holes 22 (not shown in Fig. 3; shown in Fig. 4) accommodate the steel posts P. Posts P are arranged in two parallel rows R and S (Fig. 4). Posts in rows R and S are at a spacing of 2W, and row R is at a ce X from row S (Fig. 3). In the embodiment shown, X is 4300 mm.
While figs. 3 and 4 show a plan view of a building formed from seven building modules 20, it will be appreciated that any number of building modules 20 can be used to form a building in this way.
As shown in Fig. 4, each building module 20 comprises a slot 21 extending from the end of region 13 to the desired position of row R, and a hole 22 at the desired position of row S.
The distance X2 between hole 22 and the periphery of building module 20 should be ient to locate hole 22 in floor region 13 rather than curved wall region 12. In the example shown, distance X2 is about 1650 mm and corresponds generally to the radius of curved wall region 12.
Fig. 5 shows a schematic front elevation of the structural system for a building according to the invention. In this , a nominal position G is shown for the ground line, and break lines Rb indicate that the tion of screw piles R above the ground is indeterminate.
Adjacent screw piles can be coupled above-ground by cross-bracing as required.
Generally, the top of the shaft of each screw pile can be ed welded to a square drive head. This provides for easy installation of the screw pile and also allows the shaft of the screw pile to be coupled to a post or a pile extension above, by means of a collar, shown as Rc in Fig. 5. The collar advantageously comprises a plate or square nut welded to its inner walls to seat the collar on the square drive head. As is known in the art, the collar can also comprise holes for fixings such as M12 bolts to pierce the pile shaft and/or post.
To construct the building, two rows R and S of screw piles are led in any order, at a spacing related to the width W of the building s. In the embodiment shown, the spacing 2W is twice the width W of the building , and only every second building module will be fixed to a screw pile (Fig. 5). The spacing can also be e.g. equal to the width W of the building module, in which case every building module will be fixed to a screw pile, or another arrangement as will be understood by the person skilled in the art.
The distance between the two rows R, S corresponds to the distance between hole 22 and the end of slot 21 on the building module 20.
Once each row R and S is installed, posts P can be fixed to screw piles in row R, and bearer beams 23 can be fixed to row R and S respectively, at a height to support floor region 11 of the building s. These steps can be done in any order, provided that no posts P are yet fixed to row S. A bearer beam must be fixed to the screw piles of row S, but it is possible for a bearer beam 23 to be fixed either to the screw piles of row R (i.e. below collar Rc), or to posts P in row R (i.e. above collar Rc, shown in Fig. 5).
Bearer beams 23 can be fixed at row R and S respectively using methods known in the art.
The bearer beams can be of any suitable material and profile; a preferred material is hot dipped galvanized steel, preferably of a parallel flange channel (PFC) profile, which will be resistant to corrosion and those at row R can for e be fixed to the posts P using a cleat plate and bolts 25 (shown in Fig. 5).
In this example, each post P is a 89 SHS and is coupled via a collar formed from a 100 SHS to a screw pile having a circular hollow section (CHS) and a square drive head of comparable width to post P. However, posts P can be any desired shape, including for example CHS posts.
Once posts P are installed along row R, a beam 26 is fixed to the top of posts P along row R, using methods known in the art, to support roof region 11 (Fig. 5). In this example the fixing means is via cleat plates and bolts 27. A corresponding frame is to be constructed along row S, but is not yet constructed. Thus, in this example, the entire frame along row R is led (both the top beam 26 and a bearer beam 23), and a bearer beam 23 is installed to row S, before the modules are fixed to the frame.
Next, slot 21 of a first building module 20 is slid onto a first post P1 in row R, such that hole 22 aligns with screw pile P2 on in row S (Fig. 3). Slot 21 of the first building module can then be plugged with a HDPE d insert. Post P2 in row S can then be led through hole 22 to screw pile P2, either at this stage or after all of the building modules 20 are in place.
The moulded inserts can be provided in the appropriate shape to fit slot 21 and hole 22, and can also be formed by a rotational moulding process. In this example the moulded inserts are also filled with PUR foam for rigidity. They can be heat welded into place once the module is installed on the frame.
A lip of a second module is then aligned with a complementary crest of the first module, and the second building module is then slid onto the first building module. In the embodiment shown, second building module 20 is not installed to a screw pile; it is held to the first module by a on fit. This means that slot 21 and hole 22 of the second building module will not perform a function, and can be d with a HDPE moulded insert.
Alternatively, every second building module could be provided without slot 21 and hole 22.
Providing every building module with slot 21 and hole 22 has ages that only one mould is needed to form the ng modules, and provides flexibility during installation.
It will be iated that in alternative embodiments, every building module will have a complementary pair of screw piles, and every slot 21 and hole 22 will receive a post P.
In this example, the slot 21 is about 1 m in length. Thus, once installed, the floor region of each module will cantilever 1m beyond gridline R (Fig. 4). Optionally, instead of cantilevering the floor regions in this way, an additional steel beam could be placed within each slot 21 to bear on a steel end beam underneath the end of region 13 (not shown).
Advantageously, a balustrade could be fixed to such an additional steel end beam.
As stated above, once each building module is installed on the frame along row R, posts P2, P4 etc. can then be installed to screw pile P2, P4 etc. via holes 22. When all posts in row S are in place, a second beam (not shown) can then be fixed to the top of the second row of posts P2, P4 etc. using methods known in the art, to provide a second frame along row S and support the roof region 11.
Dimensions of the posts P and beams can be calculated by methods known in the art, with reference to the required span for beams and the material used, and the load to be borne by beams/posts. The building s of the invention are strong and lightweight. For an unloaded building module 20, a post of 89 mm width is expected to be sufficient. This does not take account of snow loads; it is also envisaged that the invention will allow for buildings having green roofs, which increase the load on the structural frame. Calculation of the ed increase to the dimensions of posts P and roof beams in such situations can be made using known methods. The width of hole 22 and slot 21 are governed by the width of posts P; for e, hole 22 has a diameter of 120 mm to accommodate a steel post of 89 mm width.
Roof region 11 and floor region 13 can be fixed to the respective beams by fixing screws into the steel joists within the panels.
While Figs. 3 and 4 and the associated text describe a preferred method for fixing the ng modules to the ground, it will be appreciated that the general approach of providing holes in the floor region of the building module can be adapted to accommodate any foundation system.
Finished building After forming the shell of a building by the method described above, the open sides of the building shell may be provided with aluminium joinery, for example double glazed sliding doors and windows, or with r partition wall system. A perspective view of such a building is shown in Fig. 6. y can be fixed to the regions 11, 13 using bolting and/or heat welding techniques. Partition walls can be constructed to the or of the building using similar bolting and/or heat welding techniques. An exemplary single-bedroom floor plan showing partition walls is shown in Fig. 7; it will be appreciated by the person skilled in the art that many variations are possible.
The surface of the thermoplastic, HDPE in the embodiment shown, is durable and does not need painting or other finishing, and as discussed above, can accept a green roof system if desired. The inner surface of the thermoplastic provides a floor surface and exterior deck.
This can provide the finished floor surface, or alternatively a finished floor surface can be provided on top of the thermoplastic using another floor system.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an ion that the publication forms a part of the common l knowledge in the art, in New Zealand or any other y.
In the claims which follow and in the preceding description of the invention, except where the context es otherwise due to express ge or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated feature but not to preclude the presence or addition of further features in s embodiments of the invention.

Claims (29)

1. A building module which is a sandwich panel comprising a first region which es part of the roof ure of a building, a second region which provides part of the wall structure of the building, and a third region which provides part of the floor structure of the building, wherein the first and third regions are a sandwich panel comprising metal joists within its outer skin.
2. The building module according to claim 1, wherein the sandwich panel comprises a thermoplastic skin, preferably HDPE, and an insulating core comprising a foamed material, preferably a ethane foam.
3. The building module according to claim 1 or 2, wherein the metal joists are steel joists with a tophat profile.
4. The building module according to any one of claims 1 to 3, wherein a surface of the sandwich panel has a ribbed profile to accommodate the metal joists.
5. The building module according to any one of claims 1 to 4, wherein the metal joists in the first region are joined to one another by a cross member fixed between the metal , and/or the metal joists in the third region are joined to one another by a cross member fixed between the metal joists.
6. The building module according to claim 5, wherein the cross member is a 100mm steel tophat joist rivet fixed to the metal joists at 600mm centres.
7. A building module ing to any one of claims 1 to 6, wherein the first and third s are substantially planar and the second region is curved in substantially a semicircle, such that the building module is generally U-shaped.
8. A building module according to any one of claims 1 to 7, wherein the building module has a slot extending from the end of the third region towards the second region to accommodate a metal support, and a hole at the juncture of the second and third regions to receive a metal support.
9. A building module according to any one of claims 1 to 8, wherein the profile of one side edge of the sandwich panel is complementary to the profile of the other side edge, such that two adjacent modules can be joined together without fixings.
10. A ng module according to claim 9, n one side edge ses a lip and the other side edge comprises a complementary crest.
11. A method for constructing a building module which is a sandwich panel according to any one of claims 1 to 10, the method comprising: A. Forming a skin of the sandwich panel from a thermoplastic in a rotary oven and allowing the thermoplastic to set/cure; B. Once the skin is set/cured, demoulding the skin and removing at least one end of the panel; C. Inserting metal joists into the panel; D. Filling the panel with a foamed al and ng the foamed material to harden; E. Once the foamed material is hardened, cutting the excess foamed material flush with the cut panel end(s).
12. The method according to claim 11, wherein the sandwich panel comprises first and third regions which are substantially planar and a second region curved in substantially a semicircle, such that the building module is lly U-shaped, and wherein in step b) both ends of the panel are removed to insert steel joists.
13. The method according to claim 12, wherein in step d) the U-shaped panel is stood vertically and the foamed al is poured in from the top of the U in a controlled manner to fill the entire cavity of the sandwich panel without gaps.
14. The method according to any one of claims 11 to 13, wherein after step (e) the panel is capped by using a custom heating plate to melt the end of the panel and affixing a thermoplastic end plate, optionally the thermoplastic end plate is the end plate which was d in step b).
15. The method according to any one of claims 11 to 14, wherein the foamed material is a polyurethane foam.
16. A method for constructing a building module which is a sandwich panel according to any one of claims 1 to 10, the method comprising: A. Extruding a skin of the ch panel from a thermoplastic in an extrusion B. Optionally, heating the ion and bending the extrusion around a form; C. Allowing the thermoplastic to set/cure; D. Inserting metal joists into the panel; E. Filling the panel with a foamed material and allowing the foamed material to harden; F. Once the foamed material is hardened, cutting the excess foamed material flush with the panel end(s).
17. The method according to claim 16, wherein the sandwich panel ses first and third s which are substantially planar and a second region curved in substantially a semicircle, such that the building module is generally U-shaped.
18. The method according to claim 17, wherein in step d) the U-shaped panel is stood vertically and the foamed al is poured in from the top of the U in a controlled manner to fill the entire cavity of the sandwich panel without gaps.
19. The method according to any one of claims 16 to 18, wherein after step (f) the panel is capped with a thermoplastic end plate using a heat welding process.
20. A method for constructing a building from a plurality of modules according to claim 10, the method comprising: A. Fixing a first module in place with respect to the ground; B. Aligning a lip of the second module with a complementary crest of the first module, and sliding the second module onto the first module; C. Optionally, fixing the second module in place with respect to the ground; D. Aligning a lip of the third module with a complementary crest of the second module, and sliding the third module onto the second module; E. Repeating steps (c) and (d) until the plurality of modules are installed; F. Fixing the last module in place with t to the ground.
21. The method according to claim 20, wherein every second module is fixed with respect to the ground.
22. The method according to claim 20 or 21, wherein the ng module is a ng module according to claim 8, and the method for fixing the modules to the ground comprises inserting screw piles into the ground at positions which will correspond to the end of the slot of each module which is to be fixed to the ground, to form a first row of screw piles; and inserting screw piles into the ground at positions which will correspond to the hole of each module which is to be fixed to the , to form a second row of screw piles.
23. The method according to claim 22, further sing fixing a bearer beam to each screw pile in the first row, and fixing another bearer beam to each screw pile in the second row.
24. The method according to claim 22 or 23, further comprising installing a post to each screw pile in the first row, and fixing a beam to the top of the posts in the first row, prior to step (a).
25. The method according to claim 24, further comprising installing a post to each screw pile in the second row, and fixing a beam to the top of the posts in the first row, after step (f).
26. A building module according to claim 1, substantially as herein bed or exemplified.
27. A method according to claim 11, substantially as herein described or exemplified.
28. A method according to claim 16, ntially as herein described or exemplified.
29. A method according to claim 20, substantially as herein described or exemplified.
NZ766265A 2020-07-15 2020-07-15 Sandwich panel and building module NZ766265B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NZ766265A NZ766265B2 (en) 2020-07-15 Sandwich panel and building module
AU2020239680A AU2020239680B2 (en) 2020-07-15 2020-09-23 Sandwich panel and building module
US16/948,685 US11713573B2 (en) 2020-07-15 2020-09-29 Sandwich panel and building module
CN202110744925.7A CN113944234A (en) 2020-07-15 2021-06-30 Sandwich panel and building module
CA3124217A CA3124217A1 (en) 2020-07-15 2021-07-09 Sandwich panel and building module
EP21185128.2A EP3971356A1 (en) 2020-07-15 2021-07-12 Sandwich panel and building module
AU2023201796A AU2023201796B2 (en) 2020-07-15 2023-03-22 Sandwich Panel and Building Module
US18/188,922 US20230294369A1 (en) 2020-07-15 2023-03-23 Sandwich panel and building module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NZ766265A NZ766265B2 (en) 2020-07-15 Sandwich panel and building module

Publications (2)

Publication Number Publication Date
NZ766265A NZ766265A (en) 2022-03-25
NZ766265B2 true NZ766265B2 (en) 2022-06-28

Family

ID=

Similar Documents

Publication Publication Date Title
AU2020239680B2 (en) Sandwich panel and building module
US6263628B1 (en) Load bearing building component and wall assembly method
AU2017203291B2 (en) Stronger wall system
US8646239B2 (en) Modular building block building system
US4674250A (en) Modular building panel
US4641468A (en) Panel structure and building structure made therefrom
US4612744A (en) Method, components, and system for assembling buildings
US6301851B1 (en) Apparatus and method for forming precast modular units and method for constructing precast modular structure
US4644708A (en) Prefabricated modular building element and a building comprising such elements
US5611183A (en) Wall form structure and methods for their manufacture
CA2329083C (en) A method for building construction
US4530194A (en) Bracket
US4194339A (en) Method for constructing town houses and the like
US20140033627A1 (en) Modular building panel with frame
US20070245640A1 (en) Building Structure and Modular Construction
JP2017503942A (en) Three-dimensional lightweight steel frame formed by bidirectional continuous double beams
PL178913B1 (en) Building system with cored, hollow structural components
US20190127966A1 (en) Permanent forms for composite construction columns and beams and method of building construction
WO2016161478A1 (en) Stay-in-place beam formwork for concrete structures
US9200447B1 (en) Prestressed modular foam structures
US11840836B2 (en) Structural wall panel system
CN116547432A (en) Building component, building structure formed by building component and construction method of building structure
WO2014008536A1 (en) Modular building system
US4274242A (en) Building systems
WO1990003475A1 (en) Prefabricated building