NZ554249A - I-SST enzyme isolated from forage grasses and methods for its use - Google Patents

I-SST enzyme isolated from forage grasses and methods for its use

Info

Publication number
NZ554249A
NZ554249A NZ55424907A NZ55424907A NZ554249A NZ 554249 A NZ554249 A NZ 554249A NZ 55424907 A NZ55424907 A NZ 55424907A NZ 55424907 A NZ55424907 A NZ 55424907A NZ 554249 A NZ554249 A NZ 554249A
Authority
NZ
New Zealand
Prior art keywords
leu
ala
gly
val
ser
Prior art date
Application number
NZ55424907A
Inventor
Jeroen Demmer
Michael Andrew Shenk
Matthew Glenn
Michael Geoffrey Norriss
Keith Martin Saulsbury
Claire Hall
Richard L S Forster
Original Assignee
Genesis Res & Dev Corp Ltd
Wrightson Seeds Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Res & Dev Corp Ltd, Wrightson Seeds Ltd filed Critical Genesis Res & Dev Corp Ltd
Publication of NZ554249A publication Critical patent/NZ554249A/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Isolated polynucleotides encoding polypeptides active in the fructan pathway are provided, together with expression vectors and host cells comprising such isolated polynucleotides. Methods for the use of such polynucleotides and polypeptides are also provided.

Description

*10053447600* 5542^9 NEW ZEALAND PATENTS ACT, 1953 No: Date: COMPLETE SPECIFICATION COMPOSITIONS ISOLATED FROM FORAGE GRASSES AND METHODS FOR THEIR USE We, GENESIS RESEARCH & DEVELOPMENT CORPORATION LTD, of 1 Fox Street, Parnell, Auckland, New Zealand AND WRIGHTSON SEEDS LTD., of Wrightson House, 14 Hartham Place, Porirua, New Zealand, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: - 1 -(followed by 1a) COMPOSITIONS ISOLATED FROM FORAGE GRASSES AND METHODS FOR THEIR USE Technical Field of the Invention This invention relates to polynucleotides isolated from forage grass tissues, specifically from Lolium perenne (perennial ryegrass) and Festuca arundinacea (tall fescue), as well as oligonucleotide probes and primers, genetic constructs comprising the polynucleotides, biological materials (including host cells and plants) incorporating the 10 polynucleotides, polypeptides encoded by the polynucleotides, and methods for using the polynucleotides and polypeptides. More particularly, the invention relates to polypeptides involved in the tannin, cellulose and fructan biosynthetic pathways, and to polynucleotides encoding such polypeptides.
Background of the Invention Over the past 50 years, there have been substantial improvements in the genetic production potential of ruminant animals (sheep, cattle and deer). Levels of meat, milk or fiber production that equal an animal's genetic potential may be attained within controlled feeding systems, where animals are fully fed with energy dense, conserved forages and 20 grains. However, the majority of temperate farming systems worldwide rely on the in situ grazing of pastures. Nutritional constraints associated with temperate pastures can prevent the full expression of an animal's genetic potential. This is illustrated by a comparison between milk production by North American grain-fed dairy cows and New Zealand pasture-fed cattle. North American dairy cattle produce, on average, twice the milk volume of New 25 Zealand cattle, yet the genetic base is similar within both systems (New Zealand Dairy Board and United States Department of Agriculture figures). Significant potential therefore exists to improve the efficiency of conversion of pasture nutrients to animal products through the correction of nutritional constraints associated with pastures.
Carbohydrate metabolism Plant carbohydrates can be divided into two groups depending on their function la within the plant Structural carbohydrates, such as cellulose and lignin, are usually part of the extracellular matrix. Non-structural, storage carbohydrates act as either long- or short-term carbohydrate stores. Examples of non-structural carbohydrates include starch, sucrose and fructans.
Fructans are polymers that are stored in the vacuole and that consist of linear and branched chains of fructose units (for review see Vijn and Smeekens Plant Physiol. 120:351-359, 199). They play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Grasses use fructans instead of starch as a water-soluble carbohydrate store (Pollock et ah, in "Regulation of primary metabolic pathways in plants", 10 N.J. Rruger et al. (eds), Kluwer Academic Publishers, The Netherlands, ppl95-226, 1999). Increasing the amount of fructans and sucrose in forage crops leads to an increase in the level of water-soluble carbohydrates and thereby enhances the nutritional value of the plants. In addition, increasing the amount of fructans in forage plants decreases methane production in animals fed the plants, thereby leading to lower greenhouse gas emissions, and decreases 15 urea production in animals as less protein is degraded in the rumen (Biggs and Hancock Trends in Plant Sci., 6:8-9, 2001). Fructans have also been implicated in protecting plants against water deficits caused by drought or low temperatures. Introduction of enzymes involved in the fructan biosynthetic pathway into plants that do not naturally synthesize fructans may be employed to confer cold tolerance and drought tolerance (Pilon-Smits, Plant 120 Physiol 107:125-130,1995).
The number of fructose units within a fructan chain is referred to as the degree of polymerization (DP). In grasses, fructans of DP .6-10 are common. Such fructans of low DP are naturally sweet and are therefore of interest for use as sweeteners in foodstuffs. Long fructan chains form emulsions with a fat-like texture and a neutral taste. The human 25 digestive system is unable to degrade fructans, and fructans of high DP may therefore be used as low-calorie food ingredients. Over-expression of enzymes involved in the fructan biosynthetic pathway may be usefully employed to produce quantities of fructans that can be purified for human consumption.
Five major classes of structurally different fructans have been identified in plants, 30 with each class showing a different linkage of the fructosyl residues. Fructans found in grasses are of the mixed levan class, consisting of both (2-1)- and (2-6)-linked beta-D- 2 fructosyl units (Pollock et ah, in "Regulation of primary metabolic pathways in plants", NJ. Kruger et ah (eds), Kluwer Academic Publishers, The Netherlands, ppl95-226, 1999). Fructans are synthesized by the action of fructosyltransferase enzymes on sucrose in the vacuole. These enzymes are closely related to invertases, enzymes that normally hydrolyze 5 sucrose.
Grasses use two fructosyltransferase enzymes to synthesize fructans, namely sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) (Pollock et al., in "Regulation of primary metabolic pathways in plants", N.J. Kruger et ^ al. (eds), Kluwer Academic Publishers, The Netherlands, ppl95-226, 1999). 1-SST is a key 10 enzyme in plant fructan biosynthesis, while 6-SFT catalyzes the formation and extension of beta-2,6-linked fructans that is typically found in grasses. Specifically, 1-SST catalyzes the formation of 1-kestose plus glucose from sucrose, while 6-SFT catalyzes the formation of bifurcose plus glucose from sucrose plus 1-kestose and also the formation of 6-kestose plus glucose from sucrose. Both enzymes can modify 1-kestose, 6-kestose and bifurcose further 15 by adding additional fructose molecules. Over-expression of both 1-SST and 6-SFT in the same plant may be employed to produce fructans for use in human foodstuffs (Sevenier et al., Nature Biotechnology 16:843-846; Hellewege et ah, Proc. Nat. Acad. Sci., U.S.A. 97:8699-8704). For a review of the fructan biosynthetic pathway see Vijn I. and Smeekens S. Plant Physiol 120:351-359,1999. |20 Hie synthesis of sucrose from photosynthetic assimilates in plants, and therefore the availability of sucrose for use in fructan formation, is controlled, in part, by the enzymes sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (SPP). Sucrose plays an important role in plant growth and development, and is a major end product of photosynthesis. It also functions as a primary transport sugar and in some cases as a direct or 25 indirect regulator of gene expression (for review see Smeekens' Curr. Opin. Plant Biol 1:230-234,1998). SPS regulates the synthesis of sucrose by regulating carbon partitioning in the leaves of plants and therefore plays a major role as a limiting factor in the export of photoassimilates out of the leaf. The activity of SPS is regulated by phosphorylation and moderated by concentration of metabolites and light (Huber et ah, Plant Physiol. 95:291-297, 30 1991). Specifically, SPS catalyzes the transfer of glucose from UDP-glucose to fructose-6-phosphate, thereby forming sucrose-6-phosphate (Suc-6-P). Suc-6-P is then 3 dephosphorylated by SPP to form sucrose (Lunn et al, Proc. Nat. Acad. Sci., U.S.A. 97:12914-12919, 2000). The enzymes SPS and SPP exist as a heterotetramer in the cytoplasm of mesophyll cells in leaves, with SPP functioning to regulate SPS activity. SPS is also important in ripening fruits, sprouting tubers and germinating seeds (Laporte et al. Planta 212:817-822,2001).
Once in the vacuole, sucrose can be converted into fructan by fructosyltransferases as discussed above, or hydrolyzed into glucose and fructose by the hydrolase enzymes known as invertases (Sturm, Plant Physiol. 121:1-7, 1999). There are several different types of invertases, namely extracellular (cell wall), vacuolar (soluble acid) and cytoplasmic, with at least two isoforms of each type of invertase normally being found within a plant species. In addition to having different subcellular locations, the different types of invertases have different biochemical properties. For example, soluble and cell wall invertases operate at acidic pH, whereas cytoplasmic invertases work at a more neutral or alkaline pH. Invertases are believed to regulate the entry of sucrose into different utilization pathways (Grof and Campbell Aust. J. Plant Physiol 28:1-12, 2001). Reduced invertase activity may increase the level of water-soluble carbohydrates in plants. Plants contain several isoforms of cell wall invertases (CWINV), which accumulate as soluble proteins. CWINV plays an important role in phloem unloading and in stress response. Arabidopsis contains 9 putative cytoplasmic or neutral invertases that are expressed in all tissues and at all developmental stages implying a more general function than the differentially expressed acid invertases. The neutral invertase cloned from carrot and Lolium temulentwn show no similarity to acid invertases with the exception of a conserved pentapeptide motif in the grass cDNA (Gallagher J. Exp. Bot. 49:789,1998; Sturm, A. etalPhysiologia Plantarum, 107:159-265,1999).
Another enzyme that acts upon sucrose in plants is soluble sucrose synthase (SUS). Recent results indicate that SUS is localized in the cytosol, associated with the plasma membrane and the actin cytoskeleton. Phosphorylation of SUS is one of the factors controlling localization of the enzyme (Winter and Huber, Crit. Rev. Biochem. Mol Biol. 35:253-89, 2000). It catalyzes the transfer of glucose from sucrose to UDP, yielding UDP-glucose and fructose.' Increasing the amount of SUS in a plant increases the amount of cellulose synthesis, whereas decreasing SUS activity should increase fructan levels. Increased SUS concentration may also increase the yield of fruiting bodies. SUS activity is 4 WO 03/093464 PCT/NZ03/00081 highest in carbon sink tissues in plants and low in photosynthetic source tissues, and studies have indicated that SUS is the main sucrose-cleaving activity in sink tissues. Grasses have two isoforms of SUS that are encoded by separate genes. These genes are differentially expressed in different tissues.
Pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP, EC 2.7.1.90) catalyses the reversible conversion of fructose 6-phosphate (Fru-6-P) and pyrophosphate (Ppi) to fructose 1,6-bisphosphate (Fru-1,6-P) and inorganic phosphate (Pj). In the plant PEP has important physiological roles in glycosylation, sucrose metabolism, respiratory carbon flow, as well as being a supply of PPj. Along with FBPase and PFK, PFP regulates this step 10 in the pathway of sucrose metabolism. PFP is a cytoplasmic enzyme consisting of a 250kDa tetramer (two alpha and two beta chains) with the two subunits containing all of the regulatory and catalytical functions, respectively. In the plant cell fructose 2-6-bisphosphate is a potent activator of PFP activity. In sugarcane (a C4 grass), PFP activity is inversely correlated with sucrose content (Whittaker and Botha Plant Physiol., 115, 1651-1659, 1997), 15 indicating that a reduction of PFP enzyme levels will increase the flux of sucrose synthesis. In forage grasses reducing PFP levels in the leaves will increase water-soluble carbohydrate levels in the leaf tissue. The Arabidopsis genome contains four closely related PFP genes thought to encode two isoforms of each subunit, however, only 1 cDNA representing each unit of the purified protein has been isolated from Castor Bean, Potato and Spinach (Todd, 20 Blakeley and Dennis Gene, 152,181-186, 1995; Carlisle, Blakeley, Hemmingsen, Trevanion, Hiyoshi, Kruger and Dermis J. Biol Chem., 265,18366-18371, 1990).
Sucrose Transporters (SUTs) play a major role in the partitioning of dissacharides (sucrose) across membranes (for a review see Williams et al., Trends Plant Set, 5:283-290, 2000). In particular SUTs are involved in loading and unloading of sucrose into the phloem 25 and the source-sink relationship within the plant. SUTs are energy depenederit and can transport sucrose across large sucrose gradients. In Arabidopsis six SUTs have been identified, however in monocots and dicots SUTs form distinct groups. In general, monocots have 2 types of SUTs. For example barley and maize have two SUT proteins, known as SUTi and SUT2. SUTl is found in source, not sink, tissues, whereas SUT2 is constitutively 30 expressed at similar levels in all tissues" (Hirose, Imaizumi, Scofield, Furbank and Ohsugi Plant Cell Physiol 38: 1389-1396; 1997; Weschke, et al., Plant Journal 21, 455-457, 2000).
InMbition of SUT1 in potato plants by antisense technology resulted in increased levels of sucrose and starch in the source leaves (Schulz et al. Planta, 206, 533-543, 1998). Repressing SUT activity in forage grasses to lower phloem loading in source tissues will increase water soluble carbohydrate content in the leaves.
Cellulose synthesis The major source of dietary fibre for grazing animals comes from plant cell walls. Mammals possess no enzymes capable for breaking down the polysaccharides in plant cell walls. Instead animals such as ruminants depend on microbial breakdown of plant cell walls 10 through fermentation in either the rumen or large intestine.
Fibre in plants is measured using the Neutral Detergent Fibre (NDF) technique in which plant samples are boiled in a solution containing sodium lauryl sulfate (van Soest in "Nutritional Ecology of the Ruminant". Cornell University Press, Ithaca, NY, 1994). This detergent extracts water-soluble components such as sugars, lipids and organic acids. The 15 remaining insoluble residue (fibre) is termed NDF and consists predominantly of plant cell wall components such as cellulose, hemicellulose, and lignin. The amount of cellulose and lignin in cell walls can be determined using the Acid Detergent Fibre (ADF) method where plant samples are boiled in sulfuric acid and sodium lauryl sulfate. The difference between NDF and ADF. for a plant sample is normally considered to be the amount of hemicellulose 20 (van Soest in "Nutritional Ecology of the Ruminant". Cornell University Press, Ithaca, NY, 1994).
Stems of most forage species have greater NDF content then leaves. For example, for a temperate C$ grass in mid-flowering such as tall fescue (Festuca arundinaced), NDF content of leaves and stems is 50 and 70%, respectively (Buxton & Redfearn J. Nutrition 25 127:S814-S818, 1997). In contrast, for a C4 tropical grass such as switchgrass (Panicum virgatum L.) the NDF content of leaves and stems is 70 and 85%, respectively. The digestibility of a forage is determined by cell wall content, so that legumes are more digestible than grasses because they contain less NDF. The NDF of a legume, however, is generally less digestible than that of grasses because a higher proportion of the NDF is made 30 up by lignin. The increase of lignin as a component of NDF is also responsible for the decrease in digestibility of grasses at the time of flowering. In fact, ruminants can digest 6 only 40-50% of NDF in legumes compared to 60-70% for grass NDF (Buxton & Redfearn J. Nutrition 127:S814-S818,1997). Digestibility of cellulose by ruminants is therefore directly related to the extent of lignification. Generally hemicellulose is more digestible than cellulose.
Cellulose is the most abundant carbohydrate in forage making up to 20-40% of dry matter (van Soest in "Nutritional Ecology of the Ruminant". CornellUniversity Press, Ithaca, NY, 1994). The cellulose in forages consists predominantly of pi-4 glucan (85%) and smaller amounts of pentosans (e.g. xylose and arabinose; 15%). There appear to be two ^ pools of cellulose within the plant cell wall, the difference being one is lignified and the other 10 is not (van Soest in "Nutritional Ecology of the Ruminant". Cornell University Press, Ithaca, NY, 1994). The lignified cellulose is mostly found in the primary cell wall and in the SI outer layer of the secondary cell wall. Independent of lignification, it appears that cellulose possesses a variability in nutritive quality (van Soest in "Nutritional Ecology of the Ruminant". Cornell University Press, Ithaca, NY, 1994). This indicates that it is possible to 15 alter the rate of cellulose digestibility by modifying the chemical composition of cellulose. This could be achieved through manipulating the actions of the cellulose synthesis and cellulose synthesis-like enzymes found in plant cells. One method to increase digestibility in this way is to increase the activity of the cellulose synthesis and cellulose synthesis-like enzymes responsible for synthesizing hemicellulose or to down regulate the cellulose I 20 synthesis and cellulose synthesis-like enzymes making cellulose. Hemicellulose is much more digestible than cellulose and is less likely to become lignified. Another way of manipulating cell wall composition is through modifying the rate and supply of primary components required for cellulose synthesis, i.e. of pi-4 glucan and pentosans such as xylose and arabinose. One way to achieve this is to modify the actions of soluble sucrose synthase 25 and UDP glucose pyrophophorylase (UDP-GP) enzymes that produce the UDP-glucose required for cellulose synthesis. This may be further modified by manipulating the actions of the large and small subunits of ADP-glucose pyrophosphatase (ADP-GP), the two enzymes that are rate-limiting steps in starch synthesis (Smith, Denyer and Martin Ann. Rev. Plant Phys. Plant Mol. Biol 48:67-87,1997). 7 WO 03/093464 PCT/NZ03/00081 Manipulating expression of the UDPGP and ADP-GP genes would alter the chemical composition of plant cell walls in forage plants. Altering cell wall biosynthesis therefore provides an opportunity to increase digestibility of the plant dry matter. This may be achieved by increasing the amount of carbon in the plant allocated to cellulose biosynthesis 5 at the expense of lignin biosynthesis. Alternatively, decreasing the amount of cellulose biosynthesis and increasing the amount of water-soluble carbohydrates would have a similar effect. Furthermore, specifically increasing hemicellulose levels in the plant cell walls at expense of cellulose would also increase forage digestibility. By utilizing specific promoters in combination with the UDPGP and ADP-GP genes it is possible to increase or decrease the 10 starch, cellulose and/or hemicellulose levels in the leaf or stem.
Tannin Biosynthetic Pathway Condensed. tannins are polymerized flavonoids. More specifically, tannins are composed of catechin 4-ol and catechin monomer units, and are stored in the vacuole. In 15 many temperate forage crops, such as ryegrass and fescue, foliar tissues are tannin-negative. This leads to a high initial rate of fermentation when these crops are consumed by ruminant livestock resulting in both protein degradation and production of ammonia by the livestock. These effects can be reduced by the presence of low to moderate levels of tannin. In certain other plant species, the presence of high levels of tannins reduces palatability and nutritive 20 value. Introduction of genes encoding enzymes involved in the biosynthesis of condensed tannins into a plant may be employed to synthesize flavonoid compounds that are not normally made in the plant. These compounds may then be isolated and used for treating human or animal disorders or as food additives.
Much of the biosynthetic pathway for condensed tannins is shared with that for 25 anthocyanins, which are pigments responsible for flower color. Therefore, modulation of the levels of enzymes involved in the tannin biosynthetic pathway may be employed to alter the color of foliage and the pigments produced in flowers.
Most tannins described to date contain pro-cyanidin units derived from dihydroquercetin and pro-delphinidin units derived from dihydromyricetin. However, some 30 tannins contain pro-pelargonidin units derived from dihydrokaempferol. The initial step in the tannin biosynthetic pathway is the condensation of coumaryl CoA with malonyl CoA to 8 give naringenin-chalcone, which is catalyzed by the enzyme chalcone synthase (CHS). The enzyme chalcone isomerase (CHI) catalyzes the isbmerization of naringenin chalcone to naringenin (also known as flavanone), which is then hydroxylated by the action of the enzyme flavonone 3- beta-hydroxylase (F3(3H) to give dihydrokaempferol. The enzyme 5 flavonoid 3'-hydroxylase (F3'OH) catalyzes the conversion of dihydrokaempferol to dihydroquercetin, which in turn can be converted into dihydromyricetin by the action of flavonoid 3'5'-hydroxylase (F3'5'OH). F3'OH is a P450 enzyme responsible for the brick red to orange pelargonidin-based pigments, whereas F3'5'OH is responsible for the puiple and blue delphinidin-based pigments. The enzyme dihydroflavonol-4-reductase (DFR) 10 catalyzes the last step before dihydrokaempferol, dihydroquercetin and dihydromyricetin are committed for either anthocyanin (flower pigment) or proanthocyanidin (condensed tannin) formation. DFR also converts dihydrokaempferol to afzelchin-4-ol, dihydroquercetin to catechin-4-ol, and dihydromyricetin to gallocatechin-4-ol, probably by the action of more than one isoform. For a review of the tannin biosynthetic pathway, see, Robbins M.P. and 15 Morris P. in Metabolic Engineering of Plant Secondary Metabolism, Verpoorte and Alfermann (eds), Kluwer Academic Publishers, the Netherlands, 2000. The leucoanthocyanidin dioxygenase (LDOX) enzyme belongs to the iron/ascorbate-dependent family of oxidoreductases. In maize the LDOX gene A2 is required for the oxidation of leucoanthocyanidins into anthocyanidins (Menssen, Hoehmann, Martin, Schnable, Peterson, 20 Saedler and Gierl EMBO J. 9:3051-3057,1990).
While polynucleotides encoding some of the enzymes involved in the fructan, cellulose and tannin biosynthetic pathways have been isolated for certain species of plants, genes encoding many of the enzymes in a wide range of plant species have not yet been 25 identified. Thus there remains a need in the art for materials useful in the modification of fructan and tannin content and composition in plants, and for methods for their use.
Summary of the Invention • In one aspect the invention provides an isolated polynucleotide comprising the 30 sequence of: SEQ ID NO: 4. intellectual property office of n.z - 8 JUL 2008 RECEIVED In a further aspect the invention provides an isolated polynucleotide comprising a sequence selected from the group consisting of: (a) complements of SEQ ID NO: 4; (b) reverse complements of SEQ ID NO: 4; and 5 (c) reverse sequences of SEQ ID NO: 4.
In a further aspect the invention provides an isolated polynucleotide comprising a sequence selected from the group consisting of: (a) sequences having at least 95% identity to a sequence of SEQ ID NO: 4; and (b) sequences having at least 98% identity to a sequence of SEQ ID NO: 4; 10 wherein % identity is calculated over the whole length of the specified sequence.
In a further aspect the invention provides an isolated polypeptide comprising the amino acid sequence of: SEQ ID NO: 48.
In a further aspect the invention provides an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) sequences having at least 90% identity to a sequence of SEQ ID NO: 48; and (b) sequences having at least 95% identity to a sequence of SEQ ID NO: 48; wherein % identity is calculated over the whole length of the specified sequence.
In a further aspect the invention provides a genetic construct comprising, in the 5'-20 3' direction: (a) a gene promoter sequence; (b) a polynucleotide sequence comprising at least one of the following: (1) a polynucleotide coding for at least a functional portion of a polypeptide of any one of claims 5 and 6; (2) a polynucleotide comprising a non-coding region of a polynucleotide of any one of claims 1-3; (3) an operable antisense fragment of a polynucleotide of any one of claims 1-3; and (c) a gene termination sequence. 9a (followed by page 9b) intellectual property office of n.z - 8 JUL 2008 RECEIVED In a further aspect the invention provides a method for producing a plant with altered fructan composition, the method comprising transformation of a plant with a polynucleotide capable of hybridising under stringent conditions to an endogenous gene encoding a polypeptide with at least 90% identity to the sequence of SEQ ID NO: 48, such 5 that expression of the polynucleotide results in reduced expression of the endogenous gene, reduced levels of the encoded polypeptide and altered fructan composition.
In a further aspect the invention provides a method for producing a plant with altered fructan composition, the method comprising transformation of a plant with a polynucleotide capable of hybridising under stringent conditions to an endogenous nucleic 10 acid comprising a sequence with at least 95% sequence identity to SEQ ID NO: 4, such that expression of the polynucleotide results in reduced expression of the endogenous nucleic acid, reduced levels of the encoded polypeptide and altered fructan composition.
Also disclosed are enzymes involved in the fructan, cellulose, starch and/or tannin biosynthetic pathways that are encoded by polynucleotides isolated from forage grass 15 tissues. The polynucleotides were isolated from Lolium perenne (perennial ryegrass) 9b (followed by page 10) intellectual propert" office of n z. - 8 JUL 2008 RECEJVFn and Festuca arundinacea (tall fescue) tissues taken at different times of the year, specifically in winter and spring, and from different parts of the plants, including: leaf blades, leaf base, pseudostems, roots and stems. Genetic constructs, expression vectors arid host cells comprising the polynucleotides disclosed are also provided, together with methods for using 5 the polynucleotides and genetic constructs to modulate the biosynthesis of fructans and tannins.
The isolated polynucleotides disclosed comprise a sequence selected from the group consisting of: (a) SEQ ID NO: 1-44; (b) complements of SEQ ID NO: 1-44; (c) reverse complements of SEQ ID NO: 1-44; (d) 10 reverse sequences of SEQ ID NO: 1-44; (e) sequences having a 99% probability of being ' functionally or evolutionarily related to a sequence of (a)-(d), determined as described below; and (f) sequences having at least 75%, 80%, 90%, 95% or 98% identity to a sequence of (a)-(d), the percentage identity being determined as described below. Polynucleotides comprising at least a specified number of contiguous residues ftr-mers") of any of SEQ ID NO: 1-44, and oligonucleotide probes and primers corresponding to SEQ ID NO: 1-44 are also provided. All of the above polynucleotides are referred to herein as "polynucleotides of tile present invention." Also disclosed are isolated polypeptides encoded by the polynucleotides disclosed. Such 20 polypeptides may comprise an amino acid sequence of SEQ ID NO: 45-88. Also disclosed are polypeptides comprising a sequence having at least 75%, 80%, 90%, 95% or 98% identity to a sequence of SEQ ID NO: 45-88, wherein the polypeptide possesses the same functional activity as the polypeptide comprising a sequence of SEQ ID NO: 45-88.
Also disclosed are isolated polypeptides comprising at least a functional portion of 25 an amino acid sequence selected from the group consisting of: (a) SEQ ID NO: 45-88; and (b) sequences having at least 75%,-80%, 90%, 95% or 98% identity to a sequence of SEQ ID NO: 45-88.
In another aspect, the present invention provides genetic constructs, or expression vectors, comprising a polynucleotide of the present invention, either alone, in combination 30 with one or more of the inventive sequences, or in combination with one or more known polynucleotides. [inteuectu/u PROPERTY office of m.z. 8 JUL 2008 RECEIVED In certain embodiments, the present invention provides genetic constructs comprising, in the 5'-3' direction: a gene promoter sequence; an open reading frame coding for at least a functional portion of a polypeptide of the present invention; and a gene termination sequence. An open reading frame may be orientated in either a sense or anti-sense direction. Genetic constructs comprising a non-coding region of a polynucleotide of the present invention or a polynucleotide complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. Preferably, the gene promoter and termination sequences are fractional in a host cell, such as a plant cell. Most preferably, the gene promoter and termination sequences are those of the original enzyme genes but others generally used in the art, such as the Cauliflower Mosaic Virus (CMV) promoter, with or without enhancers, such' as the Kozak sequence or Omega enhancer, and the Agrobacterium tumefaciens nopalin synthase terminator may be usefully employed in the present invention. Tissue-specific promoters may be employed in order to target expression to one or more desired tissues. The construct may further include a marker for the identification of transformed cells.
In a further aspect, transgenic cells, such as transgenic plant cells, comprising the genetic constructs of the present invention are provided, together with tissues and plants comprising such transgenic cells, and fruits, seeds and other products, derivatives, or progeny of such plants.
Also methods for modulating the fructan, cellulose, starch and/or tannin content and composition of a target organism, such as a plant, by modulating the amount and/or activity of a disclosed polynucleotide or polypeptide in the organism. In certain embodiments, such methods include stably incorporating into the genome of the target plant a genetic construct of the present invention. In a preferred embodiment, the target plant is a forage grass, preferably selected from the group consisting of Loliian and Festuca species, and most preferably from the group consisting of Lolium peremre and Festuca arundinacea.
Also disclosed are methods for producing a plant having altered fructan or tannin composition is provided. Such methods comprise modulating the amount and/or activity of a disclosed polynucleotide or polypeptide in a plant cell by, for example, transforming a plant cell with a genetic construct disclosed to provide a transgenic cell, and 11 intellectual property office of h i - 8 JUL 2008 RECEIVED cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth.
In yet a further aspect, the present invention provides methods for modifying the activity of an enzyme in a target organism, such as a plant, comprising modulating the amount and/or activity of an inventive polynucleotide or polypeptide in the target organism by, for example stably incorporating into the genome of the target organism a genetic construct of the present invention. In a preferred embodiment, the target plant is a forage grass, preferably selected from the group consisting of Lolium and Festuca species, and most "preferably from the group consisting of Lolium perenne and Festuca arundinacea.
Brief Description of the Figures Fig. 1 shows the neutral invertase activity of the recombinant grass alkaline/neutral invertase protein AN_INV8 from L. perenne (amino acid sequence provided in SEQ ID NO: 56; cDNA sequence provided in SEQ ID NO: 12). Activity was measured as the jig of glucose release from cleavage of sucrose per hour at pH 7. Also shown is an empty vector negative control (pET4 la).
Fig. 2 shows the PFP activity of L. perenne and F. arundinacea PFPA and PFPB r . subunits in coupled reactions. Amino acid sequences for L. perenne PEPA and PFPB are given in SEQ ID NO: 59 and 62, respectively (corresponding cDNA sequences are SEQ ID NO: 15 and 18), and amino acid sequences for F. arundinacea PFPA and PFPB are given in SEQ ID NO: 60 and 63, respectively (corresponding cDNA sequences are SEQ ID NO: 16 and 19). Oxidation of NADH was measured as nmoles PPi converted.
Fig. 3 shows the amino acid sequence of SEQ ID NO: 45. The conserved UTP-glucose-1-phosphate uridylyltransferase domain is underlined.
Fig. 4 shows the amino acid sequence of SEQ ID NO: 46. The conserved UTP--glucose-l-phosphate uridylyltransferase domain is underlined.
Fig. 5 shows the amino acid sequence of SEQ ID NO: 47. The conserved glycoside hydrolase, family 32 domain is underlined.
Fig. 6 shows the amino acid sequence of SEQ ID NO: 48. A transmembrane domain is underlined. 12 Fig. 7 shows the amino acid sequence of SEQ 3D NO: 53. The signal peptide is in bold/italics.
Fig. 8 shows the amino acid sequence of SEQ ID NO: 54. The signal peptide is in bold/italics and two conserved Antifreeze protein, type I domains are underlined.
Fig. 9 shows the amino acid sequence of SEQ ID NO: 55. The signal peptide is in bold/italics.
Fig. 10 shows the amino acid sequence of SEQ ID NO: 56. Two transmembrane domains are double underlined.
Fig. 11 shows the amino acid sequence of SEQ ID NO: 57. Two transmembrane domains are double underlined.
Fig. 12 shows the amino acid sequence of SEQ ID NO: 58. Two transmembrane domains are double underlined.
Fig. 13 shows the amino acid sequence of SEQ ID NO: 59. The conserved phosphofiructokinase domain is underlined and a transmembrane domain is double underlined.
Fig. 14 shorn the amino acid sequence of SEQ ID NO: 60. The conserved phosphofructokinase domain is underlined and a transmembrane domain is double underlined.
Fig. 15 shows the amino acid sequence of SEQ ID NO: 61. The conserved phosphofructokinase is underlined.
Fig. 16 shows the amino acid sequence of SEQ ID NO: 62. The conserved phosphofructokinase domain is underlined.
Fig. 17 shows the amino acid sequence of SEQ ID NO: 63. The conserved phosphofructokinase domain is underlined.
Fig. 18 shows the amino acid sequence of SEQ 3D NO: 64. The conserved glycosyl transferase, group 1 domain is underlined and two transmembrane domains are double underlined.
Fig. 19 shows the amino acid sequence of SEQ ID NO: 65. The conserved glycosyl transferase, group 1 domain is underlined and two transmembrane domains are double underlined. 13 Fig. 20 shows the amino acid sequence of SEQ ID NO: 66. The conserved substrate transporter domain is in bold and eleven transmembrane domains are double underlined.
Fig. 21 shows the amino acid sequence of SEQ ID NO: 67. Nine transmembrane domains are double underlined.
Fig. 22 shows the amino acid sequence of SEQ ID NO: 68. The conserved substrate transporter domain is in bold and eleven transmembrane domains are double underlined.
Fig. 23 shows the amino acid sequence of SEQ ID NO: 69. The conserved substrate transporter domain is in bold and eleven transmembrane domains are double underlined.
Fig. 24 shows the amino acid sequence of SEQ ID NO: 70. The conserved substrate transporter domain is in bold and eleven transmembrane domains are double underlined.
Fig. 25 shows the amino acid sequence of SEQ 3D NO: 72. The conserved nucleotidyl transferase domain is in bold and three ADP-glucose pyrophosphorylase are boxed. Nine transmembrane domains are double underlined.
Fig. 26 shows the amino acid sequence of SEQ 3D NO: 73. The conserved nucleotidyl transferase domain is in bold and three ADP-glucose pyrophosphoiylase domains are boxed. A transmembrane domain is double underlined.
Fig. 27 shows the amino acid sequence of SEQ ID NO: 74. The conserved nucleotidyl transferase domain is in bold and three ADP-glucose pyrophosphorylase domains are boxed. A transmembrane domain is double underlined.
Fig. 28 shows the amino acid sequence of SEQ 3D NO: 75. The conserved nucleotidyl transferase domain is in bold and three ADP-glucose pyrophosphorylase domains are boxed. The signal peptide is in bold/italics and a transmembrane domain is double underlined.
Fig. 29 shows the amino acid sequence of SEQ 3D. NO: 76. The conserved naringenin-chalcone synthase domain is underlined. The signal peptide is in bold/italics and a transmembrane domain is double underlined.
Fig. 30 shows the amino acid sequence of SEQ ID NO: 77. The conserved naringenin-chalcone synthase domain is underlined and two transmembrane domains are double underlined. 14 Fig. 31 shows the amino acid sequence of SEQ ID NO: 78. The conserved naringenin-chalcone synthase domain is underlined and two transmembrane domains are double underlined.
Fig. 32 shows the amino acid sequence of SEQ ID NO: 79. A transmembrane 5 domain is double underlined.
Fig. 33 shows the amino acid sequence of SEQ ID NO: 80. A transmembrane domain is double underlined.
Fig. 34 shows the amino acid sequence of SEQ ID NO: 81. A transmembrane domain is double underlined.
Fig. 35 shows the amino acid sequence of SEQ ID NO: 82. The conserved Cytochrome P450 domain is underlined and three transmembrane domains are double underlined.
Fig. 36 shows the amino acid sequence of SEQ ID NO: 83. The conserved Cytochrome P450 domain is boxed, the signal peptide is in bold and a transmembrane 15 domain is double underlined.
Fig. 37 shows the amino acid sequence of SEQ ID NO: 84. Hie conserved Cytochrome P450 domain is boxed and three transmembrane domains are double underlined.
Fig. 38 shows the amino acid sequence of SEQ 3D NO: 85. The conserved Cytochrome P450 domain is boxed, the signal peptide is in bold/italics and three 20 transmembrane domains are double underlined.
Fig. 39 shows the amino acid sequence of SEQ 3D NO: 86. The conserved Cytochrome P450 domain is boxed and three transmembrane domains are double underlined.
Fig. 40 shows the amino acid sequence of SEQ 3D NO: 87. The conserved Cytochrome P450 domain is boxed, the signal peptide is in bold/italics and three 25 transmembrane domains are double underlined.
Fig. 41 shows the amino acid sequence of SEQ ID NO: 88. The conserved 20G-Fe(II) oxygenase superfamily domain is underlined.
Detailed Description of the Invention 30 The polypeptides disclosed, and the polynucleotides encoding such polypeptides, have activity in fructan, cellulose, starch and/or tannin biosynthetic pathways in plants. Using the methods and materials disclosed, the fructan, cellulose, starch and/or tannin content of a plant may be modulated by modulating expression of polynucleotides disclosed, or by modifying the activity of the polynucleotides or polypeptides encoded by the polynucleotides. The isolated polynucleotides and 5 polypeptides of the present invention may thus be usefully employed in the correction of nutritional imbalances associated with temperate pastures and to increase the yield of animal products from pastures.
The fructan, cellulose, starch and/or tannin content of a target organism, such as a plant, may be modified, for example, by incorporating additional copies of genes encoding 10 enzymes involved in the fructan, cellulose, starch and/or tannin biosynthetic pathways into the genome of the target plant Similarly, a modified fructan, cellulose, starch and/or tannin content can be obtained by transforming the target plant with anti-sense copies of such genes. In addition, the number of copies of genes encoding for different enzymes in the fructan, cellulose, starch and tannin biosynthetic pathways can be manipulated to modify the relative 15 amount of each monomer unit synthesized, thereby leading to the formation of fructans, cellulose, starch or tannins having altered composition.
The present invention provides methods for modulating the polynucleotide and/or polypeptide contest and composition of an organism. In certain embodiments, such methods involve stably incorporating into the genome of the organism a genetic construct 20 comprising one or more polynucleotides of the present invention. In one embodiment, the target organism is a plant species, preferably a forage, plant, more preferably a grass of the IMiwn oiFesttica species, and most preferably Lolium perenne or Festuca arundinacea. In related aspects, methods for producing a plant having an altered genotype or phenotype is provided, such methods comprising transforming a plant cell with a genetic construct of the 25 present invention to provide a transgenic cell, and cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth. Plants having an altered genotype or phenotype as a consequence of modulation of the level or content of a polynucleotide or polypeptide of the present invention compared to a wild-type organism, as well as components (seeds, etc.) of such plants, and the progeny of such plants, are 30 contemplated by and encompassed within the present invention. 16 i^tellectuml ^h,-ht ' OFPICF OF tf -8 JUL 2008 ?E CEIVFn The isolated polynucleotides of the present invention additionally have utility in genome mapping, in physical mapping, and in positional cloning of genes. The polynucleotide sequences identified as SEQ ID NOS: 1-44 and their variants, may be used to design oligonucleotide probes and primers. Oligonucleotide probes and primers have sequences that are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide, preferably over substantially the entire' length of the polynucleotides. Oligonucleotide probes designed using the inventive polynucleotides may be employed to detect the presence and examine the expression patterns of genes in any organism having sufficiently similar DNA and KNA sequences in their cells using techniques that are well known in the art, such as slot blot DNA- hybridization techniques. Oligonucleotide primers designed using the polynucleotides of the present invention may be used for PCR amplifications. Oligonucleotide probes and primers designed using the inventive polynucleotides may also be used in connection with various microarray technologies, including the microarray technology of Affymetrix (Santa Clara, CA).
Disclosed herein are isolated polynucleotide sequences identified in the attached Sequence Listing as SEQ ID NOS: 1-44, and polypeptide sequences identified in the attached Sequence Listing as SEQ ID NO: 45-88. The polynucleotides and polypeptides disclosed have demonstrated similarity to the following polypeptides that are known to be involved in fructan, cellulose, starch and/or tannin biosynthetic processes: TABLE! SEQ ID NO: DNA SEQ ID NO: polypeptide Category Description 1,2 45,46 Carbohydrate metabolism Homolog of UDP-glucose pyrophosphorylase (EC 2.7.7.9) (UDPGP or UGPASE) which is one of the key enzymes of the carbohydrate metabolic pathway. It plays a central role as glucosyl donor in cellular metabolic pathways. UDP-glucose pyrophosphorylase catalyzes the reversible uridylyl transfer from UDP-glucose to MgPPi, forming glucose 1-phosphate and MgUTP. 3,4 47, 48 Fructan Homolog of Sucrose (Suc):Suc 1-fructosyl- (intellectual property office of n.z - 8 JUL 2008 DPPC l\/ch 0 10 SEQ ID NO: DNA |SEQ ED NO polypeptide Category Description metabolism transferase (1-SST) isolated from L. perenne. 1-SST is the key enzyme in plant fructan biosynthesis and catalyzes the de novo fructan synthesis from sucrose. Fructans play an important role in assimilation partitioning and in stress tolerance in many plants. It contains a typical signature of the glycosyl hydrolases family 32. The glycosyl hydrolases family 32 domain signature has a consensus of HYQPxxHMxxNDPNG, where D is the active site residue (Henrissat, Biochem. J. 280:309-316,1991). -14 49-58 Fructan metabolism Homolog of alkaline/neutral invertase (AN-DSTV) that is involved in catalyzing sucrose into hexoses for utilization as a source of carbon and energy. AN-INV belongs to the family 32 of glycosyl hydrolases. Neutral invertase is an octamer of456 kDa with subunits of 57 kDa, whereas alkaline invertase is a 504 kDa tetramer with subunits of 126 kDa. Neutral invertase also hydrolyzes rafOnose and stachyose and, therefore, is a beta-fructo-uranosidase. In contrast, alkaline invertase is lighly specific for sucrose (Lee and Sturm, Plant Physiol. 112:1513-1522,1996). ,16 59, 60 Fructan metabolism ■ Homologue of the alpha subunit of Pyro-phosphate-dependent 6-phosphofructo-l-Dhosphotransferase (PFPA) that plays a role in carbohydrate metabolism. PFP is involved in the first step of glycolysis in the Dhosphorylation of fructose 6-phosphate (Fru 6-3). PFPA acts as a regulatory protein in regulating both the catalytic activity and the ?ru-2,6-P2-binding affinity of the beta subunit [Siebers et al., J. Bacteriol. 180:2137-2143, 1998). 17-19 61-63 Fructan metabolism . < lomolog of the beta subunit of Pyrophosphate-iependent 6-phosphofructo- 1-phospho-xansferase (PFPB) which plays a role in :arbohydrate metabolism. PFP is involved in he first step of glycolysis in the phosphorylation of fructose 6-phosphate (Fru-6-5). The catalytic activity of the PFP enzyme is issociated with the beta subunit PFPB while 18 SEQ ID NO: DNA SEQ ID NO polypeptide Category Description PFPA acts as a regulatory protein in regulating both the catalytic activity and the Fru-2,6-P2-binding affinity of the beta subunit (Carlisle et al, J. Biol Chem. 265:18366-18371,1990; Siebers et al, J. Bacteriol 180:2137-2143, 1998). ,21 64, 65 Fructan metabolism Homologue of sucrose phosphate synthase which is involved in the sucrose synthesis pathway. Sucrose plays an important role in plant growth and development and is a major. end product of photosynthesis. It also functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. SPS-1 regulates the synthesis of sucrose by regulating carbon partitioning in the leaves of plants and therefore plays a major role as a limiting factor in the export of photoassimilates out of the leaf. The activity of SPS is regulated by phosphoiylation and moderated by concentration of metabolites and light. 22-24 66-68 Fructan metabolism Homologue of the sugar transporter SUT1, a member of the SUT family of low- and high-affinity sucrose transporters that is involved in transport of sucrose from mature leaves via the phloem. Expression of SUT1 has also been observed in other tissues (stems and parts of flower) suggesting that SUT1 may also have other functions, such as sucrose retrieval and phloem unloading (Burkle et al, Plant Physiol. 118:59-68,1998). ,26 • 69,70 Fructan metabolism Homologue of sugar transporter SUT2, a member of the SUT family of low- and high-affinity sucrose transporters. SUT2 is more lighly expressed in sink than in source leaves, is inducible by sucrose and regulates the relative activity of low- and high-affinity sucrose transport into sieve elements (Barker et al, Plant Cell 12:1153-1164,2000). 27 71 Fructan metabolism Homologue of a sugar transporter, a member of the SUT family of low- and high-affinity sucrose transporters that is involved in transport Df sucrose from mature leaves via the phloem. 28,29 72,73 Fructan lomolog of the large subunit (LSU) of ADP- 19 SEQ ID NO: DNA SEQ ID NO polypeptide Category Description metabolism glucose pyrophosphorylase (AGPase), which plays a role in starch biosynthesis. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from glucose-1-phosphate and ATP. The enzyme is found in chloroplasts of leaves and amyloplasts of developing endosperm. AGPase belongs to the glucose-1-phosphate adenylyltransferase family. , 31 74, 75 Carbohydrate metabolism Homolog of the small subunit (SSU) of ADP-glucose pyrophosphorylase (AGPase), which plays a role in starch biosynthesis. It catalyzes the synthesis of the activated glycosyl donor, ADP-glucose from glucose-l-phosphate and ATP. The enzyme is found in chloroplasts of leaves and amyloplasts of developing endosperm. AGPase belongs to the glucose-l-phosphate adenylyltransferase family. 32,33 76,77 Tannin biosynthesis Homolog of Chalcone Synthase (CHS) which is an important enzyme in flavonoid synthesis. 34-37 78-81 Tannin metabolism Homologue of dihydroflavonal-4-reductase (DFR) that belongs to the dihydioflavonol-4-reductases family and is involved in the flavonoid synthesis and anthocyanidins biosynthesis. Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism that perform a variety of essential functions in higher plants. 38-43 82-87 Tannin metabolism Homologue of flavonoid 3-hydroxylase (F3H) which is a key enzyme in the flavonoid pathway eading to the production of the colored anthocyanins where it is involved in determination of flower coloring. Anthocyanins synthesized in plants are controlled by flavonoid 3-hydroxylase and flavonoid 3',5'-lydroxylase which are members of the cytochrome P450 family, a large group of membrane-bound heme-containing enzymes that are involved in a range of NADPH- and D2-dependent hydroxylation reactions. Plants lave evolved a large number of different P450 snzymes for the synthesis of secondary netabolites. The F3 'H transcript is most abundant in petals from flowers at an early stage of development and levels decline as the SEQ ID NO: DNA SEQ ID NO: polypeptide Category Description flower matures. Transcripts are also detected in the ovaries, sepals, peduncles^ Stems and anthers of the petunia plant (Brugliera et al., Plant J. 19:441-451,1999 44 88 Tannin biosynthesis Homologue of leucoanthocyanidin dioxygenase (LDOX) which is an enzyme in the flavonoid biosynthesis pathway. LDOX is expressed as a late gene in the flavonoid biosynthesis pathway.
All the polynucleotides and polypeptides provided by the present invention-are isolated and purified, as those terms are commonly used in the art. Preferably, the polypeptides and polynucleotides are at least about 80% pure, more preferably at least about 90% pure, and most preferably at least about 99% pure.
The word "polynucleotide^)," as used herein, means a polymeric collection of nucleotides, and includes DNA and corresponding KNA molecules and both single and double stranded molecules, including HnRNA and mRNA molecules, sense and anti-sense strands of DNA and RNA molecules, and comprehends cDNA, genomic DNA, and wholly or partially synthesized polynucleotides. A polynucleotide of the present invention may be an entire gene, or any portion thereof. As used herein, a "gene" is a DNA sequence which codes for a functional protein or KNA molecule. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of "polynucleotide" therefore includes all operable anti-sense fragments. Anti-sense polynucleotides and techniques involving anti-sense polynucleotides are well known in the art and are described, for example, in Robinson-Benion et al., Methods in Eivzymol. 254(23): 363-375,1995 and Kawasaki et al.,Artific. Organs 20(8): 836-848,1996.
Disclosed are isolated polynucleotides comprising a sequence of SEQ ID NO: 1-44; polynucleotides comprising variants of SEQ 3D NO: 1-44; polynucleotides comprising extended sequences of SEQ ID NO: 1-44 and their variants, oligonucleotide primers and probes corresponding to the sequences set out in SEQ ID NO: 1-44 and their variants, polynucleotides comprising at least a specified number of contiguous residues of any of SEQ ID NO: 1-44 (x-mers), and polynucleotides comprising extended sequences which include portions of the sequences set out in SEQ ID NO: 1-44, all 21 intellectual property i office of n.z i - 8 JUL 2008 RECElVFnl of which are referred to herein, collectively, as "polynucleotides disclosed." Polynucleotides that comprise complements of such polynucleotide sequences, reverse complements of such polynucleotide sequences, or reverse sequences of such polynucleotide sequences, together with variants of such sequences, are also provided.
The definition of the terms "complements)," "reverse complements)," and "reverse sequence(s)," as used herein, is best illustrated by the following example. For the sequence 5' AGGACC 3', the complement, reverse complement, and reverse sequence are as follows: complement 3' TCCTGG 5' reverse complement 3' GGTCCT 5' reverse sequence 5' CCAGGA 3'.
Preferably, sequences that are complements of a specifically recited polynucleotide sequence are complementary over the entire length of the specific polynucleotide sequence.
As used herein, the term "x-mer," with reference to a specific value of "x," refers to a polynucleotide comprising at least a specified number ("x") of contiguous residues of: any of 15 tihe polynucleotides provided in SEQ ID NO: 1-44. The value of x may be from about 20 to about 600, depending upon the specific sequence.
Polynucleotides disclosed comprehend polynucleotides comprising at least a specified number of contiguous residues (x-mers) of any of the polynucleotides identified as SEQ ID NO: 1-44, or their variants. Similarly, polypeptides disclosed 20 comprehend polypeptides comprising at least a specified number of contiguous residues (jc-mers) of any of the polypeptides identified as SEQ ID NO: 45-88. According to preferred embodiments, the value of x is at least'20, more preferably at least 40, more preferably yet at least 60, and most preferably at least 80. Thus, polynucleotides of the present invention include polynucleotides comprising a 20-mer, a 40-mer, a 60-mer, an 80-25 mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-mei; or a 300-mer, 400-mer, 500-mer or 600-mer of a polynucleotide provided in SEQ ID NO: 1-44, or a variant of one of the polynucleotides corresponding to the polynucleotides provided in SEQ 3D NO: 1-44; Polypeptides of the present invention include polypeptides comprising a 20-me$,a 40-mer, a 60-mer, an 80-mer, a 100-mer, a 120-mer, a 150-mer, a 180-mer, a 220-mer, a 250-30 mer; or a 300-mer, 400-mer, 500-mer or 600-mer of a polypeptide provided in SEQ 3D NO: 45-88, or a variant thereof. 22 intellectual property office of (m.z -8 JUL 2008 RECEIVED The polynucleotides disclosed were isolated by high throughput sequencing of cDNA libraries prepared from forage grass tissue collected from Lolium perenne and Festuca arundinacea. Some of the polynucleotides disclosed may be "partial" sequences, in that they do not represent a full-length gene encoding a full-length 5 polypeptide. Such partial sequences may be extended by analyzing and sequencing various DNA libraries using primers and/or probes and well known hybridization and/or PCR techniques. Partial sequences may be extended- until an open reading frame encoding a polypeptide, a full-length polynucleotide and/or gene capable of expressing a polypeptide, or another useful portion of the genome is identified. Such extended sequences, including full-10 length polynucleotides and genes, are described as "corresponding to" a sequence identified as one of the sequences of SEQ ID NO: 1-44 or a variant thereof, or a portion of one of the sequences of SEQ ED NO: 1-44 or a variant thereof when the extended polynucleotide comprises an identified sequence or its variant, or an identified contiguous portion (x-mer) of one of the sequences of SEQ ID NO: 1-44 or a variant thereof. Similarly, RNA sequences, 15 reverse sequences, complementary sequences, anti-sense sequences and the like, corresponding to the polynucleotides of the present invention, may be routinely ascertained and obtained using the cDNA sequences identified as SEQ ID NO: 1-44.
The polynucleotides identified as SEQ ID NOS: 1-44 contain open reading frames ("ORFs") encoding polypeptides and functional portions of polypeptides. Open reading 20 frames may be identified using techniques that are well known in the art. These techniques include, for example, analysis for the location of known start and stop codons, most likely reading frame identification based on codon frequencies, etc. Suitable tools and software for ORF analysis are well known in the art aid include, for example, GeneWise, available from The Sanger Center, Wellcome Trust Genome Campus, EQnxton, Cambridge, CB10 ISA, 25 . United Kingdom; Diogenes, available from Computational Biology Centers, University of Minnesota, Academic Health Center, UMHG Box 43 Minneapolis MN 55455; and GRAIL, available from the Informatics Group,. Oak Ridge National Laboratories, Oak Ridge, Tennessee TN. Once a partial open reading frame is identified, the polynucleotide may be extended in the area of the partial open reading frame using techniques that are well known 30 in the art until the polynucleotide for the full open reading frame is identified. "23 intellectual property office of m.2 - 8 JUL 2008 RECEIVED The location of ORFs (by nucleotide position) contained within SEQ ID NO: 1-44, and the corresponding amino acid sequences are provided in Table 2 below.
TABLE 2 SEQ m NO: ORF SEQ ED NO: Polynucleotide Polypeptide 1 72-1493 45 2 66-1481 46 3 0-1607 47 4 1-1914 48 123-1934 49 6 0-1671 50 7 114-1979 51 8 0-737 52 9 47-1783 53 170-2029 54 11 113-1849 55 12 154-1818 56 13 211-1866 57 14- 79-1767 58 76-1926 59 16 80-1930 60 17 91-1782 61 18 91-1782 62 19 84-1775 63 97-2994 64 21 112-3065 65 22 226-1794 66 23 0-1226 67 24 243-1811 68 207-1727 69 26 101-1615 70 27 108-1634 71 28 150-1718 72 29 169-1737 73 12-1589 74 31 -1579 75 32 136-1332 .76 33 136-1332 77 34 95-836 78 95-1123 79 24 SEQ ID NO: ORF SEQ ID NO: Polynucleotide Polypeptide 36 82-847 80 37 82-1104 81 38 0-1532 82 39 58-1632 83 40 0-1580 84 41 16-1596 85 42 0-1478 86 43 -1519 87 44 117-1259 88 Once open reading frames are identified, the. open readi&g frames may "be isolated and/or synthesized. Expressible genetic constructs comprising the open reading frames and 5 suitable promoters, initiators, terminators, etc., which are well known in the art, may then be constructed. Such genetic constructs may be introduced into a host cell to express the polypeptide encoded by the open reading frame. Statable host cells may include various prokaryotic and eukaryotic cells, including plant cells, mammalian cells, bacterial cells, algae and the like.
The polynucleotides disclosed may be isolated by high throughput sequencing of cDNA libraries prepared from forage grass tissue, as desoibed below in Example 1. Alternatively, oligonucleotide probes and primers based on the sequences provided in SEQ ID NO: 1-44 can be synthesized as detailed below, arid used to identify positive clones in either cDNA or genomic DNA libraries from forage grass tissue cells by 15 means of hybridization or polymerase chain reaction (PGR) techniques. Hybridization and PCR techniques suitable for use with such oligonucleotide probes are well known in the art (see, for example, Mullis et at, Cold Spring Harbor Sytnp. Quant. Biol., 51:263, 198.7; Erlich, ed., PCR technology*, Stockton Press: NY, 1989; and Sambrook et al., eds., Molecular • cloning: a laboratory majiual, 2nd ed., CSHL Press: Cold Spring Harbor, NY, 1989). In 20 addition to DNA-DNA hybridization, DNA-RNA or RNA-RNA hybridization assays are also possible. In the first case, the mRNA from expressed genes would then be detected instead of genomic DNA or cDNA derived from mRNA of the sample. In the second case, KNA probes could be used. Artificial analogs of DNA hybridizing specifically to target. sequences could also be employed. Positive clones may be analyzed by restriction enzyme digestion, DNA sequencing or the like.
The polynucleotides disclosed may also, or alternatively, be synthesized using techniques that are well known in the art The polynucleotides may be 5 synthesized, for example, using automated oligonucleotide synthesizers (e.g., Beckman Oligo 1000M DNA Synthesizer; Beckman Coulter Ltd., Fullerton, CA) to obtain polynucleotide segments of up to 50 or more nucleic acids. A plurality of such polynucleotide segments may then be ligated using standard DNA manipulation techniques that are well known hi the art of molecular biology. One conventional and exemplary polynucleotide synthesis 10 technique involves synthesis of a single stranded polynucleotide segment having, for example, 80 nucleic acids, and hybridizing that segment to a synthesized complementary 85 nucleic acid segment to produce a 5 nucleotide overhang. The next segment may then be synthesized in a similar fashion, with a 5 nucleotide overhang on the opposite strand. The "sticky" ends ensure proper ligation when the two portions are hybridized. In this way, a 15 complete polynucleotide of the present invention may be synthesized entirely in vitro.
Oligonucleotide probes and primers complementary to and/or corresponding to SEQ ID NO: 1-44 and variants of those sequences, are also comprehended. Such oligonucleotide probes and primers are substantially complementary to the polynucleotide of interest over a certain portion of the polynucleotide. An oligonucleotide probe or primer is described as 20 "corresponding to" a polynucleotide disclosed, including one of the sequences set out as SEQ ID NO: 1-44 or a variant thereof, if the oligonucleotide probe or primer, or its complement, is contained within one of the sequences set out as SEQ ID NOS: 1-44 or a variant of one of the specified sequences.
Two single stranded sequences are said to be substantially complementary when the nucleotides of one strand, optimally aligned and compared, with the appropriate nucleotide -insertions and/or deletions, pair with at least 80%, preferably at least 90% to 95%, and more preferably at least 98% to 100%, of the nucleotides of the other strand. Alternatively, substantial complementarity exists when a first DNA strand will selectively hybridize to a second DNA strand under stringent hybridization conditions. 30 The oligonucleotide probes and/or primers contemplated comprise at least about 6 contiguous residues, more preferably at least about 10 contiguous 26 I - 8 JUL 2008 j I RFrciwr p\i residues, and most preferably at least about 20 contiguous residues complexnentaxy to a polynucleotide sequence disclosed. Probes and primers contemplated may be from about 8 to 100 base pairs in length, preferably from about 10 to 50 base pairs in lengthy and more preferably from about 15 to 40 base pairs in length. The probes can be easily selected using procedures well known in the art, taking into account DNA-DNA hybridization stringencies, annealing and melting temperatures, potential for formation of loops, and other factors which are well known in the art. Preferred techniques for - designing PGR. primers are disclosed in Dieffenbach and Dyksler, PCR Primer: a laboratory manual, CSHL Press: Cold Spring Harbor, NY, 1995. A software program suitable for designing probes, and especially for designing PCR primers, is available from Premier Biosoft International, 3786 Corina Way, Palo Alto, CA 94303-4504.
The isolated polynucleotides disclosed also have utility in genome mapping, in physical mapping, and in positional cloning of genes.
The polynucleotides identified as SEQ 3D NO: 1-44 were isolated from cDNA clones and represent sequences that are expressed in the tissue from which the cDNA was prepared. RNA sequences, reverse sequences, complementary sequences, anti-sense sequences, and the like, corresponding to the polynucleotides of the present invention, may be routinely iascertained and obtained using the cDNA sequences identified as SEQ 3D NO: 1-44.
Identification of genomic DNA and heterologous species DNA can be accomplished by standard DNA/DNA hybridization techniques, under appropriately stringent conditions, Using all or part of a polynucleotide sequence as a probe to screen an appropriate library. Alternatively, PCR techniques using oligonucleotide primers that are designed based on known genomic DNA, cDNA and protein sequences can be used to amplify and identify genomic and cDNA sequences.
Also disclosed are isolated polypeptides encoded by the above polynucleotides. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full-length proteins, wherein the amino acid residues are linked by covalent peptide bonds. The term "polypeptide encoded by a polynucleotide" as used herein, includes polypeptides encoded by a polynucleotide that comprises a partial isolated polynucleotide sequence provided herein. 27 - 8 JUL 2008 I ^ EC £ i vcnl The polypeptides disclosed comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 45-88, as well as variants of such sequences.
As noted above, polypeptides disclosed may be produced recombinantly by inserting a polynucleotide sequence encoding the polypeptide into an 5 expression vector and expressing the polypeptide in an appropriate host. Any of a variety of expression vectors known to those of ordinary skill in the art may be employed,- Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast, and higher eukaryotic cells. 10 Preferably, the host cells employed are; plants E. eoli, insect, yeast, or a mammalian cell line such as COS or CHO. The polynucleotide sequences expressed in this manner may encode naturally occurring polypeptides, portions of naturally occurring polypeptides, or other variants thereof. The expressed polypeptides may be used in various assays known in the art to determine their biological activity. Such polypeptides may also be used to raise 15 antibodies, to isolate corresponding interacting proteins or other compounds, and to ■ quantitatively determine levels of interacting proteins or other compounds.
Polypeptides are provided that comprise at least a functional portion of a polypeptide having an amino acid sequence selected from the group consisting of sequences provided in SEQ ID NO: 45-88 and variants thereof. As used herein, the 20 "functional portion" of a polypeptide is that portion which contains an active site essential for affecting the function of the polypeptide, for example, a portion of the molecule that is capable of binding one or more reactants. The active site may be made up of separate portions present on one or more polypeptide chains and will generally exhibit high binding affinity. Functional portions of a polypeptide may be identified by first preparing fragments 25 of the polypeptide by either chemical or enzymatic digestion of the polypeptide, or by mutation analysis of the polynucleotide that encodes the polypeptide and .subsequent expression of the resulting mutant polypeptides. The polypeptide fragments or mutant polypeptides are thentested to determine which portions retain biological activity, using metfiods well known to those: of skill in the art, including the representative assays described 30 below. 28 / -8 JUL 2008 I P Pr* n k Portions and other variants of the polypeptides disclosed may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known to those of ordinary skill in the art For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85: 2149-2146, 1963. " Equipment for automated synthesis of polypeptides is commercially available from suppliers "such as Perkin Elmer/Applied Biosystems, Inc. (Foster City, California), and may be operated according to the manufacturer's instructions. Variants of a native polypeptide may be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (Kuhkel, Proc. Natl. Acad. Sci. USA 82:488-492, 1985). Sections of DNA sequences may also be removed using standard techniques to permit preparation of truncated polypeptides.
As used herein, the term "variant" comprehends nucleotide or amino acid sequences different from the specifically identified sequences, wherein one or more nucleotides or amino .acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variant sequences (polynucleotide or polypeptide) preferably exhibit at least 75%, more preferably at leiast 80%, more preferably at least 90%, more preferably yet at least 95%, and most preferably at least 98% identity to a sequence of the present invention. The percentage identity is determined by aligning the two sequences to be compared as described below, determining the number of identical residues in the aligned portion, dividing that number by the total number of residues in the inventive (queried) sequence, and multiplying the result by 100.
Polynucleotides and polypeptides having a specified percentage identity to a polynucleotide or polypeptide identified in one of SEQ ID NO: 1-88 thus share a high degree of. similarity in their primary structure. In addition to a specified percentage identity to a polynucleotide disclosed, variant polynucleotides and polypeptides preferably have additional structural and/or functional features in common with a polynucleotide disclosed. Polynucleotides having a specified degree of identity to, or capable of hybridizing to, a polynucleotide disclosed preferably additionally have at least 29 one of the following features: (1) they contain an open reading frame, or partial open reading frame, encoding a polypeptide, or a functional portion of a polypeptide, having substantially the same functional properties as the polypeptide, or functional portion thereof, encoded by a polynucleotide in a recited SEQ ID NO:; or (2) they contain identifiable domains in common.
Polynucleotide or polypeptide sequences may be aligned, and percentages of identical nucleotides or amino acids in a specified region may be determined against another polynucleotide or polypeptide, using computer algorithms that are publicly available. For example, the BLASTN and FASTA algorithms, set to the default parameters described in the documentation and distributed with the algorithm, may be used for aligning and identifying the similarity of polynucleotide sequences. The alignment and similarity of polypeptide sequences may be examined using the BLASTP algorithm. BLASTX and FASTX algorithms compare nucleotide query sequences translated in all reading frames against polypeptide sequences. The FASTA and FASTX algorithms are described in Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444-2448, 1988; and in Pearson, Methods in Emymol. 183:63-98,1990. The FASTA software package is available from the University of Virginia by contacting the Assistant Provost for Research, University of Virginia, PO Box 9025, Charlottesville, VA 22906-9025. The BLASTN software is available from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, MD 20894. The BLASTN algorithm Version 2.0.11 [Jan-20-2000] set to the default parameters described in the documentation and distributed with the algorithm, is preferred for use in the determination of polynucleotide variants according to the present invention. The use of the BLAST family of algorithms, including BLASIN, BLASTP and BLASTX, is desoibed in the publication of Altschul et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25:3389-3402,1997.
The following running parameters are preferred for determination of alignments and similarities using BLASTN that contribute to the percentage identity and E values for polynucleotides: Unix running command with the following default parameters: blastall -p blastn -d embldb -e 10 -G 0 -E 0 -r 1 -v 30 -b 30 -i queryseq-o results; and parameters are: -p Program Name [String];-d Database [String];-e Expectation value (E) [Real];-G Cost to open a gap (zero invokes default behavior) [Integer]; -FF low complexity filter; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -r Reward for a nucleotide match (BLASTN only) [Integer]; -v Number of one-line descriptions (V) [Integer]; -b Number of alignments to show (B) [Integer]; -i Query File [File In]; -o BLAST report Output File [File Out] Optional. * The following running parameters are preferred for determination of alignments and similarities using BLASTP that contribute to the percentage identity and E values of polypeptide sequences: blastall -p blastp -d swissprotdb -e 10 -G 0 -E 0 -FF —v 30 -b 30 -i queryseq -o results; the parameters are: -p Program Name [String]; -d Database [String]; -e Expectation value (E) [Real]; -G Cost to open a gap (zero invokes default behavior) [Integer]; -FF low complexity filter; -E Cost to extend a gap (zero invokes default behavior) [Integer]; -v Number of one-line descriptions (v) [Integer]; -b Number of alignments to show (b) [Integer]; -I Query File [File In]; -o BLAST report Output File [File Out] Optional.
The "hits" to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, FASTA or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.
As noted above, the percentage identity of a polynucleotide or polypeptide sequence is determined by aligning polynucleotide and polypeptide sequences using appropriate algorithms, such as BLASTN or BLASTP, respectively, set to. default parameters; identifying the number of identical nucleic or amino acids over the aligned portions; dividing the number of identical nucleic or amino acids by the total number of nucleic or amino acids of the polynucleotide or polypeptide of the present invention; and then multiplying by 100 to determine the percentage identity. By way of example, a queried polynucleotide having 220 nucleic acids has a hit to a polynucleotide sequence in the EMBL database having 520 nueleic acids over a stretch of 23 nucleotides in the alignment produced by the BLASTN algorithm using the default parameters. The 23-nucleotide hit includes 21 identical nucleotides, one gap and one different nucleotide. The percentage identity of the queried polynucleotide to the hit in the EMBL database is thus 21/220 times 100, or 9.5%. The percentage identity of polypeptide sequences may be determined in a similar fashion. 31 The BLASTN and BLASTX algorithms also produce "Expect" values for polynucleotide and polypeptide alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold 5 for determining whether the hit to a database indicates true similarity. For example, an E value of 0.1assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the sequences then have a probability of 90% of being related. For iO sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN algorithm. £ values for polypeptide sequences may be determined in a similar fashion using various polypeptide databases, such as the SwissProt database.
According to one embodhaeaV "Variant" polynucleotides and polypeptides, with 15 reference to each of the polynucleotides and polypeptides disclosed, preferably comprise sequences having the same number or fewer nucleotides or amino acids than each of the polynucleotides or polypeptides disclosed and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptideis any sequence that has at least a 99% 20 probability of being related to the polynucleotide or polypeptide disclosed, measured as having an E value of 0.01 or less using the BLASTN OR BLASTX algorithms set at the default parameters. A variant polynucleotide may be a sequence having the same number or fewer nucleic acids than a polynucleotide disclosed that has at least a 99% probability of being related to the polynucleotide disclosed, measured as having an E value of 0.01 or less using the BLASTN algorithm set at the default parameters. Similarly, a variant polypeptide may be a sequence having the same number or fewer amino acids than a polypeptide disclosed that has at least a 99% probability of being related as the polypeptide disclosed, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the default parameters.
Variant polynucleotides may also be sequences that hybridize to a polynucleotide disclosed under stringent conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5°C, but are generally greater than about 22°C, more preferably greater than about 30°C, and most preferably greater than about 37°C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization maybe affected by other factors such as probe composition, presence of organic solvents, and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. An example of "stringent conditions" is prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in IX SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65°C.
Also disclosed are polynucleotides that differ from the disclosed sequences but that, as a consequence of the discrepancy of the genetic code, encode a polypeptide having similar enzymatic activity to a polypeptide encoded by a polynucleotide disclosed. Thus, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-44, or complements, reverse sequences, or reverse complements of those sequences, as a result of conservative substitutions are also contemplated. Additionally, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-44, or complements, reverse complements or reverse sequences thereof, as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated. Similarly, polypeptides comprising sequences that differ from the polypeptide sequences recited in SEQ ID NO: 45-88 as a result of amino acid substitutions, insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated, provided the variant polypeptide has activity in a fructan, cellulose, starch and/or tannin biosynthetic pathway. 33 Also disclosed genetic constructs comprising, in the 5'-3' direction, a gene promoter sequence; an open reading frame coding for at least a functional portion of a polypeptide of Hie present invention; and a gene termination sequence. The open reading frame may be orientated in either a sense or anti-sense direction. For 5 applications where amplification of fructan, cellulose, starch or tannin synthesis is desired, the open reading frame may be inserted in the construct in a sense orientation, such that transformation of a target organism with the construct will lead to an increase in the number of copies of the gene and therefore an increase in the amount of enzyme. When down-regulation of fructan, cellulose, starch or tannin synthesis is desired, the open reading frame 10 may be inserted in the construct in an anti-sense orientation, such that the RNA produced by transcription of the polynucleotide is complementary to the endogenous mRNA sequence. This, in turn, will result in a decrease in the number of copies of the gene and therefore a decrease in the amount of enzyme. Alternatively, regulation may be achieved by inserting appropriate sequences or subsequences (e.g., DNA or RNA) in ribozyme constructs. 15 Genetic constructs comprising a non-coding region of a gene coding for a polypeptide of the present invention, or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. As used herein the team %on?eoding region" includes both transcribed sequences which are not translated, and non-transcribed sequences within about 2000 base pairs 5' or 3' of the 20 translated sequences or open reading frames. Examples of non-coding regions which may be usefully employed'in the inventive constructs include introns and 5'-non-coding leader sequences. Transformation of a target plant with such a genetic construct may lead to a reduction in the amount of fructan, cellulose, starch or tannin synthesized by the plant by the process of cOsuppression, in a manner similar to that discussed, for example, by Napoli etal., 25 Plant Cell 2:279-290,1990; and de Carvalho Niebel et al., Plant Cell 7:347-358,1995.
The genetic constructs of the present invention further comprise a gene promoter sequence and a gene tennmation sequence, operably linked to the polynucleotide to be transcribed, which control expression of the gene. The gene promoter sequence is generally positioned at the 5' end of the polynucleotide to be transcribed, and is employed to initiate 30 transcription of the polynucleotide. Gene promoter sequences are generally found in the 5' non-coding region of a gene but they may exist in introns (Luehrsen, Mol. Gen. Genet. 34 IT OFRCE of fz - 8 JUL 2008 The BLASTN and BLASTX algorithms also produce "Expect" values for polynucleotide and polypeptide alignments. The Expect value (E) indicates the number of hits one can "expect" to see over a certain number of contiguous sequences by chance when searching a database of a certain size. The Expect value is used as a significance threshold for determining whether the hit to a database indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the EMBL database, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. By this criterion, the aligned and matched portions of the sequences then have a probability of 90% of being related. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in the EMBL database is 1% or less using the BLASTN algorithm. E values for polypeptide sequences may be determined in a similar fashion using various polypeptide databases, such as the SwissProt database.
According to one embodiment, "variant" polynucleotides and polypeptides, with reference to each of the polynucleotides and polypeptides of the present invention, preferably comprise sequences having the same number or fewer nucleotides or amino acids than each of the polynucleotides or polypeptides of the present invention and producing an E value of 0.01 or less when compared to the polynucleotide or polypeptide of the present invention. That is, a variant polynucleotide or polypeptide is any sequence that has at least a 99% probability of being related to the polynucleotide or polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTN or BLASTX algorithms set at the default parameters. According to a preferred embodiment, a variant polynucleotide is a sequence having the same number or fewer nucleic acids than a polynucleotide of the present invention that has at least a 99% probability of being related to the polynucleotide of the present invention, measured as having an E value of 0.01 or less using the BLASTN algorithm set at the default parameters. Similarly, according to a preferred embodiment, a variant polypeptide is a sequence having the same number or fewer amino acids than a polypeptide of the present invention that has at least a 99% probability of being related as the polypeptide of the present invention, measured as having an E value of 0.01 or less using the BLASTP algorithm set at the default parameters. 32 3h an alternative embodiment, variant polynucleotides are sequences that hybridize to a polynucleotide of the present invention under stringent conditions. Stringent hybridization conditions for determining complementarity include salt conditions of less than about 1 M, more usually less - than about 500 mM, and preferably less than about 200 mM. Hybridization temperatures can be as low as 5°C, but are generally greater than about 22°C, more preferably greater than about 30°C, and most preferably greater than about 37°C. Longer DNA fragments may require higher hybridization temperatures for specific hybridization. Since the stringency of hybridization may be affected by other factors such as probe composition, presence of organic solvents, and extent of base mismatching, the combination of parameters is more important than the absolute measure of any one alone. An example of "stringent conditions" is prewashing in a solution of 6X SSC, 0.2% SDS; hybridizing at 65°C, 6X SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in IX SSC, 0.1% SDS at 65°C and two washes of 30 minutes each in 0.2X SSC, 0.1% SDS at 65°C.
The present invention also encompasses polynucleotides that differ from the disclosed sequences but that, as a consequence of the discrepancy of the genetic code, encode a polypeptide having similar enzymatic activity to a polypeptide encoded by a polynucleotide of the present invention Thus, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-44, or complements, reverse sequences, or reverse complements of those sequences, as a result of conservative substitutions are contemplated by and encompassed within the present invention. Additionally, polynucleotides comprising sequences that differ from the polynucleotide sequences recited in SEQ ID NO: 1-44, or complements, reverse complements or reverse sequences thereof as a result of deletions and/or insertions totaling less than 10% of the total sequence length are also contemplated by and encompassed within the present invention. Similarly, polypeptides comprising sequences that differ from the polypeptide sequences recited in SEQ ID NO: 45-88 as a result of amino acid substitutions, insertions, and/or deletions totaling less than 10% of the total sequence length are contemplated by and encompassed within the present invention, provided the variant polypeptide has activity in a fructan, cellulose, starch and/or tannin biosynthetic pathway. 33 In another aspect, the present invention provides genetic constructs comprising, in the 5'-3' direction, a gene promoter sequence; an open reading frame coding for at least a functional portion of a polypeptide of the present invention; and a gene termination sequence. The open reading frame may be orientated in either a sense or anti-sense direction. For 5 applications where amplification of fructan, cellulose, starch or tannin synthesis is desired, the open reading frame may be inserted in the construct in a sense orientation, such that transformation of a target organism with the construct will lead to an increase in the number of copies of the gene and therefore an increase in the amount of enzyme. When down-regulation of fructan, cellulose, starch or tannin synthesis is desired, the open reading frame 10 may be inserted in the construct in an anti-sense orientation, such that the RNA produced by transcription of the polynucleotide is complementary to the endogenous mRNA sequence. This, in turn, will result in a decrease in the number of copies of the gene and therefore a decrease in the amount of enzyme. Alternatively, regulation may be achieved by inserting appropriate sequences or subsequences (e.g., DNA or RNA) in ribozyme constructs. 15 Genetic constructs comprising a non-coding region of a gene coding for a polypeptide of the present invention, or a nucleotide sequence complementary to a non-coding region, together with a gene promoter sequence and a gene termination sequence, are also provided. As used herein the term "non-coding region" includes both transcribed sequences which are not translated, and non-transcribed sequences within about 2000 base pairs 5' or 3' of the 20 translated sequences or open reading frames. Examples of non-coding regions which may be usefully employed in the inventive constructs include introns and 5'- non-coding leader sequences. Transformation of a target plant with such a genetic construct may lead to a reduction in the amount of fructan, cellulose, starch or tannin synthesized by the plant by the process of cosuppression, in a manner similar to that discussed, for example, by Napoli et ah, 25 Plant Cell 2:219-290,1990; and de Carvalho Niebel et ah, Plant Cell 7:347-358, 1995.
The genetic constructs of the present invention further comprise a gene promoter sequence and a gene termination sequence, operably linked to the polynucleotide to be transcribed, which control expression of the gene. The gene promoter sequence is generally positioned at the 5' end of the polynucleotide to be transcribed, and is employed to initiate 30 transcription of the polynucleotide. Gene promoter sequences are generally found in the 5' non-coding region of a gene but they may exist in introns (Luehrsen, Mol. Gen. Genet. 34 WO 03/093464 PCT/NZ03/00081 225:81-93, 1991) or in the coding region, as for example in PAL of tomato (Bloksberg, Studies on the Biology of Phenylalanine Ammonia Lyase and Plant Pathogen Interaction, Ph.D. Thesis, University of California, Davis, 1991, University Microfilms International Order No. 9217564). When the construct includes an open reading frame in a sense 5 orientation, the gene promoter sequence also initiates translation of the open reading frame. For genetic constructs comprising either an open reading frame in an anti-sense orientation or a non-coding region, the gene promoter sequence consists only of a transcription initiation site having a RNA polymerase binding site.
A variety of gene promoter sequences which may be usefully employed in the genetic 10 constructs of the present invention are well known in the art. The promoter gene sequence, and also the gene termination sequence, may be endogenous to the target plant host or may be exogenous, provided the promoter is functional in the target host For example, the promoter and termination sequences may be from other plant species, plant viruses, bacterial plasmids and the like. Preferably, gene promoter and termination sequences are from the 15 inventive sequences themselves.
Factors influencing the choice of promoter include the desired tissue specificity of the construct, and the timing of transcription and translation. For example, constitutive promoters, such as lie 35S Cauliflower Mosaic Virus (CaMV 35S) promoter or the superubiquitin promoter (PCT International Patent Publication WO 00/58474), will affect the 20 activity of the enzyme in all parts of the plant. Use of a tissue specific promoter will result in production of the desired sense or anti-sense RNA only in the tissue of interest. With DNA constructs employing inducible gene promoter sequences, the rate of RNA polymerase binding and initiation can be modulated by external stimuli, such as light, heat, anaerobic stress, alteration in nutrient conditions and the like. Temporally regulated promoters can be 25 employed to effect modulation of the rate of RNA polymerase binding and initiation at a specific time during development, of a transformed cell. Preferably, the original promoters from the enzyme gene in question, or promoters from a specific tissue-targeted gene in the organism to be transformed, such as Lolium or Festuca, are used. Grass promoters different from the original gene may also be usefully employed in the inventive genetic constructs in 30 order to prevent feedback inhibition. For example, the fructosyltransferase gene will be regulated by sucrose sensing systems; therefore removing the gene from under control of its normal promoter allows the gene to be active all the time. Other examples of gene promoters which may be usefully employed in the present invention include, mannopine synthase (mas), octopine synthase (ocs) and those reviewed by Chua et al, Science 244:174-181, 1989.
The gene termination sequence, which is located 3' to the polynucleotide to be transcribed, may come from the- same gene as the gene promoter sequence or may be from a different gene. Many gene termination sequences known in the art may be usefully employed in the present invention, such as the 3' end of the Agrobacteriwn tumefaciens nopaline synthase gene. However, preferred gene terminator sequences are those from the original enzyme gene or from the target species to be transformed.
The genetic constructs of the present invention may also contain a selection marker that is effective in plant cells, to allow for the detection of transformed cells containing the inventive construct. Such markers, which are well known in the art, typically confer resistance to one or more toxins. One example of such a marker is the NPTH gene whose expression results in resistance to kanamycin or hygromycin, antibiotics which are usually toxic to plant cells at a moderate concentration (Rogers et al, in Weissbach A and H, eds., Methods for Plant Molecular Biology, Academic Press Inc.: San Diego, CA, 1988). Alternatively, the presence of the desired construct in transformed cells can be determined by means of other techniques well known in the art, such as Southern and Western blots.
Techniques for operatively linking the components of the inventive genetic constructs are well known in the art and include the use of synthetic linkers containing one or more restriction endonuclease sites as described, for example, by Sambrook et al, (Molecular cloning: a laboratory manual, CSHL Press: Cold Spring Harbor, NY, 1989). The genetic construct of the present invention may be linked to a vector having at least one replication system, for example, E. coli, whereby after each manipulation, the resulting construct can be cloned and sequenced, and the correctness of the manipulation determined.
The genetic constructs of the present invention may be used to transform a variety of plants, both monocotyledonous (e.g., grasses, maize/corn, grains, oats, nee, sorghum, millet, rye, sugar cane, wheat and barley), dicotyledonous (e.g., Arabidopsis, tobacco, legumes, alfalfa, oaks, eucalyptus, maple), and gymnosperms. In a preferred embodiment, the inventive genetic constructs are employed to transform grasses. Preferably the target plant is 36 selected from the group consisting of Lolium and Festuca species, most preferably from the group consisting of Lolium perenne and Festuca arundinacea. Plants that may be usefully transformed with the inventive genetic constructs include other species of ryegrass and fescue, including, but not limited to Lolium multiflorum (Italian ryegrass), Lolium hybridum 5 (hybrid ryegrass), Lolium rigidum (Wimerra grass), Lolium temulentum (darnel), Festuca rubra (red fescue) and Festuca pratensis (meadow fescue). As discussed above, • transformation of a plant with a genetic construct of the present invention will produce a modified fructan, cellulose, starch or tannin content in the plant .
The production of RNA in target cells may be controlled by choice of the promoter 10 sequence, or by selecting the number of functional copies or the site of integration of the polynucleotides incorporated into the genome of the target organism. A target plant may be transformed with more than one construct, thereby modulating the fructan, cellulose, starch and/or tannin biosynthetic pathways by affecting the activity of more than one enzyme, affecting enzyme activity in more than one tissue, or affecting 15 enzyme activity at more than one expression time. Similarly, a construct'may be assembled containing more than -one open reading frame coding for an enzyme encoded by a polynucleotide of the present invention or more than one non-coding region of a gene coding for such an enzyme. The polynucleotides of the present invention may also be employed in combination with other known sequences encoding enzymes involved in the lignin, fructan 20 and/or tannin biosynthetic pathways. In this manner, more than one biosynthetic pathway | may be modulated, or a fructan, cellulose, starch or tannin biosynthetic pathway may be added to a plant to produce a plant having an altered phenotype.
Techniques for stably incorporating genetic constructs into the genome of target plants are well known in the art and include Agrobacterium tumefaciens mediated 25 introduction, electroporation, protoplast fusion, injection into reproductive organs, injection into immature embryos, high velocity projectile introduction and the like. The choice of technique will depend upon the target plant to be transformed. For example, dicotyledonous plants, and certain monocots and gymnosperms may be transformed by Agrobacterium Ti plasmid technology, as described, for example by Bevan, Nucleic Acid Res. 12:8711-8721, 30 1984. Targets for the introduction of the genetic constructs of the present invention include tissues, such as leaf tissue, disseminated cells, protoplasts, seeds, embryos, meristematic 37 j intellectual property office of n./ - 8 JUL 2008 regions; cotyledons, hypocotyls, and the like. Transformation techniques which may be usefully employed in the inventive methods include those taught by Ellis et al., Plant Cell Reports, 8:16-20, 1989; Wilson et al., Plant Cell Reports 7:704-707, 1989; and Tautorus et al., Theor. Appl. Genet. 78:531-536, 1989.
Once the cells are transformed, cells having the inventive genetic construct incorporated in their genome may be selected by means of a marker, such as the kanamycin • resistance marker discussed above. Transgenic cells may then be cultured in an appropriate ^ medium to regenerate whole plants, using techniques well known in the art. In the case of protoplasts, the cell wall is allowed to reform under appropriate osmotic conditions. In the 10 case of seeds or embryos, an appropriate germination' or callus initiation medium is employed. For explants, an appropriate regeneration medium is used. Regeneration of plants is well established for many species. The resulting transformed plants may be reproduced sexually or asexually, using methods well known in the art, to give successive generations of transgenic plants.
Polynucleotides of the present invention may also be used to specifically suppress gene expression by methods that operate post-transcriptionally to block the synthesis of products of targeted genes, such as RNA interference (RNAi), and quelling. Briefly, traditional methods of gene suppression, employing anti-sense RNA or DNA, operate by binding to the reverse sequence of a gene of interest such that binding interferes with 20 subsequent cellular processes and therefore blocks synthesis of the corresponding protein. RNAi also operates on a post-translational level and-is sequence specific, but suppresses gene expression far more efficiently. Exemplary methods for controlling or modifying gene expression using RNAi are provided in US Patent 6,506,559 and PCT International Publications WO 99/49029 and WO 99/53050. In these methods, post-transcriptional gene 25 silencing is brought about by a sequence-specific RNA degradation process which results in the rapid degradation of transcripts of sequence-related genes. Studies have shown that double-stranded RNA may act as a mediator of sequence-specific gene silencing (see, for example, Montgomery and Fire, Trends in Genetics, 14:255-258, 1998). Gene constructs that produce transcripts with self-complementary regions are particularly efficient at gene 30 silencing. A unique feature of this post-transcriptional gene silencing pathway is that silencing is not limited to the cells where it is initiated. The gene-silencing effects may be • 38 disseminated to other parts of an organism and even transmitted through the germ line to several generations.
The polynucleotides of the present invention may thus be employed to generate gene silencing constructs and/or gene-specific self-complementary RNA sequences that can be 5 delivered by conventional art-known methods to plant tissues, such as forage grass tissues. Within genetic constructs, sense and antisense sequences can be placed in regions flanking an intron sequence in proper splicing orientation with donor and acceptor splicing sites, such that intron sequences are removed during processing of the transcript, and sense and antisense sequences, as well as splice junction sequences, bind together to form double-10 stranded RNA. Alternatively, spacer sequences of various lengths may be employed to separate self-complementary regions of sequence in the construct During processing of the gene construct transcript, intron sequences are spliced-out, allowing sense and anti-sense sequences, as well as splice junction sequences, to bind forming double-stranded RNA. Select ribonucleases then bind to and cleave the double-stranded RNA, thereby initiating the 15 cascade of events leading to degradation of specific mRNA gene sequences, and silencing specific genes. Alternatively, rather than using a gene construct to express the self-complementary RNA sequences, the gene-specific double-stranded RNA segments are delivered to one or more targeted areas to be internalized into the cell cytoplasm to exert a gene silencing effect The double-stranded RNA must have sufficient homology to the 20 targeted gene to mediate RNAi and is preferably at least 25 nucleotides in length. Preferably, the double-stranded RNA corresponds specifically to a polynucleotide of the present invention. Gene silencing RNA sequences comprising the polynucleotides of the present invention are useful for creating genetically modified plants with desired phenotypes as well as for characterizing genes (for example, in high-throughput screening of sequences), and 25 studying their functions in intact organisms. 39 Example 1 Isolation op cDNA Sequences from L. perenne and F. arundinacea CDNA libraries L. perenne and F. arundinacea cDNA expression libraries were constructed and screened as follows. Tissue was collected from L. perenne and F. arundinacea during winter and spring, and snap-frozen, in liquid nitrogen. The tissues collected included those obtained from leaves, pseudostem, roots, inflorescence (day 0), stem bases from day 7 emerged inflorescence, basal leaf day 3 and day 6, floral stem and vegetative stem. Total RNA was 10 isolated from each tissue type using TRIzol Reagent (BRL Life Technologies, Gaithersburg, MD). mRNA from each tissue type was obtained using a Poly(A) Quik mRNA isolation kit (Stratagene, La Jolla, CA), according to the manufacturer's specifications. cDNA expression libraries were constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA in Lambda ZAP using a ZAP Express cDNA 15 Synthesis Kit (Stratagene), according to the manufacturer's protocol. The resulting cDNA clones were packaged using a Gigapack II Packaging Extract (Stratagene) employing 1 p.1 of sample DNA from the 5 fxl ligation mix. Mass excision of the libraries was performed using XLl-Blue MRF' cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, 20 Gaithersburg, MD) and plated out onto LB-kanamycin agar plates containing 5-bromo-4-chloro-3-indolyl-beta-D-galactosidase (X-gal) and isopropylthio-beta-galactoside (TPTG).
Of the colonies plated and picked for DNA preparations, the large majority contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and DNA was purified following standard'protocols. Agarose gel at 1% was used 25 to' screen sequencing templates for chromosomal contamination. D'ye terminator sequences were prepared using a Biomek 2000 robot (Beckman Coulter Inc., Fullerton, CA) for liquid handling and DNA amplification using a 9700 PCR machine (Perkin Elmer/Applied Biosystems, Foster City, CA) according to the manufacturer's protocol. • The DNA sequences for positive clones were obtained using a Perkin Elmer/Applied 30 Biosystems Division Prism 377 sequencer. cDNA clones were sequenced from the 5' end. The polynucleotide sequences identified as SEQ ID NO: I, 3-5, 8-15, 17, 18, 20,25, 27, 28, 40 , 36-39 and 44 were identified from Lolium perenne cDNA expression libraries, with the polynucleotides of SEQ ID NO: 2, 6, 7, 16, 19, 21-24, 26, 29, 31-35 and 40-43 being identified from Festuca arundinacea cDNA expression libraries.
BLASTN Polynucleotide Analysis The isolated cDNA sequences were compared to sequences in the EMBL DNA database using the computer algorithm BLASTN. Comparisons of DNA sequences provided in SEQ ID NO: 1-44 to sequences in the EMBL DNA database were made as of April 28, 2003, using BLASTN algorithm Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall —p blastn -d embldb -e 10 -FF -GO -E0 -r 1 —v 30 -b 30 —i queiyseq—o.
The sequences of SEQ ID NO: 6-9, 11-19, 21, 25-27 and 34-44 were determined to have less than 50% identity, determined as described above using the computer algorithm BLASTN, to sequences in the EMBL database. The sequence of SEQ ID NO: 3, 4, 10, 20, 22-24, 28, 29 and 31-33 was determined to have less than 75% identity, determined as described above, to sequences in the EMBL database, using the computer algorithm BLASTN, as described above. The sequences of SEQ ID NO: 1, 2 and 30 were determined to have less than 90% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above. Finally, the sequence of SEQ ID NO: 5 were determined to have less than 98% identity to sequences in the EMBL database using the computer algorithm BLASTN, as described above.
BLASTP Polypeptide Analysis The isolated sequences were compared to sequences in the SwissProt protein database using the computer algorithm BLASTP. Specifically, comparisons of polypeptide sequences provided in SEQ ID NO: 45-88 to sequences in the SwissProt protein database were made as of April 28,2003, using BLASTP algorithm Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall -p blastp -d swissprotdb -e 10 -FF -GO -E0 -v 30 -b 30 -i queryseq —o.
The sequences of SEQ ID NO: 78-81 were determined to have less than 50% identity to sequences in the SwissProt database using the computer algorithm BLASTP as described 41 above. The sequences of SEQ ID NO: 51, 53, 55, 56, 71, 83 and 88 were determined to have less than 75% identity to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. The sequences of SEQ ID NO: 50, 52, 54, 57-68, 82 and 84-87 were determined to have less than 90% identity to sequences in the SwissProt database using the computer algorithm BLASTP, as described above. Finally, the sequences of SEQ ID NO: 45-49, 69, 70 and 72-77 were determined to have less than 98% identity to sequences in the SwissProt database using the computer algorithm BLASTP, as described above.
BLASTX Polynucleotide Analysis The isolated cDNA sequences were compared to sequences in the SwissProt protein database using the computer algorithm BLASTX. Comparisons of DNA sequences provided in SEQ ID NOS: 1-44, to sequences in the SwissProt DNA database (using BLASTX) were made as of April 28, 2003, using BLAST algorithm Version 2.0.11 [Jan-20-2000], and the following Unix running command: blastall —p blastx —d swissprotdb -e 10 -EF —GO -E0 —r 1 —v 30 —b 30 -i queryseq -p.
The sequences of SEQ ID NO: 27 and 34-37 were determined to have less than 50% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTX, as described above. The sequences of SEQ ID NO: 3, 4, 6-19, 21-26, 28, 29, 33 and 38-44 were determined to have less than 75% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTX, as described above. Finally, the sequences of SEQ ID NO: 1,2, 5,20 and 30-32 were determined to have less than 90% identity, determined as described above, to sequences in the SwissProt database using the computer algorithm BLASTX, as described above.
Figs. 3-41 show the positions of domains within the amino acid sequences of SEQ ID NO: 45-48, 53-70 and 72-88, respectively. These domains were determined with InterProScan software Release v3.1, November 6, 2001. The IhterPro database integrates PROSITE, PRINTS, Pfam, ProDom, SMART and HGRFAMs databases, and the addition of others is scheduled. InterPro data is distributed in XML format and it is freely available under the InterPro Consortium copyright. The European Bioinformatics Institute (EBI) is a 42 non-profit academic organization that forms part of the European Molecular Biology Laboratory (EMBL): Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD UK.
Example 2 Use of Chalcone Synthase Genes to Modify Tannin Biosynthesis Certain Arabidopsis mutants of the transparent testa (tf) phenotype do not make the anthocyanin pigment cyanidin and therefore have no seed coat color. The genes responsible for many of these mutants have now been identified as shown in Table 3.
TABLE 3 Enzyme Abbreviation Locus Chromosome Dihydroflavanol-4-reductase DFR tt3 Chalcone synthase CHS ' tt4 Chalcone isomerase CHI tt5 3 Flavanone 3-(3-hydroxylase F3pH tt6 3 Over-expression of the maize gene for CHS has been shown to complement the . Arabidopsis tt4 mutant, thereby restoring cyanidin synthesis and seed coat color (Dong et al., Plant Physiol. 127:46-57, 2"001). Complementation of these Arabidopsis mutants may therefore be employed to demonstrate the function of the inventive polynucleotides encoding enzymes involved-in-the tannin-biosynthetic pathway.
Two chalcone synthase genes were identified from F. arundinacea (SEQ ID NO: 32 and 33). Sense constructs containing a polynucleotide including the coding region of one chalcone synthase gene, FaCHS2, (SEQ ID NO: 33) under the control of the CaMV 35S promoter were inserted into a binary vector and used to transform Agrobacterium tumefaciens LBA4404 using published methods (see, An G, Ebert PR, Mitra A, Ha SB, "Binary Vectors," in Gelvin SB, Schilperoort RA, eds., Plant Molecular Biology Maraud, Kluwer Academic Publishers: Dordrecht, 1988). The presence and integrity of the binary 43 vector in A. tumefaciens was verified by polymerase chain reaction (PCR) using the forward primer provided in SEQ ID NO: 89 and reverse primer provided in SEQ ID: 90.
The A. tumefaciens containing the sense gene construct were used to transform Arabidopsis tt4 mutants by floral dipping (Clough and Bent, Plant J. 16:735-743, 1998) and several independent transformed plant lines were established for the sense. Transformed plants containing the appropriate tannin gene construct were verified using PCR.
The presence of cyanidin in the transformed plants is demonstrated by a phenotypic change in plant seedling color and by analyzing cyanidin extracts made from transgenic plants grown under stressed conditions (Dong et al., Plant Physiol. 127:46-57, 2001). Briefly, cyanidins are extracted from plant tissue with an acid/alcohol solution (HCl/methanol) and water. Chlorophyll is removed by freezing the extracts followed by centrifugation at 4 °C at 20,000 x g for 20 min. Any remaining chlorophyll is removed through a chloroform extraction. The absorbance at 530 nm is measured for each of the cyanidin extracts. Non-transgenic wild type and control Arabidopsis plants are used as controls.
Example 3 Use of Sucrose Transporters to Complement a Yeast Strain Unable to Grow on Sucrose Two Lolium perenne genes, LpSUT2 (SEQ ID: 25) and LpSUT-like (SEQ ID: 27), and two Festuca arundinacea genes, FaSUTl (SEQ ID NO: 22) and FaSUT2 (SEQ ID NO: 26) share amino acid sequence identity with sucrose transporter (SUT1 and SUT2) genes from other plant species (Barker et al., Plant Cell 12:1153-1164, 2000; Weise et al., Plant Cell 12:1345-1355, 2000; Lemoine, Biochim. Biophys. Acta 1465:246-262, 2000). The first plant gene encoding a sucrose carrier protein, from spinach, was -isolated by functional expression in a yeast strain, SUSY7 (Riesmeier et al, EMBO J. 11 .*4705-4713,1992).
The gene of SEQ ID NO: 27 was digested and cloned into the yeast expression vector pYEP 112 Al NE for functional complementation using this yeast system. Plasmid DNA was verified by sequencing and transformed into S. cerevisiae strain SUSY7, which had been 44 engineered to express cytosolic sucrose synthase enabling it to metabolize sucrose entering the cell. Constitutive expression of the grass sucrose transporters within this yeast strain facilitated transport of sucrose in to the cell and its growth on sucrose minimal media. Growth rates of recombinant and wild type yeast strains in both sucrose and glucose minimal media were observed.
Results showed that the yeast strain containing the gene of SEQ ID NO: 27 was able to grow on sucrose minimal medium because the constitutive expression of the SUT-like gene within this yeast strain facilitated transport of sucrose into the cell.
Example 4 Use of Alkaline/Neutral Invertases to Cleave Sucrose A number of Lolium perenne and Festuca arundinacea genes (SEQ ID NO: 5, 7 and 9-14) were identified that share amino acid sequence identity with alkaline/neutral invertase genes from other plant species (Sturm et al., Physiol. Planta 107:159-165, 1999; Gallagher and Pollock, J. Exp. Bat. 49:789-795,1998).
L. perenne gene AN_INV8 (SEQ ID NO: 12) was amplified by PCR from the start metihionine using forward (SEQ ID NO: 91) and reverse (SEQ ED NO: 92) primers, then cloned into the pET41a expression plasmid. The resulting plasmid was transformed into E. coli BL21 cells using standard protocols, and protein expression induced using IPTG. The soluble recombinant protein was assayed for its ability to cleave sucrose. Cells were lysed in citrate buffer and the soluble protein incubated with 50mM sucrose in citrate buffer pH7. Reactions were terminated by boiling. Cleavage of the sucrose by neutral invertase activity was determined by the formation of glucose in this reaction. Levels of glucose were determined with a Glucose HK assay kit GAHK-20 (Sigma, St Louis MO) utilizing hexokinase coupled to glucose-6-phosphate dehydrogenase, and reduction of NAD measured by absorbance at 340mn.
Fig. 1 shows the invertase activity of recombinant AN_INV8 protein, measured as the amount (in jig) of glucose release from cleavage of sucrose per hour at pH7, and that of an empty vector (pET41a) control sample. The results showed that the purified protein released 45 jig of glucose per hour through the invertase cleavage of sucrose. . No release was measured with the empty vector control.
Example 5 Use of Pyrqphqsphate-Dependent Phosphofructokinase to Phosphorylate Fructqse-6-phqsphate Two Lolium perenne genes, LpPFPA (SEQ ID: 15) and LpPFPB (SEQ ID NO: 18), ' and two Festuca arundinacea genes, FaPFPA (SEQ ID NO: 16) and FaPFPB (SEQ ID NO: 10 19) share amino acid sequence identity with the A and B subunits of pyrophosphate-dependent phosphofructoskinase genes (PFP) from other plant species (Todd et al., Gene 152:181-186,1995; Carlisle et ah, J Biol Chem. 265:18366-18371,1990).
The entire coding regions were cloned into expression vector pBK-CMV, under the control of the CMV promoter for expression of recombinant protein in mammalian cells. 15 The PFPA and PFPB genes from Lolium perenne or Festuca arundinacea were co-transfected in to mammalian HEK293T cells and protein extracted 48 hours later. Protein was. also extracted from cells transfected with a negative control vector containing the J3-galactosidase gene. Purified potato PFP (Sigma, St. Louis MO) was used as positive control. Activity of the PFP enzyme was measured spectrophotometrically by a decrease NADH and 20 absorbance at 340 nm in a coupled reaction as described previously (Theodorou and Kruger, Planta 213:147-157, 2001). Briefly, the conversion of fhictose-6-phosphate to fructose-1,6-diphosphate in the presence of activator, fructose-2,6-diphosphate was initiated by the addition of pyrophosphate and measured in a coupled reaction with aldolase, triose phosphate isomerase and glycerophosphate dehydrogenase.
Fig. 2 shows the PEP activity of the purified protein (conversion of fructose-6- phosphate to fructose-l-6-diphosphate) measured as conversion of PPi to inorganic phosphate. No conversion was obtained with the |3-galactosidase negative control. 46 Example 6 ■ Use of Sucrose Phosphate Synthase Enzymes to Synthesize Sucrose A Lolium perenne polynucleotide sequence (SEQ 3D NO: 20) and a F. arundinacea. polynucleotide sequence (SEQ ID NO: 21) have been identified that share identity with 5 sucrose phosphate synthase (SPS) from other plant species. These genes are expressed in E. coli or Fichia using standard protocols, and the resulting purified protein assayed for its ability to synthesize sucrose from fructose-6-phosphate and uridine 5'-diphosphoglucose. Sucrose is detected by adding NAD and UDP-Glucose dehydrogenase, followed by the addition of anthrone reagent and then measuring the change in absorbance at 620 nm (Botha 10 and Black, Anst. J. Plant Physiol. 27:81-85,2000).
SEQ ID NOS: 1-88 are set out in the attached Sequence Listing. The codes for nucleotide sequences used in the attached Sequence Listing, including the symbol "n," conform to "WIPO Standard ST.25 (1998), Appendix 2, Table 1.
All references cited herein, including patent references and non-patent publications, are hereby incorporated by reference in their entireties.
"While in the foregoing specification this invention has been described in relation to certain preferred embodiments, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to 20 additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention. 47

Claims (5)

  1. Claims We claim: 1. An isolated polynucleotide comprising the sequence of: SEQ ID NO: 4.
  2. 2. An isolated polynucleotide comprising a sequence selected from the group consisting of: (a) complements of SEQ ID NO: 4; (b) reverse complements of SEQ ID NO: 4; and (c) reverse sequences of SEQ ID NO: 4.
  3. 3. An isolated polynucleotide comprising a sequence selected from the group consisting of: (a) sequences having at least 95% identity to a sequence of SEQ ID NO: 4; and (b) sequences having at least 98% identity to a sequence of SEQ ID NO: 4; wherein % identity is calculated over the whole length of the specified sequence.
  4. 4. An isolated polypeptide encoded by a polynucleotide of any one of claims 1-3. 5. An isolated polypeptide comprising the amino acid sequence of: SEQ ID NO: 48. 6. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of: (a) sequences having at least 90% identity to a sequence of SEQ ID NO: 48; and (b) sequences having at least 95% identity to a sequence of SEQ ID NO: 48; wherein % identity is calculated over the whole length of the specified sequence. 7. An isolated polynucleotide that encodes a polypeptide of any one of claims 5 and 6. 48 intellectual property office of m.1 - 8 JUL 2008 8. An isolated oligonucleotide probe or primer comprising at least 10 contiguous residues complementary to 10 contiguous residues of a nucleotide sequence recited in any one of claims 1-3. 9. A kit comprising a plurality of oligonucleotide probes or primers of claim 8. 10. A genetic construct comprising a polynucleotide of any one of claims 1-3. 11. A transgenic cell comprising a genetic construct according to claim 10. 12. A genetic construct comprising, in the 5'-3' direction: (a) a gene promoter sequence; (b) a polynucleotide sequence comprising at least one of the following: (1) a polynucleotide coding for at least a functional portion of a polypeptide of any one of claims 5 and 6; (2) a polynucleotide comprising a non-coding region of a polynucleotide of any one of claims 1-3; (3) an operable antisense fragment of a polynucleotide of any one of claims 1-3; and (c) a gene termination sequence. 13. The genetic construct of claim 12, wherein the polynucleotide sequence is in a sense orientation. 14. The genetic construct of claim 12, wherein the polynucleotide is in an anti-sense orientation. 15. A transgenic plant cell comprising a genetic construct of claim 12. 16. A plant comprising a transgenic plant cell according to claim 12, or fruit or seeds or progeny thereof. 49 INTEnpESrAL prOPERt7 OFFICF of m / - 8 JUL 2008 REHPiwcty i 17. The plant of claim 16, wherein the plant is selected from the group consisting of: Festuca arundinacea and Lolium perenne species. 18. A method for modulating the fructan composition of a plant, comprising modulating the activity of a polypeptide of any one of claims 5 and 6 in the plant. 19. A method for modulating the fructan composition of a plant, comprising modulating the activity of a polynucleotide of any one of claims 1 -3 in the plant. 20. The method of claim 19, comprising stably incorporating into the genome of the plant a polynucleotide of any one of claims 1-3. 21. The method of claim 19, comprising stably incorporating into the genome of the plant a genetic construct of any one of claims 10 and 12. 22. A method for producing a plant having altered fructan composition, comprising: (a) transforming a plant cell with a genetic construct of any one of claims 10 and 12 to provide a transgenic cell; and (b) cultivating the transgenic cell under conditions conducive to regeneration and mature plant growth. 23. A method for modifying the activity of a polypeptide involved in a fructan biosynthetic pathway in a plant, comprising modulating the activity of a polynucleotide of any one of claims 1-3 in the plant. 24. The method of claim 23, comprising stably incorporating into the genome of the plant a genetic construct of claim 12. 25. A method for modifying the activity of a polypeptide involved in a fructan biosynthetic pathway in a plant, comprising introducing into cells of the plant double 50 stranded RNA corresponding to a polynucleotide of any one of claims 1-3, thereby inhibiting expression of a polypeptide encoded by the polynucleotide. 26. A method for producing a plant with altered fructan composition, the method comprising transformation of a plant with a polynucleotide capable of hybridising under stringent conditions to an endogenous gene encoding a polypeptide with at least 90% identity to the sequence of SEQ ID NO: 48, such that expression of the polynucleotide results in reduced expression of the endogenous gene, reduced levels of the encoded polypeptide and altered fructan composition. 27. The method of claim 26 wherein the polypeptide has the sequence of SEQ ID NO: 48. 28. A method for producing a plant with altered fructan composition, the method comprising transformation of a plant with a polynucleotide capable of hybridising under stringent conditions to an endogenous nucleic acid comprising a sequence with at least 95% sequence identity to SEQ ID NO: 4, such that expression of the polynucleotide results in reduced expression of the endogenous nucleic acid, reduced levels of the encoded polypeptide and altered fructan composition. 29. The method of claim 28 wherein the endogenous nucleic acid comprises the sequence of SEQ ID NO: 4. 30. The polynucleotide of any one of claims 1 to 3 and 7 substantially as herein described with reference to any example thereof. 31. The polypeptide of any one of claims 4 to 6 substantially as herein described with reference to any example thereof. 32. The oligonucleotide probe or primer of claim 8 substantially as herein described with reference to any example thereof. 51 IPONZ 17 JUL 2008 33. The genetic construct of any one of claims 10 and 12 to 14 substantially as herein described with reference to any example thereof. 34. The cell of claims 11 and 15 substantially as herein described with reference to any example thereof. 35. The plant of claim 16 or 17 substantially as herein described with reference to any example thereof. 36. The method of any one of claims 18 to 29 substantially as herein described with reference to any example thereof. 52 WO 03/093464 PCT/NZ03/00081 5 5 4 2 4 SEQUENCE LISTING <110> Demmer, 3eroen Shenk, Michael Andrew Glenn, Matthew Norriss, Michael Geoffrey Saulsbury, Keith Martin Hall, Claire Forster, Richard L. S. <120> Compositions isolated from forage grasses and methods for their use. <130> 11000.1069PCT <160> 92 <170> FastSEQ for windows version 4.0 <210> 1 <211> 1737 <212> DNA <213> Lolium perenne <400> 1 gctgaaatct cccggatcgc acgccgtcgc tctcgcgcta ccgacgaggt tgaaggcgct tgggctgcac ttattgtgat tcatgaactc ccaacatcaa tcttgccact gcgatgtttt aggagtatgt tgaaccacct ctgatgttaa cccaagtccc ataccaacaa ttaagatgga aaactgcagc gctcaaggtt ataccttggt ccattgagct tccccagcat gcatcgtact cagacggagc tcactcgcca acagtcttgt acagaataat ggacgtaaag cctcccgtcc gatggccgcc caagctcggc cctcagcggc cgtcgtgccg gctcgacaag cggccccaag tcagattgag cttcaacacg catccacact tccgagcaaa cccctctttg ctttgttgcc gatcaacaac aggtggcacc tgatgag'cat cctgtgggtg gatcattccc tggggcagcg tctgcccgtg cgatggctat tggtcctgag cgttgagctc caagggcaac tgtgcttgag ccgccagacg aattttcgtg tgtaatcccc ttcttttggt tctcctcctc gccgccgtcg gagatcagcg gaggcggagc tacgacaccc ctcgtcgtg'c tctgttattg tccctgaaca catgatgata ttcaaccaga gggcagtcag aacaacagtg aactcagaca aagaatgaat ctcatctcat gtgaatgaat aacttgaagg aaccctaagg attcggttct aaggctacat gtcatccgca ttcaagaagg gacagcttga gtgaccatcg aacaaggaca catcccggaa tgcattctgc tctgtccatc gaaatgatat ctcctccgct cccccgacgc agaacgagaa agatcgagtg tcgcgcccgc tcaagctcaa aagttcgcaa agaagtacgg ctcaaaagat gccaatatcc gaaaggatgg gaaaacttga acttgggtgc actgcatgga atgaaggaag tcaagtcaat cgatcaagag aagttgatgg ttgataacgc cagatttgtt acccagctag tcgccagttt aggtctctgg ctgccaagtc. t'caacggccc gccttccagt cgtggggtcg tgcacttctg gccatagttt tctccaaccc gaagatcgag ggccggctgc gagcaagatc gcccgaagat cggaggcctc tgggtttaca atgtgatgtc tgttgagaag caggattgtt ctggtatccc taccttattg tatagttgac ggttactccg ggtccagctc tgagaagttc gcttgttgaa cgtgaaagtc aatcggcatc gcttgtgcag. agtgaagcct cctggcccgg tgatgtctcg _t.ggagtcg.ag.. agaggatctt tctccttccc tcctgtggga ttcttcctgg tattttcaaa tcctccaccg aagttccgcg atcagcctcg cagaccccca ctcgacgcca ggcaccacca tttcttgacc cctttacttc tactccaact actgaagact ccaggccatg tcgcagggca atcaagatat aaaacattgg ttggagattg aagatattca gctgatgcac cttcagctag aacggtcccc tctgacctct tcaaaccctt ttcaagtcaa tttggctctg ctggagatcc tgagcgacgc tgagttaaca gcccgtttat gtggaaccag aaaaaaa •<210> 2 <211> 1697 <212> DNA <213> Festuca arundinacea <400> 2 gctgaaatct tcgcgatggc agctcgacga tcagcggtga tggtgcccta cctcccgtcc cgccgtcgcc gatcagcgag ggcggagcag cgacaccctc tctcctcctc gccgacgcga aacgagaagg atcgagtgga gcgcccgcgc cgcttctcca agatcgagaa ccgggtgcat gcaagatcca cccaagatct Page 1 agcctcctcc gttccgcgac cagcctcgtc gacccccacc cgacgccatg tccgcccgga gccgtcgcca tcgcgctacc gacgaggtcg aaggcgctgc 60 . 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1737 60 120 180 240 300 WO 03/093464 PCT/NZ03/00081 tcgacaagct gtcccaagtc agatcgagtc tcaacacgca tccacacttt cgagcaaagg cctctttgaa tcgttgccaa tcaacaacca gtggcaccct atgagcatgt tgtgggtgaa tcattcccaa gggcagcgat tgcccgtgaa atggttatgt gtcctgagtt ttgagctcga agggcaacgt tgcttgagaa gccagacgca ttttcgtgtg atcccctctg tttggttaaa cgtcgtgctc tgttattgaa cctgaacaag tgacgatact caaccagagc gaagtcagga caacagtgga ctcagacaac gaatgaatac catctcatat. gaatgaattc cttgaaggct ccctaaggaa ccggttcttc ggctacatca catccgcaac caagaaggtc cagcttgaag gaccatcgct caaggacatc tcctggaagc cattctgccg. tccatctgca aaaaaaa aagctcaacg gttcgcaatg aagtacggat caaaagattg caatatccca aaggatggct aaacttgata ttgggtgcta tgcatggagg gaaggcaggg aagtcaattg atcaagaggc gttgatggcg gagaaagcaa gatttgttgc ccagctagag gccagtttcc gtctctggtg gccaagtctg aa'cggcccgg cttccagttc tggggtcgtc cttctgttct gaggcctcgg ggtttacatt gtgatgtccc ttgagaagta ggattgttac ggtatccccc ccttactgtc tagttgacat ttactccgaa tccagctctt agaagttcaa ttgttgaagc tgaaagtcct tcggcatcaa ttgtgcagtc tgaagccttc tggcccggtt atgtcacgtt gagtcaagct aggatctttg tccttccctg ctgtgggagc tcctgggtgg caccaccatg tcttgacctt tttacttctc ctccaactcc tgaagacttc aggccatggt gcagggcaag caagatattg aacattggct ggagattgcc gatattcaat tgatgcactt tcagctagaa cggtccccgc tgacctctat aaacccttcc caagtcaatc tggctctggc ggagatccca agcgacgctc agttaacaac ccggttacag taccagggac ggctgcaccg attgtgattc atgaactcct aacatcaaca ttgccacttc gatgttttcc gagtatgtct aaccacctga gatgttaaag caagtccctg accaacaacc aagatggaga actgcagctg tcaaggtttc accttggtcg attgagcttg cccagcatcg gtcgtactca gacggagctg actcgccacc agtcttgtaa aataattgta gtaaagttct <210> 3 <211> 2174 <212> DNA <213> Lolium perenne <400> 3 gctgtctccg cggtctacta ggggaaacgt cggtcgcctt cagtgctccc aggtccagtg agcaccctgc acccgctcac aggatgacga atgagctcat ttgacatcta aggtgttgtt ggtggttcga tcggcctcag agaaccggcg ccaagggatg ggacgaacct acctcggtgg ggcagcttga aggccgacgt gcccctttgg acgtgtccaa cgacgcgagc gtgaaacctt gtgggaggac gggtgtacct acgagatggc gtgaagaaca agcaggtcac attgcatgct ggtagatcga ttggttcatg catcgtctct tggtctcgtt tgtcccagtt cttcgagctt atacaaaaaa gcggcgtacc tggcggatgg atcttgggga ggtgcccgat agacgggcgt cctcgcagtg caaccccatc .ggcctggttc cggccacgcc gccagggaac ccctgtgggc cgtgctcaag cgccaccgco gtacgactgg tgtcgtttgg ggcgtccctc catccaatgg catcaccgtt catcgaggcc tggcttcaac cctcctcgtc gggcctcgac aaaggacgtc ttcagtgagg cacggtgaca gttcaacaac ctcggccgag tgtcaatggc agagatcttc gtggaggggc ggaagccctc tcgttgcacc gcgcatgtca cgctgtcgtc gttcatccgt gtaatgttta aaaa tactctaact taccacctct catgccgtgt cagtggtacg gtcatcctgc cccgccgacc ctcttcccgc gaacattccg ggcatcgtcc atgcatcgtg ggcaactcat gagagcgcca aacacgtgga ggcaagtact gctttcgtcg atgtcgattc ccagtggagg gaagccggct tccttccgcc tgcagtagca tt'cgccgacg ggcagcctcc gtgagccggg gtgctagtgg tcgcgggcat gcaacgagcg agtcaggcct gatcgtcaag attcgcaagt tgacggctct gtcgcccatg tgatgacacg tgctccttac ctacctgatg atctcgccaa tattttttgc cgggcgacac tctaccagca ccaaggacct acatcaacgg tatacacggg catctgaccc cacctgggat acaacacgtg ttagctacaa gccccgacgg ccgagatgtt acgacgagtg cgccacagga acgcatccaa gcgagaccga cgaggatggt agatcgagac ccgtcattca tcaactcttc gcgctggggc gtcgccacga tgacgcacta tggttggcgg accactccat acccgacgga ccaccatcac tcttggctga cttgctggat tcgcgggcat ctttggactg gctgggcaaa atggtgccca tatctacctc tagctccaat ggtacggtta tggaaccgga Page 2 gcacgcagat caacccctat ggtgaactgg cgtcctgacg gaacaccgac gctcctccgt cgggctcaag gcgcaccatc gaccaccgac caccggcatg gggtggcgac gcacgactac ccccgaggcg gtccttctac ctctgagcag ggagcttgac ccttcgcagg ccttcccctc ggacatcgat agccgtgcgt acagacggca ctgccacgac cactgtgcca cgtgcagagc ggccatctac cgccgaaggg cgacatgtag ggggatcgtc gttgtagcta gattgcgatc gcagtttgga acgaggcatc tccccttctg ctttgttgcc gctatattgt gatgcctcaa cccaacggtc ggcgactcgt cgtcacctcc ggctctatca accttttcgc agctggatca gacttccgtg atcggatcca tttgtgaatt tacgagtgcc tcctcgccgg tacgcgcttg gaccttggga gacccgatca gccgacaaag aagaagaccc aacgtcacag caacaaggcg gcactcaacg ggtgcgctcg gcgtacttct gagtcacggt gtgcttgacg ttcgtgatgg gccgcggcag ctcgtcgtgt atgaaaacta aggtaaggag gggtggtgcc tggccaagac ccagaaggtg ctgacttcca ttagttttgt ggtgcttttt ttcaaacatg cgatacagat 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 15 00 1560 1620 1680 1697 60 120 180 240 300 360 . 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2174 WO 03/093464 PCT/NZ03/00081 <210> 4 <211> 2478 <212> DNA <213> Lolium perenne <400> 4 atggagtcca gcgccgtcgt cgtcccaggc acaacggcgc cactgctccc gtacgactcc 60 cgtgaaaacc agagtagcgg cggcggtgtg tggtggcgcg cgtgcgcgge ctcggccgtg 120 gtgctgctgg tcgtcgtcgg cttcttcgct ggtggcaggg tggatttggg tcaggccggc 180 gaggtgtctg cgacttcttc tgttccggcg gcaatgatgg agatcccgag gagcaggggc 240 aagaatttcg gcgtgtcgga gaaggccgac ggcgggttcc cgtggagcaa cgccatgctg 300 cagtggcagc acaccgggtt ccatttccag ccactgaagc actacatgaa cgatcccaac . 360 ggtccggtct actatggcgg atggtaccac ctcttctacc agcacaaccc ctatggcgac - 420 tcgtgg'ggaa acgtatcttg gggacatgcc gtgtccaagg acctggtgaa ctggcgtcac 480 ctcccggtcg ccttggtgcc cgatcagtgg tacgacatca acggcgtcct gacgggctct 540 atcacagtgc tcccagacgg gcgtgtcatc ctgctataca cggggaacac cgacaccttt 600 tcgcaggtcc agtgcctcgc agtgcccgcc gacccatctg acccgctcct ccgtagctgg 660 atcaagcacc ctgccaaccc catcctcttc ccgccacctg ggatcgggct caaggacttc 720 cgtgacccgc tcacggcctg gttcgaacat tccgacaaca cgtggcgcac catcatcgga 780 tccaaggatg acgacggcca cgccggcatc gtccttagct acaagaccac cgactttgtg 840 aattatgagc tcatgccagg gaacatgcat cgtggccccg acggcaccgg catgtacgag 900 tgccttgaca tctaccctgt gggcggcaac tcatccgaga tgttgggtgg cgactcctcg 960 ccggaggtgt tgttcgtgct caaggagagc gccaacgacg agtggcacga ctactacgcg 1020 cttgggtggt tcgacgccac cgccaacacg tggacgccac aggaccccga ggcggacctt 1080 gggatcggcc tcaggtacga ctggggcaag tactacgcat ccaagtcctt ctacgacccg . 1140 atcaagaacc ggcgtgtcgt ttgggctttc gtcggcgaga ccgactctga gcaggccgac 1200 aaagccaagg gatgggcgtc cctcatgtcg attccgagga tggtggagct tgacaagaag 1260 acccggacga acctcatcca atggccagtg gaggagatcg agacccttcg caggaacgtc 1320 acagacctcg gtggcatcac cgttgaagcc ggctccgtca ttcaccttcc cctccaacaa 1380 ggcgggcagc ttgacatcga ggcctccttc cgcctcaact cttcggacat cgatgcactc 1440 aacgaggccg acgttggctt caactgcagt agcagcgctg gggcagccgt gcgtggtgcg 1500 ctcggcccct ttggcctcct cgtcttcgcc igacggtcgcc acgaacagac ggcagcgtac 1560 ttctacgtgt ccaagggcct cgacggcagc ctcctgacgc actactgcca cgacgagtca 1620 cggtcgacgc gagcaaagga cgtcgtgagc cgggtggttg gcggcactgt gccagtgctt 1680 gacggtgaaa ccttttcagt gagggtgcta gtggaccact ccatcgtgca gagcttcgtg 1740 atgggtggga ggaccacggt gacatcgcgg gcatacccga cggaggccat ctacgccgcg 1800 acaggggtgt acctgttcaa caacgcaacg agcgccacca tcaccgccga agggctcgtc 1860 gtgtacgaga tggcctcggc cgagagtcag gccttcttgg ctgacgacat gtagatgaaa 1920 actagtgaag aacatgtcaa tggcgatcgt caagcttgct ggatggggat cgtcaggtaa 1980 ggagagcagg tcacagagat cttcattcgc aagttcgcgg gcatgttgta gctagggtgg 2040 tgccattgca tgctgtggag gggctgacgg ctctctttgg actggattgc gatctggcca 2100 agacggtaga tcgaggaagc cctcgtcgcc catggctggg caaagcagtc tggaccagaa 2160 ggtgttggtt catgtcgttg cacctgatga cacgatggtg cccaacgagg catcctgact 2220 tccacatcgt ctctgcgcat gtcatgctc'c ttactatcta cctctcccct tctgttagtt 2280 ttgttggtct cgttcgctgt cgtcctacct gatgtagctc caatctttgt tgccggtgct 2340 tttttgtccc agttgttcat ccgtatctcg ccaaggtacg gttagctata ttgtttcaaa 2400 catgcttcga gcttgtaatg tttatatttt ttgctggaac cggagatgcc tcaacgatac 2460 agatatacaa aaaaaaaa ' 2478 <210> 5 <211> 2118 <212> DNA <213> Lolium perenne • <400> 5 gcggcgcggc tctcaagggg ccagcctacc cattccccgc ctctccggcc accagcgggg 60 agcgctgccc gacgaagcgt ggtgggtggg ccgccccaca ttgagttaga aacaaggcac 120 taatggggat tgcggaggtg gctctccaca ccatgccggg ggcatttgcc agccactccc 180 cggcatccag tttacccctc aggactgaca cgaggagttt gaggaagagg ggcaccaatt 240 cgttttacag gacacttgga ggtccaccaa agttccctga gttgcggccg gttgagtgcc 300 agtgccagag gattgatgac cttgcggggg tcatcgaagc tgggaacggg acatgggcca 360 ccgacatggt gaacaaggcc agccaggttc ttggtgatgt cgctgtgcct ggtcaggctt 420 taggtggcaa tgcaagtctg agtggagatc ctgagaaggt tctgcctagg aggcggaact 480 tgtcatcggt tgaggatgaa gcttgggacc ttttgaggga atctgttgtt aattattgtg 540 gtagtccagt tggaacaatt gctgccaatg atccaaatga cagtaatcca gcaaattatg 600 atcaggtgtt tattcgggac tttataccgt ctggcattgc ttttctattg aagggggagt 660 atgaaattgt acgcaatttc attctacaca cccttcagct tcagagctgg gagaagacaa 720 Page 3 WO 03/093464 PCT/NZ03/00081 tggactgcca tagtccaggt caaggcttaa tgcctgccag cttcaaggtg cggactattc 780 cacttgacgg cgatgagaat gccactgagg aggtattgga tcctgatttc ggggaagctg 840 caatagggcg tgtggcacct gttgattcag gtctatggtg gatcatattg ctcagggcat 900 atggaaaatg ttcgggtgat ttgtcagttc aagagagaat tgatgtccag actggcataa 960 aaatgattct gaagctttgt ttagctgacg ggtttgacat gttccctaca ttactggtaa 1020 ctgatggttc atgcatgatt gatcgtcgaa tgggaatcca cggacatcca cttgaaattc 1080 aggcactgtt ctattcagct ctcttgagtg cacgtgagat gttgactcct gaagatggat • 1140 cagctgactt aatccgtgcc ctaaataaca ggcttgtcgc gctgtccttt catatcaggg 1200 agtactattg ggtcgacatg caaaaactga atgagatata tcgatataaa actgaagaat 1260 attcttatga tgctgtcaac aagttcaaca tatatcctga tcaggtttct ccttggcttg 1320 ttgaatggat acctcctaaa gggggttact ttattggaaa cctgcagcct gcacatatgg 1380 acttccggtt cttttctttg gggaatttat ggtcaattgt aagcagcttg gcaacaaccc 1440 aacaatcaca tgctattttg gatctgattg aatcgaaatg gtctgattta gtggcagaga 1500 tgccactgaa gatatgttat cctgctcttg agaatctgga atggaaaatc attactggaa 1560 gtgaccctaa aaacacgcct tggtcatacc ataatggagg atcctggcca acattattgt 1620 ggcagctcac agtggcatct ctcaagatga acagaccaga gattgctgca aaagctgtgg 1680 agatagctga gcggcgcatt gctacagaca aatggcctga atactatgac acgaagcgag 1740 cacgcttcat agggaaacag tctcggcttt accagacatg gtctattgct gggtaccttg 1800 tagcgaagca actgctggac aaacctgatg ctgctcgaat actctggaac gacgaggaca 1860 cggaaattct taatgctttt agcacaaaca ggaaacgtgg caagaaagtg ttgaagaaga 1920 catacattgt gtgagttctc agcactgtta agttatagga tgtctcttct gtacatactt 1980 acaaaaggtc gtgcttttga tggaggaatg cccgtgttgg atgttgttgt aatggatgca 2040 tctggccttg caagaaatca cttgcttgag cattcctcaa ttatttactt gccatcactt .2100 tttgcactaa aaaaaaaa 2118 <210> 6 <211> 1942 <212> DNA <213> Festuca arundinacea <400> 6 gaccccttcc gcgccgcgct cgcgcctgcg tcgccgccgc tcgaggcgcc cccccttgat 60 gagctcccca ccgccccgtc gcactccgag ccagcgtctg cggccgccgc ggcgcccgag 120 caggatccgg tggatttgca gcacgaggag ttggacggcc tcaaggccgg ggtggaggcg 180 gtgaggagca gggaggagtc gccgcaggag aaggaagcgt ggtggctgct caaccgtgcg 240 gttgtgaatt actgcggcag cgcggtgggg acggtggccg cgaacgaccc gtccacggcc 300 aaccacatgc tcaattacga ccaggtgttc atcagggact ttgtgccgtc tgccatcgcg 360 ttcctcctca agggtgagag cgacatcgtg aagaacttct tgctgcacac cttgcagctc 420 cagagttggg agaagacagt tgattgctat agccctggtc aggggttgat gcctgctagt 480 tttaaagtca gatctgtgcc tctagatgga aacaatgaag catttgaaga ggttcttgac 540 cctgactttg gagaatcggc tattgggcgt gtagcacctg ttgactctgg gctttggtgg 600 ataattctat tgagggcata tggtaaaatt actggagact atgcactaca agaaagggtt 660 gatgtgcaga caggcatcag actaatcctg aatttgtgct tgtctgacgg atttgacatg 720 tttcctacat tgttagtcac tgatggatca tgcatgattg atcggaggat gggaatccat 780 gggcatcctc ttgagatcca ggctctgttt tattctgctt tgcgatgtgc ccgtgaaatg 840 gtcaatatag atgatgggtc taagaacttg atccgtgtta tcaacaacag gctcagtgct 900 ctgtcatttc acataagaga gtactattgg gtggacatga agaagataaa tgagatttat 960 cgctacaaga ctgaggagta ctcacatgat gctatcaata agttcaacat ctacccagag 1020 caaatcccat cttggcttgc agactggatt cctgagaaag gtggctatct tataggaaac 1080 ctacaaccag ctcacatgga tttcaggttc ttttctctag gaaatctctg ggctattgtt 1140 tcctctttag ccactccaaa gcaagcagag ggtatcttga acctcattga gaccaaatgg 1200 gatg'atatag ttgcaaatat gcctctcaag atatgctacc ctgctctgga gtatgaggaa 1260 tggcgtatta tcaccggttg tgaccccaaa aacacgccct ggtcgtatca taatggtgga 1320 tcttggccta cattgctatg gcagttcacc ctagcctgta tcaagatggg taggcctgac 1380 ctggcaagga gggctgttga ggccgtggag aagaggctct cggatgacaa gtggccagaa 1440 tattatgaca ccaggaatgg aaggtttatt ggaaaacagt cgaggctata ccaaacctgg 1500 acaattgcag ggtttcttag ctcaaaattg cttttggact gtccagagat ggcatcaata 1560 ttaatatgtg acgaagatct cgatctacta gaagggtgtg cttgtggcgc gaacaagagt 1620 gctcgcgtga aatgctcccg tcgtgcagcc aggtctcaag tccttgtgta gttccatact 1680 tttgcttgac agccaagacc tgcagtgctc ctttcgagtc acagaagttg gcacttgtta 1740 cctcaccagg gtgaccacct cctgtgccgg ttattttggc gagtttgtgg ccccttaatc 1800 tattgatacg agagtatact ttgttgtata gatttcaaca tgtgtacacg aagccaatta 1860 actcaagttg attggcagtt ttataaacag atagcatgta aatattacca cttgtaatca 1920 atttattccg agaaaaaaaa aa 1942 <210>-7 <211> 2250 <212> DNA Page 4 WO 03/093464 PCT/NZ03/00081 <213> Festuca arundinacea <400> 7 gaaagcggtt gaagcctttt ccgccgccat gccgccactt gccttctctc cgcccctcga cccttgatga cgcccgagca tggaggcggt accgtgcggt ccacggccaa ccatcgcgtt tgcagctcca ctgctagttt ttcttgaccc tttggtggat aaagggttga ttgacatgtt gaatccatgg gtgaaatggt tcagtgctct agatttatcg acccagagca taggaaacct ctattgtttc ccaaatggga atgaggaatg atggtggatc ggcctgacct ggccagaata aaacctggac catcaatatt acaagagtgc tccatacttt acttgttacc ccttaatcta gccaattaac tgtaatcaat cgagcctgtg cttcctccgc ctcccacctc ctctaactcc cacgacagtg tcccttccgc gctccccacc ggatccggtg gaggagcagg tgtgaattac ccacatgctc cctcctcaag gagttgggag taaagtcaga tgactttgga aattctattg tgtgcagaca tcctacattg gcatcctctt caatatagat gtcatttcac ctacaagact aatcccatct acaaccagct ctctttagcc tgatatagtt gcgtattatc ttggcctaca ggcaaggagg ttatgacacc aattgcaggg aatatgtgac tcgcgtgaaa tgcttgacag tcaccagggt ttgatacgag tcaagttgat ttattccgag caaacccagc aatccaaatc cgacggggca cccctcaccg gaatccggca gccgccctcg gccccgtcgc gatttgcagc gaggagtcgc tgcggcagcg aattacgacc ggtgagagcg aagacagttg tctgtgcctc gaatcggcta agggcatatg ggcatcagac ttagtcactg gagatccagg gatgggtcta ataagagagt gaggagtact tggcttgcag cacatggatt actccaaagc gcaaatatgc accggttgtg ttgctatggc gctgttgagg aggaatggaa tttcttagct gaagatctcg tgctcccgtc ccaagacctg gaccacctcc agtatacttt tggcagtttt aaaaaaaaaa tcgaaatccc tcgcgagaca cgcagcggca ccgccgcccc cgtcgtcggc ccccagcgtc actccgagcc acgaggagtt cgcaggagaa cggtggggac aggtgttcat acatcgtgaa attgctatag tagatggaaa ttgggcgtgt gtaaaattac taatcctgaa atggatcatg ctctgtttta agaacttgat actattgggt cacatgatgc actggattcc •tcaggttctt aagcagaggg ctctcaagat accccaaaaa agttcaccct ccgtggagaa ggtttattgg caaaattgct atctactaga gtgcagccag cagtgctcct tgtgccggtt gttgtataga ataaacagat tcaattccac agcgggcgct cgcgctcctg cctcgccgcc ggcgggaagc gccgccgctc agcgtctgcg ggacggcctc ggaagcgtgg ggtggccgcg cagggacttt gaacttcttg ccctggtcag caatgaagca agcacctgtt tggagactat tttgtgcttg catgattgat ttctgctttg ccgtgttatc ggacatgaag tatcaataag tgagaaaggt ttctctagga tatcttgaac atgctaccct cacgccctgg agcctgtatc gaggctctcg aaaacagtcg tttggactgt agggtgtgct gtctcaagtc ttcgagtcac attttggcga tttcaacatg agcatgtaaa gaatccgatc gcaatggcgg tacctctcgc gccgcccgcc tacaagcccc gagtcgcctc gccgccgcgg aaggccgggg tggctgctca aacgacccgt gtgccgtctg ctgcacacct gggttgatgc tttgaagagg gactctgggc gcactacaag tctgacggat cggaggatgg cgatgtgccc aacaacaggc aagataaatg ttcaacatct ggctatctta aatctctggg ctcattgaga gctctggagt tcgtatcata aagatgggta gatgacaagt aggctatacc ccagagatgg tgtggcgcga cttgtgtagt agaagttggc gtttgtggcc tgtacacgaa tattaccact <210> 8 <211> 973 <212> DNA <213> Lolium perenne <400> 8 atttgcttga atgatgccgt ggatccctcc gattcttttc ctcatgctat tgaagatatg ctaaaaatac tcacggtggc ctgaaagccg tcatcggtaa aactgctgct ttcttaatgc agacctatat tttagttatg aggtagtcta caagtcttgt cgcaaaaaaa <21Q> 9 <211> 2019 aaagagaaag caacaagttt gaaagggggt tctagggaac tctggatcta ttatcctgct accttggtca atgcatcaag tatttccatg- gcaggcccgg agaaaatccc tttgagtctg tgtgtaagtc taagaatcgt ggatttgtaa accactatat aaa ctaaatgaaa aacatatatc tatttcatcg ttgtggtcta gtggaagcaa cttgaggatc taccataatg atgaaccggc gataaatggc ttattccaaa gaaaaatcta atgactggcc caacagcagt ccacatatac cctctaccta atactcgccc tctatagata ccgatcagat gaaacctgca tagtaagcag aatggtctga aagagtggaa gaggttcctg ccgagatcgc ccgaatacta cttggtccat gaatactctg catccagtcc tctaacctct cgttagagat ccatatctct gagaggctca Page 5 caaaacagaa tcctccctgg accagctcac tttgg'caaca tctagtggca atttattact gccaacattg cgcaagagct cgataccaag tgccggcttt gaacaacgaa gaagaggaag agggtttcat atatttggta aggagagcta atacaacatc gaatattctt ctagttgaat atggatttcc gctgatcaat gagatgccaa gggagcgacc ttgtggcagc gtggaggtgg cgtgggcggt cttgtggcca gatgaggaaa cgtggtagga gggtgttgca taggtatatt tcttagcctc aatcatattc 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2250 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 973 WO 03/093464 PCT/NZ03/00081 <212> DNA <21B> Lolium perenne <400> 9 gaaaaccgtt cgcctttcgc aactcgctcc aggcgtctgc gcgcgcatgg cgatcgcggc 60 agcggccgcg ctgctgccgc tgcacctcgg atgctccgac gcggctcccc ggcggcccgg 120 taactccctc agagcccatc tgcggaaggg cgggatcagg ggcaggcggc ggagccctcc 180 gtgcgccgtc aactcgctgc atcccagcgg caaccccaaa actcccggcg gcggcgacgt 240 tggcggagcg tggggcttga acggcggcgc caccgccaag cccgatcacg cgccgccgag 300 ccagaggagg cgcgcgccgc gcgacgtgga ggaggaggcg tgggcgctcc tccggcjagtc 360 ggtggtgagc tactgcggca gccccgtggg caccatcgcc gcgtgcgacc ccaatgacgc 420 cagcccgctc aactacgacc aggtgttcat ccgggacttc gtgccctccg gcgtcgcctt 480 cctcctcaag ggggaacacg aaatcgtccg caacttcatc ctccacacgc tccagctcca 540 gagctgggag aaaacaattg actgtcatag cccgggccaa gggttaatgc cggctagttt 600 caaggtgcgt gttgttccac ttgatggtgg cgacgatggt gcgactgagg aagtcttgga 660 tcctgacttt ggggaggctg ctataggccg tgtggcacca gttgattcag gtctgtggtg 720 gatcatacta ctgagggcgt atggaaaatg ttcaggggac ctctcattcc acgagagagt 780 ggatgtccag actggaataa aactgatctt gaagctctgc ttagctgatg ggtttgacat 840 gttccccacg ttgctagtca ctgatggctc ctgcatgatg gatcggcgaa tgggtatcca 900 tggacacccg ctggaaattc aggctctgtt ctattcagcc ctcttgtctg cacgtgagat 960 gcttacccca gaagatggat cggctgactt gatccgtgcc ctaaatagca ggcttatggc 1020 actctctttc catattaggg agtattattg gcttgaaaag agaaagctaa atgaaatcta 1080 tagatacaaa acagaagaat attcctatga tgccgtcaac aagtttaaca tatatcccga 1140 tcagattcct ccctggctag ttgaatggat ccctccgaaa gggggttatt tcatcggaaa 1200 cctgcaacca gctcacatgg atttccgatt cttttctcta gggaacttgt ggtctatagt 1260 aagcagtttg gcaacagctg atcaatctca tgctattctg gatctagtgg aagcaaaatg 1320 gtctgatcta gtggeagaga tgccaatgaa gatatgttat cctgctcttg aggatcaaga 1380 gtggaaattt attactggga gcgaccctaa aaatacacct tggtcatacc ataatggagg 1440 ttcctggcca acattgttgt ggcagctcac ggtggcatgc atcaagatga accggcccga 1500 gatcgccgca agagctgtgg aggtggctga aagccgtatt tccatggata aatggcccga 1560 atactacgat accaagcgtg ggcggttcat cggtaagcag gcccggttat tccaaacttg 1620 gtccattgcc ggctttcttg tggccaaact gctgctagaa aatcccgaaa aatctagaat 1680 actctggaac aacgaagatg aggaaattct taatgctttg agtctgatga ctggcccatc 1740 cagtccgaag aggaagcgtg gtaggaagac ctatattgtg taagtccaac agcagttcta 1800 acctctaggg tttcatgggt gt-tgcattta gttatgtaag aatcgtccac atataccgtt 1860 agagatatat ttggtatagg tatattaggt agtctaggat ttgtaacctc tacctaccat 1920 atctctagga gagctatctt agcctccaag tcttgtacca ctatatatac tcgcccgaga 1980 ggctcaatac aacatcaatc atattccgca aaaaaaaaa 2019 <210> 10 <211> 2457 <212> DNA <213> Lolium perenne <400> 10 gctaccgccc aacctaaaca aaaccgtacc gaaccctgca attttgccat caacccctcg 60 ccgaccacat atttgcaaaa gcttaccttc aactgtacta tcccttttac gccgagcccc 120 ctacgaggtt tccgcatctc gcttctgagt ccttcgccgg agtttccata tgaatggtca 180 aaccacgatg gggctcgcag cagccgccgc cgcagccgtg aggccgtgcc gccgccgcct 240 cctctcctcc gcctcagcgg cggcggcggc gaaggcctcc gcgacgccgc tcttcccgag 300 atgctcccac ccgcagcacc agcagcacag ccgccgcatc ccattcctcg tctcggcggc 360 gtc'gcacacg tcgcagtccg acccgagcac cacccccacc cccgtcacct ccg'atccccg 420 ctccgccgtc g'ccgggaacc tccccttctt cgaccgcgtg ctcttcccgg gctcgttccc 480 cctcgagacc ccgcctgtcg aggagccggc gccggcgccg ccggccgatg aagcgcaggc 540 gtccgcttcg cccgtgagag aggagtcgga tacggagagg gaggcgtgga ggctgctgag 600 gagggcggtg gtgagctact gcggtgaccc ggtgggcacg gtggcggcgg aggacccgga 660 gtgcacggag atgctcaact acgaccaggt cttcatcaga gactttgtgc cttccgccct 720 cgccttcctc atgcgcgggg agaccgagat cgtccgcaat ttcctcctcc acaccctgca 780 gctgcagagc tgggagaaaa ctgttgactg ttacagccct gggcaaggct tgatgccagc . . 840 tagttttaag ataaagaccg ttccacttga tgaaaacaac gaagcattcg aggaggttct . 900 ggatcctgac tttggtgaat cagctattgg ccgtgtagct ccagttgatt ctggactttg 960 gtggattatc ttactaagag cgtactgcaa gtttacaggc gactattcat tgcaagaaag 1020 agtggatgtg caaaccggga ttaaactgat cttgagtttg tgtttgactg atgggttcga 1080 catgtttccc acactactgg tcacagacgg atcatgcatg atagacagga ggatgggaat 1140 acatggacat cctcttgaga ttcaagcttt gttctattct gctctaagat gctcaaggga 1200 aatgattgtt atgaacgatg gctcaaaaca cctcctccaa gccatcaaca acaggctcag 1260 tgcgttgtct tttcacatta gggaatacta ctgggtcgat atgaagaaga taaatgagat 1320 ctacagatac aagacagaag aatactcaca tgatgcgacc aacaaattca acatttatcc 1380 Page 6 WO 03/093464 PCT/NZ03/00081 cgagcaaatc ccttcctggc ttgttgattg ggttcctgag aaagggggtt atcttattgg 1440 aaatctgcag ccagctcaca tggattttag.gttcttctcc cttggcaacc tttgggccat 1500 atcttcatct ctaactactc caacccaagc cgaaggaata cttagcctta ttgaggagaa 1560 atgggacgat cttgtggcaa atatgccact caagatatgt taccctgcaa tggaagatga 1620 tgaatggcgc attgttactg gcagtgaccc taagaacacc ccgtggtcat atcataatgg 1680 tggatcttgg ccaaccctgt tgtggcagtt tacactggct tgcatcaaaa tgggaagacc 1740 agagttggcc cgaagggcca ttgcagtggc tgaggaaaag ctctcagctg acaagtggcc 1800 ggaatactat gacacccgat ctggaagatt cgttgggaag caatcacggt ca-tatcagac 1860 atggactatt gctggttttc tgacctcgaa gatattgctg gaaaacccgg agctggcttc 1920 tatcctgacc tgtgatgagg atcttgagct ccttgaaggc tgtgcttgct gcctctcaaa 1980 gaggacgagg tgctctcgtc gtgtgaccaa atca'gatatc atcgggtaaa acagcagagc 2040 cccttttatt cttcatgctc tgcagaccat gtatactatc gactgagaat taactgaggc 2100 ggacacactg tagctgtgta cattataggt ttaagttaga tatcaatcca ttcatttcct 2160 caatgtgcgc tcattctttt tctctgagct gccattgatg ggaacaaccc tgggtgatac 2220 cggtggtcaa cgggagcatt accaatttat gttggatctc tcatgtacac acacaaaaaa 2280 aggaattatt cttgtatttg gtaaccagtt gctcctgatt cgggagtgct gtgaagccct 2340 aaccattgta tctatgtcag tatttgagtt gtatgttgca ttatttgcaa cgtaaactga 2400 gactttgtat cctatccttg ttatgaataa cgatactgtt gtcctccaaa aaaaaaa 2457 <210> 11 <211> 2143 <212> DNA <213> Lolium perenne <400> 11 gcgctcctgc acgcaagctg cacgggccgc tcctgcacgc aagctgcacg gccaatccaa 60 tcaccgcagc accgttcgcc tttcgcaact cgctccaggc gtctgcgcgc gcatggcgat 120 cgcggcagcg gccgcgctgc tgccgctgca cctcggatgc tccgacgcgg ctccccggcg 180 gcccggtaac tccctcagag cccatctgcg gaagggcggg atcaggggca ggcggcggag 240 ccctccgtgc gccgtcaact cgctgcatcc cagcggcaac cccaaaactc ccggcggcgg 300 tgacgttggc ggagggaggg gcgtgaacgg cggcgccacc gccaagcccg accacgcgcc 360 gccgagccag aggaggcgcg cgccgcgcga cgtggaggag gaggcgtggg cgctcctccg 420 ggagtcggtg gtgagctact gcggcagccc cgtgggcacc atcgcggcct gcgaccccaa 480 cgacgccagc ccgctcaact acgaccaggt gttcatccgg gacttcgtgc cctccggcgt 540 cgccttcctc ctcaaggggg agcacgaaat cgtccgcaac ttcatcctcc acacgctcca 600 gctccagagc tgggagaaaa cgattgactg tcatagccca ggccaagggt taatgccggc 660 tagtttcaag gtgcgtgttg ttccacttga tggtggcgac gatggtgcga ctgaggaagt 720 cttggatcct gactttgggg aggctgcaat aggccgtgtg gcaccagttg attcaggttt 780 gtggtggatc atactactga gggcatatgg aaaatgttca ggggacctct cattccacga 840 gagagtggat gtccagactg gaataaaact gatcttgaag ctctgcttag cggatgggtt 900 cgacatgttc cccacgttgc tagtcactga tggctcCtgc atgatggatc gtcgaatggg 960 tatccatgga cacccgctgg aaattcaggc tctgttctat tcagccctct tgtctgcacg 1020 tgagatgctt accccagaag atggatcggc tgacttgatc cgggccctaa atagcaggct 1080 tatggcactc tctttccata ttagggagta ttattggctt gaaaagagaa agctaaatga 1140 aatctataga tacaaaacag aagaatattc ttatgatgcc gtcaacaagt ttaacatata 1200 tcccgatcag attcctccct ggctagttga atggatccct ccgaaagggg gttatttcat 1260 cggaaacctg caaccagctc acatggattt ccgattcttt tctctaggga acttgtggtc 1320 tatagtaagc agtttggcaa cagctgatca atctcatgct attctggatc tagtggaagc 1380 aaaatggtcc gatctagtgg cagagatgcc aatgaagata tgttatcctg ctcttgagga 1440 tcaagagtgg aaatttatta ctgggagtga ccctaaaaat acaccttggt cataccataa 1500 tggaggttcc tggccaacat tgttgtggca gctcacggtg gcatgcatca agatgaaccg 1560 gcccgagatc gccgcaagag ctgtggaggt ggctgaaagc cgtatttcca cggataaatg 1620 gcccgaatac tacgatacca agcgtgggcg gttcatcggc aagcaggccc ggttattcca 1680 aacttggtcc attgccggct tccttgtggc caaactgctg ctagaaaatc ctgaaaaatc 1740 tagaatactc tggaacaacg aagatgagga aattcttaat gctttgagtc tgatgactgg 1800 cccatccagt ccgaagagga agcgtggtag gaagacctat attgtgtaag tccaacagca 1860 gttctaacct ctagggtttc atggatgttg catttagtta tgtaagaatc gtccacatac 1920 cactagattt gtacatatta'aagtggatgt tgtagaggaa atgcccattt tgagatgcta 1980 tcatgctgtt ctagtgatct actgttagca aggcteaggg gaacggattg ttggctccgg 2040 agctactccg agcttcttaa ttctagaaag ttcatttcaa gtttttaaaa tgtcccacgt . 2100 gttgtgggag taatctatga" acttataaat gctaaaaaaa aaa 2143 <210> 12 <211> 2033 <212> DNA <213> Lolium perenne <400> 12 Page 7 WO 03/093464 PCT/NZ03/00081 atacacccag cactccgccg cttaactgaa attgcgtcag tacacgttgg catcggcaaa gactcaccgt aatgaagcat acaattgctg cgggattttg aactttctgt cttggagcag gaaacattag ggattttggt tcagaatctc ggattcgata atgggtatat gctctccaaa cggctgcatg aacaatatct gtcatcccag tttcttggca attgccatta gaggagaggt gagaaccatg cataatgggg gggcggccac ggctggcccg ttccaaacat acgctcatga gcgtcgtgga tggtctgttc cagaagtgta acctttgatt ctctggctcc cctcctcctc acagttgacc aggctgagat agcggaagag acgacggctt tctcaatggg gggaggcact cggtagatca ttcctagtgc tgaaaactct gagcaatgcc ttgcagattt ggattattct ctgattgtca ctttcccaac atggttatcc tgcttaagcc cattaaccta atagatacaa attcaattcc acgtcagccc tatcatctct gggatgaatt agtggagaat gatcatggcc aaatggcgaa agtactatga ggtccattgc tgatctccat atgcctgaaa ggcagaaaaa tacgtcagat ttgctatgaa caacatgccg cgtctgcccg aaaacgtgga caatctcgac gtcatttgat tgatagtgta aacgcacttt caggaaatct tgcatctgaa attggctttt ccacttgcaa tgcaagtttc tggtgagagc gctccgggca gaagtgcatg tctgctctgc tattgagatc agatggtgaa ccacatgaga aacagaggag tgattgggtg tgctatgatg ggctactcct agtgggcgag aattactggc agttcttctg gcgcgccatc tggcaagctg aggctacctg ggaggaagac ggctgggtgg aggtccggac gatcgatcct accagcaagc tctcctcccc atccgacgcc atcatgaaga ctctcacgct gagcagtcat ctgcagtcac ggtgagccaa gtagtgtatt gaagtgctca ctaatgaata agctcagaaa aaggtggacc gcgattggca tatacaaagt aggctgatac acagatgggt caagctctgt gggaaggact aactacttct tactcccaca tttgatttca gacttcaggt gagcagtcat gtgcctctga tgcgacccca tggctgctga gagctctccg ggaaagttcg gtagcccgga cggcctgtga ttgtttctta ttggttgtaa agaagctaca gaagattctg gcgcccgcgc gcgtccattc gagtttcatc tactaattga ggagcgagct ctgcattccg gtgggccaca ttcggggcca attatgatca acgagcccga aaatggtaga gtaataaaag gggtggcacc atactggaga tgaatctctg gctcaatgat tctacatggc tcattgagaa ggctggactt ctgctgtgaa tgccatgccg ggtttgctct cagcaataat agatttgcta agaatacccg ctgcagcctg aggctaggct taggtaagca tgatgttgga agccgacaat agatatttct ttgaactctg ctgcattttc cttaaaaaaa actccacccc ccccacggag gcatgtctcc caagccaagg cacccacacc cactgggttt cccccttgtg accagttggt ggttttcgtc aatagtgaag ccggttcaag cagaaacact agtggattct tgctagtttg cttatctgag cgatcgtcga attaagatgt gatagggcaa cccacatcta taaattcaat aggaggctac tggaaactgt ggatctgatc tcctgcaatt gtggagttat tatcaagacc tctgaaggat ggccaggaag ggacccgtca gaggcggtcg tttacttcaa tcagttagga ttactgtcaa aaa <210> 13 <211> 1866 <212> DNA <213> Lolium perenne <400> 13 agtagcaccg tctccaacgt cgtttgcgcc gcagccacgg atgccgacca ctgctgaacc ctcggcgacc agcatgtact cgcctctcct ctcgtctgct gaagtcctca ctgatgaacg gggtgggaga aaggtgctca gccatcgggc tacaccaagt cggctcatca gccgacggct caagccctct gggaacagca ctcagctacc cgcttcaaga tccatcccgg gtcagccccg gcgtcgctcg gaggacctca tggcagaacg cccaggaacc ctcttttggt gccgcttgtc cgaccgcggc cgccgtcgca accgcecgcg tctacctctc cgccgggcgg tcgagcccca tccgtgggga actacgacca gggagccgga agcggatcga aggacccgaa gcgtggcgcc ccaccggcga tgaaccagtg gctgcatgat •tcttcatgtc gcagcaagga acatgcgcag cggaggagta actggctctt ccaggatgga ccacgccaga tcggcgagat tcaccggatg caactccggc cgcctcccac ttttctatct ggtgtgcgag cgcgtccata gatcaacgtg cgccatggac cgggctccgc gctcctggtc gcccctcggc ggtgttcgtg catcgtgaag ccggttcaag gcgcggggtg ggccgactcc cctcaccctc cctcgccgag cgaccgcagg actgcggtgc cgacgacatc ctacttctgg ctcccacacc cgacttcatg cttccggtgg gcaggccggc gccgctcaag cgaccccaag gagagagctc ttgtactcgc cgccgggcgt atggaggcgc gcggactcgg gagcggcagc agccgcggcg tcgctcaccg gccgaggcct accatcgccg cgggattttg aacttcctgc ctcggggagg gacaccctgg gggttctggt gccgagacgc gggttcgaca atgggcgtgt gcgctgctgc atggagcgga ctcgacttcc gccgtcaaca ccctcccgcg ttcgcgctgg gccatcatgg atctgctacc aacaccaggt Page 8 ctatatcagc cgtcgtaccc gtattctcga cggggggcgg acgacttcga gctccttcga ggtacatgga gcacgccggc gggaggccct ccgtcgacag tgccgagcgc tgaagacgct gcgccatgcc-cggcggactt ggatcatcct ccgagtgcca ccttccccac acgggtaccc tgctgaagcc tcgtgacgcg agcagctcaa agttcaacgt gcggatactt gcaactgcgt acctcatcga cgaccatcga ggagctacca cacctgcctc acttcccgta cgcgcgtgca agcggggccg cctgtcgcgg cgaccgctcg cagctacgac ctcctccacg ccgccgctcg ctcctccgac gctggcgttc gctgctgcag ggcgagcttc cggcgagagc gctccgcgcc gaagggcatc cctcctctgc gatcgagatc ggcggtggaa gctgcacgcg cgtcatctac catcccggag cgtcggcaac cgccatcctc ggagcgctgg gggacacgag caacggagga- 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2033 60 120 180 240-300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 •1200 1260 1320 1380 1440 1500 1560 1620 WO 03/093464 PCT/NZ03/00081 tcatggccag tgctgatctg gctcctgacg gcggcgtgca tcaagaccgg gcggctcaag atcgcgaggc gggcgatcga cctggcagag gcgaggctgg ggaaggacgg ctggccggag. tactacgacg gcaagctcgg gcggtacgtg gggaagcagg cgaggaagca ccagacgtgg tccatcgcgg ggtacctggt ggccaagatg atgctggagg acccgtccca cctgggcatg atctcg <210> 14 <211> 2058 <212> DNA <213> Lolium perenne 1680 1740 1800 1860 1866 <400> 14 gccatagatc ggaagcgaag cacaactcgc atcaacgtcg ggcggcggac gggctgcgct cccatcgtcg ccgctcggaa gtgttcgtgc atcgtcaaga cgcttcaagc aagggcgtcg gtggactcgg ttgaccctgg. ctctccgagg gatcgaagga ctgaggtgtg attgcaactc cagcagctaa aagttcaatg ggtggttttt ggtaacatga gatctcattg cctgccattg tggagttacc atcaaaactg ttgaaggatg gcaaggaaat gacccttcac agaaggtccg tggattgaaa tcctaacgga tggaaaagaa ttgtaagaag ttggtctcaa tggccgcggc agaagggcat tgtccggctc agcgccagcg acgccagggg cgctcgtcgg gggacgcgtg ccatcgccgc gggatttcgt acttcctgct tcggcgaggg acacgctgca gcttctggtg ccgagaagcc ggttcgacac tgggtgtgta ctcttctaat gtcttcatgc atgatattta tcattccaga ttgttggcaa ttgccatagt aggagcggtg agaaccatga acaatggagg gacggccgca gctggcctga ttcaaacttg atcttggaat cctcatggac acacgaattc aaggtttgtt gcaattgtgg atacttccga aaaaaaaa gagcaggcgg ggagttcggg ggacgacttc ctccttcgac cgctggcggg cacgccggcc ggaggcgcta ctacgaccac gcccagcgcc caagaccgtg ggccatgccc cgccgatttc gatcatactg ggagtgccag cttccccaca tggctacccc gcttaagcat tttaagttat tcgttacaag ttctattccg tgtcagtcct atcatctctt ggaagagcta gtggcgaata atcttggcca aattgcaaga gtattatgac gtctattgcc gatagccctg aaactaagat tttgggcagc ttcctctgga aaatgggcat ttcttgattg aggccggccg gcgccgggcg gacctcacgc gaccgctccc ggattcgaeg tcgtccgcgc cgacgctcgc gcctcagagg atggccttcc ctgctgcagg gccagcttca ggggagagcg ctgcgggcct aaggccatga ttgctgtgtg attgaaattc gataatgaag cacatgcgga aeggaagaat gactggctgt gcaaggatgg gccacacctg attggtgaaa gtgacggggt gtacttctct agagcaatcg gggaagctcg gggtatttgg gaggaagaca atcgacgaaa acttctctct ttgtacaata tttgttttgt ggtcatcctg aggattcctg ggatgcggcg acctgctcaa teagegaegt gcatgtactc tccactcctt tcgtcttctt aggtgctcaa teatgaaegg gctgggagaa aggtgctaca ccattggccg acaccaagtc ggctcatact ctgatggatg aatccctgtt ggaaagattt gttacttttg attctcacac ttgattttat acttccgttg agcaatctac tgcctctgaa gtgacccaaa ggctgctgac acctagctga gaaaatatgt tcgctaagat aggctatgaa actcttaggg gctcatcctt tctcagctca ttttcccttt aagttatggg agcaggggac gteggegteg caagccgcgg gtcctactcc gccgggcggc cgagccgcac ccgcggccag ctacgaccag cgagccggag gaaggtcgac cgacgacaag ggtcgcgcca cacgggggac cagcctctgc ctgcatgata cttcatggca tgtggagcgg gctggatttc agctgtcaac gccttgtgaa gtttgeaett ggctataatg gatatgetat aaatacgaga ggcagcaagc gaggaggctt tggcaagcag getgettgag gccagttttg gagcaaagtc tctttgactt tttcttgagt caatcccgtg atccttttgg <Z10> 15 <213> 2167 <212> DNA <213> Lolium perenne <400> 15 ggccaccacc ttcgccggcg aagaagcgga gtggagtatg gcgttcccac getgatgeta aggcagtccc aacccgaata actttggaga cttggtagga tgccaggctt gctgctcaac cctgtaactt accatatgca aacaccaaaa aggcgatgga ccctctacca gtgatgtggc acacatacgg aagtcatatc caggaggcca gcaaacttat tcacagatga ccaaggatca tgaagttgga ttgetgagae tgaatgggga aggtcaactc acgcatcgac ttccgactac gcccgacctg gatcgctgct gcagccactg agagcaccct caatgtcata tggtttcctc agttctttct aatcagaaca tgctctgata ttttgccgag tctcaagaac acaacttata gcggcgcaga ggcgtgccgc ccgccctgcc gatcctgccg gctcatttcc gccgtcaggg tggggactcc ggaggatccg tcctacaaaa acagagcaag ataattggag gcaaagtgtg caatttgttg agcaatatgt page 9 tacaaacgag gcgagctctc tccagggcac gcgctcatgt tcaggaaggc ttggcattgt atgatgetat atggtcttct accaaggtgg tcaatggtgc gtgtcacgtc caacaaaggt agacaactgt gcaccgatgc gcagccgccc ggaggtgcag tactgtgagg gatcagccac ggctaatgtc attctgtgga caaagctcac tgcacagaaa ttatgatatg aatggctagt aaatacagat tgtaggtgtt tggttttgat tctatctgct 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 14 40 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2058 60 120 180 240 300 360 420 480 540 600 660 720 780 840 WO 03/093464 PCT/NZ03/00081 gagaagtatt actatttcat ccgtatgatg ggacggaagg cttcccatgt ggcattggag. 900 tgtgctcttc aatcgcatcc aaatatggtt atccttggtg aggaggttgc tgcatcaaaa 960 ctcacaattt ttgatatcac aaagcaaata tgtgatgcag ttcaggcgag agctgaaaaa 1020 gacaagaacc atggtgtcat acttattcct gagggccttg tggagagtat tcctgaatta 1080 tatgctctcc ttcaggaaat taatggcctt cacggtaaag gtgtttccat tgagaatatc 1140 tcttctcagc tttctccttg ggcatcagcg ctatttgagt ttttgcccca gtttattagg 1200 cagcagctgc ttctccgccc tgaatctgat gattcagctc aactttctca gattgaaact 1260 gaaaagcttc tagcccaatt ggttgaaacc gaaatgaaca aacgtttgaa ggaaggcacc 1320 tacaaaggaa agaagttcaa tgcaatctgt cacttttttg gctaccaagc taggggtgca 1380 atgccttcga agtttgactg cgattatgcc tatgttctgg gtcacgtgtc ttaccacatc 1440 ttggcagctg gtttgaacgg ttacatggct actgtgacaa atcttaagag tcccctgaac 1500 aagtggcgat gtggtgctgc tcctatttcg tccatgatga ccgtgaagcg atggtcacgt 1560 ggcccttcaa ccacacaaat cgggaagcca gctgtgcata tggctagtgt tgacttgaga 1620 ggaaaagcat atgagctgtt gaggcagaat tcatccagct gcttgttgga agacatctac 1680 agaaaccctg gaccactcca attcgaagga ccgggttctg attccaagcc tatttcactg 1740 tgcgttgagg atcaaga'cta catgggtagg atcaagaaat tgcaggagta cttggagaag 1800 gtgaagagca tagtgaagcc tgggtgctca caggatgttc tcaaggcggc gctgagtgcc 1860 atgtcttctg tgacagatac tctggctatc atgacttctt cttccactgg ccaggcccca 1'920 ctctgagagt cgagttactc tgatctacat gtttccctat cctcttttgt tccatctgac 1980 ggttgggatt agagaacagt gatcttgtga tcccgtggtt cgttcttttc ctagtttgca 2040 gagagttttt gtcattcctg gctctgatag tgtaccgagg gtttgttgtt ggcgaggttg 2100 aactggaata atcgatcaaa ctgccggttg tgatctatta ataaactaaa ttttgataaa 2160 aaaaaaa 2167 <210> 16 <211> 2179 <212> DNA <213> Festuca arundinacea <400> 16 ggccaccatc ccaccaacaa caaaaaaaac gcatcgacgc ggcgcagata caaacgaggc 60 aggcgacgag tgctaggcga tggattccga ctacggcgtg ccgcgcgagc tctcggaggt 120 gcagaagaag cggaccctct accagcccga gctgccgccc tgcctccagg gcactactgt 180 gagggtggag tatggtgatg tggcgatcgc tgctgatcct gctggcgctc atgtgatcag 240 ccacgctttc ccacacacgt acgggcagcc actggctcat ttcctcagga aggcggctaa 300 tgtcgctgat gctaaagtca tatcagagca ccctgccgtc agggttggca ttgtattctg 360 iggaaggcag tccccaggag gccacaatgt catatgggga ctccatgacg ctatcaaagc 420 tcacaactcg aatagcaaac ttattggttt cctcggagga tccgatggtc ttcttgcaca 480 gaaaactttg gagatcacag atgaagttct ttcttcctac aaaaaccaag gtggttatga 540 tatgcttggt aggactaagg atcaaatcag aacaacagag caagtcaatg gtgcaatggc 600 tagttgccag gatttgaagt tggatgctct gataataatt ggaggtgtca cgtcgaatac 660 agatgctgct cagcttgctg agacttttgc cgaggcaaag tgtgcaacaa aggttgtagg 720 tgttcctgta actttgaatg gagatctcaa gaaccaattc gttgagacaa ctgttggttt 780 tgataccata tgcaaggtga actcacaact tataagcaat atgtgcaccg acgctctatc 840 tgctgagaag tattactatt tcatccgtat gatgggacgg aaggcttccc atgtggcatt 900 ggagtgtgct cttcaatcgc atccaaatat ggttatcctt ggtgaggagg ttgctgcatc 960 aaaactcaca atttttgata tcacaaagca aatatgtgat gcagttcagg cgagagctga 1020 aaaagacaag aatcatggtg ttatacttat tcctgagggc cttgtggaga gtattcctga 1080 attatatgct ctccttcagg aaattaatgg ccttcacggt aaaggtgttt ccattgagaa 1140 tatctcttct cagctttctc cttgggcatc tgcgctattt gagtttttgc' cccagtttat 1200 taggcatcag ctgcttctcc gccctgaatc tgatgactca gctcaacttt ctcagattga 12.60 aactgaaaag cttctagccc aa'ttggttga aaccgaaatg aacaaacgtt tgaaggaagg 1320 cacctacaaa ggaaagaagt tcaatgcaat ctgtcacttt tttggctacc aagcgagggg 1380 tgcaatgcct tcgaagtttg actgcgatta tgcctatgtt ctgggtcatg tgtcttacca 1440 catcttggca gctggtttga acggttacat ggctactgtg acaaatctta agagtcccct 1500 gaacaagtgg cgatgtggtg ctgctcctat ttcgtccatg atgactgtga agcgatggtc 1560 acgtggccct tcaaccacac aaatcgggaa gccagctatg catatggcta ctgtcgactt • 1620 gagaggaaaa gcatatgagc tgttgaggca gaattcatcc agctacttgt tggaagacat 1680 ctacagaaac cctggaccac tccaatttga aggaccgggt gctgattcca agcctatttc 1740 gctgtgcgtt gaggatcaag actacatggg caggatcaag aaattgcagg agtacttgga 1800 gaaggtgaag agcatagtga agcctgggtg ctcacaggat gttctcaagg cggcgctgag 1860 tgccatgtct tctgtgacgg agactctggc tatcatgact tcatcttcca ctggccaggc . 1920 cccactctga gagtcgagtt actcaagtgg gctaaaaatc tacgtttccc tatcctcttt 1980 tgttccatct gacggttggg attagagaac agtgatcttg tgatcctgta gtttgttctt 2040 ttcctagttt gcagagtttt tgtcatttct ggctctgata gtgttcgagg gtttgttgtt 2100 ggcgaggttg acctggaata atcgatcaaa ctgccggttg tgatctatta ataaactaaa 2160 ttttgataca aaaaaaaaa 2179 Page 10 WO 03/093464 PCT/NZ03/00081 <210> 17 <211> 1961 <212> DNA <213> Lolium perenne <400> 17 ctcacctcac ctgcctccgt ctctccgccc gaaagcgcat attcctccaa atctcacccc . 60 gtcaccaccc tcgccggcgc atcgcatcgc atggcggccg ccgcggtggc cacctccaac 120 ggcgcctcgg ccaacgggcc gacgcccggg cgcctcgcgt ccgtgtacag cgaggtgcag 180 acgagccgca tcgcgcacgc gctgcccctc ccctccgtcc tccgctccca cttcacgctc 240 gccgacgggg ccgccagctc cgccacgggc aaccccgagg agatcgccaa gctcttcccc 300 aacctgtacg gccagccgtc cgcggccgtg gtgccctcgg cccagecggt cgccaccaag 360 ccgctcaaga tcggcgtcgt gctctccggc ggccaggcgc caggcggcca caatgtgatc . 420 tgcggcatct ttgactacct gcaagagcgt gcgaagggca gcaccatgta cggattcaag 480 ggaggcccag ctggggtcat gaagggcaag tacgtcgagc tcaatgctga tttcgtctac 540 ccctacagga accagggtgg atttgatatg atctgcagtg gaagggacaa gattgaaaca 600 ccagagcagt tcaagcaagc tgaagacact gtcaccaaac ttgatttgga tggacttgtt 660 gtcattggtg gtgatgattc aaacactaac gcatgcctcc ttggtgaata cttcagggga 720 aggaacttga agactcgtgt tattggttgc cccaagacta ttgatggaga tctgaaatgc 780 aaggaggtcc caacaagctt tggatttgac actgcttgca agatatactc tgaaatgatt 840 ggcaatgtga tgactgatgc tcggtcaaca ggaaaatact atcactttgt gaggcttatg 900 ggccgagctg cttctcacat tacattagag tgtgctctgc aaacacaccc taacgtttca 960 ctcattggcg aagaggttgc tgagaagaag gaaacactca agcaagtcac agactacatt 1020 actgatgtta tctgcaaacg tgcagaactt ggttacaact atggagttat ccttatcccg 1080 gagggactta ttgatttcat tccagaggtt caaaagctca ttgcagaatt gaatgaaatt 1140 ttggcacatg atgttgttga cgaggcaggt gcatggaaaa gcaagcttca accagaatct 1200 aggcaactgt ttgacttctt gcccaacacc attcaggagc agcttttgct tgaaagagat 1260 ccacatggca atgttcaggt tgcgaaaatt gaaactgaga agatgcttat tgccatggtt 1320 gaaactgaat tggagaagag aagatctgca gggaagtact cagcacattt cagaggccag 1380 tctcacttct ttggatatga aggaagatgt ggtcttccta caaattttga ttctagctac 1440 tgctatgcat taggctatgg tgctggggct cttctccaat ttggaaagac aggacttatt 1500 tcgtcggttg gtaaccttgc tgctcctgtg gaagaatgga ctgtcggagg aactccattg 1560 acggcgttga tggatgtaga gaggagacat ggcaagttca agccagtgat caagaaggct 1620 atggtggaac ttgatgctgc gccattcaag aagtttgctt ccatgcggga tgaatgggcc 1680 atcaagaaca gatacatcag ccctggcccc atccagttca gcggccctgg aagcgatgcg 1740 tcgaaccaca ccttgatgct ggagcttggt gctcagacat gagatgctgt gttatagagt 1800 gcacctcttc tgtttttttt ctccctcctt acagttttga gagtggagac caaacctccc 1860 agtgggcagt ctccacattg tggaatgatt aataagagct attggagttt cctgagtgga 1920 tttcgtagca ataataactg attttagctg caaaaaaaaa a 1961 <210> 18 <211> 1959 <212> DNA <213> Lolium perenne <400> 18 ctcacctcac ctgcctccgt ctctccgccc gaaagcgcat attcctccaa atctcacccc 60 gtcaccaccc tcgccggcgc atcgcatcgc atggcggccg ccgcggtggc cacctccaac 120 ggcgcctcgg ccaacgggcc gacgcccggg cgcctcgcgt ccgtgtacag cgaggtgcag 180 acgagccgca tcgcgcacgc gctgcccctc ccctccgtcc tccgctccca cttcacgctc 240 gccgacgggg ccgccagctc cgccacgggc aaccccgapg agatcgccaa gctcttcccc 300 aacctgtacg gccagccgtc ."cgcggccgtg gtgccctcgg cccagccggt cgccaccaag 360 ccgctcaaga tcggcgtcgt gctctccggc ggccaggcgc caggcggcca caatgtgatc 420 tgcggcatct ttgactacct gcaagagcgt gcgaagggca gcaccatgta cggattcaag 480 ggaggcccag ctggggtcat gaagggcaag tacgtcgagc tcaatgctga tttcgtctac 540 ccctacagga accagggtgg atttgatatg atctgcagtg gaagggacaa gattgaaaca 600 ccagagcagt tcaagcaagc tgaagacact gtcaccaaac ttgatttgga tggacttgtt 660 gtcattggtg gtgatgattc aaacactaac gcatgcctcc ttggtgaata cttcagggga . 720 aggaacttga agactcgtgt tattggttgc cccaagacta ttgatggaga tctgaaatgc 780 aaggaggtcc caacaagctt tggatttgac actgcttgca agatatactc tgaaatgatt 840 ggcaatgtga tgactgatgc tcggtcaaca ggaaaatact atcactttgt gaggcttatg 900 ggccgagctg cttctcacat tacattagag tgtgctctgc aaacacaccc taacgtttca 960 ctcattggcg aagaggttgc tgagaagaag gaaacactca agcaagtcac agactacatt 1020 actgatgtta tctgcaaacg tgcagaactt ggttacaact atggagttat ccttatcccg 1080 gagggactta ttgatttcat tccagaggtt caaaagctca ttgcagaatt gaatgaaatt 1140 ttggcacatg atgttgttga cgaggcaggt gcatggaaaa gcaagcttca accagaatct 1200 aggcaactgt ttgacttctt gcccaacacc attcaggagc agcttttgct tgaaagagat • 1260 ccacatggca atgttcaggt tgcgaaaatt gaaactgaga agatgcttat tgccatggtt 1320 Page 11 WO 03/093464 PCT/NZ03/00081 gaaactgaat tggagaagag aagatctgca gggaagtact cagcacattt cagaggccag 1B80 tctcacttct ttggatatga aggaagatgt ggtcttccta caaattttga ttctagctac 1440 tgctatgcat taggctatgg tgctggggct cttctccaat ttggaaagac aggacttatt 1500 tcgtcggttg gtaaccttgc tgctcctgtg gaagaatgga ctgtcggagg aactccattg 1560 acggcgttga tggatgtaga gaggagacat ggcaagttca agccagtgat caagaaggct 1620 atggtggaac ttgatgctgc gccattcaag aagtttgctt ccatgcggga tgaatgggcc 1680 atca'agaaca gatacatcag ccctggcccc atccagttca gcggccctgg aagcgatgcg 1740 tcgaaccaca ccttgatgct ggagcttggt gctcagacat gagatgctgt gttatagagt 1800 gcacctcttc tgtttttttt ctccctcctt acagttttga gagtggagac caaacctccc 1860 agtgggcagt ctccacattg tggaatgatt aataagagct attggagttt cctgagtgga 1920 tttcgtagca ataataactg attttagcta aaaaaaaaa 1959 <210> 19 <211> 1954 <212> DNA <213> Festuca arundinacea <400> 19 gtgcctccgc ccctccgccc gaaagcatat tcctccaaat ctcgcgatac ccccgtcacc 60 acctcgccgg cgcatcgcat cgcatggcgg ccgcggcggt ggccacctcc aacggggcct 120 cggcgaacgg gccgacgccc gggcgcctcg cgtccgtgta cagcgaggtg cagacgagcc 180 gcatcgcgca cgcgctgccc ctcccctccg tcctccgctc caacttcacg ctcgccgacg 240 ggcccgccag ctccgccacg gggaaccccg aggagatcgc caagctgttc cccaacctgt 300 acggccagcc gtccgcggcc gtggtgccct cggccgagcc ggtgcccacc aagccgctca 360 agatcggcgt cgtgctctcc- ggcggccagg cgccaggcgg gcacaatgtg a'tctgcggca 420 tcttcgatta cctgcaagag cgcgctaagg gcagcaccat gtacggattc aaaggaggcc 480 cagctgggat catgaagggc aagtacatcg agctcaatgc tgatttcgtc tacccctaca 540 ggaaccaggg tggatttgat atgatctgca gtggaaggga caagattgaa acaccagagc 600 agttcaagca agctgaagac acagtcaaca aacttgatct ggatggactt gttgttattg 660 gtggtgacga ctcaaacact aacgcatgcc tccttggtga atacttcagg ggaaggaatt 720 tgaagactcg tgttattggt tgccccaaga ccattgatgg agatctgaaa tgcaaggagg 780 tcccaataag ctttggattt gacactgctt gcaagatata ctccgaaatg attggcaatg 840 tgatgactga cgctcggtca acaggcaaat actatcactt tgtgaggctt atggggcgtg 900 ctgcttctca cattacatta gagtgtgctc tgcaaacaca ccctaacgtt tcactcattg 960 gcgaagaggt tgctgagaag aaggaaacac tcaagcaagt cacagactac attactgatg 1020 ttatctgcaa acgtgcagaa cttggttaca actatggagt tatccttatc ccggagggac 1080 ttattgattt catcccagag gttcaaaagc tcattgcaga gttgaatgaa attttggcac 1140 atgatgttgt tgacgaggca ggtgcttgga aaagcaagct tcaaccagaa tctaggcagc 1200 tgtttgactt cttgcccaac accattcagg agcagctttt gcttgaaaga gatccacatg 1260 gcaatgttca ggttgcgaaa attgaaactg agaagatgct tattgccatg gttgaaactg 1320 aattggagaa gagaagagct gcagggaagt actccgcaca tttcagaggc cagtctcact 1380 tctttggata tgaaggaaga tgtggtcttc ctaccaattt tgattctagc tactgctatg 1440 cattaggcta tggtgctggg gctcttctcc aatttggaaa gacaggactt atttcgtcgg 1500 ttggtaacct tgctgctcct gtggaagaat ggaccgtcgg aggaactcct ttgacggcat 1560 tgatggatgt tgagaggaga cacggcaagt tcaagccagt gatcaagaag g'ctatggtgg 1620 aacttgatgc cgcgccattc aagaagtttg cttccatgcg agatgaatgg gccatcaaga 1680 acagatacat cagccctggt cccatccagt tcagtggccc tggaagtgac gcgtcgaacc 1740 acaccttgat gttggagctt ggcgctcaga tatagagatg ctgcgttgta gagtgcacct 1800 ctttcatttc ttctctcctt acagttttga gagtggagac gaaaagctct cagagcgaca 1860 gtctccacat tgtggaatgt tcaataagag cttctggtat ggatgtcgca gcaataataa 1920 ctgattttag ctttttataa tctgaaaaaa aaaa 1954 <210> 20 <211> 3302 <212> DNA <213> Lolium perenne <400> 20 gctcacttcc cccctccatc cctccttccc tttggcttcg cctccactct tcccatcccc 60 cgatctcgcc gtcgagcggc ggcggcgccg gcgacgatgg tgggcaacga caactggatc 120 aacagctacc tcgacgccat cctcgacgcc ggcaagtcgt ccatcggcgg cgaccgcccc 180 tcgctgctcc tccgcgagcg cggccacttc tccccggccc gctacttcgt cgaggaggtc 240 atcaccggct acgacgagac cgacctctac aagacatggc tccgcgcgaa cgcgatgcgg 300 agtccccagg agaggaacac gcggctggag aacatgacat ggaggatctg gaacctcgcc 360 aggaagaaga aggagttaga gaaagaagaa gcctgtcgtt tgttgaaacg gcatccagaa 420 actgagaaaa cgcgaactga tgctacggcc gatatgtctg aagatctctt tgatggcgaa 480 aagggagaag atgctggtga tccatctgtt gcatatggtg acagcaccac agggagctca 540 cctaagacca gttcagttga caagctatac atagtattga tcagcttaca tggtcttgtc 600 Page 12 WO 03/093464 PCT/NZ03/00081 cgtggtgaga atatggagct aggccgagat tcagatactg gtggccaggt caaatatgtg 660 gttgagtttg ctaaagcatt gagttcatct cctggcgttt accgggtcga tttgctcaca 720 agacaaattg tagcaccaaa ttttgatcgt agttatggtg aacctgaaga aatgctggtt 780 tcgacaacct ttaaaaattc caagcatgaa aggggagtga acagtggtgg atacatcatt 840 cggataccat ttggtccaaa agacaagtac ttagctaaag aacatatgtg gcctttcatt 900 caagattttg ttgatggtgc actcagccat attttgcgga tgtcaaaaac cattggtgaa 960 gaaataggct gtgggcatcc agtatggcct gctgtgattc atgggcatta tgccagtgct 1020 ggagtagctg ctgccctgtt atcaggagca cttaacctgc ctatggcatt cacgggacat 1080 tttcttggga aagataaatt ggaagggctt ctcaaacaag ggcgacaatc aagggaacag 1140 ataaatatga catacaaaat aatgcgccga attgaggcgg aggaattatc tcttgacgca 1200 tctgaaattg ttattgctag tactaggcaa gagattgaag agcagtggaa cttgtatgat 1260 ggttttgagg tcatacttgc aaggaagctt cgagcaagag tcaagcgtgg tgctaactgc 1320 tafggccgtt atatgcctcg tatggttata attcctcctg gtgttgagtt tggccatgtc 1380 gttcatgatt ttgatatgga cggtgaagaa gaaaaccatg gcccagcatc tgaagatcca 1440 cctatctggt cgcagataat gcgcttcttt acgaatccta ggaagcctat gattctggct 1500 gttgcccgtc catatccgga aaagaatatc acatcacttg taaaagcatt fggtgaatgt 1560 cgcccactaa gagagcttgc gaatcttaca ctaatcatgg gtaaccgtga ggctatttca 1620 aagatgcaca acacaagtgc ttctgtcttg acatcagtgc tcacactaat tgatgaatac 1680 gatttgtatg gtcaagtggc ataccccaag caccataagc actctgaagt tcctgacatt 1740 tatcgtttgg ccacaagaac aaagggcgct tttgtaaatg tggcttattt tgaacaattt 1800 ggtgttacct tgatagaggc tgctatgaat ggtttgcctg ttattgctac aaaaaatgga 1860 gctcctgttg aaattaatca ggtgctcaac aatggtctcc ttgtcgatcc acatgatcag 1920 aatgccattg cagatgcact gtataaactt ctttctgaga agcaactctg gtcaagatgc 1980 agagaaaatg ggcttaaaaa tatccaccaa ttttcatggc ctgaacattg caagaatcac 2040 ttgtcaagga tattgactct tggtgcaaga tctcctgcta taggtagcaa agaggaaagg 2100 agcaatgcac ctatatcagg aaggaagcat ataattgtta tttctgtaga ctctgttaac 2160 aaggaagatc tagtacggat aatcagaaat gctattgagg ctgcacatac acagaacacg 2220. ccggcttcaa crtggtttcgt gctgtcaact tcactaacat tatcagagat ttgctcactg 2280 ctagtatctg taggcatgda tcctgctggc tttgatgcat tcatctgcaa tagtgggagt 2340 agcatttatt atccttcata ttctggtaat acgccaagca gttcaaaggt tacgcatgta 2400 atagatcaga atcaccaatc acatattgag tatcgttggg gaggagaagg tctaagaaag 2460 tatctagtga aatgggctac ttcagtggta gaaagaaagg gaagaattga aaggcaaatg 2520 atatttgaag attctgaaca ttcttctacc tattgtcttg catttaaagt ggtcaatcca 2580 aatcatctac ctcctctaaa ggagttgagg aagttgatga gaatccagtc actccgttgt 2640 aatgcgcttt acaaccacag tgctaccaga ctgtctgtaa ctcctattca tgcgtcccgc 2700 tctcaggcaa taaggtactt gtttatacgc tggggaatag agttgccgaa tattgtagtc 2760 cttgttggtg aaagtggtga ctcagattac gaagaactgc tagggggtct ccacaggacc 2820 ataatcctga agggtgactt caatattgcc gcaaacagaa tccacacggt caggagatac 2880 cccctacagg atgtcgtggc actggacagc tcaaatatca ttgaagtcga gggttgcact 2940 aca'gatgtca ttaagtctgc tctgcggcag attggggtac cgacacaata gcgttttgtg 3000 tttgcatgcg acacagagaa aagaaggggg aagaacaagc caaaccaagt actgtaccac 3060 aattcccata gttgatggga atgccgattt tgtttgtagg ttgtagagtg tgggtgtctt 3120 gagagagctg tgaataactt gcaacatcag tttgtactat tcacaaattt tgaagtgaaa 3180 cgatatgggt acgttatacg ttaaagacag gatatggatg cacttatcca taatgagaaa 3240 acatacttga agaagcctgg aaaggcagat aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3300 aa 3302 <210> 21 <213> 3171 ,<212> DNA <213> Festuca arundinacea <220> <223> misc_feature <222> CD...C3171) <223> rt «= A,T,C or G <400> 21 gttggtttcc cacccccaac ccattcgccg cctcccgccc gccgcccgat tgccgccacc 60 gccggcgcgc gcggctccgg cggcgaaacc tcctcctagc atcgggggag catggtgggc 120 gggatgtgcg ggaacgacaa ctggatcaac agctacctgg acgccatcct cgacgcgggg 180 aagggcgccc cgggcggagg cgccgggccc ggcggcggac gcggaggcgg cgggggtgga 240 gcgggcgac.c gcccctcgct cctcctccgc gagcgcggcc acttctcccc cgcccggtat 300 ttcgtcgagg aggtcatcac cggctaegac gagaccgacc tctacaagac ctggtcacgc 360 gcgaacgcga tgcggagccc gcaggagagg aacacgcggc tggagaacat gacctggagg 420 atctggaacc tcgccaggaa gaagaaggag gtngaggctg aagaagccaa ccgtttgtta 480 aaacgtcgcc tagagacaga gaagccacgg actgatgccg ctgcagaaat gtctgaagat 540 ctctttgaag gacaaaaggg agaggatgct ggtgatgcat ctgttgccta cggtgacagc 600 Page 13 WO 03/093464 PCT/NZ03/00081 tcggcttcaa acacacctag gatcagttcc atcgacaagc cttcatggcc tggtccgtgg tgagaacatg gaacttggcc caggtcaaat atgttgtgga acttgctaaa gcattgagtt • gtrtgacctgt tgacaaggca aatattagca ccgaattatg tcagagacac tgttgccaac aaacttaaag aattttaaac ggtgcgtata tcaccagaat accatttgga ccaaaagaca ctctggcctt atgttcaaga atttgttgat ggtgcactca aaaaccatag gtgaagaaat cggctgtggg catccaatgt cattatgcca gtgcaggagt agctgctgct ctactatctg atatttacag gccattttct tgggagagat aagttagaag cagacaaggg aagaaataaa tatgacatac aaaataatgc ctgtctcttg atgcgtctga aatagtgatt gcaagtacta tggaacttgt atgatggttt tgaagtcatg cttgcaagga cgtggtgcaa actgctatgg tcgttacatg cctcgtatgg gaatttggcc atatgattca agattttgat atggatggtg gcatccgaag atccacctat ttggtctgag ataatgcggt ccattgattc tggctgttgc tcgtccttac ccagaaaaga gcttttggtg aatgccgacc attgagggag cttgctaacc cgtgaggcta tttccaaaat gagtaatatg agtgcagctg ctgattgatg aatatgatct gtatggtcaa gtggcatacc gaagttcttg atatttatcg tttagcggcg agaacaaagg tactttgaac aattcggtgt caccttgata gaggcggcca gcaacaaaaa atggagctcc tgttgaaatt caccaggtgc gatocccatg atcagaatgc aattgctgat gcactctata ctttggtcaa gatgtcgaga gaatgggctg aaaaatatac cattgcaaga attacttgtc aaggatatta actcttagcc agcaatgatg accaaattaa ggctcctatc aagggaagaa-gtagactctg ccagtaagaa agatctggcc tttatcatca cggacagaaa cttcgtcagg ttcaacgggt ttcgtgttgt gagatacatt ctctattaat atccgcaggg atggttccca tgcaatagtg ggagtgattt attttaccct tcacagactg cgcgtaacat ttgcattaga ccgtaattac cagtctcgtg gaaggtttaa gaaagtatct agtgaagtgg gcttcttcag atggaaaagc aagttatttt tgatgattca gaacactcct agagtggtca atccaaatta tttacctcct ttaaaggagc caatcactac gttgtcatgc tctttataac cacagtgcta atrtcatgcat cacggtctca ggctataagg tacttatctg ccaaatgtag tgattcttgt tggtgaaagc ggtgactcag ggtcttcaca agacggttgt gctgaatggc gaattcaaca acagtcaggc ggtaeccatt acaagatgtt atcgcgcttg gtccagggat gcagcactga ttgcatgagg tctactctag aaatgacact agtagacgtt tttttgtttt ttttgtatac cacatatagc aaatgaatac catcatttcc atgcttgatg <210> 22 <211> 2092 <212> DNA <21B> Festuca arundinacea tatacatagt gttgatcagc gggattcaga cactagtggg catgccctgg agtataccgg atcgtggata tggtgaacca atgaaagagg agagaacagt agtatctagc taaagaacag gtcatatagt gcgcatgtcg ggcctgctgc gattcatggc gagcacttaa tgttcacatg. ggcttctcaa gcaagggaaa gccgaattga ggcagaggaa ggcaagagat agaagagcaa aacttcgtgc aagagtcaag ttataattcc tccaggtgtt aggaagatag cccatcacca tctttacaaa tcctaggaaa atattacaac gcttgtgagg taactctgat tatgggtaac ttttgacatc agtgcttaca caaagcatca caaacactct gtgcttttgt aaatgtagct tgcatggttt acctgtaatt tgaacaatgg tcttcttgtt aacttctttc tgaaaaacaa accagttttc ttggcctgaa caagataccc tgcttttgcg agtatattat tgttattgcc gaaattctat tgaggctaca cgacttccct gacaatatca ctgattttga tgctttcata gtgattcacc aagcacttcc tcgagtatca ttggggcgga tagtggaaag gaggggcaga cgacatgttg cctagcatrtt tgcagaagtt gatgagagtc ctaggctatc tgtaattcca ttcgttgggg catagagttg actacgaaga gctgtttgga cccctgcaaa cagaatccac attgctccaa catcgtagga aaaagctcgg tataccgaca gatgaaaaga aagaacgata gaaaaaaaaa a <400> 22 cca.cccctct gccctcgtct cctcgcatgc ttgataggcg ggcaacggcg ctggtggagc ggcggcgtgc ctgggacttt gtggttcaac aggccgttta tcggctgaca cctcgctggc aatactgtgc agtgctgcaa tctggttcca gaagcttgcg ttggtgataa acaaaggcaa cctcactcca cctcctcttc gttgattcga aacgaggtga aggtggagct cgcccgtgcc agtatggatg cacatgccct catgtgttgg ttatgacagg ttggagctgc acgctgcaat aaggtccagc attcaatctt ccgataagtg caaatctgaa ctctgatctt atggtcaggt cgctccctcc ttcctcccgt tcaacgtact tcatcgttcg ctccgtgggg gatcagtctc ggccctccag gacttcattc tctgtacagt atgtgtgctc tctgggcgat tgtgtatgtg tcgtgctctg ctgttcttgg gcacaagtgg aggcgcgttt cgccaaggag tgaagttgaa ctccccccct cagccccgtt tttcccctct cacgacgtcc gctggtggcg ggcaggctcg ctctccctgc atgtggctct gataagtgca atatgcattg agcaaggaag cttggattct atjggctgatt atggcgctag tttccctttc ctggtggctg gtaccataca cctagtggcc page 14 ctcttcqact cctggcgcca ctagatcctt cggccatggt gcggcggcgg tcctcgccgg tcacccccta gcggcccaat cttccagatg ctgttgtgat agtgcagtct ggcttcttga tgtcaggcaa gaaatatcct ttcggacaag tgctgttcct aacgaattgc cgcttgcggt cgcactttcc ccirtcttctt ggccgaagaa gcgcggcggc ggcgggzggc catggtcgcc cgtccagact tgctggctta gggaagacgg tgttggcttc ctaccatggt cttctccaac gtatggaccc agggtactcc agcttgttgt gtgcatgtgt acccctccca gttccaaggc 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 i860 1920 1980 2040 2100 2160 2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820 2880 2940 3000 3060 3120 3171 .60 120 180 240 .300 360 420 • 480 540 600 660 720 780 840 900 960 1020 1080 WO 03/093464 PCT/NZ03/00081 atcaggaact tcctggttcc gaccccaagg ttcggactgc tgcaagcggc atggctgcca catgccatta cjgagtgcctc agcaaaggag caggtgatca ccggccttcg ctgcccaaga cgggcgcctg catgtgccaa •gcagaataag cgggcgaggg gtcggatttg tgccttccgg cgttcatcct gcaccccagc tact.caactc taggcccgag ccgccatcat ccgccagcaa tcgccattct gcggccaagg tcgcgctggg ccgcggcctc tctccaggcg cctgagcgcg tttttacata aatgtgagga ggatgtggtc gatcggagcg aatgccatcg ctacgacacg tgagatgtcg gatcatcctg ggtggtgtgg cagctggtgg ggacatcaaa gtacagcgtt gctgtgcacc ggcggggccg cgccttcgcg ctcgttccgg ggcgaaagct ggcttaaaaa accgtatgtt atccattacc cccttaatga gtgctccttg gactggatgg gcgttccagg gggttcagct gtgtccagca tctaccaagg at'cgtatgca ccctttgcgg ggcgtgctga tgggaccagc ctcatcggcg gccgtcagca cgatcgtgca taggtggctc tgtgtatgtg ggctgggtgg gggcaggttg taactggcct gtcgtgagat acggtgtcag cgttcctgat acttcctcgt aattccatga tggccctctt tgacggcgca atatctccat tgttcgggaa gcatcgtcgg ccggcggtca ggccgggcgg tcgcttcaag tgctagcgtg tctgtaaagg ttaaaaaaaa cacctggctg ttaccacggt ggctggcgcg cgagccgatg ctgcatcgct gtacgttcag cgcattcctc gttggcggca cgtcatccca gggcaacatc catattcctg ctgaccgcgt ttccagctcg actccgtaga-tgtaacagaa ctatgtggcc aa <210> 23 <211> 1600 <212> DNA <213> Festuca arundinacea <400> 23 gcatctgcgt atagcaagga tgcttggatt tgatggctga ggatggc'gct ggtttccctt ttctggtggc aggtaccata aacctagtgg cggtgctcct ccgactggat cggcgttcca tggggttcag gggtgtccag ggtctaccaa agatcgtatg ttccctttgc ccggcgtgct cgtgggacca cgctcatcgg gggccgtcag ctcgcgtgca aggtggctct gtgtatgtgt ctgggtggtc ccaggtgtca aaagactgga tgctgttgtg agagtgcagt ctggcttctt tttgtcaggc aggaaatatc ccttcggaca tgtgctgttc caaacgaatt cccgcttgcg tgtaactggc gggtcgtgag ggacggtgtc ctcgttcctg caacctcctc ggaattccat catggtcctc ggtgacggcg gaacatctcc gctgttcggg cggcatcgtc caccggcggt ggccgggcgg cgcttcaaga gctagtgtgt tctgaaggct tccttgtgtt tggtgcattt gtcgtcggct ctctaccatg gacttctcca aagtatggac ctagggtact agagcctgct ctgtgcttct gcacccctcc gtgttccaag ctcacctggc atttaccacg agggctggcg atcgagccga gtctgcatcg gagtacgtcc ttcgcattcc cagttggcgg atcgtcatcc aagggcaaca ggcatattcc cactgaccgc ttccagttcg ctccgtagag gtaacagaac atgtggccgt gtgacttgtg tcagcaacac tctcggctga gtcctcgctg acaatactgt ccagtgctgc cctctggttc gtgaagcttg gtttggtgat caacaaaggc gcttcaggaa tgtcctggtt gtgaccccaa cgttcggact tgtgcaagcg ccatggccgc agcatgccat tcggagtgcc caaacaaagg cacaggtgat tcccggcctt tgctgcccaa gccgggcgcc catgtgccaa cagaataaga gggcgaggga cggatttgga tagcaaacca aaaaaaaaaa cattggagct gcacgctgca gcaaggtcca aaattcaatc cacagataag cgcaaatttg aactctgatc aaatggtcag cttgccttcc cccgttcatc gggcacccca gctactcaac gctgggcccg caccgccatc caccgccagc tctcgccatt aggcggccaa catcgcgctg cgccgcggcc gatctccagg gacctgagta tttttacata atgtgaggaa gtgtggtcat tcggagcgcc aggttaaccg gctctgggtg attgtgtatg gctcgtgctc ttctgttctt tggcacaagt aaaggcgctt ttcgccaagg gttgaagttg ggaatgccat ctctacgaca gctgaggcct tcgatcatcc agggtggtgt atcagctggt aaggacatca ctgtacagcg gggctgtgca ggggcggggc tccgccttcg cactcgttcc cgggcgaaag ggcttaattt ccgtatgctt ccattaccgg cttaatgagg agtaaaggga <210> 24 <211> 2223 <212> DNA . <213> Festuca arundinacea <400> 24 aaaagaacac ctcgcatcac gctaccatct ccttgttggc ccatggtgcg gcggcggggc tcgccggcat ccccctacgt gcccaatagc ccagatgggg aaacccacac acacaccctc tcttcctcgc cgaagaattg cggcggcggc gggaggcctg ggtcgccggc ccagactctg tggcttagtg aagacggagg caccaccacc gtctcctcct atgcgttgat ataggcgaac aacagcgagg gtggagccgc ggcgtgcagt ggactttcac gttcaaccat ccgtttatta acctctcctc cttcttcctc tcgatcaacg gaggtgatca tggagctctc ccgtgccgat atggatgggc atgccctgac gtgttggtct tgacaggatg Page 15 actccacgct ccgtcagccc tacttttccc tcgttcgcac cgtgggggcc cagcctcggc cctccagctc ttcattcatg gtacagtgat tgtgctcata cccctcctcc cgttcctggc ctctctagat gacgtcccgg ggtggcggcg aggctcgtct tccctgctca tggctctgcg aagtgcactt tgcattgctg 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2092 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1600 60 120 180 240 300 360 420 480 540 600 WO 03/093464 PCT/NZ03/00081 ttgtgattgt gcagtctcta ttcttgactt caggcaagta atatcctagg ggacaagagc tgttcctgtg gaattgcacc ttgcggtgtt ctggcctcac gtgagattta gtgtcagggc tcctgatcga tcctcgtctg tccatgagta tcctcttcgc cggcgcagtt tctccatcgt tcgggaaggg tcgtcggcat gcggtcactg ggcggttcca caagactccg tgtgtgtaac aggctatgtg gtgttgtgac cattttcagc aaa tggcttctcg gctgacattg ccatggtcct cgctggcacg ctccaacaat actgtgcaag tggacccagt gctgcaaatt gtactcctct ggttccacag ctgctgtgaa. gcttgcgcaa cttctgtttg gtgataactc cctcccaaca aaggcaaatg ccaaggcttc aggaacttgc ctggctgtcc tggttcccgt ccacggtgac cccaagggca tggcgcgttc ggactgctac gccgatgtgc aagcggctgg catcgccatg gccgccaccg cgtccagcat gccatcaccg attcctcgga gtgcctctcg ggcggcaaac aaaggaggcg catcccacag gtgatcatcg caacatcccg gccttcgccg attcctgctg cccaagatct accgcgccgg gcgccgacct gttcgcatgt gccaattttt tagagcagaa taagaatgtg agaacgggcg agggagtgtg gccgtcggat ttggatcgga ttgtgtagca aaccaaggtt aacacaaaaa aaaaaaaaaa gagctgctct ctgcaattgt gtccagctcg caatcttctg ataagtggca atttgaaagg tgatcttcgc gtcaggttga cttccggaat tcatcctcta ccccagctga tcaactcgat gcccgagggt ccatcatcag ccagcaagga ccattctgta gccaagggct cgctgggggc cggcctccgc ccaggcactc gagtacgggc acataggctt aggaaccgta gtcatccatt gcgcccttaa aaccgagtaa ■ aaaaaaaaaa gggcgatagc gtatgtgctt tgctctgatg ttcttggatg caagtggttt cgcttttcrtg caaggaggta agttgaacct gccatcggtg cgacaccgac ggcctcggcg catcctgggg ggtgtgggtg ctggtggtct catcaagatc cagcgttccc gtgcaccggc ggggccgtgg cttcgcgctc gttccgggcc gaaagctcgc aatttaggtg tgcttgtgta accggctggg tgaggccagg agggaaaaga aaaaaaaaaa aaggaagagt ggattctggc gctgarttgt gcgctaggaa cccttccttc gtggctgtgc ccatacaaac agtggcccgc ctccttgtaa tggatgggtc ttccaggacg ttcagctcgt tccagcaacc accaaggaat gtatgcatgg tttgcggtga gtgctgaaca gaccagctgt atcggcggca gtcagcaccg gtgcaggccg gctctcgctt tgtgtgctag tggtctctga tgtcatcctt ctggatggtg aaaaaaaaaa <210> 25 <211> 2042 <212> DNA <213> Lolium perenne <400> 25 gatttccaac caagattctt agtcgggagc ggtcgaaaag ccaccaccac gcgccgcctc cgccctacgt gcccgctctc ccgccgactc ccttctccgt tccggcccgg tggatgtcgg agaatgaccc ggaacatcct cciatcaccga tcatcatcct tcgggagcga agctctttgg ccctcacctg aaatctaccg gaatgggttc cggagaagct tggctctctg gacctagcgg tgggagcacc agaatcttgg cacagatcat cgccatcgtt gtctcccccg ttatttcagg tgctctatca agaaatacag gcgtctccgt tccttccgtg tgctcgctgc tcacaatcca ttcaatccga ctccgccgcc ggtcgcctgc gcaggagctg cggcctgctg cccgctcggc gctcaccgtc gtcgaccagg caacaacgcc gaggaggact cgggtatgcc gtcatgtggc ggcaattacg tgaagcagcg gtcattcaag gatcgggtgg agggagcccg ctttggcctc gtgcaggaag ctttgtggcg agcacctccg. cttgtcgatc gcttggccag cgtgtcactg ttgggtggcg agcccgtatt ttgtctgtat tccagtggat ctctggaatc gtcaaacatg gcggcaccgc tctccccctt gcagccacac cacaagatgc ctccccccac ggggtgcagt ggcatcccgc gtgcagccgc cgccgccggc ggcttctcgg tacggcgcga acccaggggc Cggatcgcca accggagcgt gtcagctgtg acatacgtca ccacgtccga tacttcacga ttcccgttca gagatcgtcg atgctcaatt tggggggctg atgctcgtta accggcatcg acgtacagta ggtctagcaa ggcagtgggc gctgccgcgt gcgccaaaga atcgtggctc taggcatggg tggtcttctt gtcggttgta cgtggcccga cttcttcctc caccggcggc cgcccccgcg cccgcaaggt tcgggtgggc acgccttcgc tcatcggcca •ccttcatcgc ccgatctggg ttattgtgta cctgcagggc acgcctattt acagcggctg ccaacctcaa ccgtggtaac gcagccacga tgcctgtctg tcctcttcga ccgacaccca cagtccttct ggctcgtatg taacgtacgt ttgttgcttc taccatacgc tgggtattct cgtgggactc ccttcattgg agaggagcca taagttaagt tatctgtctg ttctttcctc tcttgttgta Page 16 cgggattgga ctcactgctc gtaggcgtag gcggccgacc cccgctgcgc gctgcagctc gtcgctcgtc cctctccgac cgcgggcgcc gcggctgttc tatgatcggc cttcctcgct ctcgctcttc gtacaagata gtctgcgttc ggtgcaagac agaggaggct gatggtcctg taccgactgg gaagtaccat egggatcacg gggtgtttcc ggcgcagaat cctcacagtt gatggctacg caatttatct gctatttggc cgggctggtg gcgatgatga tgcaagttgc tatatcagtt catgagctgt tgttggattt gccaccggaa ccgccggcac gcggagcggg accggcggca tccctcctgc tcgctgctca tggctctgcg cgcatcgcgc gcctccatcg ggggacaacg ttctggctgc gacctcaccg atggccctgg tttcccttca ctgctagaca aacccgacat tt'cctcttcg atcgtcacct atgggccggg gacggtgtga tcggtcgtga aatattatca ttggactatg ttcacgattc agccgtgttg atcgtcatac ggagggaacg gccatcctgg tcagagtaca aaccattctt cgatggggaa tgtttrtttc ttatggtttt 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2223 60-120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 WO 03/093464 PCT/NZ03/00081 gtcggagatg gtgggtgaat gaatgaataa aaagtcggca gggttttgct tg'aaaaaaaa aa <210> 26 «213> 1930 <212> DMA <213> Festuca arundinacea 2040 2042 <400> 26 gctcctagta ggcggcggag caacgccggc cctccttcgg cctcctcacg gctctgcggc catcgcgccc gtccatcgcc ggacaacatc ctggctgctg cctcaccgag. ggccctgggg ccccttcacc gctagacatc cecgacattc cctcttcgag cgtcacttcc gggccgggaa tggtgtgaga ggtc'gtgatg tartatcatg ggactatgga cacgattctg ccgtgttgag cgtcatacca agggaacgcg catcctgggt agagtacatt ccattctttg atggggaaag tttttttcgc atggttttgt aaaaaaaaaa cagtcgggag gcgtagggga ggcaccacct gcggcctccg ccctacgtgc ccgctctccg gccgactccc ttctctgttc cggccgggat gatgtaggga aatgacccga aacatcctcg atcaccgagt atcatcctgg gggagcgatg ctcttcgggt ctcacctgga atctaccgag atgggttcct gagaagctgt gctctctgct cctagcggag ggagcaccct aatcttgggc cagatcatcg ccatcgtttt ctcccccgag gtttcaggtt gtctatcatc aaatacagct gtctccgtgt ccgagatggt ttcagaattc agtgggccat ccgcccctct tcgcctgcgg aagaactcgg gcctcctggt cgctcggccg tcacggtcgg ccaccaggtt acaacgccac ggaggactcg ggtacgccac .cctgtggcgt •caattacgac aagcggcacc cattcaagta tcgggtggtt ggagcccgga ttggcctcat gcaggaagtg ttgtggcgat cacctccgac tgtcgatcac ttggccaggg tgtcactggg gggtggcggc cccgcattgc gtctgtatat cagttgatta ctggaatctg caaacatggt gggtgaatga tgcagacgca ccgagagaag acccccaccc ggtccagttc catcccgcac ccagcccctc ccgccggccc cttctcggcg cggcgcgatt ccaggggccc gatcgccaac tggagcgtac cagctgtgcc atacgtcacc gcgtccgagc cttcacgctg cccgttcatc gatcgtcgcc gctcaactca gggggctggg gctcattata cggcatcgtc gtacagtata tctagcaatg cagtgggcca cgccgcgtcc gccaaagaag cctggctctg ggcatgggta gtcttgtttt cggttgtatc atgaataaaa ccaccgcgaa atgccgcccc cgcaaggtcc gggtgggcgc gccttcgc'ct atcggccacc ttcatcgccg gatttgggga attgtttaca tgcagggcct gcctatttct agcggctggt aacctcaagt gtggtaacgg agccacgaag cctgtctgga ctcttcgata gacacccaga gtccttctcg ctcgtatggg acgtacgtgg gttgcttccc ccgtacgcga ggcattctca tgggactcgc ttcattggcg agaagccagc agttaagttg tctgtctgta ccttcctcca ttgttgtatg agtcggcagg ccaaggaggc cgcggcggcc cgctccgctc tgcagctctc ccctcgtctg tgtccgatcg cgggggcggc ggctgttcgg tgatcgggtt tcctcgcaga cgctcttcat acaagatatt ctgcgttcct tgcaagacaa aggaggcttt tggtcctgat ctgactggat agtaccatga ggatcacatc gtgtttccaa cgaagaattt tcgcagtttt tggctacgag atttatctat tttttggcgg ggctggtggc gatgatgatc caagttgcaa tatcggttcg tgagctgttg ttggattttt gttttgcttc <210> 27 <211> 1911 <212> DNA <213> Lolium perenne <400> 27 ggcccagctc cagcagccta atcacgatgg tgctggagaa tggaccggag tcgtcatcct taagagactt gtgccgcttt gtattgggag tgtttgggct taaatggttt aagctctagc ctcttggagg cgctatttgg ctgttctgat ataggaatca aacaaagtaa •ccataattgt tgtgggctga ccgcaactac gtaatctccc gcggcggcga gaagcccggc gaaggcgacg ctgcaccgct gcacatcgcg tatgtttggt gaagccagtt tagtgttacc acttggacca actatcactt ctaccttgca aaggttcccg aggctgcata aagtgtcgaa tagtccggat ttattgtgtc aagtgacagg caacctccca cattaccccg caggaggagg gacgtgccgt gacccaggca ataccaatat gaaagaacag agatgtttga gtgatatttg tactggatgg atgaaggcat gtcagcacag ctgcctgcag tacttcttac tggatgccgg tctttggagg accaagaaga ttctccttcc acatatggtg tataaatccc cacgatcaat cgacggcggt actacgtgga tcccctacgg cgtcgctatt aagatattgg cttcaactat gtgttttctc caatagctac atgctattga catggggaat aaaaatatcc catgcttatg agacgttgca cccatctgat gcttattcaa acgacatggc gactcagttt Page 17 tggtacacag cctcgatatg ggcggcgtcg ggggtgcccg cagcttcatc ccccttcttg gttctatgct ttggggcata tgtggtaata aaggtttctc agtttgccgg aggtctcatc aaatatcttt cacatcagtg caagcataaa tgatccaaaa gaatrtggcca ttacacagag gtcatctgaa agttcttcag gtggaccaag tcagttccgt gggtgcgcgg tacatctggg tatttcatga gggtttgtag gcagcagatc tttaatgctt- cttggcgctt cctgaacacg attggtcctg tcgcctgact tttgctgccg gtaaatgaga gagaaggttg ttaatgtcat gtgttctctc gatgtaggcc 60 120 180 240 300 360 420 480 540 600 660 720 • 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 I860 1920 1930 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 WO 03/093464 PCT/NZ03/00081 aaacacttgc tcaacagggt ttctctttgc atattgcatc ttcaaaataa gaatgtcctt agaaacgaca tcattgagct ctgitagcaa gcgatgactc attaagaggt agaggagatg gcggaattgg aattacaggc tcttggacct ctacccctat agtcataaaa tgccgtgcct tttcaaggca acatgctttc ccttggactt ctagctgttc atggatcttg ggccaggtac caacatttgt actcagcata tccagtcttc atcaaatcat atgacgtacc aataatcttg caggaccaaa gttgctcctg ttctttccag ctcctcacat agctattgtt catccgcgag aagttgtgtt aagtagtgat attgctatat ttgtgtatca ctcaaatcgc tgtcagaacc gtgttaccat gaggtgcagc caggcgctgg gtgatcagat tcaaattctt ctagatattt gagaagggct gttgtgtgta gtagtaagag ctctcgctat actcttcttg agctggcata tggattatca cattacaggc aaacgggtta cattgtgttt ggtgttcttt cctggccgtg tttggataat taaggcgccc agatgtagga actgcggctc caaaaaaaaa tacccgcgca tgcataccta attgttctga actttcatcc gccatgactg tcatgggcgc ctgctgaaca ccagataaat tattcagatg ttataacagg gcactccagt ggaataattg a <21Q> 28 <211> 2039 <212> DNA <213> Lolium perenne <400> 28 gctccctctc ttgattcatc tccgccgatt cgctggaggg tcaaggtcgg gcgccagagg cggacaccct cggcggtcat ctacgcctgc gcttcaacag atcgtcacat aggtattggc atgcggtcag acattttgat aacatgttga catccgaata agccaaaggg tagatgatcc aagttctttt tcctcccgag aggacattgg caaagtttga caacaaagtc gcgaatgcac tgcttaagaa ggctgctgtc gcatcatcga tccaggaggc tgaagaacgc ccgcatcttt gaggaagaag ctcatgcagc taataataaa tcgatcctgt gccacatcac cctgctccca cgttccagtt caaagcgtgc g'gacagcagc aggaggcgcc tgttgtccga actgggcggc tgttcctatt tggcataaac tcaccgtacg cgcaacgcaa aaaatttatc cttgtcgggg tgacaatgct tggactagtg cgcggacttg agccaaaaat gaaccttcta agctctacat aacaatcaga gttttatgac cgataagtgc cattgagcac cgcgatgatg cgagggcaag catgaacgct tgatcggcca aaccgtgaag ttcgagagtt ataggatccc aagcatcagt gctgcgtgcg aaataaaact ccccgcccag tcccatccca gcagggccga gtgtgcccgg agcctcaggc gccaacggcg tcgtccttcc ggcaccggga ggaggatgtt aagatattcg tacctcggcg atgcctgggg tgggtacttg gaccagcttt gacattactc aagttcgaca gaagcaatga ccctacattg aagtcaagat gaccacaatg tcgttcttcg ccaaagactc aggatcaaag tctatcatcg atgggtgcgg gtccccatcg aggatcggaa gaggaagggt gacggcaccg gttggtagcc tggcgggacg agcaaagcaa tgcgcgtcga tgaaaaatat cccactccct ttccgttgca tgtcatcgat tgaggagcgc acgagatggc cgcagtgcgt ggaggaacta ctcaactctt acaggcttat tgatgactca gggggatcaa aggctgctgg aggactatta atcgcatgga tatcatgtgc gttcaggtcg aagtggatac cttccatggg acacagaact tacaggcata atgcaaacat ccttcttcac aggcgatcat gcgtccgttc atctgtacga gtgttgggga gggacgtggt actacatcag tggtgtagaa cagagctgcc gtagaagttg gtactcctag gttgaagtgg gggatttttc ccatcaattc ttccaccggt gcagttcagc caacaacggg gctgaggagg gctcacctcc cgccgatccg ccctctcacc cgatattccc gttcaactcg tttcactgat atggttccgg taagcataaa ttacatggag ccctgttgga cgtgatccag cagctttctc agtttatgtc acatgacttt tgtcttcact ggcactctgc ttcgcctcga ttcacacggc acgcctaaac gaccgaggac gaactccaag catcgcgaac gtccgggatc cgccgcctgc gacctgaagt ggagctggga tagtagtcgt cagcagactc cgttgcctca ctccccacat ccttccccga agcgtgctcc tgcgagaggc aagtgcaacg gacgccagcc aacgaggttg agcacaaggg atgagcaact gcatctctta ggatctgttg ggaaccgcag tctatcgagc cttgtgcaga gaaagccggg ttttctgaga aattttgcca ttcaaaagag gggtctgaaa gactactggg gagcagcctc tacttgccac tgcttcctgc tccggatctg gagatctcgg ctcagcaact agcgagggcg gtggtgatac gccgcggcaa tcattcagac caggagacgg tcttcccctg ttctggggga aaaaaaaaa <210> 29 <211> 2063 <212> DNA <213> Festuca arundinacea <400> 29 gccgtggtgg tgtgcaagag tcgctgaggc cagttcagca aacaacgggt ctgaggagga ctcacctccg cgtttcgtcg agagagagag cagccccaac gcgtgctccc gcgagaggct agtgcaacgg acgccagccc ccggccggat agcagcggcg agagttcatc gctggagggc caaggtcggg cgccagaggg ggacaccctt aaaaatactt tttgtcgccg actattgcag aaagcgtgcg gacagcagca ggaggcgccg gtcgtccggt Page 18 gtgcttcttc gtgggctggt cagggccgat tgtgcccggt gcctcaggca ccgacggcgc cgtccttccg tatctccgtc tcggcgcgtg gtcatcgatg gaggagcgcc egagatggcg gcagtgcgtg gatgaactac 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1911 60 120 180 240 300 . 360 420 480 540 600 660 720 750 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1920 1980 2039 60 120 180 240 300 360 420 WO 03/093464 PCT/NZ03/00081 gccgatccga acgaggttgc ggcggtcata ctgggcggcg gcaccgggac tcagctcttc 480 cctctcacca gcacaagggc tacgcctgct gttcctattg gaggatgtta caggcttatc 540 gatattccca tgagcaactg cttcaacagt ggcataaaca agatattcgt gatgactcag 600 ttcaactcgg catctcttaa tcgtcacatt caccgcacgt acctcggcgg ggggatcaat 660 ttcactgatg gatctgttga ggtattggcc gcaacgcaaa tgcctgggga ggctgctgga 720 tggttccggg gaaccgcaga tgcagtcaga aaatttatct gggtacttga ggactattat 780 aagcataaat ctatcgagca cattttgatc ttgtcggggg accagcttta tcgcatggat 840 tacatggagc ttgtgcagaa acatgttgat gacaatgctg acattactct atcatgtgcc- 900 cctgttggag aaagccgggc atccgaatat ggactagtga agttcgatag ttcaggtcgc 960 gtgatccagt tttctgagaa gccaaagggc gcggacttgg aagcaatgaa agtggatacc 1020 agctttctca attttgccat agatgatcca gccaaaaatc cctacattgc ttccatggga 1080 gtttatgtct tcaaaagaga agttcttttg aaccttctaa agtcaagata cacagaacta 1140 catgactttg ggtctgaaat cctcccgaga gctctacatg accacaatgt acaggcatat 1200 gtcttcactg actactggga ggacattgga acaatcagat cgttcttcga tgcaaacatg 1260 gcactctgcg agcagcctcc aaagtttgag trtttatgacc caaagactcc cttcttcact 1320 tcgcctcgat acttgccacc aacaaagtcc gacaagtgca ggatcaaaga agcgatcatt 1380 tcacacggct gcttcctgcg cgaatgcacc attgagcact ctatcatcgg cgtccgttca 1440 cgcctaaact ccggatctgt gcttaagaac gcgatgatga tgggcgcgga tctgtacgag 1500 accgaggacg agatctcggg gctgctgtcc gagggcaagg'tccccatcgg tgtcggggag 1560 aactccaagc tgagcaactg catcatcgac atgaacgcta ggatcggaag ggacgtggtc 1620 atcgcgaaca gtgagggcgt ccaggaggct gatcggccag aggaagggta ctacatcagg 1680 tccgggatcg tggtgatact gaagaacgca accgtgaagg acggcaccgt ggtgtagaac 1740 gccgcctgcg ccgcggcagc tgcatctttt tcgagagttg gcggtagccc agagctgccg 1800 acctgaagtt cattcagacg aggaagaaga tagggtccct ggcgggaccg tagaagttgg 1860 gagctgggag cctgggacga gagacggctc atgcagcaag catcagtagc aaagcaagta 1920 ctcctagtaa tagtcgttct tcccctgtaa taataagctg cgtgcgtgcg tcgagttgaa 1980 gtggcagcag actcttctgg gggatcgatc ctgtaaataa aacttgaaaa atatgggatt 2040 tttccgttgc ctcaaaaaaa aaa 2063 <210> 30 <211> 1815 <212> DNA <213> Lolium perenne <400> 30 gcggacgcgc catgaccgga gctccgccat ccaccgtaat ggcgatgggt gcggccacct 60 ccccttgcaa gatcttgagc gccacgcaac gtgcctccac cgcggcggct tcggcatcca 120 cctcccgcga gtccgtctcc ctccgcgcac cacggggacg gcgccagcgc ccgcgcccgc 180 gcgggttggc cttgtccctg gctccagcgc gacggccgtt tgtcttctcc ccgcgcgccg 240 tgtcagactc caagagctcc cagacctgcc tcgaccctg'a cgcaagcacg agtgttctcg -- 300 gaatcattct gggaggtggt gcagggacta gattgtatcc tctgacaaag aagcgtgcga 360 agcctgctgt gccattgggt gccaactaca ggcttattga tattcctgtc agcaattgtt 420 tgaacagcaa tatatcaaag atctatgtgc tgacacagtt caactctgct tctcttaatc 480 gtcatctctc acgagcttat gggagcaaca ttggaggata caagaatgaa ggatttgttg 540 aagtcctcgc ggcacagcag agcccagaca atcctaactg gtttcagggt actgcagatg 600 ctgtaaggca gtatttatgg ctattcgagg aacataatgt tatggaatat ctaattcttg 660 ccggagatca cttgtaccga atggactatg aaaagtttat tcaggcgcac agagaaacag 720 atgctgatat- tactgttgcc gccttgccca tggatgagga acgtgcaact gcatttggcc 780 ttatgaaaat cgatgaagaa gggaggatag ttgaatttgc agagaaacca aaaggagagc 840 agttgaaagc aatgatggtt gatacaacca tacttggtct tgatgacgtg agggcaaagg 900 aaatgcctta tatcgctagc atgggtatct acgttattag caaacatgta atgctccagc 960 ttctccgtga ccaatttcct ggagctaatg actttggaag tgaggttatt cctggtgcga 1020 ctagcactgg aatgagggta caagcatact tatatgatgg ttactgggaa gatattggta 1080 caattgaggc attctataac gcaaatttgg gaattaccaa aaagccaata ccagatttca 1140 gtttctatga tcgttctgct ccaatttaca cacaacctcg ac'acttgcct ccttcaaagg 1200 ttcttgatgc tgacgtgaca gacagtgtta ttggcgaagg atgtgttatt aaaaactgca 1260 agatacacca ttcagtagtt ggactgcggt cctgcatatc tgaaggtgca attatagagg 1320 acacattact aatgggcgca gactactatg agactgaagc tgacaagaaa ctccttgccg 1380 acaaaggtgg gattcccatt ggtattggaa agaattcaca catcagaaga g'caatcattg 1440 acaagaatgc tcgtattgga gacaacgtga agataatcaa tgttgacaat gttcaagaag 1500 cagcccggga gactgatgga tacttcatca aaagtggcat cgtaactgtg atcaaggatg 1560 ctttactccc aagtgggaca gtcatatgaa acagatgcaa aatatgtggc aagtcacggc 1620 gctfcttgta tcattctgca 'atcaaccaat gaggtcgcca gaagatcata agagcaataa 1680 aaaggagtgc cctgcaaggc acttcatctt ttttctccct taatgtatta gcaaccgtaa 1740 tgtacaagca acttgcatcc agatgttctg gagatcgaat atacctgctt gcatcttgtt 1800 gtttcaaaaa aaaaa 1815 <210> 31 Page 19 WO 03/093464 PCT/NZ03/00081 <211> 187B <212> DKA <213> Festuca arundinacea <400> 31 gcccatgacc cgagctccgc catccaccgt aatggcgatg caagatcttg agcgccacgc aacgtgcctc cgccgcggcg cgagtccgtc tgcctcctcc gcgcgccacg g'ggacggcgc cttgtccctg gctccagcgc gacggccgtt tgtcttctcc caagagctcc cagacctgcc tcgaccctga cgcaagcacg gggaggtggt gcagggacta gattgtatcc tctgacaaag gccattgggt gccaactaca ggcttattga tattcctgtc tatatcaaag atctatgtgc tgacacagtt caactctgct acgagcctat gggagcaaca ttggaggata caagaatgaa ggcacagcag agcccagaca atcctaactg gtttcagggt . gtatttatgg ctattcgagg aacataatgt tatggaatat cttgtaccga atggactatg aaaagtttat tcaggcgcac tactgttgcc gccttgccca tggatgagga acgtgcaact cgacgaagaa gggaggatag ttgaatttgc agagaaacca aatgatggtt gatacgacca tacttggcct tgatgacgtg tatcgctagc atgggtatct acgttattag caaacatgta ccaatttcct ggagctaatg actttggaag tgaggttatt aatgagggta caagcatact tatatgatgg ttactgggaa attctataac gcaaatttgg gaattaccaa aaagccaata ccgttctgct ccaatttaca cccaacctcg acacttgcct tgacgtgaca gacagtgtta ttggcgaagg atgtgttatt ttcagtagtt ggactgcggt cctgcatatc tgaaggcgca aatgggtgca gactactatg agactgaagc tgacaagaaa gattcccatt ggtattggaa agaattcaca catcagaaga tcgtattgga gacaacgtga agataatcaa tgttgacaat gacggatgga tacttcatca aaagtggcat cgtaactgtg gagtgggaca gtcatatgaa acagatgcaa aatatgtggc tcattctgca atcaaccaat gaggtcgcca gaagatcata cctggaaggc acttctccat cttttttctc ccttaatgta gcaacttgca tccagatgtt ctggagatcg aaaatacctg atatgaagtg tactagataa agccccgcat gttttttcac ttgaaaaaaa aaa <21Q> 32 <211> 1494 <212> DNA <213> Festuca arundinacea ggtgcggcca cctccccttg ccttcggcat ccacctcccg cagcgcccgc gcgggttggc ccgcgcgccg tgtcagactc agtgttctcg gaatcattct aagcgtgcga agcctgctgt agcaattgtt tgaacagcaa tctcttaatc gtcatctctc ggatttgttg aagtcctcgc actgcagatg ctgtaaggca ctaattcttg ccggagatca agagaaacag atgctgatat gcatttggcc ttatgaaaat aaaggagagc agttgaaa'gc agggcaaagg aaatgcctta atgctccagc ttctccgtga cctggtgcga ctagcactgg gatattggta caattgaggc ccagatttca gtttctatga ccttcaaagg ttcttgatgc aaaaactgca agatacacca attatagagg acacattact ctccttgccg acaaaggtgg gcaatcattg acaagaatgc gttcaagaag cagcccggga atcaaggatg ctttactccc aagtcacggc acttcttgta agagcaataa aaaggagtgc ttaggaaccg taatgtacaa cttgcatctt gttgtttcaa gatattacaa aactttgtag 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740 1800 1860 1873 <400> 32 gcaacaagga cgattgcagc taaggagaga gcggaggggc caggctgact aaggagaagt acggaggaga gcgcgccagg gcgatcaagg tctggtgtgg tcggtgaagc ctcgccaagg atcacggccg gcgctcttcg gagcgcccgc gccatcgacg gggctcatct gacgactgga gtggaggcca gagtacggca tccgccgagg ttcgggcccg gccaccgctt ctactaccgc gcaactgtca cggccgggga tecagatggc cggcgacggt acccggacta tcaagaggat tcctggagga acatagtcgt agtggggcca acatgccagg gcctcatgat acctggctga tgaccttccg gggacggcgc tgttccagct gccacctcag ccaagaacat actccgtctt aggtaaacct acatgtccag atggccacac gcctcaccgt gaccgatggt cgccgccgct ctcattcatc ctgttgagct cgcgacgatg gctggccatc ctacttcaag gtgcgacaag gaaccccaac cgtcgaggtc gccgcggtcc cgccgactac gtaccagcag aaacaaccgc cggcccgcac tgccgcggtg ggtgtcggtg ggaggtcggc cgagcgcgcc ttgggtggcg caacaaggag cgcatgcgtc caccaccggc cgagaccgtt tccatctccg gctatccaaa tgtcgtctcc accactgccg accgtggagg ggcacggcga atcaccaaga tctcagatca atgtgcgcgt ccgaagctcg aagatcaccc cagctcacca ggctgcttcg ggcgcgcgcg gagtcacacc ataatcggcg agccagacca ctcaccttcc ctggaggaag cacccgggcg cggatgcgtg ctcttcatca gagggaatgg gtcctCcaca tttatctgcc gtaatttgta page 20 tgcttccctc gtcgctggta aggtgaggaa cgcccgctaa gcgaccacct ggaagaggta acatggcgcc ggaaggcggc acctcgtctt agatgctcgg ccggcggcac tgctggtggt tcgactcgct ccgaccccga tcctgccgga acctcctcaa ccttcaagcc ggccggcgat ccaccaggca tggacgagat attggggcgt gcatgcccat acattgatga ttgtattcat aagcttagat cgagcggacg ggcgcagcgg ctgtgtctac cgccgatctc catgcacctg gtcgctggac ggcacagaag ctgcactacc cctgcgcccg ggtgctccgc ctgctcggag ggtcggccag cgtgtccgtc ctcggagggc ggacgtgccc gctcggcatc cctcgacatg cgtcctctcc gcgcaagcgc cctctttggc tgccgctgat atacctacta gcatacctgg 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 WO 03/093464 PCT/NZ03/00081 tttgtatttg ttggtaggat tcgttctgct attatgtcgc ttgtgttgcg taca 1494 <210> 33 <211> 1661 • «212> DNA <213> Festuca arundinacea <400> 33 gcaacaagca cgatcgcagc caaggagaga gcggaggggc caggctgact aaggagaagt acggaggaga gcgcgccagg gcgatcaagg tccggtgtgg tcggtgaagc ctcgccaagg atcacggccg gcgctcttcg gagcacccgc gccatcgacg gggctcatct gacgactgga gtggaggcca gagtacggca tccgccgagg ttcggccccg gccaccgctt ctactactac tgcatacctg gtacaccgtc atatgggttg tatgtggtgg gcaactgtca cggccgggga tccagatggc cggcgacggt acccggacta tcaagaggat tcctggagga acatagtcgt agtggggcca acatgccggg gcctcatgat acctggctga tgaccttccg gggacggcgc tgttccagct gccacctcag ccaagaacat actccgtctt aggtaaacct acatgtccag atggccacac gcctcaccgt gatcgatggt cgccgccgcc gtttgtattt gtatcctagt tgaggtgcat ggaaaaaaaa ttcattcatc ctggtgagct cacgacgatg gctagccatc ctacttcaag gtgcgacaag gaaccccaac cgtcgaggtc gccgcggtcc cgccgactac gtaccagcag aaacaaccgc cggcccgcac tgccgcggtg ggtgtcggcg ggaggtcggc cgagcgcgcc ctgggtggcc caacaaggag cgcatgcgtc caccaccggc cgagaccgtt tccatctccg gccgctgcta gttggtagga agtagtaatc ttacctgtgt aaaaaaaaaa tgtcgtctcc accactgtcg accgtggagg ggcacggcga atcaccaaga tctcagatca atgtgcgcgt ccgaagctcg aagatcaccc cagctcacca ggctgcttcg ggcgcgcgcg gagtcacacc atcatcggcg agccagacca ctcaccttcc ctggaggaag cacccgggcg cggatgcgcg ctcttcatta gagggaatgg gtcctccaca tttatctgcg tccaaagtac ttcgttctac aaacggagta acgagaagat aaaaaaaaaa tgcttccctc gtcgctggta aggtgaggaa cgcccgctaa gcgaccacct ggaagaggta acatggcgcc. ggaaggcggc acctcgtctt agatgctcgg ccggcggcac tgctggtggt tcgactcgct ccgaccccga tcctgccgga acctcctcaa ccttcaagcc ggccggcgat ccaccaggca tggacgagat actggggcgt gcatgcccat acatcgataa tgtaatttgt tattatgtcg aggtttatat tggctgttta a aaacttagat cgagcggacg ggcgcagcgg ctgtgtctac cgccgacctc catgcacctg gtcgctggac ggcgcagaag ctgcaccacc cctgcgcccg ggtgctccgc ctgctcggag ggtcggccag cgtgtccgtc ctcggagggc ggacgtgccc gctcggcatc cctcgacatg cgtcctgtcc gcgcaagcgc cctctttggc tgccgctggt aaacctacta atcgtattca cgtgtgtcgc acgtgtcata atttcaagct <210> 34 <211> 992 <212> DNA <213> Festuca arundinacea <4£K)> 34 gccgcgccga ccttcctcgt agcctgccgt agcgtgttgt aCggccatgt ccggtcactg cgcaggcgag cggcggtgca ccaagatcca tcgacgacct ggtacatctg agtacccgca tgtgcatgtc acgagatata acgcgaacgc tgcacttgca aataaatcta 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1661 cctggaagaa cgcagctccg cggaggaact cctgacatcg cctggacgag ggggtaccct cggcatcagc ggtccacacc aatcctgcag ctgccgcgcc ctgcagcctc gtacaaagtc gtcggcgaag cgatgatgtc gacgaggcac ataagcctat acctcctcct gagggcagct gtgaacctaa ctgaacgcga tcggtggcgt gagtcctggt gtgtcgaagg ctggtcaccg agcgtccccg cacatcgaac gaggtgttcc agcaccaccg aggaccgacc ctcgtcgcgg gtcgagtatg tccatgtctc cctcttatct aaaaaaaaaa tcgacgatgc aagcagagaa tgaggtcgtg ccgtctccgc ccgacgtcga tgcttctgga tgtgccccgt acgtcctctc gggcgtccgg tcgccgagga ccggcgtgct ggttcagtgg aagggttcca gcagggcctt catctatctc ctcgatatta aa cgtggctggt ccccgagaaa cgtgagagca ccgtcctctg cttcctcaga gaaggcggcg cgtcgtggtg cccgctatcc ctccatctcg ggaggcggtg cgcccgcttc ttcccccgag gtacaagtac gggaatcctt tacaactcag atatattttc tgcgactacg gacatggtgg gggacggtga ctgcaaggcg gccaaagcga tgcgcgttcg ggcaaggcgc ggcgacgaag ttggtccacg, gcgtcggggc ctctccgtca aagccgagag aagaccctcg ccataatgat gatcaagtga cttatcaaaa 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 992 <210> 35 <2U> 1279 <212> DNA <213> Festuca arundinacea <400> 35 gaaaagttag ctttccgaat aaaattatcc tagtgcgtgc agtgcgaacg acactttagc Page 21 60 WO 03/093464 PCT/NZ03/00081 tcgcgcgggc gaggaagacg gctgctggag gaactcccac gcaagaagag cgctccggtc aggaactctg gacatcgtcg ggacgaggag gtaccctgtg catcagcctg ccacaccagc cctgcagcac ccgcgccgag cagcctcagc caaagtcagg ggcgaagctc tgatgtcgtc gaggcactcc agcctatcct tcctcctaaa aggaacccac gcgtgcgtca aagggatacg ctcaaggatt ggcagcttcg aacctcaaag aacgtgatga gtggcgtccg tcctggtccg tcgaaggtgc gtcaccgtgt gtccccgacg atcgaacggg gtgttcctcg accaccgccg accgaccggt gtcgcggaag gagtatggca atgtctccat cttatctctc aaaaaaaaa cgacgggcga ccggagggaa ccgtgaagac tgcaagcgct acgacgccgt cagagaaccc ggtcgtgcgt tctccgcccg acgtcgactt ttctggagaa gccccgtcgt tcctctcccc cgtccggctc ccgaggagga gcgtgctcgc tcagtggttc ggttccagta gggccttggg ctatctctac gatattaata tacgatggcg cgggtacatc gaccgtcaga gggccccttg tgccggctgc cgagaaagac gagagcaggg tcctctgctg cctcagagcc ggcggcgtgc cgtggtgggc gctatccggc catctcgttg ggcggtggcg ccgcttcctc ccccgagaag caagtacaag aatccttcca aactcaggat tattttcctt gccgcaggtg gcgtcggcgc aacccagatg gaggtgttcc gactacgcct atggttgagc acggtgaagc caaggcgacg aaagcgaccg gcgttcgcgc aaggcgccgg gacgaagcca gtccacgtcg tcggggcggt tccgtcaagt ccgagagtgt accctcgacg taatgatacg caagtgatgc atcaaaaaat atgggagcag tcgtgaagat acatggagaa gcgccgacct tcctcgtcgc cagccgttgg gtgttgtcct gccatgtcct gtcactgggg aggcgagcgg cggtgcaggt agatccaaat acgacctctg acatctgctg acccgcagta gcatgtcgtc agatatacga cgaacgcgac acttgcaata aaatctaacc <210> 36 <2 U> 1206 <212> DNA <213> Lolium perenne <400> 36 ggtcgcggct tttcatgttt gagagatctt agcggggaca gctggaaggc agcagagcag gggcaagttc aggcgcggca cggcgacgag aataaaccac atctgggagg ggcagacaag gccaagagtg tgacctaggt cttctgatat gtgctttctt gtctctatgg gtcttgacga ccttttaatt ggtccctgga aaaaaa. ccaatggaca tgggtatgat gtccaggcag gtgaagcgcg gacgggcacg ccggaggctt gcggacgaga ccagtgtcgc gaacagctaa atcgacgacc tacatctgca tacccacaat tgcctctcgt gccatcttgg gctcctcctg cgtcaatggc ctctgaagat caaggccaca gctgttaaag acaaagtggg tggggtcact tcatctcagt gcgtccaagg tgatcctgac tcctggacga gggggtacgc acggcctcgg aggccagaac acctcctgga tctgccgtgc gtagccacga acaacgtgaa ctcagaagct acgacctcgt ttctgccgat aggaacaaca tggggatctg ggcgggtttt agacaaagta aagatctaga gaatcctgag tactgtattc aaccctgaac gtcgtcggat gggctcctgg ggtgtcgaag cctcgtcagc cagcgtcccc agccatgcac ccaggtgttc caccaccgtc atcccaacgt catcggagaa cgagtacggc cgtatgtatg cgacagtgtg atctcttgtt cctaccaaat ctcctgtatt tggaaagagt gtaaacaaca tatgtggtgg gtgatgaggt tccgcggtgt tcggacgtgc gtgcttatgg gtgctgccca gtcgtcctct ttgattaccg ctcgccgaga gtgcagctcg tttgatgggt gggttcgtgt aggaccacgg tgatcggaac ctttcttcgt gtttt'ttgcc gcttcccttc actacttgat aatattatca atccagttca gactgcgaca cgtgtgtgaa gccagaggcc cgtacctgcg aagaggcggc cctttaccct ccttgttgtc aatccgtgtc acgaggcctc cccgtctctt cccctgagaa acaagtatga ggattcttcc gcaacagt'gt tcttagacag ccgtagtgtg ttcccagttc tgatgactct aattttaaaa <210> 37 <211> 1463 <212> DNA <213> Lolium perenne <400> 37 aaaaagtgcc gttagcagcg gtcaccggag tacgccgtca gacttacaag ttcgacgact gggtcactga atgaggtcgt gcggtgtgcc gacgtgctgt cttatggaag ctgcccacct tcgagtcaac ggcagcgatc ggagcggcta agacgaccgt cgtttggccc cggtttcagg atcctgagag gtgtgaaagc agaggccgct acctgcgagc aggcggcggg ttaccctagg tttccaattc gatggcgtcc catcgcctca cagaaacccc cttggagatc ctgcgactat agatcttgtc ggggacagtg ggaaggcgac agagcagccg caagttcgcg cgcggcacca ctgagcagag gcagctggag gcgctcatca gatgacctgg ttccgtggag gtattcctcg caggcaggcg aagcgcgtga gggcacgtcc gaggcttggg gacgagaacg gtgtcgcagg Page 22 gtagtgactt gcaggaggaa agacgctcct agaaga'cctc agctggatgt tcgcggctcc tccaaggaac tcctgacgtc tggacgaggg ggtacgcggt gcctcggcct ccagaaccag gagtagttca gacggcctgc cgatcacggc ccacctcaag ggaaggcagc gatggacatg cctgaacgtg gtcggattcc ctcctggtcg gtcgaaggtg cgtcagcgtg cgtccccgtc 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1279 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1206 60 120 180 240 300 360 420 480 540 600 660 720 WO 03/093464 PCT/NZ03/00081 gtcctctcct attaccgaat gccgagaacg cagctcgccc gatgggtccc ttcgtgtaca accacgggga tcggaacgca tcttcgttct ttttgccccg tcccttcttc acttgattga attatcaaat tgttgtccgg ccgtgtcaat aggcctcatc gtctcttggc ctgagaagcc agtatgatga ttcttccctt acagtgtgtg tagacaggtc tagtgtggtc ccagttccct tgactctggt tttaaaaaaa cgacgaggaa aaaccacatc tgggaggtac agacaagtac aagagtgtgc cctaggtgcc ctgatatgct ctttcttcgt tctatggctc ttgacgacaa tttaattgct ctctggaaca aaa cagctaaacc gacgacctct atctgcagta ccacaataca ctctcgtctc atcttggacg cctcctgttc caatggcagg tgaagattgg ggccacaggc gttaaagaga aagtgggaag tcctggaagc gccgtgccca gccacgacac acgtgaaatc agaagctcat acctcgtcga tgccgatcgt aacaacacga ggatctgatc gggttttcct caaagtactc atctagatgg catgcacttg ggtgttcctc caccgtcgtg ccaacgtttt cggagaaggg gtacggcagg atgtatgtga cagtgtgctt tcttgttgtt accaaatgct ctgtattact aaagagtaaf 780 840 900 960 1020 1080 1140 1200 12 60 1320 1380 1440 1463 <210> 38 <213> 1606 <212> DNA <213> Loli um perenne <400> 38 gggcagccgc agctgccgct gcgccaagcc tccgcttcgg tccgcgccca cctacaacta agctctgcgc aggctgaggt tggggcagga gcgtgttcgg tcatgcagct acccgcaggg acggcttcat aggacctgct aggggatcag ggaccgacac acgtcctcac cggaatccga tgcacccgtc gctaccgcat cagcctcatg tgcacgagag gaaggatatg tggtgcatgc aggaggcata ggttgttatc atgcaatttg atccatctgg gccgccgggg gcaccacacc ggtcgccgag cgacgccaac ccaggacctc gctccacctc tgcgctgatg ggcaaacgtg gggcagcgcc tgccggggtg cgttgtggcc cagcgagagg cagcgtcatg cttcaaccac gacttctagc ccaggcccaa cctaccacac gacgccgctc ccccaagggt gggccccgat tgtggacgtc tgcaggcctc atttgactgg tggtctcacc gtcagcgtac tgcaagtgag tttctcttcc cctcgggggt atggccgctc gtggtcgtcg ttcagcgacc gtcttcgccc ttctccgcta gtgaagcagc tgtgccacca ggagagggcg ttcaacatcg aggatgaagc gaccagcgtc ctggggtaca accgacatca acggttgagt cgcgag'ctcg ctcaccttcc tcccttcctc accaccttac gcgttggagt aaggggagtg agttggggct tccttagtcg cttcagcggg accgtgtgac cttrtacatat gtggcagcag ggcccgtgct tctcccaaca ccgcgtccgc gcccgcccaa cctacggctc aggccctcga tcaaggagtc acgccctggc cacgggagtt gcgacttcgt gcctgcaccg ataatcaggc tgcggccgga aagctcttct gggccctagc atgacatcgt tcactgccgt gggtggccac ttgtcaatgt tcaggcccgc actacgagct tgaggatggt atggccttac ccgctccgtt agatgatgat gttacaaaaa cagcgggaag gggcaacctg gttcggcccg caaggtggcc ctccggcgcc ccgctggcgc cgccctccgc ggcgcccgcg gagggcggcc caaggacatg tccggcgctc ccgctacgac tgctgctgac cggcggaggc cctgaatctg tgagctgata gggccaggat catcaaggag tgaggattgt gtgggccatc ccgcttcctc tataccgttc cactctcatg cccagaaaaa aatggttcgg taatcacttt aaaaaa aagttgtcga ccgcaggtgg ctcttccgcc tcccagttcc gagcacgtcg gccctccgca gccgtccgcg ggagtggtgg gtggggaggc gtggtggagc cgctggctcg gccatgatgg ggggaaagga ggcgaggagg ttcacagctg cgacacaagg cgcctggtaa acgttccggc gaggtcgagg gcacgtgacc gccggcgggc ggggctggac accgccacgc ctcgacatgg cccattccta tgtcgaatgt <210> 39 c211> 1708 <212> DNA <213> LoTi urn perenne <400> 39 gaaagactgg gatcatcggg tggtttctct gggcctcggg accatggccg gaggtggtcg aacttcagcg ctcgtcttcg ctcttctccg atggtgaagc gtgtgtgcca gccggagagg gtgttcaaca gccaggatga agcacgagga acgtgcttgt tccgtggcag ggtggcccgt ctctctccca tcgccgcgtc accgcccgcc ccCcctacgg ctaaggccct agctcaagga ccaacgccct gcgcacggga tcggcgactt agcgcctgca cactgacatg gctgctctgc cagcagcgga gctgggcaac acagttcggc cgccaaggtg caactecggc ctcccgctgg cgacgccctc gtcggcgccc ggcgagggcg gttcaaggat cgttccggcg ccgccgctac gactgaagga tccttggctg aagaagttgt ctgccgcagg ccgctcttcc gcctcccagt gccgagcacg cgcgccctcc cgcgccgtcc gcgggagtgg gccgtgggga atggtggtgg ctccgctggc gacgccatga page 23 gtagaaaaat ccctggcagc cgaagctgcc tgggcgccaa gcctccgctt tcctccgcgc tcgcctacaa gcaagctctg gcgaggctga tggtggggca ggcgcgtgtt agctcatgca tcgacccgca tggacggctt tacacatatg cgcatccatc gctgccgccg gccgcaccac cggggtcgcc ccacgacgcc ctaccaggac cgcgctccac ggttgcgctg ggaggcaaac cgggggcagc gcttgccggg gggcgttgtg catcagcgag 60 120 180 240 300 360 420 480 540 600 660 72 0 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1606 60 120 180 240 300 360 420 480 540 600 660 720 780 840 WO 03/093464 PCT/NZ03/00081 agggaccagc gtcataatca ggctgctgct gacggggaaa ggaaggacct gctcagcgtc 900 atgctggggt acatgcggcc ggacggcgga ggcggcgagg aggaggggat cagcttcaac 960 cacaccgaca tcaaagctct tctcctgaat ctgttcacag ctgggaccga cacgacttct 1020 agcacggttg agtgggccct agctgagctg atacgacaca aggacgtcct cacccaggcc 1080 caacgcgagc tcgatgacat cgtgggccag gatcgcctgg taacggaatc cgacctacca 1140 cacctcacct tcctcactgc cgtcatcaag gagacgttcc ggctgcaccc gtcgacgccg 1200 ctctcccttc ctcgggtggc cactgaggat tgtgaggtcg agggctaccg catccccaag 1260 ggtaccacct tacttgtcaa tgtgtgggcc atcgcacgtg acccagcctc atggggcccc 1320 gatgcgttgg agttcaggcc cgcccgcttc ctcgccggcg ggctgcacga gagtgtggac 1380. gtcaagggga gtgactacga gcttataccg ttcggggctg gacgaaggat atgtgcaggc 1440 ctcagttggg gcttgaggat ggtcactctc atgaccgcca cgctggtgca tgcatttgac 1500 tggtccttag tcgatggcct- taccccagaa aaactcgaca tggaggaggc atatggtctc 1560 acccttcagc gggccgctcc gttaatggtt cggcccattc ctaggttgtt atcgtcagcg 1620 tacaccgtgt gacagatgat gattaatcac ttttgtcgaa tgtatgcaat ttgtgcaagt 1680 gagctttaca tatgttacaa aaaaaaaa 1708 <210> 40 <211>'1747 <212> DNA <213> Festuca arundinacea <400> 40 ggcgtagcga actggccggc atggacatcc cactctcact gctgctctcc actctggcca 60 tctctgcgac catatgctat gtcttcttcc gagccggcaa ggggcaccgrt gcgccgctgc 120 cgctgccgcc tggcccgagg ggctggccag tgctggggaa cctcccgcag ctgggcggca 180 agacacacca gaccctgcat gagatgacca aggtgtacgg gcccgtgctc cggctccggt 240 tcggcagctc cgtcgtggtg gtcgccgggt cagccgccgt ggccgagcag ttcctccgca 300 cccacgacgc caagttcagc agccggccgc ccaactccgg cggcgaacac atggcgtaca 360 actacaggga cgtggtttrtc gcgccctacg gcccccggtg gcgcgcgatg cgcaaggtgt 420 gcgccgtcaa catcttctcg gcccgcgcgc tcgacgatct ccgcggtttc agggagcggg 480 aggccgcgct catggtgcgg tccctcgcgg atgctgccaa agccggggtg gcggtggcgg 540 tcggcaaggc ggcgaacgtg tgcacgacca acggcctgtc tcgggcagcg gtggggctcc 600 gggtgttcgg aagcgatggc gccagagact tcaaggagat cgtgctggag gtgatggagg 660 tgggcggggt tcttaacgtc ggggactttg tgccggcgct ccggtggctc gacccgcagg 720 gtgtcgtcgc gaggttgaag aagctgcacc gccggttcga cgacatgatg aatgggataa 780 tcgccgagag gaggaccgga accaagacgg ccgtggtgga ggaaggtaag ggagacctgc 840 tgggcttgct gcttgcgatg gtgcaggaag acaagtcgct caccggcagc gaggaggaca 900 agatcaccga cactgacgtc aaggcgctta tactgaactt gtttgtggcg ggaacagaga 960 caacgtcgag tatagtggag tgggcagtag cggagctgat caggcaccct gacatcctga 1020 agcaggccca ggaggagcta gatgccgtcg tgggccgtga caggcttgtc tcggagtctg 1080 acctgccacg actcacgttt ttcaatgcca tcatcaagga gacgttccgg ctgcatccgt 1140 cgacgccgct ctcgcttccc cggatggcct ccgaggagtg cgaggtcgcc ggctaccaca 1200 tcccaagggg cactgagcta ctggtcaatg tgtggggcat cgcccgcgat ccggccctat 1260 ggcccgaccc gctggagtac cagcctgccc ggtrtcctccc aggagggtcg catgagaatg 1320 tcgacctcaa gggaggtgac tttgggctga tacCgtttgg ggcgggccgg aggatatgtg 1380 cgggcctaag ctggggcttg cggatggtta ccattacaac cgctaccctg gtgcactcgt 1440 tcgactggga gctgccggcg ggccagacgc cggataagtt gaacatggag gaggccttta 1500 gtctgctgct gcagcgagcc gtgccattga tggtccaccc agtgcccagg ttgcttccat 1560 ccgcatacga aatttcgtag aaaatcgctg cgccagtgat tgtcctgatt gatgatgtat 1620 ggagggcaaa gctccaatta taccatgcac tactatcgat gggtrtatctc accgtttgaa 1680 ctaaagtagt ttacaatgca tattgttccg agaagttcaa taagaaagaa taacatgaaa 1740 aaaaaaa 1747 . <210> 41 <211> 1763 <212> DNA <213> Festuca arundinacea <4ffl3> 41 gaacagttgc cgtgcatgcg tagcgagctg gctggcatgg acatcccact cccactgctg 60 ctctccactc tggccatctc tgcgaccata tgctatgtct tcttccgagc cggcaagggg 120 caccgtgcgc cgctgccgct gccgcctggc ccgaggggct ggccagtgct ggggaacctc 180 ccgcagctgg gcggcaagac acaccagacc ctgcatgaga tgaccaaggt gtacgggccc 240 gtgctccggc tccggttcgg cagctccgtc gtggtggtcg ccgggtcagc cgccgtggcc 300 gagcagttcc tccgcaccca cgacgccaag ttcagcagcc ggccgcccaa ctccggcggc 360 gaacacatgg cgtacaacta cagggacgtg gttttcgcgc cctacggccc ccggtggcgc 420 gcgatgcgca aggtgtgcgc cgtcaacatc ttctcggccc gcgcgctcga cgatctccgc 480 ggtttcaggg agcgggaggc cgcgctcatg gtgcggtccc tcgcggatgc tgccaaagcc 540 Page 24 WO 03/093464 PCT/NZ03/00081 ggggtggcgg tggcggtcgg caaggcggcg aacgtgtgca cgaccaacgg cctgtctcgg 600 gcagcggtgg ggctccgggt gttcggaagc gatggcgcca gagacttcaa ggagatcgtg 660 ctggaggtga tggaggtggg cggggttctt aacgtcgggg actttgtgcc ggcgctccgg 720 tggctcgacc cgcagggtgt cgtcgcgagg ttgaagaagc tgcaccgccg gttcgacgac 780 atgatgaatg ggataatcgc cgagaggagg accggaacca agacggccgt ggtggaggaa ' 840 ggtaagggag acctgctggg cttgctgctt gcgatggtgc aggaagacaa gtcgctcacc 900 ggcagcgagg aggacaagat caccgacact gacgtcaagg cgcttatact gaacttgttt 960 gtggcgggaa cagagacaac gtcgagtata gtggagtggg cagtagcgga gctgatcagg 1020 caccctgaca tcctgaagca ggcccaggag gagctagatg ccgtcgtggg ccgtgacagg 1080 cttgtctcgg agtctgacct gccacgactc acgttittca atgccatcat caaggagacg 1140 trtccggctgc atccgtcgac gccgctctcg cttccccgga tggcctccga ggagtgcgag- 1200 gtcgccggct accacatccc aaggggcact gagctactgg tcaatgtgtg gggcatcgcc 1260 cgcgatccgg ccctatggcc cgacccgctg gagtaccagc ctgcccggtt cctcccagga 1320 gggtcgcatg agaatgtcga cctcaaggga ggtgactttg ggctgatacc gtttggggcg 1380 ggccggagga tatgtgcggg cctaagctgg ggcttgcgga tggttaccat tacaaccgct 1440 accctggtgc actcgttcga ctgggagctg ccggcgggcc agacgccgga taagttgaac 1500 atggaggagg cctttagtct gctgctgcag cgagccgtgc cattgatggt ccacccagtg 1560 cccaggttgc ttccatccgc atacgaaatt tcgtagaaaa tcgctgcgtc agtgattgtc 1620 ctgattgatg atgtatggag ggcaaagctc caattatacc atgcactact atcgatgggt 1680 tatctcaccg ttrtgaactaa agtagtttac aatgcatatt gttccgagaa gttcaataag 1740 aaagaataac atgaaaaaaa aaa 1763 <210> 42 <211> 1673 <212> DNA <213> Festuca arundinacea <400> 42 gggacatccc actcccactg ctgctctcca ctctggccat ctctgcgacc atatgctatg 60 tcttcttccg agccggcaag acacaccaga ccctgcatga gatgaccaag gtgtacgggc 120 ccgtgctccg gctccggttc ggcagctccg tggtggtagt, ggccggatca gccgccgtgg 180 ccgagcagtt cctgcgcacc cacgacgcca agttcagcag ccggccgccc aactctggcg 240 gcgagcacat ggcttacaac taccaggaca tcgtgttcgc gccctacggg ccccggtggc 300 gcgccatgcg caaggtgtgc gccgtcaaca tcttctcggc ccgcgcgctc gacgatctcc 360 gcgggttcag ggagcgggag gccgcactca tggtgcggtc cctcgcagac gctgccaaag 420 ccggggcggc ggtggcggtc ggcaaggcgg caaacgtgtg cacgaccaac ggcctgtctc 480 gggcggcggt ggggctccgg gtgttcggaa gcgatggcac cagagacttc aaggagatcg 540 tgctggaggt gatggaggtg ggtggggttc ttaatgtegg ggattttgtg ccggcgctcc 600 ggtggctcga cccacagggg gtcgtcgcga ggatgaagaa gctgcaccgc cggttcgacg 660 acataatgaa cgggataata gccgagagga ggaccggagc caagacggcc gtcgtggagg 720 aaggtaaggg agacctgctg ggcttgctac ttgcgatggt gcaggaagac aagtcgctca 780 ccggcagcga ggaggacaaa atcaccgaca ctgacgtcaa ggcgcttata ctgaacttgt 840 ttgtggcggg aacagagaca acgtcgagca tagtggagtg ggcagtagcg gagctgatca 900 ggcaccctga catcctgaag caggcccagg aggagctaga taccgtcgtg ggccgtgaca 960 ggatcgtctc ggagtcggac ctgccacgac tcaccttttt taatgccatc atcaaggaga 1020 cgttccggct gcatccgtcg acgccgctct cgcttccccg gatggcctcc gaggactgtg 1080 aggtcgctgg ctaccacatc ccaaggggca ccgagctact ggtcaatgtg tggggcatcg 1140 cccgtgaccc atccctatgg cctgacccgc tggagtaccg gcccgcccgg ttcctcccag 1200 gagggtcgca tgagaatgtc gacctcaagg gaggtgactt tgggctgata ccgtttgggg 1260 cgggccggag gatatgtgcg ggcctaagct ggggcttgcg gatggtcacc gttacaaccg 1320 ctaccctggt gcactcgttc gactgsgagc tgccggcggg ccagacgctg gataagttga 1380 acatggagga ggcctttagc ctgctgctgc agcgagccat gccattgatg gtccacccgg 1440 tgcccaggtt gcttccatcg gcatacgaaa tttcgtagaa aattgctgcg ccagtgcttg 1500 tcatgattga tgatgtatgg agggcaagct ccaattatac catgcactac tatcgatggg 1560 ttgtctcccc gtttgaacta aagtagttta caatgcatat tgttccgaga agttcaataa 1620 gaaagaataa catggaaaaa tacaatctgt tggacggcca aaaaaaaaaa aaa 1673 <210> 43 <211> 1714 <212> DNA <213> Festuca arundi nacea <40Q> 43 gaaagaacag ttgccgtgca tgcgtaacga gctggctggc atggacatcc cactcccact 60 gctgctctcc actctggcca tctctgcgac catatgctat gtcttcttcc gagccggcaa 120 gacacaccag accctgcatg agatgaccaa ggtgtacggg cccgtgctcc ggctccggtt 180 cggcagctcc gtggtggtag tggccggatc agccgccgtg gccgagcagt tcctgcgcac 240 ccacgacgcc aagttcagca gccggccgcc caactctggc ggcgagcaca tggcttacaa 300 Page 25 WO 03/093464 PCT/NZ03/00081 ctaccaggac cgccgtcaac ggccgcactc cggcaaggcg ggtgttcgga gggtggggtt ggtcgtcgcg agccgagagg gggcttgcta aatcaccgac aacgtcgagc gcaggcccag cctgccacga gacgccgctc cccaaggggc gcctgacccg cgacctcaag gggcctaagc cgactgggag cctgctgctg ggcatacgaa gagggcaagc aaagtagttt atacaatctg atcgtgttcg atcttctcgg atggtgcggt gcaaacgtgt agcgatggca cttaatgtcg aggatgaaga aggaccggag cttgcgatgg actgacgtca atagtggagt gaggagctag ctcacctttt tcgcttcccc accgagctac ctggagtacc ggaggtgact tggggcttgc ctgccggcgg cagcgagcca atttcgtaga tccaattata acaatgcata ttggacggcc cgccctacgg cccgcgcgct ccctcgcaga gcacgaccaa ccagagactt gggattttgt agctgcaccg ccaagacggc tgcaggaaga aggcgcttat gggcagtagc ataccgtcgt ttaatgccat' ggatggcctc tggtcaatgt ggcccgcccg ttgggctgat ggatggtcac gccagacgct tgccattgat aaattgctgc ccatgcacta ttgttccgag aaaaaaaaaa gccccggtgg cgacgatctc cgctgccaaa cggcctgtct caaggagatc gccggcgctc ccggttcgac cgtcgtggag caagtcgctc actgaacttg ggagctgatc gggccgtgac catcaaggag cgaggactgt gtggggcatc gttcctccca accgtttggg cgttacaacc ggataagttg ggtccacccg gccagtgctt ctatcgatgg aagttcaata aaaa cgcgccatgc cgcgggttca gccggggcgg cgggcggcgg gtgctggagg cggtggctcg gacataatga gaaggtaagg accggcagcg tttgtggcgg aggcaccctg aggatcgtct acgttccggc gaggtcgctg gcccgtgacc ggagggtcgc gcgggccgga gctaccctgg aacatggagg gtgcccaggt gtcatgattg gttgtctccc agaaagaata gcaaggtgtg gggagcggga cggtggcggt tggggctccg tgatggaggt acccacaggg acgggataat gagacctgct aggaggacaa gaacagagac acatcctgaa cggagtcgga tgcatccgtc gctaccacat catccctatg atgagaatgt ggatatgtgc tgcactcgtt aggcctttag tgcttccatc atgatgtatg cgtttgaact acatggaaaa <Z10> 44 <211> 1449 <212> DNA <213> Lolium perenne <400> 44 gacaaacacc ctcgctctta caatggcgga agagcggtct cgcagcacct ccagcatrtcc tgcgccagat tgaaccacgg tccggctgcc acggcagccg tccacctcgc tctgcaagga tgaaggtgat gatcagagtg tgacgctggg agcacgtccg cacggcacga tgtacaagag cgctcttcta cggagcggcc agtacggccc tagctggatc ccggccaatc cttgtacccg aaaaaaaaa ttaactagat tcgccggtga ctgcatgcag ggccgccatc ggctaccgcc ggtgatcgac catggaggcc ggtggcgccg gatcacggcg agtcggcgtc gccggacgcc tgtgtcggag gtcggcgagc cggcgtgtgc cctgtcggcg cggcctccag cgccttcatc cgtggagcac caacccgcga ggcgctctac cagg'g'gcaag cttggagcta tatggattcc aactgcatat cagctcgatc actgtccccc gagtggccgg cccgactgct gcttctgcag cttggcgagc gtggcggcgg gagctgatgc aagcagcagt cagaagggcg ggcaagagcc gagtacggtc ctgggcctag cttcgcgcca cactctgacc gtccgccgcg gtcaacgtcg cgggtgatgg ggcgacgtcc ccgtccatga gcgcaggtcg gtatctgatc tgcatgcatg atgctaattg agcttcca^c ggccccggta agcccgtggt acgtcaagcc atggcgacgt tcgtcgcggc cgtgccggga acgcggcgcg acgccaacct gccccctcga cggacaagta gtgaggtgat aggcgacgag actactaccc cgggcgtcct ccgatggcga gcgaccagat tgaacgccaa cgatcgcgcC ccttcgacga agggtgccaa catgggaata tacgtgtggc tattggcatc ttcctctcct ctaagctgcg gcgcgtgcag gccgcgcgac cctccatgag gacagccgac gtgggggttc ggaggcgtgg gccgcggacg ctggggcgac ctggcccacc ccggttgtgc gttccaggag gcggtgcccg caccgtgctc gtgggtcacc ccagatactg ggaggagcgc ggcgccggag gtacagggcc gcagggacaa attaagccgt taatgtagca tcgcttagcc agctagctcg cagggcatgg gcggtggccg cgcccagcgg cctctggaca gagggccgca ttccaggtgg cgcggattct tacgaggggt tactattrtcc aatcccgcca gagctgctga gcgttcggcg cagccggatc ctcgctgacg gtgcagcccg agcaactcca atctccctgg acggtgacgc tacatcagga ggtagctagt ccaggttgta caagctcgcc gtgccgtcca <210> 45 <211> 473 <212> PRT <213> Lolium perenne <400> 45 Met Ala Ala Ala Ala val Ala Pro Asp Ala Lys lie Glu Lys Phe Arg 15 10 15 Asp Ala Val Ala Lys Leu Gly Glu He ser Glu Asn Glu Lys Ala Gly 20 25 30 Cys lie ser Leu Val ser Arg Tyr Leu ser Gly Glu Ala Glu Gin lie Page 26 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1714 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1449 WO 03/093464 PCT/NZ03/00081 35 40 45 Glu Trp ser Lys He Gin Thr Pro Thr Asp Glu val val val Pro Tyr 50 55 60 Asp Thr Leu Ala Pro Ala pro Glu Asp Leu Asp Ala Met Lys Ala Leu 65 70 75 80 Leu Asp Lys Leu val val Leu Lys Leu Asn Gly Gly Leu Gly Thr Thr 85 90 95 Met Gly Cys Thr Gly pro Lys Ser Val lie Glu val Arg Asn Gly Phe 100 105 110 Thr Phe Leu Asp Leu lie val lie Gin lie Glu ser Leu Asn Lys Lys 115 120 125 Tyr Gly Cys Asp Val Pro Leu Leu Leu Met Asn ser Phe Asn Thr His 130 135 140 Asp Asp Thr Gin Lys lie val Glu Lys Tyr Ser Asn Ser Asn lie Asn 145 150 155 160 lie His Thr phe Asn Gin ser Gin Tyr Pro Arg lie val Thr Glu Asp 165 170 175 Phe Leu pro Lfeu Pro ser Lys Gly Gin Ser Gly Lys Asp Gly Trp Tyr 180 185 190 Pro Pro Gly His Gly Asp Val Phe Pro Ser Leu Asn Asn Ser Gly Lys 195 200 205 Leu Asp Thr Leu Leu ser Gin Gly Lys Glu Tyr val Phe Val Ala Asn 210 213 220 Ser Asp Asn Leu Gly Ala lie Val Asp He Lys lie Leu Asn His Leu 225 230 235 240 lie Asn Asn Lys Asn Glu Tyr Cys Met Glu val Thr pro Lys Thr Leu 245 250 255 Ala Asp val Lys Gly Gly Thr Leu lie Ser Tyr Glu Gly Arg Val Gin 260 265 270 Leu Leu Glu lie Ala Gin Val Pro Asp Glu His val Asn Glu Phe Lys 275 280 285 Ser lie Glu Lys Phe Lys lie Phe Asn Thr Asn Asn Leu Trp val Asn 290 295 300 Leu Lys Ala lie Lys Arg Leu val Glu Ala Asp Ala Leu Lys Met Glu 305 310 315 320 lie lie Pro Asn Pro Lys Glu Val Asp Gly val Lys Val Leu Gin Leu 325 330 335 Glu Thr Ala Ala Gly Ala Ala lie Arg Phe Phe Asp Asn Ala He Gly 340 345 350 • lie Asn Gly Pro Arg ser Arg Phe Leu Pro val Lys Ala Thr Ser Asp 355 360 365 Leu Leu Leu val Gin ser Asp Leu Tyr Thr Leu val Asp Gly Tyr val 370 375 380 lie Arg Asn Pro Ala Arg Val Lys Pro Ser Asn Pro Ser lie Glu Leu 385 390 395 400 Gly Pro Glu Phe Lys Lys Val Ala Ser Phe Leu Ala Arg Phe Lys Ser 405 • 410 415 lie Pro Ser lie val Glu Leu Asp Ser Leu Lys val ser-Gly Asp val 420 425' 430 Ser Phe Gly ser Gly lie Val Leu Lys Gly Asn Val Thr lie Ala Ala 435 440 445 Lys ser Gly Val Lys Leu Glu lie Pro Asp Gly Ala val Leu Glu Asn 450. 455 460 Lys Asp lie Asn Gly pro Glu Asp Leu 465 470 <210> 46 <211> 471 <212> PRT <213> Festuca arundinacea <400> 46 Met Ala Ala val Ala Ala Asp Ala Lys He Glu Lys Phe Arg Asp Ala 1 5 10 15 val Ala Lys Leu Asp Glu He Ser Glu Asn Glu Lys Ala Gly Cys lie 20 25 - 30 Ser Leu val Ser Arg Tyr Leu Ser Gly Glu Ala Glu Gin He Glu Trp 35 40 45 Page 27 WO 03/093464 PCT/NZ03/00081 Ser Lys He Gin Thr pro Thr Asp Glu Val val Val Pro Tyr Asp Thr 50 55 60 Leu Ala Pro Ala Pro Gin Asp Leu Asp Ala Met Lys Ala Leu Leu Asp 65 70 75 80 . Lys Leu Val val Leu Lys Leu Asn Gly Gly Leu Gly Thr Thr Met Gly 85 90 95 cys Thr Gly Pro Lys ser Val lie Glu Val Arg Asn Gly Phe Thr Phe 100 105 110 Leu Asp Leu lie Val lie Gin lie Glu Ser Leu Asn Lys Lys Tyr Gly 115 . 120 125 Cys Asp Val Pro Leu Leu Leu Met Asn Ser Phe-Asn Thr His Asp Asp 130 135 140 Thr Gin Lys lie Val Glu Lys Tyr ser Asn ser Asn lie Asn lie His 145 150 155 160 Thr Phe Asn Gin Ser Gin Tyr Pro Arg lie Val Thr Glu Asp Phe Leu 165 170 175 Pro Leu Pro ser Lys Gly Lys Ser Gly Lys Asp Gly Trp Tyr Pro Pro 180 185 190 Gly His Gly Asp Val Phe Pro Ser Leu Asn Asn ser Gly Lys Leu Asp 195 200 205 Thr Leu Leu Ser Gin Gly Lys Glu Tyr Val Phe Val Ala Asn Ser Asp 210 215- - 220 Asn Leu Gly Ala He val Asp lie Lys lie Leu Asn His Leu lie Asn 225 230 235 240 Asn Gin Asn Glu Tyr cys Met Glu val Thr Pro Lys Thr Leu Ala Asp 245 , 250 255 val Lys Gly Gly Thr Leu lie Ser Tyr Glu Gly Arg val Gin Leu Leu 260 265 270 Glu xle Ala Gin Val Pro Asp Glu His Val Asn Glu Phe Lys Ser lie 275 280 285 Glu Lys Phe Lys He phe Asn Thr Asn Asn Leu Trp val Asn Leu Lys 290 295 300 Ala lie Lys Arg Leu val Glu Ala Asp Ala Leu Lys Met Glu lie lie 305 310 315 320 pro Asn pro Lys Glu val Asp Gly val Lys val Leu Gin Leu Glu Thr 325 330 335 Ala Ala Gly Ala Ala lie Arg Phe Phe Glu Lys Ala lie Gly He Asn 340 " 345 350 Gly Pro Arg ser Arg Phe Leu Pro Val Lys Ala Thr ser As'p Leu Leu' 355 360 365 Leu Val Gin Ser Asp Leu Tyr Thr Leu Val Asp Gly Tyr val lie Arg 370 375 380 Asn Pro Ala Arg Val Lys Pro ser Asn Pro Ser He Glu Leu Gly Pro 385 390 395 400 Glu Phe Lys Lys Val Ala ser Phe Leu Ala Arg Phe Lys ser lie Pro 405 410 415 Ser lie Val Glu Leu Asp Ser Leu Lys Val Ser Gly Asp val Thr Phe 420 425 430 Gly Ser Gly val Val Leu Lys Gly Asn Val Thr lie Ala Ala Lys ser • 435 440 445 Gly Val Lys Leu Glu lie Pro Asp Gly Ala Val Leu Glu Asn Lys Asp 450 455 460 lie Asn Gly Pro Glu Asp Leu 465 470 <210> 47 <2U> 535 <212> PRT <213> Lolium perenne <400> 47 , , cys Leu Arg Arg Arg Thr Tyr Ser Asn Ser Gly Asp Thr His Ala Asp 1 * '5 10 15 Pro Asn Gly Pro Val Tyr Tyr Gly Gly Trp Tyr His Leu Phe Tyr Gin 20 25 30 His Asn Pro Tyr Gly Asp Ser Trp Gly Asn Val Ser Trp Gly His Ala 35 40 45 val ser Lys Asp Leu val Asn Trp Arg His Leu Pro val Ala Leu val Page 28 WO 03/093464 PCT/NZ03/00081 50 55 60 Leu Thr Gly Ser He Thr 75 80 65 70 pro Asp Gin Trp Tyr Asp lie Asn Gly val val Leu Pro Asp Gly Arg val lie Leu Leu Tyr Thr Gly Asn Thr Asp 85 90 95 Thr phe Ser Gin val Gin cys Leu Ala Val Pro Ala Asp Pro Ser Asp 100 105 110 pro Leu Leu Arg ser Trp lie Lys His Pro Ala Asn Pro* lie Leu Phe 115 120 125 pro pro Pro Gly lie Gly Leu Lys Asp Phe Arg Asp Pro Leu Thr Ala 130 135 140 Trp phe Glu His Ser Asp Asn Thr Trp Arg Thr lie lie Gly Ser Lys 145 150 155 160 Asp Asp Asp Gly His Ala Gly lie Val Leu Ser Tyr Lys Thr Thr Asp 165 170 175 Phe val Asn Tyr Glu Leu Met Pro Gly Asn Met His Arg Gly Pro Asp 180 185 190 Gly Thr Gly Met Tyr Glu cys Leu Asp lie Tyr Pro val Gly Gly Asn 195 200 205 ser ser Glu Met Leu Gly Gly Asp ser Ser pro Glu val Leu Phe Val 210 215 220 Leu Lys Glu Ser Ala Asn Asp Glu Trp His Asp Tyr Tyr Ala Leu Gly 225 230 235 240 Trp Phe Asp Ala Thr Ala Asn Thr Trp Thr Pro Gin Asp Pro Glu Ala 245 250 255 Asp Leu Gly lie Gly Leu Arg Tyr Asp Trp Gly Lys Tyr Tyr Ala Ser 260 265 270 Lys ser Phe Tyr Asp Pro lie Lys Asn Arg Arg val Val Trp Ala Phe 275 280 285 Val Gly Glu Thr Asp Ser Glu Gin Ala Asp Lys Ala Lys Gly Trp Ala 290 295 300 ser Leu Met ser lie Pro Arg Met Val Glu Leu asp Lys Lys Thr Arg 305 310 315 320 Thr Asn Leu lie Gin Trp Pro Val Glu Glu lie Glu Thr Leu Arg Arg 325 330 335 Asn val Thr Asp Leu Gly Gly lie Thr val Glu Ala Gly ser Val lie 340 345 350 His Leu Pro Leu Gin Gin Gly Gly Gin Leu Asp lie -Glu Ala ser Phe 355 360 365 Arg Leu Asn ser Ser Asp lie Asp Ala Leu Asn Glu Ala Asp Val Gly 370 375 380 Phe Asn cys ser ser Ser Ala Gly Ala Ala val Arg Gly Ala Leu Gly 385 390 395 400 Pro phe Gly Leu Leu val Phe Ala Asp Gly Arg His Glu Gin Thr Ala 405 410 415 Ala Tyr Phe Tyr val ser Lys Gly Leu Asp Gly ser Leu Leu Thr His 420 425 . 430 Tyr cys His Asp Glu ser Arg ser Thr Arg Ala Lys Asp val val ser 435 440 445 Arg val val Gly Gly Thr val Pro val Leu Asp Gly Glu Thr Phe ser 450 455 460 val Arg val Leu val Asp His ser lie val Gl'n ser Phe Val Met Gly 465 470 475 480 Gly Arg Thr Thr val Thr ser Arg Ala Tyr Pro Thr Glu Ala lie Tyr 485 490 495 Ala Ala Ala Gly val Tyr Leu Phe Asn Asn Ala Thr ser Ala Thr lie 500 505 510 Thr Ala Glu Gly Leu val val Tyr Glu Met Ala ser Ala Glu ser.Gln 515 520 525 Ala phe Leu Ala Asp Asp Met 530 535 <210> 48 <211> 637 <212> PRT <213> Lolium perenne <400> 48 page 29 WO 03/093464 PCT/NZ03/00081 Met Glu Ser ser Ala Val Val val Pro Gly Thr Thr Ala Pro Leu Leu 15 10 15 pro Tyr Asp ser Arg Glu Asn Gin ser Ser Gly Gly Gly val Trp Trp 20 25 30 Arg Ala cys Ala Ala ser Ala val val Leu Leu val val Val Gly Phe 35 • 40 45 Phe Ala Gly Gly Arg Val Asp Leu Gly Gin Ala Gly Glu val Ser Ala 50 55 60 Thr ser ser Val Pro Ala Ala Met Met Glu lie pro Arg Ser Arg Gly 65 70 75 80 Lys Asn Phe Gly Val Ser Glu Lys Ala Asp Gly Gly Phe Pro Trp Ser 85 90 95 Asn Ala Met Leu Gin Trp Gin His Thr Gly Phe His Phe Gin Pro Leu 100 105 110 Lys His Tyr Met Asn Asp Pro Asn Gly Pro Val Tyr Tyr Gly Gly Trp 115 120 125 Tyr His Leu Phe Tyr Gin His Asn Pro Tyr Gly Asp Ser Trp Gly Asn 130 135 140 Val ser Trp Gly His Ala val ser Lys Asp Leu Val Asn Trp Arg His 145 150 155 160 Leu pro Val Ala Leu Val pro Asp Gin Trp Tyr Asp lie Asn Gly Val 165 170 • 175 Leu Thr Gly ser lie Thr val Leu Pro Asp Gly Arg val He Leu Leu 180 185 190 • Tyr Thr Gly Asn Thr Asp Thr Phe ser Gin Val Gin cys Leu Ala val 195 200 205 Pro Ala Asp Pro Ser Asp Pro Leu Leu Arg Ser Trp lie Lys His Pro 210 215 220 Ala Asn Pro lie Leu Phe Pro Pro Pro Gly lie Gly Leu Lys Asp Phe 225 230 235 240 Arg Asp pro Leu Thr Ala Trp Phe Glu His Ser Asp Asn Thr Trp Arg 245 250 255 Thr lie lie Gly Ser Lys Asp Asp Asp Gly His Ala Gly lie val Leu 260 265 270 Ser Tyr Lys Thr Thr Asp Phe Val Asn Tyr Glu Leu Met Pro Gly Asn 275 280 285 Met His Arg Gly Pro Asp Gly Thr Gly Met Tyr Glu cys Leu Asp lie 290 295 300 TVr Pro Val Gly Gly Asn Ser ser Glu Met Leu Gly Gly Asp Ser Ser 305 310 315 320 Pro Glu val Leu Phe Val Leu Lys Glu Ser Ala Asn Asp Glu Trp His 325 330 335 Asp Tyr Tyr Ala Leu Gly Trp Phe Asp Ala Thr Ala Asn Thr Trp Thr 340 345 350 Pro Gin Asp Pro Glu Ala Asp Leu Gly lie Gly Leu Arg Tyr Asp Trp 355 360 365 Gly Lys Tyr Tyr Ala Ser Lys Ser Phe Tyr Asp Pro lie Lys Asn Arg 370 375 380 Arg val val Trp Ala Phe val Gly Glu Thr Asp Ser Glu Gin Ala Asp 385 390 395 400 Lys Ala Lys Gly Trp Ala ser Leu Met Ser lie pro Arg Met val Glu 405 410 415 Leu Asp Lys Lys Thr Arg Thr Asn Leu lie Gin Trp Pro val Glu Glu 420 . 425 430 lie Glu Thr Leu Arg Arg Asn Val Thr Asp Leu Gly Gly lie Thr Val 435 440 445 Glu Ala Gly ser val lie His Leu Pro Leu Gin Gin Gly Gly Gin Leu .450 455 460 Asp lie Glu Ala ser phe Arg Leu Asn Ser ser Asp lie Asp Ala Leu 465 470 475 480 Asn Glu Ala Asp Val Gly Phe Asn Cys Ser Ser Ser Ala Gly Ala Ala- 485 490 495 val Arg Gly Ala Leu Gly Pro Phe Gly Leu Leu val Phe Ala Asp Gly 500 505 510 Arg His Glu Gin Thr Ala Ala Tyr Phe Tyr Val Ser Lys Gly Leu Asp 515 520 525 Gly ser Leu Leu Thr His Tyr cys His Asp Glu ser Arg ser Thr Arg 530 535 540 Page 30 WO 03/093464 PCT/NZ03/00081 Ala Lys Asp Val Val Ser Arg Val val Gly Giy Thr Val Pro Val Leu 545 550 555 560 Asp Gly Glu Thr Phe ser Val Arg val Leu val Asp His ser lie val 565 570 575 Gin ser Phe Val Met Gly Gly Arg Thr Thr val Thr ser Arg Ala Tyr 580 585 590 pro Thr Glu Ala lie Tyr Ala Ala Ala Gly val Tyr Leu Phe Asn Asn 595 600 605 Ala Thr ser Ala Thr lie Thr Ala Glu Gly Leu val val Tyr Glu Met 610 615 . 620 Ala ser Ala Glu Ser Gin Ala Phe Leu Ala Asp Asp Met 625 630 635 <210> 49 <211> 603 <212> PRT <213> Lolium perenne <400> 49 Met Gly lie Ala Glu Val Ala Leu His Thr Met pro Gly Ala Phe Ala . 1 5 10 15 ser His ser Pro Ala ser ser Leu pro Leu Arg Thr Asp Thr Arg ser 20 25 30 Leu Arg Lvs Arg Gly Thr Asn ser phe Tyr Arg Thr Leu Gly Gly pro 35 40 45 Pro Lys Phe Pro Glu Leu Arg Pro Val Glu cys Gin cys Gin Arg lie 50 55 60 Asp Asp Leu Ala Gly val lie Glu Ala Gly Asn Gly Thr Trp Ala Thr 65 70 75 80 Asp Met val Asn Lys Ala ser Gin val Leu Gly Asp val Ala Val Pro 85 90 95 Gly Gin Ala Leu Gly Gly Asn Ala ser Leu ser Gly Asp Pro Glu Lys 100 105 110 Val Leu Pro Arg Arg Arg Asn Leu ser ser Val Glu Asp Glu Ala Trp 115 120 125 Asp Leu Leu Arg Glu ser val val Asn Tyr cys Gly ser pro Val Gly 130 135 140 Thr lie Ala Ala Asn Asp pro Asn Asp ser Asn pro Ala Asn Tyr Asp 145 150 155 160 . Gin val Phe He Arg Asp phe lie pro Ser Gly lie Ala Phe Leu Leu 165 170 175 Lys Gly Glu Tyr Glu lie val Arg Asn Phe lie Leu His Thr Leu Gin 180 185 190 Leu Gin Ser Trp Glu Lys Thr Met Asp Cys His ser Pro Gly Gin Gly 195 200 205 Leu Met Pro Ala Ser Phe Lys Val Arg Thr lie pro Leu Asp Gly Asp 210 215 220- Glu Asn Ala Thr Glu Glu val Leu Asp Pro Asp phe Gly Glu Ala Ala 225 230 235 • 240 lie Gly Arg val Ala Pro val Asp Ser Gly Leu Trp Trp lie lie Leu 245 250 25.
  5. 5 Leu Arg Ala Tyr Gly Lys Cys ser Gly Asp Leu ser Val Gin Glu Arg 260 265 270 lie Asp val Gin Thr Gly lie Lys Met lie Leu Lys Leu Cys Leu Ala 275 280 285 Asp Gly Phe Asp Met Phe pro Thr Leu Leu val Thr Asp Gly Ser cys 290 295 300 Met lie Asp Arg Arg Met Gly lie His Gly His pro Leu Glu lie Gin 305 310 315 320 Ala Leu Phe Tyr ser Ala Leu Leu ser Ala Arg Glu Met Leu Thr Pro 325' 330 335 Glu Asp Gly Ser Ala Asp Leu lie Arg Ala Leu Asn Asn Arg Leu Val 340 345 350 Ala Leu ser Phe His lie Arg Glu Tyr Tyr Trp val Asp Met Gin Lys 355 360 365 Leu Asn Glu lie Tyr Arg Tyr Lys Thr Glu Glu Tyr ser Tyr Asp Ala 370 375 380 val Asn Lys Phe Asn lie Tyr pro Asp Gin Val ser Pro Trp Leu Val Page 31 WO 03/093464 PCT/NZ03/00081 385 390 395 400 Glu Trp lie Pro Pro Lys Gly Gly'Tyr Phe lie Gly Asn Leu Gin Pro 405 410 415 Ala His Met Asp Phe Arg Phe phe Ser Leu Gly Asn Leu Trp Ser He 420 425 430 val Ser ser Leu Ala Thr Thr Gin Gin ser His Ala lie Leu Asp Leu 435 440 445 lie Glu ser Lys Trp ser Asp Leu val Ala Glu Met Pro Leu Lys lie 450 455 460 cys Tyr Pro Ala Leu Glu Asn Leu Glu Trp Lys lie lie Thr Gly ser 465 470 475 480 Asp Pro Lys Asn Thr Pro Trp ser Tyr His Asn Gly Gly ser Trp Pro 485 490 495 Thr Leu Leu Trp Gin Leu Thr val Ala Ser Leu Lys Met Asn Arg Pro 500 505 510 Glu lie Ala Ala Lys Ala Val Glu lie Ala Glu Arg Arg lie Ala Thr 515 520 525 Asp L^s Trp Pro Glu Tyr Tyr Asp Thr Lys Arg Ala Arg phe lie Gly Lys Gin ser Arg Leu Tyr Gin Thr Trp Ser lie Ala Gly Tyr Leu val 545 550 555 560 Ala Lys Gin Leu Leu Asp Lys Pro Asp Ala Ala Arg lie Leu Trp Asn 565 570 575 Asp Glu Asp Thr Glu He Leu Asn Ala Phe ser Thr Asn Arg Lys Arg 580 585 590 Gly Lys Lys val Leu Lys Lys Thr Tyr lie val 595 600 <210> 50 <211> 556 <212> PRT <213> Festuca arundinacea <400> 50 Asp Pro Phe Arg Ala Ala Leu Ala Pro.. Ala ser Pro Pro Leu Glu Ala 15 10 15 Pro Pro Leu Asp Glu Leu Pro Thr Ala Pro ser His ser Glu Pro Ala 20 25 30 Ser Ala Ala Ala Ala Ala Pro Glu Gin Asp Pro val Asp Leu Gin His 35 40 45 Glu Glu Leu Asp Gly Leu Lys Ala Gly Val Glu Ala val Arg Ser Arg 50 55 60 Glu Glu ser Pro Gin Glu Lys Glu Ala Trp Trp Leu Leu Asn Arg Ala .65 70 75 80 val val Asn Tyr Cys Gly ser Ala val Gly Thr val Ala Ala Asn Asp 85 90 95 Pro ser Thr Ala Asn His Met Leu Asn Tyr Asp Gin val Phe lie Arg 100 105 110 Asp Phe Val Pro Ser Ala lie Ala Phe Leu Leu Lys Gly Glu Ser Asp 115 120 125 lie val Lys Asn Phe Leu Leu His Thr Leu <3ln Leu Gin ser Trp Glu 130 135 140 Lys Thr val Asp cys Tyr ser Pro Gly Gin Gly Leu Met Pro Ala Ser 145 150 155 160 Phe Lys val Arg Ser Val Pro Leu Asp Gly Asn Asn Glu Ala Phe Glu 165 170 175 Glu val Leu Asp Pro Asp Phe Gly Glu Ser Ala lie Gly Arg val Ala 180 185 190 pro val Asp ser Gly Leu Trp Trp He lie Leu Leu Arg Ala Tyr Gly 195 200 „ 205 Lys lie Thr Gly Asp Tyr Ala Leu Gin Glu Arg val Asp val Gin Thr 210 215 220 Gly lie Arg Leu lie Leu Asn Leu Cys Leu Ser Asp Gly Phe Asp Met-225 230 235 240 Phe Pro Thr Leu Leu val Thr Asp Gly ser cys Met lie Asp Arg Arg 245 250 255 Met Gly lie His Gly His Pro Leu Glu lie Gin Ala Leu Phe Tyr ser 260 265 270 page 32 WO 03/093464 PCT/NZO3/00081 Ala Leu Arg cys Ala Arg Glu Met Val Asn lie Asp Asp Gly Ser Lys 275• 280 285 Asn Leu lie Arg Val lie Asn Asn Arg Leu ser Ala Leu Ser Phe His 290 295 300 lie Arg Glu Tyr Tyr Trp val Asp Met Lys Lys lie Asn Glu lie Tyr 305 310 • 315 320 Arg Tyr Lys Thr Glu Glu Tyr ser His Asp Ala lie Asn Lys Phe ash • 325 330 335 He Tyr Pro Glu Gin lie Pro ser Trp Leu Ala Asp Trp lie Pro Glu 340 345 350 Lys Gly Gly Tyr Leu lie Gly Asn Leu Gin Pro Ala His Met Asp Phe 355 360 365 Arg Phe Phe Ser Leu Gly Asn Leu Trp Ala lie Val ser Ser Leu Ala 370 375 380 Thr pro Lys Gin Ala Glu Gly lie Leu Asn Leu lie Glu Thr Lys Trp 385 390 395 400 Asp Asp He val Ala Asn Met Pro Leu Lys lie Cys Tyr Pro Ala Leu 405 410 415 Glu Tyr Glu Glu Trp Arg lie lie Thr Gly cys Asp Pro Lys Asn Thr 420 425 430 Pro Trp Ser Tyr His Asn Gly Gly ser Trp Pro Thr Leu Leu Trp Gin 435' 440 445 Phe Thr Leu Ala cys lie Lys Met Gly Arg Pro Asp Leu Ala Arg Arg 450 455 460 Ala Val Glu-. Ala Val Glu Lys Arg Leu Ser Asp Asp Lys Trp Pro Glu 465 470 475 480 Tyr Tyr Asp Thr Arg Asn Gly Arg Phe lie Gly Lys Gin Ser Arg Leu 485 490 495 Tyr Gin Thr Trp Thr lie Ala Gly Phe Leu ser ser Lys Leu Leu Leu 500 505 510 Asp cys Pro Glu Met Ala ser lie Leu lie cys Asp Glu Asp Leu Asp 515 520 525 Leu Leu Glu Gly cys Ala cys Gly Ala Asn Lys ser Ala Arg Val Lys 530 535 540 cys ser Arg Arg Ala Ala Arg Ser Gin Val Leu val 545 550 555 <21Q> 51 <211> 621 <212> PRT <213> Festuca arundinacea <400> 51 Met Ala Ala Ala Ala lie ser His Leu Arg Arg Gly Thr Gin Arg His 1 5 10 15 Ala Leu Leu Tyr Leu Ser Arg Arg His Phe ser Asn Ser Pro Leu Thr 20 25 30 Ala Ala Ala Pro Leu Ala Ala Ala Ala Arg Arg Leu Leu ser Thr Thr 35 40 45 val Glu Ser Gly Thr ser ser Ala Ala Gly ser Tyr Lys pro Pro Pro 50 55 60 Leu Asp Pro Phe Arg Ala Ala Leu Ala Pro Ala ser Pro Pro LeU Glu 65 70 75 80 Ser pro Pro Leu Asp Glu Leu Pro Thr Ala pro Ser His ser Glu Pro 85 90 95 Ala ser Ala Ala Ala Ala Ala Pro Glu Gin Asp Pro val Asp Leu Gin 100 105 110 His Glu Glu Leu Asp Gly Leu Lys Ala Gly val Glu Ala val Arg ser 115 120 125 Arg Glu Glu Ser Pro Gin Glu Lys Glu Ala Trp Trp Leu Leu Asn Arg 130 135 140 Ala val val Asn Tyr cys Gly Ser Ala Val Gly Thr Val Ala Ala Asn 145 150 155 160 Asp Pro Ser Thr Ala Asn His Met Leu Asn Tyr Asp Gin val Phe lie 165 170 175 Arg Asp Phe Val Pro ser Ala lie Ala Phe Leu Leu Lys Gly Glu ser 180 185 190 Asp lie val Lys Asn Phe Leu Leu His Thr Leu Gin Leu Gin Ser Trp Page 33 WO 03/093464 PCT/NZ03/00081 .195 -200 205 Glu Lys Thr val Asp Cys Tyr ser Pro Gly Gin Gly Leu Met Pro Ala 210 215 220 ser Phe Lys val Arg ser val Pro Leu Asp Gly Asn Asn Glu Ala Phe 225 230 235 240 Glu Glu val Leu Asp Pro Asp Phe Gly Glu ser Ala lie Gly Arg val 245 250 255 Ala pro val Asp Ser Gly Leu Trp Trp lie lie Leu Leu Arg Ala Tyr 260 265 270 - Gly Lys lie Thr Gly Asp Tyr Ala Leu Gin Glu Arg val Asp val Gin 275 280 285 Thr Gly lie Arg Leu lie Leu Asn Leu cys Leu ser Asp Gly Phe Asp 290 295 300 Met Phe Pro Thr Leu Leu val Thr Asp Gly Ser cys Met lie Asp Ar 305 310 315 32i Arg Met Gly lie His Gly His Pro Leu Glu lie Gin Ala Leu Phe Tyr 325 330 335 ser Ala Leu Arg Cys Ala Arg Glu Met val Asn lie Asp Asp Gly Ser 340 345 350 Lys Asn Leu lie Arg val lie Asn Asn Arg Leu ser Ala Leu Ser Phe 355 360 365 His lie Arg Glu Tyr Tyr Trp val Asp Met Lys Lys lie Asn Glu lie 370 375 380 Tyr Arg Tyr Lys Thr Glu Glu Tyr Ser His Asp Ala xle Asn Lys Phe 385 390 395 400 Asn lie Tyr pro Glu Gin lie Pro ser Trp Leu Ala Asp Trp lie Pro 405 410 415 Glu Lys Gly Gly Tyr Leu i7e Gly Asn Leu Gin. pro Ala His Met Asp 420 425 430 Phe Arg Phe phe Ser Leu Gly Asn Leu Trp Ala lie Val ser ser Leu 435 440 445 Ala Thr pro Lys Gin Ala Glu Gly lie Leu Asn Leu lie Glu Thr Lys 450 455 460 Trp Asp Asp lie val Ala Asn Met Pro Leu Lys lie Cys Tyr Pro Ala 465 470 475 480 Leu Glu Tyr Glu Glu Trp Arg lie lie Thr Gly cys Asp Pro Lys Asn 485 490 495 Thr Pro Trp ser Tyr His Asn Gly Gly ser Trp Pro Thr Leu Leu Trp 500 505 510 Gin Phe Thr Leu Ala cys lie Lys Met Gly Arg Pro Asp Leu Ala Arg 515 520 525 Arg Ala Val Glu Ala Val Glu Lys Arg Leu Ser Asp Asp Lys Trp Pro 530 535 540 Glu Tyr Tyr Asp Thr Arg Asn Gly Arg Phe lie Gly Lys Gin ser An 545 550 555 56 Leu Tyr Gin Thr Trp Thr lie Ala Gly Phe Leu ser ser Lys Leu Leu 565 570 575 Leu Asp cys Pro Glu Met Ala Ser lie Leu lie cys Asp Glu Asp Leu 580 585 590 Asp Leu Leu Glu Gly cys Ala cys Gly Ala Asn Lys Ser Ala Arg val 595 600 605 Lys Cys Ser Arg Arg Ala Ala Arg ser Gin Val Leu Val 610 615 620 <210> 52 <2U> 244 <212> PRT <213> Lolium perenne <40Q> 52 Leu Leu Glu Lys Arg Lys Leu Asn Glu lie Tyr Arg Tyr Lys Thr Glu 1 5 10 15 Glu Tyr ser Tyr Asp Ala Val Asn Lys Phe Asn lie Tyr Pro Asp Gin 20 25 30 lie Pro Pro Trp Leu val Glu Trp lie Pro Pro Lys Gly Gly Tyr Phe 35 40 45 - lie Gly Asn Leu Gin pro Ala His Met Asp Phe Arg Phe Phe ser Leu 50 55 60 Page 34 WO 03/093464 PCT/NZ03/00081 Gly Asn Leu Trp Ser lie val Ser ser Leu Ala'Thr Ala Asp Gin Ser 65 70 75 80 His Ala lie Leu Asp Leu val Glu Ala Lys Trp ser Asp Leu val Ala 85 90 95 Glu Met pro Met Lys lie cys Tyr pro Ala Leu Glu Asp Gin Glu Trp 100 105 110 Lys Phe He Thr Gly Ser Asp Pro Lys Asn Thr Pro Trp Ser Tyr His 115 120 125 Asn Gly Gly ser Trp Pro Thr Leu Leu Trp Gin Leu Thr val Ala Cys 130 135 140 lie Lys Met Asn Arg Pro Glu lie Ala Ala Arg Ala val Glu val Ala 145 150 155 160 Glu ser Arg lie Ser Met Asp Lys Trp Pro Glu Tyr Tyr Asp Thr Lys 165 170 175 Arg Gly Arg Phe lie Gly Lys Gin Ala Arg Leu Phe Gin Thr Trp Ser 180 185 190 lie Ala Gly Phe Leu Val Ala Lys Leu Leu Leu Glu Asn Pro Glu Lys 195 200 205 ser Arg lie Leu Trp Asn Asn Glu Asp Glu Glu lie Leu Asn Ala Leu 210 215 220' Ser Leu Met Thr Gly Pro Ser ser Pro Lys Arg Lys Arg Gly Arg Lys 225 230 235 240 Thr Tyr lie val <2iO> 53 <211> 578 <212> PRT <213> Lolium perenne <400> 53 Met Ala lie Ala Ala Ala Ala Ala Leu Leu pro Leu His Leu Gly Cys 1 5 10 15 Ser Asp Ala Ala Pro Arg Arg pro Gly Asn ser Leu Arg Ala His Leu 20 25 30 Arg Lys Gly Gly lie Arg Gly Arg Arg Arg Ser Pro Pro cys Ala val 35 40 45 Asn ser Leu His Pro Ser Gly Asn Pro Lys Thr Pro Gly Gly Gly Asp 50 55 .60 Val Gly Gly Ala Trp Gly Leu Asn Gly Gly Ala Thr Ala Lys Pro Asp 65 70 75 80 His Ala Pro Pro Ser Gin Arg Arg Arg Ala Pro Arg Asp val Glu Glu 85 90 95 Glu Ala Trp Ala Leu Leu Arg Glu ser Val val ser Tyr cys Gly ser 100 105 U0 • Pro val Gly Thr lie Ala Ala Cys Asp Pro Asn Asp Ala ser Pro Leu 115 120 . 125 Asn Tyr Asp Gin Val Phe lie Arg Asp Phe val Pro ser Gly val Ala 130 - 135 140 Phe Leu Leu Lys Gly Glu His Glu lie Val Arg Asn Phe lie Leu His 145 150 155 160 Thr Leu Gin Leu Gin ser Trp Glu Lys thr lie Asp cys His ser Pro 165 170 175 Gly Gin Gly Leu Met Pro Ala ser phe Lys val Arg val val Pro Leu 180 185 190 Asp Gly Gly Asp Asp Gly Ala Thr Glu Glu val Leu Asp Pro Asp Phe 195 200 205 Gly Glu Ala Ala lie Gly Arg val Ala Pro val Asp ser Gly Leu Trp 210 215 220 Trp lie lie Leu Leu Arg Ala Tyr Gly Lys cys ser Gly Asp Leu ser 225 230 235 240 Phe His Glu Arg val Asp val Gin Thr Gly lie Lys Leu lie Leu Lys 245 250 255 Leu cys Leu Ala Asp Gly phe Asp Met Phe pro Thr Leu Leu val Thr 260' 265 270 Asp Gly ser cys Met Met Asp Arg Arg Met Gly lie His Gly His Pro 275 280 285 Leu Glu lie Gin Ala Leu Phe Tyr Ser Ala Leu Leu ser Ala Arg Glu page 35 WO 03/093464 PCT/NZ03/00081 290 295 300 Met Leu Thr Pro Glu Asp Gly ser Ala Asp Leu lie Arg Ala Leu Asn 305 310 315 320 Ser Arg Leu Met Ala Leu ser Phe His lie Arg Glu Tyr Tyr Trp Leu 325 330 335 Glu Lys Arg .Lys Leu Asn Glu lie Tyr Arg Tyr Lys Thr Glu Glu Tyr 340 345 350 Ser Tvr Asp Ala val Asn Lys Phe Asn lie Tyr pro Asp Gin lie Pro 355 360 365 Pro Trp Leu val Glu Trp lie Pro Pro Lys Gly Gly Tyr Phe lie Gly 370 .375 380" * Asn Leu Gin Pro Ala His Met Asp phe Arg Phe Phe ser Leu Gly Asn 385 390 395 400 Leu Trp ser lie Val ser Ser Leu Ala Thr Ala Asp Gin ser His Ala 405 410 • 415- lie Leu Asp Leu val Glu Ala Lys Trp Ser Asp Leu val Ala Glu Met 420 425 430 Pro Met Lys lie cys Tyr Pro Ala Leu Glu Asp Gin Glu Trp Lys Phe 435 440 445 lie Thr Gly Ser Asp Pro Lys Asn Thr Pro Trp Ser Tyr His Asn Gly 450 455 460 Gly Ser Trp Pro Thr Leu Leu Trp Gin Leu Thr val Ala cys lie Lys 465 "470 475 480 Met Asn Arg Pro Glu lie Ala Ala Arg Ala val Glu val Ala Glu Ser 485 490 495 Arg lie ser Met Asp Lys Trp Pro Glu Tyr Tyr Asp Thr Lys Arg Gly 500 505 -510 Arg Phe lie Gly Lys Gin Ala Arg Leu Phe Gin Thr Trp ser lie Ala • 515 520 525 Gly Phe Leu val Ala Lys Leu Leu Leu Glu Asn Pro Glu Lys Ser Arg 530 535 540 lie Leu Trp Asn Asn Glu Asp. Glu Glu lie Leu Asn Ala Leu Ser Leu 545 550 555 560 Met Thr Gly Pro ser ser Pro Lys Arg Lys Arg Gly Arg Lys Thr Tyr 565 570 575 lie val <210> 54 <211> 619 <212> PRT <213> Lolium perenne <400> 54 . Met Asn Gly Gin Thr Thr Met Gly Leu Ala Ala Ala Ala Ala Ala Ala 1 5 10 15 val Arg pro cys Arg Arg Arg Leu Leu Ser ser Ala ser Ala Ala Ala 20 25 30 Ala Ala Lys Ala ser Ala Thr Pro Leu Phe Pro Arg cys ser His Pro 35 40 45 Gin His Gin Gin His Ser Arg Arg lie Pro Phe Leu Val ser Ala Ala 50 55 60 ser His Thr ser Gin Ser Asp Pro ser Thr Thr pro Thr Pro val Thr 65 70 75 80 Ser Asp Pro Arg Ser Ala val Ala Gly Asn Leu Pro Phe Phe Asp Arg 85 90 95 val Leu phe Pro Gly ser Phe Pro Leu Glu Thr Pro pro Val Glu Glu 100 105 110 Pro Ala Pro Ala pro Pro Ala Asp gIu Ala Gin Ala ser Ala Ser pro 115 120 125 val Arg Glu Glu ser Asp Thr Glu Arg Glu Ala Trp Arg Leu Leu Arg 130 135 140 . „ , Arg Ala val Val Ser Tyr cys Gly Asp Pro val Gly Thr Val Ala Ala 145 150 155 160 Glu Asp Pro Glu cys Thr Glu Met Leu Asn Tyr Asp Gin Val Phe lie • 165 170 „ 175 Arg Asp Phe val Pro ser Ala Leu Ala Phe Leu Met Arg Gly Glu Thr 180 185 190 Page 36 WO 03/093464 PCT/NZ03/00081 Glu lie Val Arg Asn Phe Leu Leu His Thr Leu Gin Leu Gin Ser Trp 195 200 205 Glu Lys Thr val Asp Cys Tyr ser Pro Gly Gin Gly Leu Met Pro Ala 210 215 220 Ser Phe Lys lie Lys Thr Val Pro Leu Asp Glu Asn Asn Glu Ala Phe 225 230 235 240 Glu Glu val Leu Asp Pro Asp Phe Gly Glu Ser Ala lie Gly Arg val 245 250 255 Ala Pro val Asp Ser Gly Leu Trp Trp lie lie Leu Leu Arg Ala Tyr 260 265 . 270 Cys Lys Phe Thr Gly Asp Tyr ser Leu Gin Glu Arg val Asp Val Gin 275 280 285 Thr Gly lie Lys Leu lie Leu Ser Leu cys Leu Thr Asp Gly Phe Asp 290 295 300 Met Phe Pro Thr Leu Leu Val Thr Asp Gly ser cys Met lie Asp Arg 305 310 315 320 Arg Met Gly lie His Gly His Pro Leu Glu lie Gin Ala Leu Phe Tyr 325 . 330 335 ser Ala Leu Arg cys ser Arg Glu Met lie val Met Asn Asp Gly ser 340 . 345 350 Lys His Leu Leu Gin Ala lie Asn Asn Arg Leu Ser Ala Leu Ser Phe 355 360 365 His lie Arg Glu Tyr Tyr Trp val Asp Met Lys Lys lie Asn Glu lie 370 375 380 Tyr Arg Tyr Lys Thr Glu Glu Tyr Ser His Asp Ala Thr Asn Lys phe 385 390 395 400 Asn lie Tyr Pro Glu Gin lie Pro Ser Trp Leu val Asp Trp val Pro 405 410 415 Glu Lys Gly Gly Tyr Leu lie Gly Asn Leu Gin pro Ala His Met Asp 420 425 430 Phe Arg Phe Phe ser Leu Gly Asn Leu Trp Ala lie Ser ser ser Leu 435 440 445 Thr Thr Pro Thr Gin Ala Glu Gly lie Leu ser Leu lie Glu Glu Lys 450 455 460 Trp Asp Asp Leu Val Ala Asn Met Pro Leu Lys lie cys Tyr Pro Ala 465 470 475 . 480 Met Glu Asp Asp Glu Trp Arg lie val Thr Gly ser Asp pro Lys Asn 485 490 495 Thr Pro Trp Ser Tyr His Asn Gly Gly Ser Trp Pro Thr Leu Leu Trp. 500 505 510 . Gin Phe Thr Leu Ala Cys lie Lys Met Gly Arg Pro Glu Leu Ala Arg 515 520 525 Arg Ala lie Ala Val Ala Glu Glu Lys Leu ser Ala Asp Lys Trp Pro 530 535 540 Glu Tyr Tyr Asp Thr Arg Ser Gly Arg Phe val Gly Lys Gin ser Arc 545 550 555 56? Ser Tyr Gin Thr Trp Thr lie Ala Gly Phe Leu Thr ser Lys lie Leu 565 570 575 Leu Glu Asn Pro Glu Leu Ala ser lie Leu Thr cys Asp Glu Asp Leu 580 585 590 Glu Leu Leu Glu Gly cys Ala cys cys Leu ser Lys Arg Thr Arg cys 595 600 605 Ser Arg Arg Val Thr Lys ser Asp lie lie Gly 610 615 <210> 55 <211> 578. <212> PRT <213> Lolium perenne <400> 55 Met Ala He Ala Ala Ala Ala Ala Leu Leu Pro Leu His Leu Gly cys 1 5 10 15 Ser Asp Ala Ala Pro Arg Arg Pro Gly Asn ser Leu Arg Ala His Leu 20 25 30 Arg Lys Gly Gly lie Arg Gly Arg Arg Arg ser pro Pro cys Ala val 35 40 45 Asn Ser Leu His Pro ser Gly Asn Pro Lys Thr pro Gly Gly Gly Asp Page 37 WO 03/093464 PCT/NZ03/00081 50 55 60 val Gly Gly Gly Arg Gly Val Asn Gly Gly Ala Thr Ala Lys Pro Asp 65 70 75 80 His Ala Pro Pro ser Gin Arg Arg Arg Ala Pro Arg Asp val Glu Glu 85 90 95 Glu Ala Trp Ala Leu Leu Arg Glu ser val Val ser Tyr cys Gly ser 100 105 110 Pro val Gly Thr lie Ala Ala cys Asp Pro Asn Asp Ala ser Pro Leu 115 120 125 Asn Tyr Asp Gin val Phe He Arg asp Phe Val Pro Ser Gly Val Ala 130 135 . . 140 Phe Leu Leu Lys Gly Glu His Glu lie Val Arg Asn Phe lie Leu His 145 150 155 160 Thr Leu Gin Leu Gin Ser Trp Glu Lys Thr lie Asp Cys His ser pro 165 170 175 Gly Gin Gly Leu Met Pro Ala ser phe Lys val Arg Val val Pro Leu 1.80 185 190 Asp Gly Gly Asp Asp Gly Ala Thr Glu Glu val Leu Asp Pro Asp Phe 195 • 200 205 Gly'Glu Ala Ala lie Gly Arg Val Ala Pro val Asp Ser Gly Leu Trp 210 215 220 Trp lie lie Leu Leu Arg Ala Tyr Gly Lys Cys Ser Gly Asp Leu ser 225 230 235 240 Phe His Glu Arg Val Asp Val Gin Thr Gly lie Lys Leu lie Leu Lys 245 250 255 Leu cys Leu Ala Asp Gly Phe Asp Met Phe Pro Thr Leu Leu Val Thr 260 265 270 Asp Gly Ser cys Met Met Asp Arg Arg Met Gly lie His Gly His Pro 275 280 285 Leu Glu He Gin Ala Leu phe Tyr Ser Ala Leu Leu Ser Ala Arg Glu 290 295 300 Met Leu Thr Pro Glu Asp Gly ser Ala Asp Leu lie Arg Ala Leu Asn 305 310 315 320 Ser Arg Leu Met Ala Leu ser Phe His lie Arg Glu Tyr Tyr Trp Leu 325 330 335 Glu Lys Arg Lys Leu Asn Glu lie Tyr Arg Tyr Lys Thr Glu Glu Tyr 340 345 350 Ser Tyr Asp Ala Val Asn Lys Phe Asn lie Tyr pro Asp Gin lie Pro 355 360 365 pro Trp Leu .val Glu Trp lie Pro Pro Lys Gly Gly Tyr phe He Gly 370 375 380 Asn Leu.Gin Pro Ala His Met Asp phe Arg Phe Phe Ser Leu Gly Asn 385 390 395 . 400 Leu Trp .Ser lie val Ser Ser Leu Ala Thr Ala Asp Gin ser His Ala 405 410 415 lie Leu Asp Leu Val Glu Ala.Lys Trp Ser Asp Leu Val Ala Glu Met 420 425 ■ 430 pro.Met Lys xle Cys Tyr pro Ala Leu Glu Asp Gin Glu Trp Lys Phe 435 440 445 lie Thr Gly ser Asp Pro Lys Asn,Thr Pro Trp ser Tyr His Asn Gly 450 455 460 Sly ser Trp Pro Thr Leu Leu Trp Gin Leu Thr Val Ala cys lie Lys 465 '470 475 480 Met Asn Arg Pro Glu lie Ala Ala Arg Ala Val Glu Val Ala Glu ser 485 490 495 Arg lie ser Thr Asp Lys Trp Pro Glu Tyr Tyr Asp Thr Lys Arg Gly 500 505 510 Arg Phe lie Gly Lys Gin Ala Arg Leu Phe Gin Thr Trp ser lie Ala 515 520 525 Gly Phe Leu Val Ala Lys Leu Leu Leu Glu Asn Pro Glu Lys ser Arg 530 535 540 lie Leu Trp Asn Asn Glu Asp Glu Glu lie Leu Asn Ala Leu Ser Leu 545 550 555 560 Met Thr Gly Pro Ser Ser Pro Lys Arg L^s Arg Gly Arg Lys Thr Tyr lie val 565 575 Page 38 WO 03/093464 PCT/NZ03/00081 <210> 56 <211> 554 <212> PRT <213> Lolium perenne <400> 56 "Met Lys Arg val ser Ser His val ser lie Ala ser Glu Ala Glu lie 1 5 10 15 Asn Leu Asp Leu ser Arg Leu Leu lie Asp Lys Pro Arg Tyr Thr Leu 20 - 25 30 Glu Arg- Lys Arg ser Phe Asp Glu Gin Ser Trp ser Glu Leu thr His 35 .40 45 Thr His Arg Gin'Asn Asp Gly Phe Asp Ser Val Leu Gin Ser Pro Ala 50 55 60 Phe Arg Thr Gly Phe Asp Ser Pro phe Ser Met Gly Thr His Phe Gly 65 70 75 80 Glu Pro Ser Gly Pro His Pro Leu val Asn Glu Ala Trp Glu Ala Leu 85 90 95 Arg Lys ser val Val Tyr Phe Arg Gly Gin pro val Gly Thr lie Ala 100 105 110 Ala val Asp His Ala ser Glu Glu val Leu Asn Tyr Asp Gin Val Phe- 115 120 125 Val Arg Asp Phe Val Pro ser Ala Leu Ala Phe Leu Met Asn Asn Glu 130 135 140 Pro Glu lie val Lys Asn phe Leu Leu Lys Thr Leu His Leu Gin ser 145 150 155 160 ser Glu Lys Met Val Asp Arg Phe Lys Leu Gly Ala Gly Ala Met Pro 165 170 175 Ala Ser Phe Lys val Asp Arg Asn Lys Ser Arg Asn Thr Glu Thr Leu 180 185 190 Val Ala Asp Phe Gly jGlu ser Ala lie Gly Arg Val Ala Pro Val Asp 195 200 205 ser Gly Phe Trp Trp lie lie Leu Leu Arg Ala Tyr Thr Lys Tyr Thr 210 215 220 Gly Asp Ala ser Leu Ser Glu Ser Pro Asp cys Gin Lys cys Met Arg 225 230 235 240 Leu lie Leu Asn Leu Cys Leu Ser Glu Gly Phe Asp Thr Phe Pro Thr 245 250 . 255 Leu Leu Cys Thr Asp Gly cys Ser Met lie Asp Arg Arg Met Gly lie "260 265 270 Tyr Gly Tyr Pro lie Glu lie (Sin Ala Leu phe Tyr Met Ala Leu Arg 275 280 285 cys Ala Leu Gin Met Leu Lys Pro Asp Gly Glu Gly Lys Asp Phe lie 290 295 300 Glu Lys lie Gly Gin Arg Leu His Ala Leu Thr Tyr His Met Arg Asn 305 310 315 320 Tyr Phe Trp Leu Asp Phe pro His Leu Asn Asn He Tyr Arg Tvr Lys 325 330 335 Thr Glu Glu Tyr Ser His Thr Ala val Asn Lys Phe Asn Val lie Pro 340 345 350 Asp Ser lie Pro Asp Trp val Phe Asp Phe Met Pro cys Arg Gly Gly 355 360 36J Tyr Phe Leu Gly Asn Val ser Pro Ala Met Met Asp Phe Arg Trp Phe 370 375 380 Ala Leu Gly Asn Cys lie Ala lie lie ser ser Leu Ala Thr Pro Glu 385 390 395 ' 400 Gin Ser ser Ala lie Met Asp Leu He Glu Glu Arg Trp Asp Glu Leu 405 410 415 Val Gly Glu Val Pro Leu Lys lie cys Tyr Pro Ala lie Glu Asn His 420 425 430 Glu Trp Arg lie lie Thr Gly cys Asp Pro Lys Asn Thr Arg Trp Ser 435 440 445 Tyr His Asn Gly Gly Ser Trp Pro val Leu Leu Trp Leu Leu Thr Ala 450 455 460 Ala cys lie Lys Thr Gly Arg Pro Gin Met Ala. Lys Arg Ala He Glu 465 470 475 480 Leu ser Glu Ala Arg Leu Leu Lys Asp Gly Trp Pro Glu Tyr Tyr Asp 485 490 495 Page 39 WO 03/093464 PCT/NZ03/00081 Gly Lys Lieu Gly Lys Phe Val Gly Lys Gin Ala Arg Lys phe Gin Thr 500 505 510 Trp ser lie Ala Gly Tyr Leu val Ala Arg Met Met Leu Glu Asp pro 515 520 525 ser Thr Leu Met Met lie ser Met Glu Glu Asp Arg Pro val Lys Pro 530 535 540 Thr Met Arg Arg Ser Ala Ser Trp Asn Ala 545 550 <210> 57 <211> 552 <212> PRT <213> Lolium perenne <400> 57 Met Glu Ala Pro Gly Gly Gly Ala Gly Pro Met pro Thr Thr Pro ser 1 5 10 15 His Ala Ser lie Ala Asp Ser Asp Asp Phe Asp Leu ser Arg Leu Leu 20 25 30 Asn His Arg Pro Arg lie Asn val Glu Arg Gin Arg ser Phe Asp Asp 35 40 45 Arg ser Leu Gly Asp Leu Tyr Leu ser Ala Met Asp ser Arg Gly Gly 50 55 60 Tyr Met Asp ser Tyr Asp ser Met Tyr Ser Pro Gly Gly Gly Leu Arg 65 70 75 80 Ser Leu Thr Gly Thr Pro Ala Ser ser Thr Arg Leu ser Phe Glu Pro 85 90 95 Gin Leu Leu Val Ala Glu Ala Trp Glu Ala Leu Arg Arg ser Leu Val 100 105 110 cys Phe Arg Gly Glu pro Leu Gly Thr lie Ala Ala val Asp Ser ser 115 120 125 Ser Asp Glu Val Leu Asn Tyr Asp Gin Val Phe Val Arg Asp Phe val 130 135 140 Pro ser Ala Leu Ala Phe Leu Met Asn Gly Glu Pro Asp lie val Lys 145 150 155 160 Asn Phe Leu Leu Lys Thr Leu Leu Leu Gin Gly Trp Glu Lys Arg lie 165 170 175 Asp Arg Phe Lys Leu Gly Glu Gly Ala Met pro Ala ser Phe Lys val 180 185 190 Leu Lys Asp Pro Lys Arg Gly Val Asp Thr Leu Ala Ala Asp Phe Gly 195 200 205 Glu ser Ala lie Gly Arg val Ala pro Ala Asp ser Gly Phe Trp Trp 210 215 "220 lie lie Leu Leu Arg Ala Tyr Thr Lys ser Thr Gly Asp Leu Thr Leu 225 230 235 240 Ala Glu Thr pro Glu cys Gin Lys Gly lie Arg Leu lie Met Asn Gin 245 - 250 255 cys Leu Ala Glu Gly Phe Asp Thr phe Pro Thr Leu Leu cys Ala Asp 260 265 270 Gly cys cys Met lie Asp Arg Arg Met Gly val Tyr Gly Tyr pro lie 275 280 285 Glu lie Gin Ala Leu Phe phe Met ser Leu Arg cys Ala Leu Leu Leu 290 295 300 Leu Lys pro Ala val Glu Gly Asn ser ser ser Lys Asp Asp Asp lie 305 310 315' 320 • Met Glu Arg lie val Thr Arg Leu His Ala Leu ser Tyr His Met Arg 325 330 335 Ser Tyr Phe Trp Leu Asp Phe Gin Gin Leu Asn val lie Tyr Arg phe 340 345 350 Lys Thr Glu Glu Tyr ser His Thr Ala Val Asn Lys Phe Asn val He 355 360 365 Pro Glu Ser lie Pro Asp Trp Leu Phe Asp Phe Met Pro Ser Arg Gly 370 375 380 Gly Tyr Phe Val Gly Asn Val Ser Pro Ala Arg Met Asp Phe Arg Trp 385 390 395 400 Phe Ala Leu Gly Asn cys val Ala lie Leu Ala ser Leu Ala Thr Pro 405 410 415 Glu Gin Ala Gly Ala He Met Asp Leu lie Glu Glu Arg Trp Glu Asp Page 40 WO 03/093464 PCT/NZ03/00081 420 425 430 Leu lie Gly Glu Met Pro Leu Lys lie cys Tyr Pro Thr He Glu Gly 435 440 445 His Glu Trp Gin Asn Val Thr Gly cys Asp Pro Lys Asn Thr Arg Trp 450 455 460 Ser Tyr His Asn Gly Gly ser Trp Pro Val Leu Il§ Trp Leu Leu Thr 465 470 475 480 Ala Ala cys He Lys Thr Gly Arg Leu Lys lie Ala Arg Arg Ala He 485 490 495 Asp Leu Ala Glu Ala Arg Leu Gly Lys Asp Gly Trp Pro Glu Tyr Tyr 500 505 510 Asp Gly Lys Leu Gly Arg Tyr val Gly Lys Gin Ala Arg Lys His Gin 515 520 525 Thr Trp ser lie Ala Gly Tyr Leu Val Ala Lys Met Met Leu Glu Asp 530 535 540 Pro Ser His Leu Gly Met lie Ser 545 550 <210> 58 <211> 562 <212> PRT <213> Lolium perenne <400> 58 Met Glu Phe Gly Ala Pro Gly Gly Met Arg Arg Ser Ala ser His Asn .15 10 15 Ser Leu ser Gly ser Asp Asp Phe Asp Leu Thr His Leu Leu Asn Lys 20 25 30 Pro Arg lie Asn Val Glu Arg Gin Arg ser Phe Asp Asp Arg Ser Leu 35 40 45 Ser Asp val ser Tyr ser Gly Gly Gly His Ala Arg Gly Ala Gly Gly 50 55 60 Gly Phe Asp Gly Met Tyr ser Pro Gly Gly Gly Leu Arg ser Leu Val 65 70 75 80 Gly Thr Pro Ala Ser ser Ala Leu His Ser Phe Glu pro His Pro lie 85 90 95 Val Gly Asp Ala Trp Glu Ala Leu Arg Arg Ser Leu val Phe Phe Arg 100 105 110 Gly Gin Pro Leu Gly Thr lie Ala Ala Tyr Asp His Ala Ser Glu Glu 115 120 125 val Leu Asn Tyr Asp Gin val Phe val Arg Asp Phe Val Pro Ser Ala 130 135 140 Met Ala Phe Leu Met Asn Gly Glu Pro Glu lie Val Lys Asn Phe Leu 145 150 .155 160 Leu Lys Thr val Leu Leu Gin Gly Trp Glu Lys Lys val Asp Arg Phe 165 .170 " 175 Lys Leu Gly Glu Gly Ala Met Pro Ala ser Phe Lys Val Leu His Asp 180 185 190 Asp Lys Lys Gly Val Asp Thr Leu His Ala Asp Phe Gly Glu ser Ala 195 200 .205 lie Gly Arg val Ala Pro val Asp ser Gly Phe Trp Trp lie lie Leu Z10 215 220 Leu Arg Ala Tyr Thr Lys Ser Thr Gly Asp Leu Thr Leu Ala Glu Lys 225 230 235 240 Pro Glu cys Gin Lys Ala Met Arg Leu lie Leu ser Leu Cys Leu Ser 245 ^250 255 Glu Gly phe Asp Thr phe Pro Thr Leu Leu Cys Ala Asp Gly cys cys 260 265 270 Met lie Asp Arg Arg Met Gly val Tyr Gly Tyr Pro lie Glu He Gin Z7s 280 285 . Ser Leu Phe Phe Met Ala Leu Arg cys Ala Leu Leu Met Leu Lys His 290 295 300 Asp Asn Glu Gly Lys Asp phe val Glu Arg lie Ala Thr Arg Leu His 305 310 315 320 Ala Leu ser Tyr His Met Arg Ser Tyr Phe Trp Leu Asp phe Gin Gin 325 330 335 Leu Asn Asp He Tyr Arg Tyr Lys Thr Glu Glu Tyr ser His Thr Ala 340 345 350 Page 41 WO 03/093464 PCT/NZ03/00081 Val Asn Lys Phe Asn Val He Pro Asp ser lie "pro Asp Trp Leu Phe 355 360 365 Asp Phe Met Pro cys Glu Gly Gly phe Phe Val Gly Asn val Ser pro 370 375 380 Ala Arg Met Asp Phe Arg Trp Phe Ala Leu Gly Asn Met lie Ala lie 385 390 395 400 Val ser ser Leu Ala Thr Pro Glu Gin Ser Thr Ala lie Met Asp Leu 405 410 415 Xle Glu Glu Arg Trp Glu Glu Leu xle Gly Glu Met Pro Leu Lys lie 420 425 430 Cys Tyr Pro Ala Xle Glu Asn His Glu Trp Arg lie Val Thr Gly Cys 435 440 445 Asp Pro Lys Asn Thr Arg Trp ser Tyr His Asn Gly Gly Ser Trp Pro 450 455 460 Val Leu Leu trp Leu Leu Thr Ala Ala Ser lie Lys Thr Gly Arg pro 465 470 475" 480 Gin lie Ala Arg Arg Ala lie Asp Leu Ala Glu Arg Arg Leu Leu Lys 485 490 495 Asp Gly Trp Pro Glu Tyr Tyr Asp Gly Lys Leu Gly Lys Tyr Val Gly 500 505 510 Lys Gin Ala Arg Lys Phe Gin Thr Trp ser Xle Ala Gly Tyr Leu Val 515 520 525 Ala Lys Met Leu Leu Glu Asp Pro Ser His Leu Gly Met Xle Ala Leu 530 535 540 Glu Glu Asp Lys Ala Met Lys pro val Leu Arg Arg Ser Ala ser Trp 545 550 555 560 Thr Asn <210> 59 <211> 616 <212> PRT k . <213> Lolium perenne <400> 59 Met Asp Ser Asp Tyr Gly Val Pro Arg Glu Leu ser G7u Va7 Gin Lys 1 5 10 15 Lys Arg Thr Leu Tyr Gin pro Asp Leu Pro Pro cys Leu Gin Gly Thr 20 25 .30 Thr val Arg val Glu Tyr Gly Asp val Ala xle Ala Ala Asp Pro Ala 35 40 45 Gly Ala His Val Xle ser His Ala Phe Pro His Thr Tyr Gly Gin Pro 50 55 60 Leu Ala His Phe Leu Arg Lys Ala Ala Asn Val Ala Asp Ala Lys Val 65 70 75 80 Xle ser Glu His Pro Ala val Arg val Gly lie val Phe cys Gly Arg 85 90 95 Gin ser Pro Gly Gly His Asn val lie Trp Gly Leu His Asp Ala lie 100 105 110 Lys Ala His Asn Pro Asn ser Lys Leu lie Gly Phe Leu Gly Gly ser 115 120 125 Asp Gly Leu Leu Ala Gin Lys Thr Leu Glu Xle Thr Asp Glu val Leu 130 135 140 Ser Ser Tyr Lys Asn Gin Gly Gly Tyr Asp Met Leu Gly Arg Thr Lys 145 150 155 160 Asp Gin lie Arg Thr Thr Glu Gin val Asn Gly Ala Met Ala Ser cys 165 170 175 Gin Ala Leu Lys Leu Asp Ala Leu Xle lie lie Gly Gly val Thr ser 180 185' 190 Asn Thr Asp Ala Ala Gin Leu Ala Glu Thr Phe Ala Glu Ala Lys cys 195 200 205 Ala Thr Lys val val Gly Val Pro val Thr Leu Asn Gly Asp Leu Lys 210 215 220 , Asn Gin Phe Val Glu Thr Thr Val Gly Phe Asp Thr Xle cys Lys val 225 230 235 240 Asn ser Gin Leu xle ser Asn Met cys Thr Asp Ala Leu ser Ala Glu 245 250 . 255 Lys Tyr Tyr Tyr Phe He Arg Met Met Gly Arg Lys Ala ser His val Page 42 WO 03/093464 PCT/NZ03/00081 260 265 270 Ala Leu Glu cys Ala Leu Gin Ser His Pro Asn Met val lie Leu Gly 275 280 285 Glu Glu val Ala Ala ser Lys Leu Thr He Phe Asp lie Thr Lys Gin 290 295 300 lie Cys Asp Ala val Gin Ala Arg Ala Glu Lys Asp Lys Asn His Gly 305 310 • 315 320 Val lie Leu lie Pro Glu Gly Leu val Glu ser xle Pro Glu Leu Tyr 325 330 335 Ala Leu Leu Gin Glu lie Asn Gly Leu His Gly Lys Gly Val Ser lie 340 345 350 Glu Asn lie Ser Ser Gin Leu Ser Pro Trp Ala ser Ala Leu Phe Glu 355 360 365 Phe Leu Pro Gin Phe lie Arg Gin Gin Leu Leu Leu Arg Pro Glu Ser 370 375 380 Asp Asp ser Ala Gin Leu Ser Gin lie Glu Thr Glu Lys Leu Leu Ala 385 390 395 400 Gin Leu Val Glu Thr Glu Met Asn Lys Arg Leu Lys Glu Gly Thr Tyr 405 410 415 Lys Gly Lys Lys Phe Asn Ala lie cys His Phe phe Gly Tyr Gin Ala 420 425 430 . Arg Gly Ala Met Pro ser Lys Phe Asp Cys Asp Tyr Ala Tyr val Leu 435 440 445 Gly His val Ser Tyr His xle Leu Ala Ala Gly Leu Asn Gly Tyr Met 450 455 460 Ala Thr Val Thr Asn Leu Lys Ser Pro Leu Asn Lys Trp Arg Cys Gly 465 470 475 480 Ala Ala Pro lie Ser Ser Met Met Thr val Lys Arg Trp Ser Arg Gly 485 490 495 pro ser Thr Thr Gin lie Gly Lys Pro Ala val His Met Ala Ser Val 500 505 510 Asp Leu Arg Gly Lys Ala Tyr Glu Leu Leu Arg Gin Asn ser Ser Ser 515 520 525 cys Leu Leu Glu Asp lie Tyr Arg Asn Pro Gly Pro Leu Gin Phe Glu 530 535 . 540 Gly Pro Gly ser Asp Ser Lys Pro lie Ser Leu cys val Glu Asp Gin 54.5 550 555 560 Asp Tyr Met Gly Arg lie Lys Lys Leu Gin Glu Tyr Leu Glu Lys val 565 570 575 Lys ser lie val Lys Pro Gly cys ser Gin Asp Val Leu Lys Ala Ala 580 585 590 Leu ser Ala Met Ser ser Val Thr Asp Thr Leu Ala Xle Met Thr ser 595 600 605 ser ser Thr Gly Gin Ala Pro Leu 610 615 <210> 60 <211> 616 <212> PRT <213> festuca arundinacea <400> 60 Met Asp Ser Asp Tyr Gly .val Pro Arg Glu Leu ser Glu val Gin Lys 1 5 10 15 Lys Arg Thr Leu Tyr Gin pro Glu Leu Pro Pro cys Leu Gin Gly Thr 20 25 30 Thr Val Arg val Glu Tyr Gly Asp val Ala Xle Ala Ala Asp Pro Ala 35 40 45 Gly Ala His Val Xle ser His Ala Phe Pro His Thr Tyr Gly Gin Pro 50 55 60 Leu Ala His Phe Leu Arg Lys Ala Ala Asn val Ala Asp Ala Lys val 65 70 75 80 lie Ser Glu His Pro Ala val Arg val Gly lie Val Phe cys Gly Arg 85 90 95 Gin ser Pro Gly Gly His Asn Val lie Trp Gly Leu His Asp Ala lie 100 105 110 Lys Ala His Asn Ser Asn Ser Lys Leu lie Gly Phe Leu Gly Gly Ser 115 '120 125 Page 43 WO 03/093464 PCT/NZ03/00081 Asp Glv Leu Leu Ala Gin Lys Thr Leu Glu lie Thr Asp Glu val Leu 130 135 140 Ser ser Tyr Lys Asn Gin Gly Gly Tyr Asp Met Leu Gly Arg Thr Lys 145 150 155 160 Asp Gin lie Arg Thr Thr Glu Gin val Asn Gly Ala Met Ala ser cys 165 170 175 Gin Asp Leu Lys Leu Asp Ala Leu lie lie lie Gly Gly val Thr ser 180 185 190 Asn Thr Asp Ala Ala Gin Leu Ala Glu Thr Phe Ala Glu Ala Lys cys 195 200 205 Ala Thr Lys val Val Gly val Pro val Thr Leu Asn Gly Asp Leu Lys 210 2l5 220 Asn Gin Phe val Glu Thr Thr val Gly Phe Asp Thr lie Cys Lys val 225 230 235 240 Asn Ser Gin Leu lie ser Asn Met Cys Thr Asp Ala Leu Ser Ala Glu 245 250 255 Lys Tyr Tyr Tyr Phe lie Arg Met Met Gly Arg Lys Ala ser His val 260 265 270 Ala Leu Glu cys Ala Leu Gin Ser His Pro Asn Met Val lie Leu Gly 275 280 285 Glu Glu Val Ala Ala Ser Lys Leu Thr He Phe Asp lie Thr Lys Gin 290 295 300 lie cys Asp Ala val Gin Ala Arg Ala Glu Lys Asp Lys Asn His Gly 305 310 315 320 val lie Leu lie Pro Glu Gly Leu Val Glu Ser lie Pro Glu Leu Tyr 325 330 335 Ala Leu Leu Gin Glu lie Asn Gly Leu His Gly Lys Gly val Ser lie 340 345 350 Glu Asn Xle ser Ser Gin Leu ser Pro Trp Ala ser Ala Leu Phe Glu 355 360 365 phe Leu Pro Gin Phe Xle Arg His Gin Leu Leu Leu Arg Pro Glu ser 370 375 380 Asp Asp Ser Ala Gin Leu ser Gin lie Glu Thr Glu Lys Leu Leu Ala 385 390 395 400 Gin Leu Val Glu Thr Glu Met Asn Lys Arg Leu Lys Glu Gly Thr Tyr 405 410 415 Lys Gly Lys Lys Phe Asn Ala lie cys His Phe phe Gly Tyr Gin Ala 420 425 430 Arg Gly Ala Met Pro ser Lys Phe Asp cys Asp Tyr Ala Tyr val Leu 435 440 445 Gly His val ser Tyr His lie Leu Ala Ala Gly Leu Asn Gly Tyr Met 450 455 460 Ala Thr val Thr Asn Leu Lys ser pro Leu Asn Lys Trp Arg cys Gly 465 470 475 480 Ala Ala Pro lie ser ser Met Met Thr Val Lys Arg Trp ser Arg Gly 485 490 495 Pro Ser Thr Thr Gin lie Gly Lys pro Ala Met His Met Ala Thr val 500 505 510 Asp Leu Arg Gly Lys Ala Tyr Glu Leu Leu Arg Gin Asn Ser Ser Ser 515 520 525 Tyr Leu Leu Glu Asp xle. Tyr Arg Asn Pro Gly pro Leu Gin Phe Glu 530 535 540 Gly Pro Gly Ala Asp ser Lys Pro lie Ser Leu cys val Glu Asp Gin 545 550 555 560 Asp Tyr Met Gly Arg xle Lys Lys Leu Gin Glu Tyr Leu Glu Lys Val 565 570 5/5 Lys Ser lie val Lys Pro Gly Cys Ser Gin Asp val Leu Lys Ala Ala 580 585 590 Leu ser Ala Met Ser Ser val Thr Glu Thr Leu Ala'lie Met Thr ser 595 600 605 ser ser Thr Gly Gin Ala pro Leu 610 615 <210> 61 " <211>. 563 <212> PRT <213> Lolium perenne Page 44 WO 03/093464 PCT/NZ03/00081 <40Q> 61 Met Ala Ala Ala Ala Val Ala Thr ser Asn Gly Ala ser Ala Asn Gly 1 5 10 15 pro Thr Pro Gly Arg Leu Ala ser Val Tyr ser Glu Val Gin Thr ser 20 25 30 Arg lie Ala His Ala Leu Pro Leu Pro ser Val Leu Arg ser His Phe 35 40 45 Thr Leu Ala Asp Gly Ala Ala ser ser Ala Thr Gly Asn Pro Glu Glu 50 55 60 lie Ala Lys Leu Phe Pro Asn Leu Tyr Gly Gin Pro Ser Ala Ala Val 65 70 75 80 val Pro ser Ala Gin Pro val Ala Thr Lys Pro Leu Lys lie Gly val 85 90 95 Val Leu ser Gly Gly Gin Ala Pro Gly Gly His Asn Val lie cys Gly 100 105 110 lie Phe Asp Tyr Leu Gin Glu Arg Ala Lys Gly Ser Thr Met Tyr Gly 115 120 125 Phe L^s Gly Gly Pro Ala Gl^ val Met Lys Gly Lys Tyr val Glu Leu Asn Ala Asp phe val Tyr pro Tyr Arg Asn Gin Gly Gly Phe Asp Met 145 150 ' 155 160 lie cys Ser Gly Arg Asp Lys lie Glu Thr Pro Glu Gin Phe Lys Gin 165 170 175 Ala Glu Asp Thr val Thr Lys Leu Asp Leu Asp Gly Leu val val lie 180 185 190 Gly Gly Asp Asp Ser Asn Thr Asn Ala Cys Leu Leu Gly Glu Tyr phe 195 200 205 Arg Gly Arg Asn Leu Lys Thr Arg val lie Gly cys Pro Lys Thr lie 210 215 220 Asp Gly Asp Leu Lys Cys Lys Glu Val Pro Thr Ser Phe Gly Phe Asp 225 230 235 240 Thr Ala Cys Lys He Tyr ser Glu Met xle Gly Asn Val Met Thr Asp 245 250 255 Ala Arg ser Thr Gly Lys Tyr Tyr His Phe Val Arg Leu Met Gly Arg . 260 265 270 Ala Ala Ser His lie Thr Leu Glu cys Ala Leu Gin Thr His Pro Asn 275 280 285 Val ser Leu lie Gly Glu Glu val Ala Glu Lys Lys Glu Thr Leu Lys 290 295 300 Gin Val Thr Asp Tyr lie Thr Asp Val lie cys Lys Arg Ala Glu Leu 305 310 315 320 Gly Tyr Asn Tyr Gly Val lie Leu xle Pro Glu Gly Leu lie Asp Phe 325 330 335 xle Pro Glu val Gin Lys Leu lie Ala Glu Leu Asn Glu xle Leu Ala 340 345 350 His Asp Val val Asp Glu Ala Gly Ala Trp Lys Ser Lys Leu Gin Pro 355 360 365 Glu ser Arg Gin Leu Phe Asp Phe Leu Pro Asn Thr lie Gin Glu Gin 370 375 380 Leu Leu Leu Glu Arg Asp pro His Gly Asn val Gin val Ala Lys lie 385 390 395 400 Glu Thr Glu Lys Met Leti lie Ala Met val Glu Thr Glu Leu Glu Lys 405 410 415 Arg Arg ser Ala Gly Lys Tyr Ser Ala His Phe Arg Gly Gin Ser His 420 425 430. phe Phe Gly Tyr Glu Gly Arg Cys Gly Leu pro Thr Asn Phe Asp ser 435 440 445 ser Tyr cys Tyr Ala Leu Gly Tyr Gly Ala Gly Ala Leu Leu Gin Phe 450 455 460 Lys Thr Gly Leu xle ser ser val Gly Asn Leu Ala Ala Pro val 470 475 480 Glu Glu Trp Thr val Gly Gly Thr Pro Leu Thr Ala Leu Met-Asp val 485 490 495 Glu Arg Arg His Gly Lys Phe Lys Pro Val lie Lys Lys Ala Met Val 500 505' 510 • Glu Leu Asp Ala Ala Pro Phe Lys Lys Phe Ala Ser Met Arg Asp Glu 515 520 525 Trp Ala lie Lys Asn Arg -Tyr lie ser Pro Gly Pro lie Gin Phe ser Page 45 WO 03/093464 PCT/NZ03/00081 530 535 540 Gly Pro Gly ser Asp Ala Ser Asn His Thr Leu Met Leu Glu Leu Gly 545 550 555 560 Ala Gin Thr <210> 62 <211> 563 <212> PRT <213> Lolium perenne • <400> 62 Met Ala Ala Ala Ala Val Ala Thr ser Asn Gly Ala Ser Ala Asn Gly 1 5 10 15 Pro Thr Pro Gly Arg Leu Ala Ser val Tyr Ser Glu val Gin Thr ser 20 .25 30 . Arg lie Ala His Ala Leu Pro Leu Pro Ser .Val Leu Arg Ser His Phe 35 -40 45 Thr Leu Ala Asp Gly Ala Ala Ser Ser Ala Thr Gly Asn Pro Glu Glu 50 55 60 • lie Ala Lys Leu Phe pro Asn Leu Tyr Gly Gin pro ser Ala Ala val 65 70 75 80 val Pro Ser Ala Gin Pro val Ala Thr Lys Pro Leu Lys lie Gly val 85 90 95 val Leu ser Gly Gly Gin Ala Pro Gly Gly His Asn Val lie Cys Gly 100 105 110 lie Phe Asp Tyr Leu Gin Glu Arg Ala Lys Gly ser Thr Met Tyr Gly 115 120 125 Phe Lys Gly Gly Pro Ala Gly Val Met Lys Gly Lys Tyr val Glu Leu 130 135 140 Asn Ala Asp Phe val Tyr Pro Tyr Arg Asn Gin Gly Gly Phe Asp Met 145 150 155 160 lie Cys Ser Gly Arg Asp Lys lie Glu Thr Pro Glu Gin Phe Lys Gin 165 170 175 Ala Glu Asp Thr val Thr Lys Leu Asp Leu Asp Gly Leu val Val xle 180 185 190 Gly Gly Asp Asp Ser Asn Thr Asn Ala cys Leu Leu Gly Glu Tyr Phe • 195 200 205 Arg Gly Arg Asn Leu Lys Thr Arg val lie Gly cys Pro Lys Thr xle 210 215 220 Asp Gly Asp Leu Lys cys Lys Glu Val Pro Thr Ser Phe Gly Phe Asp 225 230 235 240 Thr Ala Cys Lys lie Tyr ser Glu Met lie Gly Asn Val Met Thr Asp 245 250 255 Ala Arg Ser Thr Gly Lys Tyr. Tyr His Phe Val Arg Leu Met Gly Arg 260 265 270 Ala Ala ser His xle Thr" Leu Glu cys Ala Leu Gin Thr His Pro Asn 275 280 285 val ser Leu xle Gly Glu Glu val Ala Glu Lys Lys Glu Thr Leu Lys 290 295 300 Gin Val Thr Asp Tyr xle Thr Asp val lie cys Lys Arg Ala Glu Leu 305 3H0 315 320 Gly Tyr Asn Tyr Gly val xle Leu lie Pro Glu Gly Leu lie Asp Phe 325 330 335 xle Pro Glu Val Gin Lys Leu lie Ala Glu Leu Asn Glu lie Leu Ala 340 345 350 His Asp val val Asp Glu Ala Gly Ala Trp Lys Ser Lys Leu Gin Pro 355 360 365 Glu Ser Arg Gin Leu Phe Asp Phe Leu Pro Asn Thr lie Gin Glu Gin 370 375 380 . Leu Leu Leu Glu Arg Asp Pro His Gly Asn Val Gin Val Ala Lys lie 385 390 395 400 Glu Thr Glu Lys Met Leu xle Ala Met Val Glu Thr Glu Leu Glu Lys 405 410 415 Arg Arg ser Ala Gly Lys Tyr ser Ala His Phe Arg Gly Gin Ser His 420 425 430 phe Phe Gly Tyr Glu Gly Arg cys Gly Leu pro Thr Asn phe Asp ser 435 440 445 Page 46 WO 03/093464 PCT/NZ03/00081 ser Tyr cys Tyr Ala Leu Gly Tyr Gly Ala Gly Ala Leu Leu Gin Phe 450 455 460 Gly Lys Thr Gly Leu lie ser ser val Gly Asn Leu Ala Ala Pro val 465 470 475 ' 480 Glu Glu Trp Thr Val Gly Gly Thr Pro Leu Thr Ala Leu Met Asp val 485 490 495 Glu Arg Arg His Gly Lys Phe Lys pro val lie Lys Lys Ala Met Val 500 505 510 Glu Leu Asp Ala Ala Pro Phe Lys Lys Phe Ala ser Met Arg Asp Glu 515 520 525 Trp Ala He Lys Asn Arg Tyr lie ser Pro Gly Pro He Gin Phe ser 530 535 540 Gly Pro Gly ser Asp Ala ser Asn His Thr Leu Met Leu Glu Leu Gly. 545 550 555 560 Ala Gin Thr <210> 63 <211> 563 <212> PRT <213> Festuca arundinacea <400> 63 Met Ala Ala Ala Ala Val Ala Thr ser Asn Gly Ala ser Ala Asn Gly 15 10 15 Pro Thr Pro Gly Arg Leu Ala ser val Tyr Ser Glu Val Gin Thr Ser 20 25 30 Arg He Ala His Ala Leu Pro Leu Pro Ser val Leu Arg Ser Asn Phe 35 40 45 Thr Leu Ala Asp Gly Pro Ala Ser ser Ala Thr Gly Asn Pro Glu Glu 50 55 60 lie Ala Lys Leu Phe Pro Asn Leu Tyr Gly Gin Pro Ser Ala Ala val 65 70 75 80 val Pro Ser Ala Glu Pro val Pro Thr Lys Pro Leu Lys lie Gly Val 85 90 95 val Leu Ser Gly Gly Gin Ala Pro Gly Gly His Asn val lie cys Gly 100 105 110 lie phe Asp Tyr Leu Gin Glu Arg Ala Lys Gly ser Thr Met Tyr Gly 115 120 125 phe Lys Gly Gly Pro Ala Gly lie Met Lys Gly Lys Tyr lie Glu Leu 130 135 140 Asn Ala Asp Phe val Tyr Pro Tyr Arg Asn Gin Gly Gly phe Asp Met 145 150 155 160 lie cys ser Gly Arg Asp Lys lie Glu Thr Pro Glu Gin.phe Lys Gin 165 170 * 175 Ala Glu Asp Thr val Asn Lys Leu Asp Leu Asp Gly Leu val val lie 180 185 190 Gly Gly Asp Asp Ser Asn Thr Asn Ala cys Leu Leu Gly Glu Tyr Phe 195 200 205 Arg Gly Arg Asn Leu Lys Thr Arg val lie Gly cys Pro Lys Thr lie 210 215 220 'Asp Gly Asp Leu Lys Cys Cys <51 u val Pro lie Ser Phe Gly Pfie Asp 225 230 235 240 Thr Ala cys Lys lie Tyr Ser Glu Met lie Gly Asn Val Met Thr Asp 245 250 255 Ala Arg ser Thr Gly Lys Tyr Tyr His Phe Val Arg Leu wet Gly Arg 260 265 270 Ala Ala Ser His lie Thr Leu Glu cys Ala Leu Gin Thr His Pro Asn 275 280 285 val ser Leu lie Gly Glu Glu val Ala Glu Lys Lys Glu Thr Leu Lys 290 295 300 Gin val Thr Asp Tyr lie Thr Asp Val lie cys Lys Arg Ala Glu Leu 305 310 315 320 Gly Tyr Asn Tyr Gly Val lie Leu lie pro Glu Gly Leu lie Asp Phe 325 330 335 , lie pro Glu Val Gin Lys Leu lie Ala Glu Leu Asn Glu lie Leu Ala 340 345 350 His Asp Val Val Asp Glu Ala Gly Ala Trp Lys Ser Lys Leu gin Pro Page 47 WO 03/093464 PCT/NZ03/00081 355 360 365 Glu ser Arg Gin Leu Phe Asp Phe Leu Pro Asn Thr lie Gin Glu Gin 370 375 380 Leu Leu Leu Glu Arg Asp Pro His Gly Asn Val Gin Val Ala Lys lie 385 390 395 400 • Glu Thr Glu Lys Met Leu lie Ala Met Val Glu Thr Glu Leu Glu Lys 405 410 415 Arg Arg Ala Ala Gly Lys Tyr ser Ala His Phe Arg Gly Gin ser His 420 425 430 Phe Phe Gly Tyr Glu Gly Arg Cys Gly Leu Pro-Thr Asn Phe Asp ser 435 440 ' 445 ser Tyr cys Tyr Ala Leu Gly Tyr Gly Ala Gly Ala Leu Leu Gin Phe 450 455 460 Gly Lys Thr Gly Leu lie Ser Ser Val Gly Asn Leu Ala Ala Pro val 465 470 475 480 Glu Glu Trp Thr val Gly Gly Thr Pro Leu Thr Ala Leu Met Asp val 485 490 495 Glu Arg Arg His Gly Lys Phe Lys Pro val He Lys Lys Ala Met val 500 505 510 Glu Leu Asp Ala Ala Pro Phe Lys Lys Phe Ala Ser Met Arg Asp Glu 515 520 525 Trp Ala lie Lys Asn Arg Tyr lie Ser Pro Gly Pro lie Gin Phe ser 530 535 540 Gly pro Gly Ser Asp Ala Ser Asn His Thr Leu Met Leu Glu Leu Gly 545 550 555 560 Ala Gin lie <210> 64 <211> 964 <212> PRT <213> Lolium perenne <400> 64 Met val Gly Asn Asp Asn Trp lie Asn Ser Tyr Leu Asp Ala lie Leu 1 5- 10 15 Asp Ala Gly Lys ser ser lie Gly Gly Asp Arg Pro Ser Leu Leu Leu 20 25 30 Arg Glu Arg cly His Phe Ser Pro Ala Arg Tyr Phe Val Glu Glu val 35 40 45 lie Thr Gly Tyr Asp Glu Thr Asp Leu Tyr Lys Thr Trp Leu Arg Ala 50 55 60 Asn Ala Met Arg ser Pro Gin Glu Arg Asn Thr Arg Leu Glu Asn Met 65 70 75 80 Thr Trp Arg lie Trp Asn Leu Ala Arg Lys Lys Lys Glu Leu Glu Lys 85 90 95 Glu Glu Ala cys Arg Leu Leu Lys Arg His Pro Glu Thr Glu Lys Thr 100 105 110 Arg Thr Asp Ala Thr Ala Asp Met Ser Glu Asp Leu-Phe Asp Gly Glu •115 120 125 Lys Gly Glu Asp Ala Gly Asp Pro ser val Ala Tyr Gly Asp Ser Thr 130 135 140 Thr Gly ser ser Pro Lys Thr ser ser val Asp Lys Leu Tyr lie val 145 150 - 155 160 Leu lie ser Leu His Gly Leu Val Arg Gly Glu Asn Met Glu Leu Gly 165 170 175 Arg Asp Ser Asp Thr Gly Gly Gin Val Lys Tyr Val val Glu Phe Ala 180 185 190 Lys Ala Leu ser Ser ser Pro Gly val Tyr Arg val Asp Leu Leu Thr 195 200 205 Arg Gin He val Ala Pro Asn Phe Asp Arg Ser Tyr Gly Glu Pro Glu 210 215 220 Glu Met Leu val Ser Thr Thr Phe Lys Asn ser Lys His Glu Arg Gly 225 230 235 240 Val Asn ser Gly Gly Tyr lie lie Arg ile Pro Phe Gly Pro L^s Asp Lys Tyr Leu Ala Lys Glu His Met Trp pro Phe lie Gin Asp Phe val 260 265 270 Page 48 WO 03/093464 PCT/NZ03/00081 Asp Gly Ala Leu ser His lie Leu Arg Met ser'Lys Thr He Gly Glu 275 280 . 285 Glu He Gly cys Gly His pro Val Trp Pro Ala val lie His Gly His 290 295 300 Tyr Ala Ser Ala Gly val Ala Ala Ala Leu Leu ser Gly Ala Leu Asn 305 . 310 315 320 Leu Pro Met Ala Phe Thr Gly His Phe Leu Gly Lys Asp Lys Leu Glu 325 330 335 Gly Leu Leu Lys Gin Gly Arg Gin Ser Arg Glu Gin He Asn Met Thr 340 345 350 Tyr Lys lie Met Arg Arg lie Glu Ala Glu Glu Leu ser Leu Asp Ala 355 360 365 ser Glu lie val lie Ala Ser Thr Arg Gin Glu He Glu Glu Gin Trp 370 375 * 380 Asn Leu Tyr Asp Gly Phe Glu val lie Leu Ala Arg Lys Leu Arg Ala 385 • 390 395 400 Arg val Lys Arg Gly Ala Asn Cys Tyr Gly Arg Tyr Met Pro Arg Met 405 410 415 Val lie lie pro Pro Gly Val Glu Phe Gly His val Val His Asp Phe 420 425 430 Asp Met Asp Gly Glu Glu Glu Asn His Gly pro Ala ser Glu Asp Pro 435 440 445 Pro lie Trp ser Gin lie Met Arg Phe Phe Thr Asn Pro Arg Lys Pro 450 455 460 Met lie Leu Ala Val Ala Arg Pro Tyr Pro Glu Lys Asn lie Thr ser 465 470 475 480 Leu Val Lys Ala Phe Gly Glu cys Arg Pro Leu Arg Glu Leu Ala Asn 485 490 495 Leu Thr Leu iTe Met Gly Asn Arg Glu Ala lie Ser Lys Met His Asn 500 505 510 Thr Ser Ala ser Val Leu Thr Ser val Leu Thr Leu lie Asp Glu Tyr 515 520 525 Asp Leu Tyr Gly Gin val Ala Tyr Pro Lys His His Lys His Ser Glu 530 535 540 val Pro Asp lie Tyr Arg Leu Ala Thr Arg Thr Lys Gly Ala Phe val 545 550 555 560 Asn Val Ala Tyr Phe Glu Gin Phe Gly val Thr Leu xle Glu Ala Ala 565 570 575 Met Asn Gly Leu Pro Val lie Ala Thr Lys Asn Gly Ala Pro Val Glu 580 585 590 xle Asn Gin val Leu Asn Asn Gly Leu Leu val Asp Pro His Asp Gin 595 600 605 Asn Ala lie Ala Asp Ala Leu Tyr Lys Leu Leu Ser Glu Lys Gin Leu 610 615 620 Trp Ser Arg cys Arg Glu Asn Gly Leu Lys Asn xle His Gin Phe ser 625 630 635 640 Trp pro Glu His Cys Lys Asn His Leu ser Arg xle Leu Thr Leu Gly 645 650 655 Ala Arg ser pro Ala lie Gly ser Lys Glu Glu Arg Ser Asn Ala Pro 660 665 670 lie ser Gly Arg Lys His Xle Xle Val Xle Ser Val Asp Ser Val Asn •675 680 685 Lys Glu Asp Leu Val Arg xle Xle Arg Asn Ala He Glu Ala Ala His 690 695 700 Thr Gin Asn Thr Pro Ala ser Thr Gly Phe val Leu ser Thr ser Leu 705 710 715 720 Thr Leu ser Glu xle cys ser Leu Leu val Ser Val Gly Met His Pro 725 730 735 Ala Gly Phe Asp Ala Phe lie cys Asn ser Gly ser Ser lie Tyr Tyr 740 745 * 750 Pro Ser Tyr ser Gly Asn Thr Pro Ser Ser ser Lys val Thr His Val 755 760 765 lie Asp Gin Asn His Gin Ser His lie Glu Tyr Arg Trp Gly Gly Glu 770 775 780 Gly Leu Arg Lys Tyr Leu val Lys Trp Ala Thr ser val val Glu Arg 785 790 795 800 Lys Gly Arg xle Glu Arg Gin Met lie Phe Glu Asp ser Glu His ser 805 810 815 Page 49 • WO 03/093464 PCT/NZ03/00081 ser Thr Tyr cys Leu Ala Phe Lys val Val Asn'Pro Asn His Leu pro 820 825 8B0 Pro Leu Lys Glu Leu Arg Lys Leu Met Arg lie Gin ser Leu Arg cys 835 840 845 Asn Ala Leu Tyr Asn His ser Ala Thr Arg Leu ser val Thr Pro lie 850 855 860 His Ala ser Arg ser Gin Ala lie Arg Tyr Leu Phe He Arg Trp Gly 865 870 875 880 lie Glu Leu pro Asn He Val Val Leu Val Gly Glu Ser Gly Asp Ser 885 890 895 Asp Tyr Glu Glu Leu Leu Gly Gly Leu His Arg Thr lie He Leu Lys 900 905 910 Gly Asp Phe Asn lie Ala Ala Asn Arg He His Thr val Arg Arg Tyr 915 920 925 Pro Leu Gin Asp Val Val Ala Leu Asp Ser Ser Asn lie He Glu val 930 * 935 940 Glu Gly cys Thr Thr Asp Val lie Lys ser Ala Leu Arg Gin He Gly 945 950 955 960 Val Pro Thr Gin <210> 65 <213> 984 <212> PRT •<213> Festuca arundinacea <220> <221> VARIANT <Z22> CI)■••(984) <223> xaa = Any Amino Acid <400> 65 Met Val Gly Gly Met Cys Gly Asn Asp Asn Trp lie Asn Ser Tyr Leu 1 5 10 15 Asp Ala lie Leu Asp Ala Gly Lys Gly Ala Pro Gly Gly Gly Ala Gly 20 25 30 Pro Gly Gly Gly Arg Gly Gly Gly Gly Gly Gly Ala Gly Asp Arg pro 35 40 45 Ser Leu Leu Leu Arg Glu Arg Gly His Phe ser pro Ala Arg Tyr Phe 50 55 60 val Glu Glu val He Thr Gly Tyr Asp Glu Thr Asp Leu Tyr Lys Thr 65 70 75 80 Trp Ser Arg Ala Asn Ala Met Arg ser Pro Gin Glu Arg Asn Thr Arg 85 90 95 Leu Glu Asn Met Thr Trp Arg lie Trp Asn Leu Ala Arg Lys Lys Lys 100 105 110 Glu Xaa Glu Ala Glu Glu Ala Asn Arg Leu Leu Lys Arg Arg Leu Glu 115 120 • 125 Thr Glu Lys pro Arg Thr Asp Ala Ala Ala Glu Met Ser Glu Asp Leu 130 135 140 Phe Glu Gly Gin Lys Gly Glu Asp Ala Gly Asp Ala ser val Ala Tyr 145 BO 15*5 " 160 Gly Asp ser ser Ala Ser Asn Thr pro Arg lie ser Ser lie Asp Lys 165 170 175 Leu Tyr lie val Leu lie ser Leu His Gly Leu Val Arg Gly Glu Asn 180 185 190 Met Glu Leu Gly Arg Asp ser asjj Thr Ser Gly Gin val Lys Tyr val 195 ' 200 205 Val Glu Leu Ala Lys Ala Leu ser ser cys Pro Gly Val Tyr Arg val 210 215 220 Asp Leu Leu Thr Arg Gin lie Leu Ala Pro Asn Tyr Asp Arg Gly Tyr 225 230 235 240 Gly Glu Pro Ser Glu Thr Leu Leu Pro Thr Asn Leu Lys Asn Phe Lys 245 250 255 His Glu Arg Gly Glu Asn ser Gly Ala Tyr lie Thr Arg lie Pro Phe 266 265 270 Gly pro Lys Asp Lys Tyr Leu Ala Lys Glu Gin Leu Trp Pro Tyr Val 275 '280 285 Page 50 WO 03/093464 PCT/NZ03/00081 Gin Glu Phe val Asp Gly Ala Leu ser His lie Val Arg Met ser Lys 290 295 300 Thr lie Gly Glu Glu lie Gly cys Gly His Pro Met Trp Pro Ala Ala 305 310 315 320 lie His Gly His Tyr Ala Ser Ala Gly val Ala Ala Ala Leu Leu ser 325 330 335 Gly Ala Leu Asn Val His Met lie Phe Thr Gly His Phe Leu Gly Arg 340 345 350 Asp Lys Leu Glu Gly Leu Leu Lys Gin Gly Lys Gin Thr Arg Glu Glu 355 360 365 lie Asn Met Thr Tyr Lys lie Met Arg Arg lie Glu Ala Glu Glu Leu 370 375 380 ser Leu Asp Ala ser Glu lie val lie Ala ser Thr Arg Gin Glu lie 385 390 395 400 Glu Glu Gin Trp Asn Leu Tyr Asp Gly Phe Glu Val Met Leu Ala Arg ■ 405 410 415 Lys Leu Arg Ala Arg Val Lys Arg Gly Ala Asn cys Tyr Gly Arg Tyr 420 425 430 Met Pro Arg Met Val lie lie Pro Pro Gly val Glu Phe Gly His Met 435 440 445 lie Gin Asp Phe Asp Met Asp Gly Glu Glu Asp ser Pro ser Pro Ala 450 455 460 ser Glu Asp Pro Pro lie Trp Ser Glu lie Met Arg Phe Phe Thr Asn 465 470 475 480 Pro Arg Lys pro Leu lie Leu Ala val Ala Arg Pro Tyr Pro Glu Lys 485 490 495 Asn lie Thr Thr Leu Val Arg Ala Phe Gly Glu cys Arg Pro Leu Arg 500 505 510 Glu Leu Ala Asn Leu Thr Leu lie Met Gly Asn Arg Glu Ala lie ser 515 520 525 Lys Met ser Asn Met Ser Ala Ala val Leu Thr ser Val Leu Thr Leu 530 535 540 lie Asp Glu Tyr Asp Leu Tyr Gly Gin Val Ala Tyr Pro Lys His His 545 550 555 560 Lys His ser Glu Val Leu Asp lie Tyr Arg Leu Ala Ala Arg Thr Lys 565 570 575 Gly Ala Phe val Asn Val Ala Tyr Phe Glu Gin Phe Gly Val Thr Leu 580 585 590 lie Glu Ala Ala Met His Gly Leu pro Val lie Ala Thr Lys Asn Gly 595 600 605 Ala Pro Val Glu lie His Gin val Leu Asn Asn Gly Leu Leu Val Asp 610 615 620 pro His Asp Gin Asn Ala lie Ala Asp Ala Leu Tyr Lys Leu Leu ser 625 ■ 630 635 640 Glu Lys Gin Leu Trp Ser Arg cys Arg Glu Asn Gly Leu Lys Asn lie 645 650 655 His Gin Phe ser Trp Pro Glu His cys Lys Asn Tyr Leu ser Arg lie. 660 665 670 Leu Thr Leu ser Pro Arg Tyr Pro Ala Phe Ala ser Asn Asp Asp Gin 675 680 685 lie. Lys Ala pro He Lys Gly Arg Lys Tyr lie lie Val lie Ala val 690 695 700 Asp Ser Ala Ser Lys Lys Asp Leu Ala Phe lie He Arg.Asn Ser lie 705 710 715 720 Glu Ala Thr Arg. Thr Glu Thr ser Ser Gly ser Thr Gly Phe Val Leu 725 730 735 Ser Thr ser Leu Thr He ser Glu lie His ser Leu Leu lie ser Ala 740 745 750 Gly Met val Pro Thr Asp Phe Asp Ala Phe lie cys Asn ser Gly ser 755 760 765 Asp Leu phe Tyr Pro ser Gin Thr Gly Asp ser Pro ser Thr ser Arg 770 • 775 780 val Thr Phe Ala Leu Asp Arg Asn Tyr Gin ser Arg Val Glu Tyr His 785 790 795 800 Trp Gly Gly Glu Gly Leu Arg Lys iyr Leu val Lys Trp Ala ser Ser 805 810 , 815 Val val Glu Arg Arg Gly Arg Met Glu Lys Gin Val lie Phe Asp Asp 820 825 830 Page 51 WO 03/093464 PCT/NZ03/00081 ser Glu His ser ser Thr cys cys Leu Ala Phe Arg val val Asn Pro 835 840 845 - Asn Tyr Leu Pro Pro Leu Lys Glu Leu Gin Lys Leu Met Arg Val Gin 850 855 860 ser Leu Arg cys His Ala Leu Tyr Asn His ser Ala Thr Arg Leu ser 865 870 875 880 Val lie Pro lie His Ala ser Arg ser Gin Ala lie Arg Tyr Leu ser 885 890 895 Val Arg Trp Gly lie Glu Leu Pro Asn Val Val lie Leu val Gly Glu 900 905 910 ser Gly Asp ser Asp Tyr Glu Glu Leu Phe Gly Gly Leu His Lys Thr 915 920 925 Val val Leu Asn Gly Glu Phe Asn Thr Pro Ala Asn Arg lie His Thr 930 935 • 940 Val Arg Arg Tyr Pro Leu Gin Asp val lie Ala Leu Asp Cys Ser Asn 945 950 955 ' 960 lie Val Gly Val Gin Gly Cys Ser Thr Asp cys Met Arg Ser Thr Leu 965 970 975 Glu Lys Leu Gly Xle Pro Thr Lys 980 <210> 66 <211> 522 <212> PRT <213> Festuca arundinacea <400> 66 Met val Arg Gly Gly Gly Asn Gly Glu val Glu Leu Ser Val Gly Ala 1 5 10 15 Gly Gly Gly Gly Gly Gly Ala Gly Gly Leu val Glu Pro Pro Val Pro 20 25 30 lie Ser Leu Gly Arg Leu Val Leu Ala Gly Met val Ala Gly Gly Val 35 40 45 Gin Tyr Gly Trp Ala Leu Gin Leu Ser Leu Leu Thr Pro Tyr val Gin 50 55 60 Thr Leu Gly Leu ser His Ala Leu Thr Ser phe Met Trp Leu Cys Gly 65 70 75 80 Pro xle Ala Gly Leu val Val Gin Pro cys val Gly Leu Tyr Ser Asp 85 90 95 Lys cys Thr ser Arg Trp Gly Arg Arg Arg Pro Phe lie Met Thr Gly 100 105 110 Cys val Leu lie Cys Xle Ala Val val lie Val Gly Phe ser Ala Asp 115 120 125 lie Gly Ala Ala Leu Gly Asp Ser Lys Glu Glu cys ser Leu Tyr His 130 135 140 Gly pro Arg Trp His Ala Ala lie Val Tyr val Leu Gly Phe Trp Leu 145 .150 155 160 Leu Asp Phe ser Asn Asn Thr val Gin Gly pro Ala Arg Ala Leu Met 165 170 175 Ala Asp Leu Ser Gly Lys Tyr Gly pro Ser Ala Ala Asn ser Xle Phe 180 185 190 cys ser Trp liSet Ala Leu Gly Asn lie LeU Gly Tyr Ser Ser GTy Ser 195 200 205 Thr Asp Lys Trp His Lys Trp Phe Pro Phe Leu Arg Thr Arg Ala cys 210 215 220 cys Glu Ala Cys Ala Asn Leu Lys Gly Ala Phe Leu Val Ala val Leu 225 230 235 240 Phe Leu cys Met cys Leu val lie Thr Leu lie Phe Ala Lys Glu val 245 250 255 pro Tyr Lys Arg Xle Ala Pro Leu pro Thr Lys Ala Asn Gly Gin val 260 265 270 Glu val Glu Pro Ser Gly Pro Leu Ala Val Phe Gin Gly lie Arg Asn 275 280 285 Leu pro ser Gly Met Pro ser val Leu Leu val Thr Gly Leu Thr Trp 290 295 300 Leu Ser Trp Phe Pro Phe lie Leu Tyr Asp Thr Asp Trp Met Gly Arg 305 310 315 320 Glu Xle Tyr His Gly Asp Pro Lys Gly Thr Pro Ala Glu Met Ser Ala Page 52 WO 03/093464 PCT/NZ03/00081 325 330 335 Phe Gin Asp Gly Val Arg Ala Gly Ala Phe Gly Leu Leu Leu Asn ser 340 345 350 lie lie Leu Gly Phe ser Ser Phe Leu lie' Glu Pro Met Cys Lys Arg 355 360 365 Leu Gly pro Arg Val Val Trp val ser ser Asn Phe Leu val cys lie 370 375 380 Ala Met Ala Ala Thr Ala lie lie ser Trp Trp Ser Thr Lys Glu Phe 385 390 395 400 His Glu Tyr val Gin His Ala lie Thr Ala ser Lys Asp lie Lys lie 405 410 415 Val cys Met Ala Leu Phe Ala Phe Leu Gly val Pro Leu Ala lie Leu 420 425 430 Tyr ser val pro Phe Ala Val Thr Ala Gin Leu Ala Ala ser Lys Gly 435 440 445 Gly Gly Gin Gly Leu cys Thr Gly val Leu Asn He ser lie Val lie 450 455 460 Pro Gin Val lie lie Ala Leu Gly Ala Gly Pro Trp Asp Gin Leu Phe 465 470 475 480 • Gly Lys Gly Asn lie Pro Ala Phe Ala Ala Ala ser Ala Phe Ala Leu 485 490 495 Xle Gly Gly lie Val Gly lie Phe Leu Leu pro Lys lie ser Arg Arg 500 505 510 ser Phe Arg Ala val Ser Thr Gly Gly His 515 520 <210> 67 <2U> 407 <212> PRT <213> Festuca arundinacea <400> 67 lie cys val Ala Val Val val val Gly Phe ser Ala Asp lie Gly Ala 15 10 15 Ala Leu Gly Asp Ser Lys Glu Glu cys Ser Leu Tyr His Gly Pro Arg 20 25 30 trp His Ala Ala lie val Tyr val Leu Gly Phe Trp Leu Leu Asp Phe 35 40 45 Ser Asn Asn Thr Val Gin Gly Pro Ala Arg Ala Leu Met Ala Asp Leu 50 55 60 Ser Gly Lys Tyr Gly Pro ser Ala Ala Asn Ser Xle Phe cys Ser Trp 65 . 70 • 75 80 Met Ala Leu Gly Asn Xle Leu Gly Tyr Ser Ser Gly Ser Thr Asp Lys 85 90 95 Trp His Lys Trp Phe Pro Phe Leu Arg Thr Arg Ala Cys cys Glu Ala 100 105 110 Cys Ala Asn Leu Lys Gly Ala Phe Leu val Ala Val Leu-Phe Leu cys 115 120 125 phe Cys Leu val Xle Thr Leu Xle Phe Ala Lys Glu Val Pro Tyr Lys 130 135 140 Arg xle Ala pro Leu Pro Thr Lys Ala Asn Gly Gin Val Glu val Glu 145 150 155 3T60 pro ser Gly Pro Leu Ala val Phe Gin Gly Phe Arg Asn Leu Pro Ser 165 170 175 Gly Met Pro ser Val Leu Leu val Thr Gly Leu Thr Trp Leu ser Trp 180 185 190 Phe Pro Phe Xle Leu Tyr Asp Thr Asp Trp Met Gly Arg Glu xle Tyr 195 200 205 His Gly Asp pro Lys Gly Thr Pro Ala Glu Ala ser Ala Phe Gin Asp 210 215 220 Gly val Arg Ala Gly Ala Phe Gly Leu Leu Leu Asn Ser lie xle Leu 225 230 235 240 Gly Phe ser ser Phe Leu lie Glu Pro Met cys Lys Arg Leu Gly pro 245 250 255 Arg Val Val Trp Val Ser ser Asn Leu Leu Val cys xle Ala Met Ala 260 265 270 Ala Thr Ala xle lie Ser Trp Trp ser Thr Lys Glu Phe His Glu Tyr 275 280 285 Page 53 WO 03/093464 PCT/NZ03/00081 Val Gin His Ala lie Thr Ala Ser Lys Asp He"Lys lie Val cys Met 290 " 295 300 Val Leu Phe Ala Phe Leu Gly Val Pro Leu Ala lie Leu Tyr Ser Val 305 310 315 320 pro Phe Ala val Thr Ala Gin Leu Ala Ala Asn Lys Gly Gly Gly Gin 325 330 335 Gly Leu cys Thr Gly val Leu Asn lie ser He Val lie pro Gin val 340 345 350 lie lie Ala Leu Gly Ala Gly Pro Trp Asp Gin Leu Phe Gly Lys Gly 355 360 365 Asn lie Pro Ala Phe Ala Ala Ala ser Ala Phe Ala Leu lie Gly Gly 370 375 380 lie Val Gly lie Phe Leu Leu Pro Lys lie ser Arg His Ser Phe. An 385 390 395 40' Ala val ser Thr Gly Gly His 405 <210> 68 <211> 522 <212> PRT <213> Festuca arundinacea <400> 68 Met val Arg Gly Gly Gly Asn ser Glu Val Glu Leu Ser val Gly Ala 1 5 10 15 Gly Gly Gly Gly Gly Gly Ala Gly Gly Leu Val Glu Pro pro val Pro 20 25 30 lie ser Leu Gly Arg Leu val Phe Ala Gly Met Val Ala Gly Gly val 35 40 45 Gin Tyr Gly Trp Ala Leu Gin Leu ser Leu Leu Thr Pro Tyr Val Gin 50 55 60 Thr Leu Gly Leu Ser His Ala Leu-Thr ser Phe Met Trp Leu cys Gly 65 70 75 80 pro lie Ala Gly Leu Val val Gin Pro cys val Gly Leu Tyr ser Asp 85 90 95 Lys cys Thr Ser Arg Trp Gly Arg Arg Arg Pro Phe lie Met Thr Gly 100 105 110 cys Val Leu lie cys lie Ala val val lie val Gly Phe ser Ala Asp 115 120 125 lie Gly Ala Ala Leu Gly Asp Ser Lys Glu Glu cys Ser Leu Tyr His 130 135 140 Gly Pro Arg Trp His Ala Ala lie val Tyr Val Leu Gly Phe Trp Leu 145 150 155 160 Leu Asp Phe Ser Asn Asn- Thr Val Gin Gly Pro Ala Arg Ala Leu Met 165 170 -175 Ala Asp Leu Ser Gly Lys Tyr Gly Pro Ser Ala Ala Asn ser lie Phe 180 185 190 Cys Ser Trp Met Ala Leu Gly Asn lie Leu Gly Tyr ser ser Gly ser 195 200 205 Thr Asp Lys Trp His Lys Trp Phe Pro Phe Leu Arg Thr Arg Ala cys 210 215 220 Cys GTii Ala Cys Ala Asn Leu Lys Gly Ala Phe Leu Val Ala val Leu 225 230 235 240 phe Leu cys Phe Cys Leu val lie Thr Leu lie Phe Ala Lys Glu val 245 250 255 pro Tyr Lys Arg lie Ala pro Leu Pro Thr Lys Ala Asn Gly Gin val 260 265 270 Glu Val Glu Pro Ser Gly Pro Leu Ala Val Phe Gin Gly Phe Arg Asn 275 280 285 Leu pro ser Gly Met Pro ser val Leu Leu Val Thr Gly Leu Thr Trp 290 295 300 Leu ser Trp Phe Pro Phe lie Leu Tyr Asp Thr Asp Trp Met Gly An 305 310 315 32i Glu lie Tyr His Gly Asp pro Lys Gly Thr Pro Ala Glu Ala ser Ala 325 330 335 Phe Gin Asp Gly Val Arg Ala Gly Ala Phe Gly Leu Leu Leu Asn ser 340 345 350 lie lie Leu Gly Phe ser ser phe Leu lie Glu Pro Met cys Lys Arg Page 54 WO 03/093464 PCT/NZ03/00081 355 360 365 Leu Gly Pro Arg Val val Trp val ser Ser Asn Leu Leu Val cys lie 370 375 380 Ala Met Ala Ala Thr Ala lie lie Ser Trp Trp ser Thr Lys Glu Phe 385 390 395 400 His Glu Tyr val Gin His Ala lie Thr Ala ser Lys Asp He Lys lie 405 410 415 val cys Met val Leu Phe Ala Phe Leu Gly val pro Leu Ala lie Leu 420 425 430 Tyr ser val pro Phe Ala Val Thr Ala Gin Leu Ala Ala Asn Lys Gly 435 440 445 Gly Gly Gin Gly Leu cys Thr Gly val Leu Asn lie ser xle val lie 450 - 455 460 pro Gin Val lie lie Ala Leu Gly Ala Gly Pro Trp Asp Gin Leu Phe 465 470 475 480 Gly Lys Gly Asn lie Pro Ala Phe Ala Ala Ala ser Ala Phe Ala Leu 485 490 495 lie Gly Gly xle Val Gly lie Phe Leu Leu Pro Lys xle Ser Arg His 500 505 510 ser Phe Arg Ala val Ser Thr Gly Gly His 515 . 520 <210> 69 . <211> 506 <212> PRT <213> Lolium perenne <400> 69 Met Pro Pro pro Arg Arg Pro Thr Thr Gly Gly Thr Thr Thr Thr ser 15 10 15 Ala Ala Leu pro Pro Pro Arg Lys val Pro Leu Arg Ser Leu Leu Arg 20 25 30 Ala Ala Ser val Ala Cys Gly val Gin Phe Gly Trp Ala Leu Gin Leu 35 40 45 Ser Leu Leu Thr Pro Tyr val Gin Glu Leu Gly xle Pro His Ala Phe 50 55 60 Ala Ser Leu Val Trp Leu cys Gly pro Leu Ser Gly Leu Leu Val Gin 65 70 75 80 Pro Leu lie Gly His Leu ser Asp Arg lie Ala pro Ala Asp ser Pro 85 90 95 Leu Gly Arg Arg Arg Pro Phe xle Ala Ala Gly Ala Ala Ser lie Ala 100 105 110 Phe Ser Val Leu Thr Val Gly Phe ser Ala Asp Leu Gly Arg Leu Phe 115 120 125 Gly Asp Asn val Arg Pro Gly ser Thr Arg Tyr Gly Ala xle xle Val 130 135 140 Tyr Met xle Gly Phe Trp Leu Leu Asp val Gly Asn Asn Ala Thr Gin 145 150 155 160 Gly Pro cys Arg Ala Phe Leu Ala Asp Leu Thr Glu Asn Asp Pro Arg 165 170 175 Arg Thr Arg xle Ala Asn Ala Tyr phe ser Leu phe Met Ala Leu Gly 180 ■ 185 190 Asn xle Leu Gly Tyr Ala Thr Gly Ala Tyr ser Gly Trp Tyr Lys Xle 195 200 205 Phe Pro phe Thr xle Thr Glu ser cys Gly val ser cys Ala Asn Leu 210 215 220 Lys ser Ala Phe Leu Leu Asp lie lie Xle Leu Ala lie Thr Thr Tyr 225 230 235 240 val Thr val val Thr Val Gin Asp Asn Pro Thr phe Gly ser Asp Glu 245 250 255 Ala Ala Pro Arg Pro Ser Ser His Glu Glu Glu Ala Phe Leu Phe Glu 260 265' 270 Leu Phe Gly Ser Phe Lys Tyr Phe Thr Met Pro Val Trp Met val Leu 275 280 285 lie val Thr ser Leu Thr Trp xle Gly Trp Phe Pro Phe lie Leu Phe 290 295 300 Asp Thr Asp Trp Met Gly Arg Glu lie Tyr ' Gly ser pro Glu Xle 30: 310 320 Page 55 WO 03/093464 PCT/N Z03/00081 Val Ala Asp Thr Gin Lys Tyr His Asp Gly val Arg Met Gly ser Phe 325 330 335 Gly Leu Met Leu Asn Ser Val Leu Leu Gly lie Thr ser Val Val Thr 340 345 350 Glu Lys Leu cys Arg Lys Trp Gly Ala Gly Leu val Trp Gly Val ser 355 360 36s Asn lie lie Met Ala Leu cys Phe val Ala Met Leu val rle Thr Tyr 370 375 380 val Ala Gin Asn Leu Asp Tyr Gly pro Ser Gly Ala Pro pro Thr Gly 385 390 395 400 Ile Val val Ala ser Leu Thr Val Phe Thr lie Leu Gly Ala Pro Leu 405 410 415 ser lie Thr Tyr ser lie Pro Tyr Ala Met Ala Thr Ser Arg Val Glu 420 425 430 Asn Leu Gly Leu Gly Gin Gly Leu Ala Met Gly ile Leu Asn Leu ser 435 440 445 Ile Val Ile Pro Gin He He Val ser Leu Gly Ser Gly Pro Trp Asp 450 455 460 ser Leu phe Gly Gly Gly Asn Ala Pro Ser Phe Trp val Ala Ala Ala 465 470 475 480 Ala Ser phe lie Gly Gly Leu val Ala lie Leu Gly Leu Pro Arg Ala 485 490 495 Arg He Ala Pro Lys Lys Arg ser Gin Arg 500 * . 505 <21Q> 70 <211> 504 <212> PRT <213> Festuca arundinacea <400> 70 Met Pro Pro Pro Arg Arg pro Asn Ala Gly Gly Thr Thr ser Ala Pro 1 5 10 15 Leu Pro pro-Pro Arg Lys val Pro Leu Arg ser Leu Leu Arg Ala Ala 20 25 30 Ser Val Ala Cys Gly val Gin Phe Gly Trp Ala Leu Gin Leu Ser Leu 35 40 45 Leu thr pro Tyr val Gin Glu Leu Gly lie Pro His Ala Phe Ala ser 50 55 60 Leu val Trp Leu cys Gly pro Leu ser Gly Leu Leu val Gin Pro Leu 65 '70 75 80 lie Gly His Leu ser Asp Arg lie Ala Pro Ala Asp Ser Pro Leu Gly 85 90 95 Arg Arg Arg Pro Phe He Ala Ala Gly Ala Ala ser lie Ala Phe ser 100 105 110 val Leu Thr val Gly Phe ser Ala Asp Leu Gly Arg Leu Phe Gly Asp 115 120 125 Asn He Arg Pro Gly Ser Thr Arg Phe Gly Ala lie.lie Val tyr Met 130 135 140 ile Gly Phe Trp Leu Leu Asp Val Gly Asn Asn Ala Thr Gin Gly Pro 145 150 155 16P cys Arg Ala Phe Leu Ala Asp Leu Thr Glu Asn Asp Pro Arg Arg Tnr 165 170 175 Arg He Ala Asn Ala Tyr Phe ser Leu Phe Met Ala Leu Gly Asn Ile 180 185 190 Leu Gly Tyr Ala Thr Gly Ala Tyr ser Gly Trp Tyr Lys lie Phe Pro 195 200 205 phe Thr Ile Thr Glu ser cys Gly val ser cys Ala Asn Leu Lys ser 210 215 220 Ala Phe Leu Leu Asp Xle lie lie Leu Ala lie Thr Thr Tyr Val Thr 225 230 235 240 Val val Thr val Gin Asp Asn Pro Thr Phe Gly ser Asp Glu Ala Ala 245 250 255 pro Arg pro Ser ser His Glu Glu Glu Ala Phe Leu Phe Glu Leu Phe 260 265 270 Gly ser Phe Lys Tyr Phe Thr Leu pro val Trp Met Val Leu lie val 275 280 285 Thr Ser Leu Thr Trp lie Gly Trp phe Pro Phe xle Leu Phe Asp Thr Page 56 WO 03/093464 PCT/NZ03/00081 290 295 300 Asp Trp Met Gly Arg Glu lie Tyr Arg Gly ser pro Glu lie val Ala 305 310 315 320 Asp Thr Gin Lys Tyr His Asp Gly val Arg Met Gly Ser Phe Gly Leu 325 330 335 Met Leu Asn ser Val Leu Leu Gly Ile Thr Ser Val val Met Glu Lys 340 345 350 Leu cys Arg Lys Trp Gly Ala Gly Leu Val Trp Gly val Ser Asn lie 355 360 365 lie Met Ala Leu cys Phe val Ala Met Leu lie lie Thr Tyr val Ala 370 375 380 Lys Asn Leu Asp Tyr Gly pro Ser Gly Ala Pro Pro Thr Gly Ile val 385 390 395 400 Val Ala Ser Leu Ala val Phe Thr lie Leu Gly Ala Pro Leu Ser Ile 405 410 415 Thr Tyr ser Ile Pro Tyr Ala Met Ala Thr ser Arg Val Glu Asn Leu 420 425 430 Gly Leu Gly Gin Gly Leu Ala Met Gly lie Leu Asn Leu Ser Ile val 435 440 445 ile Pro Gin Ile lie val ser Leu Gly Ser Gly pro Trp Asp ser Leu 450 455 460 Phe Gly Gly Gly Asn Ala pro ser Phe Trp Val Ala Ala Ala Ala Ser 465 470 475 480 phe Ile Gly Gly Leu val Ala lie Leu Gly Leu Pro Arg Ala Arg lie 485 490 495 Ala Pro Lys Lys Arg ser Gin Arg 500 <210> 71 <211> 508 <Z12> PRT <213> Lolium perenne <40Q> 71 Met Val Asp Gin Asp His Asp Gly Arg Arg Arg Gin Glu Glu Ala Thr 1 5 10 15 Ala Val Ala Ala Ser Ser val Pro Leu Leu Glu Lys Lys Pro Gly Asp 20 25 30 Val Pro Tyr Tyr val Glu Gly cys Pro Gly Cys Ala val Asp Arg Arg 35 40 45 Lys Ala Thr Asp Pro Gly ile pro Tyr Gly ser phe He Tyr He Trp 50 55 60 Val val lie Leu Cys Thr Ala Ile Pro lie ser ser Leu Phe Pro Phe 65 70 75 80 Leu Tyr Phe Met lie Arg Asp Leu His He Ala Glu Arg Thr Glu Asp 85 90 95 ile Gly Phe Tyr Ala Gly phe val Gly Ala Ala phe Met Phe Gly Arg 100 105 110 Cys Leu Thr ser Thr lie Trp Gly Ile Ala Ala Asp Arg lie Gly Arg 115 120 125 Lys Pro val val He Phe Gly val Phe Ser val val lie Phe Asn Ala 130 135 140 Leu Phe Gly Leu ser val Thr Tyr Trp Met Ala He Ala Thr Arg Phe 145 15Q 155 160 Leu Leu Gly Ala Leu Asn Gly Leu Leu Gly pro Met Lys Ala Tyr Ala 165 170 . 175 lie Glu Val cys Arg Pro Glu His Glu Ala Leu Ala Leu ser Leu val 180 185 190 ser Thr Ala Trp Gly Ile Gly Leu lie He Gly pro Ala Leu Gly Gly 195 200 205 Tyr Leu Ala Leu Pro Ala Glu Lys Tyr Pro Asn He Phe ser Pro Asp 210 215 220 ser Leu Phe Gly Arg Phe pro Tyr Phe Leu Pro cys Leu Cys Thr Ser 225 230 235 • . 240 val Phe Ala Ala Ala val Leu lie Gly Cys lie Trp Met Pro Glu Thr 245 250 255 Leu His Lys His Lys Val Asn Glu Asn Arg Asn Gin Ser val Glu ser 260 265 * 270 Page 57 WO 03/093464 PCT/NZ03/00081 Leu Glu Ala His Leu lie Asp Pro Lys Glu Lys Val Glu Gin Ser Asn 275 280 285 ser pro Asp Thr Lys Lys ser Leu Phe Lys Asn Trp Pro Leu Met Ser 290 255 300 ser lie lie val Tyr cys Val Phe ser Phe His Asp Met Ala Tyr Thr 305 310 315 320 Glu Val Phe ser Leu Trp Ala Glu ser Asp Arg Thr Tyr Gly Gly Leu 325 330 335 ser Leu ser ser Glu Asp Val Gly Gin Thr Leu Ala He Thr Gly ser 340 ' 345 350 ser Leu Leu val Tyr Gin Leu Phe Leu Tyr pro Arg lie Asn Arg Val 355 360 365 Leu Gly Pro lie Lys ser ser Gin lie Ala Ala Gly He cys lie Pro 370 375 380 xle Leu Phe Ala Tyr Pro Tyr Met Thr Tyr Leu ser Glu Pro Gly Leu 385 390 395 400 ser lie val Leu Asn lie Ala ser val ile Lys Asn Asn Leu Gly val 405 410 415 Thr xle Ile Thr Gly Thr Phe Ile Leu Gin Asn Asn Ala val Pro Gin 420 425 430 Asp Gin Arg Gly Ala Ala Asn Gly Leu Ala Met Thr Gly Met ser Phe 435 440 445 Phe Lys Ala Val Ala Pro Ala Gly Ala Gly lie Val Phe ser Trp Ala 450 455 460 Gin Lys Arg Gin His Ala Phe Phe Phe Pro Gly Asp Gin Met Val Phe 465 470 475 480 Phe Leu Leu Asn Xle He Glu Leu Leu Gly Leu Leu Leu Thr Phe Lys 485 490 495 Phe Phe Leu Ala Val Pro Asp Lys ser Asp ser Asn 500 505 <210> 72 <211> 522 <212> PRT <213> Lolium perenne <400> 72 Met ser ser Met Gin Phe Ser ser Val Leu Pro Leu Glu Gly Lys Ala 1 - 5 10 15 cys val Cys pro Val Arg ser Ala Asn Asn Gly cys Glu Arg Leu Lys 20 25 30 val Gly Asp ser Ser Ser Leu Arg His Glu Met Ala Leu Arg Arg Lys 35 40 45 cys Asn Gly Ala Arg Gly Gly Gly Ala Ala Asn Gly Ala Gin cys val 50 55 60 Leu Thr Ser Asp Ala Ser Pro Asp Thr Leu val Val Arg Ser Ser Phe 65 70 75 80 Arg Arg Asn Tyr Ala Asp Pro Asn Glu val Ala Ala val lie Leu Gly 85 ' 90 95 Gly Gly Thr Gly Thr Gin Leu Phe Pro Leu Thr ser Thr Arg Ala Thr 100 1Q5 110 pro Ala val pro Xle Gly Gly cys Tyr Arg Leu xle Asp xle Pro Met 115 120 125 ■ Ser Asn cys Phe Asn Ser Gly lie Asn .Lys xle Phe val Met Thr Gin 130 13S 140 Phe Asn Ser Ala Ser Leu Asn Arg His lie His Arg Thr Tyr Leu Gly 145 150 155 160 Gly Gly lie Asn Phe-Thr Asp Gly ser Val Glu val Leu Ala Ala Thr 165 170 175 Gin Met Pro Gly Glu Ala Ala Gly Trp Phe Arg Gly Thr Ala Asp Ala 180 185 190 val Arg Lys Phe lie Trp val Leu Glu Asp Tyr Tyr Lys His Lys ser 195 200 205 lie Glu His lie Leu He Leu ser Gly Asp Gin Leu Tyr Arg Met Asp 210 215 220 Tyr Met Glu Leu Val Gin Lys His val Asp Asp Asn Ala Asp lie Thr 225 230 235 240 Leu Ser cys Ala Pro val Gly Glu ser Arg Ala ser Glu Tyr Gly Leu Page 58 WO 03/093464 PCT/NZ03/00081 245 250 255 val Lys phe Asp ser ser Gly Arg Val lie Gin Phe Ser Glu Lys Pro 260 265 270 Lys Gly Ala asd Leu Glu Ala Met Lys Val asp Thr Ser phe Leu Asn 275 280 285 Phe Ala lie Asp Asp Pro Ala Lys Asn Pro Tyr lie Ala Ser Met Gly 290 295 300 val Tyr val Phe Lys Arg Glu Val Leu Leu Asn Leu Leu Lys ser Arg 305 310 315 -320 Tyr Thr Glu Leu His Asp phe Gly ser Glu He Leu Pro Arg Ala Leu 325 330 335 His Asp His Asn Val Gin Ala Tyr val Phe Thr Asp Tyr Trp Glu Asp 340 345 350 lie Gly Thr He Arg Ser Phe Phe Asp Ala Asn Met Ala Leu cys Glu 355 360 365 Gin Pro pro Lys Phe Glu Phe Tyr Asp Pro Lys Thr Pro Phe Phe Thr 370 . 375 380 Ser Pro Arg Tyr Leu Pro pro Thr Lys ser Asp Lys Cys Arg lie Lys 385 390 395 400 Glu Ala lie lie Ser His Gly cys Phe Leu Arg Glu Cys Thr He Glu 405 410 415 His Ser lie lie Gly Val Arg Ser Arg Leu Asn ser Gly Ser Val Leu 420 425 430 Lys Asn Ala Met Met Met Gly Ala Asp Leu Tyr Glu Thr Glu Asp Glu 435 440 445 lie Ser Gly Leu Leu Ser Glu Gly Lys Val Pro lie Gly Val Gly Glu 450 455 460 Asn Ser Lys Leu Ser Asn Cys lie lie Asp Met Asn Ala Arg He Gly 465 470 475 480 Arg Asp val val lie Ala Asn Ser Glu Gly val Gin Glu Ala Asp Arg 485 490 495 pro Glu Glu Gly Tyr Tyr ile Arg ser Gly lie val val rle Leu Lys 500 505 510 Asn Ala Thr val Lys Asp Gly Thr val val 515 520 <21Q> 73 <211> 522 <212> PRT <213> Festuca arundinacea <400> 73 Met ser ser Met Gin Phe Ser Ser val Leu pro Leu Glu Gly Lys Ala 1 5 10 15 cys Val cys pro Val Arg ser Ala Asn Asn Gly Cys Glu Arg Leu Lys 20 25 30 Val Gly Asp ser Ser Ser- Leu Arg His Glu Met Ala Leu Arg Arg Lys 35 40 45 cys Asn Gly Ala Arg Gly Gly Gly Ala Ala Asp Gly Ala Gin Cys val 50 55 60 Leu Thr ser Asp Ala Ser pro Asp Thr Leu val Val Arg ser Ser Phe ■65 70 75 80 Arg Met Asn Tyr Ala Asp Pro Asn Glu Val Ala Ala val lie Leu Gly 85 90 95 Gly Gly Thr Gly Thr Gin Leu Phe Pro Leu Thr ser Thr Arg Ala Thr 100 105 110 Pro Ala val Pro lie Gly Gly Cys Tyr Arg Leu He Asp lie Pro Met 115 120 125 ser Asn cys Phe Asn ser Gly lie Asn Lys lie Phe Val Met Thr Gin 130 135 140 Phe Asn Ser Ala Ser Leu Asn Arg His lie His Arg Thr Tyr Leu Gly 145 150 155 160 Gly Gly lie Asn Phe Thr Asp Gly ser val Glu val Leu Ala Ala Thr 165 170 175 „ Gin Met pro Gly Glu Ala Ala Gly Trp Phe Arg Gly Thr Ala Asp Ala 180 185 190 Val Arg Lys Phe lie Trp val Leu Glu Asp Tyr Tyr Lys His Lys ser 195 200 205 page 59 WO 03/093464 PCT/NZ03/00081 Ile Glu His He Leu Ile Leu ser Gly Asp Gin Leu Tyr Arg Met Asp 210 215 220 Tyr Met Glu Leu val Gin Lys His val Asp Asp Asn Ala Asp lie Thr 225 230 235 240 Leu ser cys Ala Pro Val Gly Glu Ser Arg Ala ser Glu Tyr Gly Leu 245 250 255 Val Lys Phe Asp ser Ser Gly Arg val lie Gin Phe Ser Glu Lys. Pro 260 265 270 Lys Gly Ala Asp Leu Glu Ala Met Lys Val Asp Thr Ser Phe Leu Asn 275 280 285 phe Ala lie Asp Asp Pro Ala Lys Asn Pro Tyr He Ala Ser Met Gly 290 295 300 Val Tyr val Phe Lys Arg Glu val Leu Leu Asn Leu Leu Lys ser-Arg 305 310 315 320 Tyr Thr Glu Leu His Asp Phe Gly ser Glu lie Leu Pro Arg Ala Leu 325 330 335 His Asp His Asn Val Gin Ala Tyr val Phe Thr Asp Tyr Trp Glu Asp 340 345 350 Ile Gly Thr lie Arg Ser Phe Phe Asp Ala Asn Met Ala Leu cys Glu 355 360 365 Gin Pro Pro Lys Phe Glu Phe Tyr Asp Pro Lys Thr Pro Phe Phe Thr 370 375 380 ser pro Arg Tyr Leu Pro Pro Thr Lys Ser Asp Lys cys Arg Ile Lys 385 390 395 400 Glu Ala Ile lie Ser His Gly Cys Phe Leu Arg Glu Cys Thr lie Glu 405' 410 415 His ser lie He Gly val Arg ser Arg Leu Asn ser Gly Ser val Leu 420 425 430 Lys Asn Ala Met Met Met Gly Ala Asp Leu Tyr Glu Thr Glu Asp Glu 435 • 440 445 He Ser Gly Leu Leu Ser Glu Gly Lys val Pro He Gly val Gly Glu 450 455 460 Asn ser Lys Leu Ser Asn Cys lie lie Asp Met Asn Ala Arg lie Gly 465 470 * 475 480 Arg Asp Val Val lie Ala Asn ser Glu Gly val Gin Glu Ala Asp Arg 485 490 495 Pro Glu Glu Gly Tyr Tyr lie Arg ser Gly lie val Val lie Leu Lys 500 505 510 Asn Ala Thr val Lys Asp Gly Thr val val 515 520 <210> 74 <211> 525 <212> PRT <213> Lolium perenne <400> 74 _ Met Thr Gly Ala Pro Pro ser Thr val Met Ala Met Gly Ala Ala Thr 1 5 10 15 ' ser pro cys Lys ile Leu ser Ala Thr Gin Arg Ala ser Thr Ala Ala 20 .25 30 Ala ser Ala Ser fhr ser Arg Glu ser val Ser Leu Arg Ala Pro Arg 35 40 45 Gly Arg Arg Gin Arg Pro Arg Pro Arg Gly Leu Ala Leu Ser Leu Ala 50 55 60 Pro Ala Arg Arg Pro Phe val Phe ser Pro Arg Ala val ser Asp ser 65 70 75 80 Lys ser ser Gin Thr cys Leu Asp pro Asp Ala ser Thr ser Val Leu ■ 85 , 90 95 _ Gly lie lie Leu Gly Gly Gly Ala Gly Thr Arg Leu Tyr Pro Leu Thr 100 . 105 .110 Lys Lys Arg Ala Lys Pro Ala Val pro Leu Gly Ala Asn Tyr Arg Leu 115 120 125 He Asp ile Pro Val Ser Asn cys Leu Asn ser Asn He Ser Lys lie 130 " 135 140 Tyr Val Leu Thr Gin Phe Asn ser Ala ser Leu Asn Arg His Leu ser 145 150 155 160 Arg Ala Tyr Gly ser Asn Ile Gly Gly Tyr Lys Asn Glu Gly Phe Val Page 60 • WO 03/093464 PCT/NZ03/00081 165 170 175 Glu Val Leu Ala Ala Gin Gin ser pro Asp Asn Pro Asn Trp Phe Gin 180 185 190 Gly Thr Ala Asp Ala Val Arg Gin Tyr Leu Trp Leu Phe Glu Glu His 195 200 205 Asn val Met Glu Tyr Leu lie Leu Ala Gly Asp His Leu Tyr Arg Met 210 215 220 Asp Tyr Glu Lys Phe lie Gin Ala His Arg Glu Thr Asp Ala Asp lie 225 230 235 240 Thr Val Ala Ala Leu Pro Met Asp Glu Glu Arg Ala Thr Ala Phe Gly 245 250 255 Leu Met Lys Ile Asp Glu Glu Gly Arg lie val Glu Phe Ala Glu Lys 260 265 • 270 Pro Lys Gly Glu Gin Leu Lys Ala Met Met val Asp Thr Thr He Leu 275 280 285 . Gly Leu Asp Asp Val Arg Ala Lys Glu Met Pro Tyr lie Ala Ser Met 290 295 300 Gly Ile Tyr Val Ile Ser Lys His Val Met Leu Gin Leu Leu Arg Asp 305 310 315 320 Gin Phe pro Gly Ala Asn Asp Phe Gly ser Glu Val He Pro Gly Ala 325 330 335 Thr ser Thr Gly Met Arg val Gin Ala Tyr Leu.Tyr Asp Gly Tyr Trp 340 345 350 Glu Asp Ile Gly Thr Ile Glu Ala Phe Tyr Asn Ala Asn Leu Gly lie 355 360 365 Thr Lys Lys Pro Ile Pro Asp Phe Ser Phe Tyr Asp Arg ser Ala Pro 370 375 380 Ile Tyr Thr Gin Pro Arg His Leu Pro Pro ser Lys Val Leu Asp Ala 385 ■ 390 395 400 Asp Val Thr Asp Ser Val lie Gly Glu Gly cys Val lie Lys Asn Cys 405 410 415 Lys lie His His Ser Val Val Gly Leu Arg Ser cys lie Ser Glu Gly 420 425 430 Ala He Ile Glu Asp Thr Leu Leu Met Gly Ala Asp Tyr Tyr Glu Thr 435 440 445 Glu Ala Asp Lys Lys Leu Leu Ala Asp Lys Gly Gly lie Pro lie Gly 450 455 460 ile Gly Lys Asn Ser His lie Arg Arg Ala lie lie Asp Lys Asn Ala 465 470 475 480 Arg lie Gly Asp Asn Val Lys lie lie Asn val Asp Asn val Gin Glu 485 490 495 Ala Ala Arg Glu Thr Asp Gly Tyr phe lie Lys Ser Gly lie Val Thr 500 505 510 val lie Lys Asp Ala Leu Leu Pro ser Gly Thr Val lie 515 520 525 <210> 75 <211> 524 <212> PRT <213> Festuca arundinacea <40"0> 75 Met Thr Arg Ala Pro Pro ser Thr Val Met Ala Met Gly Ala Ala Thr 15 10 15 ser Pro cys Lys lie Leu ser Ala Thr Gin Arg Ala Ser Ala Ala Ala 20 25 30 pro ser Ala ser Thr Ser Arg Glu ser val cys Leu Leu Arg Ala Pro 35 40 45 Arg Gly Arg Arg Gin Arg Pro Arg Gly Leu Ala Leu Ser Leu Ala Pro 50 55 60 Ala Arg Arg pro Phe val Phe Ser Pro Arg Ala Val Ser Asp Ser Lys 65 70 75 80 ser ser Gin Thr Cys Leu Asp Pro Asp Ala ser Thr Ser val Leu Gly 85 90 95 He ile Leu Gly Gly Gly Ala Gly Thr Arg Leu Tyr Pro Leu Thr Lys 100 105 110 Lys Arg Ala Lys Pro Ala val pro Leu Gly Ala Asn Tyr Arg Leu lie 115 120 125 Page 61 WO 03/093464 PCT/NZ03/00081 Asp He Pro val ser Asn cys Leu Ash ser Asn lie Ser Lys lie Tyr 130 135 140 Val Leu Thr (Jin Phe Asn Ser Ala Ser Leu Asn Arg His Leu Ser Arg 145 150 155 160 Ala Tyr Gly ser Asn He Gly Gly Tyr Lys Asn Glu Gly Phe val Glu ' 165 170 175 val Leu Ala Ala Gin Gin ser pro Asp Asn pro Asn Trp Phe Gin Gly 180 185 190 Thr Ala Asp Ala Val Arg Gin Tyr Leu Trp Leu phe Glu Glu His Asn 195 200 205 val Met Glu tyr Leu lie Leu Ala Gly Asp His Leu Tyr Arg Met Asp 210 215 220 Tyr Glu Lys Phe lie Gin Ala His Arg Glu Thr Asp Ala Asp lie Thr 225 230 235 240 val Ala Ala Leu Pro Met Asp Glu Glu Arg Ala Thr Ala Phe Gly Leu 245 250 255 Met Lys lie Asp Glu Glu Gly Arg lie Val Glu phe Ala Glu Lys Pro 260 265 . 270 Lys Gly Glu Gin Leu Lys Ala Met Met Val Asp Thr Thr lie Leu Gly 275 . 280 285 Leu Asp Asp val Arg Ala Lys Glu Met Pro Tyr lie Ala ser Met Gly 290 295 300 ile Tyr val lie ser Lys His val Met Leu Gin Leu Leu Arg Asp Gin 305 310 315 320 Phe Pro Gly Ala-Asn Asp Phe Gly ser Glu val lie Pro Gly Ala Thr 325 330 335 ser Thr Gly Met Arg val Gin Ala Tyr Leu Tyr.Asp Gly Tyr Trp Glu 340 345 350 Asp He Gly Thr lie Glu Ala Phe Tyr Asn Ala Asn Leu Gly lie Thr 355 360 365 Lys Lys Pro lie Pro Asp Phe ser Phe Tyr Asp Arg Ser Ala Pro lie 370 375 380 Tyr Thr Gin Pro Arg His Leu Pro Pro Ser Lys val Leu Asp Ala Asp 385 390 395 400 val Thr Asp ser val lie Gly Glu Gly Cys Val lie Lys Asn Cys Lys 405 410 415 Ile His His ser val val Gly Leu Arg Ser cys lie Ser Glu Gly Ala 420 425 430 Ile lie Glu Asp Thr Leu Leu Met Gly Ala Asp Tyr Tyr Glu Thr Glu . 435 440 '445 Ala Asp Lys Lys Leu Leu Ala Asp Lys Gly Gly lie Pro lie Gly lie 450 455 460 Gly Lys Asn ser His Ile Arg Arg Ala lie lie Asp Lys Asn Ala An 465 , 470 475 481 Ile Gly Asp Asn Val Lys lie lie Asn Val Asp Asn Val Gin Glu Ala 485 490 495 Ala Arg Glu Thr Asp Gly Tyr Phe lie Lys ser Gly lie Val Thr Val 500 505 510 Ile Lys Asp Ala Leu Leu Pro ser Gly Thr val lie 515 520 <210> 76 <211> 398 <212> PRT <213> Festuca arundinacea <400> 76 Met Ala Ala Thr Met Thr val Glu Glu val Arg Lys Ala Gin Arg Ala 1 5 10 15 Glu Gly Pro Ala Thr Val Leu Ala lie Gly Thr Ala Thr Pro Ala Asn 20 * 25 30 cys Val Tyr Gin Ala Asp Tyr Pro Asp Tyr Tyr phe Lys lie Thr Lys 35 40 45 Ser Asp His Leu Ala Asp Leu Lys Glu Lys Phe Lys Arg Met cys Asp 50 55 60 Lys ser Gin ile Arg Lys Arg Tyr Met His Leu Thr Glu Glu He Leu 65 70 75 80 Glu Glu Asn pro Asn Met cys Ala Tyr Met Ala pro ser Leu Asp Ala •' page 62 WO 03/093464 PCT/NZ03/00081 85 • 90 95 Arg Gin Asp lie val val val Glu val Pro Lys Leu Gly Lys Ala Ala 100 105 110 Ala Gin Lys Ala lie Lys Glu Trp Gly Gin pro Arg Ser Lys lie Thr 115 120 125 His Leu Val phe cys Thr Thr ser Gly Val Asp Met Pro Gly Ala Asp 130 135 140 Tyr Gin Leu Thr Lys Met Leu Gly Leu Arg pro ser Val Lys Arg Leu 145 150 155 160 Met Met Tyr Gin Gin Gly cys Phe Ala Gly Gly Thr Val Leu Arg Leu 165 170 175 Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg Val Leu Val Val 180 185 190 cys ser Glu xle Thr Ala val Thr Phe Arg Gly Pro His Glu Ser His 195 200 205 Leu Asp ser Leu val Gly Gin Ala Leu Phe Gly Asp Gly Ala Ala Ala 210 215 220 Val ile Ile Gly Ala Asp Pro Asp val Ser val Glu Arg Pro Leu Phe 225 230 235 240 Gin Leu val ser val ser Gin Thr lie Leu pro Asp ser Glu Gly Ala 245 250 255 He Asp Gly His Leu Arg Glu val Gly Leu Thr phe His Leu Leu Lys 260 265 270 Asp Val pro Gly Leu Ile Ser Lys Asn lie Glu Arg Ala Leu Glu Glu 275 280 285 Ala Phe Lys Pro Leu Gly lie Asp Asp Trp Asn ser Val Phe Trp Val 290 295 300 Ala His Pro Gly Gly Pro Ala lie Leu Asp Met val Glu Ala Lys Val 305 310 315 320 Asn Leu Asn Lys Glu Arg Met Arg Ala Thr Arg His Val Leu Ser Glu 325 330 335 Tyr Gly Asn Met Ser Ser Ala Cys val Leu Phe xle Met Asp Glu Met 340 345 350 Arg Lys Arg Ser Ala Glu Asp Gly His Thr Thr Thr Gly Glu Gly Met 355 360 365 Asp Trp Gly val Leu Phe Gly Phe Gly Pro Gly Leu Thr val Glu Thr 370 375 380 val val Leu His ser Met Pro xle Ala Ala Asp Ala Thr Ala ' 385 390 395 <210> 77 <2U> 398 <212> PRT <213> Festuca arundinacea <40Q> 77 Met Ala Thr Thr Met Thr val Glu Glu Val Arg Lys Ala Gin Arg Ala 15 10 .15 Glu Gly Pro Ala Thr val Leu Ala Xle Gly Thr Ala Thr Pro Ala Asn 20 25 30 Cys val Tyr. Gin Ala Asp Tyr Pro Asp Tyr Tyr phe Lys Xle Thr Lys Ser Asp His Leu Ala Asp Leu Lys Glu Lys Phe Lys Arg Met cys Asp 50 55 60 Lys ser Gin lie Arg Lys Arg Tyr Met His Leu Thr Glu Glu xle Leu 65 70 75 80 Glu Glu Asn Pro Asn Met Cys Ala Tyr Met Ala pro Ser Leu Asp Ala 85 - .90 95 Arg Gin Asp lie val val Val Glu val Pro Lys Leu Gly Lys Ala Ala 100 105 • 110 Ala Gin Lys Ala He Lys Glu Trp Gly Gin Pro Arg Ser Lys lie Thr 115 120 125 His Leu Val Phe Cys Thr Thr Ser Gly val Asp Met Pro. Gly Ala Asp 130 135 140 Tyr Gin Leu Thr Lys Met Leu Gly Leu Arg pro ser val Lys Arg Leu 145 '150 155 160 Met Met Tyr Gin Gin Gly cys Phe Ala Gly Gly Thr val Leu Arg Leu 165 170 175 Page 63 WO 03/093464 PCT/NZ03/00081 Ala Lys Asp Leu Ala Glu Asn Asn Arg Gly Ala Arg val Leu val Val 180 185 190 cys Ser Glu lie Thr Ala Val Thr Phe Arg Gly Pro His Glu Ser His 195 200 205 Leu Asp Ser Leu val Gly Gin Ala Leu Phe Gly Asp Gly Ala Ala Ala 210 215 220 Val lie lie Gly Ala Asp Pro Asp val ser Val Glu His Pro Leu Phe 225 230 235 240 Gin Leu val ser Ala ser Gin Thr lie Leu Pro Asp Ser Glu Gly Ala 245 250 255 ile Asp Gly His Leu Arg Glu val Gly Leu Thr Phe His Leu Leu Lys 260 265 270 Asp Val Pro Gly Leu lie Ser Lys Asn lie Glu Arg Ala Leu Glu Glu 275 280 285 Ala Phe Lys pro Leu Gly lie Asp Asp Trp Asn Ser val Phe Trp Val 290 295 300 Ala His Pro Gly Gly Pro Ala lie Leu Asp Met Val Glu Ala Lys Val 305 310 315 320 Asn Leu Asn Lys Glu Arg Met Arg Ala Thr Arg His val Leu Ser Glu 325 330 335 Tyr Gly Asn Met Ser Ser Ala cys Val Leu Phe lie Met Asp Glu Met 340 345 350 Arg Lys Arg ser Ala Glu Asp Gly His Thr Thr Thr Gly Glu Gly Met 355 360 365 Asp Trp Gly Val Leu Phe Gly Phe Gly Pro Gly Leu Thr Val Glu Thr 370 375 380 val val Leu His ser Met Pro Ile Ala Ala Gly Ala Thr Ala 385 390 395 <210> 78 <211> 277 <212> PRT <213> Festuca arundinacea <400> 78 Arg Ala Asp Leu Glu Glu Glu Gly ser Phe Asp Asp Ala val Ala Gly 15 10 15 cys Asp Tyr Ala Phe Leu val Ala Ala Pro val Asn Leu Lys Ala Glu 20 25 30 - Asn Pro Glu Lys Asp Met val Glu Pro Ala val Gly Gly Thr Leu Asn 35 •" 40 45 Ala Met Arg ser cys val Arg Ala Gly Thr val Lys Arg Val val Leu 50 • 55 60 Thr ser ser val Ala Ser Val Ser Ala Arg Pro Leu Leu Gin Gly Asp 65 70 75 80 Gly His val Leu Asp Glu Glu ser Trp Ser Asp Val Asp Phe Leu Arg 85 90 95 Ala Lys Ala Thr Gly His Trp Gly Tyr Pro val ser Lys val Leu Leu 100 105 110 Glu Lys Ala Ala cys Ala Phe Ala Gin Ala ser Gly He ser Leu val 115 120 125 "ffiir val cys pro Val Val Val val Gly Lys Ala Pro ATa val Gin val 130 135 140 His Thr ser val Pro Asp val Leu ser pro Leu Ser Gly Asp Glu Ala 145 150 155 160 Lys lie Gin lie Leu Gin His lie Glu Arg Ala ser Gly ser He ser 165 170 175 Leu val His val Asp Asp Leu cys Arg Ala Glu Val Phe Leu Ala Glu 180 185 • 190 Glu Glu Ala val Ala ser Gly Arg Tyr lie cys cys Ser Leu Ser Thr 195 200 205 Thr Ala Gly val Leu Ala Arg Phe Leu ser val Lys Tyr Pro Gin Tyr 210 215 220 Lys val Arg Thr Asp Arg Phe Ser Gly Ser Pro Glu Lys Pro Arg val 225 230 235 240 Cys Met ser ser Ala Lys Leu val Ala Glu Gly Phe Gin Tyr Lys Tyr 245 .250 255 Lys Thr Leu Asp Glu lie Tyr Asp Asp Val val Glu Tyr Gly Arg Ala Page 64 WO 03/093464 PCT/NZ03/00081 260 265 270 Leu Gly lie Leu Pro • 275 <210:> 79 <211> 342 <212> PRT ' <213> Festuca arundinacea <400> 79 Met Ala Ala Ala Gly Asp Gly ser Arg Arg Lys Thr ATa cys val Thr 1 5 10 15 Gly Gly Asn Gly Tyr ile Ala ser Ala Leu val Lys Met Leu Leu Glu 20 25 30 Lys Gly Tyr Ala Val Lys Thr Thr val Arg Asn Pro Asp Asp Met Glu 35 40 45 Lys Asn ser His Leu Lys Asp Leu Gin Ala Leu Gly Pro Leu Glu Val 50 55 60 Phe Arg Ala Asp Leu Gin Glu Glu Gly ser Phe Asp Asp Ala val Ala 65 70 75 80 Gly cys Asp Tyr Ala Phe Leu val Ala Ala Pro Val Asn Leu Lys Ala 85 90 95 Glu Asn Pro Glu Lys. Asp Met Val Glu Pro Ala Val Gly Gly Thr Leu 100 • 105 110 Asn Ala Met Arg Ser Cys val Arg Ala Gly Thr Val Lys Arg v&l Val 115 120 125 Leu Thr Ser ser Val Ala ser Val Ser Ala Arg Pro Leu Leu Gin Gly 130 135 140 Asp Gly His Val Leu Asp gIu Glu Ser Trp ser Asp Val Asp Phe Leu 145 150 155 160 Arg Ala Lys Ala Thr Gly His Trp Gly Tyr Pro Val ser Lys Val Leu 165 170 175 Leu Glu Lys Ala Ala Cys Ala Phe Ala Gin Ala ser Gly He Ser Leu 180 185 190 Val Thr val cys Pro val val Val Val Gly Lys Ala Pro Ala Val Gin 195 200 205 Val His Thr ser Val Pro Asp Val Leu Ser Pro Leu Ser Gly Asp Glu 210 215 220 Ala Lys lie Gin He Leu Gin His He Glu Arg Ala Ser Gly Ser Ile 225 230 235 240 ser Leu val His Val Asp Asp Leu cys Arg Ala Glu Val Phe Leu Ala 245 250 255 Glu Glu Glu Ala Val Ala ser Gly Arg Tyr lie cys Cys Ser Leu Ser 260 265 270 Thr Thr Ala Gly Val Leu Ala Arg Phe Leu ser val Lys Tyr Pro Gin 275 280 285 Tyr Lys Val Arg Thr Asp Arg Phe Ser Gly ser Pro Glu Lys Pro Arg 290 295 300 val cys Met ser Ser Ala Lys Leu Val Ala Glu Gly Phe Gin Tyr Lys 305 310 315 320 Tyr Lys Thr Leu Asp Glu ile Tyr Asp Asp. val val Glu Tyr Gly Arg 325 350 335 Ala Leu Gly lie Leu Pro 340 <210> 80 <2U> 255 <212> PRT <213> Lolium perenne <400> 80 Phe lie Ser val Thr val phe Tyr Val Val Gly Leu Arg Gin Arg Asp 1 5 10 15 Leu val Gin Ala Gly Val Gin Gly Thr Leu Asn Val Met Arg ser cys 20 25 30 val Lys Ala Gly Thr Val Lys Arg Val lie Leu Thr ser ser Asp Ser 35 40 45 • Ala val cys Gin Arg Pro Leu Glu Gly Asp Gly His Val Leu Asp Glu Page 65 WO 03/093464 PCT/NZ03/00081 50 55 60 Gly Ser Trp ser Asp Val Pro Tyr Leu Arg Ala Glu Gin Pro Glu Ala 65 70 75 80 Trp Gly Tyr Ala Val Ser Lys Val Leu Met Glu Glu Ala Ala Gly Lys 85 90 95 Phe Ala Asp Glu Asn Gly Leu Gly Leu Val Ser val Leu Pro Thr Phe 100 105 110 Thr Leu Gly Ala Ala Pro Val ser Gin Ala Arg Thr ser val Pro Val 115 120 125 val Leu ser Leu Leu ser Gly Asp Glu Glu Gin Leu Asn Leu Leu Glu 130 135 140 Ala Met His Leu He Thr Glu Ser val Ser lie Asn His lie Asp Asp 145 150 155 160 Leu cys Arg Ala Gin val Phe Leu Ala Glu Asn Glu Ala Ser Ser Gly 165 170 175 Arg Tyr lie Cys Ser Ser His Asp' Thr Thr val val Gin Leu Ala Arg 180 185 190 Leu Leu Ala Asp Lys Tyr Pro Gin Tyr Asn Val Lys ser Gin Arg Phe 195 200 205 Asp Gly Ser Pro Glu Lys Pro Arg Val Cys Leu ser Ser Gin Lys Leu 210 215 220 Ile Gly Glu Gly Phe Val Tyr Lys Tyr Asp Asp Leu Gly Ala lie Leu 225 230 235 240 Asp Asp Leu val Glu Tyr Gly Arg Thr Thr Gly ile Leu Pro Phe 245 250 255 <210> 81 <211> 340 <212> PRT <213> Lolium perenne <400> 81 . Met Ala Ser Ala Ala Gly Gly Arg Arg Lys Thr Ala Cys Val Thr Gly 1 5 10 15 Gly ser Gly Tyr lie Ala Ser Ala Leu He Lys Thr Leu Leu Asp His 20 25 30 Gly Tyr Ala val Lys Thr Thr val Arg Asn Pro Asp Asp Leu Glu Lys 35 40 45 Thr Ser His Leu Lys Asp. Leu Gin Ala Phe Gly Pro Leu Glu lie Phe 50 55 60 Arg Gly Glu Leu Asp Val Glu Gly ser Phe Asp Asp ser val Ser Gly 65 70 75 80 Cys Asp Tyr val Phe Leu Val Ala Ala Pro Met Asp Met Gly Ser Leu 85 90 95 Asn Pro Glu Arg Asp Leu Val Gin Ala Gly val Gin Gly Thr Leu Asn 100 105 110 val Met Arg ser cys val Lys Ala Gly Thr val Lys Arg val lie Leu 115 120 125 Thr ser ser Asp ser Ala val cys Gin Arg Pro Leu Glu Gly Asp Gly 130 135 140 His val Leu Asp Glu Gly Ser Trp ser Asp val Pro Tyr L.eu Arg Ala 145 ' 159 155 i60 Glu Gin Pro Glu Ala Trp Gly Tyr Ala val ser Lys val Leu Met Glu 165 170 175 Glu Ala Ala Gly Lys Phe Ala Asp Glu Asn Gly Leu Gly Leu Val ser 180 185 190 Val Leu Pro Thr Phe Thr Leu Gly Ala Ala Pro Val Ser Gin Ala Arg 195 200 205 Tfrr ser val Pro Val Val Leu ser Leu Leu ser Gly Asp Glu Glu Gin 210 215 220 Leu Asn Leu Leu Glu Ala Met His Leu lie Thr Glu ser Val Ser Ile 225 230 235 240 Asn His He Asp Asp Leu Cys Arg Ala Gin val Phe Leu Ala Glu Asn 245 250 255 Glu Ala ser ser Gly Arg Tyr lie cys ser ser His Asp Thr Thr val 260 265 270 Val Gin Leu Ala Arg Leu Leu Ala Asp Lys Tyr pro Gin Tyr Asn val 275 280 285 Page 66 WO 03/093464 PCT/NZ03/00081 Lys Ser Gin Arg Phe Asp Gly Ser Pro Glu Lys pro Arg val cys Leu 290 295 300 Ser Ser Gin Lys Leu lie Gly Glu Gly Phe Val Tyr Lys Tyr Asp Asp 305 310 315 320 Leu Gly Ala lie Leu Asp Asp Leu Val Glu Tyr Gly Arg Thr Thr Gly 325 330 335 lie Leu Pro Phe 340 <210> 82 <211> 508 <212> PRT <213> Lolium perenne <400> 82 Ala Ala Ala Ser He Trp phe Leu Phe Arg Gly ser Ser Ser Gly Lys 15 10 15 Lys Leu Ser Lys Leu Pro Leu Pro Pro Gly Pro Arg Gly Trp Pro Val 20 25 30 - Leu Gly Asn Leu Pro Gin val Gly Ala Lys pro His His Thr Met Ala 35 40 45- Ala Leu Ser Gin Gin Phe Gly Pro Leu Phe Arg Leu Arg Phe Gly val 50 55 60 Ala Glu Val Val Val Ala Ala Ser Ala Lys val Ala ser Gin Phe Leu 65 70 75 80 Arg Ala His Asp Ala Asn Phe Ser Asp Arg Pro Pro Asn Ser Gly Ala 85 90 95 Glu His Val Ala Tyr Asn Tyr Gin Asp Leu Val phe Ala Pro Tyr Gly 100 105 110 Ser Arg Trp Arg Ala Leu Arg Lys Leu cys Ala Leu His Leu Phe ser 115 120 125 Ala Lys Ala Leu Asp Ala Leu Arg Ala Val Arg Glu Ala Glu Val Ala 130 135 140 Leu Met Val Lys Gin Leu Lys Glu Ser Ala Pro Ala Gly Val Val Val 145 150 155 160 Gly Gin Glu Ala Asn Val Cys Ala Thr Asn Ala Leu Ala Arg Ala Ala 165 170 175 val Gly Arg Arg Val Phe Gly Gly Ser Ala Gly Glu Gly Ala Arg Glu 180 185 190 Phe Lys Asp Met val val Glu Leu Met Gin Leu Ala Gly Val Phe Asn 195 200 205 Ile Gly Asp Phe Val Pro Ala Leu Arg Trp Leu Asp Pro Gin Gly Val 210 215 220 val Ala Arg Met Lys Arg Leu His Arg Arg Tyr Asp Ala Met Met Asp 225 230 ' 235 240 Gly Phe Ile ser Glu Arg Asp Gin Arg His Asn Gin Ala Ala Ala Asp 245 250 255 Gly Glu Arg Lys Asp Leu Leu ser Val Met Leu Gly Tyr Met Arg pro 260 265 270 Asp Gly Gly Gly Gly Glu Glu Glu Gly He ser Phe Asn His Thr Asp 275 2jJ0 _ 285 . , _ ile Lys ATa Leu Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp Thr Thr 290 295 300 Ser ser Thr val Glu Trp Ala Leu Ala Glu Leu lie Arg His Lys Asp 305 310 315 - 320 Val Leu Thr Gin Ala Gin Arg Glu Leu Asp Asp lie Val Gly Gin Asp 325 330 335 Arg Leu val Thr Glu ser Asp Leu Pro His Leu Thr Phe Leu Thr Ala 340 345 350 val He Lys Glu Thr Phe Arg Leu His Pro ser Thr Pro Leu ser Leu 355 360 365 Pro Arg val Ala Thr Glu Asp Cys Glu val Glu Gly Tyr Arg lie Pro 370 375 380 Lys Gly Thr Thr Leu Leu Val Asn val Trp Ala lie Ala Arg Asp Pro 385 390 395 400 Ala ser Trp Gly Pro Asp Ala Leu Glu Phe Arg Pro Ala Arg Phe Leu 405 410 415 Ala Gly Gly Leu His Glu Ser val Asp val Lys Gly Ser Asp Tyr Glu Page 67 WO 03/093464 PCT/NZ03/00081 420 425 430 Leu lie Pro phe Gly Ala Gly Arg Arg ile cys Ala Gly Leu Ser Trp 435 440 445 Gly Leu Arg Met val Thr Leu Met Thr Ala Thr Leu val His Ala Phe 450 455 460 Asp Trp Ser Leu Val Asp Gly Leu Thr Pro Glu Lys Leu Asp Met Glu 465 470 475 480 Glu Ala Tyr Gly Leu Thr Leu Gin Arg Ala Ala Pro Leu Met Val Arg 485 490 495 Pro ile Pro Arg Leu Leu ser ser Ala Tyr Thr val 500 505 <210> 83 <211> 524 <212> PRT <213> Lolium perenne <400> 83 Met Asp His Arg Asp val Leu Val Leu Leu Cys ser Leu Ala Ala Leu 15 10 15 Ala Ala Ala ser lie Trp Phe Leu-Phe Arg Gly Ser ser ser Gly Lys 20 25 30 Lys Leu Ser Lys Leu pro Leu Pro Pro Gly Pro Arg Gly Trp Pro Val 35 40 45 Leu Gly Asn Leu Pro Gin Val Gly Ala Lys Pro His His Thr Met Ala 50 55 60 Ala Leu Ser Gin Gin Phe Gly Pro Leu Phe Arg Leu Arg Phe Gly val 65 70 75 80 Ala Glu val val Val Ala Ala ser Ala Lys Val Ala ser Gin Phe Leu 85 90 95 Arg Ala His asp Ala Asn Phe ser Asp Arg Pro Pro Asn ser Gly Ala 100 105 110 Glu His Val Ala Tyr Asn Tyr Gin Asp Leu val Phe Ala Pro Tyr Gly 115 '• 120 125 Ser Arg Trp Arg Ala Leu Arg Lys Leu cys Ala Leu His Leu Phe ser 130 135 140 Ala Lys Ala Leu Asp Ala Leu Arg Ala val Arg Glu Ala Glu val Ala 145 150 155 160 Leu Met val Lys Gin Leu Lys Glu ser Ala Pro Ala Gly val val val 165 170 175 Gly Gin Glu Ala Asn val Cys Ala Thr Asn Ala Leu Ala Arg Ala Ala 180 .185 190 val Gly Arg Arg val Phe Gly Gly ser Ala Gly Glu Gly Ala Arg Glu 195 200 205 Phe Lys Asp Met Val val Glu Leu Met Gin Leu Ala Gly val Phe Asn 210 215 220 Ile Gly Asp Phe Val Pro Ala Leu Arg Trp Leu Asp Pro Gin Gly val 225 230 235 240 val Ala Arg Met Lys Arg Leu His Arg Arg Tyr Asp Ala Met Met Asp 245 250 255 Gly Phe lie ser Glu Arg Asp Gin Arg His Asn Gin Ala Ala Ala Asp 260 265 ' 270 Gly Glu Arg Lys Asp Leu Leu Ser Val Met Leu Gly Tyr Met Arg pro 275 • 280 a 285 Asp Gly Gly Gly Gly Glu Glu Glu Gly lie ser Phe Asn His Thr Asp 290 295 300 lie Lys Ala Leu Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp Thr Thr 305 310 315 320 Ser ser Thr val Glu Trp Ala Leu Ala Glu Leu He Arg His Lys Asp 325 330 335 Val Leu Thr Gin Ala Gin Arg Glu Leu Asp Asp lie Val Gly Gin Asp 340 345 350 Arg Leu Val Thr Glu ser Asp Leu Pro His Leu Thr Phe Leu Thr Ala 355 360 365 Val He Lys Glu Thr Phe Arg Leu His Pro Ser Thr Pro Leu Ser Leu 370 375 380 pro Arg Val Ala Thr Glu Asp cys Glu Val Glu Gly Tyr Arg ile pro 385 390 395 - 400 Page 68 WO 03/093464 PCT/NZ03/00081 Lys Gly Thr Thr Leu Leu Val Asn Val Trp Ala lie Ala Arg Asp Pro 405 410 415 . Ala Ser Trp Gly Pro Asp Ala Leu Glu Phe Arg Pro Ala Arg Phe Leu 420 • 425 430 Ala Gly Gly Leu His Glu ser Val Asp Val Lys Gly Ser Asp Tyr Glu 435 440 445 Leu lie Pro Phe Gly Ala Gly Arg Arg He cys Ala Gly Leu Ser Trp 450 455 460 Gly Leu Arg Met Val Thr Leu Met Thr Ala Thr Leu val His Ala Phe 465 470 475 • 480 Asp Trp Ser Leu Val Asp Gly Leu Thr Pro Glu Lys Leu Asp Met Glu 485 490 495 Glu Ala Tyr Gly Leu Thr Leu Gin Arg Ala Ala pro Leu Met Val Arg 500 505 510 Pro Ile Pro Arg Leu Leu Ser Ser Ala Tyr Thr Val 515 520 <21G> 84 <211> 525 <212> PRT <213> Festuca arundinacea <400> 84 Arg Ser Glu Leu Ala Gly Met Asp lie Pro Leu ser Leu Leu Leu Ser 15 10 15 Thr Leu Ala lie Ser Ala Thr lie Cys Tyr val phe Phe Arg Ala Gly 20 25 30 Lys Gly His Arg Ala Pro Leu Pro Leu Pro pro Gly Pro Arg Gly Trp 35 40 45 Pro val Leu Gly Asn Leu Pro Gin Leu Gly Gly Lys Thr His Gin Thr 50 55 60 Leu His Glu Met Thr Lys Val Tyr Gly Pro val Leu Arg Leu Arg Phe 65 70 75 80 Gly ser Ser Val Val Val Val Ala Gly Ser Ala Ala Val Ala Glu Gin 85 90 95 Phe Leu Arg Thr His Asp Ala Lys Phe Ser Ser Arg Pro Pro Asn Ser 100 105 110 Gly Gly Glu His Met Ala Tyr Asn Tyr Arg Asp val val Phe Ala Pro 115 120 125 Tyr Gly Pro Arg Trp Arg Ala Met Arg Lys Val cys Ala Val Asn lie 130 135 140 Phe ser Ala Arg Ala Leu Asp Asp Leu Arg Gly Phe Arg Glu Arg Glu 145 150 155 160 ' Ala Ala.Leu Met Val Arg ser Leu Ala Asp Ala Ala Lys Ala Gly val 165 170 175 Ala val Ala Val Gly Lys Ala Ala Asn val Cys Thr Thr Asn Gly Leu 180 185 190 Ser Arg Ala Ala Val Gly Leu Arg val Phe Gly ser Asb Gly Ala Arg 195 200 205 Asp Phe Lys Glu lie val Leu Glu val Met Glu val Gly Gly val Leu 210 215 220 Ash Val Gly Asp Phe Val Pro Ala Leu Arg Trp Leu Asp Pro Gin Gly 225 .230 235 240 Val val Ala Arg Leu Lys Lys Leu His Arg Arg phe Asp Asp Met Met 245 250 255 Asn Gly lie lie Ala Glu Arg Arg Thr Gly Thr Lys Thr Ala Val val 260 265 270 Glu Glu Gly Lys Gly Asp Leu Leu Gly Leu Leu Leu Ala Met val Gin 275 280 285 Glu Asp Lys ser Leu Thr Gly ser Glu Glu Asp Lys lie Thr Asp Thr 290 295 300 Asp val Lys Ala Leu-lie Leu Asn Leu Phe Val Ala Gly Thr Glu Thr 305 310 315 320 Thr ser ser lie val Glu .Trp Ala val Ala Glu Leu He Arg His Pro 325 330 335 Asp lie Leu Lys Gin Ala Gin Glu Glu Leu Asp Ala Val val Gly Arg 340 345 350 Asp Arg Leu val ser Glu ser Asp Leu Pro Arg Leu Thr Phe Phe Asn Page 69 WO 03/093464 PCT/NZ03/00081 355 360 365 Ala Ile lie Lys Glu Thr Phe Arg Leu His pro ser Thr Pro Leu ser 370 375 380 Leu Pro Arg Met Ala Ser Glu Glu cys Glu Val Ala Gly Tyr His Ile 385 390 395 400 Pro Arg Gly Thr Glu Leu Leu Val Asn Val Trp Gly lie Ala Arg Asp 405 410 415 Pro Ala Leu Trp Pro Asp Pro Leu Glu Tyr Gin Pro Ala Arg Phe Leu 420 425 430 pro Gly Gly Ser His Glu Asn Val Asp Leu Lys Gly Gly Asp phe Gly 435 440 445 Leu lie Pro Phe Gly Ala Gly Arg Arg lie cys Ala Gly Leu Ser Trp 450 455 460 Gly Leu Arg Met Val Thr lie Thr Thr Ala Thr Leu Val His Ser Phe 465 470 475 . 480 Asp Trp Glu Leu Pro Ala Gly Gin Thr Pro Asp Lys Leu Asn Met Glu 485 490 495 Glu Ala Phe Ser Leu Leu Leu Gin Arg Ala val Pro Leu Met. Val His 500 505 510 Pro Val Pro Arg Leu Leu Pro Ser Ala Tyr Glu lie Ser 515 520 525 <210> 85 <211> 526 <212> PRT <213> Festuca arundinacea <400> 85 Met Arg ser Glu Leu Ala Gly Met Asp lie Pro Leu Pro Leu Leu Leu 1.5 10 15 ser Thr Leu Ala Ile Ser Ala Thr ile cys Tyr val Phe Phe Arg Ala 20 25 30 Gly Lys Gly His Arg Ala Pro Leu Pro Leu Pro pro Gly pro Arg Gly 35 40 45 Trp Pro val Leu Gly Asn Leu Pro Gin Leu Gly Gly Lys Thr His Gin 50 55 60 Thr Leu His Glu Met Thr Lys val Tyr Gly Pro val Leu Arg Leu Arg 65 70 75 80 Phe Gly ser ser val val val val Ala Gly ser Ala Ala val Ala Glu 85 90 95 Gin Phe Leu Arg Thr His Asp Ala Lys Phe ser ser Arg Pro Pro Asn 100 105 • 110 Ser Gly Gly Glu His Met Ala Tyr Asn Tyr Arg Asp val val Phe Ala 115 120 125 Pro Tyr Gly pro Arg Trp Arg Ala Met Arg Lys val Cys Ala Val Asn 130 135 140 ile Phe ser Ala Arg Ala Leu Asp Asp Leu Arg Gly Phe Arg Glu Arg 145 150 155 160 Glu Ala Ala Leu Met val Arg Ser Leu Ala Asp Ala Ala Lys Ala Gly 165 170 175 Val Ala val Ala val Gly Lys Ala Ala Asn Val cys Thr Thr Asn Gly 180 .185 190 " Leu ser Arg Ala Ala val Gly Leu Arg Val Phe Gly ser Asp Gly Ala 195 200 205 Arg Asp Phe Lys Glu ile val Leu Glu val Met Glu val Gly Gly val 210 215 220 Leu Asn val Gly Asp Phe val Pro Ala Leu Arg Trp Leu Asp Pro Gin 225 230 235 240 Gly val Val Ala Arg Leu Lys Lys Leu His Arg Arg Phe Asp Asp Met 245 250 v 255 Met Asn Gly ile He Ala Glu Arg Arg Thr Gly Thr Lys Thr Ala val 260 265 . 270 val Glu Glu Gly Lys Gly Asp Leu Leu Gly Leu Leu Leu Ala Met Val 275 280 285 Gin Glu Asp Lys Ser Leu Thr Gly ser Glu Glu Asp Lys lie Thr Asp 290 295 300 Thr Asp val Lys Ala Leu lie Leu Asn Leu Phe val Ala Gly Thr Glu 305 310 315 320 Page 70 WO 03/093464 PCT/NZ03/00081 Thr Thr ser ser He val Glu Trp Ala val Ala Glu Leu lie Arg His 325 330 335 pro Asp Ile Leu Lys Gin Ala Gin Glu Glu Leu Asp Ala Val Val Gly 340 345 350 Arg Asp Arg Leu Val Ser Glu ser Asp Leu Pro Arg Leu Thr Phe Phe 355 • 360 365 Asn Ala Ile lie Lys Glu Thr Phe Arg Leu His pro ser Thr Pro Leu 370 375 380 Ser Leu Pro Arg Met Ala ser Glu Glu cys Glu Val Ala Gly Tyr His 385 390 395 400 lie Pro Arg Gly Thr Glu Leu Leu Val Asn val Trp Gly lie Ala Arg 405 410 415 Asp Pro Ala Leu Trp Pro Asp Pro Leu Glu Tyr Gin Pro Ala Arg Phe 420 425 ' 430 • Leu Pro Gly Gly Ser His Glu Asn Val Asp Leu Lys Gly Gly Asp Phe . 435 440 445 Gly Leu lie pro Phe Gly Ala Gly Arg Arg lie cys Ala Gly Leu Ser 450 455 460 Trp Gly'Leu Arg Met Val Thr lie Thr Thr Ala Thr Leu Val His ser 465 470 * 475 480 Phe Asp Trp Glu Leu Pro Ala Gly Gin Thr Pro Asp Lys Leu Asn Met 485 490 495 Glu Glu Ala Phe Ser Leu Leu Leu Gin Arg Ala Val Pro Leu Met val 500 505 510 His Pro Val Pro Arg Leu Leu Pro ser Ala Tyr Glu Ile ser 515 520 525 <210> 86 <211> 491 <212> PRT <213> Festuca arundinacea <400> 86 Asp ile Pro Leu Pro Leu Leu Leu Ser Thr Leu Ala lie ser Ala Thr 1 5 10 15 lie Cys Tyr val Phe Phe Arg Ala Gly Lys Thr His Gin Thr Leu His 20 25 30 Glu Met Thr Lys Val Tyr Gly Pro Val Leu Arg Leu Arg Phe Gly ser 35 40 45 ser Val val val Val Ala Gly ser Ala Ala Val Ala Glu Gin Phe Leu 50 55 60 Arg Thr His Asp Ala Lys phe ser ser Arg Pro Pro Asn ser Gly Gly 65 70 75 80 Glu His Met Ala Tyr Asn Tyr Gin Asp lie val Phe Ala Pro Tyr Gly Pro Arg Trp Arg Ala Met Arg Lys Val Cys Ala val Asn lie Phe ser 100 105 110 Ala Arg Ala Leu Asp Asp Leu Arg Gly Phe Arg Glu Arg Glu Ala Ala 115 ' 120 125 Leu Met Val Arg ser Leu Ala Asp Ala Ala Lys Ala Gly Ala Ala val 130 135 140 Ala 951 Gly Lys- Ala Ala Asn val cys thr Thr Asn Gly Leu ser Arg 145 150 155 160 Ala Ala Val Gly Leu Arg val Phe Gly Ser Asp Gly Thr Arg Asp Phe 165 170 175 Lys Glu ile val Leu Glu val Met Glu Val Gly Gly val Leu Asn val 180 185 190 Gly Asp Phe val Pro Ala Leu Arg Trp Leu Asp Pro Gin Gly Val val 195 200 205 Ala Arg Met Lys Lys Leu His Arg Arg Phe Asp Asp lie Met Asn Gly 210 215 220 He lie Ala Glu Arg Arg Thr Gly Ala Lys Thr Ala val Val Glu Glu 225 230 235 240 Gly Lys Gly Asp Leu Leu Gly Leu Leu Leu Ala Met val Gin Glu Asp 245 250 255 Lys Ser Leu Thr Gly ser Glu Glu Asp Lys lie Thr ASp Thr Asp val 260 265 270 Lys Ala Leu lie Leu Asn Leu Phe Val Ala Gly Thr Glu Thr Thr ser Page 71 WO 03/093464 PCT/NZ03/00081 275 280 285 Ser lie Val Glu Trp Ala val Ala Glu Leu lie Arg His Pro Asp lie 290 295 BOO Leu Lys Gin Ala Gin Glu Glu Leu Asp Thr Val val Gly Arg Asp An • 305 310 315 32 Ile val Ser Glu ser Asp Leu Pro Arg Leu Thr Phe Phe Asn Ala Ile 325 330 335 lie Lys Glu Thr Phe Arg Leu His Pro ser Thr Pro Leu ser Leu Pro 340 345 350 Arg Met Ala Ser Glu Asp cys Glu Val Ala Gly Tyr His Ile Pro Arg 355 360 365 Gly Thr Glu Leu Leu val Asn val Trp Gly Ile Ala Arg Asp Pro ser 370 • 375 380 Leu Trp Pro Asp Pro Leu Glu Tyr Arg Pro Ala Arg Phe Leu Pro Gly 385 390 395 400 Gly Ser His Glu Asn val Asp Leu Lys Gly Gly Asp Phe Gly Leu Ile 405 410 415 pro Phe Gly Ala Gly Arg Arg Ile cys Ala Gly Leu Ser Trp Gly Leu 420 ^25 430 Arg Met Val Thr Val Thr Thr Ala Thr Leu Val His ser Phe Asp Trp 435 440 445 Glu Leu Pro Ala Gly Gin Thr Leu Asp Lys Leu Asn Met Glu Glu Ala 450 455 • 460 phe ser Leu Leu Leu Gin Arg Ala Met Pro Leu Met val His Pro val 465 470 475 480 pro Arg Leu Leu Pro Ser Ala Tyr Glu lie ser 485 490 <210> 87 <211> 499 <212> PRT <Z13> Festuca arundinacea <400> 87 Met Arg Asn Glu Leu Ala Gly Met Asp lie Pro Leu Pro Leu Leu Leu 1 5 10 15 ser Thr Leu Ala Ile Ser Ala Thr Ile cys Tyr Val Phe Phe Arg Ala 20 25 30 Gly Lys Thr His Gin Thr Leu His Glu Met Thr Lys Val Tyr Gly Pro 35 40 45 val Leu Arg Leu Arg Phe Gly ser ser Val Val val val Ala Gly ser 50 55 60 Ala Ala val Ala Glu Gin Phe Leu Arg Thr His Asp Ala Lys Phe Ser 65 70 75 80 ser Arg pro Pro Asn Ser Gly Gly Glu His Met Ala Tyr Asn Tyr Gin 85 90 95 Asp Ile val Phe Ala Pro Tyr Gly Pro Arg Trp Arg Ala Met Arg Lys 100 105 110 val cys Ala val Asn He Phe ser Ala Arg Ala Leu Asp Asp Leu Arg 115 120 125 Gly Phe Arg Glu Arg Glu Ala Ala Leu Met Val Ar.g. Ser Leu Ala Asp. 130" "" 135 140 Ala Ala Lys Ala Gly Ala Ala val Ala Val Gly Lys Ala Ala Asn val 145 150 155 160 cys Thr Thr Asn Gly Leu ser Arg Ala Ala val Gly Leu Arg val Phe 165 170 175 Gly Ser Asp Gly Thr Arg Asp Phe Lys Glu Ile val Leu Glu val Met 180 185 190 Glu val Gly Gly val Leu Asn val Gly Asp Phe val Pro Ala Leu Arg 195 200 205 Trp Leu Asp pro Gin Gly val Val Ala Arg Met Lys Lys Leu His Arg 210 215 220 Arg Phe Asp Asp lie Met Asn Gly lie He Ala Glu Arg Arg Thr Gly 225 230 235 240 Ala Lys Thr Ala Val Val Glu Glu Gly Lys Gly Asp Leu Leu Gly Leu 245 250 255 „ Leu Leu Ala Met val Gin Glu Asp Lys ser Leu Thr Gly ser Glu Glu 260 265 270 Page 72 WO 03/093464 PCT/NZ03/00081 Asp Lys He Thr Asp Thr Asp val Lys Ala Leu lie Leu Asn Leu Phe 275 280 285 val Ala Gly Thr Glu Thr Thr ser ser lie val Glu Trp Ala val Ala 290 295 300 Glu Leu lie Arg His Pro Asp lie Leu Lys Gin Ala Gin Glu Glu Leu 305 310 315 320 Asp Thr val val Gly Arg Asp Arg lie Val Ser Glu ser Asp Leu pro 325 • 330 335 Arg Leu Thr Phe Phe Asn Ala lie Ile Lys Glu Thr Phe Arg Leu His 340 345 350 Pro ser Thr Pro Leu Ser Leu pro Arg Met Ala ser Glu Asp cys Glu 355 360 365 Val Ala Gly Tyr His Ile Pro Arg Gly Thr Glu Leu Leu Val Asn val 370 375 380 Trp Gly lie Ala Arg Asp Pro Ser Leu Trp Pro Asp Pro Leu Glu Tyr 385 390 395 400 Arg Pro Ala Arg Phe Leu Pro Gly Gly Ser His Glu Asn val Asp Leu 405 410 415 Lys Gly Gly Asp Phe Gly Leu lie Pro Phe Gly Ala Gly Arg Arg lie 420 425 430 Cys Ala Gly Leu ser Trp Gly Leu Arg Met Val Thr val Thr Thr Ala 435 440 445 • Thr Leu Val His Ser Phe Asp Trp Glu Leu Pro Ala Gly Gin Thr Leu 450 * 455 460 Asp Lys Leu Asn Met Glu Glu Ala Phe Ser Leu Leu Leu Gin Arg Ala 465 470 475 480 Met Pro Leu Met Val His pro val pro Arg Leu Leu Pro Ser Ala Tyr 485 490 495 Glu ile Ser <21G> 88 <2U> 380 <212> PRT <213> Lolium perenne <400> 88 Met Ala Met Ala Asp cys Met Gin Glu Trp Pro Glu Pro val val Arg 1 5 10 15 Val Gin Ala val Ala Glu Ser Gly Leu Ala Ala Ile Pro Asp Cys Tyr 20 25 30 val Lys Pro Pro Arg Asp Arg Pro Ala Ala Gin His Leu Ala Thr Ala 35 40 45 Ala Ser Ala Asp Gly Asp val Leu His Glu Pro Leu Asp Thr Ser lie 50 55 - 60 Pro Val Ile Asp Leu Gly Glu Leu Val Ala Ala Thr Ala Asp Glu Gly 65 70 75 80 Arg Met Arg Gin lie Met Glu Ala Val Ala Ala Ala Cys Arg Glu Trp 85 90 95 Gly Phe Phe-Gin Val val Asn His Gly Val Ala Pro Glu Leu Met His 100 105 110 • A'Ta Ala Arg GTu Ala Trp Arg Gly pfie Phe Arg Leu Pro lie Thr Ala 115 120 125 Lys Gin Gin Tyr Ala Asn Leu Pro Arg Thr Tyr Glu Gly Tyr Gly ser 130 135 140 Arg val Gly val Gin Lys Gly Gly pro Leu Asp Trp Gly Asp Tyr Tyr 145 150 155 160 Phe Leu His Leu Ala Pro Asp Ala Gly Lys Ser Pro Asp Lys Tyr Trp 165 170 175 Pro Thr Asn Pro Ala lie cys Lys Asp Val Ser Glu Glu Tyr Gly Arg 180 185 190 Glu Val ile Arg Leu cys Glu Leu Leu Met Lys val Met ser Ala ser 195 200 205 Leu Gly Leu Glu Ala Thr Arg Phe Gin Glu Ala Phe Gly Gly ser Glu 210 215 220 cys Gly val cys Leu Arg Ala Asn Tyr Tyr Pro Arg cys Pro Gin Pro 225 230 235 240 Asp Leu Thr Leu Gly Leu ser Ala His Ser Asp Pro Gly val Leu Thr Page 73 WO 03/093464 PCT/NZ03/00081 245 250 255 val Leu Leu Ala Asp Glu His Val Arg Gly Leu Gin val Arg Arg Ala • 260 265 270 Asp Gly Glu Trp Val Thr val Gin Pro Ala Arg His Asp Ala Phe He 275 280 285 Val Asn Val Gly Asp Gin He Gin Ile Leu Ser Asn ser Met Tyr Lys 290 295 300 ser val Glu His Arg Val Met val Asn Ala Lys Glu Glu Arg lie ser •305 ' 310 315 320 Leu Ala Leu Phe Tyr Asn Pro Arg Gly Asp Val Pro Ile Ala Pro Ala 325 330 335 pro Glu Thr Val Thr pro Glu Arg Pro Ala Leu Tyr Pro ser Met Thr 340 345 350 Phe Asp Glu Tyr Arg Ala Tyr Ile Arg Lys Tyr Gly Pro Arg Gly Lys 355 360 365 Ala Gin val Glu Gly Ala Lys Gin Gly Gin Gly ser 370 375 380 <210> 89 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Made in the lab <400> 89 gacgcaagga gagatccaga 20 <210> 90 <211> 20 <212> ONA <213> Artificial.sequence <220> <223> Made in the lab <400> 90 agacgaggtg ggtgatcttg 20 <210> 91 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Made in the lab <400> 91 tacatatgaa gagagtttca tcgcat 26 31Q> <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Made in the lab <400> 92 . gccgaacaga ■ ccattgaagt a 21 Page 74'
NZ55424907A 2002-05-06 2007-03-30 I-SST enzyme isolated from forage grasses and methods for its use NZ554249A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37893002P 2002-05-06 2002-05-06

Publications (1)

Publication Number Publication Date
NZ554249A true NZ554249A (en) 2008-08-29

Family

ID=40158442

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ55424907A NZ554249A (en) 2002-05-06 2007-03-30 I-SST enzyme isolated from forage grasses and methods for its use

Country Status (1)

Country Link
NZ (1) NZ554249A (en)

Similar Documents

Publication Publication Date Title
AU2008255238B2 (en) Compositions isolated from forage grasses and methods for their use
AU2008255239B2 (en) Compositions from the grasses lolium perenne and festuca arundinacea
US6166292A (en) Raffinose synthetase gene, method of producing raffinose and transgenic plant
CN101365786B (en) Plants having improved growth characteristics and methods for making same
AU2017279805A1 (en) Isolated Polynucleotides and Polypeptides and Methods of Using Same for Increasing Plant Yield
US20030093837A1 (en) Polynucleotides for seed trait alteration
CA2449238A1 (en) Alteration of oil traits in plants
AU2002360228A1 (en) Compositions from the grasses lolium perenne and festuca arundinacea
JP6224030B2 (en) Methods for modifying fructan biosynthesis, increasing plant biomass, and enhancing biochemical pathway productivity in plants
CN101802204A (en) The biosynthetic improvement of xylogen by the justice inhibition
US6791015B2 (en) Fructan biosynthetic enzymes
US20040126843A1 (en) Compositions isolated from forage grasses and methods for their use
NZ554249A (en) I-SST enzyme isolated from forage grasses and methods for its use
US20050150008A1 (en) Compositions isolated from forage grasses and methods of use
CN110317826A (en) Regulate and control the application of PvGRF9 content or active substance in regulation axis growth and development
AU2013202732B2 (en) Manipulation of soluble carbohydrates (4)
MXPA01007025A (en) Compositions isolated from plant cells and their use in the modification of plant cell signaling
NZ554250A (en) Isolated terminal flower 1 gene (TFL1) from festuca arundinacea and methods for its use
AU2004202771A1 (en) Materials and methods for the modification of plant cell wall polysaccharides

Legal Events

Date Code Title Description
PSEA Patent sealed
S881 Correction of error according section 88(1) (mistake in register by reason of an error or omission on the part of the patent office)

Free format text: THE DATE (22) HAS BEEN CORRECTED

RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 3 YEARS UNTIL 06 MAY 2016 BY AJ PARK

Effective date: 20130301

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 7 YEARS UNTIL 06 MAY 2023 BY AJ PARK

Effective date: 20140912

EXPY Patent expired