NZ752636A - An Independent Rear Suspension System - Google Patents

An Independent Rear Suspension System

Info

Publication number
NZ752636A
NZ752636A NZ752636A NZ75263619A NZ752636A NZ 752636 A NZ752636 A NZ 752636A NZ 752636 A NZ752636 A NZ 752636A NZ 75263619 A NZ75263619 A NZ 75263619A NZ 752636 A NZ752636 A NZ 752636A
Authority
NZ
New Zealand
Prior art keywords
ball joint
attached
kinematic link
suspension system
rear suspension
Prior art date
Application number
NZ752636A
Inventor
Antao Anthony Yang
An Tao Anthony Yang
Original Assignee
Valsch Dynamic Mechatronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication of NZ752636A publication Critical patent/NZ752636A/en
Application filed by Valsch Dynamic Mechatronics Ltd filed Critical Valsch Dynamic Mechatronics Ltd

Links

Abstract

The present invention provides an independent rear suspension system for low-floor bus for reducing the distance between the floor and ground, offering easy access for passengers and offering a wide space between the wheel arches.

Description

An ndent Rear Suspension System Abstract The present invention provides an independent rear suspension system for low-floor bus for reducing the distance between the floor and ground, offering easy access for passengers and offering a wide space between the wheel arches. ound In order to improve the ease of passenger embarkment and disembarkment, the current engine driven city bus, in particular those with wheelbase exceeding four meters, is ed to minimize the floor height. Limited by the ger compartment, the engine is allocated in the rear overhang; however, for a rear wheel driven city bus, the floor height over rear axle remains high, regardless the use of center-mounted or side-mounted differential, thus, steps or a slope is needed in the proximity of the rear axle.
Also, for the front engine rear wheel drive minibus, in particular those with wheelbase under four meters and with the engine is placed in the front overhang, a transmission is attached aft of the engine, and a propeller shaft is used to transmit torque to the rear axle. Since the propeller shaft connects the front located ission and the rear axle, the floor height cannot be lowered. Steps or a slope are provided at the ce to enable passenger embarkment.
As for the rear engine rear wheel drive minibus, in particular those with wheelbase under four meters and with engine placed in the rear overhang, a transmission is ed forward to the engine, and a propeller shaft connects the transmission to the rear axle. Due to the location of the propeller shaft, floor height aft of rear axle cannot be lowered. Steps or a slope is needed in the proximity of the rear axle.
There is also motor driven front wheel drive minibus, in ular those with wheelbase under four meters and with motor placed in the front overhang, low floor passenger compartment is provided between the front axle and the rear axle; however, in order to host the rear dead axle, a step and an increased floor height is needed over the rear axle.
There is furthermore motor driven rear wheel drive minibus, in particular those with wheelbase under four meters and with motor placed in the rear overhang, low floor passenger compartment is provide between the front axle and the rear axle; however, floor height behind the rear axle is increased in order to host rear live axle and the drivetrain, therefore, steps are needed in the proximity of the rear axle.
Above mentioned bus configurations cannot achieve low floor height throughout the vehicle, regardless of the type and placement of the power source and location of the drive , slope or steps are always needed.
Currently used vehicle suspension connects to the chassis via structure inner to the wheels, for which the structure near the suspension mounting must be strengthened to bare the load. Especially for the body-on-frame configuration vehicle which the bare chassis alone has sufficient strength to bare the load of engine, transmission, suspension and axles, t the presence of the body cab.
Due to the fact that the suspension linkage connects to the structure inward of the wheels, e technician must be underneath the vehicle by either lifting the vehicle or by entering a service ditch when performing wheel alignment.
In the case of multi-link or double wishbone type suspension, when the suspension system is subjected to a lateral load during cornering, the outside upper link is subjected to tension and outside lower link is subjected to compression, while the inside upper link is subjected to a compression and inside lower link is subjected to a tension.
Field of the invention The present ion provides an independent suspension system, in particular an ndent rear sion for low floor buses.
Summary of the ion The y objective is to provide an independent rear suspension design for low floor bus which can minimize the floor height above the rear axle.
The ary objective is to provide an independent rear suspension design which does not concentrate all the load on the chassis structure between the wheels, further reduces the structural needs in the chassis, thus giving more volume to the passenger compartment.
The third objective is to provide an independent rear suspension for low floor bus which does not require the service cal to be underneath the vehicle while performing wheel alignment, thus minimizing the time consumption and the risk.
It is also an objective to provide an independent rear suspension for low floor bus which proper camber variable during suspension travel.
It is also an objective to provide an independent rear suspension for low floor bus which also connects to the chassis structure outward of the wheels, in which ts buckling of the outside lower link by subjecting said link to a tension.
It is also an objective to e an independent rear suspension for low floor bus which ses seven kinematic links and ten kinematic pairs.
It is also an objective to provide an independent rear suspension for low floor bus which an electric machine is attached to the rear ng arm providing wheel traction.
Description of the drawings is an isometric view of the first embodiment. is a side view of the first embodiment. is a rear view of the first embodiment. is a top view of the first embodiment.
Description Referring to to 4, the first embodiment of the prevent ion comprises chassis (not shown in the drawings), first kinematic links 101, second kinematic link 102, third kinematic links 103, fourth kinematic link 104, fifth kinematic 105, knuckle assembly 106, first ball joint 201, second ball joint 202, third ball joint 203, fourth ball joint 204, fifth ball joint 205, sixth ball joint 206, seventh ball joint 207, eighth ball joint 208, ninth ball joint 209, and tenth ball joint 210.
In order to e clarity and to avoid confusion in the description, only one side of the suspension parts are mentioned hereinafter. Rear axle is defined at the rotating axis of the rear wheel 002. Referring to and 4, vehicle center line 001 denotes the center plane of the vehicle.
A knuckle assembly 106 is placed inward of the rear wheel 002, with the rear wheel 002 rotatably connected to the knuckle ly 106. A first kinematic link 101 is placed ersely forward of the rear wheel 002 and connects to the chassis via a first ball joint 201 and connects to the knuckle assembly 106 via a second ball joint 202. A second kinematic link 102 is placed longitudinally inward of the knuckle assembly 106 and connects to the knuckle assembly 106 via a fourth ball joint 204 and connects to the chassis via a third ball joint 203. A third kinematic link 103 is placed longitudinally above the second tic link 102 and inward of the knuckle assembly 106, which the third kinematic link 103 connects to the knuckle assembly 106 via a sixth ball joint 206 and connects to the chassis via a fifth ball joint 205. A fifth kinematic link 105 is placed transversely rearward of the rear wheel 002 and connects to the s via a ninth ball joint 209 and ts to the e assembly 106 via a tenth ball joint 210. A fourth kinematic link 104 is placed transversely above the fifth kinematic link 105 and rearward of the rear wheel 002 and connects to the chassis via a seventh ball joint 207 and connects to the knuckle ly 106 via an eighth ball joint 208. An electric machine (hidden) is placed inside of the knuckle assembly 106 to provide traction force to the rear wheel 002.
It is mentioned that the first ball joint 201, the second ball joint 202, the third ball joint 203, the fourth ball joint 204, the fifth ball joint 205, and the sixth ball joint 206 are placed inward of the rear wheel 002, and the seventh ball joint 207, the eighth ball joint 208, the ninth ball joint 209 and the tenth ball joint 210 are placed rearward of the rear wheel 002. The third ball joint 203 is placed forward of the fourth ball joint 204, and the fifth ball joint 205 is placed forward of the sixth ball joint 206. The first ball joint 201 is placed outward of the second ball joint 202, the seventh ball joint 207 is placed outward of the eighth ball joint 208, and the ninth ball joint 209 is placed d of the tenth ball joint 210. The fifth ball joint 205 is placed above the third ball joint 203, the sixth ball joint 206 is placed above the fourth ball joint 204, the seventh ball joint 207 is placed above the ninth ball joint 209, and the eighth ball joint 208 is placed above the tenth ball joint 210.
It is common in the industry that the ball joint can be replaced with rubber bushing.
In some applications, the seventh ball joint 207 and the eighth ball joint 208 can be instead placed forward of the rear wheel 002. This modification changes neither the function nor the characteristics of the abovementioned embodiment.
Claims

Claims (4)

What is claimed 1. is:
1. An independent rear suspension system comprising: a chassis structure, a first kinematic link, a second kinematic link, a third kinematic link, a fourth kinematic link, a fifth kinematic link, a knuckle assembly, a first ball joint, a second ball joint, a third ball joint, a fourth ball joint, a fifth ball joint, a sixth ball joint, a seventh ball joint, an eighth ball joint, a ninth ball joint , a tenth ball joint, and a rear wheel, wherein the first ball joint is attached to the chassis structure, the first kinematic link is attached to the first ball joint, the second ball joint is attached to the first kinematic link, the second ball joint is attached to the knuckle ly, the e assembly is attached to fourth ball joint, the fourth ball joint is attached to the second kinematic link, the second kinematic link is attached to the third ball joint, the third ball joint is attached to the chassis structure, the fifth ball joint is ed to the chassis structure, the fifth ball joint is attached to the third kinematic link, the third kinematic link is attached to the sixth ball joint, the sixth ball joint is attached to the knuckle assembly, the eighth ball joint is attached to the knuckle assembly, the eighth ball joint is ed to the fourth kinematic link, the seventh ball joint is attached to the fourth kinematic link, the h ball joint is attached to the chassis structure, the ninth ball joint is attached to the chassis structure, the ninth ball joint is attached to the fifth kinematic link, the fifth kinematic link is attached to the tenth ball joint, and the tenth ball joint is attached to the e assembly; wherein the first ball joint, the second ball joint, the third ball joint, the fourth ball joint, the fifth ball joint, and the sixth ball joint are placed forward of the rear wheel; wherein the h ball joint, the eighth ball joint, the ninth ball joint, and the tenth ball joint are placed behind the rear wheel; wherein the third ball joint is placed forward of the fourth ball joint and the fifth ball joint is placed forward of the sixth ball joint; wherein the first ball joint is placed outward of the second ball joint, the seventh ball joint is placed outward of the eighth ball joint, and the ninth ball joint is placed outward of the tenth ball joint; wherein the fifth ball joint is placed above the third ball joint, the sixth ball joint is placed about the fourth ball joint, the seventh ball joint are placed above the ninth ball joint, and the eighth ball joint is placed above the tenth ball joint.
2. The independent rear suspension system of claim 1, wherein at least one of said first to said tenth ball joints is replaced by a rubber bushing.
3. The independent rear suspension system of claim 1, wherein an electric machine is attached to the knuckle assembly.
4. The independent rear suspension system of claim 1, n said seventh ball joint and said eighth ball joint are placed forward of the rear wheel. Drawing
NZ752636A 2018-09-04 2019-04-15 An Independent Rear Suspension System NZ752636A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107212111 2018-09-04

Publications (1)

Publication Number Publication Date
NZ752636A true NZ752636A (en)

Family

ID=

Similar Documents

Publication Publication Date Title
US11072216B2 (en) Independent rear suspension system
JP5784509B2 (en) Automotive suspension
JPS6226921B2 (en)
US4343375A (en) Vehicle drive wheel suspension
US20240140159A1 (en) Driven lift axles and associated systems and methods
US20210078639A1 (en) Modular front drivetrain assembly
US20200283067A1 (en) Twist-beam axle for an electrically driven motor vehicle
AU650233B2 (en) Large dump truck
DE102018205429B4 (en) Rear wheel suspension system of a motor vehicle, in particular of an electrically driven motor vehicle
US20220234663A1 (en) Modular front drivetrain assembly
US4362221A (en) Vehicle drive wheel suspension
US7980350B2 (en) Chassis mounted electric, independent, steering axle of a vehicle
EP2651749A1 (en) Frame-steered vehicle
US20030184038A1 (en) Semi-independent swing arm suspension system for a low floor vehicle
EP4094967A1 (en) Vehicle having an axle assembly and a wheel end support housing
NZ752636A (en) An Independent Rear Suspension System
US20230135265A1 (en) Rear suspension system
US20210339718A1 (en) Brake system for front portal drivetrain assembly
US11390131B2 (en) Chassis arrangement for a motor vehicle, and method for operating a motor vehicle
CN109703307B (en) Double-cross arm independent suspension system and vehicle
GB2581134A (en) Electric goods vehicle with de Dion axle
CN105774456B (en) Damping of electric vehicles system
Seethaler Design of an innovative car wheel suspension concept with a fiber-reinforced plastic spring/control arm
WO2023048257A1 (en) Vehicle
CN117698352A (en) Five-link suspension system and vehicle