NZ549679A - Self-processing plants and plant parts - Google Patents

Self-processing plants and plant parts

Info

Publication number
NZ549679A
NZ549679A NZ549679A NZ54967904A NZ549679A NZ 549679 A NZ549679 A NZ 549679A NZ 549679 A NZ549679 A NZ 549679A NZ 54967904 A NZ54967904 A NZ 54967904A NZ 549679 A NZ549679 A NZ 549679A
Authority
NZ
New Zealand
Prior art keywords
starch
plant
enzyme
amylase
seq
Prior art date
Application number
NZ549679A
Inventor
Michael B Lanahan
Shib S Basu
Christopher J Batie
Wen Chen
Joyce Craig
Mark Kinkema
Original Assignee
Syngenta Participations Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations Ag filed Critical Syngenta Participations Ag
Priority to NZ549679A priority Critical patent/NZ549679A/en
Priority claimed from PCT/US2004/007182 external-priority patent/WO2005096804A2/en
Publication of NZ549679A publication Critical patent/NZ549679A/en

Links

Classifications

    • Y02E50/17

Abstract

Disclosed is a method of increasing starch recovery from maize seed, the method comprising: a) steeping transgenic maize seed comprising at least one cellulase, in particular and endoglucanase; b) further combining the maize seed of a) with a protease (in particular Bromelain) to produce steeped seed; c) grinding said steeped seed to produce a maize slurry; and d) obtaining starch from maize seed. Further disclosed is the above method where the protease is expressed by the plant.

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">WO 2005/096804 <br><br> 5 4 9 6 7 9 <br><br> PCT/US2004/007182 <br><br> *10056772787* <br><br> SELF-PROCESSING PLANTS AND PLANT PARTS <br><br> Related Applications <br><br> This application is a continuation-in-part of U.S. Patent Application No. 10/228,063, filed August 27, 2002, which claims priority to Application Serial No. 60/315,281, filed August 27, 2001, each of which is herein incorporated by reference in their entirety. <br><br> Field of the Invention <br><br> The present invention generally relates to the field of plant molecular biology, and more specifically, to the creation of plants that express a processing enzyme which provides a desired characteristic to the plant or products thereof. <br><br> Background of the Invention <br><br> Enzymes are used to process a variety of agricultural products such as wood, fruits and vegetables, starches, juices, and the like. Typically, processing enzymes are produced and recovered on an industrial scale from various sources, such as microbial fermentation (Bacillus a-amylase), or isolation from plants (coffee /3-galactosidase or papain from plant parts). Enzyme preparations are used in different processing applications by mixing the enzyme and the substrate under the appropriate conditions of moisture, temperature, time, and mechanical mixing such that the enzymatic reaction is achieved in a commercially viable manner. The methods involve separate steps of enzyme production, manufacture of an enzyme preparation, mixing the enzyme and substrate, and subjecting the mixture to the appropriate conditions to facilitate the enzymatic reaction. A method that reduces or eliminates the time, energy, mixing, capital expenses, and/or enzyme production costs, or results in improved or novel products, would be useful and beneficial. One example of where such improvements are needed is in the area of com milling. <br><br> Today corn is milled to obtain cornstarch and other corn-milling co-products such as corn gluten feed, com gluten meal, and com oil. The starch obtained from the process is often further processed into other products such as derivatized starches and sugars, or fermented to make a variety of products including alcohols or lactic acid. Processing of cornstarch often involves the use of enzymes, in particular, enzymes that hydrolyze and convert starch into fermentable sugars l <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> or fructose (a- and gluco-amylase, a -glucosidase, glucose isomerase, and the like). The process used commercially today is capital intensive as construction of very large mills is required to process corn on scales required for reasonable cost-effectiveness. In addition the process requires the separate manufacture of starch-hydrolyzing or modifying enzymes and then the machinery to mix the enzyme and substrate to produce the hydrolyzed starch products. <br><br> The process of starch recovery from corn grain is well known and involves a wet-milling process. Corn wet-milling includes the steps of steeping the corn kernel, grinding the corn kernel and separating the components of the kernel. The kernels are steeped in a steep tank with a countercurrent flow of water at about 120° F and the kernels remain in the steep tank for 24 to 48 hours. This steepwater typically contains sulfur dioxide at a concentration of about 0.2% by weight. Sulfur dioxide is employed in the process to help reduce microbial growth and also to reduce disulfide bonds in endosperm proteins to facilitate more efficient starch-protein separation. Normally, about 0.59 gallons of steepwater is used per bushel of corn. The steepwater is considered waste and often contains undesirable levels of residual sulfur dioxide. <br><br> The steeped kernels are then dewatered and subjected to sets of attrition type mills. The first set of attrition type mills rupture the kernels releasing the germ from the rest of the kernel. A commercial attrition type mill suitable for the wet milling business is sold under the brand name Bauer. Centrifugation is used to separate the germ from the rest of the kernel. A typical commercial centrifugation separator is the Merco centrifugal separator. Attrition mills and centrifugal separators are large expensive items that use energy to operate. <br><br> In the next step of the process, the remaining kernel components including the starch, <br><br> hull, fiber, and gluten are subjected to another set of attrition mills and passed through a set of wash screens to separate the fiber components from the starch and gluten (endosperm protein). The starch and gluten pass through the screens while the fiber does not. Centrifugation or a third grind followed by centrifugation is used to separate the starch from the endosperm protein. Centrifugation produces a starch slurry which is dewatered, then washed with fresh water and dried to about 12% moisture. The substantially pure starch is typically further processed by the use of enzymes. <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> The separation of starch from the other components of the grain is performed because removing the seed coat, embryo and endosperm proteins allows one to efficiently contact the starch with processing enzymes, and the resulting hydrolysis products are relatively free from contaminants from the other kernel components. Separation also ensures that other components of the grain are effectively recovered and can be subsequently sold as co-products to increase the revenues from the mill. <br><br> After the starch is recovered from the wet-milling process it typically undergoes the processing steps of gelatinization, liquefaction and dextrinization for maltodextrin production, and subsequent steps of saccharification, isomerization and refining for the production of glucose, maltose and fructose. <br><br> Gelatinization is employed in the hydrolysis of starch because currently available enzymes cannot rapidly hydrolyze crystalline starch. To make the starch available to the hydrolytic enzymes, the starch is typically made into a slurry with water (20-40% dry solids) and heated at the appropriate gelling temperature. For cornstarch this temperature is between 105-110° C. The gelatinized starch is typically very viscous and is therefore thinned in the next step called liquefaction. Liquefaction breaks some of the bonds between the glucose molecules of the starch and is accomplished enzymatically or through the use of acid. Heat-stable endo a -amylase enzymes are used in this step, and in the subsequent step of dextrinization. The extent of hydrolysis is controlled in the dextrinization step to yield hydrolysis products of the desired percentage of dextrose. <br><br> Further hydrolysis of the dextrin products from the liquefaction step is carried out by a number of different exo-amylases and debranching enzymes, depending on the products that are desired. And finally if fructose is desired then immobilized glucose isomerase enzyme is typically employed to convert glucose into fructose. <br><br> Dry-mill processes of making fermentable sugars (and then ethanol, for example) from cornstarch facilitate efficient contacting of exogenous enzymes with starch. These processes are less capital intensive than wet-milling but significant cost advantages are still desirable, as often the co-products derived from these processes are not as valuable as those derived from wet-milling. For example, in dry milling com, the kernel is ground into a powder to facilitate <br><br> 3 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> efficient contact of starch by degrading enzymes. After enzyme hydrolysis of the corn flour the residual solids have some feed value as they contain proteins and some other components. Eckhoff recently described the potential for improvements and the relevant issues related to dry milling in a paper entitled "Fermentation and costs of fuel ethanol from corn with quick-germ process" fAppl. Biochem. BiotechnoL 94: 41 (2001)). The "quick germ" method allows for the separation of the oil-rich germ from the starch using a reduced steeping time. <br><br> One example where the regulation and/or level of endogenous processing enzymes in a plant can result in a desirable product is sweet corn. Typical sweet corn varieties are distinguished from field corn varieties by the fact that sweet com is not capable of normal levels of starch biosynthesis. Genetic mutations in the genes encoding enzymes involved in starch biosynthesis are typically employed in sweet com varieties to limit starch biosynthesis. Such mutations are in the genes encoding starch synthases and ADP-glucose pyrophosphorylases (such as the sugary and super-sweet mutations). Fructose, glucose and sucrose,which are the simple sugars necessary for producing the palatable sweetness that consumers of edible fresh com desire, accumulate in the developing endosperm of such mutants. However, if the level of starch accumulation is too high, such as when the com is left to mature for too long (late harvest) or the com is stored for an excessive period before it is consumed, the product loses sweetness and takes on a starchy taste and mouthfeel. The harvest window for sweet com is therefore quite narrow, and shelf-life is limited. <br><br> Another significant drawback to the farmer who plants sweet com varieties is that the usefulness of these varieties is limited exclusively to edible food. If a farmer wanted to forego harvesting his sweet com for use as edible food during seed development, the crop would be essentially a loss. The grain yield and quality of sweet corn is poor for two fundamental reasons. The first reason is that mutations in the starch biosynthesis pathway cripple the starch biosynthetic machinery and the grains do not fill out completely, causing the yield and quality to be compromised. Secondly, due to the high levels of sugars present in the grain and the inability to sequester these sugars as starch, the overall sink strength of the seed is reduced, which exacerbates the reduction of nutrient storage in the grain. The endosperms of sweet com variety seeds are shrunken and collapsed, do not undergo proper desiccation, and are susceptible to diseases. The poor quality of the sweet com grain has further agronomic implications; as poor <br><br> seed viability, poor germination, seedling disease susceptibility, and poor early seedling vigor result from the combination of factors caused by inadequate starch accumulation. Thus, the poor quality issues of sweet corn impact the consumer, farmer/grower, distributor, and seed producer. <br><br> Thus, for dry-milling, there is a need for a method which improves the efficiency of the 5 process and/or increases the value of the co-products. For wet-milling, there is a need for a method of processing starch that does not require the equipment necessary for prolonged steeping, grinding, milling, and/or separating the components of the kernel. For example, there is a need to modify or eliminate the steeping step in wet milling as this would reduce the amount of waste water requiring disposal, thereby saving energy and time, and increasing mill capacity 10 (kernels would spend less time in steep tanks). There is also a need to eliminate or improve the process of separating the starch-containing endosperm from the embryo. <br><br> Summary of the Invention The present disclosure is directed to self-processing plants and plant parts and methods of 15 using the same. The self-processing plant and plant parts of the present invention are capable of expressing and activating enzyme(s) (mesophilic, thermophilic, and/or hyperthermophilic). <br><br> Upon activation of the enzyme(s) (mesophilic, thermophilic, or hyperthermophilic) the plant or plant part is capable of self-processing the substrate upon which it acts to obtain the desired result. <br><br> 20 The present disclosure is directed to an isolated polynucleotide a) comprising SEQ ID <br><br> NO: 2,4,6, 9,19, 21,25, 37, 39,41,43,46,48, 50, 52, or 59 or the complement thereof, or a polynucleotide which hybridizes to the complement of any one of SEQ ID NO: 2,4, 6,9, 19, 21, 25, 37, 39,41,43,46,48, 50,52, or 59 under low stringency hybridization conditions and encodes a polypeptide having a -amylase, pullulanase, a -glucosidase, glucose isomerase, or 25 glucoamylase activity or b) encoding a polypeptide comprising SEQ ID NO: 10, 13, 14, 15, 16, 18, 20 24, 26,27, 28,29, 30, 33, 34, 35, 36, 38, 40,42,44, 45, 47, 49, or 51 or an enzymatically active fragment thereof. Preferably, the isolated polynucleotide encodes a fusion polypeptide comprising a first polypeptide and a second peptide, wherein said first polypeptide has a -amylase, pullulanase, a-glucosidase, glucose isomerase, or glucoamylase activity. Most 30 preferably, the second peptide comprises a signal sequence peptide, which may target the first <br><br> 5 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 RECEIVED <br><br> polypeptide to a vacuole, endoplasmic reticulum, chloroplast, starch granule, seed or cell wall of a plant. For example, the signal sequence may be an N-terminal signal sequence from waxy, an N-terminal signal sequence from y-zein, a starch binding domain, or a C-terminal starch binding domain. Polynucleotides that hybridize to the complement of any one of SEQ ID NO: 2, 9, or 52 under low stringency hybridization conditions and encodes a polypeptide having a -amylase activity; to the complement of SEQ ID NO: 4 or 25 under low stringency hybridization conditions and encodes a polypeptide having pullulanase activity; to the complement of SEQ ID NO:6 and encodes a polypeptide having a -glucosidase activity; to the complement of of any one of SEQ ED NO: 19,21, 37, 39,41, or 43 under low stringency hybridization conditions and encodes a polypeptide having glucose isomerase activity; to the complement of any one of SEQ ID NO: 46,48, 50, or 59 under low stringency hybridization conditions and encodes a polypeptide having glucoamylase activity are further encompassed. <br><br> The present disclosure is also directed to an isolated polynucleotide a) comprising SEQ ID NO: 61,63, 65, 79, 81, 83, 85, 87, 89,91, 93,94, 95,96,97,99,108, and 110 or the complement thereof, or a polynucleotide which hybridizes to the complement of any one of SEQ ID NO: 61,63,65, 79, 81, 83, 85, 87, 89, 91, 93,94, 95, 96, 97, 99, 108, or 110 under low stringency hybridization conditions and encodes a polypeptide having xylanase, cellulase, glucanase, beta glucosidase, esterase or phytase activity b) encoding a polypeptide comprising SEQ ID NO: 62, 64, 66,70, 80, 82, 84, 86, 88, 90, 92, 109, or 111 or an enzymatically active fragment thereof. The isolated polynucleotide may encode a fusion polypeptide comprising a first polypeptide and a second peptide, wherein said first polypeptide has xylanase, cellulase, glucanase, beta glucosidase, protease, or phytase activity. The second peptide may comprises a signal sequence peptide, which may target the first polypeptide to a vacuole, endoplasmic reticulum, chloroplast, starch granule, seed or cell wall of a plant. For example, the signal sequence may be an N-terminal signal sequence from waxy, an N-terminal signal sequence from y-zein, a starch binding domain, or a C-terminal starch binding domain. <br><br> Exemplary xylanases provided and useful in the invention include those encoded by SEQ ID NO: 61, 63, or 65. An exemplary protease, namely bromelain, encoded by SEQ ID NO: 69 is also provided. Exemplary cellulases include cellobiohydrolase I and II as provided herein and <br><br> 6 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 15 JUN 2009 <br><br> RECEIVED <br><br> encoded by SEQ ID NO: 79,81,93, and 94. An exemplary glucanase is provides as 6GP1 described herein encoded by SEQ ID NO: 85. Exemplary beta glucosidases include beta glucosidase 2 and D, as described herein and encoded by SEQ ID NO: 96 and 97. An exemplary esterase is also provided, namely ferulic acid esterase as encoded by SEQ ID NO:99. And, an 5 exemplary phytase, Nov9X as encoded by SEQ ID NO: 109-112 is also provided. <br><br> Also included are expression cassettes comprising a polynucleotide a) having SEQ ID NO: 2, 4, 6, 9, 19,21, 25, 37, 39, 41, 43, 46, 48, 50, 52, or 59 or the complement thereof, or a polynucleotide which hybridizes to the complement of any one of SEQ ID NO: 2,4,6,9, 19,21, 25, 37, 39, 41, 43,46, 48, 50, 52, or 59 or under low stringency hybridization conditions and 10 encodes an polypeptide having a -amylase, pullulanase, a -glucosidase, glucose isomerase, or glucoamylase activity or b) encoding a polypeptide comprising SEQ ED NO: 10, 13,14,15, 16, 18, 20, 24, 26, 27,28, 29, 30, 33, 34, 35, 36, 38,40, 42, 44, 45, 47, 49, or 51, or an enzymatically active fragment thereof. The expression cassette further comprises a promoter operably linked to the polynucleotide, such as an inducible promoter, tissue-specific promoter, or preferably an 15 endosperm-specific promoter. Preferably, the endosperm-specific promoter is a maize y-zein promoter or a maize ADP-gpp promoter or a maize Q promoter promoter or a rice glutelin-1 promoter. In a preferred embodiment, the promoter comprises SEQ ID NO: 11 or SEQ ID NO: 12 or SEQ ID NO: 67 or SEQ ID NO: 98. Moreover, in another preferred embodiment the polynucleotide is oriented in sense orientation relative to the promoter. The expression cassette 20 of the present disclosure may further encode a signal sequence which is operably linked to the polypeptide encoded by the polynucleotide. The signal sequence preferably targets the operably linked polypeptide to a vacuole, endoplasmic reticulum, chloroplast, starch granule, seed or cell wall of a plant. The signal sequences include an N-terminal signal sequence from waxy„ an N-terminal signal sequence from y-zein, or a starch binding domain. <br><br> 25 Moreover, an expression cassette comprising a polynucleotide a) having SEQ ID NO: 61, <br><br> 63, 65, 79, 81, 83, 85, 87, 89, 91, 93, 94, 95, 96, 97, 99, 108, and 110 or the complement thereof, or a polynucleotide which hybridizes to the complement of any one of SEQ ID NO: 61, 63, 65, 79, 81, 83, 85, 87, 89, 91,93, 94,95, 96,97, 99,108, and 110 or under low stringency hybridization conditions and encodes an polypeptide having xylanase, cellulase, glucanase, beta <br><br> 7 <br><br> INTELLECTUAL PROPERTY OFFICE OF IM.Z, <br><br> t 5 JUN 2009 <br><br> RECEIVED <br><br> glucosidase, esterase or phytase activity or b) encoding a polypeptide comprising SEQ ID NO: 62, 64, 66, 70, 80, 82, 84, 86, 88, 90, 92, 109, or 111, or an enzymatically active fragment thereof. The expression cassette further comprises a promoter operably linked to the polynucleotide, such as an inducible promoter, tissue-specific promoter, or preferably an 5 endosperm-specific promoter. The endosperm-specific promoter may be a maize y-zein promoter or a maize ADP-gpp promoter or a maize Q promoter promoter or a rice glutelin-1 promoter. In an embodiment, the promoter comprises SEQ ID NO: 11 or SEQ ID NO: 12 or SEQ ID NO: 67 or SEQ ID NO: 98. Moreover, in another embodiment the polynucleotide is oriented in sense orientation relative to the promoter. The expression cassette of the present 10 invention may further encode a signal sequence which is operably linked to the polypeptide encoded by the polynucleotide. The signal sequence preferably targets the operably linked polypeptide to a vacuole, endoplasmic reticulum, chloroplast, starch granule, seed or cell wall of a plant. The signal sequences include an N-terminal signal sequence from waxy, an N-terminal signal sequence from y-zein, or a starch binding domain. <br><br> 15 The present disclosure is further directed to a vector or cell comprising the expression cassettes of the present invention. The cell may be selected from the group consisting of an Agrobacterium, a monocot cell, a dicot cell, a Liliopsida cell, a Panicoideae cell, a maize cell, and a cereal cell, such as a rice cell. <br><br> Moreover, the present disclosure encompasses a plant stably transformed with the vectors 20 of the present invention. A plant stably transformed with a vector comprising an a-amylase having an amino acid sequence of any of SEQ ID NO: 1,10, 13, 14, 15, 16, 33, 35 or 88 or encoded by a polynucleotide comprising any of SEQ ID NO: 2,9, or 87 is provided. <br><br> In another embodiment, a plant stably transformed with a vector comprising a pullulanase having an amino acid sequence of any of SEQ ID NO: 24 or 34, or encoded by a polynucleotide 25 comprising any of SEQ ID NO: 4 or 25 is provided. A plant stably transformed with a vector comprising an a-glucosidase having an amino acid sequence of any of SEQ ID NO: 26 or 27, or encoded by a polynucleotide comprising SEQ ED NO:6 is further provided. A plant stably transformed with a vector comprising an glucose isomerase having an amino acid sequence of any of SEQ ID NO: 18,20,28, 29, 30, 38, 40,42, or 44, or encoded by a polynucleotide <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 15 JUN 2009 <br><br> RECEIVED <br><br> comprising any of SEQ ID NO: 19, 21, 37, 39,41, or 43 is further described herein. In another embodiment, a plant stably transformed with a vector comprising a glucose amylase having an amino acid sequence of any of SEQ ID NO: 45, 47, or 49, or encoded by a polynucleotide comprising any of SEQ ID NO:46, 48, 50, or 59 is described. <br><br> 5 An additional embodiment provides a plant stably transformed with a vector comprising a xylanase having an amino acid sequence of any of SEQ ID NO: 62, 64 or 66, or encoded by a polynucleotide comprising any of SEQ ID NO: 61, 63, or 65. A plant stably transformed with a vector comprising a protease is also provided. The protease may be bromelain having an amino acid sequence as set forth in SEQ ID NO: 70, or encoded by a polynucleotide having SEQ ID 10 NO: 69. In another embodiment, a plant stably transformed with a vector comprising a cellulase is provided. The cellulase may be a cellobiohydrolase encoded by a polynucleotide comprising any of SEQ ID NO: 79, 80, 81, 82, 93 or 94. <br><br> An additional embodiment provides a plant stably transformed with a vector comprising a glucanase, such as an endoglucanase. The endoglucanase may be endoglucanase I which has an 15 amino acid sequence as in SEQ ID NO: 84, or encoded by a polynucleotide comprising SEQ ID NO: 83. A plant stably transformed with a vector comprising a beta glucosidase is also provided. The beta glucosidase is may be beta glucosidase 2 or beta glucosidase D, which have an amino acid sequence set forth in SEQ ID NO: 90 or 92, or encoded by a polynucleotide having SEQ ID NO: 89 or 91. In another embodiment, a plant stably transformed with a vector comprising an 20 esterase is provided. The esterase may be a ferulic acid esterase encoded by a polynucleotide comprising SEQ ID NO: 99. <br><br> Plant products, such as seed, fruit or grain from the stably transformed plants of the present invention are further provided. <br><br> In another embodiment, the disclosure is directed to a transformed plant, the genome of 25 which is augmented with a recombinant polynucleotide encoding at least one processing enzyme operably linked to a promoter sequence, the sequence of which polynucleotide is optimized for expression in the plant. The plant may be a monocot, such as maize or rice, or a dicot. The plant may be a cereal plant or a commercially grown plant. The processing enzyme is selected from the group consisting of an a-amylase, glucoamylase, glucose isomerase, glucanase, P- <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 <br><br> RECEIVED <br><br> amylase, a-glucosidase, isoamylase, pullulanase, neo-pullulanase, iso-pullulanase, araylopullulanase, cellulase, exo-l,4-P-cellobiohydrolase, exo-l,3-P-D-glucanase, p-glucosidase, endoglucanase, L-arabinase, a-arabinosidase, galactanase, galactosidase, mannanase, mannosidase, xylanase, xylosidase, protease, glucanase, xylanase,, esterase, phytase, and lipase. <br><br> 5 The processing enzyme is a starch-processing enzyme selected from the group consisting of a-amylase, glucoamylase, glucose isomerase, P-amylase, a-glucosidase, isoamylase, pullulanase, neo-pullulanase, iso-pullulanase, and amylopullulanase. The enzyme may be selected from a-amylase, glucoamylase, glucose isomerase, glucose isomerase, a-glucosidase, and pullulanase. The processing enzyme may be hyperthermophilic. In accordance with this aspect of the 10 disclosure, the enzyme may be a non-starch degrading enzyme selected from the group consisting of protease, glucanase, xylanase, esterase, phytase, cellulase, beta glucosidase, and lipase. Such enzymes may be hyperthermophilic. In an embodiment, the enzyme accumulates in the vacuole, endoplasmic reticulum, chloroplast, starch granule, seed or cell wall of a plant. Moreover, in another embodiment, the genome of plant may be further augmented with a second 15 recombinant polynucleotide comprising a non-hyperthermophilic enzyme. <br><br> In another aspect of the disclosure, provided is a transformed plant, the genome of which is augmented with a recombinant polynucleotide encoding at least one processing enzyme selected from the group consisting of a-amylase, glucoamylase, glucose isomerase, a-glucosidase, pullulanase, xylanase, cellulase, protease, glucanase, beta glucosidase, esterase, 20 phytase or lipase operably linked to a promoter sequence, the sequence of which polynucleotide is optimized for expression in the plant. <br><br> Another embodiment is directed to a transformed maize plant, the genome of which is augmented with a recombinant polynucleotide encoding at least one processing enzyme selected from the group consisting of a-amylase, glucoamylase, glucose isomerase, a-glucosidase, 25 pullulanase, xylanase, cellulase, protease, glucanase, phytase, beta glucosidase, esterase, or lipase operably linked to a promoter sequence, the sequence of which polynucleotide is optimized for expression in the maize plant. <br><br> A transformed plant, the genome of which is augmented with a recombinant polynucleotide having SEQ ID NO: 83 operably linked to a promoter and to a signal sequence is <br><br> 10 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 RECEIVED <br><br> provided. Additionally, a transformed plant, the genome of which is augmented with a recombinant polynucleotide having the SEQ ED NO: 93 or 94 operably linked to a promoter and to a signal sequence is described. In another embodiment, a transformed plant, the genome of which is augmented with a recombinant polynucleotide having SEQ ID NO: 95, operably linked 5 to a promoter and to a signal sequence. Moreover, a transformed plant, the genome of which is augmented with a recombinant polynucleotide having SEQ ID NO: 96 is described. Also described is a transformed plant, the genome of which is augmented with a recombinant polynucleotide having SEQ ID NO: 97. Also described is a transformed plant, the genome of which is augmented with a recombinant polypeptide having SEQ ID NO: 99. <br><br> 10 Products of the transformed plants are further envisioned herein. The product for example, include seed, fruit, or grain. The product may alternatively be the processing enzyme, starch or sugar. <br><br> A plant obtained from a stably transformed plant of the present disclosure is further described. In this aspect, the plant may be a hybrid plant or an inbred plant. <br><br> 15 A starch composition is a further embodiment of the disclosure comprising at least one processing enzyme which is a protease, glucanase, or esterase. <br><br> Grain is another embodiment of the disclosure comprising at least one processing enzyme, which is an a-amylase, pullulanase, a -glucosidase, glucoamylase, glucose isomerase, xylanase, cellulase, glucanase, beta glucosidase, esterase, protease, lipase or phytase. <br><br> 20 In another embodiment, a method of preparing starch granules, comprising treating grain which comprises at least one non-starch processing enzyme under conditions which activate the at least one enzyme, yielding a mixture comprising starch granules and non-starch degradation products, wherein the grain is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one enzyme; and <br><br> 25 separating starch granules from the mixture is provided. Therein, the enzyme may be a protease, glucanase, xylanase, phytase, lipase, beta glucosidase, cellulase or esterase. Moreover, the enzyme is preferably hyperthermophilic. The grain may be cracked grain and/or may be treated under low or high moisture conditions. Alternativley, the grain may treated with sulfur dioxide. The present disclosure may further comprise separating non-starch products from the mixture. <br><br> 30 The starch products and non-starch products obtained by this method are further described. <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> I 5 JUN 2009 <br><br> RECEIVED <br><br> In yet another embodiment, a method to produce hypersweet corn comprising treating transformed corn or a part thereof, the genome of which is augmented with and expresses in the endosperm an expression cassette encoding at least one starch-degrading or starch-isomerizing enzyme, under conditions which activate the at least one enzyme so as to convert 5 polysaccharides in the corn into sugar, yielding hypersweet corn is provided. The expression cassette may further comprises a promoter operably linked to the polynucleotide encoding the enzyme. The promoter may be a constitutive promoter, seed-specific promoter, or endosperm-specific promoter, for example. The enzyme may be hyperthermophilic and may be an a-amylase. The expression cassette used herein may further comprise a polynucleotide which 10 encodes a signal sequence operably linked to the at least one enzyme. The signal sequence may direct the enzyme to the apoplast or the endoplasmic reticulum, for example. The enzyme comprises any one of SEQ ID NO; 13, 14, 15, 16, 33, or 35. The enzyme may also comprise SEQ ID NO: 87. <br><br> In a most preferred embodiment, a method of producing hypersweet corn comprising 15 treating transformed corn or a part thereof, the genome of which is augmented with and expresses in the endosperm an expression cassette encoding an a-amylase, under conditions which activate the at least one enzyme so as to convert polysaccharides in the corn into sugar, yielding hypersweet corn is described. The enzyme may be hyperthermophilic and the hyperthermophilic a-amylase may comprise the amino acid sequence of any of SEQ ID NO: 10, 20 13, 14, 15, 16, 33, or 35, or an enzymatically active fragment thereof having a-amylase activity. The enzyme comprise SEQ ID NO: 87. <br><br> A method to prepare a solution of hydrolyzed starch product comprising; <br><br> treating a plant part comprising starch granules and at least one processing enzyme under conditions which activate the at least one enzyme thereby processing the starch granules to form 25 an aqueous solution comprising hydrolyzed starch product, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one starch processing enzyme; and collecting the aqueous solution comprising the hydrolyzed starch product is described herein. The hydrolyzed starch product may comprise a dextrin, maltooligosaccharide, glucose and/or 30 mixtures thereof. The enzyme may be a-amylase, a-glucosidase, glucoamylase, pullulanase, <br><br> INTELLECTUAL PROPERTY OFFICE OF N.2. <br><br> 15 JUN 2008 <br><br> RECEIVED <br><br> amylopullulanase, glucose isomerase, or any combination thereof. Moreover, the enzyme may be hyperthermophilic. In another aspect, the genome of the plant part may be further augmented with an expression cassette encoding a non-hyperthermophilic starch processing enzyme. The non-hyperthermophilic starch processing enzyme may be selected from the group consisting of 5 amylase, glucoamylase, a-glucosidase, pullulanase, glucose isomerase, or a combination thereof. In yet another aspect, the processing enzyme is preferably expressed in the endosperm. The plant part may be grain, and from corn, wheat, barley, rye, oat, sugar cane or rice. The at least one processing enzyme is operably linked to a promoter and to a signal sequence that targets the enzyme to the starch granule or the endoplasmic reticulum, or to the cell wall. The method may 10 further comprise isolating the hydrolyzed starch product and/or fermenting the hydrolyzed starch product. <br><br> In another aspect of thedisclosure, a method of preparing hydrolyzed starch product comprising treating a plant part comprising starch granules and at least one starch processing enzyme under conditions which activate the at least one enzyme thereby processing the starch 15 granules to form an aqueous solution comprising a hydrolyzed starch product, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding at least one a-amylase; and collecting the aqueous solution comprising hydrolyzed starch product is described. The a-amylase may be hyperthermophilic and the hyperthermophilic a-amylase comprises the amino 20 acid sequence of any of SEQ ID NO: 1, 10,13,14, 15,16, 33, or 35, or an active fragment thereof having a-amylase activity. The expression cassette may comprise a polynucleotide selected from any of SEQ ID NO: 2, 9, 46, or 52, a complement thereof, or a polynucleotide that hybridizes to any of SEQ ID NO: 2, 9, 46, or 52 under low stringency hybridization conditions and encodes a polypeptide having a-amylase activity. Moreover, the disclosure further provides 25 for the genome of the transformed plant further comprising a polynucleotide encoding a non-thermophilic starch-processing enzyme. Alternatively, the plant part may be treated with a non-hyperthermophilic starch-processing enzyme. <br><br> The present disclosure is further directed to a transformed plant part comprising at least one starch-processing enzyme present in the cells of the plant, wherein the plant part is obtained 30 from a transformed plant, the genome of which is augmented with an expression cassette <br><br> 13 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 <br><br> RECEIVED <br><br> encoding the at least one starch processing enzyme. Preferably, the enzyme is a starch-processing enzyme selected from the group consisting of a-amylase, glucoamylase, glucose isomerase, P-amylase, a-glucosidase, isoamylase, pullulanase, neo-pullulanase, iso-pullulanase, and amylopullulanase. Moreover, the enzyme may be hyperthermophilic. The plant may be any 5 plant, such as corn or rice for example. <br><br> Another embodiment of the disclosure is a transformed plant part comprising at least one non-starch processing enzyme present in the cell wall or the cells of the plant, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one non-starch processing enzyme or at least one non-starch 10 polysaccharide processing enzyme. The enzyme may be hyperthermophilic. Moreover, the non-starch processing enzyme may be a protease, glucanase, xylanase, esterase, phytase, beta glucosidase, cellulase or lipase. The plant part can be any plant part, but preferably is an ear, seed, fruit, grain, stover, chaff, or bagasse. <br><br> The present disclosure is also directed to transformed plant parts. For example, a 15 transformed plant part comprising an a-amylase having an amino acid sequence of any of SEQ ID NO: 1, 10, 13, 14,15, 16, 33, or 35, or encoded by a polynucleotide comprising any of SEQ ID NO: 2, 9,46, or 52, a transformed plant part comprising an a-glucosidase having an amino acid sequence of any of SEQ ID NO: 5, 26 or 27, or encoded by a polynucleotide comprising SEQ ID NO:6, a transformed plant part comprising a glucose isomerase having the amino acid 20 sequence of any one of SEQ ID NO: 28, 29, 30, 38, 40, 42, or 44, or encoded by a polynucleotide comprising any one of SEQ ID NO: 19, 21, 37, 39, 41, or 43, a transformed plant part comprising a glucoamylase having the amino acid sequence of SEQ ID NO:45 or SEQ ID NO:47, or SEQ ID NO:49, or encoded by a polynucleotide comprising any of SEQ ID NO: 46, 48, 50, or 59, and a transformed plant part comprising a pullulanase encoded by a polynucleotide 25 comprising any of SEQ ID NO: 4 or 25 are described. <br><br> The present disclosure is also directed to transformed plant parts. For example, a transformed plant part comprising a xylanase having an amino acid sequence of any of SEQ ID NO: 62, 64 or 66, or encoded by a polynucleotide comprising any of SEQ ID NO: 61, 63, or 65. A transformed plant part comprising a protease is also provided. The protease may be bromelain <br><br> 14 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 <br><br> RECEIVED <br><br> having an amino acid sequence as set forth in SEQ ID NO: 70, or encoded by a polynucleotide having SEQ ID NO: 69. In another embodiment, a transformed plant part comprising a cellulase is provided. The cellulase may be a cellobiohydrolase encoded by a polynucleotide comprising any of SEQ ID NO: 79, 80, 81, 82, 93 or 94. <br><br> 5 An additional embodiment provides a transformed plant part a glucanase, such as an endoglucanase. The endoglucanase may be endoglucanase I which has an amino acid sequence as in SEQ ID NO: 84, or encoded by a polynucleotide comprising SEQ ID NO: 83. A transformed plant part comprising a beta glucosidase is also provided. The beta glucosidase is may be beta glucosidase 2 or beta glucosidase D, which have an amino acid sequence set forth in 10 SEQ ID NO: 90 or 92, or encoded by a polynucleotide having SEQ ID NO: 89 or 91. In another embodiment, a transformed plant part comprising an esterase is provided. The esterase may be a ferulic acid esterase encoded by a polynucleotide comprising SEQ ID NO: 99. <br><br> Another embodiment is a method of converting starch in the transformed plant part comprising activating the starch processing enzyme contained therein. The starch, dextrin, 15 maltooligosaccharide or sugar produced according to this method is further described. <br><br> The present disclosure further describes a method of using a transformed plant part comprising at least one non-starch processing enzyme in the cell wall or the cell of the plant part, comprising treating a transformed plant part comprising at least one non-starch polysaccharide processing enzyme under conditions so as to activate the at least one enzyme thereby digesting 20 non-starch polysaccharide to form an aqueous solution comprising oligosaccharide and/or sugars, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one non-starch polysaccharide processing enzyme; and collecting the aqueous solution comprising the oligosaccharides and/or sugars. The non-starch polysaccharide processing enzyme may be hyperthermophilic. 25 A method of using transformed seeds comprising at least one processing enzyme, <br><br> comprising treating transformed seeds which comprise at least one protease or lipase under conditions so as the activate the at least one enzyme yielding an aqueous mixture comprising amino acids and fatty acids, wherein the seed is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one enzyme; and <br><br> 15 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 15 JUN 2009 <br><br> RECEIVED <br><br> collecting the aqueous mixture. The amino acids, fatty acids or both are preferably isolated. The at least one protease or lipase may be hyperthermophilic. <br><br> A method to prepare ethanol comprising treating a plant part comprising at least one polysaccharide processing enzyme under conditions to activate the at least one enzyme thereby 5 digesting polysaccharide to form oligosaccharide or fermentable sugar, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one polysaccharide processing enzyme; and incubating the fermentable sugar under conditions that promote the conversion of the fermentable sugar or oligosaccharide into ethanol. The plant part may be a grain, fruit, seed, stalks, wood, vegetable 10 or root. The plant part may be obtained from a plant selected from the group consisting of oats, barley, wheat, berry, grapes, rye, corn, rice, potato, sugar beet, sugar cane, pineapple, grasses and trees. <br><br> In another preferred embodiment, the polysaccharide processing enzyme is a-amylase, glucoamylase, a-glucosidase, glucose isomerase, pullulanase, or a combination thereof. 15 A method to prepare ethanol comprising treating a plant part comprising at least one enzyme selected from the group consisting of a-amylase, glucoamylase, a-glucosidase, glucose isomerase, or pullulanase, or a combination thereof, with heat for an amount of time and under conditions to activate the at least one enzyme thereby digesting polysaccharide to form fermentable sugar, wherein the plant part is obtained from a transformed plant, the genome of 20 which is augmented with an expression cassette encoding the at least one enzyme; and incubating the fermentable sugar under conditions that promote the conversion of the fermentable sugar into ethanol is provided. The at least one enzyme may be hyperthermophilic or mesophilic. <br><br> In another embodiment, a method to prepare ethanol comprising treating a plant part 25 comprising at least one non-starch processing enzyme under conditions to activate the at least one enzyme thereby digesting non-starch polysaccharide to oligosaccharide and fermentable sugar, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one enzyme; and incubating the fermentable sugar under conditions that promote the conversion of the fermentable sugar into <br><br> 16 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.2. <br><br> I 5 JUN 2009 <br><br> RECEIVED <br><br> ethanol is provided. The non-starch processing enzyme may be a xylanase, cellulase, glucanase, beta glucosidase, protease, esterase, lipase or phytase. <br><br> A method to prepare ethanol comprising treating a plant part comprising at least one enzyme selected from the group consisting of a-amylase, glucoamylase, a-glucosidase, glucose 5 isomerase, or pullulanase, or a combination thereof, under conditions to activate the at least one enzyme thereby digesting polysaccharide to form fermentable sugar, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one enzyme; and incubating the fermentable sugar under conditions that promote the conversion of the fermentable sugar into ethanol is further provided. 10 The enzyme may be hyperthermophilic. <br><br> Moreover, a method to produce a sweetened farinaceous food product without adding additional sweetener comprising treating a plant part comprising at least one starch processing enzyme under conditions which activate the at least one enzyme, thereby processing starch granules in the plant part to sugars so as to form a sweetened product, wherein the plant part is 15 obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one enzyme; and processing the sweetened product into a farinaceous food product is described. The farinaceous food product may be formed from the sweetened product and water. Moreover, the farinaceous food product may contain malt, flavorings, vitamins, minerals, coloring agents or any combination thereof. The at least one 20 enzyme may be hyperthermophilic. The enzyme may be selected from a-amylase, a- <br><br> glucosidase, glucoamylase, pullulanase, glucose isomerase, or any combination thereof. The plant may further be selected from the group consisting of soybean, rye, oats, barley, wheat, <br><br> corn, rice and sugar cane. The farinaceous food product may be a cereal food, a breakfast food, a ready to eat food, or a baked food. The processing may include baking, boiling, heating, 25 steaming, electrical discharge or any combination thereof. <br><br> The present disclosure is further directed to a method to sweeten a starch-containing product without adding sweetener comprising treating starch comprising at least one starch processing enzyme under conditions to activate the at least one enzyme thereby digesting the starch to form a sugar to form sweetened starch, wherein the starch is obtained from a <br><br> 17 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 <br><br> RECEIVED <br><br> transformed plant, the genome of which is augmented with an expression cassette encoding the at least one enzyme; and adding the sweetened starch to a product to produce a sweetened starch containing product. The transformed plant may be selected from the group consisting of corn, soybean, rye, oats, barley, wheat, rice and sugar cane. The at least one enzyme may be 5 hyperthermophilic. The at least one enzyme may be a-amylase, a-glucosidase, glucoamylase, pullulanase, glucose isomerase, or any combination thereof. <br><br> A farinaceous food product and sweetened starch-containing product is provided for herein. <br><br> The disclosure is also directed to a method to sweeten a polysaccharide-containing fruit 10 or vegetable comprising treating a fruit or vegetable comprising at least one polysaccharide processing enzyme under conditions which activate the at least one enzyme, thereby processing the polysaccharide in the fruit or vegetable to form sugar, yielding a sweetened fruit or vegetable, wherein the fruit or vegetable is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one polysaccharide 15 processing enzyme. The fruit or vegetable is selected from the group consisting of potato, tomato, banana, squash, peas, and beans. The at least one enzyme may be hyperthermophilic. <br><br> The present disclosure is further directed to a method of preparing an aqueous solution comprising sugar comprising treating starch granules obtained from the plant part under conditions which activate the at least one enzyme, thereby yielding an aqueous solution 20 comprising sugar. <br><br> Another embodiment is directed to a method of preparing starch derived products from grain that does not involve wet or dry milling grain prior to recovery of starch-derived products comprising treating a plant part comprising starch granules and at least one starch processing enzyme under conditions which activate the at least one enzyme thereby processing the starch 25 granules to form an aqueous solution comprising dextrins or sugars, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one starch processing enzyme; and collecting the aqueous solution comprising the starch derived product. The at least one starch processing enzyme may be hyperthermophilic. <br><br> IS <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 15 JUN 2009 <br><br> RECEIVED <br><br> A method of isolating an a-amylase, glucoamylase, glucose isomerase, a-glucosidase, and pullulanase comprising culturing a transformed plant containing the a-amylase, glucoamylase, glucose isomerase, a-glucosidase, or pullulanase and isolating the a-amylase, glucoamylase, glucose isomerase, a-glucosidase or pullulanase therefrom is further provided. Also provided is a method of isolating a xylanase, cellulase, glucanase, beta glucosidase, protease, esterase, phytase or lipase comprising culturing a transformed plant containing the xylanase, cellulase, glucanase, beta glucosidase, protease, esterase, phytase or lipase and isolating the xylanase, cellulase, glucanase, esterase, beta glucosidase, protease, esterase, phytase or lipase. <br><br> A method of preparing maltodextrin comprising mixing transgenic grain with water, heating said mixture, separating solid from the dextrin syrup generated, and collecting the maltodextrin. The transgenic grain comprises at least one starch processing enzyme. The starch processing enzyme may be a-amylase, glucoamylase, a-glucosidase, and glucose isomerase. Moreover, maltodextrin produced by the method is provided as well as composition produced by this method. <br><br> A method of preparing dextrins, or sugars from grain that does not involve mechanical disruption of the grain prior to recovery of starch-derived comprising: treating a plant part comprising starch granules and at least one starch processing enzyme under conditions which activate the at least one enzyme thereby processing the starch granules to form an aqueous solution comprising dextrins or sugars, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one processing enzyme; and collecting the aqueous solution comprising sugar and/or dextrins is provided. <br><br> 19 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 b JUN 2009 <br><br> RECEIVED <br><br> The present disclosure is further directed to a method of producing fermentable sugar comprising treating a plant part comprising starch granules and at least one starch processing enzyme under conditions which activate the at least one enzyme thereby processing the starch granules to form an aqueous solution comprising dextrins or sugars, wherein the plant part is 5 obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one processing enzyme; and collecting the aqueous solution comprising the fermentable sugar. <br><br> Moreover, a maize plant stably transformed with a vector comprising a hyperthermophlic a-amylase is provided herein. For example, preferably, a maize plant stably 10 transformed with a vector comprising a polynucleotide sequence that encodes a-amylase that is greater than 60% identical to SEQ ID NO: 1 or SEQ ID NO: 51 is encompassed. <br><br> In one particular aspect, the invention comprises a method of increasing starch recovery from maize seed, the method comprising: <br><br> a) steeping transgenic maize seed comprising at least one cellulase to produce <br><br> 15 <br><br> steeped seed; <br><br> b) further combining the maize seed of a) with a protease produce steepted seed; <br><br> c) grinding said steeped seed to produce a maize slurry; and d) obtaining starch from maize seed. <br><br> The seed may be steeped at about 0 ppm to about 2000 ppm sulfur dioxide. <br><br> 20 <br><br> The seed may be steeped at about 37°C to about 50°C. <br><br> The seed may be steeped for at least 24 hours. <br><br> The cellulose may be an endoglucanase. <br><br> The cellulase may be a cellobiohydrolase. <br><br> The endoglucanase may be a thermostable endoglucanase. <br><br> 19 OCT 2009 <br><br> RECEIVED <br><br> 25 <br><br> The protease may be Bromelain. <br><br> The protease may be incorporated into the maize genome and expressed by the plant. <br><br> 20 <br><br> (followed by page 20a) <br><br> 10 <br><br> 15 <br><br> 20 <br><br> The cellulase may be targeted to any one of the groups consisting of endoplasmic reticulum, vacuole, chloroplast, starch granule, or cell wall of the plant. <br><br> The maize slurry may comprise an endoglucanase and a cellobiohydrolase. <br><br> The maize slurry may comprise an endoglucanase, cellobiohydrolase and a protease. <br><br> The cellobiohydrolase may be added exogenously. <br><br> The protease may be added exogenously. <br><br> Figures 1A and IB illustrate the activity of a-amylase expressed in corn kernels and in the endosperm from segregating T1 kernels from pNC)V6201 plants and from six pNC)V6200 lines. <br><br> Figure 2 illustrates the activity of a-amylase in segregating T1 kernels from pNC)V6201 lines. <br><br> Figure 3 depicts the amount of ethanol produced upon fermentation of mashes of transgenic corn containing thermostable 797GL3 alpha amylase that were subjected to liquefaction times of up to 60 minutes at 85°C and 95°C. This figure illustrates that the ethanol yield at 72 hours of fermentation was almost unchanged from 15 minutes to 60 minutes of liquefaction. Moreover, it shows that mash produced by liquefaction at 95°C produced more ethanol at each time point than mash produced by liquefaction at 85°C. <br><br> Figure 4 depicts the amount of residual starch (%) remaining after fermentation of mashes of transgenic corn containing thermostable alpha amylase that were subjected to a liquefaction time of up to 60 minutes at 85°C and 95°C. This figure illustrates that the ethanol yield at 72 hours of fermentation was almost unchanged from 15 minutes to 60 minutes of liquefaction. Moreover, it shows that mash produced by liquefaction at 95CC produced more ethanol at each time point than mash produced by liquefaction at 85°C. <br><br> Figure 5 depicts the ethanol yields for mashes of a transgenic corn, control com, and various mixtures thereof prepared at 85°C and 95°C. This figure illustrates that the transgenic corn comprising a-amylase results in significant improvement in making starch available for fermentation since there was a reduction of starch left over after fermentation. <br><br> Brief Description of the Figures <br><br> 1 9 OCT 2009 <br><br> 20a <br><br> (followed by page 21) <br><br> RECEIVED <br><br> yield at 72 hours of fermentation was almost unchanged from 15 minutes to 60 minutes of liquefaction. Moreover, it shows that mash produced by liquefaction at 95°C produced more ethanol at each time point than mash produced by liquefaction at 85°C. <br><br> Figure 5 depicts the ethanol yields for mashes of a transgenic corn, control corn, and various mixtures thereof prepared at 85°C and 95°C. This figure illustrates that the transgenic corn comprising a-amylase results in significant improvement in making starch available for fermentation since there was a reduction of starch left over after fermentation. <br><br> 20b hy patre 71 *1 <br><br> INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br> 1 5 JUN 2009 RECEIVED <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Figure 6 depicts the amount of residual starch measured in dried stillage following fermentation for mashes of a transgenic grain, control com, and various mixtures thereof at prepared at 85°C and 95°C. <br><br> Figure 7 depicts the ethanol yields as a function of fermentation time of a sample comprising 3% transgenic corn over a period of 20-80 hours at various pH ranges from 5.2-6.4. The figure illustrates that the fermentation conducted at a lower pH proceeds faster than at a pH of 6.0 or higher. <br><br> Figure 8 depicts the ethanol yields during fermentation of a mash comprising various weight percentages of transgenic com from 0-12 wt% at various pH ranges from 5.2-6.4. This figure illustrates that the ethanol yield was independent of the amount of transgenic grain included in the sample. <br><br> Figure 9 shows the analysis of T2 seeds from different events transformed with pNOV 7005. High expression of pullulanase activity, compared to the non-transgenic control, can be detected in a number of events. <br><br> Figure 1 OA and 10B show the results of the HPLC analysis of the hydrolytic products generated by expressed pullulanase from starch in the transgenic corn flour. Incubation of the flour of pullulanase expressing corn in reaction buffer at 75 °C for 30 minutes results in production of medium chain oligosaccharides (degree of polymerization (DP) -10-30) and short amylose chains (DP ~ 100 -200) from cornstarch. Figures 10A and 10B also show the effect of added calcium ions on the activity of the pullulanase. <br><br> Figures 11A and 1 IB depict the data generated from HPLC analysis of the starch hydrolysis product from two reaction mixtures. The first reaction indicated as 'Amylase' contains a mixture [1:1 (w/w)] of corn flour samples of a-amylase expressing transgenic corn and non-transgenic com A188; and the second reaction mixture 'Amylase + Pullulanase' contains a mixture [1:1 (w/w)] of com flour samples of a -amylase expressing transgenic corn and pullulanase expressing transgenic com. <br><br> Figure 12 depicts the amount of sugar product in fig in 25 (x\ of reaction mixture for two reaction mixtures. The first reaction indicated as 'Amylase' contains a mixture [1:1 (w/w)] of com flour samples of a -amylase expressing transgenic com and non-transgenic com A188; and <br><br> 21 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> the second reaction mixture 'Amylase + Pullulanase' contains a mixture [1:1 (w/w)] of com flour samples of a-amylase expressing transgenic com and pullulanase expressing transgenic com. <br><br> Figure 13A and 13B shows the starch hydrolysis product from two sets of reaction mixtures at the end of 30 minutes incubation at 85°C and 95°C. For each set there are two reaction mixtures; the first reaction indicated as 'Amylase X Pullulanase' contains flour from transgenic com (generated by cross pollination) expressing both the a-amylase and the pullulanase, and the second reaction indicated as 'Amylase' mixture of com flour samples of a -amylase expressing transgenic com and non-transgenic com A188 in a ratio so as to obtain same amount of a -amylase activity as is observed in the cross (Amylase X Pullulanase). <br><br> Figure 14 depicts the degradation of starch to glucose using non-transgenic com seed (control), transgenic com seed comprising the 797GL3 a-amylase, and a combination of 797GL3 transgenic com seed with Mai A a-glucosidase. <br><br> Figure 15 depicts the conversion of raw starch at room temperature or 30°C. In this figure, the reaction mixtures 1 and 2 are a combination of water and starch at room temperature and 30°C, respectively. Reaction mixtures 3 and 4 are a combination of barley a-amylase and starch at room temperature and at 30°C, respectively. Reaction mixtures 5 and 6 are combinations of Thermoanaerobacterium glucoamylase and starch at room temperature and 30°C, respectively. Reactions mixtures 7 and 8 are combinations of barley a-amylase (sigma) and Thermoanaerobacterium glucoamylase and starch at room temperature and 30°C, <br><br> respectively. Reaction mixtures 9 and 10 are combinations of Barley alpha-am ylase (sigma) control, and starch at room temperature and 30°C, respectively. The degree of polymerization (DP) of the products of the Thermoanaerobacterium glucoamylase is indicated. <br><br> Figure 16 depicts the production of fructose from amylase transgenic com flour using a combination of alpha amylase, alpha glucosidase, and glucose isomerase as described in Example 19. Amylase com flour was mixed with enzyme solutions plus water or buffer. All reactions contained 60 mg amylase flour and a total of 600(il of liquid and were incubated for 2 hours at 90°C. <br><br> Figure 17 depicts the peak areas of the products of reaction with 100% amylase flour from a self-processing kernel as a function of incubation time from 0-1200 minutes at 90°C. <br><br> 22 <br><br> WO 2005/096804 <br><br> PCT/US2004/007J82 <br><br> Figure 18 depicts the peak areas of the products of reaction with 10% transgenic amylase flour from a self-processing kernel and 90% control corn flour as a function of incubation time from 0-1200 minutes at 90DC. <br><br> Figure 19 provides the results of the HPLC analysis of transgenic amylase flour incubated at 70°, 80°, 90°, or 100° C for up to 90 minutes to assess the effect of temperature on starch hydrolysis. <br><br> Figure 20 depicts ELSD peak area for samples containing 60 mg transgenic amylase flour mixed with enzyme solutions plus water or buffer under various reaction conditions. One set of reactions was buffered with 50 mM MOPS, pH 7.0 at room temperature, plus lOmM MgS04 and 1 mM CoCh; in a second set of reactions the metal-containing buffer solution was replaced by water. All reactions were incubated for 2 hours at 90°C. <br><br> Detailed Description of the Invention <br><br> In accordance with the present invention, a "self-processing" plant or plant part has incorporated therein an isolated polynucleotide encoding a processing enzyme capable of processing, e.g., modifying, starches, polysaccharides, lipids, proteins, and the like in plants, wherein the processing enzyme can be mesophilic, thermophilic or hyperthermophilic, and may be activated by grinding, addition of water, heating, or otherwise providing favorable conditions for function of the enzyme. The isolated polynucleotide encoding the processing enzyme is integrated into a plant or plant part for expression therein. Upon expression and activation of the processing enzyme, the plant or plant part of the present invention processes the substrate upon which the processing enzyme acts. Therefore, the plant or plant parts of the present invention are capable of self-processing the substrate of the enzyme upon activation of the processing enzyme contained therein in the absence of or with reduced external sources normally required for processing these substrates. As such, the transformed plants, transformed plant cells, and transformed plant parts have "built-in" processing capabilities to process desired substrates via the enzymes incorporated therein according to this invention. Preferably, the processing enzyme-encoding polynucleotide are "genetically stable," i.e., the polynucleotide is stably maintained in the transformed plant or plant parts of the present invention and stably inherited by <br><br> 23 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007182 <br><br> progeny through successive generations. <br><br> In accordance with the present invention, methods which employ such plants and plant parts can eliminate the need to mill or otherwise physically disrupt the integrity of plant parts prior to recovery of starch-derived products. For example, the invention provides improved methods for processing corn and other grain to recover starch-derived products. The invention also provides a method which allows for the recovery of starch granules that contain levels of starch degrading enzymes, in or on the granules, that are adequate for the hydrolysis of specific bonds within the starch without the requirement for adding exogenously produced starch hydrolyzing enzymes. The invention also provides improved products from the self-processing plant or plant parts obtained by the methods of the invention. <br><br> In addition, the "self-processing" transformed plant part, e.g., grain, and transformed plant avoid major problems with existing technology, i.e., processing enzymes are typically produced by fermentation of microbes, which requires isolating the enzymes from the culture supernatants, which costs money; the isolated enzyme needs to be formulated for the particular application, and processes and machinery for adding, mixing and reacting the enzyme with its substrate must be developed. The transformed plant of the invention or a part thereof is also a source of the processing enzyme itself as well as substrates and products of that enzyme, such as sugars, amino acids, fatty acids and starch and non-starch polysaccharides. The plant of the invention may also be employed to prepare progeny plants such as hybrids and inbreds. <br><br> Processing Enzymes And Polynucleotides Encoding Them <br><br> A polynucleotide encoding a processing enzyme (mesophilic, thermophilic, or hyperthermophilic) is introduced into a plant or plant part. The processing enzyme is selected based on the desired substrate upon which it acts as found in plants or transgenic plants and/or the desired end product. For example, the processing enzyme may be a starch-processing enzyme, such as a starch-degrading or starch-isomerizing enzyme, or a non-starch processing enzyme. Suitable processing enzymes include, but are not limited to, starch degrading or isomerizing enzymes including, for example, a-amylase, endo or exo-1,4, or 1,6-a-D, glucoamylase, glucose isomerase, p-amylases, a-glucosidases, and other exo-amylases; and <br><br> 24 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> starch debranching enzymes, such as isoamylase, pullulanase, neo-pullulanase, iso-pullulanase, amylopullulanase and the like, glycosyl transferases such as cyclodextrin glycosyltransferase and the like, cellulases such as exo-1,4-p-cellobiohydrolase, exo-l,3-P-D-glucanase, hemicellulase, P-glucosidase and the like; endoglucanases such as endo-1,3-P-glucanase and endo-l,4-P-glucanase and the like; L-arabinases, such as endo-l,5-a-L-arabinase, a-arabinosidases and the like; galactanases such as endo-1,4-P-D-galactanase, endo-1,3-fJ-D-galactanase, p-galactosidase, a-galactosidase and the like; mannanases, such as endo-1,4-P-D-mannanase, P-mannosidase, a-mannosidase and the like; xylanases, such as endo-1,4-0-xylanase, P-D-xylosidase, 1,3-P-D-xylanase, and the like; and pectinases; and non-starch processing enzymes, including protease, glucanase, xylanase, thioredoxin/thioredoxin reductase, esterase, phytase, and lipase. <br><br> In one embodiment, the processing enzyme is a starch-degrading enzyme selected from the group of a-amylase, pullulanase, a-glucosidase, glucoamylase, amylopullulanase, glucose isomerase, or combinations thereof. According to this embodiment, the starch-degrading enzyme is able to allow the self-processing plant or plant part to degrade starch upon activation of the enzyme contained in the plant or plant part, as will be further described herein. The starch-degrading enzyme(s) is selected based on the desired end-products. For example, a glucose-isomerase may be selected to convert the glucose (hexose) into fructose. Alternatively, the enzyme may be selected based on the desired starch-derived end product with various chain lengths based on, e.g., a function of the extent of processing or with various branching patterns desired. For example, an a -amylase, glucoamylase, or amylopullulanase can be used under short incubation times to produce dextrin products and under longer incubation times to produce shorter chain products or sugars. A pullulanase can be used to. specifically hydrolyze branch points in the starch yielding a high-amylose starch, or a neopullulanase can be used to produce starch with stretches of or 1,4 linkages with interspersed a 1,6 linkages. Glucosidases could be used to produce limit dextrins, or a combination of different enzymes to make other starch derivatives. <br><br> In another embodiment, the processing enzyme is a non-starch processing enzyme selected from protease, glucanase, xylanase, phytase, lipase, cellulase, beta glucosidase and esterase. These non-starch degrading enzymes allow the self-processing plant or plant part of the <br><br> 25 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> present invention to incorporate in a targeted area of the plant and, upon activation, disrupt the plant while leaving the starch granule therein intact. For example, in a preferred embodiment, the non-starch degrading enzymes target the endosperm matrix of the plant cell and, upon activation, disrupt the endosperm matrix while leaving the starch granule therein intact and more readily recoverable from the resulting material. <br><br> Combinations of processing enzymes are further envisioned by the present invention. For example, starch-processing and non-starch processing enzymes may be used in combination. Combinations of processing enzymes may be obtained by employing the use of multiple gene constructs encoding each of the enzymes. Alternatively, the individual transgenic plants stably transformed with the enzymes may be crossed by known methods to obtain a plant containing both enzymes. Another method includes the use of exogenous enzyme(s) with the transgenic plant. <br><br> The processing enzymes may be isolated or derived from any source and the polynucleotides corresponding thereto may be ascertained by one having skill in the art. For example, the processing enzyme, such as a-amylase, is derived from the Pyrococcus (e.g., Pyrococcus furiosus), Thermus, Thermococcus (e.g., Thermococcus hydrothermalis), Sulfolobus (e.g., Sulfolobussolfalaricus) Thermotoga (e.g., Thermotoga maritima and Thermotoga neapolitana), Thermoanaerobacterium (e.g. Thermoanaerobacter tengcongensis), Aspergillus (e.g., Aspergillus shirousami and Aspergillus niger), Rhizopus (eg., Rhizopus oryzae), Thermoproteales, Desulfurococcus (e.g. Desulfurococcus amylolyticus), Methanobacterium thermoautotrophicum, Methanococcus jannaschii, Methanopyrus kandleri, <br><br> Thermosynechococcus elongatus, Thermoplasma acidophilum, Thermoplasma volcanium, Aeropyrum pernix and plants such as com, barley, and rice. <br><br> The processing enzymes of the present invention are capable of being activated after being introduced and expressed in the genome of a plant. Conditions for activating the enzyme are determined for each individual enzyme and may include varying conditions such as temperature, pH, hydration, presence of metals, activating compounds, inactivating compounds, etc. For example, temperature-dependent enzymes may include mesophilic, thermophilic, and hyperthermophilic enzymes. Mesophilic enzymes typically have maximal activity at <br><br> 26 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> temperatures between 20°- 65°C and are inactivated at temperatures greater than 70° C. Mesophilic enzymes have significant activity at 30 to 37°C, the activity at 30 °C is preferably at least 10% of maximal activity, more preferably at least 20% of maximal activity. <br><br> Thermophilic enzymes have a maximal activity at temperatures of between 50 and 80® C and are inactivated at temperatures greater than 80°C . A thermophilic enzyme will preferably have less than 20% of maximal activity at 30°C, more preferably less than 10% of maximal activity. <br><br> A "hyperthermophilic" enzyme has activity at even higher temperatures. Hyperthermophilic enzymes have a maximal activity at temperatures greater than 80° C and retain activity at temperatures at least 80°C, more preferably retain activity at temperatures of at least 90°C and most preferably retain activity at temperatures of at least 95°C. Hyperthermophilic enzymes also have reduced activity at low temperatures. A hyperthermophilic enzyme may have activity at 30°C that is less than 10% of maximal activity, and preferably less than 5% of maximal activity. <br><br> The polynucleotide encoding the processing enzyme is preferably modified to include codons that are optimized for expression in a selected organism such as a plant (see, e.g., Wada et al., Nucl. Acids Res.. 18:2367 (1990), Murray et al., Nucl. Acids Res.. 17:477 (1989), U.S. Patent Nos. 5,096,825, 5,625,136,5,670,356 and 5,874,304). Codon optimized sequences are synthetic sequences, i.e., they do not occur in nature, and preferably encode the identical polypeptide (or an enzymatically active fragment of a full length polypeptide which has substantially the same activity as the full length polypeptide) encoded by the non-codon optimized parent polynucleotide which encodes a processing enzyme. It is preferred that the polypeptide is biochemically distinct or improved, e.g., via recursive mutagenesis of DNA encoding a particular processing enzyme, from the parent source polypeptide such that its performance in the process application is improved. Preferred polynucleotides are optimized for expression in a target host plant and encode a processing enzyme. Methods to prepare these enzymes include mutagenesis, e.g., recursive mutagenesis and selection. Methods for mutagenesis and nucleotide sequence alterations are well-known in the art. See, for example, Kunkel, Proc. Natl. Acad. Sci. USA. 82:488, (1985); Kunkel et al., Methods in Enzvmol.. 154:367 (1987): US <br><br> 27 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Patent No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein and Arnold et al., Chem. Eng. Sci.. 51:5091 (1996)). Methods to optimize the expression of a nucleic acid segment in a target plant or organism are well-known in the art. Briefly, a codon usage table indicating the optimal codons used by the target organism is obtained and optimal codons are selected to replace those in the target polynucleotide and the optimized sequence is then chemically synthesized. Preferred codons for maize are described in U.S. Patent No. 5,625,136. <br><br> Complementary nucleic acids of the polynucleotides of the present invention are further envisioned. An example of low stringency conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or Northern blot is 50% formamide, e.g., hybridization in 50% formamide, 1 M NaCI, 1% SDS at 37°C, and a wash in 0.1X SSC at 60°C to 65°C. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCI, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in IX to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCI, 1% SDS at 37°C, and a wash in 0.5X to IX SSC at 55 to 60°C. <br><br> Moreover, polynucleotides encoding an "enzymatically active" fragment of the processing enzymes are further envisioned. As used herein, "enzymatically active" means a polypeptide fragment of the processing enzyme that has substantially the same biological activity as the processing enzyme to modify the substrate upon which the processing enzyme normally acts under appropriate conditions. <br><br> In a preferred embodiment, the polynucleotide of the present invention is a maize-optimized polynucleotide encoding a-amylase, such as provided in SEQ ID NOs:2, 9,46, and 52. In another preferred embodiment, the polynucleotide is a maize-optimized polynucleotide encoding pullulanase, such as provided in SEQ ID NOs: 4 and 25. In yet another preferred embodiment, the polynucleotide is a maize-optimized polynucleotide encoding a-glucosidase as provided in SEQ ED NO:6. Another preferred polynucleotide is the maize-optimized polynucleotide encoding glucose isomerase having SEQ ID NO: 19, 21, 37, 39,41, or 43. In <br><br> 28 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> another embodiment, the maize-optimized polynucleotide encoding glucoamylase as set forth in SEQ ID NO: 46, 48, or 50 is preferred. Moreover, a maize-optimized polynucleotide for glucanase/mannanase fusion polypeptide is provided in SEQ ID NO: 57. The invention further provides for complements of such polynucleotides, which hybridize under moderate, or preferably under low stringency, hybridization conditions and which encodes a polypeptide having a-amylase, pullulanase, a-glucosidase, glucose isomerase, glucoamylase, glucanase, or mannanase activity, as the case may be. <br><br> The polynucleotide may be used interchangeably with "nucleic acid" or "polynucleic acid" and refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single-or double-stranded form, composed of monomers (nucleotides) containing a sugar, phosphate and a base, which is either a purine or pyrimidine. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides, which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues. <br><br> "Variants" or substantially similar sequences are further encompassed herein. For nucleotide sequences, variants include those sequences that, because of the degeneracy of the genetic code, encode the identical amino acid sequence of the native protein. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR), hybridization techniques, and ligation reassembly techniques. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis, which encode the native protein, as well as those that encode a polypeptide having amino acid substitutions. Generally, nucleotide sequence variants of the invention will have at least 40%, 50%, 60%, preferably 70%, more preferably 80%, even more preferably 90%, <br><br> 29 <br><br> WO 2005/096804 <br><br> PCT/US2004/007I82 <br><br> most preferably 99%, and single unit percentage identity to the native nucleotide sequence based on these classes. For example, 71%, 72%, 73% and the like, up to at least the 90% class. Variants may also include a full-length gene corresponding to an identified gene fragment. <br><br> Regulatory Sequences: Promoters/Signal Sequences/Selectable Markers <br><br> The polynucleotide sequences encoding the processing enzyme of the present invention may be operably linked to polynucleotide sequences encoding localization signals or signal sequence (at the N- or C-terminus of a polypeptide), e.g., to target the hyperthermophilic enzyme to a particular compartment within a plant. Examples of such targets include, but are not limited to, the vacuole, endoplasmic reticulum, chloroplast, amyloplast, starch granule, or cell wall, or to a particular tissue, e.g., seed. The expression of a polynucleotide encoding a processing enzyme having a signal sequence in a plant, in particular, in conjunction with the use of a tissue-specific or inducible promoter, can yield high levels of localized processing enzyme in the plant. Numerous signal sequences are known to influence the expression or targeting of a polynucleotide to a particular compartment or outside a particular compartment. Suitable signal sequences and targeting promoters are known in the art and include, but are not limited to, those provided herein. <br><br> For example, where expression in specific tissues or organs is desired, tissue-specific promoters may be used. In contrast, where gene expression in response to a stimulus is desired, inducible promoters are the regulatory elements of choice. Where continuous expression is desired throughout the cells of a plant, constitutive promoters are utilized. Additional regulatory sequences upstream and/or downstream from the core promoter sequence may be included in expression constructs of transformation vectors to bring about varying levels of expression of heterologous nucleotide sequences in a transgenic plant. <br><br> A number of plant promoters have been described with various expression characteristics. Examples of some constitutive promoters which have been described include the rice actin 1 (Wang et al., Mol. Cell. Biol.. 12:3399 (1992); U.S. Patent No. 5,641,876), CaMV 35S (Odell et al., Nature, 313:810 (1985)), CaMV 19S (Lawton et al., 1987), nos (Ebert et al., 1987), Adh (Walker et al., 1987), sucrose synthase (Yang &amp; Russell, 1990), and the ubiquitin promoters. <br><br> 30 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Vectors for use in tissue-specific targeting of genes in transgenic plants will typically include tissue-specific promoters and may also include other tissue-specific control elements such as enhancer sequences. Promoters which direct specific or enhanced expression in certain plant tissues will be known to those of skill in the art in light of the present disclosure. These include, for example, the rbcS promoter, specific for green tissue; the ocs, nos and mas promoters which have higher activity in roots or wounded leaf tissue; a truncated (-90 to +8) 35S promoter which directs enhanced expression in roots, an a-tubulin gene that directs expression in roots and promoters derived from zein storage protein genes which direct expression in endosperm. <br><br> Tissue specific expression may be functionally accomplished by introducing a constitutively expressed gene (all tissues) in combination with an antisense gene that is expressed only in those tissues where the gene product is not desired. For example, a gene coding for a lipase may be introduced such that it is expressed in all tissues using the 35S promoter from Cauliflower Mosaic Virus. Expression of an antisense transcript of the lipase gene in a maize kernel, using for example a zein promoter, would prevent accumulation of the lipase protein in seed. Hence the protein encoded by the introduced gene would be present in all tissues except the kernel. <br><br> Moreover, several tissue-specific regulated genes and/or promoters have been reported in plants. Some reported tissue-specific genes include the genes encoding the seed storage proteins (such as napin, cruciferin, beta-conglycinin, and phaseolin) zein or oil body proteins (such as oleosin), or genes involved in fatty acid biosynthesis (including acyl carrier protein, stearoy!-ACP desaturase, and fatty acid desaturases (fad 2-1)), and other genes expressed during embryo development (such as Bce4, see, for example, EP 255378 and Rridl et al., Seed Science Research. k209 (1991)). Examples of tissue-specific promoters, which have been described include the lectin (Vodkin, Prog. Clin, Biol. Res.. 138;87 (1983); Lindstrom et al., Per. Genet.. 11:160 (1990)), corn alcohol dehydrogenase 1 (Vogel et al., 1989; Dennis et al., Nucleic Acids Res.. 12:3983 (1984)), com light harvesting complex (Simpson, 1986; Bansal et al., Proc. Natl. Acad. Sci. USA. 89:3654 (1992)), com heat shock protein (Odell et al., 1985; Rochester et al., 1986), pea small subunit RuBP carboxylase (Poulsen et al., 1986; Cashmore et al., 1983), Ti <br><br> 31 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> plasmid mannopine synthase (Langridge et al., 1989), Ti plasmid nopaline synthase (Langridge et al., 1989), petunia chalcone isomerase (vanTunen et al., EMBO J.. 7;1257(1988)), bean glycine rich protein 1 (Keller et al., Genes Dev.. 3:1639 (1989)), truncated CaMV 35s (Odell et al,, Nature. 313:810 (1985)), potato patatin (Wenzler et al., Plant Mol. Biol.. 13:347 (1989)), root cell (Yamamoto et al., Nucleic Acids Res.. 18:7449 (1990)), maize zein (Reina et al.. Nucleic Acids Res.. 18:6425 (1990); Kriz et al., Mol. Gen. Genet.. 207:90 (1987); Wandelt et al., Nucleic Acids Res.. 17:2354 (1989); Langridge et al., Cell. 34j.1015 (1983); Reina et al., Nucleic Acids Res.. 18:7449 (1990)), globulin-1 (Belanger et al., Genetics. 129:863 (1991)), a-tubulin, cab (Sullivan et al., Mol. Gen. Genet.. 215:431 (1989)), PEPCase (Hudspeth &amp; Grula, 1989), R gene complex-associated promoters (Chandler et al., Plant Cell, h 1175 (1989)), and chalcone synthase promoters (Franken et al., EMBO J.. 10:2605 (1991)). Particularly useful for seed-specific expression is the pea vicilin promoter (Czako et al., Mol. Gen. Genet.. 235:33 (1992). (See also U.S. Pat. No. 5,625,136, herein incorporated by reference.) Other useful promoters for expression in mature leaves are those that are switched on at the onset of senescence, such as the SAG promoter from Arabidopsis (Gan et al., Science. 270:1986 (1995). <br><br> A class of fruit-specific promoters expressed at or during anthesis through fruit development, at least until the beginning of ripening, is discussed in U.S. 4,943,674, the disclosure of which is hereby incorporated by reference. cDNA clones that are preferentially expressed in cotton fiber have been isolated (John et al., Proc. Natl. Acad. Sci. USA. 89:5769 (1992). cDNA clones from tomato displaying differential expression during fruit development have been isolated and characterized (Mansson et al., Gen. Genet.. 200:356 (1985), Slater et al., Plant Mol. Biol.. 5:137 (1985)). The promoter for polygalacturonase gene is active in fruit ripening. The polygalacturonase gene is described in U.S. Patent No. 4,535,060, U.S. Patent No. 4,769,061, U.S. Patent No. 4,801,590, and U.S. Patent No. 5,107,065, which disclosures are incorporated herein by reference. <br><br> Other examples of tissue-specific promoters include those that direct expression in leaf cells following damage to the leaf (for example, from chewing insects), in tubers (for example, patatin gene promoter), and in fiber cells (an example of a developmentally-regulated fiber cell <br><br> 32 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> protein is E6 (John et al.. Proc. Natl. Acad. Sci, USA, 89:5769 (1992). The E6 gene is most active in fiber, although low levels of transcripts are found in leaf, ovule and flower. <br><br> The tissue-specificity of some "tissue-specific" promoters may not be absolute and may be tested by one skilled in the art using the diphtheria toxin sequence. One can also achieve tissue-specific expression with "leaky" expression by a combination of different tissue-specific promoters (Beals et al., Plant Cell. 9:1527 (1997)). Other tissue-specific promoters can be isolated by one skilled in the art (see U.S. 5,589,379). <br><br> In one embodiment, the direction of the product from a polysaccharide hydrolysis gene, such as a-amylase, may be targeted to a particular organelle such as the apoplast rather than to the cytoplasm. This is exemplified by the use of the maize y-zein N-terminal signal sequence (SEQ ID NO: 17), which confers apoplast-specific targeting of proteins. Directing the protein or enzyme to a specific compartment will allow the enzyme to be localized in a manner that it will not come into contact with the substrate. In this manner the enzymatic action of the enzyme will not occur until the enzyme contacts its substrate. The enzyme can be contacted with its substrate by the process of milling (physical disruption of the cell integrity), or heating the cells or plant tissues to disrupt the physical integrity of the plant cells or organs that contain the enzyme. For example a mesophilic starch-hydrolyzing enzyme can be targeted to the apoplast or to the endoplasmic reticulum and so as not to come into contact with starch granules in the amyloplast. Milling of the grain will disrupt the integrity of the grain and the starch hydrolyzing enzyme will then contact the starch granules. In this manner the potential negative effects of co-localization of an enzyme and its substrate can be circumvented. <br><br> In another embodiment, a tissue-specific promoter includes the endosperm-specific promoters such as the maize y-zein promoter (exemplified by SEQ ID NO: 12) or the maize ADP-gpp promoter (exemplified by SEQ ID NO: 11, which includes a 5' untranslated and an intron sequence) or a Q protein promoter (exemplified by SEQ ID NO: 98) or a rice glutelin 1 promoter (exemplified in SEQ ID NO:67). Thus, the present invention includes an isolated polynucleotide comprising a promoter comprising SEQ ID NO: 11, 12, 67, or 98, a polynucleotide which hybridizes to the complement thereof under low stringency hybridization <br><br> 33 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> conditions, or a fragment thereof which has promoter activity, e.g., at least 10%, and preferably at least 50%, the activity of a promoter having SEQ ID NO: 11, 12, 67, or 98. <br><br> In another embodiment of the invention, the polynucleotide encodes a hyperthermophilic processing enzyme that is operably linked to a chloroplast (amyloplast) transit peptide (CTP) and a starch binding domain, e.g., from the waxy gene. An exemplary polynucleotide in this embodiment encodes SEQ ID NO: 10 (a-amylase linked to the starch binding domain from waxy). Other exemplary polynucleotides encode a hyperthermophilic processing enzyme linked to a signal sequence that targets the enzyme to the endoplasmic reticulum and secretion to the apoplast (exemplified by a polynucleotide encoding SEQ ID NO: 13, 27, or 30, which comprises the N-terminal sequence from maize y-zein operably linked to a-amylase, a-glucosidase, glucose isomerase, respectively), a hyperthermophilic processing enzyme linked to a signal sequence which retains the enzyme in the endoplasmic reticulum (exemplified by a polynucleotide encoding SEQ ID NO: 14, 26, 28, 29, 33, 34, 35, or 36, which comprises the N-terminal sequence from maize y-zein operably linked to the hyperthermophilic enzyme, which is operably linked to SEKDEL, wherein the enzyme is a-amylase, malA a-glucosidase, T. maritima glucose isomerase, T. neapolitana glucose isomerase), a hyperthermophilic processing enzyme linked to an N-terminal sequence that targets the enzyme to the amyloplast (exemplified by a polynucleotide encoding SEQ ID NO:15, which comprises the N-terminal amyloplast targeting sequence from waxy operably linked to a-amylase), a hyperthermophilic fusion polypeptide which targets the enzyme to starch granules (exemplified by a polynucleotide encoding SEQ ID NO: 16, which comprises the N-terminal amyloplast targeting sequence from waxy operably linked to an a-amylase/waxy fusion polypeptide comprising the waxy starch binding domain), a hyperthermophilic processing enzyme linked to an ER retention signal (exemplified by a polynucleotide encoding SEQ ID NO:38 and 39). Moreover, a hyperthermophilic processing enzyme may be linked to a raw-starch binding site having the amino acid sequence (SEQ ID NO:53), wherein the polynucleotide encoding the processing enzyme is linked to the maize-optimized nuleic acid sequence (SEQ ID NO:54) encoding this binding site. <br><br> Several inducible promoters have been reported. Many are described in a review by Gatz, in Current Opinion in Biotechnology. 7:168 (1996) and Gatz, C., Annu. Rev. Plant Phvsiol. <br><br> 34 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Plant Mol. Biol.. 48:89 (1997). Examples include tetracycline repressor system, Lac repressor system, copper-inducible systems, salicylate-inducible systems (such as the PRla system), glucocorticoid-inducible (Aoyama T. et al., N-H Plant Journal. 11:605 (1997)) and ecdysone-inducible systems. Other inducible promoters include ABA- and turgor-inducible promoters, the promoter of the auxin-binding protein gene (Schwob et al., Plant J., 4:423 (1993)), the UDP glucose flavonoid glycosyl-transferase gene promoter (Ralston et al., Genetics. 1J9:185 (1988)), the MPI proteinase inhibitor promoter (Cordero et al., Plant J.. 6:141 (1994)), and the g]yceraldehyde-3-phosphate dehydrogenase gene promoter (Kohler et al., Plant Mol. Biol.. 29; 1293 (1995); Quigley et al., J. Mol. Evol.. 29:412 (1989); Martinez et al., J. Mol. Biol.. 208:551 (1989)). Also included are the benzene sulphonamide-inducible (U.S. 5364,780) and alcohol-inducible (WO 97/06269 and WO 97/06268) systems and glutathione S-transferase promoters. <br><br> Other studies have focused on genes inducibly regulated in response to environmental stress or stimuli such as increased salinity, drought, pathogen and wounding. (Graham et al., J. Biol. Chem.. 260:6555 (1985); Graham et al, J. Biol. Chem.. 260:6561 (1985), Smith et al, Planta. 168:94 (1986)). Accumulation of metallocarboxypeptidase-inhibitor protein has been reported in leaves of wounded potato plants (Graham et al, Biochem. Biophvs. Res. Comm.. 101:1164 (1981)). Other plant genes have been reported to be induced by methyl jasmonate, elicitors, heat-shock, anaerobic stress, or herbicide safeners. <br><br> Regulated expression of a chimeric transacting viral replication protein can be further regulated by other genetic strategies, such as, for example, Cre-mediated gene activation (Odell et al. Mol. Gen. Genet.. 113:369 (1990)). Thus, a DNA fragment containing 3' regulatory sequence bound by lox sites between the promoter and the replication protein coding sequence that blocks the expression of a chimeric replication gene from the promoter can be removed by <br><br> Cre-mediated excision and result in the expression of the trans-acting replication gene. In this case, the chimeric Cre gene, the chimeric trans-acting replication gene, or both can be under the control of tissue- and developmental-specific or inducible promoters. An alternate genetic strategy is the use of tRNA suppressor gene. For example, the regulated expression of a tRNA <br><br> suppressor gene can conditionally control expression of a trans-acting replication protein coding sequence containing an appropriate termination codon (Ulmasov et al. Plant Mol. Biol.. 35:417 <br><br> 35 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> (1997)). Again, either the chimeric tRNA suppressor gene, the chimeric transacting replication gene, or both can be under the control of tissue- and developmental-specific or inducible promoters. <br><br> Preferably, in the case of a multicellular organism, the promoter can also be specific to a particular tissue, organ or stage of development. Examples of such promoters include, but are not limited to, the Zea mays ADP-gpp and the Zea mays y-zein promoter and the Zea mays globulin promoter. <br><br> Expression of a gene in a transgenic plant may be desired only in a certain time period during the development of the plant. Developmental timing is frequently correlated with tissue specific gene expression. For example, expression of zein storage proteins is initiated in the endosperm about 15 days after pollination. <br><br> Additionally, vectors may be constructed and employed in the intracellular targeting of a specific gene product within the cells of a transgenic plant or in directing a protein to the extracellular environment. This will generally be achieved by joining a DNA sequence encoding a transit or signal peptide sequence to the coding sequence of a particular gene. The resultant transit, or signal, peptide will transport the protein to a particular intracellular, or extracellular destination, respectively, and wilt then be post-translationally removed. Transit or signal peptides act by facilitating the transport of proteins through intracellular membranes, e.g., vacuole, vesicle, plastid and mitochondrial membranes, whereas signal peptides direct proteins through the extracellular membrane. <br><br> A signal sequence such as the maize y-zein N-terminal signal sequence for targeting to the endoplasmic reticulum and secretion into the apoplast may be operably linked to a polynucleotide encoding a hyperthermophilic processing enzyme in accordance with the present invention (Torrent et al, 1997). For example, SEQ ED NOs: 13, 27, and 30 provides for a polynucleotide encoding a hyperthermophilic enzyme operably linked to the N-terminal sequence from maize y-zein protein. Another signal sequence is the amino acid sequence SEKDEL for retaining polypeptides in the endoplasmic reticulum (Munro and Pelham, 1987). For example, a polynucleotide encoding SEQ ID NOS: 14, 26, 28, 29, 33, 34,35, or 36, which comprises the N-terminal sequence from maize y-zein operably linked to a processing enzyme <br><br> 36 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> which is operably linked to SEKDEL. A polypeptide may also be targeted to the amyloplast by fusion to the waxy amyloplast targeting peptide (Klosgen et al, 1986) or to a starch granule. For example, the polynucleotide encoding a hyperthermophilic processing enzyme may be operably linked to a chloroplast (amyloplast) transit peptide (CTP) and a starch binding domain, e.g., from the waxy gene. SEQ ID NO: 10 exemplifies a-amylase linked to the starch binding domain from waxy. SEQ ID NO: 15 exemplifies the N-terminal sequence amyloplast targeting sequence from waxy operably linked to a-amylase. Moreover, the polynucleotide encoding the processing enzyme may be fused to target starch granules using the waxy starch binding domain. For example, SEQ ID NO: 16 exemplifies a fusion polypeptide comprising the N-terminal amyloplast targeting sequence from waxy operably linked to an a-amylase/waxy fusion polypeptide comprising the waxy starch binding domain. <br><br> The polynucleotides of the present invention, in addition to processing signals, may further include other regulatory sequences, as is known in the art. "Regulatory sequences" and "suitable regulatory sequences" each refer to nucleotide sequences located upstream (5' non-coding sequences), within, or downstream (3' non-coding sequences) of a coding sequence, and which influence the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences include enhancers, promoters, translation leader sequences, introns, and polyadenylation signal sequences. They include natural and synthetic sequences as well as sequences, which may be a combination of synthetic and natural sequences. <br><br> Selectable markers may also be used in the present invention to allow for the selection of transformed plants and plant tissue, as is well-known in the art. One may desire to employ a selectable or screenable marker gene as, or in addition to, the expressible gene of interest. <br><br> "Marker genes" are genes that impart a distinct phenotype to cells expressing the marker gene and thus allow such transformed cells to be distinguished from cells that do not have the marker. Such genes may encode either a selectable or screenable marker, depending on whether the marker confers a trait which one can select for by chemical means, i.e., through the use of a selective agent (e.g., a herbicide, antibiotic, or the like), or whether it is simply a trait that one can identify through observation or testing, i.e., by screening (e.g., the R-locus trait). Of course, <br><br> 37 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> many examples of suitable marker genes are known to the art and can be employed in the practice of the invention. <br><br> Included within the terms selectable or screenable marker genes are also genes which encode a "secretable marker" whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers which encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes which can be detected by their catalytic activity. Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, e.g., by ELISA; small active enzymes detectable in extracellular solution (e.g., a-amylase, P-lactamase, phosphinothricin acetyltransferase); and proteins that are inserted or trapped in the cell wall (e.g., proteins that include a leader sequence such as that found in the expression unit of extensin or tobacco PR-S). <br><br> With regard to selectable secretable markers, the use of a gene that encodes a protein that becomes sequestered in the cell wall, and which protein includes a unique epitope is considered to be particularly advantageous. Such a secreted antigen marker would ideally employ an epitope sequence that would provide low background in plant tissue, a promoter-leader sequence that would impart efficient expression and targeting across the plasma membrane, and would produce protein that is bound in the cell wall and yet accessible to antibodies. A normally secreted wall protein modified to include a unique epitope would satisfy all such requirements. <br><br> One example of a protein suitable for modification in this manner is extensin, or hydroxyproline rich glycoprotein (HPRG). For example, the maize HPRG (Steifel et al. The Plant Cell. 2:785 (1990)) molecule is well characterized in terms of molecular biology, <br><br> expression and protein structure. However, any one of a variety of extensins and/or glycine-rich wall proteins (Keller et al, EMBO Journal. 8:1309 (1989)) could be modified by the addition of an antigenic site to create a screenable marker. <br><br> a. Selectable Markers <br><br> Possible selectable markers for use in connection with the present invention include, but are not limited to, a neo or nptll gene (Potrykus et al, Mol. Gen. Genet.. 199:183 (1985)) which codes for kanamycin resistance and can be selected for using kanamycin, G418, and the like; a bar gene which confers resistance to the herbicide phosphinothricin; a gene which encodes an <br><br> 38 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> altered EPSP synthase protein (Hinchee et al., Biotech.. 6:915 (1988)) thus conferring glyphosate resistance; a nitrilase gene such as bxn from Klebsiella ozaenae which confers resistance to bromoxynil (Stalker et al., Science. 242:419 (1988)); a mutant acetolactate synthase gene (ALS) which confers resistance to imidazolinone, sulfonylurea or other ALS-inhibiting chemicals (European Patent Application 154,204, 1985); a methotrexate-resistant DHFR gene (Thillet et al., J. Biol. Chem.. 263:12500 (1988)); a dalapon dehalogenase gene that confers resistance to the herbicide dalapon; a phosphomannose isomerase (PMI) gene; a mutated anthranilate synthase gene that confers resistance to 5-methyl tryptophan; the hph gene which confers resistance to the antibiotic hygromycin; or the mannose-6-phosphate isomerase gene (also referred to herein as the phosphomannose isomerase gene), which provides the ability to metabolize mannose (U.S. Patent Nos. 5,767,378 and 5,994,629). One skilled in the art is capable of selecting a suitable selectable marker gene for use in the present invention. Where a mutant EPSP synthase gene is employed, additional benefit may be realized through the incorporation of a suitable chloroplast transit peptide, CTP (European Patent Application 0,218,571, 1987). <br><br> An illustrative embodiment of a selectable marker gene capable of being used in systems to select transformants are the genes that encode the enzyme phosphinothricin acetyltransferase, such as the bar gene from Streptomyces hygroscopicus or the pat gene from Streptomyces viridochromogenes. The enzyme phosphinothricin acetyl transferase (PAT) inactivates the active ingredient in the herbicide bialaphos, phosphinothricin (PPT). PPT inhibits glutamine synthetase, (Murakami et al., Mol. Gen. Genet.. 205:42 (1986); Twell et al., Plant Physiol.. 9J.: 1270 (1989)) causing rapid accumulation of ammonia and cell death. The success in using this selective system in conjunction with monocots was particularly surprising because of the major difficulties which have been reported in transformation of cereals (Potrykus, Trends Biotech.. 7:269(1989)). <br><br> Where one desires to employ a bialaphos resistance gene in the practice of the invention, a particularly useful gene for this purpose is the bar or pat genes obtainable from species of Streptomyces (e.g., ATCC No. 21,705). The cloning of the bar gene has been described (Murakami et al., Mol. Gen. Genet.. 205:42 (1986); Thompson et al., EMBO Journal. 6:2519 (1987)) as has the use of the bar gene in the context of plants other than monocots (De Block et al., EMBO Journal, 6:2513 (1987); De Block et al., Plant PhvsioL 91:694 (1989)). <br><br> 39 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> b. Screenable Markers <br><br> Screenable markers that may be employed include, but are not limited to, a P-glucuronidase or uidA gene (GUS) which encodes an enzyme for which various chromogenic substrates are known; an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., in Chromosome Structure and Function, pp. 263-282 (1988)); a p-lactamase gene (Sutcliffe, PNAS USA. 75:3737 (1978)), which encodes an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin); a xylE gene (Zukowsky et al., PNAS USA. 80:1101 (1983)) which encodes a catechol dioxygenase that can convert chromogenic catechols; an a-amylase gene (Ikuta et al., Biotech.. 8:241 (1990)); a tyrosinase gene (Katz et al., J. Gen. Microbiol.. 129:2703 (1983)) which encodes an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone which in turn condenses to form the easily detectable compound melanin; a P-galactosidase gene, which encodes an enzyme for which there are chromogenic substrates; a luciferase (lux) gene (Ow et al., Science. 234:856 (1986)), which allows for bioluminescence detection; or an aequorin gene (Prasher et al., Biochem. Biophvs. Res. Comm.. 126:1259 (1985)), which may be employed in calcium-sensitive bioluminescence detection, or a green fluorescent protein gene (Niedz et al., Plant Cell Reports. 14: 403 (1995)). <br><br> Genes from the maize R gene complex are contemplated to be particularly useful as screenable markers. The R gene complex in maize encodes a protein that acts to regulate the production of anthocyanin pigments in most seed and plant tissue. A gene from the R gene complex is suitable for maize transformation, because the expression of this gene in transformed cells does not harm the cells. Thus, an R gene introduced into such cells will cause the expression of a red pigment and, if stably incorporated, can be visually scored as a red sector. If a maize line carries dominant alleUes for genes encoding the enzymatic intermediates in the anthocyanin biosynthetic pathway (C2, Al, A2, Bzl and Bz2), but carries a recessive allele at the R locus, transformation of any cell from that line with R will result in red pigment formation. Exemplary lines include Wisconsin 22 which contains the rg-Stadler allele and TR112, a K55 derivative which is r-g, b, PI. Alternatively any genotype of maize can be utilized if the CI and R alleles are introduced together. A further screenable marker contemplated for use in the <br><br> 40 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> present invention is firefly luciferase, encoded by the lux gene. The presence of the lux gene in transformed cells may be detected using, for example, X-ray film, scintillation counting, fluorescent spectrophotometry, low-light video cameras, photon counting cameras or multiwell luminometry. It is also envisioned that this system may be developed for populational screening for bioluminescence, such as on tissue culture plates, or even for whole plant screening. <br><br> The polynucleotides used to transform the plant may include, but is not limited to, DNA from plant genes and non-plant genes such as those from bacteria, yeasts, animals or viruses. The introduced DNA can include modified genes, portions of genes, or chimeric genes, including genes from the same or different maize genotype. The term "chimeric gene" or "chimeric DNA" is defined as a gene or DNA sequence or segment comprising at least two DNA sequences or segments from species which do not combine DNA under natural conditions, or which DNA sequences or segments are positioned or linked in a manner which does not normally occur in the native genome of the untransformed plant. <br><br> Expression cassettes comprising the polynucleotide encoding a hyperthermophilic processing enzyme, and preferably a codon-optimized polynucleotide is further provided. It is preferred that the polynucleotide in the expression cassette (the first polynucleotide) is operably linked to regulatory sequences, such as a promoter, an enhancer, an intron, a termination sequence, or any combination thereof, and, optionally, to a second polynucleotide encoding a signal sequence (N- or C-terminal) which directs the enzyme encoded by the first polynucleotide to a particular cellular or subcellular location. Thus, a promoter and one or more signal sequences can provide for high levels of expression of the enzyme in particular locations in a plant, plant tissue or plant cell. Promoters can be constitutive promoters, inducible (conditional) promoters or tissue-specific promoters, e.g., endosperm-specific promoters such as the maize 7-zein promoter (exemplified by SEQ ID NO: 12) or the maize ADP-gpp promoter (exemplified by SEQ ED NO: 11, which includes a 5' untranslated and an intron sequence). The invention also provides an isolated polynucleotide comprising a promoter comprising SEQ ID NO: 11 or 12, a polynucleotide which hybridizes to the complement thereof under low stringency hybridization conditions, or a fragment thereof which has promoter activity, e.g., at least 10%, and preferably at least 50%, the activity of a promoter having SEQ ID NO:l 1 or 12. Also provided are vectors which comprise the expression cassette or polynucleotide of the invention and transformed cells <br><br> 41 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> comprising the polynucleotide, expression cassette or vector of the invention. A vector of the invention can comprise a polynucleotide sequence which encodes more than one hyperthermophilic processing enzyme of the invention, which sequence can be in sense or antisense orientation, and a transformed cell may comprise one or more vectors of the invention. Preferred vectors are those useful to introduce nucleic acids into plant cells. <br><br> Transformation <br><br> The expression cassette, or a vector construct containing the expression cassette may be inserted into a cell. The expression cassette or vector construct may be carried episomally or integrated into the genome of the cell. The transformed cell may then be grown into a transgenic plant. Accordingly, the invention provides the products of the transgenic plant. Such products may include, but are not limited to, the seeds, fruit, progeny, and products of the progeny of the transgenic plant. <br><br> A variety of techniques are available and known to those skilled in the art for introduction of constructs into a cellular host. Transformation of bacteria and many eukaryotic cells may be accomplished through use of polyethylene glycol, calcium chloride, viral infection, phage infection, electroporation and other methods known in the art. Techniques for transforming plant cells or tissue include transformation with DNA employing A. tumefaciens or A. rhizogenes as the transforming agent, electroporation, DNA injection, microprojectile bombardment, particle acceleration, etc. (See, for example, EP 295959 and EP 138341). <br><br> In one embodiment, binary type vectors of Ti and Ri plasmids of Agrobacterium spp. Ti- <br><br> derived vectors are used to transform a wide variety of higher plants, including monocotyledonous and dicotyledonous plants, such as soybean, cotton, rape, tobacco, and rice <br><br> (Pacciotti et al. Bio/Technology. 3:241 (1985): Byrne et al. Plant Cell Tissue and Organ Culture, <br><br> 8:3 (1987); Sukhapinda et al. Plant Mol. Biol., 8:209 (1987); Lorz et al. Mol. Gen. Genet.. <br><br> 199:178 (1985); Potrvkus Mol. Gen. Genet.. 199:183 (1985); Park et al., J. Plant Biol.. 38:365 <br><br> (1985): Hiei et al., Plant J.. 6:271(1994)). The use of T-DNA to transform plant cells has received extensive study and is amply described (EP 120516; Hoekema, In: The Binary Plant <br><br> Vector System. Offset-drukkerij Kanters B.V.; Alblasserdam (1985), Chapter V; Knauf, et al., <br><br> Genetic Analysis of Host Range Expression by Agrobacterium In: Molecular Genetics of the <br><br> 42 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Bacteria-Plant Interaction. Puhler, A. ed., Springer-Verlag, New York, 1983, p. 245; and An. et al.. EMBO J.. 4:277 (1985V). <br><br> Other transformation methods are available to those skilled in the art, such as direct uptake of foreign DNA constructs (see EP 295959), techniques of electroporation (Fromm et al. Nature (London). 319:791 (1986), or high velocity ballistic bombardment with metal particles coated with the nucleic acid constructs (Kline et al. Nature (London) 327:70 (1987), and U.S. Patent No. 4,945,050). Once transformed, the cells can be regenerated by those skilled in the art. Of particular relevance are the recently described methods to transform foreign genes into commercially important crops, such as rapeseed (De Block et al., Plant Physiol. 91:694-701 (1989)), sunflower (Everett et al., Bio/Technology. 5:1201(1987)), soybean (McCabe et al., Bio/Technology. 6:923 (1988); Hinchee et al., Bio/Technology. 6:915 (1988); Chee et al., Plant Phvsiol.. 91:1212 (1989); Christou et al., Proc. Natl. Acad. Sci USA. 86:7500(1989) EP 301749), rice (Hiei et al., Plant J.. 6:271 (1994)), and com (Gordon Kamm et al., Plant Cell. 2:603 (1990); Fromm et al., Biotechnology. 8:833, (1990)). <br><br> Expression vectors containing genomic or synthetic fragments can be introduced into protoplasts or into intact tissues or isolated cells. Preferably expression vectors are introduced into intact tissue. General methods of culturing plant tissues are provided, for example, by Maki et al. "Procedures for Introducing Foreign DNA into Plants" in Methods in Plant Molecular Biology &amp; Biotechnology, Glich et al. (Eds.), pp. 67-88 CRC Press (1993); and by Phillips et al. "Cell-Tissue Culture and In-Vitro Manipulation" in Corn &amp; Com Improvement, 3rd Edition 10, Sprague et al. (Eds.) pp. 345-387, American Society of Agronomy Inc. (1988). <br><br> In one embodiment, expression vectors may be introduced into maize or other plant tissues using a direct gene transfer method such as microprojectile-mediated delivery, DNA <br><br> injection, electroporation and the like. Expression vectors are introduced into plant tissues using the microprojectile media delivery with the biolistic device. See, for example, Tomes et al. <br><br> "Direct DNA transfer into intact plant cells via microprojectile bombardment" in Gamborg and <br><br> Phillips (Eds.) Plant Cell, Tissue and Organ Culture: Fundamental Methods, Springer Verlag, <br><br> Berlin (1995). Nevertheless, the present invention contemplates the transformation of plants with a hyperthermophilic processing enzyme in accord with known transforming methods. Also see, Weissinger et al., Annual Rev. Genet.. 22:421 (1988); Sanford et al., Particulate Science and <br><br> 43 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Technology. 5:27 (1987) (onion); Christou et al., Plant Physiol.. 87:671 (1988 )(soybean); McCabe et al., Bio/Technology. 6:923 (1988) (soybean); Datta et al., Bio/Technology. 8:736 (1990) (rice); Klein et al., Proc. Natl. Acad. Sci. USA. 85:4305 (1988 )(maize); Klein et al., Bio/Technology. 6:559 (1988)(maize); Klein et al., Plant Physiol.. £1:440 (1988)(inaize); Fromm et al., Bio/Technology. 8:833 (1990) (maize); and Gordon-Kamm et al., Plant Cell. 2, 603 (1990)(maize); Svab et al., Proc. Natl. Acad. Sci. USA. 87:8526 (1990) (tobacco chloroplast); Koziel et al., Biotechnology. ]_l:194 (1993) (maize); Shimamoto et al., Nature. 338:274 (1989) (rice); Christou et al., Biotechnology. 9:957 (1991) (rice); European Patent Application EP 0 332 581 (orchardgrass and other Pooideae); Vasil et al., Biotechnology. 11:1553 (1993) (wheat); Weeks et al., Plant Phvsiol.. 102:1077 (1993) (wheat). Methods in Molecular Biology, 82. Arabidopsis Protocols Ed. Martinez-Zapater and Salinas 1998 Humana Press (Arabidopsis). <br><br> Transformation of plants can be undertaken with a single DNA molecule or multiple DNA molecules (i.e., co-transformation), and both these techniques are suitable for use with the expression cassettes and constructs of the present invention. Numerous transformation vectors are available for plant transformation, and the expression cassettes of this invention can be used in conjunction with any such vectors. The selection of vector will depend upon the preferred transformation technique and the target species for transformation. <br><br> Ultimately, the most desirable DNA segments for introduction into a monocot genome may be homologous genes or gene families which encode a desired trait (e.g., hydrolysis of proteins, lipids or polysaccharides) and which are introduced under the control of novel promoters or enhancers, etc., or perhaps even homologous or tissue specific (e.g., root-, collar/sheath-, whorl-, stalk-, earshank-, kernel- or leaf-specific) promoters or control elements. Indeed, it is envisioned that a particular use of the present invention will be the targeting of a gene in a constitutive manner or in an inducible manner. <br><br> Examples of Suitable Transformation Vectors <br><br> Numerous transformation vectors available for plant transformation are known to those of ordinary skill in the plant transformation arts, and the genes pertinent to this invention can be used in conjunction with any such vectors known in the art. The selection of vector will depend upon the preferred transformation technique and the target species for transformation. <br><br> 44 <br><br> WO 2005/096804 <br><br> a. Vectors Suitable for Aerobacterium Transformation <br><br> PCT/US2004/007182 <br><br> Many vectors are available for transformation using Agrobacterium tumefaciens. These typically carry at least one T-DNA border sequence and include vectors such as pBENl9 (Bevan, Nucl. Acids Res. (1984)). Below, the construction of two typical vectors suitable for Agrobacterium transformation is described. <br><br> PCIB200 and dCIB2001 <br><br> The binary vectors pcIB200 and pCD32001 are used for the construction of recombinant vectors for use with Agrobacterium and are constructed in the following manner. pTJS75kan is created by Narl digestion of pTJS75 (Schmidhauser &amp; Helinski, J. Bacteriol.. 164: 446 (1985)) allowing excision of the tetracycline-resistance gene, followed by insertion of an AccI fragment from pUC4K carrying an NPTII (Messing &amp; Vierra, Gene. 19: 259 (1982): Bevan et al., Nature. 304: 184 (1983): McBride et al., Plant.Molecular Biology. 14: 266 (1990)). Xhol linkers are ligated to the EcoRV fragment of PCIB7 which contains the left and right T-DNA borders, a plant selectable nos/nptll chimeric gene and the pUC polylinker (Rothstein et al., Gene. 53: 153 (1987)), and the Xhol-digested fragment are cloned into Sall-digested pTJS75kan to create pCIB200 (see also EP 0 332 104, example 19), pCIB200 contains the following unique polylinker restriction sites: EcoRI, SstI, Kpnl, Bgin, Xbal, and Sail. pCEB2001 is a derivative of pCIB200 created by the insertion into the polylinker of additional restriction sites. Unique restriction sites in the polylinker of pCIB2001 are EcoRI, SstI, Kpnl, BgUI, Xbal, Sail, Mlul, Bell, Avrll, Apal, Hpal, and Stul. pCIB2001, in addition to containing these unique restriction sites also has plant and bacterial kanamycin selection, left and right T-DNA borders for Agrobacterium-medi&amp;ted transformation, the RK2-derived trfA function for mobilization between E. coli and other hosts, and the OriT and OriV functions also from RK2. The pCIB2001 polylinker is suitable for the cloning of plant expression cassettes containing their own regulatory signals. <br><br> 45 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007182 <br><br> pCIBI 0 and Hveromvcin Selection Derivatives thereof: <br><br> The binary vector pCB 10 contains a gene encoding kanamycin resistance for selection in plants and T-DNA right and left border sequences and incorporates sequences from the wide host-range plasmid pRK252 allowing it to replicate in both E. coli and Agrobacterium. Its construction is described by Rothstein et al. (Gene. S3: 153 (1987)). Various derivatives of pClBlO are constructed which incorporate the gene for hygromycin B phosphotransferase described by Gritz et al. (Gene. 25: 179 (1983)). These derivatives enable selection of transgenic plant cells on hygromycin only (pCEB743), or hygromycin and kanamycin (pCIB715: pCIB717). b. Vectors Suitable for non-Aerobacterium Transformation Transformation without the use of Agrobacterium tumefaciens circumvents the requirement for T-DNA sequences in the chosen transformation vector and consequently vectors lacking these sequences can be utilized in addition to vectors such as the ones described above which contain T-DNA sequences. Transformation techniques that do not rely on Agrobacterium include transformation via particle bombardment, protoplast uptake (e.g., PEG and electroporation) and microinjection. The choice of vector depends largely on the preferred -selection for the species being transformed. Non-limiting examples of the construction of typical vectors suitable for non-Agrobacterium transformation is further described. <br><br> PC1B3064 <br><br> pCIB3064 is a pUC-derived vector suitable for direct gene transfer techniques in combination with selection by the herbicide basta (or phosphinothricin). The plasmid pCLB246 <br><br> comprises the CaMV 35 S promoter in operational fusion to the E. coli GUS gene and the CaMV <br><br> 35S transcriptional terminator and is described in the PCT published application WO 93/07278. <br><br> The 35S promoter of this vector contains two ATG sequences 5* of the start site. These sites are mutated using standard PCR techniques in such a way as to remove the ATGs and generate the restriction sites Sspl and PvuII. The new restriction sites are 96 and 37 bp away from the unique <br><br> Sail site and 101 and 42 bp away from the actual start site. The resultant derivative of pCIB246 <br><br> is designated pCEB3025. The GUS gene is then excised from pCIB3025 by digestion with Sail and SacI, the termini rendered blunt and religated to generate plasmid pCIB3060. The plasmid pJIT82 may be obtained from the John Innes Centre, Norwich and the a 400 bp Smal fragment containing the bar gene from Streptomyces viridochromogenes is excised and inserted into the <br><br> 46 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Hpal site of pCEB3060 (Thompson et al., EMBO J. 6: 2519 (1987)). This generated pCEB3064, which comprises the bar gene under the control of the CaMV 35S promoter and terminator for herbicide selection, a gene for ampicillin resistance (for selection in E. coli) and a polylinker with the unique sites SphI, PstI, Hindlll, and BamHI. This vector is suitable for the cloning of plant expression cassettes containing their own regulatory signals. <br><br> nSOG19 and nSOG35: <br><br> The plasmid pSOG35 is a transformation vector that utilizes the E. coli gene dihydrofolate reductase (DHFR) as a selectable marker conferring resistance to methotrexate. PCR is used to amplify the 35S promoter (-800 bp), intron 6 from the maize Adhl gene (-550 bp) and 18 bp of the GUS untranslated leader sequence from pSOGlO. A 250-bp fragment encoding the E. coli dihydrofolate reductase type II gene is also amplified by PCR and these two PCR fragments are assembled with a SacI-PstI fragment from pB1221 (Clontech) which comprises the pUCl 9 vector backbone and the nopaline synthase terminator. Assembly of these fragments generates pSOG19 which contains the 35S promoter in fusion with the intron 6 sequence, the GUS leader, the DHFR gene and the nopaline synthase terminator. Replacement of the GUS leader in pSOG19 with the leader sequence from Maize Chlorotic Mottle Virus (MCMV) generates the vector pSOG35. pSOG19 and pSOG35 carry the pUC gene for ampicillin resistance and have Hindlll, SphI, PstI and EcoRI sites available for the cloning of foreign substances. <br><br> c. Vector Suitable for Chloroplast Transformation <br><br> For expression of a nucleotide sequence of the present invention in plant plastids, plastid transformation vector pPH143 (WO 97/32011, example 36) is used. The nucleotide sequence is inserted into pPH143 thereby replacing the PROTOX coding sequence. This vector is then used for plastid transformation and selection of transformants for spectinomycin resistance. Alternatively, the nucleotide sequence is inserted in pPH143 so that it replaces the aadH gene. In this case, transformants are selected for resistance to PROTOX inhibitors. <br><br> Plant Hosts Subject to Transformation Methods <br><br> Any plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a construct of the present invention. The term <br><br> 47 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> organogenesis means a process by which shoots and roots are developed sequentially from meristematic centers while the term embryogenesis means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include differentiated and undifferentiated tissues or plants, including but not limited to leaf disks, roots, stems, shoots, leaves, pollen, seeds, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem), tumor tissue, and various forms of cells and culture such as single cells, protoplast, embryos, and callus tissue. The plant tissue may be in plants or in organ, tissue or cell culture. <br><br> Plants of the present invention may take a variety of forms. The plants may be chimeras of transformed cells and non-transformed cells; the plants may be clonal transformants (e.g., all cells transformed to contain the expression cassette); the plants may comprise grafts of transformed and untransformed tissues (e.g., a transformed root stock grafted to an untransformed scion in citrus species). The transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, first generation (or Tl) transformed plants may be selfed to give homozygous second generation (or T2) transformed plants, and the T2 plants further propagated through classical breeding techniques. A dominant selectable marker (such as npt II) can be associated with the expression cassette to assist in breeding. <br><br> The present invention may be used for transformation of any plant species, including monocots or dicots, including, but not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, <br><br> B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa <br><br> (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, <br><br> Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower <br><br> (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean <br><br> (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea <br><br> 48 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> batatus), cassava (Manihot esculenta), coffee (Cofea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidental), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, woody plants such as conifers and deciduous trees, squash, pumpkin, hemp, zucchini, apple, pear, quince, melon, plum, cherry, peach, nectarine, apricot, strawberry, grape, raspberry, blackberry, soybean, sorghum, sugarcane, rapeseed, clover, carrot, and Arabidopsis thaliana. <br><br> Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), cauliflower, broccoli, turnip, radish, spinach, asparagus, onion, garlic, pepper, celery, and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum. Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata), Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc. Legumes include, but are not limited to, Arachis, e.g., peanuts, Vicia, e.g., crown vetch, hairy vetch, adzuki bean, mung bean, and chickpea, Lupinus, e.g., lupine, trifolium, Phaseolus, e.g., common bean and lima bean, Pisum, e.g., field bean, Melilotus, e.g., clover, Medicago, e.g., alfalfa, Lotus, e.g., trefoil, lens, e.g., lentil, and false indigo. Preferred forage and turf grass for use in the methods of the <br><br> 49 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> invention include alfalfa, orchard grass, tall fescue, perennial ryegrass, creeping bent grass, and redtop. <br><br> Preferably, plants of the present invention include crop plants, for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, barley, rice, tomato, potato, squash, melons, legume crops, etc. Other preferred plants include Liliopsida and Panicoideae. <br><br> Once a desired DNA sequence has been transformed into a particular plant species, it may be propagated in that species or moved into other varieties of the same species, particularly including commercial varieties, using traditional breeding techniques. <br><br> Below are descriptions of representative techniques for transforming both dicotyledonous and monocotyledonous plants, as well as a representative plastid transformation technique. <br><br> a, Transformation of Dicotyledons <br><br> Transformation techniques for dicotyledons are well known in the art and include Agrobacterium-based techniques and techniques that do not require Agrobacterium. Non-Agrobacterium techniques involve the uptake of exogenous genetic material directly by protoplasts or cells. This can be accomplished by PEG or electroporation mediated uptake, particle bombardment-mediated delivery, or microinjection. Examples of these techniques are described by Paszkowski et al., EMBO J. 3: 2717 (1984), Potrykus et al., Mol. Gen. Genet.. 199: 169 (1985), Reich et al., Biotechnology. 4: 1001 (1986), and Klein et al., Nature. 327: 70 (1987). In each case the transformed cells are regenerated to whole plants using standard techniques known in the art. <br><br> Agrobacterium-mediated transformation is a preferred technique for transformation of dicotyledons because of its high efficiency of transformation and its broad utility with many different species. Agrobacterium transformation typically involves the transfer of the binary vector carrying the foreign DNA of interest (e.g. pCDB200 or pCIB2001) to an appropriate Agrobacterium strain which may depend on the complement of vir genes carried by the host Agrobacterium strain either on a co-resident Ti plasmid or chromosomally (e.g., strain CIB542 for pCIB200 and pClB2001 (Uknes et al., Plant Cell. 5: 159 (1993)). The transfer of the recombinant binary vector to Agrobacterium is accomplished by a triparental mating procedure using E. coli carrying the recombinant binary vector, a helper E. coli strain which carries a <br><br> 50 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> plasmid such as pRK2013 and which is able to mobilize the recombinant binary vector to the target Agrobacterium strain. Alternatively, the recombinant binary vector can be transferred to Agrobacterium by DNA transformation (Hofgen &amp; Willmitzer, Nucl, Acids Res.. 16: 9877 (1988)). <br><br> Transformation of the target plant species by recombinant Agrobacterium usually involves co-cultivation of the Agrobacterium with explants from the plant and follows protocols well known in the art. Transformed tissue is regenerated on selectable medium carrying the antibiotic or herbicide resistance marker present between the binary plasmid T-DNA borders. <br><br> The vectors may be introduced to plant cells in known ways. Preferred cells for transformation include Agrobacterium, monocot cells and dicots cells, including Liliopsida cells and Panicoideae cells. Preferred monocot cells are cereal cells, e.g., maize (corn), barley, and wheat, and starch accumulating dicot cells, e.g., potato. <br><br> Another approach to transforming a plant cell with a gene involves propelling inert or biologically active particles at plant tissues and cells. This technique is disclosed in U.S. Patent Nos. 4,945,050, 5,036,006, and 5,100,792. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and afford incorporation within the interior thereof. When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the desired gene. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried yeast cells, dried bacterium or a bacteriophage, each containing DNA sought to be introduced) can also be propelled into plant cell tissue. <br><br> b. Transformation of Monocotyledons <br><br> Transformation of most monocotyledon species has now also become routine. Preferred techniques include direct gene transfer into protoplasts using polyethylene glycol (PEG) or electroporation techniques, and particle bombardment into callus tissue. Transformations can be undertaken with a single DNA species or multiple DNA species (i.e., co-transformation) and both these techniques are suitable for use with this invention. Co-transformation may have the advantage of avoiding complete vector construction and of generating transgenic plants with unlinked loci for the gene of interest and the selectable marker, enabling the removal of the <br><br> 51 <br><br> WO 2005/096804 <br><br> PCT/US20047007182 <br><br> selectable marker in subsequent generations, should this be regarded desirable. However, a disadvantage of the use of co-trans formation is the less than 100% frequency with which separate DNA species are integrated into the genome (Schocher et al., Biotechnology. 4: 1093 1986)). <br><br> Patent Applications EP 0 292 435, EP 0 392 225, and WO 93/07278 describe techniques for the preparation of callus and protoplasts from an elite inbred line of maize, transformation of protoplasts using PEG or electroporation, and the regeneration of maize plants from transformed protoplasts. Gordon-Kamm et al. (Plant Cell. 2: 603 (1990)) and Fromm et al. (Biotechnology. 8: 833 (1990)) have published techniques for transformation of A188-derived maize line using particle bombardment. Furthermore, WO 93/07278 and Koziel et al. (Biotechnology. 11: 194 (1993)) describe techniques for the transformation of elite inbred lines of maize by particle bombardment. This technique utilizes immature maize embryos of 1.5-2.5 mm length excised from a maize ear 14-15 days after pollination and a PDS-lOOOHe Biolistics device for bombardment. <br><br> Transformation of rice can also be undertaken by direct gene transfer techniques utilizing protoplasts or particle bombardment. Protoplast-mediated transformation has been described for <br><br> Japonica-types and Indica-types (Zhang et al., Plant Cell Rep. 7: 379 (1988); Shimamoto et al., <br><br> Nature. 338: 274 (1989); Datta et al., Biotechnology. 8: 736 (1990)). Both types are also routinely transformable using particle bombardment (Christou et al., Biotechnology. 9: 957 <br><br> (1991)). Furthermore, WO 93/21335 describes techniques for the transformation of rice via electroporation. Patent Application EP 0 332 581 describes techniques for the generation, <br><br> transformation and regeneration of Pooideae protoplasts. These techniques allow the transformation of Dactylis and wheat. Furthermore, wheat transformation has been described by <br><br> Vasil et al. (Biotechnology. 10: 667 (1992)) using particle bombardment into cells of type C <br><br> long-term regenerablecallus, and also by Vasil et al. (Biotechnology. J_l: 1553 (1993)) and <br><br> Weeks et al. (Plant Physiol.. 102: 1077 (1993)) using particle bombardment of immature embryos and immature embryo-derived callus. A preferred technique for wheat transformation, <br><br> however, involves the transformation of wheat by particle bombardment of immature embryos and includes either a high sucrose or a high maltose step prior to gene delivery. Prior to bombardment, any number of embryos (0.75-1 mm in length) are plated onto MS medium with <br><br> 52 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 3% sucrose (Murashiga &amp; Skoog, Phvsiologia Plantarum. J_5: 473 (1962)) and 3 mg/1 2,4-D for induction of somatic embryos, which is allowed to proceed in the dark. On the chosen day of bombardment, embryos are removed from the induction medium and placed onto the osmoticum (i.e., induction medium with sucrose or maltose added at the desired concentration, typically 15%). The embryos are allowed to plasmolyze for 2-3 hours and are then bombarded. Twenty embryos per target plate is typical, although not critical. An appropriate gene-carrying plasmid (such as pCIB3064 or pSG35) is precipitated onto micrometer size gold particles using standard procedures. Each plate of embryos is shot with the DuPont Biolistics® helium device using a burst pressure of about 1000 psi using a standard 80 mesh screen. After bombardment, the embryos are placed back into the dark to recover for about 24 hours (still on osmoticum). After 24 hours, the embryos are removed from the osmoticum and placed back onto induction medium where they stay for about a month before regeneration. Approximately one month later the embryo explants with developing embryogenic callus are transferred to regeneration medium (MS + 1 mg/liter NAA, 5 mg/liter GA), further containing the appropriate selection agent (10 mg/1 basta in the case of pCIB3064 and 2 mg/1 methotrexate in the case of pSOG35). After approximately one month, developed shoots are transferred to larger sterile containers known as "GA7s" which contain half-strength MS, 2% sucrose, and the same concentration of selection agent. <br><br> Transformation of monocotyledons using Agrobacterium has also been described. See, WO 94/00977 and U.S. Patent No. 5,591,616, both of which are incorporated herein by reference. <br><br> c. Transformation of Plastids <br><br> Seeds of Nicotiana tabacum c.v. 'Xanthi nc' are germinated seven per plate in a 1" <br><br> circular array on T agar medium and bombarded 12-14 days after sowing with 1 fxm tungsten particles (M10, Biorad, Hercules, CA) coated with DNA from plasmids pPH143 and pPHI45 <br><br> essentially as described (Svab and Maliga, PNAS. 90:913 (1993)). Bombarded seedlings are incubated on T medium for two days after which leaves are excised and placed abaxial side up in bright light (350-500 jimol photons/m2/s) on plates of RMOP medium (Svab, Hajdukiewicz and <br><br> Maliga, PNAS. 87:8526 (1990)) containing 500 fig/ml spectinomycin dihydrochloride (Sigma, <br><br> St. Louis, MO). Resistant shoots appearing underneath the bleached leaves three to eight weeks <br><br> 53 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> after bombardment are subcloned onto the same selective medium, allowed to form callus, and secondary shoots isolated and subcloned. Complete segregation of transformed plastid genome copies (homoplasmicity) in independent subclones is assessed by standard techniques of Southern blotting (Sambrook et al., Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor (1989)). BamHI/EcoRI-digested total cellular DNA (Mettler, I. J. Plant Mol Biol Reporter. 5:346 (1987)) is separated on 1% Tris-borate (TBE) agarose gels, transferred to nylon membranes (Amersham) and probed with 32P-labeled random primed DNA sequences corresponding to a 0.7 kb BamHI/Hindlll DNA fragment from pC8 containing a portion of the rps7/12 plastid targeting sequence. Homoplasmic shoots are rooted aseptically on spectinomycin-containing MS/IBA medium (McBride et al., PNAS. 91:7301 (1994)) and transferred to the greenhouse. <br><br> Production and Characterization of Stably Transformed Plants <br><br> Transformed plant cells are then placed in an appropriate selective medium for selection of transgenic cells, which are then grown to callus. Shoots are grown from callus and plantiets generated from the shoot by growing in rooting medium. The various constructs normally will be joined to a marker for selection in plant cells. Conveniently, the marker may be resistance to a biocide (particularly an antibiotic, such as kanamycin, G418, bleomycin, hygromycin, chloramphenicol, herbicide, or the like). The particular marker used will allow for selection of transformed cells as compared to cells lacking the DNA which has been introduced. <br><br> Components of DNA constructs, including transcription/expression cassettes of this invention, may be prepared from sequences, which are native (endogenous) or foreign (exogenous) to the host. By "foreign" it is meant that the sequence is not found in the wild-type host into which the construct is introduced. Heterologous constructs will contain at least one region, which is not native to the gene from which the transcription-initiation-region is derived. <br><br> To confirm the presence of the transgenes in transgenic cells and plants, a Southern blot analysis can be performed using methods known to those skilled in the art. Integration of a polynucleic acid segment into the genome can be detected and quantitated by Southern blot, <br><br> since they can be readily distinguished from constructs containing the segments through use of appropriate restriction enzymes. Expression products of the transgenes can be detected in any of <br><br> 54 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> a variety of ways, depending upon the nature of the product, and include Western blot and enzyme assay. One particularly useful way to quantitate protein expression and to detect replication in different plant tissues is to use a reporter gene, such as GUS. Once transgenic plants have been obtained, they may be grown to produce plant tissues or parts having the desired phenotype. The plant tissue or plant parts may be harvested, and/or the seed collected. The seed may serve as a source for growing additional plants with tissues or parts having the desired characteristics. <br><br> The invention thus provides a transformed plant or plant part, such as an ear, seed, fruit, grain, stover, chaff, or bagasse comprising at least one polynucleotide, expression cassette or vector of the invention, methods of making such a plant and methods of using such a plant or a part thereof. The transformed plant or plant part expresses a processing enzyme, optionally localized in a particular cellular or subcellular compartment of a certain tissue or in developing grain. For instance, the invention provides a transformed plant part comprising at least one starch processing enzyme present in the cells of the plant, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one starch processing enzyme. The processing enzyme does not act on the target substrate unless activated by methods such as heating, grinding, or other methods, which allow the enzyme to contact the substrate under conditions where the enzyme is active <br><br> Exemplary Methods of the Present Invention <br><br> The self-processing plants and plant parts of the present invention may be used in various methods employing the processing enzymes (mesophilic, thermophilic, or hyperthermophilic) expressed and activated therein. In accordance with the present invention, a transgenic plant part obtained from a transgenic plant the genome of which is augmented with at least one processing enzyme, is placed under conditions in which the processing enzyme is expressed and activated. Upon activation, the processing enzyme is activated and functions to act on the substrate in which it normally acts to obtained the desired result. For example, the starch-processing enzymes act upon starch to degrade, hydrolyze, isomerize, or otherwise modify to obtain the desired result upon activation. Non-starch processing enzymes may be used to disrupt the plant cell membrane in order to facilitate the extraction of starch, lipids, amino acids, or other products <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> from the plants. Moreover, non-hyperthermophilic and hyperthermophilic enzymes may be used in combination in the self-processing plant or plant parts of the present invention. For example, a mesophilic non-starch degrading enzyme may be activated to disrupt the plant cell membrane for starch extraction, and subsequently, a hyperthermophilic starch-degrading enzyme may then be activated in the self-processing plant to degrade the starch. <br><br> Enzymes expressed in grain can be activated by placing the plant or plant part containing them in conditions in which their activity is promoted. For example, one or more of the following techniques may be used: The plant part may be contacted with water, which provides a substrate for a hydrolytic enzyme and thus will activate the enzyme. The plant part may be contacted with water which will allow enzyme to migrate from the compartment into which it was deposited during development of the plant part and thus to associate with its substrate. Movement of the enzyme is possible because compartmentalization is breached during maturation, drying of grain and re-hydration. The intact or cracked grain may be contacted with water which will allow enzyme to migrate from the compartment into which it was deposited during development of the plant part and thus to associate with its substrate. Enzymes can also be activated by addition of an activating compound. For example, a calcium-dependent enzyme can be activated by addition of calcium. Other activating compounds may determined by those skilled in the art. Enzymes can be activated by removal of an inactivator. For example, there are known peptide inhibitors of amylase enzymes, the amylase could be co-expressed with an amylase inhibitor and then activated by addition of a protease. Enzymes can be activated by alteration of pH to one at which the enzyme is most active. Enzymes can also be activated by increasing temperature. An enzyme generally increases in activity up to the maximal temperature for that enzyme. A mesophilic enzyme will increase in activity from the level of activity ambient temperature up to the temperature at which it loses activity which is typically less than or equal to 70 °C. Similarly thermophilic and hyperthermophilic enzymes can also be activated by increasing temperature. Thermophilic enzymes can be activated by heating to temperatures up to the maximal temperature of activity or of stability. For a thermophilic enzyme the maximal temperatures of stability and activity will generally be between 70 and 85 °C. Hyperthermophilic enzymes will have the even greater relative activation than mesophilic or <br><br> 56 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007182 <br><br> thermophilic enzymes because of the greater potential change in temperature from 25 °C up to 85 °C to 95 °C or even 100 °C. The increased temperature may be achieved by any method, for example by heating such as by baking, boiling, heating, steaming, electrical discharge or any combination thereof Moreover, in plants expressing mesophilic or thermophilic enzyme(s), activation of the enzyme may be accomplished by grinding, thereby allowing the enzyme to contact the substrate. <br><br> The optimal conditions, e.g., temperature, hydration, pH, etc, may be determined by one having skill in the art and may depend upon the individual enzyme being employed and the desired application of the enzyme. <br><br> The present invention further provides for the use of exogenous enzymes that may assist in a particular process. For example, the use of a self-processing plant or plant part of the present invention may be used in combination with an exogenously provided enzyme to facilitate the reaction. As an example, transgenic a-amylase corn may be used in combination with other starch-processing enzymes, such as pullulanase, a-glucosidase, glucose isomerase, mannanases, hemicellulases, etc., to hydrolyze starch or produce ethanol. In fact, it has been found that combinations of the transgenic a-amylase corn with such enzymes has unexpectedly provided superior degrees of starch conversion relative to the use of transgenic a-amylase corn alone. <br><br> Example of suitable methods contemplated herein are provided. <br><br> a. Starch Extraction From Plants <br><br> The invention provides for a method of facilitating the extraction of starch from plants. In particular, at least one polynucleotide encoding a processing enzyme that disrupts the physically restraining matrix of the endosperm (cell walls, non-starch polysaccharide, and protein matrix) is introduced to a plant so that the enzyme is preferably in close physical proximity to starch granules in the plant. In this embodiment of the invention, transformed plants express one or more protease, glucanase, xylanase, thioredoxin/thioredoxin reductase, cellulase, phytase, lipase, beta glucosidase, esterase and the like, but not enzymes that have any starch degrading activity, so as to maintain the integrity of the starch granules. The expression of these enzymes in a plant part such as grain thus improves the process characteristics of grain. The processing enzyme may be mesophilic, thermophilic, or hyperthermophilic. In one example, <br><br> 57 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> grain from a transformed plant of the invention is heat dried, likely inactivating non-hyperthermophilic processing enzymes and improving seed integrity. Grain (or cracked grain) is steeped at low temperatures or high temperatures (where time is of the essence) with high or low moisture content or conditions (see Primary Cereal Processing, Gordon and Willm, eds., pp. 319-337 (1994), the disclosure of which is incorporated herein), with or without sulphur dioxide. Upon reaching eJevated temperatures, optionally at certain moisture conditions, the integrity of the endosperm matrix is disrupted by activating the enzymes, e.g., proteases, xylanases, phytase or glucanases which degrade the proteins and non-staich polysaccharides present in the endosperm leaving the starch granule therein intact and more readily recoverable from the resulting material. Further, the proteins and non-starch polysaccharides in the effluent are at least partially degraded and highly concentrated, and so may be used for improved animal feed, food, or as media components for the fermentation of microorganisms. The effluent is considered a corn-steep liquor with improved composition. <br><br> Thus, the invention provides a method to prepare starch granules. The method comprises treating grain, for example cracked grain, which comprises at least one non-starch processing enzyme under conditions which activate the at least one enzyme, yielding a mixture comprising starch granules and non-starch degradation products, e.g., digested endosperm matrix products. The non-starch processing enzyme may be mesophilic, thermophilic, or hyperthermophilic. <br><br> After activation of the enzyme, the starch granules are separated from the mixture. The grain is obtained from a transformed plant, the genome of which comprises (is augmented with) an expression cassette encoding the at least one processing enzyme. For example, the processing enzyme may be a protease, glucanase, xylanase, phytase, thiroredoxin/thioredoxin reductase, esterase cellulase, lipase, or a beta glucosidase. The processing enzyme may be hyperthermophilic. The grain can be treated under low or high moisture conditions, in the presence or absence of sulfur dioxide. Depending on the activity and expression level of the processing enzyme in the grain from the transgenic plant, the transgenic grain may be mixed with commodity grain prior to or during processing. Also provided are products obtained by the method such as starch, non-starch products and improved steepwater comprising at least one additional component. <br><br> b. Starch-Processing Methods <br><br> 58 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Transformed plants or plant parts of the present invention may comprise starch-degrading enzymes as disclosed herein that degrade starch granules to dextrins, other modified starches, or hexoses (e.g., a-amylase, pullulanase, a-glucosidase, glucoamylase, amylopullulanase) or convert glucose into fructose (e.g., glucose isomerase). Preferably, the starch-degrading enzyme is selected from a-amylase, a-glucosidase, glucoamylase, pullulanase, neopullulanase, amylopullulanase, glucose isomerase, and combinations thereof is used to transform the grain. Moreover, preferably, the enzyme is operably linked to a promoter and to a signal sequence that targets the enzyme to the starch granule, an amyloplast, the apoplast, or the endoplasmic reticulum. Most preferably, the enzyme is expressed in the endosperm, and particularly, corn endosperm, and localized to one or more cellular compartments, or within the starch granule itself. The preferred plant part is grain. Preferred plant parts are those from corn, wheat, barley, rye, oat, sugar cane, or rice. <br><br> In accordance with one starch-degrading method of the present invention, the transformed grain accumulates the starch-degrading enzyme in starch granules, is steeped at conventional temperatures of 50°C-60°C, and wet-milled as is known in the art. Preferably, the starch-degrading enzyme is hyperthermophilic. Because of sub-cellular targeting of the enzyme to the starch granule, or by virtue of the association of the enzyme with the starch granule, by contacting the enzyme and starch granule during the wet-milling process at the conventional temperatures, the processing enzyme is co-purified with the starch granules to obtain the starch granules/enzyme mixture. Subsequent to the recovery of the starch granules/enzyme mixture, the enzyme is then activated by providing favorable conditions for the activity of the enzyme. For example, the processing may be performed in various conditions of moisture and/or temperature to facilitate the partial (in order to make derivatized starches or dextrins) or complete hydrolysis of the starch into hexoses. Syrups containing high dextrose or fructose equivalents are obtained in this manner. This method effectively reduces the time, energy, and enzyme costs and the efficiency with which starch is converted to the corresponding hexose, and the efficiency of the production of products, like high sugar steepwater and higher dextrose equivalent syrups, are increased. <br><br> 59 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> In another embodiment, a plant, or a product of the plant such as a fruit or grain, or flour made from the grain that expresses the enzyme is treated to activate the enzyme and convert polysaccharides expressed and contained within the plant into sugars. Preferably, the enzyme is fused to a signal sequence that targets the enzyme to a starch granule, an amyloplast, the apoplast or to the endoplasmic reticulum as disclosed herein. The sugar produced may then be isolated or recovered from the plant or the product of the plant. In another embodiment, a processing enzyme able to convert polysaccharides into sugars is placed under the control of an inducible promoter according to methods known in the art and disclosed herein. The processing enzyme may be mesophilic, thermophilic or hyperthermophilic. The plant is grown to a desired stage and the promoter is induced causing expression of the enzyme and conversion of the polysaccharides, within the plant or product of the plant, to sugars. Preferably the enzyme is operably linked to a signal sequence that targets the enzyme to a starch granule, an amyloplast, an apoplast or to the endoplasmic reticulum. In another embodiment, a transformed plant is produced that expresses a processing enzyme able to convert starch into sugar. The enzyme is fused to a signal sequence that targets the enzyme to a starch granule within the plant. Starch is then isolated from the transformed plant that contains the enzyme expressed by the transformed plant. The enzyme contained in the isolated starch may then be activated to convert the starch into sugar. The enzyme may be mesophilic, thermophilic, or hyperthermophilic. Examples of hyperthermophilic enzymes able to convert starch to sugar are provided herein. The methods may be used with any plant which produces a polysaccharide and that can express an enzyme able to convert a polysaccharide into sugars or hydrolyzed starch product such as dextrin, maltooligosaccharide, glucose and/or mixtures thereof. <br><br> The invention provides a method to produce dextrins and altered starches from a plant, or a product from a plant, that has been transformed with a processing enzyme which hydrolyses certain covalent bonds of a polysaccharide to form a polysaccharide derivative. In one embodiment, a plant, or a product of the plant such as a fruit or grain, or flour made from the grain that expresses the enzyme is placed under conditions sufficient to activate the enzyme and convert polysaccharides contained within the plant into polysaccharides of reduced molecular weight. Preferably, the enzyme is fused to a signal sequence that targets the enzyme to a starch granule, an amyloplast, the apoplast or to the endoplasmic reticulum as disclosed herein. The <br><br> 60 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> dextrin or derivative starch produced may then be isolated or recovered from the plant or the product of the plant. In another embodiment, a processing enzyme able to convert polysaccharides into dextrins or altered starches is placed under the control of an inducible promoter according to methods known in the art and disclosed herein. The plant is grown to a desired stage and the promoter is induced causing expression of the enzyme and conversion of the polysaccharides, within the plant or product of the plant, to dextrins or altered starches. Preferably the enzyme is a-amylase, pullulanase, iso or neo-pullulanase and is operably linked to a signal sequence that targets the enzyme to a starch granule, an amyloplast, the apoplast or to the endoplasmic reticulum. In one embodiment, the enzyme is targeted to the apoplast or to the endoreticulum. In yet another embodiment, a transformed plant is produced that expresses an enzyme able to convert starch into dextrins or altered starches. The enzyme is fused to a signal sequence that targets the enzyme to a starch granule within the plant. Starch is then isolated from the transformed plant that contains the enzyme expressed by the transformed plant. The enzyme contained in the isolated starch may then be activated under conditions sufficient for activation to convert the starch into dextrins or altered starches. Examples of hyperthermophilic enzymes, for example, able to convert starch to hydrolyzed starch products are provided herein. The methods may be used with any plant which produces a polysaccharide and that can express an enzyme able to convert a polysaccharide into sugar. <br><br> In another embodiment, grain from transformed plants of the invention that accumulate starch-degrading enzymes that degrade linkages in starch granules to dextrins, modified starches or hexose (e.g., a-amylase, pullulanase, a-glucosidase, glucoamylase, amylopullulanase) is steeped under conditions favoring the activity of the starch degrading enzyme for various periods of time. The resulting mixture may contain high levels of the starch-derived product. The use of such grain: 1) eliminates the need to mill the grain, or otherwise process the grain to first obtain starch granules, 2) makes the starch more accessible to enzymes by virtue of placing the enzymes directly within the endosperm tissue of the grain, and 3) eliminates the need for microbially produced starch-hydrolyzing enzymes. Thus, the entire process of wet-milling prior to hexose recovery is eliminated by simply heating grain, preferably com grain, in the presence of water to allow the enzymes to act on the starch. <br><br> 61 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> This process can also be employed for the production of ethanol, high fructose syrups, hexose (glucose) containing fermentation media, or any other use of starch that does not require the refinement of grain components. <br><br> The invention further provides a method of preparing dextrin, maltooligosaccharides, and/or sugar involving treating a plant part comprising starch granules and at least one starch processing enzyme under conditions so as to activate the at least one enzyme thereby digesting starch granules to form an aqueous solution comprising sugars. The plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one processing enzyme. The aqueous solution comprising dextrins, maltooligosaccharides, and/or sugar is then collected. In one embodiment, the processing enzyme is a-amylase, a-glucosidase, pullulanase, glucoamylase, amylopullulanase, glucose isomerase, or any combination thereof. Preferably, the enzyme is hyperthermophilic. In another embodiment, the method further comprises isolating the dextrins, maltooligosaccharides, and/or sugar. <br><br> c. Improved Com Varieties <br><br> The invention also provides for the production of improved corn varieties (and varieties of other crops) that have normal levels of starch accumulation, and accumulate sufficient levels of arnylolytic enzyme(s) in their endosperm, or starch accumulating organ, such that upon activation of the enzyme contained therein, such as by boiling or heating the plant or a part thereof in the case of a hyperthermophilic enzyme, the enzyme(s) is activated and facilitates the rapid conversion of the starch into simple sugars. These simple sugars (primarily glucose) will provide sweetness to the treated corn. The resulting corn plant is an improved variety for dual use as a grain producing hybrid and as sweet com. Thus, the invention provides a method to produce hyper-sweet com, comprising treating transformed corn or a part thereof, the genome of which is augmented with and expresses in endosperm an expression cassette comprising a promoter operably linked to a first polynucleotide encoding at least one arnylolytic enzyme, conditions which activate the at least one enzyme so as to convert polysaccharides in the corn into sugar, yielding hypersweet corn. The promoter may be a constitutive promoter, a seed- <br><br> 62 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> specific promoter, or an endosperm-specific promoter which is linked to a polynucleotide sequence which encodes a processing enzyme such as a-amylase, e.g., one comprising SEQ ED NO: 13, 14, or 16. Preferably, the enzyme is hyperthermophilic. In one embodiment, the expression cassette further comprises a second polynucleotide which encodes a signal sequence operably linked to the enzyme encoded by the first polynucleotide. Exemplary signal sequences in this embodiment of the invention direct the enzyme to apoplast, the endoplasmic reticulum, a starch granule, or to an amyloplast. The com plant is grown such that the ears with kernels are formed and then the promoter is induced to cause the enzyme to be expressed and convert polysaccharide contained within the plant into sugar. <br><br> d. Self-Fermenting Plants <br><br> In another embodiment of the invention, plants, such as corn, rice, wheat, or sugar cane are engineered to accumulate large quantities of processing enzymes in their cell walls, e.g., xylanases, cellulases, hemicellulases, glucanases, pectinases, lipases, esterases, beta glucosidases, phytases, proteases and the like (non-starch polysaccharide degrading enzymes). Following the harvesting of the grain component (or sugar in the case of sugar cane), the stover, chaff, or bagasse is used as a source of the enzyme, which was targeted for expression and accumulation in the cell walls, and as a source of biomass. The stover (or other left-over tissue) is used as a feedstock in a process to recover fermentable sugars. The process of obtaining the fermentable sugars consists of activating the non-starch polysaccharide degrading enzyme. For example, activation may comprise heating the plant tissue in the presence of water for periods of time adequate for the hydrolysis of the non-starch polysaccharide into the resulting sugars. Thus, this self-processing stover produces the enzymes required for conversion of polysaccharides into monosaccharides, essentially at no incremental cost as they are a component of the feedstock. Further, the temperature-dependent enzymes have no detrimental effects on plant growth and development, and cell wall targeting, even targeting into polysaccharide microfibrils by virtue of cellulose/xylose binding domains fused to the protein, improves the accessibility of the substrate to the enzyme. <br><br> Thus, the invention also provides a method of using a transformed plant part comprising at least one non-starch polysaccharide processing enzyme in the cell wall of the cells of the plant <br><br> 63 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> part. The method comprises treating a transformed plant part comprising at least one non-starch polysaccharide processing enzyme under conditions which activate the at least one enzyme thereby digesting starch granules to form an aqueous solution comprising sugars, wherein the plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one non-starch polysaccharide processing enzyme; and collecting the aqueous solution comprising the sugars. The invention also includes a transformed plant or plant part comprising at least one non-starch polysaccharide processing enzyme present in the cell or cell wall of the cells of the plant or plant part. The plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one non-starch processing enzyme, e.g., a xylanase, cellulase, glucanase, pectinase, lipase, esterase, beta glucosidase, phytase, protease or any combination thereof. <br><br> 64 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> e. Aoueous Phase High In Protein and Sugar Content <br><br> In yet another embodiment, proteases and lipases are engineered to accumulate in seeds, e.g., soybean seeds. After activation of the protease or lipase, such as, for example, by heating, these enzymes in the seeds hydrolyze the lipid and storage proteins present in soybeans during processing. Soluble products comprising amino acids, which can be used as feed, food or fermentation media, and fatty acids-, can thus be obtained. Polysaccharides are typically found in the insoluble fraction of processed grain. However, by combining polysaccharide degrading enzyme expression and accumulation in seeds, proteins and polysaccharides can be hydrolyzed and are found in the aqueous phase. For example, zeins from com and storage protein and non-starch polysaccharides from soybean can be solubilized in this manner. Components of the aqueous and hydrophobic phases can be easily separated by extraction with organic solvent or supercritical carbon dioxide. Thus, what is provided is a method for producing an aqueous extract of grain that contains higher levels of protein, amino acids, sugars or saccharides. <br><br> f. Self-Processing Fermentation <br><br> The invention provides a method to produce ethanol, a fermented beverage, or other fermentation-derived product(s). The method involves obtaining a plant, or the product or part of a plant, or plant derivative such as grain flour, wherein a processing enzyme that converts polysaccharides into sugar is expressed. The plant, or product thereof, is treated such that sugar is produced by conversion of the polysaccharide as described above. The sugars and other components of the plant are then fermented to form ethanol or a fermented beverage, or other fermentation-derived products, according to methods known in the art. See, for example, U.S. <br><br> Patent No.: 4,929,452. Briefly the sugar produced by conversion of polysaccharides is incubated with yeast under conditions that promote conversion of the sugar into ethanol. A suitable yeast includes high alcohol-tolerant and high-sugar tolerant strains of yeast, such as, for example, the yeast, S. cerevisiae ATCC No. 20867. This strain was deposited with the American Type Culture <br><br> Collection, Rockville, MD, on Sept. 17, 1987 and assigned ATCC No. 20867. The fermented product or fermented beverage may then be distilled to isolate ethanol or a distilled beverage, or the fermentation product otherwise recovered. The plant used in this method may be any plant that contains a polysaccharide and is able to express an enzyme of the invention. Many such plants are disclosed herein. Preferably the plant is one that is grown commercially. More <br><br> 65 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> preferably the plant is one that is normally used to produce ethanol or fermented beverages, or fermented products, such as, for example, wheat, barley, com, rye, potato, grapes or rice. <br><br> The method comprises treating a plant part comprising at least one polysaccharide processing enzyme under conditions to activate the at least one enzyme thereby digesting polysaccharide in the plant part to form fermentable sugar. The polysaccharide processing enzyme may be mesophilic, thermophilic, or hyperthermophilic. The plant part is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one polysaccharide processing enzyme. Plant parts for this embodiment of the invention include, but are not limited to, grain, fruit, seed, stalk, wood, vegetable or root. Plants include but are not limited to oat, barley, wheat, berry, grape, rye, com, rice, potato, sugar beet, sugar cane, pineapple, grass and tree. The plant part may be combined with commodity grain or other commercially available substrates; the source of the substrate for processing may be a source other than the self-processing plant. The fermentable sugar is then incubated under conditions that promote the conversion of the fermentable sugar into ethanol, e.g., with yeast and/or other microbes. In an embodiment, the plant part is derived from com transformed with of-amylase, which has been found to reduce the amount of time and cost of fermentation. <br><br> It has been found that the amount of residual starch is reduced when transgenic com made in accordance with the present invention expressing a thermostable a-amylase, for example, is used in fermentation. This indicates that more starch is solubilized during fermentation. The reduced amount of residual starch results in the distillers' grains having higher protein content by weight and higher value. Moreover, the fermentation of the transgenic corn of the present invention allows the liquefaction process to be performed at a lower pH, resulting in savings in the cost of chemicals used to adjust the pH, at a higher temperature, e.g., greater than 85°C, preferably, greater than 90°C, more preferably, 95°C or higher, resulting in shorter liquefaction times and more complete solubilization of starch, and reduction of liquefaction times, all resulting in efficient fermentation reactions with higher yields of ethanol. <br><br> Moreover, it has been found that contacting conventional plant parts with even a small portion of the transgenic plant made in accordance with the present invention may reduce the fermentation time and costs associated therewith. As such, the present invention relates to the reduction in the fermentation time for plants comprising subjecting a transgenic plant part from a : 66 <br><br> WO 2005/096804 <br><br> PCT7TJS2004/007182 <br><br> plant comprising a polysaccharide processing enzyme that converts polysaccharides into sugar relative to the use of a plant part not comprising the polysaccharide processing enzyme. <br><br> g. Raw Starch Processing Enzvmes And Polynucleotides Encoding Them A polynucleotide encoding a mesophilic processing enzyme(s) is introduced into a plant or plant part. In an embodiment, the polynucleotide of the present invention is a maize-optimized polynucleotide such as provided in SEQ ID NOs: 48, 50, and 59, encoding a glucoamylase, such as provided in SEQ ID NOs: 47, and 49. In another embodiment, the polynucleotide of the present invention is a maize-optimized polynucleotide such as provided in SEQ ID NO: 52, encoding an alpha-amylase, such as provided in SEQ ED NO: 51. Moreover, fusion products of processing enzymes are further contemplated. In one embodiment, the polynucleotide of the present invention is a maize-optimized polynucleotide such as provided in SEQ ID NO: 46, encoding an alpha-amylase and glucoamylase fusion, such as provided in SEQ ID NO: 45. Combinations of processing enzymes are further envisioned by the present invention. For example, a combination of starch-processing enzymes and non-starch processing enzymes is contemplated herein. Such combinations of processing enzymes may be obtained by employing the use of multiple gene constructs encoding each of the enzymes. Alternatively, the individual transgenic plants stably transformed with the enzymes may be crossed by known methods to obtain a plant containing both enzymes. Another method includes the use of exogenous enzyme(s) with the transgenic plant. <br><br> The source of the starch-processing and non-starch processing enzymes may be isolated or derived from any source and the polynucleotides corresponding thereto may be ascertained by one having skill in the art. The a-amylase may be derived from Aspergillus (e.g., Aspergillus shirousami and Aspergillus niger), Rhizopus (eg., Rhizopus oryzae), and plants such as com, barley, and rice. The glucoamylase may be derived from Aspergillus (e.g., Aspergillus shirousami and Aspergillus niger), Rhizopus (eg., Rhizopus oryzae), and Thermoanaerobacter (eg., Thermoanaerobacter thermosaccharolyticum). <br><br> In another embodiment of the invention, the polynucleotide encodes a mesophilic starch-processing enzyme that is operably linked to a maize-optimized polynucleotide such as provided in SEQ ED NO: 54, encoding a raw starch binding domain, such as provided in SEQ ID NO: 53. <br><br> 67 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> In another embodiment, a tissue-specific promoter includes the endosperm-specific promoters such as the maize Y-zein promoter (exemplified by SEQ ID NO: 12) or the maize ADP-gpp promoter (exemplified by SEQ ID NO:l I, which includes a 5' untranslated and an intron sequence) or a Q protein promoter (exemplified by SEQ ID NO: 98) or a rice glutelin promoter (exemplified by SEQ ED NO: 67). Thus, the present invention includes an isolated polynucleotide comprising a promoter comprising SEQ ID NO: 11, 12, 67, or 98, a polynucleotide which hybridizes to the complement thereof under low stringency hybridization conditions, or a fragment thereof which has promoter activity, e.g., at least 10%, and preferably at least 50%, the activity of a promoter having SEQ ID NO: 11, 12, 67 or 98. <br><br> In one embodiment, the product from a starch-hydrolysis gene, such as a-amylase, glucoamylase, or a-amylase/glucoamylase fusion may be targeted to a particular organelle or location such as the endoplasmic reticulum or apoplast, rather than to the cytoplasm. This is exemplified by the use of the maize y-zein N-terminal signal sequence (SEQ ID NO: 17), which confers apoplast-specific targeting of proteins, and the use of the y-zein N-terminal signal sequence (SEQ ID NO: 17) which is operably linked to the processing enzyme that is operably linked to the sequence SEKDEL for retention in the endoplasmic reticulum. Directing the protein or enzyme to a specific compartment will allow the enzyme to be localized in a manner that it will not come into contact with the substrate. In this manner the enzymatic action of the enzyme will not occur until the enzyme contacts its substrate. The enzyme can be contacted with its substrate by the process of milling (physical disruption of the cell integrity) and hydrating. For example, a mesophilic starch-hydrolyzing enzyme can be targeted to the apoplast or to the endoplasmic reticulum and will therefore not come into contact with starch granules in the amyloplast. Milling of the grain will disrupt the integrity of the grain and the starch hydrolyzing enzyme will then contact the starch granules. In this manner the potential negative effects of co-localization of an enzyme and its substrate can be circumvented. <br><br> h. Food Products Without Added Sweetener <br><br> Also provided is a method to produce a sweetened farinaceous food product without adding additional sweetener. Examples of farinaceous products include, but are not limited to, breakfast food, ready to eat food, baked food, pasta and cereal products such as <br><br> 68 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> breakfast cereal. The method comprises treating a plant part comprising at least one starch processing enzyme under conditions which activate the starch processing enzyme, thereby processing starch granules in the plant part to sugars so as to form a sweetened product, e.g., relative to the product produced by processing starch granules from a plant part which does not comprise the hyperthermophilic enzyme. Preferably, the starch processing enzyme is. hyperthermophilic and is activated by heating, such as by baking, boiling, heating, steaming, electrical discharge, or any combination thereof. The plant part is obtained from a transformed plant, for instance from transformed soybean, rye, oat, barley, wheat, corn, rice or sugar cane, the genome of which is augmented with an expression cassette encoding the at least one hyperthermophilic starch processing enzyme, e.g., a-amylase, a-glucosidase, glucoamylase, pullulanase, glucose isomerase, or any combination thereof. The sweetened product is then processed into a farinaceous food product. The invention also provides a farinaceous food product, e.g., a cereal food, a breakfast food, a ready to eat food, or a baked food, produced by the method. The farinaceous food product may be formed from the sweetened product and water, and may contain malt, flavorings, vitamins, minerals, coloring agents or any combination thereof. <br><br> The enzyme may be activated to convert polysaccharides contained within the plant material into sugar prior to inclusion of the plant material into the cereal product or during the processing of the cereal product. Accordingly, polysaccharides contained within the plant material may be converted into sugar by activating the material, such as by heating in the case of a hyperthermophilic enzyme, prior to inclusion in the farinaceous product. The plant material containing sugar produced by conversion of the polysaccharides is then added to the product to produce a sweetened product. Alternatively, the polysaccharides may be converted into sugars by the enzyme during the processing of the farinaceous product. Examples of processes used to make cereal products are well known in the art and include heating, baking, boiling and the like as described in U.S. Patent Nos.: 6,183,788; 6,159,530; 6,149,965; 4,988,521 and 5,368,870. <br><br> Briefly, dough may be prepared by blending various dry ingredients together with water and cooking to gelatinize the starchy components and to develop a cooked flavor. The cooked material can then be mechanically worked to form a cooked dough, such as cereal dough. The <br><br> 69 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> dry ingredients may include various additives such as sugars, starch, salt, vitamins, minerals, colorings, flavorings, salt and the like. In addition to water, various liquid ingredients such as com (maize) or malt syrup can be added. The farinaceous material may include cereal grains, cut grains, grits or flours from wheat, rice, corn, oats, barley, rye, or other cereal grains and mixtures thereof from that a transformed plant of the invention. The dough may then be processed into a desired shape through a process such as extrusion or stamping and further cooked using means such as a James cooker, an oven or an electrical discharge device. <br><br> Further provided is a method to sweeten a starch containing product without adding sweetener. The method comprises treating starch comprising at least one starch processing enzyme conditions to activate the at least one enzyme thereby digesting the starch to form a sugar thereby forming a treated (sweetened) starch, e.g., relative to the product produced by treating starch which does not comprise the hyperthermophilic enzyme. The starch of the invention is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one processing enzyme. Enzymes include a-amylase, a-glucosidase, glucoamylase, pullulanase, glucose isomerase, or any combination thereof. The enzyme may be hyperthermophilic and activated with heat. Preferred transformed plants include corn, soybean, rye, oat, barley, wheat, rice and sugar cane. The treated starch is then added to a product to produce a sweetened starch containing product, e.g., a farinaceous food product. Also provided is a sweetened starch containing product produced by the method. <br><br> The invention further provides a method to sweeten a polysaccharide containing fruit or vegetable comprising: treating a fruit or vegetable comprising at least one polysaccharide processing enzyme under conditions which activate the at least one enzyme, thereby processing the polysaccharide in the fruit or vegetable to form sugar, yielding a sweetened fruit or vegetable, e.g., relative to a fruit or vegetable from a plant which does not comprise the polysaccharide processing enzyme. The fruit or vegetable of the invention is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one polysaccharide processing enzyme. <br><br> Fruits and vegetables include potato, tomato, banana, squash, pea, and bean. <br><br> Enzymes include a-amylase, a-glucosidase, glucoamylase, pullulanase, glucose <br><br> 70 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> isomerase, or any combination thereof. The enzyme may be hyperthermophilic. i. Sweetening a polysaccharide containing plant or plant product The method involves obtaining a plant that expresses a polysaccharide processing enzyme which converts a polysaccharide into a sugar as described above. Accordingly the enzyme is expressed in the plant and in the products of the plant, such as in a fruit or. vegetable. In one embodiment, the enzyme is placed under the control of an inducible promoter such that expression of the enzyme may be induced by an external stimulus. Such inducible promoters and constructs are well known in the art and are described herein. Expression of the enzyme within the plant or product thereof causes polysaccharide contained within the plant or product thereof to be converted into sugar and to sweeten the plant or product thereof. In another embodiment, the polysaccharide processing enzyme is constitutively expressed. Thus, the plant or product thereof may be activated under conditions sufficient to activate the enzyme to convert the polysaccharides into sugar through the action of the enzyme to sweeten the plant or product thereof. As a result, this self-processing of the polysaccharide in the fruit or vegetable to form sugar yields a sweetened fruit or vegetable, e.g., relative to a fruit or vegetable from a plant which does not comprise the polysaccharide processing enzyme. The fruit or vegetable of the invention is obtained from a transformed plant, the genome of which is augmented with an expression cassette encoding the at least one polysaccharide processing enzyme. Fruits and vegetables include potato, tomato, banana, squash, pea, and bean. Enzymes include a-amylase, a- glucosidase, glucoamylase, pullulanase, glucose isomerase, or any combination thereof. The polysaccharide processing enzyme may be hyperthermophilic. <br><br> j. Isolation of starch from transformed grain that contains a enzyme which disrupts the endosperm matrix The invention provides a method to isolate starch from a transformed grain wherein an enzyme is expressed that disrupts the endosperm matrix. The method involves obtaining a plant that expresses an enzyme which disrupts the endosperm matrix by modification of, for example, cell walls, non-starch polysaccharides and/or proteins. Examples of such enzymes include, but are not limited to, proteases, glucanases, thioredoxin, thioredoxin reductase, phytases, lipases, cellulases, beta glucosidases, xylanases and esterases. Such enzymes do not include any enzyme <br><br> 71 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> that exhibits starch-degrading activity so as to maintain the integrity of the starch granules. The enzyme may be fused to a signal sequence that targets the enzyme to the starch granule. In one embodiment the grain is heat dried to activate the enzyme and inactivate the endogenous enzymes contained within the grain. The heat treatment causes activation of the enzyme, which acts to disrupt the endosperm matrix which is then easily separated from the starch granules. In another embodiment, the grain is steeped at low or high temperature, with high or low moisture content, with or without sulfur dioxide. The grain is then heat treated to disrupt the endosperm matrix and allow for easy separation of the starch granules. In another embodiment, proper temperature and moisture conditions are created to allow proteases to enter into the starch granules and degrade proteins contained within the granules. Such treatment would produce starch granules with high yield and little contaminating protein. <br><br> k. Svrup having a high sugar equivalent and use of the syrup to produce ethanol or a fermented beverage <br><br> The method involves obtaining a plant that expresses a polysaccharide processing enzyme which converts a polysaccharide into a sugar as described above. The plant, or product thereof, is steeped in an aqueous stream under conditions where the expressed enzyme converts polysaccharide contained within the plant, or product thereof, into dextrin, maltooligosaccharide, and/or sugar. The aqueous stream containing the dextrin, maltooligosaccharide, and/or sugar produced through conversion of the polysaccharide is then separated to produce a syrup having a high sugar equivalent. The method may or may not include an additional step of wet-milling the plant or product thereof to obtain starch granules. Examples of enzymes that may be used within the method include, but are not limited to, a-amylase, glucoamylase, pullulanase and a-glucosidase. The enzyme may be hyperthermophilic. Sugars produced according to the method include, but are not limited to, hexose, glucose and fructose. Examples of plants that may be used with the method include, but are not limited to, com, wheat or barley. Examples of products of a plant that may be used include, but are not limited to, fruit, grain and vegetables. In one embodiment, the polysaccharide processing enzyme is placed under the control of an inducible promoter. Accordingly, prior to or during the steeping process, the promoter is induced to cause expression of the enzyme, which then provides for the conversion of <br><br> 72 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> polysaccharide into sugar. Examples of inducible promoters and constructs containing them are well known in the art and are provided herein. Thus, where the polysaccharide processing is hyperthermophilic, the steeping is performed at a high temperature to activate the hyperthermophilic enzyme and inactivate endogenous enzymes found within the plant or product thereof. In another embodiment, a hyperthermophilic enzyme able to convert polysaccharide into sugar is constitutively expressed. This enzyme may or may not be targeted to a compartment within the plant through use of a signal sequence. The plant, or product thereof, is steeped under high temperature conditions to cause the conversion of polysaccharides contained within the plant into sugar. <br><br> Also provided is a method to produce ethanol or a fermented beverage from syrup having a high sugar equivalent. The method involves incubating the syrup with yeast under conditions that allow conversion of sugar contained within the syrup into ethanol or a fermented beverage. Examples of such fermented beverages include, but are not limited to, beer and wine. Fermentation conditions are well known in the art and are described in U.S. Patent No.: <br><br> 4,929,452 and herein. Preferably the yeast is a high alcohol-tolerant and high-sugar tolerant strain of yeast such as S. cerevisiae ATCC No. 20867. The fermented product or fermented beverage may be distilled to isolate ethanol or a distilled beverage. <br><br> 1. Accumulation of hyperthermophilic enzyme in the cell wall of a plant <br><br> The invention provides a method to accumulate a hyperthermophilic enzyme in the cell wall of a plant. The method involves expressing within a plant a hyperthermophilic enzyme that is fused to a cell wall targeting signal such that the targeted enzyme accumulates in the cell wall. Preferably the enzyme is able to convert polysaccharides into monosaccharides. Examples of targeting sequences include, but are not limited to, a cellulose or xylose binding domain. Examples of hyperthermophilic enzymes include those listed in SEQ ID NO: 1, 3, 5, 10, 13, 14, 15 or 16. Plant material containing cell walls may be added as a source of desired enzymes in a process to recover sugars from the feedstock or as a source of enzymes for the conversion of polysaccharides originating from other sources to monosaccharides. Additionally, the cell walls may serve as a source from which enzymes may be purified. Methods to purify enzymes are well known in the art and include, but are not limited to, gel filtration, ion-exchange chromatography, chromatofocusing, isoelectric focusing, affinity chromatography, FPLC, <br><br> 73 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> HPLC, salt precipitation, dialysis, and the like. Accordingly, the invention also provides purified enzymes isolated from the cell walls of plants. <br><br> m. Method of preparing and isolating processing enzymes <br><br> In accordance with the present invention, recombinantly-produced processing enzymes of the present invention may be prepared by transforming plant tissue or plant cell comprising the processing enzyme of the present invention capable of being activated in the plant, selected for the transformed plant tissue or cell, growing the transformed plant tissue or cell into a transformed plant, and isolating the processing enzyme from the transformed plant or part thereof. The recombinantly-produced enzyme may be an a-amylase, glucoamylase, glucose isomerase, a-glucosidase, pullulinase, xylanase, protease, glucanase, beta glucosidase, esterase, lipase, or phytase. The enzyme may be encoded by the polynucleotide selected from any of SEQ ID NO: 2,4, 6, 9,19, 21, 25, 37, 39,41,43, 46, 48, 50, 52, 59, 61,63, 65, 79, 81, 83,85, 87, 89, 91,93, 94, 95, 96,97, or 99. <br><br> The invention will be further described by the following examples, which are not intended to limit the scope of the invention in any manner. <br><br> Examples <br><br> Example 1 <br><br> Construction of maize-optimized genes for hyperthermophilic starch-processing/isomerization enzymes <br><br> The enzymes, a-amylase, pullulanase, a-glucosidase, and glucose isomerase, involved in starch degradation or glucose isomerization were selected for their desired activity profiles. <br><br> These include, for example, minimal activity at ambient temperature, high temperature activity/stability, and activity at low pH. The corresponding genes were then designed by using maize preferred codons as described in U.S. Patent No. 5,625,136 and synthesized by Integrated DNA Technologies, Inc. (Coralville, IA), <br><br> The 797GL3 a-amylase, having the amino acid sequence SEQ ID NO: 1, was selected for its hyperthermophilic activity. This enzyme's nucleic acid sequence was deduced and maize- <br><br> 74 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> optimized as represented in SEQ ED NO:2. Similarly, the 6gp3 pullulanase was selected having the amino acid sequence set forth in SEQ ID NO:3. The nucleic acid sequence for the 6gp3 pullulanase was deduced and maize-optimized as represented in SEQ ID NO:4. <br><br> The amino acid sequence for malA a-glucosidase from Sulfolobus solfataricus was obtained from the literature, J. Bact. 177:482-485 (1995); J. Bact. 180:1287-1295 (1998). Based on the published amino acid sequence of the protein (SEQ ID NO:5), the maize-optimized synthetic gene (SEQ ID NO:6) encoding the malA a-glucosidase was designed. <br><br> Several glucose isomerase enzymes were selected. The amino acid sequence (SEQ ID NO: 18) for glucose isomerase derived from Thermotoga maritima was predicted based on the published DNA sequence having Accession No. NC_000853 and a maize-optimized synthetic gene was designed (SEQ ID NO: 19). Similarly the amino acid sequence (SEQ ID N0:20) for glucose isomerase derived from Thermotoga neapolitana was predicted based on the published DNA sequence from Appl. Envir. Microbiol. 61(5): 1867-1875 (1995), Accession No. L38994. A maize-optimized synthetic gene encoding the Thermotoga neapolitana glucose isomerase was designed (SEQ ID NO:21). <br><br> Example 2 <br><br> Expression of fusion of 797GL3 a-amvlase and starch encapsulating region in E. coli A construct encoding hyperthermophilic 797GL3 a-amylase fused to the starch encapsulating region (SER) from maize granule-bound starch synthase (waxy) was introduced and expressed in E. coli. The maize granule-bound starch synthase cDNA (SEQ ID NO: 7) encoding the amino acid sequence (SEQ ID NO:8)(Klosgen RB, et al. 1986) was cloned as a source of a starch binding domain, or starch encapsulating region (SER). The full-length cDNA was amplified by RT-PCR from RNA prepared from maize seed using primers SV57 (5'AGCGAATTCATGGCGGCTCTGGCCACGT 3') (SEQ ID NO: 22) and SV58 (5'AGCTAAGCTTCAGGGCGCGGCCACGTTCT 3') (SEQ ID NO: 23) designed from GenBank Accession No. X03935. The complete cDNA was cloned into pBluescript as an EcoRI/Hindlll fragment and the plasmid designated pNOV4Q22. <br><br> 75 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> The C-terminal portion (encoded by bp 919-1818) of the waxy cDNA, including the starch-binding domain, was amplified from pNC)V4022 and fused in-frame to the 3' end of the full-length maize-optimized 797GL3 gene (SEQ ED NO:2). The fused gene product, 797GL3/Waxy, having the nucleic acid SEQ ID NO:9 and encoding the amino acid sequence, SEQ ID N0:10, was cloned as an Ncol/Xbal fragment into pET28b (NOVAGEN, Madison, WI) that was cut with Ncol/Nhel. The 797GL3 gene alone was also cloned into the pET28b vector as an Ncol/Xbal fragment. <br><br> The pET28/797GL3 and the pET28/797GL3/Waxy vectors were transformed into BL21/DE3 E. coli cells (NOVAGEN) and grown and induced according to the manufacturer's instruction. Analysis by PAGE/Coomassie staining revealed an induced protein in both extracts corresponding to the predicted sizes of the fused and unfused amylase, respectively. <br><br> Total cell extracts were analyzed for hyperthermophilic amylase activity as follows: 5 mg of starch was suspended in 20 (al of water then diluted with 25 (al of ethanol. The standard amylase positive control or the sample to be tested for amylase activity was added to the mixture and water was added to a final reaction volume of 500 fxl. The reaction was carried out at 80°C for 15-45 minutes. The reaction was then cooled down to room temperature, and 500 |al of o-dianisidine and glucose oxidase/peroxidase mixture (Sigma) was added. The mixture was incubated at 37°C for 30 minutes. 500 (al of 12 N sulfuric acid was added to stop the reaction. Absorbance at 540 nm was measured to quantitate the amount of glucose released by the amylase/sample. Assay of both the fused and unfused amylase extracts gave similar levels of hyperthermophilic amylase activity, whereas control extracts were negative. This indicated that the 797GL3 amylase was still active (at high temperatures) when fused to the C-terminal portion of the waxy protein. <br><br> Example 3 <br><br> Isolation of promoter fragments for endosperm-specific expression in maize. <br><br> The promoter and 5' noncoding region I (including the first intron) from the large subunit of Zea mays ADP-gpp (ADP-glucose pyrophosphorylase) was amplified as a 1515 base pair fragment (SEQ ID NO:l 1) from maize genomic DNA using primers designed from Genbank <br><br> 76 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> accession M81603. The ADP-gpp promoter has been shown to be endosperm-specific (Shaw and Hannah, 1992). <br><br> The promoter from the Zea mays y-zein gene was amplified as a 673 bp fragment (SEQ ID NO: 12) from plasmid pGZ27.3 (obtained from Dr. Brian Larkins). The y-zein promoter has been shown to be endosperm-specific (Torrent et al. 1997). <br><br> Example 4 <br><br> ' Construction of transformation vectors for the 797GL3 hyperthermophilic a-amvlase Expression cassettes were constructed to express the 797GL3 hyperthermophilic amylase in maize endosperm with various targeting signals as follows: <br><br> pNOV6200 (SEQ ID NO: 13) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic 797GL3 amylase as described above in Example 1 for targeting to the endoplasmic reticulum and secretion into the apoplast (Torrent et al. 1997). The fusion was cloned behind the maize ADP-gpp promoter for expression specifically in the endosperm. <br><br> pNOV6201 (SEQ ED NO: 14) comprises the y-zein N-terminal signal sequence fused to the synthetic 797GL3 amylase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum (ER) (Munro and Pelham, 1987). The fusion was cloned behind the maize ADP-gpp promoter for expression specifically in the endosperm. <br><br> pNOV7013 comprises the y-zein N-terminal signal sequence fused to the synthetic 797GL3 amylase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum (ER), PNOV7013 is the same as pNOV6201, except that the the maize y- zein promoter (SEQ ID NO: 12) was used instead of the maize ADP-spp promoter in order to express the fusion in the endosperm. <br><br> pNOV4029 (SEQ ID NO: 15) comprises the waxy amyloplast targeting peptide (KJosgen et al., 1986) fused to the synthetic 797GL3 amylase for targeting to the amyloplast. The fusion was cloned behind the maize ADP-gpp promoter for expression specifically in the endosperm. <br><br> 77 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> pNOV4031 (SEQ ID NO: 16) comprises the waxy amyloplast targeting peptide fused to the synthetic 797GL3/waxy fusion protein for targeting to starch granules. The fusion was cloned behind the maize ADP-gpp promoter for expression specifically in the endosperm. <br><br> Additional constructs were made with these fusions cloned behind the maize y-zein promoter to obtain higher levels of enzyme expression. All expression cassettes were moved into a binary vector for transformation into maize via Agrobacterium infection. The binary vector contained the phosphomannose isomerase (PMI) gene which allows for selection of transgenic cells with mannose. Transformed maize plants were either self-pollinated or outcrossed and seed was collected for analysis. <br><br> Additional constructs were made with the targeting signals described above fused to either 6gp3 pullulanase or to 340gl2 a-glucosidase in precisely the same mariner as described for the a-amylase. These fusions were cloned behind the maize ADP-gpp promoter and/or the y zein promoter and transformed into maize as described above. Transformed maize plants were either self-pollinated or outcrossed and seed was collected for analysis. <br><br> Combinations of the enzymes can be produced either by crossing plants expressing the individual enzymes or by cloning several expression cassettes into the same binary vector to enable cotransformation. <br><br> Example 5 <br><br> Construction of plant transformation vectors for the 6GP3 thermophillic pullulanase An expression cassette was constructed to express the 6GP3 thermophillic pullanase in the endoplasmic reticulum of maize endosperm as follows: <br><br> pNOV7(M)5 (SEQ ID NOs:24 and 25) comprises the maize y-zein N-terminal signal sequence fused to the synthetic 6GP3 pullulanase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the ER. The amino acid peptide SEKDEL was fused to the C-terminal end of the enzymes using PCR with primers designed to amplify the synthetic gene and simultaneously add the 6 amino acids at the C-terminal end of the protein. The fusion was cloned behind the maize y-zein promoter for expresson specifically in the endosperm. <br><br> f plant transfon 78 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> hyperthermophilic g-glucosidase <br><br> Expression cassettes were constructed to express the Sulfolobus solfataricus malA hyperthermophilic a-glucosidase in maize endosperm with various targeting signals as follows: <br><br> pNOV4831 (SEQ ID NO:26) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic malA a-glucosidase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum (ER) (Munro and Pelham, 1987). The fusion was cloned behind the maize y-zein promoter for expresson specifically in the endosperm. <br><br> pNOV4839 (SEQ ID NO:27) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic malA a-glucosidase for targeting to the endoplasmic reticulum and secretion into the apoplast (Torrent et al. 1997). The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4837 comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic malA a-glucosidase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the ER. The fusion was cloned behind the maize ADPgpp promoter for expression specifically in the endosperm. The amino acid sequence for this clone is identical to that of pNOV4831 (SEQ ID NO:26). <br><br> 79 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Example 7 <br><br> Construction of plant transformation vectors for the hyperthermophillic Thermotoga maritima and Thermotoea neapolitana glucose isomerases <br><br> Expression cassettes were constructed to express the Thermotoga maritima and Thermotoga neapolitana hyperthermophilic glucose isomerases in maize endosperm with various targeting signals as follows: <br><br> pNOV4832 (SEQ ED NO:28) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic Thermotoga maritima glucose isomerase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the ER. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4833 (SEQ ID NO:29) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic Thermotoga neapolitana glucose isomerase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the ER. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4840 (SEQ ID N0:30) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ED NO: 17) fused to the synthetic Thermotoga neapolitana glucose isomerase for targeting to the endoplasmic reticulum and secretion into the apoplast (Torrent et al. 1997). The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4838 comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic Thermotoga neapolitana glucose isomerase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the ER. The fusion was cloned behind the maize ADPgpp promoter for expression specifically in the endosperm. The amino acid sequence for this clone is identical to that of pNOV4833 (SEQ ED NO:29). <br><br> 80 <br><br> WO 2005/096804 <br><br> PC T/US2004/007182 <br><br> Example 8 <br><br> Construction of plant transformation vectors for the expression of the hvperthermophillic glucanase EeLA pNC&gt;V4800 (SEQ ID NO:58) comprises the barley alpha amylase AMY32b signal sequence (MGKNGNLCCFSLLLLLLAGLASGHQ)(SEQ ED NO:31) fused with the EglA mature protein sequence for localization to the apoplast. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> Example 9 <br><br> Construction of plant transformation vectors for the expression of multiple hvperthermophillic enzymes pNOV4841 comprises a double gene construct of a 797GL3 a-amylase fusion and a <br><br> 6GP3 pullulanase fusion. Both 797GL3 fusion (SEQ ED NO:33) and 6GP3 fusion (SEQ ID <br><br> NO:34) possessed the maize y-zein N-terminal signal sequence and SEKDEL sequence for targeting to and retention in the ER. Each fusion was cloned behind a separate maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4842 comprises a double gene construct of a 797GL3 a-amylase fusion and a malA a-glucosidase fusion. Both the 797GL3 fusion polypeptide (SEQ ID NO:35) and maLA a- <br><br> glucosidase fusion polypeptide (SEQ ID NO:36) possess the maize y-zein N-terminal signal sequence and SEKDEL sequence for targeting to and retention in the ER. Each fusion was cloned behind a separate maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4843 comprises a double gene construct of a 797GL3 a-amylase fusion and a malA a-glucosidase fusion. Both the 797GL3 fusion and malA a-glucosidase fusion possess the maize y-zein N-terminal signal sequence and SEKDEL sequence for targeting to and retention in the ER. The 797GL3 fusion was cloned behind the maize y-zein promoter and the malA fusion was cloned behind the maize ADPgpp promoter for expression specifically in the endosperm. <br><br> The amino acid sequences of the 797GL3 fusion and the maLA fusion are identical to those of pNOV4842 (SEQ ID Nos: 35 and 36, respectively). <br><br> pNOV4844 comprises a triple gene construct of a 797GL3 a-amylase fusion, a 6GP3 <br><br> pullulanase fusion, and a malA a-giucosidase fusion. 797GL3, malA, and 6GP3 all possess the <br><br> 81 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> maize y-zein N-terminal signal sequence and SEKDEL sequence for targeting to and retention in the ER. The 797GL3 and malA fusions were cloned behind 2 separate maize y-zein promoters, and the 6GP3 fusion was cloned behind the maize ADPgpp promoter for expression specifically in the endosperm. The amino acid sequences for the 797GL3 and malA fusions are identical to those of pNOV4842 (SEQ ID Nos: 35 and 36, respectively). The amino acid sequence for the 6GP3 fusion is identical to that of the 6GP3 fusion in pNOV4841 (SEQ ID NO:34). <br><br> All expression cassettes set forth in this Example as well as in the Examples that follow were moved into the binary vector pNOV2117 for transformation into maize via Agrobacterium infection. pNOV2117 contains the phosphomannose isomerase (PMI) gene allowing for selection of transgenic cells with mannose. pNOV2117 is a binary vector with both the pVSl and ColEl origins of replication. This vector contains the constitutive VirG gene from pAD1289 (Hansen, G., et al., PNAS USA 91:7603-7607 (1994), incorporated by reference herein) and a spectinomycin resistance gene from Tn7. Cloned into the polylinker between the right and left borders are the maize ubiquitin promoter, PMI coding region and nopaline synthase terminator of pNOVl 17 (Negrotto, D., et al., Plant Cell Reports 19:798-803 (2000), incorporated by reference herein). Transformed maize plants will either be self-pollinated or outcrossed and seed collected for analysis. Combinations of the different enzymes can be produced either by crossing plants expressing the individual enzymes or by transforming a plant with one of the multi-gene cassettes. <br><br> Example 10 <br><br> Construction of bacterial and Pichia expression vectors Expression cassettes were constructed to express the hyperthermophilic a-glucosidase and glucose isomerases in either Pichia or bacteria as follows: <br><br> pNOV4829 (SEQ ID NOS: 37 and 38) comprises a synthetic Thermotoga maritima glucose isomerase fusion with ER retention signal in the bacterial expression vector pET29a. The glucose isomerase fusion gene was cloned into the Ncol and SacI sites of pET29a, which results in the addition of an N-terminal S-tag for protein purification. <br><br> pNOV4830 (SEQ ID NOS: 39 and 40) comprises a synthetic Thermotoga neapolitana glucose isomerase fusion with ER retention signal in the bacterial expression vector pET29a. <br><br> 82 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> The glucose isomerase fusion gene was cloned into the Ncol and SacI sites of pET29a, which results in the addition of an N-terminal S-tag for protein purification. <br><br> pNOV4835 (SEQ ED NO: 41 and 42) comprises the synthetic Thermotoga maritima glucose isomerase gene cloned into the BamHI and EcoRI sites of the bacterial expression vector pET28C. This resulted in the fusion of a His-tag (for protein purification) to the N-terminal end of the glucose isomerase. <br><br> pNOV4836 (SEQ ED NO: 43 AND 44) comprises the synthetic Thermotoga neapolitana glucose isomerase gene cloned into the BamHI and EcoRI sites of the bacterial expression vector pET28C. This resulted in the fusion of a His-tag (for protein purification) to the N-terminal end of the glucose isomerase. <br><br> Example 11 <br><br> Transformation of immature maize embryos was performed essentially as described in Negrotto et al., Plant Cell Reports 19: 798-803. For this example, all media constituents are as described in Negrotto et al., supra. However, various media constituents described in the literature may be substituted. <br><br> A. Transformation plasmids and selectable marker The genes used for transformation were cloned into a vector suitable for maize transformation. Vectors used in this example contained the phosphomannose isomerase (PMI) gene for selection of transgenic lines (Negrotto et al. (2000) Plant Cell Reports 19: 798-803). B. Preparation of Agrobacterium tumefaciens <br><br> Agrobacterium strain LBA4404 (pSBl) containing the plant transformation plasmid was grown on YEP (yeast extract (5 g/L), peptone (lOg/L), NaCI (5g/L),l 5g/l agar, pH 6.8) solid medium for 2 - 4 days at 28°C. Approximately 0.8X 109 Agrobacterium were suspended in LS-inf media supplemented with 100 jiM As (Negrotto et al.,(2000) Plant Cell Rep 19: 798-803). Bacteria were pre-induced in this medium for 30-60 minutes. <br><br> 83 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> C. Inoculation <br><br> Immature embryos from A188 or other suitable genotype were excised from 8-12 day old ears into liquid LS-inf + 100 |_iM As. Embryos were rinsed once with fresh infection medium. Agrobacterium solution was then added and embryos were vortexed for 30 seconds and allowed to settle with the bacteria for 5 minutes. The embryos were then transferred scutellurii side up to LSAs medium and cultured in the dark for two to three days. Subsequently, between 20 and 25 embryos per petri plate were transferred to LSDc medium supplemented with cefotaxime (250 mg/I) and silver nitrate (1.6 mg/1) and cultured in the dark for 28°C for 10 days. <br><br> D. Selection of transformed cells and regeneration of transformed plants Immature embryos producing embryogenic callus were transferred to LSD1M0.5S medium. The cultures were selected on this medium for 6 weeks with a subculture step at 3 weeks. Surviving calli were transferred to Regl medium supplemented with mannose. Following culturing in the light (16 hour light/ 8 hour dark regiment), green tissues were then transferred to Reg2 medium without growth regulators and incubated for 1-2 weeks. Plantlets are transferred to Magenta GA-7 boxes (Magenta Coip, Chicago 111.) containing Reg3 medium and grown in-the light. <br><br> After 2-3 weeks, plants were tested for the presence of the PMI genes and other genes of interest by PCR. Positive plants from the PCR assay were transferred to the greenhouse. <br><br> Example 12 <br><br> Analysis of T1 seed from maize plants expressing the «-amvlase targeted to apoplast or to the ER T1 seed from self-pollinated maize plants transformed with either pNOV6200 or pNOV6201 as described in Example 4 were obtained. Starch accumulation in these kernels appeared to be normal, based on visual inspection and on normal staining for starch with an iodine solution prior to any exposure to high temperature. Immature kernels were dissected and purified endosperms were placed individually in microfuge tubes and immersed in 200 |al of 50 mM NaP04 buffer. The tubes were placed in an 85°C water bath for 20 minutes, then cooled on ice. Twenty microliters of a 1% iodine solution was added to each tube and mixed. Approximately 25% of the segregating kernels stained normally for starch. The remaining 75% failed to stain, indicating that the starch had been degraded into low molecular weight sugars that <br><br> 84 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> do not stain with iodine. It was found that the T1 kernels of pNOV6200 and pNC)V6202 were self-hydrolyzing the corn starch. There was no detectable reduction in starch following incubation at 37°C. <br><br> Expression of the amylase was further analyzed by isolation of the hyperthermophilic protein fraction from the endosperm followed by PAGE/Coomassie staining. A segregating protein band of the appropriate molecular weight (50 kD) was observed. These samples are subjected to an a-amylase assay using commercially available dyed amylose (AMYLAZYME, from Megazyme, Ireland). High levels of hyperthermophilic amylase activity correlated with the presence of the 50 kD protein. <br><br> It was further found that starch in kernels from a majority of transgenic maize, which express hyperthermophilic a-amylase, targeted to the amyloplast, is sufficiently active at ambient temperature to hydrolyze most of the starch if the enzyme is allowed to be in direct contact with a starch granule. Of the eighty lines having hyperthermophilic a -amylase targeted to the amyloplast, four lines were identified that accumulate starch in the kernels. Three of these lines were analyzed for thermostable a-amylase activity using a colorimetric amylazyme assay (Megazyme). The amylase enzyme assay indicated that these three lines had low levels of thermostable amylase activity. When purified starch from these three lines was treated with appropriate conditions of moisture and heat, the starch was hydrolyzed indicating the presence of adequate levels of a -amylase to facilitate the auto-hydrolysis of the starch prepared from these lines. <br><br> T1 seed from multiple independent lines of both pNOV6200 and pNOV6201 transformants was obtained. Individual kernels from each line were dissected and purified endosperms were homogenized individually in 300 ^1 of 50 mM NaP04 buffer. Aliquots of the endosperm suspensions were analyzed for a-amylase activity at 85°C. Approximately 80% of the lines segregate for hyperthermophilic activity (See Figures 1A, IB, and 2). <br><br> Kernels from wild type plants or plants transformed with pNOV6201 were heated at 100°C for 1, 2, 3, or 6 hours and then stained for starch with an iodine solution. Little or no starch was detected in mature kernels after 3 or 6 hours, respectively. Thus, starch in mature <br><br> 85 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> kernels from transgenic maize which express hyperthermophilic amylase that is targeted to the endoplasmic reticulum was hydrolyzed when incubated at high temperature. <br><br> In another experiment, partially purified starch from mature T1 kernels from pNOV6201 plants that were steeped at 50°C for 16 hours was hydrolyzed after heating at 85SC for 5 minutes. This illustrated that the a-amylase targeted to the endoplasmic reticulum binds to starch after grinding of the kernel, and is able to hydrolyze the starch upon heating. Iodine staining indicated that the starch remains intact in mature seeds after the 16 hour steep at 50°C. <br><br> In another experiment, segregating, mature kernels from plants transformed with pNOV6201 were heated at 95°C for 16 hours and then dried. In seeds expressing the hyperthermophilic a-amylase, the hydrolysis of starch to sugar resulted in a wrinkled appearance following drying. <br><br> Example 13 <br><br> Analysis of TI seed from maize plants expressing the q-amvlase targeted to the amyloplast Tl seed from self-pollinated maize plants transformed with either pNOV4C&gt;29 or pNOV4031 as described in Example 4 was obtained. Starch accumulation in kernels from these lines was clearly not normal. All lines segregated, with some variation in severity, for a very low or no starch phenotype. Endosperm purified from immature kernels stained only weakly with iodine prior to exposure to high temperatures. After 20 minutes at 85°C, there was no staining. When the ears were dried, the kernels shriveled up. This particular amylase clearly had sufficient activity at greenhouse temperatures to hydrolyze starch if allowed to be in direct contact with the granule <br><br> Example 14 <br><br> Fermentation of grain from maize plants expressing q-amvlase 100% Transgenic grain 85°C vs. 95°C, varied liquefaction time. <br><br> Transgenic com (pNOV6201) that contains a thermostable a-amylase performs well in fermentation without addition of exogenous a-amylase, requires much less time for liquefaction and results in more complete solubilization of starch. Laboratory scale fermentations were <br><br> 86 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> performed by a protocol with the following steps (detailed below): 1) grinding, 2) moisture analysis, 3) preparation of a slurry containing ground com, water, backset and a-amylase, 4) liquefaction and 5) simultaneous saccharification and fermentation (SSF). In this example the temperature and time of the liquefaction step were varied as described below. In addition the transgenic com was liquefied with and without exogenous a-amylase and the performance in ethanol production compared to control com treated with commercially available a-amylase. <br><br> The transgenic com used in this example was made in accordance with the procedures set out in Example 4 using a vector comprising the a-amylase gene and the PMI selectable marker, namely pNC)V6201. The transgenic com was produced by pollinating a commercial hybrid (N3030BT) with pollen from a transgenic line expressing a high level of thermostable a-amylase. The corn was dried to 11% moisture and stored at room temperature. The a-amylase content of the transgenic com flour was 95 units/g where 1 unit of enzyme generates 1 micromole reducing ends per min from com flour at 85 °C in pH 6.0 MES buffer. The control com that was used was a yellow dent com known to perform well in ethanol production. <br><br> 1) Grinding: Transgenic com (1180 g) was ground in a Perten 3100 hammer mill equipped with a 2.0 mm screen thus generating transgenic com flour. Control com was ground in the same mill after thoroughly cleaning to prevent contamination by the transgenic com. <br><br> 2) Moisture analysis: Samples (20 g) of transgenic and control com were weighed into aluminum weigh boats and heated at 100 C for 4 h. The samples were weighed again and the moisture content calculated from the weight loss. The moisture content of transgenic flour was 9.26%; that of the control flow was 12.54%. <br><br> 3) Preparation of slurries: The composition of slurries was designed to yield a mash with 36% solids at the beginning of SSF. Control samples were prepared in 100 ml plastic bottles and contained 21.50 g of control com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight), and 0.30 ml of a commercially available a-amylase diluted 1/50 with water. The a-amylase dose was chosen as representative of industrial usage. When assayed under the conditions described above for assay of the transgenic a-amylase, the control a-amylase dose was 2 U/g com flour, pH was adjusted to 6.0 by addition of ammonium hydroxide. Transgenic samples were prepared in the same fashion but contained 20 g of com flour because of the lower <br><br> 87 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> moisture content of transgenic flour. Slurries of transgenic flour were prepared either with a-amylase at the same dose as the control samples or without exogenous a-amylase. <br><br> 4) Liquefaction: The bottles containing slurries of transgenic corn flour were immersed in water baths at either 85 °C or 95 °€ for times of 5, 15, 30,45 or 60 min. Control slurries were incubated for 60 min at 85 °C. During the high temperature incubation the slurries were mixed vigorously by hand every 5 min. After the high temperature step the slurries were cooled on ice. <br><br> 5) Simultaneous saccharification and fermentation: The mash produced by liquefaction was mixed with glucoamylase (0.65 ml of a 1/50 dilution of a commercially available L-400 glucoamylase), protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole was cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash was then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90 F. After 24 hours of fermentation the temperature was lowered to 86 F; at 48 hours it was set to 82 F. <br><br> Yeast for inoculation was propagated by preparing a mixture that contained yeast (0.12 g) with 70 grams maltodextrin, 230 ml water, 100 ml backset, glucoamylase (0.88 ml of a 10-fold dilution of a commercially available glucoamylase), protease (1.76 ml of a 100-fold dilution of a commercially available enzyme), urea (1.07 grams), penicillin (0.67 mg) and zinc sulfate (0.13 g). The propagation culture was initiated the day before it was needed and was incubated with mixing at 90°F. <br><br> At 24,48 &amp; 72 hour samples were taken from each fermentation vessel, filtered through 0.2 jim filters and analyzed by HPLC for ethanol &amp; sugars. At 72 h samples were analyzed for total dissolved solids and for residual starch. <br><br> HPLC analysis was performed on a binary gradient system equipped with refractive index detector, column heater &amp; Bio-Rad Aminex HPX-87H column. The system was equilibrated with 0.005 M H2SO4 in water at 1 ml/min. Column temperature was 50 °C. Sample injection volume was 5 |xl; elution was in the same solvent. The RI response was calibrated by injection of known standards. Ethanol and glucose were both measured in each injection. <br><br> Residual starch was measured as follows. Samples and standards were dried at 50°C in an oven, then ground to a powder in a sample mill. The powder (0.2 g) was weighed into a 15 <br><br> 88 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ml graduated centrifuge tube. The powder was washed 3 times with 10 ml aqueous ethanol (80% v/v) by vortexing followed by centrifugation and discarding of the supernatant. DMSO (2.0 ml) was added to the pellet followed by 3.0 ml of a thermostable alpha-amylase (300 units) in MOPS buffer. After vigorous mixing, the tubes were incubated in a water bath at 85°C for 60 min. During the incubation, the tubes were mixed four times. The samples were cooled and 4.0 ml sodium acetate buffer (200 mM, pH 4.5) was added followed by 0.1 ml of glucoamylase (20 U). Samples were incubated at 50°C for 2 hours, mixed, then centrifuged for 5 min at 3,500 rpm. The supernatant was filtered through a 0.2 urn filter and analyzed for glucose by the HPLC method described above. An injection size of 50 p.1 was used for samples with low residual starch (&lt;20% of solids). <br><br> Results Transgenic corn performed well in fermentation without added a-amylase. The yield of ethanol at 72 hours was essentially the same with or without exogenous a-amylase as shown in Table I. These data also show that a higher yield of ethanol is achieved when the liquefaction temperature is higher; the present enzyme expressed in the transgenic com has activity at higher temperatures than other enzymes used commercially such as the Bacillus liquefaciens a-amylase. <br><br> 89 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Table I <br><br> Liquefaction <br><br> Liquefaction <br><br> Exogenous a- <br><br> # replicates <br><br> Mean <br><br> Std. Dev. <br><br> temp time amylase <br><br> Ethanol % <br><br> % v/v <br><br> °C <br><br> min. <br><br> v/v <br><br> 85 <br><br> 60 <br><br> Yes <br><br> 4 <br><br> 17.53 <br><br> 0.18 <br><br> 85 <br><br> 60 <br><br> No <br><br> 17.78 <br><br> 0.27 <br><br> 95 <br><br> 60 <br><br> Yes <br><br> 2 <br><br> 18.22 <br><br> ND <br><br> 95 <br><br> 60 <br><br> No <br><br> 2 <br><br> 18.25 <br><br> ND <br><br> When the liquefaction time was varied, it was found that the liquefaction time required for efficient ethanol production was much less than the hour required by the conventional process. Figure 3 shows that the ethanol yield at 72 hours fermentation was almost unchanged from 15 min to 60 min liquefaction. In addition liquefaction at 95°C gave more ethanol at each time point than at the 85°C liquefaction. This observation demonstrates the process improvement achieved by use of a hyperthermophilic enzyme. <br><br> The control corn gave a higher final ethanol yield than the transgenic corn, but the control was chosen because it performs very well in fermentation. In contrast the transgenic corn has a genetic background chosen to facilitate transformation. Introducing the a-amylase-trait into elite com germplasm by well-known breeding techniques should eliminate this difference. <br><br> Examination of the residual starch levels of the beer produced at 72 hours (Figure 4) shows that the transgenic a-amylase results in significant improvement in making starch available for fermentation; much less starch was left over after fermentation. <br><br> Using both ethanol levels and residual starch levels the optimal liquefaction times were 15 min at 95°C and 30 min at 85°C. In the present experiments these times were the total time that the fermentation vessels were in the water bath and thus include a time period during which the temperature of the samples was increasing from room temperature to 85°C or 95°C. Shorter liquefaction times may be optimal in large scale industrial processes that rapidly heat the mash by use of equipment such as jet cookers. Conventional industrial liquefaction processes require holding tanks to allow the mash to be incubated at high temperature for one or more hours. The <br><br> 90 <br><br> WO 2005/096804 <br><br> PCT/CJS2004/007182 <br><br> present invention eliminates the need for such holding tanks and will increase the productivity of liquefaction equipment. <br><br> One important function of a-amylase in fermentation processes is to reduce the viscosity of the mash. At all time points the samples containing transgenic com flour were markedly less viscous than the control sample. In addition the transgenic samples did not appear to go through the gelatinous phase observed with all control samples; gelatinization normally occurs when com slurries are cooked. Thus having the a-amylase distributed throughout the fragments of the endosperm gives advantageous physical properties to the mash during cooking by preventing formation of large gels that slow diffusion and increase the energy costs of mixing and pumping the mash. <br><br> The high dose of a-amylase in the transgenic corn may also contribute to the favorable properties of the transgenic mash. At 85°C, the a-amylase activity of the transgenic corn was many times greater activity than the of the dose of exogenous a-amylase used in controls. The latter was chosen as representative of commercial use rates. <br><br> Example IS <br><br> Effective function of transgenic com when mixed with control corn <br><br> Transgenic com flour was mixed with control corn flour in various levels from 5% to 100% transgenic com flour. These were treated as described in Example 14. The mashes containing transgenically expressed a-amylase were liquefied at 85 °C for 30 min or at 95 °C for 15 min; control mashes were prepared as described in Example 14 and were liquefied at 85 °C for 30 or 60 min (one each) or at 95 °C for 15 or 60 min (one each). <br><br> The data for ethanol at 48 and 72 hours and for residual starch are given in Table 2. The ethanol levels at 48 hours are graphed in Figure 5; the residual starch determinations are shown in Figure 6. These data show that transgenically expressed thermostable a-amylase gives very good performance in ethanol production even when the transgenic grain is only a small portion (as low as 5%) of the total grain in the mash. The data also show that residual starch is markedly lower than in control mash when the transgenic grain comprises at least 40% of the total grain. <br><br> 91 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Table 2 <br><br> 85 °C Liquefaction <br><br> 95 °C Liquefaction <br><br> Transgenic grain wt % <br><br> Residual Starch <br><br> Ethanol 48 h <br><br> Ethanol % v/v 72 h <br><br> Residual Starch <br><br> Ethanol 48 h <br><br> Ethanol % v/v 72 h <br><br> 100 <br><br> 3.58 <br><br> 16.71 <br><br> 18.32 <br><br> 4.19 <br><br> 17.72 <br><br> 21.14 <br><br> 80 <br><br> 4.06 <br><br> 17.04 <br><br> 19.2 <br><br> 3.15 <br><br> 17.42 <br><br> 19.45 <br><br> 60 <br><br> 3.86 <br><br> 17.16 <br><br> 19.67 <br><br> 4,81 <br><br> 17.58 <br><br> 19.57 <br><br> 40 <br><br> 5.14 <br><br> 17.28 <br><br> 19.83 <br><br> 8.69 <br><br> 17.56 <br><br> 19.51 <br><br> 20 <br><br> 8.77 <br><br> 17.11 <br><br> 19.5 <br><br> 11.05 <br><br> 17.71 <br><br> 19.36 <br><br> 10 <br><br> 10.03 <br><br> 18.05 <br><br> 19.76 <br><br> 10.8 <br><br> 17.83 <br><br> 19.28 <br><br> 5 <br><br> 10.67 <br><br> 18.08 <br><br> 19.41 <br><br> 12.44 <br><br> 17.61 <br><br> 19.38 <br><br> 0* <br><br> 7.79 <br><br> 17.64 <br><br> 20.11 <br><br> 11.23 <br><br> 17.88 <br><br> 19.87 <br><br> * Control samples . Values the average of 2 determinations <br><br> Example 16 <br><br> Ethanol production as a function of liouefaction pH using transgenic corn at a rate of 1.5 to 12 % of total corn Because the transgenic com performed well at a level of 5-10% of total corn in a fermentation, an additional series of fermentations in which the transgenic corn comprised 1.5 to 12% of the total com was performed. The pH was varied from 6.4 to 5.2 and the a-amylase enzyme expressed in the transgenic corn was optimized for activity at lower pH than is conventionally used industrially. <br><br> The experiments were performed as described in Example 15 with the following exceptions: <br><br> 1). Transgenic flour was mixed with control flour as a percent of total dry weight at the levels Tanging from 1.5% to 12.0%. <br><br> 2). Control corn was N3030BT which is more similar to the transgenic com than the control used in examples 14 and 15. <br><br> 3). No exogenous a-amylase was added to samples containing transgenic flour. <br><br> 92 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 4). Samples were adjusted to pH 5.2, 5.6, 6.0 or 6.4 prior to liquefaction. At least 5 samples spanning the range from 0% transgenic corn flour to 12% transgenic corn flour were prepared for each pH. <br><br> 5). Liquefaction for all samples was performed at 85 °C for 60 min. <br><br> The change in ethanol content as a function of fermentation time are shown in Figure 7. This figure shows the data obtained from samples that contained 3% transgenic com. At the lower pH, the fermentation proceeds more quickly than at pH 6.0 and above; similar behavior was observed in samples with other doses of transgenic grain. The pH profile of activity of the transgenic enzyme combined with the high levels of expression will allow lower pH liquefactions resulting in more rapid fermentations and thus higher throughput than is possible at the conventional pH 6.0 process. <br><br> The ethanol yields at 72 hours are shown in Figure 8. As can be seen, on the basis of ethanol yield, the results showed little dependence on the amount of transgenic grain included in the sample. Thus the grain contains abundant amylase to facilitate fermentative production of ethanol. It is also demonstrates that lower pH of liquefaction results in higher ethanol yield. <br><br> The viscosity of the samples after liquefaction was monitored and it was observed that at pH 6.0, 6% transgenic grain is sufficient for adequate reduction in viscosity. At pH 5.2 and 5.6, viscosity is equivalent to that of the control at 12% transgenic grain, but not at lower percentages of transgenic grain. <br><br> Example 17 <br><br> Production of fructose from corn flour using thermophilic enzymes <br><br> Com that expresses the hyperthermophilic a-amylase, 797GL3, was shown to facilitate production of fructose when mixed with an a-glucosidase (MalA) and a xylose isomerase (XylA). <br><br> Seed from pNOV6201 transgenic plants expressing 797GL3 were ground to a flour in a Kleco cell thus creating amylase flour. Non-transgenic com kernels were ground in the same manner to generate control flour. <br><br> The a-glucosidase, MalA (from S. solfataricus), was expressed in E. coli. Harvested bacteria were suspended in 50 mM potassium phosphate buffer pH 7.0 containing 1 mM 4-(2- <br><br> 93 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> aminoethyl)benzenesu]fonyl fluoride then lysed in a French pressure cell. The lysate was centrifuged at 23,000 x g for 15 min at 4° C. The supernatant solution was removed, heated to 70° C for 10 min, cooled on ice for 10 min, then centrifuged at 34,000 x g for 30 min at 4°C. The supernatant solution was removed and the MalA concentrated two-fold in centricon 10 devices. The filtrate of the centricon 10 step was retained for use as a negative control for MalA. <br><br> Xylose (glucose) isomerase was prepared by expressing the xylA gene of T. neapolitana in E. coli. Bacteria were suspended in 100 mM sodium phosphate pH 7.0 and lysed by passage through a French pressure cell. After precipitation of cell debris, the extract was heated at 80° C for 10 min then centrifuged. The supernatant solution contained the XylA enzymatic activity. An empty-vector control extract was prepared in parallel with the XylA extract. <br><br> Com flour (60 mg per sample) was mixed with buffer and extracts from E coli. As indicated in Table 3, samples contained amylase corn flour (amylase) or control corn flour (control), 50 nl of either MalA extract (+) or filtrate (-), and 20 |il of either XylA extract (+) or empty vector control (-). All samples also contained 230 p.1 of 50mM MOPS, lOmM MgS04, and 1 mM CoC12; pH of the buffer was 7.0 at room temperature. <br><br> Samples were incubated at 85°C for 18 hours. At the end of the incubation time, samples were diluted with 0.9 ml of 85°C water and centrifuged to remove insoluble material. The supernatant fraction was then filtered through a Centricon3 ultrafiltration device and analyzed by HPLC with ELSD detection. <br><br> The gradient HPLC system was equipped with Astec Polymer Amino Column, 5 micron particle size, 250 X 4.6 mm and an Alltech ELSD 2000 detector. The system was pre-equilibrated with a 15:85 mixture of water:acetonitrile. The flow rate was 1 ml/min. The initial conditions were maintained for 5 min after injection followed by a 20 min gradient to 50:50 watenacetonitrile followed by 10 minutes of the same solvent. The system was washed with 20 min of80:20 watenacetonitrile and then re-equilibrated with the starting solvent. Fructose was eluted at 5.8 min and glucose at 8.7 min. <br><br> 94 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Table 3 <br><br> Sample <br><br> Corn flour <br><br> MalA <br><br> XylA <br><br> fructose peak area x 10"6 <br><br> glucose peak area x 10~6 <br><br> 1 <br><br> amylase <br><br> + <br><br> + <br><br> 25.9 <br><br> 110.3 <br><br> 2 <br><br> amylase <br><br> - <br><br> + <br><br> 7.0 <br><br> 12.4 <br><br> 3 <br><br> amylase <br><br> + <br><br> - <br><br> 0.1 <br><br> 147.5 <br><br> 4 <br><br> amylase <br><br> - <br><br> - <br><br> 0 <br><br> 25.9 <br><br> 5 <br><br> control <br><br> + <br><br> + <br><br> 0.8 <br><br> 0.5 <br><br> 6 <br><br> control <br><br> - <br><br> + <br><br> 0.3 <br><br> 0.2 <br><br> 7 <br><br> control <br><br> + <br><br> - <br><br> 1.3 <br><br> 1.7 <br><br> 8 <br><br> control <br><br> - <br><br> - <br><br> 0.2 <br><br> 0.3 <br><br> The HPLC results also indicated the presence of larger maltooligosaccharides in all samples containing the a-amylase. These results demonstrate that the three thermophilic enzymes can function together to produce fructose from corn flour at a high temperature. <br><br> Example 18 Amylase Flour with Isomerase <br><br> In another example, amylase flour was mixed with purified MalA and each of twobacterial xylose isomerases: XylA of T. maritima, and an enzyme designated BD8037obtained from Diversa. Amylase flour was prepared as described in Example 18. <br><br> S. solfataricus MalA with a 6His purification tag was expressed in E. coli. Cell lysate was prepared as described in Example 18, then purified to apparent homogeneity using a nickel affinity resin (Probond, Invitrogen) and following the manufacturer's instructions for native protein purification. <br><br> T. maritima XylA with the addition of an S tag and an ER retention signal was expressed in E. coli and prepared in the same manner as the T. neapolitana XylA described in Example 18. <br><br> Xylose isomerase BD8037 was obtained as a lyophilized powder and resuspended in 0.4x the original volume of water. <br><br> 95 <br><br> WO 2005/096804 <br><br> PCT/US2004/007I82 <br><br> Amylase com flour was mixed with enzyme solutions plus water or buffer. All reactions contained 60 mg amylase flour and a total of 600jil of liquid. One set of reactions was buffered with 50 mM MOPS, pH 7.0 at room temperature, plus lOmM MgS04 and 1 mM CoC12; in a second set of reactions the metal-containing buffer solution was replaced by water. Isomerase enzyme amounts were varied as indicated in Table 4. All reactions were incubated for 2 hours at 90°C. Reaction supernatant fractions were prepared by centrifugation. The pellets were washed with an additional 600^x1 H2O and recentrifuged, The supernatant fractions from each reaction were combined, filtered through a Centricon 10, and analyzed by HPLC with ELSD detection as described in Example 17. The amounts of glucose and fructose observed are graphed in Figure 15. <br><br> Table 4 <br><br> Sample <br><br> Amylase flour <br><br> MalA <br><br> Isomerase <br><br> 1 <br><br> 60 mg <br><br> + <br><br> none <br><br> 2 <br><br> 60 mg <br><br> + <br><br> T. maritima, 100^1 <br><br> 3 <br><br> 60 mg <br><br> + <br><br> T. maritima, 10 (il <br><br> 4 <br><br> 60 mg <br><br> + <br><br> T maritima, 2yil <br><br> 5 <br><br> 60 mg <br><br> + <br><br> BD8037, 100^1 <br><br> 7 <br><br> 60mg <br><br> + <br><br> BD8037,2|il <br><br> C <br><br> 60 mg none none <br><br> With each of the isomerases, fructose was produced from corn flour in a dose-dependent manner when a-amylase and a-glucosidase were present in the reaction. These results demonstrate that the grain-expressed amylase 797GL3 can function with MalA and a variety of different thermophilic isomerases, with or without added metal ions, to produce fructose from com flour at a high temperature. In the presence of added divalent metal ions, the isomerases can achieve the predicted fructose: glucose equilibrium at 90°C of approximately 55% fructose. <br><br> 96 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> This would be an improvement over the current process using mesophilic isomerases, which requires a chromatographic separation to increase the fructose concentration. <br><br> Example 19 Expression of a pullulanase in com <br><br> Transgenic plants that were homozygous for either pNOV7C&gt;13 or pNC)V7005 were crossed to generate transgenic com seed expressing both the 797GL3 a-amylase and 6GP3 pullulanase. <br><br> T1 or T2 seed from self-pollinated maize plants transformed with either pNOV 7005 or pNOV 4093 were obtained. pNOV4093 is a fusion of the maize optimized synthetic gene for 6GP3 (SEQ ID: 3,4) with the amyloplast targeting sequence (SEQ ID NO: 7,8) for localization of the fusion protein to the amyloplast. This fusion protein is under the control of the ADPgpp promoter (SEQ ED NO: 11) for expression specifically in the endosperm. The pNOV7005 construct targets the expression of the pullulanase in the endoplasmic reticulum of the endosperm. Localization of this enzyme in the ER allows normal accumulation of the starch in the kernels. Normal staining for starch with an iodine solution was also observed, prior to any exposure to high temperature. <br><br> As described in the case of a-amylase the expression of pullulanase targeted to the amyloplast (pNOV4093) resulted in abnormal starch accumulation in the kernels. When the corn-ears are dried, the kernels shriveled up. Apparently, this thermophilic pullulanase is sufficiently active at low temperatures and hydrolyzes starch if allowed to be in direct contact with the starch granules in the seed endosperm. <br><br> Enzvme preparation or extraction of the enzvme from corn-flour: The pullulanase enzyme was extracted from the transgenic seeds by grinding them in Kleco grinder, followed by incubation of the flour in 50mM NaOAc pH 5.5 buffer for 1 hr at RT, with continuous shaking. The incubated mixture was then spun for 15min. at 14000 rpm. The supernatant was used as enzyme source. <br><br> Pullulanase assay: The assay reaction was earned out in 96-well plate. The enzyme extracted from the com flour (100 fi\) was diluted 10 fold with 900 /jlI of 50mM NaOAc pH5.5 <br><br> buffer, containing 40 mM CaCh. The mixture was vortexed, 1 tablet of Limit-Dextrizyme <br><br> 97 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> (azurine-crosslinked-pullulan, from Megazyme) was added to each reaction mixture and incubated at 75 °C for 30 min (or as mentioned). At the end of the incubation the reaction mixtures were spun at 3500 rpm for 15 min. The supematants were diluted 5 fold and transferred into 96-well flat bottom plate for absorbance measurement at 590 nm. Hydrolysis of azurine-crosslinked-pullulan substrate by the pullulanase produces water-soluble dye fragments and the rate of release of these (measured as the increase in absorbance at 590 run) is related directly to enzyme activity. <br><br> Figure 9 shows the analysis of T2 seeds from different events transformed with pNOV 7005. High expression of pullulanase activity, compared to the non-transgenic control, can be detected in a number of events. <br><br> To a measured amount (~100 fig) of dry corn flour from transgenic (expressing pullulanase, or amylase or both the enzymes) and / or control (non-transgenic) 1000 of 50 mM NaOAc pH 5.5 buffer containing 40 mM CaCh was added. The reaction mixtures were vortexed and incubated on a shaker for 1 hr. The enzymatic reaction was started by transferring the incubation mixtures to high temperature (75 °C, the optimum reaction temperature for pullulanase or as mentioned in the figures) for a period of time as indicated in the figures. The reactions were stopped by cooling them down on ice. The reaction mixtures were then centrifuged for 10 min. at 14000 rpm. An aliquot (100 fil) of the supernatant was diluted three fold, filtered through 0.2-micron filter for HPLC analysis. <br><br> The samples were analyzed by HPLC using the following conditions: <br><br> Column: Alltech Prevail Carbohydrate ES 5 micron 250 X 4.6 mm <br><br> Detector: Alltech ELSD 2000 <br><br> Pump: Gilson 322 <br><br> Injector: Gilson 215 injector/diluter <br><br> Solvents: HPLC grade Acetonitrile (Fisher Scientific) and Water (purified by Waters Millipore System) <br><br> 98 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Gradient used for oligosaccharides of low degree of polymerization (DP 1-15). <br><br> Time %Water %Acetonitrile <br><br> 0 15 85 <br><br> 5 15 85 <br><br> 25 50 50 <br><br> 35 50 50 <br><br> 36 80 20 <br><br> 55 80 20 <br><br> 56 15 85 76 15 85 <br><br> Gradient used for saccharides of high degree of polymerization (DP 20- 100 and above). <br><br> Time %Water %Acetonitrile <br><br> 0 35 65 <br><br> 60 85 15 <br><br> 70 85 15 <br><br> 85 35 65 <br><br> 100 35 65 <br><br> System used for data analysis: Gilson Unipoint Software System Version 3.2 <br><br> Figures 10A and 10B show the HPLC analysis of the hydrolytic products generated by expressed pullulanase from starch in the transgenic com flour. Incubation of the flour of pullulanase expressing corn in reaction buffer at 75 °C for 30 minutes results in production of medium chain oligosaccharides (DP -10-30) and short amylose chains (DP ~ 100 -200) from cornstarch. This figure also shows the dependence of pullulanase activity on presence of calcium ions. <br><br> Transgenic com expressing pullulanase can be used to produce modified-starch/dextrin that is debranched (al -6 linkages cleaved) and hence will have high level of amylose/straight chain dextrin. Also depending on the kind of starch (e.g. waxy, high amylose etc.) used the <br><br> 99 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> chain length distribution of the amylose/dextrin generated by the pullulanase will vary, and so will the property of the modified-starch/dextrin. <br><br> Hydrolysis of a 1-6 linkage was also demonstrated using pullulan as the substrate. The pullulanase isolated from corn flour efficiently hydrolyzed pullulan. HPLC analysis (as described) of the product generated at the end of incubation showed production of maltotriose, as expected, due to the hydrolysis of the a 1 -6 linkages in the pullulan molecules by the enzyme from the com. <br><br> Example 20 <br><br> Expression of pullulanase in com Expression of the 6gp3 pullulanase was further analyzed by extraction from com flour followed by PAGE and Coomassie staining. Corn-flour was made by grinding seeds, for 30 sec., in the Kleco grinder. The enzyme was extracted from about 150mg of flour with 1ml of 50mM NaOAc pH 5.5 buffer. The mixture was vortexed and incubated on a shaker at RT for Ihr, followed by another 15 min incubation at 70 °C. The mixture was then spun down (14000 rpm for 15 min at RT) and the supernatant was used as SDS-PAGE analysis. A protein band of the appropriate molecular weight (95 kDal) was observed. These samples are subjected to a pullulanase assay using commercially available dye-conjugated limit-dextrins (LIMIT-DEXTRIZYME, from Megazyme, Ireland). High levels of thermophilic pullulanase activity correlated with the presence of the 95 kD protein. <br><br> The Western blot and ELISA analysis of the transgenic com seed also demonstrated the expression of ~95 kD protein that reacted with antibody produced against the pullulanase (expressed in E. coli). <br><br> Example 21 <br><br> Increase in the rate of starch hydrolysis and improved yield of small chain (fermentable) oligosaccharides bv the addition of pullulanase expressing com <br><br> The data shown in Figures 11A and 1 IB was generated from HPLC analysis, as described above, of the starch hydrolysis products from two reaction mixtures. The first reaction indicated as 'Amylase' contains a mixture [1:1 (w/w)] of com flour samples of a -amylase expressing transgenic com made according to the method described in Example 4, for example, <br><br> 100 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> and non-transgenic corn A188; and the second reaction mixture 'Amylase + Pullulanase' contains a mixture [1:1 (w/w)] of com flour samples of a-amylase expressing transgenic com and pullulanase expressing transgenic com made according to the method described in Example 19. The results obtained support the benefit of use of pullulanase in combination with a-amylase during the starch hydrolysis processes. The benefits are from the increased rate of starch hydrolysis (Figure 11 A) and increase yield of fermentable oligosaccharides with low DP (Figure 1 IB). <br><br> It was found that a-amylase alone or a-amylase and pullulanase (or any other combination of starch hydrolytic enzymes) expressed in com can be used to produce maltodextrin (straight or branched oligosaccharides) (Figures 11A, 1 IB, 12, and 13A). Depending on the reaction conditions, the type of hydrolytic enzymes and their combinations, and the type of starch used the composition of the maltodextrins produced, and hence their properties, will vary. <br><br> Figure 12 depicts the results of an experiment carried out in a similar manner as described for Figure 11. The different temperature and time schemes followed during incubation of the reactions are indicated in the figure. The optimum reaction temperature for pullulanase is 75 °C and for a -amylase it is &gt;95 °C. Hence, the indicated schemes were followed to provide scope to carry out catalysis by the pullulanase and/or the a -amylase at their respective optimum reaction temperature. It can be clearly deduced from the result shown that combination of a-amylase and pullulanase performed better in hydrolyzing cornstarch at the end of 60 min incubation period. <br><br> HPLC analysis, as described above (except —150 mg of com flour was used in these reactions), of the starch hydrolysis product from two sets of reaction mixtures at the end of 30 <br><br> min incubation is shown in Figure 13A and 13B. The first set of reactions was incubated at 85 °C <br><br> and the second one was incubated at 95 °C. For each set there are two reaction mixtures; the first reaction indicated as 'Amylase X Pullulanase' contains flour from transgenic com (generated by cross pollination) expressing both the a-amylase and the pullulanase, and the second reaction indicated as 'Amylase' mixture of com flour samples of a-amylase expressing transgenic com and non-transgenic com Al 88 in a ratio so as to obtain same amount of a -amylase activity as is observed in the cross (Amylase X Pullulanase). The total yield of low DP oligosaccharides was <br><br> 101 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> more in case of ff-amylase and pullulanase cross compared to corn expressing a-amylase alone, when the corn flour samples were incubated at 85 °C. The incubation temperature of 95 °C inactivates (at least partially) the pullulanase enzyme, hence little difference can be observed between 'Amylase X Pullulanase' and 'Amylase'. However, the data for both the incubation temperatures shows significant improvement in the amount of glucose produced (Figure 13B), at the end of the incubation period, when corn flour of a-amylase and pullulanase cross was used compared to com expressing a-amylase alone. Hence use of com expressing both a-amylase and pullulanase can be especially beneficial for the processes where complete hydrolysis of starch to glucose is important. <br><br> The above examples provide ample support that pullulanase expressed in com seeds, when used in combination wilh a-amylase, improves the starch hydrolysis process. Pullulanase enzyme activity, being a 1-6 linkage specific, debranches starch far more efficiently than a -amylase (an a -1-4 linkage specific enzyme) thereby reducing the amount of branched oligosaccharides (e.g. limit-dextrin, panose; these are usually non-fermentable) and increasing the amount of straight chain short oligosaccharides (easily fermentable to ethanol etc.). <br><br> Secondly, fragmentation of starch molecules by pullulanase catalyzed debranching increases substrate accessibility for the a-amylase, hence an increase in the efficiency of the a -amylase catalyzed reaction results. <br><br> Example 22 <br><br> To determine whether the 797GL3 alpha amylase and malA alpha-glucosidase could function under similar pH and temperature conditions to generate an increased amount of glucose over that produced by either enzyme alone, approximately 0.35 ug of malA alpha glucosidase enzyme (produced in bacteria) was added to a solution containing 1% starch and starch purified from either non-transgenic com seed (control) or 797GL3 transgenic com seed (in 797GL3 com seed the alpha amylase co-purifies with the starch). In addition, the purified starch from non-transgenic and 797GL3 transgenic com seed was added to 1 % com starch in the absence of any malA enzyme. The mixtures were incubated at 90°C, pH 6.0 for 1 hour, spun down to remove any insoluble material, and the soluble fraction was analyzed by HPLC for glucose levels. As shown in Figure 14, the 797GL3 alpha-amylase and malA alpha-glucosidase <br><br> 102 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> function at a similar pH and temperature to break down starch into glucose. The amount of glucose generated is significantly higher than that produced by either enzyme alone. <br><br> Example 23 <br><br> The utility of the Thermoanaerobacterium glucoamylase for raw starch hydrolysis was determined, As set forth in Figure 15, the hydrolysis conversion of raw starch was tested with water, barley a-amylase (commercial preparation from Sigma), Thermoanaerobacterum glucoamylase, and combinations thereof were ascertained at room temperature and at 30°C. As shown, the combination of the barley a-amylase with the Thermoanaerobacterium glucoamylase was able to hydrolyze raw starch into glucose. Moreover, the amount of glucose produced by the barley amylase and thermoanaerobacter GA is significantly higher than that produced by either enzyme alone. <br><br> Example 24 <br><br> Maize-optimized genes and sequences for raw-starch hydrolysis and vectors for plant transformation <br><br> The enzymes were selected based on their ability to hydrolyze raw-starch at temperatures ranging from approximately 20°-50°C. The corresponding genes or gene fragments were then designed by using maize preferred codons for the construction of synthetic genes as set forth in Example 1. <br><br> Aspergillus shirousami a-amylase/glucoamylase fusion polypeptide (without signal sequence) was selected and has the amino acid sequence as set forth in SEQ ID NO: 45 as identified in Biosci. Biotech. Biochem., 56:884-889 (1992); Agric. Biol. Chem. 545:1905-14 (1990); Biosci. Biotechnol. Biochem. 56:174-79 (1992). The maize-optimized nucleic acid was designed and is represented in SEQ ID NO:46. <br><br> Similarly, Thermoanaerobacterium thermosaccharolyticum glucoamylase was selected, having the amino acid of SEQ ID NO:47 as published in Biosci. Biotech. Biochem., 62:302-308 (1998), was selected. The maize-optimized nucleic acid was designed (SEQ ID NO: 48). <br><br> 103 <br><br> Rhizopus oryzae glucoamylase was selected having the amino acid sequence (without signal sequence)(SEQ ID NO: 49[[50]]), as described in the literature (Agric. Biol. Chem. (1986) 50, pg 957-964). The maize-optimized nucleic acid was designed and is represented in SEQ ID NO: 50[[51]]. <br><br> 5 Moreover, the maize a-amylase was selected and the amino acid sequence (SEQ <br><br> ID NO: 51) and nucleic acid sequence (SEQ ID NO:52) were obtained from the literature. See, e.g., Plant Physiol. 105:759-760(1994). <br><br> Expression cassettes are constructed to express the Aspergillus shirousami a-amylase/glucoamylase fusion polypeptide from the maize-optimized nucleic acid was 10 designed as represented in SEQ ID NO:46, the Thermoanaerobacterium thermosaccharolyticum glucoamylase from the maize-optimized nucleic acid was designed as represented in SEQ ID NO: 48, the Rhizopus oryzae glucoamylase was selected having the amino acid sequence (without signal sequence)(SEQ ID NO: 49) from the maize-optimized nucleic acid was designed and is represented in SEQ ID 15 N0:50, and the maize a-amylase. <br><br> A plasmid comprising the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) is fused to the synthetic gene encoding the enzyme. Optionally, the sequence SEKDEL is fused to the C-terminal of the synthetic gene for targeting to and retention in the ER. The fusion is cloned behined 20 the maize y-zein promoter for expression specifically in the endosperm in a plant transformation plasmid. The fusion is delivered to the corn tissue via Agrobacterium transfection. <br><br> Example 25 <br><br> Expression cassettes comprising the selected enzymes are constructed to express 25 the enzymes. A plasmid comprising the sequence for a raw starch binding site is fused to the synthetic gene encoding the enzyme. The raw starch binding site allows the enzyme fusion to bind to non-gelatinized starch. The raw-starch binding site amino acid sequence (SEQ ID NO:53) was determined based on literature, and the nucleic acid sequence was maize-optimized to give SEQ ID NO:54. The maize-optimized nucleic 30 acid sequence is fused to the synthetic gene encoding the enzyme in a plasmid for expression in a plant. <br><br> in. INTELLECTUAL PROPERTY <br><br> 104 OFFICF OF N.Z. <br><br> 13 OCT 2009 RECEIVE 0 <br><br> WO 2005/096804 <br><br> PCTVUS2004/007182 <br><br> Example 26 <br><br> Construction of maize-optimized genes and vectors for plant transformation <br><br> The genes or gene fragments were designed by using maize preferred codons for the construction of synthetic genes as set forth in Example 1. <br><br> Pyrococcus furiosus EGLA, hyperthermophilic endoglucanase amino acid sequence (without signal sequence) was selected and has the amino acid sequence as set forth in SEQ ID NO: 55, as identified in Journal of Bacteriology (1999) 181, pg 284-290.) The maize-optimized nucleic acid was designed and is represented in SEQ ID NO:56. <br><br> Thermus flavus xylose isomerase was selected and has the amino acid sequence as set forth in SEQ ID NO:57, as described in Applied Biochemistry and Biotechnology 62:15-27 (1997). <br><br> Expression cassettes are constructed to express the Pyrococcus furiosus EGLA (endoglucanase) from the maize-optimized nucleic acid (SEQ ID NO:56) and the Thermus flavus xylose isomerase from a maize-optimized nucleic acid encoding amino acid sequence SEQ ED NO:57 A plasmid comprising the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) is fused to the synthetic maize-optimized gene encoding the enzyme. Optionally, the sequence SEKDEL is fused to the C-terminal of the synthetic gene for targeting to and retention in the ER. The fusion is cloned behined the maize y-zein promoter for expression specifically in the endosperm in a plant transformation plasmid. The fusion is delivered to the corn tissue via Agrobacterium transfection. <br><br> Example 27 <br><br> Production of glucose from com flour using thermophilic enzymes expressed in com <br><br> Expression of the hyperthermophilic a-amylase, 797GL3 and a-glucosidase (MalA) were shown to result in production of glucose when mixed with an aqueous solution and incubated at 90 °C <br><br> A transgenic com line (line 168A10B, pNOV4831) expressing MalA enzyme was identified by measuring a-glucosidase activity as indicated by hydrolysis of p-nitrophenyl-a-glucoside. <br><br> 105 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Com kernels from transgenic plants expressing 797GL3 were ground to a flour in a Kleco cell thus creating amylase flour. Corn kernels from transgenic plants expressing MalA were ground to a flour in a Kleco cell thus creating MalA flour Non-transgenic com kernels were ground in the same manner to generate control flour. <br><br> Buffer was 50 mM MES buffer pH 6.0. <br><br> Com flour hydrolysis reactions: Samples were prepared as indicated in Table 5 below. Corn flour (about 60 mg per sample) was mixed with 40 ml of 50 mM MES buffer, pH 6.0. Samples were incubated in a water bath set at 90°C for 2.5 and 14 hours. At the indicated incubation times, samples were removed and analyzed for glucose content. <br><br> The samples were assayed for glucose by a glucose oxidase / horse radish peroxidase based assay. GOPOD reagent contained: 0.2 mg/ml o-dianisidine, 100 mM Tris pH 7.5 , 100 U/ml glucose oxidase &amp; 10 U/ml horse radish peroxidase. 20 nl of sample or diluted sample were arrayed in a 96 well plate along with glucose standards (which varied from 0 to 0.22 mg/ml). 100 (il of GOPOD reagent was added to each well with mixing and the plate incubated at 37 °C for 30 min. 100 |iil of sulfuric acid (9M) was added and absorbance at 540 nm was read. The glucose concentration of the samples was determined by reference to the standard curve. The quantity of glucose observed in each sample is indicated in Table 5. <br><br> 106 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Table 5 <br><br> Sample <br><br> WT flour amylase <br><br> MalA <br><br> Buffer <br><br> Glucose <br><br> Glucose <br><br> flour flour <br><br> 2.5 h <br><br> 14 h <br><br> mg mg <br><br> Mg ml mg mg <br><br> 1 <br><br> 66 <br><br> 0 <br><br> 0 <br><br> 40 <br><br> 0 <br><br> 0 <br><br> 2 <br><br> 31 <br><br> 30 <br><br> 0 <br><br> 40 <br><br> 0.26 <br><br> 0.50 <br><br> 3 <br><br> 30 <br><br> 0 <br><br> 31.5 <br><br> 40 <br><br> 0 <br><br> 0.09 <br><br> 4 <br><br> 0 <br><br> 32.2 <br><br> 30.0 <br><br> 40 <br><br> 2.29 <br><br> 12.30 <br><br> 5 <br><br> 0 <br><br> 6.1 <br><br> 56.2 <br><br> 40 <br><br> 1.16 <br><br> 8.52 <br><br> These data demonstrate that when expression of hyperthermophilic a-amylase and a-glucosidase in corn result in a corn product that will generate glucose when hydrated and heated under appropriate conditions. <br><br> Example 28 <br><br> Production of Maltodextrins <br><br> Grain expressing thermophilic a-amylase was used to prepare maltodextrins. The exemplified process does not require prior isolation of the starch nor does it require addition of exogenous enzymes. <br><br> Corn kernels from transgenic plants expressing 797GL3 were ground to a flour in a Kleco cell to create "amylase flour". A mixture of 10% transgenic/90% non-transgenic kernels was ground in the same manner to create "10% amylase flour." <br><br> Amylase flour and 10% amylase flour (approximately 60 mg/sample) were mixed with water at a rate of 5 jil of water per mg of flour. The resulting slurries were incubated at 90°C for up to 20 hours as indicated in Table 6. Reactions were stopped by addition of 0.9 ml of 50 mM EDTA at 85°C and mixed by pipetting. Samples of 0.2 ml of slurry were removed, centrifuged to remove insoluble material and diluted 3x in water. <br><br> The samples were analyzed by HPLC with ELSD detection for sugars and maltodextrins. The gradient HPLC system was equipped with Astec Polymer Amino Column, 5 micron particle size, <br><br> 107 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 250 X 4.6 mm and an Alltech ELSD 2000 detector. The system was pre-equilibrated with a 15:85 mixture of watenacetonitrile. The flow rate was 1 ml/min. The initial conditions were maintained for 5 min after injection followed by a 20 min gradient to 50:50 water:acetonitrile followed by 10 minutes of the same solvent. The system was washed with 20 min of 80:20 water:acetonitrile and then re-equilibrated with the starting solvent. <br><br> The resulting peak areas were normalized for volume and weight of flour. The response factor of ELSD per jig of carbohydrate decreases with increasing DP, thus the higher DP maltodextrins represent a higher percentage of the total than indicated by peak area. <br><br> The relative peak areas of the products of reactions with 100% amylase flour are shown in Figure 17. The relative peak areas of the products of reactions with 10% amylase flour are shown in Figure 18, <br><br> These data demonstrate that a variety of maltodextrin mixtures can be produced by varying the time of heating. The level of oc-amylase activity can be varied by mixing transgenic a-amylase-expressing corn with wild-type com to alter the maltodextrin profile. <br><br> The products of the hydrolysis reactions described in this example can be concentrated and purified for food and other applications by use of a variety of well defined methods including: centrifugation, filtration, ion-exchange, gel permeation, ultrafiltration, nanofiltration, reverse osmosis, decolorizing with carbon particles, spray drying and other standard techniques known to the art. <br><br> Example 29 <br><br> Effect of time and temperature on maltodextrin production <br><br> The composition of the maltodextrin products of autohydrolysis of grain containing thermophilic a-amylase may be altered by varying the time and temperature of the reaction. <br><br> In another experiment, amylase flour was produced as described in Example 28 above and mixed with water at a ratio of 300jal water per 60 mg flour. Samples were incubated at 70°, 80°, 90°, or 100° C for up to 90 minutes. Reactions were stopped by addition of 900ml of 50mM EDTA at 90°C, centrifuged to remove insoluble material and filtered through 0.45|am nylon filters. Filtrates were analyzed by HPLC as described in Example 28. <br><br> 106 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> The result of this analysis is presented in Figure 19. The DP number nomenclature refers to the degree of polymerization. DP2 is maltose; DP3 is maltotriose, etc. Larger DP maltodextrins eluted in a single peak near the end of the elution and are labeled "&gt;DP12". This aggregate includes dextrins that passed through 0.45 (im filters and through the guard column and does not include any very large starch fragments trapped by the filter or guard column. <br><br> This experiment demonstrates that the maltodextrin composition of the product can be altered by varying both temperature and incubation time to obtain the desired maltooligosaccharide or maltodextrin product. <br><br> Example 30 <br><br> Maltodextrin production <br><br> The composition of maltodextrin products from transgenic maize containing thermophilic a-amylase can also be altered by the addition of other enzymes such as a-glucosidase and xylose isomerase as well as by including salts in the aqueous flour mixture prior to treating with heat. <br><br> In another, amylase flour, prepared as described above, was mixed with purified MalA and/or a bacterial xylose isomerase, designated BD8037. S. sulfotaricus MalA with a 6His purification tag was expressed in E. coli. Cell lysate was prepared as described in Example 28, then purified to apparent homogeneity using a nickel affinity resin (Probond, Invitrogen) and following the manufacturer's instructions for native protein purification. Xylose isomerase BD8037 was obtained as a lyophilized powder from Diversa and resuspended in 0.4x the original volume of water. <br><br> Amylase corn flour was mixed with enzyme solutions plus water or buffer. All reactions contained 60 mg amylase flour and a total of 600^1 of liquid. One set of reactions was buffered with 50 mM MOPS, pH 7.0 at room temperature, plus lOmM MgS04 and 1 mM CoCl2; in a second set of reactions the metal-containing buffer solution was replaced by water. All reactions were incubated for 2 hours at 90°C. Reaction supernatant fractions were prepared by centrifugation. The pellets were washed with an additional 600^1 H2O and re-centrifuged. The supernatant fractions from each reaction were combined, filtered through a Centricon 10, and analyzed by HPLC with ELSD detection as described above. <br><br> 109 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> The results are graphed in Figure 20. They demonstrate that the grain-expressed amylase 797GL3 can function with other thermophilic enzymes, with or without added metal ions, to produce a variety of maltodextrin mixtures from corn flour at a high temperature. In particular, the inclusion of a glucoamylase or a-glucosidase may result in a product with more glucose and other low DP products. Inclusion of an enzyme with glucose isomerase activity results in a product that has fructose and thus would be sweeter than that produced by amylase alone or amylase with a-glucosidase. In addition the data indicate that the proportion of DP5, DP6 and DP7 maltooligosaccharides can be increased by including divalent cationic salts, such as C0CI2 and MgSO* <br><br> Other means of altering the maltodextrin composition produced by a reaction such as that described here include: varying the reaction pH, varying the starch type in the transgenic or non-transgenic grain, varying the solids ratio, or by addition of organic solvents. <br><br> Example 31 <br><br> Preparing dextrins. or sugars from grain without mechanical disruption of the grain prior to recovery of starch-derived products Sugars and maltodextrins were prepared by contacting the transgenic grain expressing the a-amylase, 797GL3, with water and heating to 90°C overnight (&gt;14 hours). Then the liquid was separated from the grain by filtration. The liquid product was analyzed by HPLC by the method described in Example 15. Table 6 presents the profile of products detected. <br><br> 110 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Table 6 <br><br> Molecular species <br><br> Concentration of Products ja.g / 25 jxl injection <br><br> Fructose <br><br> 0.4 <br><br> Glucose <br><br> 18.0 <br><br> Maltose <br><br> 56.0 <br><br> DP3* <br><br> 26.0 <br><br> DP4* <br><br> 15.9 <br><br> DP5* <br><br> 11.3 <br><br> DP6* <br><br> 5.3 <br><br> DP7* <br><br> 1.5 <br><br> * Quantification of DP3 includes maltotriose and may include isomers of maltotriose that have an a(l-»6) bond in place of an a(l -&gt;4) bond. Similarly DP4 to DP7 quantification includes the linear maltooligosaccarides of a given chain length as well as isomers that have one or more a(l-&gt;-6) bonds in place of one or more a(l—&gt;4) bonds <br><br> These data demonstrate that sugars and maltodextrins can be prepared by contacting intact a-amylase-expressing grain with water and heating. The products can then be separated from the intact grain by filtration or centrifugation or by gravitational settling. <br><br> Example 32 <br><br> Fermentation of raw starch in corn expressing Rhizopus oryzae glucoamylase. Transgenic corn kernels are harvested from transgenic plants made as described in Example 29. The kernels are ground to a flour. The com kernels express a protein that contains an active fragment of the glucoamylase of Rhizopus oryzae (Sequence ID NO: 49) targeted to the endoplasmic reticulum. <br><br> The com kernels are ground to a flour as described in Example 15. Then a mash is prepared containing s 20 g of corn flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following <br><br> 111 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86°C; at 48 hours it is set to 82 °C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 33 <br><br> Transgenic corn kernels are harvested from transgenic plants made as described in Example 28. The kernels are ground to a flour. The corn kernels express a protein that contains an active fragment of the glucoamylase of Rhizopus oryzae (Sequence ED NO: 49) targeted to the endoplasmic reticulum. <br><br> The corn kernels are ground to a flour as described in Example 15. Then a mash is prepared containing 20 g of com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 34 <br><br> Example of fermentation of raw starch in whole kernels of com expressing Rhizopus oryzae glucoamylase with addition of exogenous a-amvlase <br><br> 112 <br><br> WO 2005/096804 <br><br> PCT7US2004/007182 <br><br> Transgenic com kernels are harvested from transgenic plants" made as described in Example 28, The corn kernels express a protein that contains an active fragment of the glucoamylase of Rhizopus oryzae (Sequence ID NO: 49) targeted to the endoplasmic reticulum. <br><br> The corn kernels are contacted with 20 g of corn flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added: barley a-amylase purchased from Sigma (2 mg), protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mixture in order to allow CO2 to vent. The mixture is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14, <br><br> Example 35 <br><br> Fermentation of raw starch in com expressing Rhizopus oryzae glucoamylase and Zea mays amylase <br><br> Transgenic corn kernels are harvested from transgenic plants made as described in Example 28. The com kernels express a protein that contains an active fragment of the glucoamylase of Rhizopus oryzae (Sequence ID NO;49) targeted to the endoplasmic reticulum. The kernels also express the maize amylase with raw starch binding domain as described in Example 28. <br><br> The com kernels are ground to a flour as described in Example 14. Then a mash is prepared containing 20 g of com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The <br><br> 113 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90 F. After 24 hours of fermentation the temperature is lowered to 86 F; at 48 hours it is set to 82 F. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 36 <br><br> Example of fermentation of raw starch in corn expressing Thermoanaerobacter thermosaccharolvticum glucoamylase. <br><br> Transgenic com kernels are harvested from transgenic plants made as described in Example 28. The com kernels express a protein that contains an active fragment of the glucoamylase of Thermoanaerobacter thermosaccharolyticum (Sequence ID NO: 47) targeted to the endoplasmic reticulum. <br><br> The com kernels are ground to a flour as described in Example 15. Then a mash is prepared containing 20 g of com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C, After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 37 <br><br> Example of fermentation of raw starch in com expressing Aspergillus niger glucoamylase <br><br> Transgenic corn kernels are harvested from transgenic plants made as described in <br><br> Example 28. The com kernels express a protein that contains an active fragment of the glucoamylase of Aspergillus niger (Fiil,N.P. "Glucoamylases G1 and G2 from Aspergillus niger <br><br> 114 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> are synthesized from two different but closely related mRNAs" EMBO J. 3 (5), 1097-1102 (1984), Accession number P04064). The maize-optimized nucleic acid encoding the glucoamylase has SEQ ID NO:59 and is targeted to the endoplasmic reticulum. <br><br> The com kernels are ground to a flour as described in Example 14. Then a mash is prepared containing 20 g of com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 38 <br><br> Example of fermentation of raw starch in com expressing Aspergillus niser glucoamylase and Zea mays amylase <br><br> Transgenic com kernels are harvested from transgenic plants made as described in Example 28. The corn kernels express a protein that contains an active fragment of the glucoamylase of Aspergillus niger (Fill,N ..P. "Giucoamyiases Gi and G2 from Aspergillus niger are synthesized from two different but closely related mRNAs" EMBO J. 3 (5), 1097-1102 (1984): Accession number P04064)(SEQ ID NO:59, maize-optimized nucleic acid) and is targeted to the endoplasmic reticulum. The kernels also express the maize amylase with raw starch binding domain as described in example 28. <br><br> The com kernels are ground to a flour as described in Example 14. Then a mash is prepared containing 20 g of com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). <br><br> 115 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C, at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 39 <br><br> Example of fermentation of raw starch in com expressing Thermoanaerobacter thermosacchcirolvticum glucoamylase and barley amylase <br><br> Transgenic corn kernels are harvested from transgenic plants made as described in Example 28. The corn kernels express a protein that contains an active fragment of the glucoamylase of Thermoanaerobacter thermosaccharolyticum (Sequence ID NO: 47) targeted to the endoplasmic reticulum. The kernels also express the low pi barley amylase amyl gene (Rogers,J.C. and Milliman,C. "Isolation and sequence analysis of a barley alpha-amylase cDNA clone" J. Biol. Chem. 258 (13), 8169-8174 (1983) modified to target expression of the protein to the endoplasmic reticulum. <br><br> The corn kernels are ground to a flour as described in Example 14. Then a mash is prepared containing 20 g of corn flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. ; ~s Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> 116 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Example 40 <br><br> Example of fermentation of raw starch in whole kemals of corn expressing Thermoanaerobacter thermosaccharolvticum glucoamylase and barlev amylase. <br><br> Transgenic corn kernels are harvested from transgenic plants made as described in Example 28. The corn kernels express a protein that contains an active fragment of the glucoamylase of Thermoanaerobacter thermosaccharolyticum (Sequence ID NO: 47) targeted to the endoplasmic reticulum. The kernels also express the low pi barley amylase amyl gene (Rogers,J.C. and Milliman,C. "Isolation and sequence analysis of a barley alpha-amylase cDNA clone" J. Biol. Chem. 258 (13), 8169-8174 (1983) modified to target expression of the protein to the endoplasmic reticulum, <br><br> The corn kernels are contacted with 20 g of corn flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids by weight). pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mixture; protease (0,60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mixture is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 41 <br><br> Example of fermentation of raw starch in corn expressing an alpha-amvlase and glucoamylase fusion. <br><br> Transgenic corn kernels are harvested from transgenic plants made as described in Example 28. The com kernels express a maize-optimized polynucleotide such as provided in SEQ ID NO: 46, encoding an alpha-amylase and glucoamylase fusion, such as provided in SEQ ID NO: 45, which are targeted to the endoplasmic reticulum. . <br><br> The corn kernels are ground to a flour as described in Example 14. Then a mash is prepared containing 20 g of com flour, 23 ml of de-ionized water, 6.0 ml of backset (8% solids <br><br> 117 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> by weight), pH is adjusted to 6.0 by addition of ammonium hydroxide. The following components are added to the mash: protease (0.60 ml of a 1,000-fold dilution of a commercially available protease), 0.2 mg Lactocide &amp; urea (0.85 ml of a 10-fold dilution of 50% Urea Liquor). A hole is cut into the cap of the 100 ml bottle containing the mash to allow CO2 to vent. The mash is then inoculated with yeast (1.44 ml) and incubated in a water bath set at 90° C. After 24 hours of fermentation the temperature is lowered to 86° C; at 48 hours it is set to 82° C. <br><br> Yeast for inoculation is propagated as described in Example 14. <br><br> Samples are removed as described in example 14 and then analyzed by the methods described in Example 14. <br><br> Example 42 <br><br> Construction of transformation vectors <br><br> Expression cassettes were constructed to express the hyperthermophilic beta-glucanase EglA in maize as follows; <br><br> pNOV4800 comprises the barley Amy32b signal peptide <br><br> (MGKNGNLCCFSLLLLLLAGLASGHQ) fused to the synthetic gene for the EglA beta-glucanase for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4803 comprises the barley Amy32b signal peptide fused to the synthetic gene for the EglA beta-glucanase for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize ubiquitin promoter for expression throughout the plant. <br><br> Expression cassettes were constructed to express the thermophilic beta-glucanase/mannanase 6GP1 (SEQ ID NO: 85) in maize as follows: <br><br> 118 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> pNOV4819 comprises the tobacco PR 1 a signal peptide <br><br> (MGFVLFSQLPSFLLVSTLLLFLVISHSCRA) fused to the synthetic gene for the 6GP1 beta-glucanase/mannanase for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4820 comprises the synthetic gene for 6GP1 cloned behind the maize y-zein promoter for cytoplasmic localization and expression specifically in the endosperm. <br><br> pNOV4823 comprises the tobacco PRla signal peptide fused to the synthetic gene for the 6GP1 beta-glucanase/mannanase with a C-terminal addition of the sequence KDEL for targeting to and retention in the endoplasmic reticulum. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4825 comprises the tobacco PRla signal peptide fused to the synthetic gene for the 6GP1 beta-glucanase/mannanase with a C-terminal addition of the sequence KDEL for targeting to and retention in the endoplasmic reticulum. The fusion was cloned behind the maize ubiquitin promoter for expression throughout the plant. <br><br> Expression cassettes were constructed to express the barley Amyl alpha-amylase (SEQ ID NO: 87) in maize as follows: <br><br> pNOV4867 comprises the maize y-zein N-terminal signal sequence fused to the barley Amyl alpha-amylase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4879 comprises the maize y-zein N-terminal signal sequence fused to the barley Amyl alpha-amylase with a C-terminal addition of the sequence SEKDEL for targeting to and retention <br><br> 119 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> in the endoplasmic reticulum. The fusion was cloned behind the maize globulin promoter for expression specifically in the embryo. <br><br> pNOV4897 comprises the maize y-zein N-terminal signal sequence fused to the barley Amyl alpha-amylase for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize globulin promoter for expression specifically in the embryo. <br><br> pNOV4895 comprises the maize y-zein N-terminal signal sequence fused to the barley Amyl alpha-amylase for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm pNOV4901 comprises the gene for the barley Amyl alpha-amylase cloned behind the maize globulin promoter for cytoplasmic localization and expression specifically in the embryo, <br><br> Expression cassettes were constructed to express the Rhizopus glucoamylase (SEQ ID NO: 50) in maize as follows: <br><br> pNOV4872 comprises the maize y-zein N-terminal signal sequence fused to the synthetic gene for Rhizopus glucoamylase with a C-terminal addition of the sequence SEKDEL for targeting to anu icicniion in the endoplasmic reticulum. The fusion was cloned behind the maize v-zein promoter for expression specifically in the endosperm. <br><br> pNOV4880 comprises the maize y-zein N-terminal signal sequence fused to the synthetic gene for Rhizopus glucoamylase with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum. The fusion was cloned behind the maize globulin promoter for expression specifically in the embryo. <br><br> pNOV4889 comprises the maize y-zein N-terminal signal sequence fused to the synthetic gene for Rhizopus glucoamylase for targeting to the endoplasmic reticulum and secretion into the <br><br> 120 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> apoplast. The fusion was cloned behind the maize globulin promoter for expression specifically inthe embryo. <br><br> pN()V4890 comprises the maize y-zein N-terminal signal sequence fused to the synthetic gene for Rhizopus glucoamylase for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> pNOV4891 comprises the synthetic gene for Rhizopus glucoamylase cloned behind the maize y-zein promoter for cytoplasmic localization and expression specifically in the endosperm. <br><br> Example 43 <br><br> Expression of the mesophilic Rhizopus glucoamylase in corn <br><br> A variety of constructs were generated for the expression of the Rhizopus glucoamylase in corn. The maize y-zein and globulin promoters were used to express the glucoamylase specifically in the endosperm or embryo, respectively. In addition, the maize y-zein signal sequence and a synthetic ER retention signal were used to regulate the subcellular localization of the glucoamylase protein. All 5 constructs (pNOV4872, pNC)V4880, pNOV4889, pNC)V4890, and pNOV4891) yielded transgenic plants with glucoamylase acLiviiy detected in the seed. Tables 7 and 8 show the results for individual transgenic seed (construct pNOV4872) and pooled seed (construct pNOV4889), respectively. No detrimental phenotype was observed for any transgenic plants expressing this Rhizopus glucoamylase. <br><br> Glucoamylase assay: Seed were ground to a flour and the flour was suspended in water. The samples were incubated at 30 degrees for 50 minutes to allow the glucoamylase to react with the starch. The insoluble material was pelleted and the glucose concentration was determined for the supematants. The amount of glucose liberated in each sample was taken as an indication of the level of glucoamylase present, Glucose concentration was determined by incubating the samples with GOHOD reagent (300mM Tris/Cl pH7.5, glucose oxidase <br><br> 121 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007182 <br><br> (20U/ml), horseradish peroxidase (20U/ml), o-dianisidine 0.1 mg/ml) for 30 minutes at 37 degrees C, adding 0.5 volumes of 12N H2S04, and measuring the OD540. <br><br> Table 7 shows activity of the Rhizopus glucoamylase in individual transgenic corn seed (construct pNOV4872). <br><br> Table 7 <br><br> U/g <br><br> Seed flour <br><br> Wild Type #1 <br><br> 0.07 <br><br> Wild Type #2 <br><br> 0.55 <br><br> Wild Type #3 <br><br> 0.25 <br><br> Wild Type #4 <br><br> 0.33 <br><br> Wild Type #5 <br><br> 0.30 <br><br> Wild Type #6 <br><br> 0.42 <br><br> Wild Type #7 <br><br> -0.01 <br><br> Wild Type #8 <br><br> 0.31 <br><br> MD9L022156 #1 <br><br> 5.17 <br><br> MD9L022156 #2 <br><br> 1.66 <br><br> MD9L022156 #3 <br><br> 7.66 <br><br> MD9L022156 #4 <br><br> 1.77 <br><br> MD9L022156 #5 <br><br> 7.08 <br><br> MD9L022156 #6 <br><br> 4.46 <br><br> MD9L022156 #7 <br><br> 2.20 <br><br> MD9L022156 #8 <br><br> 3.50 <br><br> MD9L023377 #1 <br><br> 9.23 <br><br> MD9L023377 #2 <br><br> 4.30 <br><br> MD9L023377 #3 <br><br> 6.72 <br><br> MD9L023377 #4 <br><br> 3.35 <br><br> MD9L023377 #5 <br><br> 0.56 <br><br> MD9L023377 #6 <br><br> 4.79 <br><br> MD9L023377 #7 <br><br> 4.60 <br><br> MD9L023377 #8 <br><br> 6.01 <br><br> MD9L023043 #1 <br><br> 4.93 <br><br> MD9L023043 #2 <br><br> 8.74 <br><br> MD9L023043 #3 <br><br> 2.70 <br><br> MD9L023043 #4 <br><br> 0.72 <br><br> MD9L023043 #5 <br><br> 3.33 <br><br> MD9L023043 #6 <br><br> 3.53 <br><br> MD9L023043 #7 <br><br> 3.94 <br><br> MD9L023043 #8 <br><br> 11.51 <br><br> 122 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> MD9L023334 #1 <br><br> 4.28 <br><br> MD9L023334 #2 <br><br> 2.86 <br><br> MD9L023334 #3 <br><br> 0.56 <br><br> MD9L023334 #4 <br><br> 6.96 <br><br> MD9L023334 #5 <br><br> 3.29 <br><br> MD9L023334 #6 <br><br> 3.18 <br><br> MD9L023334 #7 <br><br> 4.57 <br><br> MD9L023334 #8 <br><br> 7.44 <br><br> MD9L022039 #1 <br><br> 6.25 <br><br> MD9L022039 #2 <br><br> 2.85 <br><br> MD9L022039 #3 <br><br> 4.32 <br><br> MD9L022039 #4 <br><br> 2.51 <br><br> MD9L022039 #5 <br><br> 5.06 <br><br> MD9L022039 #6 <br><br> 5.03 <br><br> MD9L022039 #7 <br><br> 2.79 <br><br> MD9L022039 #8 <br><br> 2.98 <br><br> Table 8 shows activity of the Rhizopus glucoamylase in pooled transgenic corn seed (construct pNOV4889). <br><br> Table 8 <br><br> Seed <br><br> U/g flour <br><br> Wild Type <br><br> 0.38 <br><br> MD9L023347 <br><br> 2.14 <br><br> MD9L023352 <br><br> 2.34 <br><br> MD9L023369 <br><br> 1.66 <br><br> MD9L023469 <br><br> 1.42 <br><br> MD9L023477 <br><br> 1.33 <br><br> MD9L023482 <br><br> 1.95 <br><br> MD9L023484 <br><br> 1.32 <br><br> MD9LQ24170 <br><br> 1.35 <br><br> MD9L024177 <br><br> 1.48 <br><br> MD9L024184 <br><br> 1.60 <br><br> MD9LQ24186 <br><br> 1.34 <br><br> MD9L024196 <br><br> 1.38 <br><br> MD9L024228 <br><br> 1.69 <br><br> MD9L024263 <br><br> 1.70 <br><br> MD9L024315 <br><br> 1.32 <br><br> 123 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> MD9L024325 <br><br> MD9L024333 <br><br> MD9L024339 <br><br> 1.73 1.41 1.84 <br><br> All expression cassettes were inserted into the binary vector pNOV2117 for transformation into maize via Agrobacterium infection. The binary vector contained the phosphomannose isomerase (PMI) gene which allows for selection of transgenic cells with mannose. Transformed maize plants were either self-pollinated or outcrossed and seed was collected for analysis. <br><br> Example 44 <br><br> Expression of the hyperthermophilic beta-glucanase EglA in corn <br><br> For expression of the hyperthermophilic beta-glucanase EglA in corn we utilized the ubiquitin promoter for expression throughout the plant and the y-zein promoter for expression specifically in the endosperm of com seed. The barley Amy32b signal peptide was fused to EglA for localization in the apoplast. <br><br> Expression of the hyperthermophilic beta-glucanase EglA in transgenic com seed and leaves was analysed using an enzymatic assay and western blotting. <br><br> Transgenic seed segregating for construct pNOV4800 or pNC)V4803 were analysed using both western blotting and an enzymatic assay for beta-glucanase. Endosperm was isolated from individual seed after soaking in water for 48 hours. Protein was extracted by grinding the endosperm in 50mM NaP04 buffer (pH 6,0). Heat -stable proteins were isolated by heating the extracts at 100 degrees C for 15 minutes, followed by pelleting of the insoluble material. The supernatant containing heat-stable proteins was analysed for beta glucanase activity using the azo-barley glucan method (megazyme). Samples were pre-incubated at 100 degrees C for 10 <br><br> minutes and assayed for 10 minutes at 100 degrees C using the azo-barley glucan substrate. <br><br> Following incubation, 3 volumes of precipitation solution were added to each sample, the samples were centrifuged for 1 minute, and the OD590 of each supernatant was determined. In addition, Sug of protein were separated by SDS-PAGE and blotted to nitrocellulose for western <br><br> 124 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> blot analysis using antibodies against the EglA protein. Western blot analysis detected a specific, heat-stable protein(s) in the EglA positive endosperm extracts, and not in negative extracts. The western blot signal correlates with the level of EglA activity detected enzymatically. <br><br> EglA activity was analysed in leaves and seed of plants containing the transgenic constructs pNOV48()3 and pNC)V4800, respectively. The assays (conducted as described above) showed that the heat-stable beta-glucanase EglA was expressed at various levels in the leaves (Table 9) and seed (Table 10) of transgenic plants while no activity was detected in non-transgenic control plants. Expression of EglA in corn utilizing constructs pNOV4800 and pNOV4803 did not result in any detectable negative phenotype. <br><br> Table 9 shows the activity of the hyperthermophilic beta-glucanase EglA in leaves of transgenic corn plants. Enzymatic assays were conducted on extracts from leaves of pNOV4803 transgenic plants to detect hyperthermophilic beta-glucanase acitivity. Assays were conducted at 100 degrees C using the azo-barley glucan method (megazyme). The results indicate that the transgenic leaves have varying levels of hyperthermophilic beta-glucanase activity. <br><br> Table 9 <br><br> plant <br><br> Abs590 <br><br> Wild Type <br><br> 0 <br><br> 266A-17D <br><br> 0.008 <br><br> 266A-18E <br><br> 0.184 <br><br> 266A-13C <br><br> 0.067 <br><br> 266A-15E <br><br> 0.003 <br><br> 266A-11E <br><br> 0 <br><br> 265C-1B <br><br> 0.024 <br><br> 265C-1C <br><br> 0.065 <br><br> 265C-2D <br><br> 0.145 <br><br> 265C-5C <br><br> 0.755 <br><br> 265C-5D <br><br> 0.133 <br><br> 265C-3A <br><br> 0.076 <br><br> 266A-4B <br><br> 0.045 <br><br> 266A-12B <br><br> 0.066 <br><br> 266A-11C <br><br> 0.096 <br><br> 125 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 266A-14B 266A-4C 266A-4A 266A-12A 266A-15B 266A-11A 266A-20C 266A-19D 266A-12C 266A-4E 266A-18B 265C-3D 266A-20E 266A-13D 265C-3B 266A-15A 266A-13A 265C-3E 266A-20A 266A-20B 266A-19C 266A-20D 266A-4D 266A-18A 265C-5E 266A-17E 266A-11B 265C-4E 265C-4D <br><br> 0.074 <br><br> 0.107 <br><br> 0.084 <br><br> 0.054 <br><br> 0.052 <br><br> 0.109 <br><br> 0.044 <br><br> 0.02 <br><br> 0.098 <br><br> 0.248 <br><br> 0.367 <br><br> 0.066 <br><br> 0.163 <br><br> 0.084 <br><br> 0.065 <br><br> 0.131 <br><br> 0.169 <br><br> 0.116 <br><br> 0.365 <br><br> 0.521 <br><br> 0.641 <br><br> 0.561 <br><br> 0.363 <br><br> 0.676 <br><br> 0.339 <br><br> 0.221 <br><br> 0.251 <br><br> 0.138 <br><br> 0.242 <br><br> 126 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Table 10 shows the activity of the hyperthermophilic beta-glucanase EglA in seed of transgenic corn plants. Enzymatic assays were conducted on extracts from individual, segregating seed of pNC&gt;V4800 transgenic plants to detect hyperthermophilic beta-glucanase acitivity. Assays were conducted at 100 degrees C using the azo-barley glucan method (megazyme). The results indicate that the transgenic seed have varying levels of hyperthermophilic beta-glucanase activity. <br><br> Table 10 <br><br> Seed <br><br> Abs 590 <br><br> Wild Type <br><br> 0 <br><br> 1A <br><br> 1.1 <br><br> 1B <br><br> 0 <br><br> 1C <br><br> 1.124 <br><br> 1D <br><br> 1.323 <br><br> 2A <br><br> 0 <br><br> 2B <br><br> 1.354 <br><br> 2C <br><br> 1.307 <br><br> 2D <br><br> 0 <br><br> 3A <br><br> 0.276 <br><br> 3B <br><br> 0.089 <br><br> 3C <br><br> 0.463 <br><br> 3D <br><br> 0 <br><br> 4A <br><br> 0.026 <br><br> 4B <br><br> 0.605 <br><br> 4C <br><br> 0.599 <br><br> 4D <br><br> 0.642 <br><br> 5A <br><br> 1.152 <br><br> 5B <br><br> 1.359 <br><br> 5C <br><br> 1.035 <br><br> 5D <br><br> 0 <br><br> 6A <br><br> 0.006 <br><br> 6B <br><br> 1.201 <br><br> 6C <br><br> 0.034 <br><br> 6D <br><br> 1.227 <br><br> TA <br><br> 0.465 <br><br> 7B <br><br> 0 <br><br> 7C <br><br> 0.366 <br><br> 70 <br><br> 0.77 <br><br> 8A <br><br> 1.494 <br><br> 8B <br><br> 1.427 <br><br> 127 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> 8C 0.003 8D 1.413 <br><br> 128 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Effect of transgenic expression of endoglucanase EglA on cell wall composition &amp; in vitro digestibility analysis <br><br> Five individual seed from each of two lines, #263 &amp; #266, not expressing or expressing Egla (pNC)V4803) respectively were grown in the greenhouse. Protein extracts made from small leaf samples from immature plants were used to verify that transgenic endoglucanase activity was present in #266 plants but not #263 plants. At full plant maturity, -30 days after pollination, the whole above ground plant was harvested, roughly chopped, and oven dried for 72 hours. <br><br> Each sample was divided into 2 duplicate samples (labelled A &amp; B respectively), and subjected to in vitro digestibility analysis using strained rumen fluid using common procedures (Forage fiber analysis apparatus, reagents, procedures, and some applications, by H. K. Goering and P. J. Van Soest, Goering, H. Keith 1941 (Washington, D.C.) : Agricultural Research Service, U.S. Dept. of Agriculture, 1970. iv, 20 p. : ill.--Agriculture handbook ; no. 379 ), except that material was treated by a pre-incubation at either 40°C or 90°C prior to in vitro digestibility analysis. In vitro digestibility analysis was performed as follows: <br><br> Samples were chopped to about 1mm with a wiley mill, and then sub-divided into 16 weighed aliquots for analysis. Material was suspended in buffer and incubated at either 40°C or 90°C for 2 hours, then cooled overnight. Micronutrients, trypticase &amp; casein &amp; sodium sulfite were added, followed by strained nimen fluid, and incubated for 30 hours at 37°C. Analyses of neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (AD-L) were performed using standard gravimeteric methods (Van Soest &amp; Wine, Use of Detergents in the Analysis of fibrous Feeds. IV. Determination of plant cell-wall constituents. P.J. Van Soest &amp; R.H. Wine. (1967). Journal of The AOAC, 50: 50-55; see also Methods for dietry fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition (1991). P.J. Van Soest, J.B. Robertson &amp; B.A. Lewis. J. Dairy Science, 74:3583-3597.). <br><br> Data show that transgenic plants expressing EglA (#266) contain more NDF than control plants (#233), whilst ADF &amp; lignin are relatively unchanged. The NDF fraction of transgenic <br><br> 129 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> plants is more readily digested than that of non-transgenic plants, and this is due to an increase in the digestibility of cellulose (NDF - ADF - AD-L), consistent with "self-digestion" of the cell-wall cellulose by the transgenically expressed endoglucanase enzyme. <br><br> Example 45 <br><br> Expression of the thermophilic beta-glucanase/mannanase (6GPI) in corn <br><br> Transgenic seed for pNOV4820 and pNOV4823 were analysed for 6GP1 beta glucanase activity using the azo-barley glucan method (megazyme). Enzymatic assays conducted at 50 degrees C indicate that the transgenic seed have thermophilic 6GP1 beta-glucanase activity while no activity was detected in non-transgenic seed (positive signal represents background noise associated with this assay). <br><br> Table 11 shows activity of the thermophilic beta-glucanase/mannanase 6GP1 in transgenic corn seed. Transgenic seed for pNOV4820 (events 1-6) and pNOV4823 (events 7-9) were analysed for 6GP1 beta-glucanase activity using the azo-barley glucan method (megazyme). Enzymatic assays were conducted at 50 degrees C and the results indicate that the transgenic seed have thermophilic 6GP1 beta-glucanase activity while no activity is detected in non—transgenic seed. <br><br> Table 11 <br><br> Seed <br><br> Abs 590 <br><br> Wild Type <br><br> 0 <br><br> 1 <br><br> 0.21 <br><br> 2 <br><br> 0.31 <br><br> 3 <br><br> 0.36 <br><br> 4 <br><br> 0.23 <br><br> 5 <br><br> 0.16 <br><br> 6 <br><br> 0.14 <br><br> 7 <br><br> 0.52 <br><br> 8 <br><br> 0.54 <br><br> 9 <br><br> 0.49 <br><br> Example 46 <br><br> 130 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Expression of the mesophilic barlev Amvl amylase in corn <br><br> A variety of constructs were generated for the expression of the barley Amyl alpha-amylase in corn. The maize y-zein and globulin promoters were used to express the amylase specifically in the endosperm or embryo, respectively. In addition, the maize y-zein signal sequence and a synthetic ER retention signal were used to regulate the subcellular localization of the amylase protein. All 5 constructs (pNOV4867, pNOV4879, pNOV4897, pNOV4895, pNOV4901) yielded transgenic plants with alpha-amylase activity detected in the seed. Table 12 shows the activity in individual seed for 5 independent, segregating events (constructs pNOV4879 and pNOV4897). All of the constructs produced some transgenic events with a shrivelled seed phenotype indicating that synthesis of the barley Amyl amylase could effect starch formation, accumulation, or breakdown. <br><br> Table 12 shows activity of the barley Amyl alpha-amylase in individual com seed (constructs pNOV4879 and pNOV4897). Individual, segregating seed for constructs pNOV4879 (seed samples 1 and 2) and pNOV4897 (seed samples 3-5) were analysed for alpha-amylase activity as described previously. <br><br> Table 12 <br><br> Seed <br><br> U/g corn flour <br><br> 1A <br><br> 19.29 <br><br> IB <br><br> 1.49 <br><br> 1C <br><br> 18.36 <br><br> ID <br><br> 1.15 <br><br> IE <br><br> 1.62 <br><br> IF <br><br> 14.99 <br><br> 1G <br><br> 1.88 <br><br> IH <br><br> 1.83 <br><br> 2A <br><br> 2.05 <br><br> 2B <br><br> 36.79 <br><br> 131 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 2C <br><br> 30.11 <br><br> 2D <br><br> 2.25 <br><br> 2E <br><br> 32.37 <br><br> 2F <br><br> 1.92 <br><br> 2G <br><br> 20.24 <br><br> 2H <br><br> 35.76 <br><br> 3A <br><br> 22.99 <br><br> 3B <br><br> 1.72 <br><br> 3C <br><br> 25.38 <br><br> 3D <br><br> 18.41 <br><br> 3E <br><br> 28.51 <br><br> 3F <br><br> 2.11 <br><br> 3G <br><br> 16.67 <br><br> 3H <br><br> 1.89 <br><br> 4A <br><br> 1.57 <br><br> 4B <br><br> 36.14 <br><br> 4C <br><br> 23.35 <br><br> 4D <br><br> 1.70 <br><br> 4E <br><br> 1.94 <br><br> 4F <br><br> 14.38 <br><br> 4G <br><br> 2.09 <br><br> 4H <br><br> 1.83 <br><br> C A <br><br> 11 54 <br><br> 5B <br><br> 18.20 <br><br> 5C <br><br> 1.87 <br><br> 5D <br><br> 2.07 <br><br> 5E <br><br> 1.71 <br><br> 5F <br><br> 1.92 <br><br> 5G <br><br> 12.94 <br><br> 5H <br><br> 15.25 <br><br> Example 47 <br><br> 132 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Preparation of Xvlanase Constructs <br><br> Table 13 lists 9 binary vectors that each contain a unique xylanase expression cassette. The xylanase expression cassettes include a promoter, a synthetic xylanase gene (coding sequence), an intron (PEPC, inverted), and a-terminator (35S). <br><br> Two synthetic maize-optimized endo-xylanase genes were cloned into binary vector pNOV2117. These two xylanase genes were designated BD7436 (SEQ ID NO: 61) and BD6002A (SEQ ED NO:63). Additional binary vectors containing a third maize-optimized sequence, BD6002B (SEQ ID NO:65) can be made. <br><br> Two promoters were used: the maize glutelin-2 promoter (27-kD gamma-zein promoter (SEQ ID NO: 12 ) and the rice glutelin-1 (Osgtl) promoter (SEQ ID NO: 67). The first 6 vectors listed in Table 1 have been used to generate transgenic plants. The last 3 vectors can also be made and used to generate transgenic plants. <br><br> Vector 11560 and 11562 encode the polypeptide shown in SEQ ID NO: 62 (BD7436). Constructs 11559 and 11561 encode a polypeptide consisting of SEQ ID NO: 17 fused to the N-terminus of SEQ ID NO: 62. SEQ ID NO: 17 is the 19 amino acid signal sequence from the 27- <br><br> IcD gamma-rein nrotein. <br><br> a — - -. k <br><br> Vector 12175 encodes the polypeptide shown in SEQ ID NO: 64(BD6002A). Vector 12174 encodes a fusion protein consisting of the gamma-zein signal sequence (SEQ ID NO: 17) fused to the N-terminus of SEQ ID NO: 64. <br><br> Vectors pWIN062 and pWENQ64 encode the polypeptide shown in SEQ ED NO: 66(BD6002B). Vector pWIN058 encodes a fusion protein consisting of the chloroplast transit peptide of maize waxy protein (SEQ ED NO:68) fused to the N-terminus of SEQ ED NO: 66 . <br><br> 133 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Table 13 Xylanase binary vectors <br><br> Vector <br><br> Promoter <br><br> Signal Sequence Source <br><br> Xylanase Gene <br><br> 11559 <br><br> 27kD Gamma-zein <br><br> 27kD Gamma-zein <br><br> BD7436 <br><br> 11560 <br><br> 27kD Gamma-zein <br><br> None <br><br> BD7436 <br><br> 1(561 <br><br> OsGtl <br><br> 27kD Gamma-zein <br><br> BD7436 <br><br> 11562 <br><br> OsGtl <br><br> None <br><br> BD7436 <br><br> 12174 <br><br> 27kD Gamma-zein <br><br> 27kD Gamma-zein <br><br> BD6002A <br><br> 12175 <br><br> 27kJD Gamma-zein <br><br> None <br><br> BD6002A <br><br> PWIN058 <br><br> 27kD Gamma-zein <br><br> Maize waxy protein <br><br> BD6002B <br><br> PWIN062 <br><br> OsGtl <br><br> None <br><br> BD6002B <br><br> PWIN064 <br><br> 27kD Gamma-zein <br><br> None <br><br> BD6002B <br><br> All constructs include an expression cassette for PMI, to allow positive selection of regenerated transgenic tissue on mannose-containing media. <br><br> Example 48 <br><br> Xylanase Activity Assay Results <br><br> The data shown in Tables 14 and 15 demonstrate that xylanase activity accumulates in T1 generation seed harvested from regenerated (TO) maize plants stably transformed with binary vectors containing xylanase genes BD7436 (SEQ ID NO: 61 in Example 47) and BD6002A (SEQ ID NO:63 in Example 47). Using an Azo-WAXY assay (Megazyme), activity was detected in extracts from both pooled (segregating) transgenic seed and single transgenic seed. <br><br> T1 seed were pulverized and soluble proteins were extracted from flour samples using , citrate-phosphate buffer (pH 5.4). Flour suspensions were stirred at room temperature for 60 minutes, and insoluble material was removed by centrifugation. The xylanase activity of the supernatant fraction was measured using the Azo-WAXY assay (McCleary, B.V. "Problems in the measurement of beta-xylanase, beta-glucanase and alpha-amylase in feed enzymes and animal feeds". In proceedings of Second European Symposium on Feed Enzymes" (W.van Hartingsveldt, M. Hessing, J.P. van der Jugt, and W.A.C Somers Eds.), Noordwiijkerhout, Netherlands, 25-27 October, 1995). Extracts and substrate were pre-incubated at 37°C. To 1 volume of IX extract supernatant, 1 volume of substrate (1% Azo-Wheat Arabinoxylan S-AWAXP) was added and then incubated at 37°C for 5 minutes. Xylanase activity in the com <br><br> 134 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> flour extract depolymerizes the Azo-Wheat Arabinoxylan by an endo-mechanism and produces low molecular weight dyed fragments in the form of xylo-oligomers. After the 5 minute incubation, the reaction was terminated by the addition of 5 volumes of 95% EtOH. Addition of alcohol causes the non-depolymerized dyed substrate to precipitate so that only the lower molecular weight xylo-oligomers remain in solution. Insoluble material was removed by centrifiigation. The absorbance of the supernatant fraction was measured at 590nm, and the units of xylanase per gram of flour were determined by comparison to the absorbance values from identical assays using a xylanase standard of known activity. The activity of this standard was determined by a BCA assay. The enzyme activity of the standard was determined using wheat arabinoxylan as substrate and measuring the release of reducing ends by reaction of the reducing ends with 2,2'-bicinchoninic acid (BCA). The substrate was prepared as a 1.4% w/w solution of wheat arabinoxylan (Megazyme P-WAXYM) in 100 mM sodium acetate buffer pH5.30 containing 0.02% sodium azide. The BCA reagent was prepared by combining 50 parts reagent A with I part reagent B (reagents A and B were from Pierce, product numbers 23223 and 23224, respectively). These reagents were combined no more than four hours before use. The assay was performed by combining 200 microliters of substrate to 80 microliters of enzyme sample. After incubation at the desired temperature for the desired length of time, 2,80 milliliters of BCA reagent was added. The contents were mixed and placed at 80°C for 30-45 minutes. The contents were allowed to cool and then transferred to cuvettes and the absorbance at 560nm was measured relative to known concentrations of xylose. The choice of enzyme dilution, incubation time, and incubation temperature could be varied by one skilled in the art. <br><br> The experimental results shown in Table 14 demonstrate the presence of recombinant xylanase activity in flour prepared from T1 generation corn seed. Seed from 12 TO plants (derived from independent T-DNA integration events) were analyzed. The 12 transgenic events were derived from 6 different vectors as indicated (refer to Table 13 in Example 47 for description of vectors). Extracts of non-transgenic (negative control) com flour do not contain measurable xylanase activity (see Table 15). The xylanase activity in these 12 samples ranged from 10-87 units/gram of flour. <br><br> 135 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Table 14. Analysis of {fooled T1 seed. <br><br> Vector <br><br> Sample <br><br> Xylanase Units / Gram of Flour <br><br> 11559 <br><br> MD9L013800 <br><br> 63 <br><br> 11559 <br><br> MD9L012428 <br><br> 58 <br><br> 11560 <br><br> MD9L011296 <br><br> 33 <br><br> 11560 <br><br> MD9L011322 <br><br> 21 <br><br> 11561 <br><br> MD9L012413 <br><br> 87 <br><br> 11561 <br><br> MD9L012443 <br><br> 83 <br><br> 11562 <br><br> MD9L012890 <br><br> 13 <br><br> 11562 <br><br> MD9L013788 <br><br> 12 <br><br> 12174 <br><br> MD9L022080 <br><br> 16 <br><br> 12174 <br><br> MD9L022195 <br><br> 10 <br><br> 12175 <br><br> MD9L022061 <br><br> 74 <br><br> 12175 <br><br> MD9L022134 <br><br> 69 <br><br> The results in Table 15 demonstrate the presence of xylanase activity in com flour derived from single kernels. T1 seed from two TO plants containing vectors 11561 and 11559 were analyzed. These vectors are described in Example 47. Eight seed from each of the two plants were pulverized and flour samples from each seed were extracted. The table shows results of single assays of each extract. No xylanase activity was found in assays of extracts of seeds 1, 5, &lt;uiti o for both transgenic events. These seed represent mill segregants. Seed 2, 3, 4, 6, and 7 for both transgenic events accumulated measurable xylanase activity attributable to expression of the recombinant BD7436 gene. All 10 seed that tested positive for xylanase activity (&gt;10 unit/gram flour) had an obvious shriveled or shrunken appearance. By contrast the 6 seed that tested negative for xylanase activity (&lt;1 unit/gram flour) had a normal appearance. This result suggests that the recombinant xylanase depolymerized endogenous (arabino)xylan substrate during seed development and/or maturation. <br><br> Table 15. Analysis of single T1 seed. <br><br> Vector 11561 <br><br> Vector 11559 <br><br> 136 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Seed <br><br> Xylanase Units/ <br><br> Seed <br><br> Xylanase Units / <br><br> Number <br><br> Gram of Flour <br><br> Number <br><br> Gram of Flour <br><br> 1 <br><br> 0 <br><br> 1 <br><br> 1 <br><br> 2 <br><br> 45 <br><br> 2 <br><br> 52 <br><br> 3 <br><br> 38 <br><br> 3 <br><br> 21 <br><br> 4 <br><br> 40 <br><br> 4 <br><br> 13 <br><br> 5 <br><br> 0 <br><br> 5 <br><br> 0 <br><br> 6 <br><br> 40 <br><br> 6 <br><br> 28 <br><br> 7 <br><br> 32 <br><br> 7 <br><br> 23 <br><br> 8 <br><br> 0 <br><br> 8 <br><br> 0 <br><br> Example 49 <br><br> Enhanced starch recovery from com seed using enzymes <br><br> Com wet-milling includes the steps of steeping the com kernel, grinding the com kernel, and separating the components of the kernel. A bench top assay (the Cracked Com Assay) was developed to mimic the com wet-milling process <br><br> The "Cracked Com Assay" was used for identifying enzymes that enhance starch yield from maize seed resulting in an improved efficiency of the com wet milling process. Enzyme delivery was either hv exogenous addition, transgenic com seed, or a combination of both. In addition to the use of enzymes to facilitate separation of the com components, elimination of SO2 from the process is also shown. <br><br> Cracked Com Assay. <br><br> One gram of seed was steeped overnight in 4000, 2000, 1000, 500,400, 40, or 0 ppm S02 at 50 degrees C or 37 degrees C. Seeds were cut in half and the germ removed. Each half seed was cut in half again. Steep water from each steeped seed sample was retained and diluted to a final concentrations ranging from 400 ppm to 0 ppm SO2. Two milliliters of the steep water with or without enzymes was added to the de-germed seeds and the samples placed at 50 <br><br> 137 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> degrees C or 37degrees C for 2-3 hours. Each enzyme was added at 10 units per sample. All samples were vortexed approximately every 15 minutes. After 2-3 hours the samples were filtered through mira cloth into a 50ml centrifuge tube. The seeds were washed with 2 ml of water and the sample pooled with the first supernatant. The samples were centrifuged for 15 minutes at 3000 rpm. Following centrifugation, the supernatant was poured off and the pellet placed at 37 degrees C to dry. All pellet weights were recorded. Starch and protein determinations ware also carried out on samples for determining the starch :protein ratios released during the treatments (data not shown). <br><br> Anaylsis of T1 and T2 seed from maize plants expressing 6GP1 endoglucanase in Cracked corn Assay <br><br> Transgenic com (pNOV4819 and pNOV4823) containing a thermostable endoglucanse performed well when analyzed in the Cracked Corn Assay. Recovery of starch from the pNOV4819 line was found to be 2 fold higher in seeds expressing the endoglucanase when steeped in 2000 ppm SO2. Addition of a protease and cellobiohydrolase to the endoglucanse seed increased the starch recovery approximately 7 fold over control seeds. See Table 16. <br><br> Similar results were seen in transgenic seed containing endoglucanase targeted to the ER of the <br><br> Table 16. Crack Com Assay results for cytosolic expressed Endoglucanase (pNQV4820). Control line, A188/Hill <br><br> PNOV4819 lines, 42C6A-1-21 and 27. <br><br> Bill lliBBB <br><br> M88/HiII Control <br><br> Ho Enzyme <br><br> 28.4 <br><br> M88/HiII Control <br><br> Bromelain/C8546 10U <br><br> 109.3 <br><br> 42C6A-1-21 <br><br> No Enzyme <br><br> 52.6 <br><br> 42C6A-1-21 <br><br> Bromelain/C8S46 10U <br><br> 170.4 <br><br> 42C6A-1-27 <br><br> No Enzyme <br><br> 60.5 <br><br> 42C6A-1-27 <br><br> Bromelain/C8546 1QU <br><br> 207.5 <br><br> 138 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> endosperm (pNOV4823), again resulting in a 2 -7 fold increase in starch recovery when compared to control seed. See Table 17. <br><br> Table 17. Crack Corn Assay results for ER expressed endoglucanase (pNOV4823). Control line, A188/HiII; PNOV4823 line, 101D11 A-l-28. <br><br> Line <br><br> Treatment <br><br> Starch Pellet Wt <br><br> (ma) <br><br> Starch Pellet Wt (ma) <br><br> Mean Wt. <br><br> M88/HNI <br><br> No Enzyme <br><br> 22.5 <br><br> 19.1 <br><br> 20.8 <br><br> 101D11A-1-28 <br><br> No Enzvme <br><br> 41.2 <br><br> 32 <br><br> 36.6 <br><br> A188/Hill <br><br> 10U Bromelian/C8546 <br><br> 78.6 <br><br> 73.8 <br><br> 76.2 <br><br> 101D11A-1-28 <br><br> 10U Bromelian/C8546 <br><br> 169.8 <br><br> 132.6 <br><br> 151.2 <br><br> These results confirm that expression of an endoglucanase enhances the separation of starch and protein components of the corn seed. Further more it could be shown that reduction or removal of S02 during the steeping process resulted in starch recovery that was comparable to or better than normally steeped control seeds. See Table 18. Removal of high levels of S02 from the wet-milling process can provide value-added benefits. <br><br> Table 18. Comparison of various concentrations of S02 on starch recovery from transgenic <br><br> 6GP1 seed. <br><br> Line <br><br> Treatment <br><br> Starch Pellet Wt (mg) <br><br> A188 Control <br><br> 2000 ppm S02 <br><br> 18.5 <br><br> JHAF Control <br><br> 2000 ppm S02 <br><br> 29.1 <br><br> 42C (pNOV482G) <br><br> 2000 ppm S02 <br><br> 29.5 <br><br> 101C (pNOV4823) <br><br> 2000 ppm S02 <br><br> 73.1 <br><br> 101D (pNOV4823) <br><br> 2000 ppm S02 <br><br> 42.5 <br><br> 136A (PNOV4825) <br><br> 2000 ppm S02 <br><br> 36.6 <br><br> 139 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 137A (pNOV4825) <br><br> 2000 ppm S02 <br><br> 38.6 <br><br> 42C (pNOV4820) <br><br> 400 ppm S02 <br><br> 18.5 <br><br> 101C (PNOV4823) <br><br> 400 ppm S02 <br><br> 20.4 <br><br> 101D (PNOV4823) <br><br> 400 ppm S02 <br><br> 39.7 <br><br> 136 A (PNOV4825) <br><br> 400 ppm SQ2 <br><br> 26 <br><br> 137A (PNOV4825) <br><br> 400 ppm S02 <br><br> 26.9 <br><br> 42C (pNOV4820) <br><br> 0 ppm S02 <br><br> 21.9 <br><br> 101C (pNOV4823) <br><br> 0 ppm S02 <br><br> 32.5 <br><br> 101D (pNOV4823) <br><br> 0 ppm S02 <br><br> 39 <br><br> 136A (PNOV4825) <br><br> 0 ppm S02 <br><br> 17.8 <br><br> 137A (PNOV4825) <br><br> 0 ppm S02 <br><br> 29.2 <br><br> Example 50 <br><br> Construction of transformation vectors for maize optimized bromelain <br><br> Expression cassettes were constructed to express the maize optimized bromelain in maize endosperm with various targeting signals as follows: <br><br> pSYNl 1000 (SEQ ID NO. 73 ) comprises the bromelain signal sequence (MAWKVQWFLFLFLCVMWASPSAASA) (SEQ ED NO: 72) and synthetic bromelain sequence fused with a C-terminal addition of the sequence VFAEALAANSTLVAE for targeting to and retention in the PVS (Vitale and Raikhel Trends in Plant Science Vol 4 no.4 pg 149-155), <br><br> T*i i i i J *1 : <br><br> 11JC lUdlVii waa viviicu ucitiiiu uiw iuai£.c gamiua lvui ptviuuiwi ivi wApv^ivn &lt;9|/wviiivoiijr in vnw endosperm. <br><br> pSYNl 1587 (SEQ ID NO:75) comprises the bromelain N-terminal signal sequence (MAWKVQWFLFLFLCVMWASPSAASA) and synthetic bromelain sequence with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum (ER) (Munro and Pelham, 1987). The fusion was cloned behind the maize gamma zein promoter.for expression specifically in the endosperm. <br><br> pSYNl 1589 (SEQ ED NO. 74) comprises the bromelain signal sequence (MAWKVQWFLFLFLCVMWASPSAASA) (SEQ ID NO: 72) fused to the lytic vacuolar <br><br> 140 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> targeting sequence SSSSFADSNPIRVTDRAAST (Neuhaus and Rogers Plant Molecular Biology 38:127-144, 1998) and synthetic bromelain for targeting to the lytic vacuole. The fusion was cloned behind the maize gamma zein prmoter for expression specifically in the endosperm. <br><br> pSYN12169 (SEQ ID NO: 76) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO.T7) fused to the synthetic bromelain for targeting to the endoplasmic reticulum and secretion into the apoplast (Torrent et al. 1997). The fusion was cloned behind the maize gamma zein promoter for expression specifically in the endosperm. <br><br> pSYN12575 (SEQ ID NO:77) comprises the waxy amyloplast targeting peptide (Klosgen et al., 1986) fused to the synthetic bromelain for targeting to the amyloplast. The fusion was cloned behind the gamma zein promoter for expression specifically in the endosperm. <br><br> pSM270 (SEQ ID N0.78 ) comprises the bromelain N-terminal signal sequence fused to the lytic vacuolar targeting sequence SSSSFADSNPIRVTDRAAST (Neuhaus and Rogers Plant Molecular Biology 38:127-144, 1998) and synthetic bromelain for targeting to the lytic vacuole. The fusion was cloned behind the aleurone specific promoter P19 (US Patent 6392123) for expression specifically in the aleurone. <br><br> Example 51 <br><br> Expression of bromelain in com <br><br> Seeds from I I transgenic lines transformed with vectors containing the synthetic bromelain gene with targeting sequences for expression in various subcellular location of the seed were analyzed for protease activity. Corn-flour was made by grinding seeds, for 30 sec., in the Kleco grinder. The enzyme was extracted from 100 mg of flour with 1 ml of 50 mM NaOAc pH4.8 or 50 mM Tris pH 7.0 buffer containing lmM EDTA and 5 mM DTT. Samples were vortexed, then placed at 4C with continuous shaking for 30 min. Extracts from each transgenic line was assayed using resorufin labeled casein (Roche, Cat. No. 1 080 733) as outlined in the product brochure. Flour from T2 seeds were assayed using a bromelain specific assay as outlined in Methods in Enzymology Vol. 244: Pg 557-558 with the following modifications. lOOmg of com seed flour was extracted with 1ml of 50mMNa2HPOV50mM NaH2P04, pH 7.0, 1 <br><br> 141 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> mM EDTA +/- 1/xM leupeptin for 15 min at 4°C. Extracts were centrifuged for 5 min at 14,000 rpm at 4°C. Extracts were done in duplicates. .Flour from T2 Transgenic lines was assayed for bromelain activity using Z-Arg-Arg-NHMec (Sigma) as a substrate. Four aliquots of 100/xl /com seed extracts were added to 96 well flat bottom plates (Coming) containing 50/d 100mMNa2HPOit/100iTiM NaHaPOo, pH 7.0,2mM EDTA, 8mM DTT/well. The reaction was started by the addition of 50/il of 20/xM Z-Arg-Arg-NHMec. The reaction rate was monitor using a SpectraFluorPlus(Tecan) fitted with a 360nm excitation and 465nm emission filters at 40°C at 2.5min intervals. <br><br> Table 19 shows the analysis of seed from different T1 bromelain events. Bromelain expression was found to be 2-7 fold higher than the A188 and JHAF control lines. T1 <br><br> transgenic lines were replanted and T2 seeds obtained. Analysis of T2 seeds showed expression of bromelain. Figure 21 shows bromelain activity assay using Z-Arg-Arg-NHMec_in <br><br> T2 seed for ER targeted (11587) and lytic vacuolar targeted (11589) bromelain. <br><br> Analysis of T2 seed from maize plants expressing Bromelain <br><br> Seed from T2 transgenic bromelain line, 11587-2 was analyzed in the Cracked Com assay for enhanced starch recovery. Previous experiments using exogenously added bromelain showed an increased starch recovery when tested alone and in combination with other enzymes, particularly cellulases. The T2 seed from line 11587-2 showed a 1.3 fold increase in starch recovered over control seed when steeped at 37C/2000 ppm S02 overnight. More importantly, there was the 2 fold increase in starch from the T2 bromelain line, 11587-2 when a cellulase (C8546) was added when seeds were steeped at 37C/2000 ppm S02. <br><br> The transgenic line showed a similar trend in increased starch over control seed when seeds were steeped at 37C/400 ppm S02. A 1.6 fold increase starch recovered over control was <br><br> 142 <br><br> WO 2005/096804 <br><br> PCT7US2004/007182 <br><br> seen in the transgenic seed and a 2.1 fold increase of starch with addition of a cellulase (C8546). See Table 20. <br><br> These results are significant in showing that it is possible to reduced temperature and S02 levels while also enhancing the starch recovery during the wet-milling process when transgenic seed expressing a bromelain is used. <br><br> Table 19 <br><br> Summary of Grain Specific Expression of Bromelain in T1 com. <br><br> Line Number . <br><br> ■'targeting'.:-. <br><br> Construct <br><br> : "Specific Activity? ng <br><br> • -Brbmelaln/protein <br><br> 11000-1 <br><br> Vacuolar <br><br> GZP/probromelain/barleyPVS <br><br> 252 <br><br> 11000-2 <br><br> Vacuolar <br><br> GZP/probromelain/barleyPVS <br><br> 277 <br><br> 11000-3 <br><br> Vacuolar <br><br> GZP/probromelain/barleyPVS <br><br> 284 <br><br> 11587-1 <br><br> ER <br><br> GZP/probromelain/KDEL <br><br> 174 <br><br> 11587-1 <br><br> ER <br><br> GZP/probromelain/KDEL <br><br> 153 <br><br> 11589-1 <br><br> Lytic Vacuolar <br><br> GZP/aleurainSS/probromelain <br><br> 547 <br><br> 11589-2 <br><br> Lytic Vacuolar <br><br> GZP/aleurainSS/probromelain <br><br> 223 <br><br> A188 Control <br><br> 56 <br><br> JHAF Control <br><br> 75 <br><br> Table 20 Cracked Com Assay results for T2 Bromelain seed <br><br> Steep Conditions • <br><br> ■' Line' <br><br> btarcn feiiewvi. imgj <br><br> 2000 ppm S02 <br><br> A188 <br><br> 41.3 <br><br> 2000 ppm S02 <br><br> A188/C8546 (10 units) <br><br> 44 <br><br> 2000 ppm S02 <br><br> 11587-2 <br><br> 57.4 <br><br> 2000 ppm S02 <br><br> 11587-2/C8546 (10 units) <br><br> 94.6 <br><br> 400 ppm <br><br> A188 <br><br> 30.7 <br><br> 400 ppm <br><br> A188/C8546 (10 units) <br><br> 35.8 <br><br> 400 ppm <br><br> 11587-2 <br><br> 50.5 <br><br> 400 ppm <br><br> 11587-2/C8546 (10 units) <br><br> 86.6 <br><br> 143 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Example 52 <br><br> Construction of transformation vectors for maize optimized ferulic acid esterase. <br><br> Expression cassettes were constructed to express the maize optimize ferulic acid esterase in maize endosperm with or without various targeting signals as follows: <br><br> Plasmid 13036 (SEQ ID NO: 101) comprises the maize optimize ferulic acid esterase (FAE) sequence (SEQ ID NO: 99). The sequence was cloned behind the maize gamma zein promoter without any targeting sequences for expression specifically in the cytosol of the endosperm. <br><br> Plasmid 13038 (SEQ ED NO: 103) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic FAE for targeting to the endoplasmic reticulum and secretion into the apoplast (Torrent et al. 1997). The fusion was cloned behind the maize gamma zein promoter for expression specifically in the endosperm. <br><br> Plasmid 13039 (SEQ ID NO: 105) comprises the waxy amyloplast targeting peptide (MLAALATSQLVATRAGLGVPDASTFRRGAAQGLRGARASAAAD TLSMRTSARAAPRHQHQQARRGARFPSLVVCASAGA) (Klosgen et a!., 1986) fused to the synthetic FAE for targeting to the amyloplast. The fusion was cloned behind the gamma zein promoter for expression specifically in the endosperm. <br><br> Plasmid 13347 (SEQ ID NO: 107) comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to the synthetic FAE sequence with a C-terminal addition of the sequence SEKDEL for targeting to and retention in the endoplasmic reticulum (ER) (Munro and Pelham, 1987). The fusion was cloned behind the maize gamma zein promoter.for expression specifically in the endosperm. <br><br> All expression cassettes were moved into a binary vector pNOV2117 for transformation into maize via Agrobacterium infection. The binary vector contained the phosphomannose isomerase (PMI) gene which allows for selection of transgenic cells with mannose. Transformed maize plants were either self-pollinated or outcrossed and seed was collected for analysis. <br><br> 144 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Combinations of the enzymes can be produced either by crossing plants expressing the individual enzymes or by cloning several expression cassettes into the same binary vector to enable cotransformation. <br><br> Synthetic Ferulic Acid Esterase Sequence CSEO ID NO: 99) <br><br> ateBccecctccctccceaccateccECcatccaactaceaccagetgcgcaacegcgteccececgeccageteeteaacatctcctacttctccacceccaccaa ctccacccacccppcccecgtetacctccceccgegctactccaaggacaaeaagtactccBtgctctacctcctccacggcatcgacgectccgaeaacgacteett cgaeeacegceeccgceccaacgtaatceccaacaacctcatceccgaagficaaeatcaaaccactcatcatcgtgacccceaacaccaacgccgccggccceg gcatcBCCBacggctacaaeaacttcaccaaBBacctcctcaactccctcatcccgtacatcgagtccaactactccgtgtacaccaaccgcgagcaccBcgccatCBc cggcctctctategecggcggccaatccttcaacatcggcclcaccaacctceacaaattcBcctacatcEacccgatctccgccacccceaacacctacccgaacga <br><br> BcgcctcttcccggacgBCgacaaBBccBcccgcBagaagctcaagctcctcttcatcBCCtBCggcaccaacaactccctcatcgBcttcggccagcgcgtgcacg aaiactgcgtggccaacaacatcaaccacEtgtactgectcatccaBggcggcgBCcacaacttcaacgtatggaaaccKggcctctBBaacttcctccaaatggccg acgaggccggcctcacccacBacggcaacaccccggtBccgaccccgtccccBaaaccgBccaacacccgcatcgaggccgagBactacgacggcatcaactcc tcctccatcgagatcatcggcgtaccgccggaggEcagccEcgEcatcggctacatcacctccagcgactacctcgtgtacaagtccatcBacttcggcaacppcpcc acctcettcaagECcaaEEtBgccaacgccaacacctccaacatceaecttcBcctcaacgacccEaacBBcaccctcatcBBcaccctctccgtgaaBtccaccgpc eactBBaacacctacgagEagcagacctgctccatctccaaggtEaccggcatcaacaacctctacctcgtgttcaagggcccggtgaacatcgactggttcaccttcB <br><br> ecgtgtag <br><br> Synthetic Ferulic Acid Esterase Amino Acid Sequence CSEO ID NO: 1001 <br><br> maaslptmppsgvdavraEvprEqvvnisvfstatnstrparvvlpppvskdkkvsvlvllhgiggsendwfegegTanviadnliaeekikpliivtpntnaagp giadgvenftkdllnslipviesnvswtdrehraiaglsmBggasfnigltrildkfavigpisaapntvpnerlffadEgkaareklkllfiacgtndsligfgoryhevc vanninhvvwliQggghdfhvwkpglwnflamadeaBltrdgntpvDtpsplcDantrieaedvdginsssieiigvppegBTBigvitSBdvlvvksidfBngat sfkakvanantsnielrlngpnBtliEtlsvkstgdwntveeqtcsiskvteindlvlvfkgpviiidwftfev* <br><br> 13036 Sequence (SEP ID NO: 10U <br><br> atBBccecctccctcccEaccatgccEccgtccEgctacgaccaEgtBcecaacEBcgtgccgcgcggccaggtgetgaacatctcctacttctccaccBccaccaa ctccacccgcccgpcccgcptgtacctcccgccggBclactccaaaBacaagaaatactccgtBctctacctcctccacggcatcggCBgctccaaEaacgactggtt cgaEBgcgEcgECCBCBccaacatgatcBCCBacaacctcatcgccpaBggcaaaatcaaeccactcatcatcgtaaccccgaacaccaacgccgccggccCEB <br><br> EcatcgccgacgectacaagaacttcaccaaBBacctcctcaactccctcatcccgtacatcaagtccaactactccgtgtacaccaaccBcaagcaccBCBCcatcgc cggcc^'^'a'ppgcogcegccaetccttcaacatcggcctcaccaacctcaacaagttcgcctacatcggcccgatctccgccgccccgaacacctacccaaacga gcacctcttcccgsacgEcegcaaggccgcccgcgagaagctcaagctcctcttcatcgcctgcgBcaccaacBactccctcatcggcttcBBCcagcgcgtgcacg agtactgcgtRECcaacaacatcaaccacgtBtactggctcatccagggcggcggccacgacttcaacgtEtgEaagccgBgcctctggaacttcctccagatBBCCB <br><br> acgaBEccEgcctcacccBcgacgecaacaccccggtBccgaccccgtccccgaaeccggccaacacccgcatcgaEECcEaggactaceacggcatcaactcc tcctccatcgagatcatCBECgtgccgccggaBggcggccgcggcatcggctacatcacctccgBcgactacctcgtBtacaagtccatcgacttcEgcaacBgcgcc acctccttcaaggccaaggtggccaacgccaacacctccaacatcEaBcttcBcctcaacggcccgaacEgcaccctcatCEecaccctctccgtgaagtccaccggc BactggaacacctacgaEEagcagacctgctccatctccaagetgaccpgcatcaacBacctctacctcEtBttcaaBBECccEBtaaacatcEactEEttcaccttcg Ecgtgtag <br><br> 13036 AA Sequence (SEP ED NO: 102) <br><br> maaslptmppsgydqvmgvprEawnisyfstatnstrDarvvlppBVskdkkvsvlvllligigasendwfegBin-aTiviarinliaeplfilfpliivtpntnaagp giadEvenftkdllnsliDviesnvswtdrehraiaglsingBgQsfDigltnldkfayiEpisaaDntvDnerlfbdggkaareklkllfiacEtndsliBfEarvhevc vanninliwwliaggghdfnvwkpElwnflqmadeagltrdBntpvptpspkpantrieaedydEinsssieiiBvi&gt;peBgrEiEvitSBdvlvvksidfgnBat sfkalcvanantsnielrlnEDnEtligtlsvkstgdwntveeqtcsiskvtEindlvlvfkgpvnidwftfEv* <br><br> 13038 Sequence (SEP ID NO: 103) <br><br> atBaggEtEttgctcgttgccctcfictctcctBBCtctcBctgcgagcgccacctccatggccgcctccctcccgaccatgccgccBtccggctacgaccagEtgceca acggcgtaccgcBCggccaggteetgaacatctcctacttctccaccgccaccaactccacccgcccEECCCECElgtacctcccgccEEECtactccaaggacaag <br><br> 145 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> aaEtactccgtgctctacctcctccacggcatcEgcggctccEagaaceactegttcgagggcggcggccgcaccaacetgatcgccBacaacctcatcEccgagge caagateaagccgctcatcalcgtgaccccgaacaccaaceccpccegcccg^gcatcgccEacggctacgagaacttcaccaaogacctcetcaactccctcalccc gtacatcgagtccaactactccgtgtacaccgaccgcgagcaccecgccatcgccggcctctctatgggcggcggccagtccttcaacatcgecctcaccaacctcgac aagttcgcctacatcggcccgatctccBCCBCcecgaacaccacceeaacgagcBcclcttcccEgacggcggcaaggccEcccECEaeaaEctcaaectcclctt catcgcctgcggcaccaacgactccctcatcEgcttcggccaECECgtgcacgaBtactgcgtggccaacaacatcaaccacgtgtactggctcatecagggcggcag ccaegacttcaacEigtEBaagccgeBcctctggaacttcctccaBatEBCCBacBaEgccggcctcacccgcgacpgcaacaccccpptpccgaccccEtccccE <br><br> aagccEBCcaacacccacatcgaggccgaegactacgacggcatcaactcctcctccatcgaeatcatCBgcgtgccgccgeagEgcggccgcgEcatcggctac atcacctccggcBactacctCEtBtacaagtccatcgacttcggcaacggcgccacciccttcaaggccaagBtagccaacEccaacacctccaacatcpapcttCEec tcaacgEcccgaacggcaccctcatcgEcaccctctccEtBaagtccaccgEcgactgEaacacctacgaggagcagacctgctccatctccaaggteaccggcatc aacBacctctacctcgtettcaaggecccgetgaacatcgactBEttcaccttcggcgtEtag <br><br> 13038 AA Sequence (SEP ID NO: 104) <br><br> mrvllvalalIalaasatsmaaslptmPDSEvdqvmBVDrgawnisvfstatn5trparvvlppgyskdkkvsvlvllhgteg5endwfeggEranviadnliae gkikpliiylpntnaaEPeiadgvenfikdllnslipviesnvsvvtdrehTaiaglsmgggqsfiiigltnldkfavigpisaapntvpnerlfodegkaareklkllfia cgtndsliefaarvhevcvanninhvvwliqggghdfnvwkpglwnflamadeagltrdgntpvptpspkpantrieaedvdEinsssieiigvppeBgfgigyi tsEdvlvvksidfgngatsfkakvanantsnielrlngpngtligtlsvkstgdwntyeegtcsiskvtgindlvlvfkgpvnidwftfav* <br><br> 13039 Sequence (SEP ID NO: 105) <br><br> atgctgpcppctctEgccacgtcpcapctcEtcgcaacgcecgccBBccteggcBtcccggacgcgtccacgttccgccECggcEccBCEcagggcctEagggg ■ BgcccgggcEtcEBceecEEcggacacBCtcagcatgcgBaccagcEcgcgcgcggcgcccaggcaccagcaccagcagacgcgccgcegEficcaggttcc cgtCECtcgtcgtBtBCECcaBCECceBCgccatggccEcctccctcccgaccatEccgccEtccggctacgaccagBtgcgcaacEgcgtgccgcEcggccagBt ggteaagatctcctacttctccaccEccaccaactccacccgcccggcccgcgtgtacctcccgccEggctactccaaggacaagaagtactccKtgctctacctcctcc acggcatcggcggctccgagaacgactgettcgaggacgecBEccecBccaacetgatcgccgacaacctcatcgccgagggcaaeatcaagccgctcatcatcEt gaccccgaacaccaacgccgccggcccEggcatcgccgacgcctacgaeaacttcaccaaggacctcctcaaciccctcatcccgtacatcgagtccaactactccBt glacaccBaccEcsaEcaccgcgccatcgccBBcctctclatgggCBgcggccaetccttcaacatcggcctcaccaacctcgacaagttcgcctacatcEgcccEat ctccgccEcccccaacacctacccBaacgagCECctcttcccggacBgcggcaaggccBcccgcgagaagctcaaectcctcttcatcgcctgcggcaccaacgact ccctcatcggcttcgEccagcBCBtgcacEagtactgcgtgeccaacaacalcaaccacgtBtactggctcatccaEgecggcggccacgacttcaacEtEtggaagc cgggcctctegaacttcctecagateeccgacgaegccBBCctcacccBcgacggcaacaccccggtgccgaccccglccccgaagccggccaacacccgcatcg aBgccgaggactacgacggcalcaactcctcctccatcgagatcatCEECgtgccECCggaggECEgccgcggcatcggc&lt;acatcacctccggcgactacctcgtg tacaagtccalcgacttcggcaacggcgccacctccttcaaggccaagBtggccaacgccaacacctccaacatceagcttcgcclcaacggcccgaacggcaccctc atcggcaccctctccEtBaagtccaccggCBactgEaacacctacgaggagcagacctgctccatctccaaggtgaccggcatcaacgacctctacctcgtgttcaagE gcccggteaacatcgactgettcaccttCBBcetBtag <br><br> 13039 AA Sequence fSEO ID NO: 106) <br><br> iiilaalaisalyatraElEyDdastfc-eaaas'.rEarasaaadtls-jtsaraasrhahaaarTaarfbsI'.Tcasapanissslgt^ys'gvdcivmg'.'rrgavvni svfstamstrparvvlppgvskdkkvsvlvllhgiggsendwfeggpTanviadnliaegkikpliivtpntnaagpBiadgvenftkdllnsliDViesnvsvvtdre hfaiaglsnigEggsfiiigltnldkfavigpisaapntvpnerlfodggkaareklkllfiacgtndsligfgorvheycvanninhvvvyliaggghdftivwkpglw nflqmadeapltrdgntpvptpspkpantrieaedvdEinsssieiiyvppeggrgigvilsgdvlyvksidfgngatsfkalcvanantsTiielrlngpngtligtlsvk stgdwntveeqtcsiskvlgindlylvfkgpvnidwftfgv* <br><br> 13347 Sequence (SEP ID NO: 107) <br><br> ataagggtettgctcgttEccctcgctctcctggctctcpctgcgaEcgccacctccatEgccgcctccctcccgaccatgcceccgtccggctacgaccaggtEcgca acEgcEtBccgcECgeccaegtegtgaacatctcctacttctccaccgccaccaactccacccgcccggcccgcptgtacctccceccgggctactccaaggacaag aaEiactccatgctctacctcctccacggcatcggcggctccEaeaacgactggttcgagggcggcBgccgCECcaacgtgaiCEcceacaacctcatcgccgaggg caagatcaagccgctcalcatcgteaccccgaacaccaacgccgccggcccgggcatceccgacggctacgagaacttcaccaaggacctcctcaactccctcatccc etacatcgaglccaactaclccptgtacaccEaccgcgagcaccgcgccatcgccggcctctctatggecggcggccagtccttcaacatcggcctcaccaacctcgac aaeHcEcciacatcggcccgatctccgccgccccgaacacctacccgaacgagcgcctcttcccggacggcggcaaggccgcccgcgapaagctcaagctcctctt catcgcctecggcaccaacgactccctcatcgBcttcegccagcgcgtgcacgagtactgcEtggccaacaacatcaaccacglEtactggctcatccagggcggcEg ccaceacttcaacBtglEEaagccaggcctcleaaacttcctccaEatggccgacgaEgccggcctcacccgcgacgBcaacaccccggtgccgaccccBtccccg aasccggccaacacccecatcgaggccBaggactacgacggcatcaactcctcctccalcEagatcatcgECgteccgccggagggcggccgcggcaicBgctac atcacctccBecgactacctcgtetacaagtccatcgacttcggcaacggcgccacctccttcaaEgccaaggtEECcaacgccaacacctccaacatcBapcttcgcc <br><br> 146 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007182 <br><br> tcaaceecccgaacgecaccctcatcgecaccctctccptpaa)&gt;tccaccggceactggaacacctacEaggaEcagacciectccatctccaaeetgaccegcatc aaceacctctacctcetettcaaggecccggtgaacatCBactggttcaccttcggcBtgtccgagaaggacgaaclclae <br><br> 13347 Sequence CSEO ID NO: 108) <br><br> mrvllvalallalaasatsmaaslDtniPDsgvdavrnBVDrgavvnisvfstatnstrparvvlPDgvskdkkvsvlvlIhgiEESendwfegggranviadnliae gkikpliivtnntnaaEPgiadgvenftkdllnsliDviesnvsvvtdrehraiaglsmEEgqs&amp;iigltnldkfavigDisaapntvpDerUpdEgkaareklkllfia cetndsliefcarvhevcvanninhwwliageghdfTivwkpglwnflamadeagltrdgntpvptDspkpantrieaedvdginsssieiigvppeggrgigvi tsgdvlwksidfgneatsflcakvanantsnielrlngpngtligtlsvkstgdwntveeotcsiskvtgindlvlvfkgpvnidwftfgvsekdel* <br><br> Example 53 <br><br> Hydrolytic degradation of corn fiber bv ferulic acid esterase Corn fiber is a major by-product of corn wet and dry milling. The fiber component is composed primarily of course fiber arising from the seed pericarp (hull) and aleurone, with a smaller fraction of fine fiber coming from the endosperm cell walls. Ferulic acid, a hydroxycinnamic acid, is found in high concentrations in the cell walls of cereal grains resulting in a cross linking of lignin, hemicellulose and cellulose components of the cell wall. Enzymatic degradation of ferulate cross-linking is an important step in the hydrolysis of com fiber and may result in the accessibility of further enzymatic degradation by other hydrolytic enzymes. <br><br> Ferulic Acid Esterase Activity Assay <br><br> Fenilic acid esterase. FAE-1, ( maize optimised synthetic gene from C. thermocellum) was expressed in E. coli. Cells were harvested and stored at -80°C overnight. Harvested bacteria was suspended in 50mM Tris buffer pH7.5. Lysozyme was added to a final concentration of 200 ug/mL and the sample incubated 10 minutes at room temperature with gently shaking. The sample was centrifuged at 4 °C for 15 minutes at 4000 rpm. Following centrifugation, the supernatant was transferred to a 50 mL conical tube, and placed in 70 degree Celsius water bath for 30 minutes. The sample was then centrifuged for 15 minutes at 4000 rpm and the cleared supernatant transferred to a conical tube ( Blum et al. J Bacteriology, Mar 2000, pg 1346-1351.) <br><br> 147 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> The recombinant FAE-1 was tested for activity using 4-methylumbellifery] ferulate as described in Mastihubova et al (2002) Analytical Biochemistry 309 96-101. Recombinant protein FAE-1 (104-3) was diluted 10, 100, and 1000 fold and assayed. Activity assay results are shown in Figure 22. <br><br> Preparation of Corn Seed Fiber <br><br> Com pericarp coarse fiber was isolated by steeping yellow dent U2 kernels for 48hrs at 50 °C in 2000 ppm sodium metabisulfite( (Aldrich). Kernels were mixed with water in equal parts and blended in a Waring laboratory heavy duty blender with the blade in reverse orientation. Blender was controlled with a variable autotransformer (Staco Energy) at 50% voltage output for 2 min. Blended material was washed with tap water over a standard test sieve #7(Fisher scientific) to separate coarse fiber from starch fractions. Coarse fiber and embryos were separated by floating the fiber way from the embryos with hot tap water in a 4L beaker (Fisher scientific). The fiber was then soaked in ethanol prior to drying overnight in a vacuum oven( Precision) at 60° C. Corn coarse fiber derived form corn kernel pericarp was milled with a laboratory mill 3100 fitted with a mill feeder 3170(Perten instruments) to 0.5mm particle size. <br><br> Com Fiber Hydrolysis Assay <br><br> Course fiber (CF) was suspended in 50 mM citrate-phosphate buffer, pH 5.2 at 30 mg15 ml buffer. The CF stock was vortexed and transferred to a 40 ml modular reservoir (Beckman, Cat. No. 372790). The solution was mixed well then 100 ul transferred to a 96 well plate (Corning Inc., Cat. No.9017, polystyrene, flat bottom). Enzyme was added at 1-10 ul/well and the final volume adjusted to 110 ul with buffer. CF background controls contained 10 ul of buffer only. Plates were sealed with aluminum foil and incubated at 37°C with constant shaking for 18 hours. The plates were centrifuged for 15 min at 4000 rpm. 1-10 ul of CF supernatant was transferred to a 96 well plate preloaded with 100 ul of BCA reagents (BCA-reagents: <br><br> Reagent A (Pierce, Prod.# 23223), Reagent B (Pierce, Prod.# 23224). The final volume was adjusted to 110 ul. The plate was sealed with aluminum foil and placed at 85°C for 30 min. Following incubation at 85°C, the plate was centrifuged for 5 min at 2500 rpm. Absorbance <br><br> 148 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> values were read at 562 nm (Molecular Devices, Spectramax Plus). Samples were quantified with D-glucose and D-xylose (Sigma) calibration curves. Assay results are reported as total sugar reieased. <br><br> Measurement of total sugar released by Ferulic Acid Esterase in Corn Seed Fiber Hydrolysis Assay <br><br> Results from the recombinant FAE-1 fiber hydrolysis assay showed no increase in total reducing sugars (data not shown). These results were not unexpected since it has been reported in the literature that an increase in total reducing sugars is detectable only when other hydrolytic enzymes are used in combination with the FAE ( Yu et al J. Agric. Food Chem. 2003,51, 218-223). Figure 23 shows that addition of FAE-2 to a fungal supernatant which had been grown on com fiber, shows and increase in total reducing sugars. This suggests that FAE does play an important role in corn fiber hydrolysis. <br><br> Figure 23 shows Com Fiber Hydrolysis assay results showing increase in release of total reducing sugars from corn fiber with addition of FAE-2 to fungal supernatant (FS9). <br><br> Analysis of Ferulic Acid released from corn seed fiber bv FAE-1 <br><br> FAE activity on corn fiber was tested by following the release of ferulic acid as described :r. Wnlfrcn ar&gt;'1 H"r/ioo&lt;\ ( \A/ol&lt;-lrr»n k\A/ Parr A l 1QQR \/nl 7 nanp? 305-31? Phvtnr.hfim <br><br> All T T Ml AA A A A Wfcft A ^ I X / V y ^ <br><br> Anal) with slight modification. Corn coarse fiber derived from corn kernel pericarp was milled with a laboratory mill 3100 fitted with a mill feeder 3170 (Perten instruments) to 0.5mm particle size and used as substrate at a concentration of 10 mg/ml. 1 ml assays were conducted in 24 well Becton Dickenson Multiwell™. Substrate was incubated in 50 mM citrate phosphate pH 5.4 at 50° C at 110 rpm for 18 hrs in the presence and absence of recombinant FAE. After the incubation period, samples were centrifuged for 10 minutes at 13,000 rpm prior to ethyl acetate extraction. All solvents and acids used were from Fisher Scientific. 0.8 ml of supernatant was acidified with 0.5 ml acetic glacial acid and extracted three times with equivalent volume of <br><br> 149 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ethyl acetate. Organic fractions were combined and speed vac to dryness (Savant) at 40° C. Samples were then suspended with lOOjil of methanol and used for HPLC analysis. <br><br> HPLC chromatography was carried out as follows. Ferulic acid (ICN Biomedicals) was used as standard in HPLC analysis (data not shown). HPLC analysis was conducted with a Hewlett Packard series 1100 HPLC system. The procedure employed a Cig fully capped reverse phase column (XterraRpig, 150mm X 3.9mm i.d. 5/xm particle size) operated in 1.0 ml min at 40°C. Ferulic Acid was eluted with a gradient of 25 to 70 % B in 32 min (solvent A: H20, 0.01 %b TFA; solvent B: MeCN, 0.0075%). <br><br> As shown in Figure 24, FA released from corn fiber was 2-3 fold higher than control when treated with 10 or 100 ul of FAE-1. These results clearly show that FAE-1 is capable of hydrolyzing corn fiber. <br><br> Example 54 <br><br> Functionality in fermentation of maize expressed glucoamylase and amylase <br><br> This example demonstrates that maize-expressed enzymes will support fermentation of starch in a com slurry in the absence of added enzyme and without cooking the corn slurry. Maize kernels that contain Rhizopus ozyzae glucoamylase (ROGA) (SEQ ED NO: 49) were produced as described in Example 32. Maize kernels that contain the barley low-pi a-amylase (AMYI) (SEQ ID NO: 88) are produced as described in Example 46. The following materials are used in this example: <br><br> Aspergillus niger glucoamylase (ANGA)was purchased from Sigma. <br><br> Rhizopus species glucoamylase (RxGA) was purchased from Wako as a dry crystalline powder and made up in 10 mM NaAcetate pH 5.2, 5 mM CaCh. at 10 mg/ml. <br><br> MAMYI Microbially produced AMYI was prepared at approximately 0.25 mg/ml in 10 mM NaAcetate pH 5.2, 5 mM CaCh. <br><br> Yeast was Saccharomyces cereviceae <br><br> YE was a sterile 5% solution of yeast extract in water <br><br> 150 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Yeast starter contained 50 g maltodextrin, 1.5 g yeast extract, 0.2 mg ZnS04 in a total volume of300 ml of water, the medium was sterilized by autoclaving after preparation. After cooling to room temperature, I ml of tetracycline (10 mg/ml in ethanol), 100 ul AMG300 glucoamylase and 155 mg active dry yeast, were added. The mixture was then shaken at 30 °C for 22 h. The overnight yeast culture was diluted 1/10 with water and A600 measured to determine the yeast number, as described in Current Protocols in Molecular Biology. <br><br> RQGA flour Kernels were pooled from several TO lines shown to have active glucoamylase The seeds were ground in the Kleco, and all flour was pooled , AMYI flour Kernels from TO corn expressing AMYI were pooled and ground as above. Control flour Kernels from with similar genetic background were ground in the same fashion as the ROGA expressing corn <br><br> An inoculation mixture was prepared in a sterile tube; it contained per 1.65 ml: yeast cells (lx 107), yeast extract (8.6 mg), tetracycline (55 jig). 1.65 ml was added / g flour to each fermentation tube. <br><br> Fermentation preparation: Flour was weighed out at 1.8 g / tube into tared 17 x 100 mm sterile polypropylene. 50 M-I of 0.9 M H2SO4 was added to bring the final pH prior to fermentation to 5. The inoculation mixture (2.1 ml) was added / tube, along with RXGA, AMYI-P and amylase desalting buffer indicated below. The quantity of buffer was adjusted based on moisture content of each flour so that the total solids content was constant in each tube. The tubes were mixed throroughly, weighed and placed into a plastic bag and incubated at 30 °C. <br><br> Table 21 <br><br> Flours <br><br> Innoculation <br><br> Microbial enzymes <br><br> Amylase desalting Buffer <br><br> Tube <br><br> Control <br><br> ROGA <br><br> AMYI <br><br> Mix <br><br> RXGA <br><br> AMYI-P <br><br> 9 <br><br> 0 <br><br> ml ml ml ml <br><br> A <br><br> 1.8 <br><br> 2.1 <br><br> 0 <br><br> 0 <br><br> 151 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> B <br><br> 1.8 <br><br> 2.1 <br><br> 0.036 <br><br> 0 <br><br> 1 <br><br> C <br><br> 1.8 <br><br> 2.1 <br><br> 0.036 <br><br> 1 <br><br> 0 <br><br> O <br><br> 1.8 <br><br> 2.1 <br><br> 0 <br><br> 1 <br><br> 0.036 <br><br> E <br><br> 1.6 <br><br> 0.2 <br><br> 2.1 <br><br> 0.036 <br><br> 0 <br><br> 1 <br><br> F <br><br> 0.2 <br><br> 1.6 <br><br> 2.1 <br><br> 1 <br><br> G <br><br> 0.2 <br><br> 1.6 <br><br> 2.1 <br><br> 0 <br><br> 1 <br><br> 0 <br><br> H <br><br> 0 <br><br> 1.6 <br><br> 0.2 <br><br> 2.1 <br><br> 0 <br><br> 1 <br><br> The fermentation tubes were weighed at intervals over the 67 h time course. Loss of weight corresponds to evolution of CO2 during fermentation. The ethanol content of the samples was determined after 67 h of fermentation by the DCL ethanol assay method. The kit (catalogue # 229-29) was purchased from Diagnostic Chemicals Limited, Charlottetown, PE, Canada, DIE 1B0. Samples (10 fil) were drawn in triplicate from each fermentation tube and diluted into 990 fil of water. 10 ul of the diluted samples were mixed with 1.25 ml of a 12.5/1 mixture of assay buffer / ADH-NAD reagent. Standards (0, 5, 10, 15 &amp; 20% v/v ETOH) were diluted and assayed in parallel. Reactions were incubated at 37 °C for 10 min, then A340 read. Standards were prepared in duplicate, samples from each fermentation were prepared in triplicate (including the initial dilution). The weight of the samples changed with time as detailed in table below. The weight loss is expressed as a percentage of the initial sample weight at time 0. <br><br> Table 22 <br><br> 0 <br><br> 18 <br><br> 1 II <br><br> 24 <br><br> 42 <br><br> 48 <br><br> 67 <br><br> Sample <br><br> Flour Composition <br><br> % wgt loss <br><br> A <br><br> Controt <br><br> 0.00 <br><br> 8.09 <br><br> 9.38 <br><br> 12.96 <br><br> 13.83 <br><br> 16.85 <br><br> B <br><br> Control + RXGA <br><br> 0.00 <br><br> 11.48 <br><br> 14.20 <br><br> 21.79 <br><br> 23.83 <br><br> 24.63 <br><br> C <br><br> Control + RXGA + MAMYI <br><br> 0.00 <br><br> 17.90 <br><br> 23.27 <br><br> 36.48 <br><br> 39.07 <br><br> 47.59 <br><br> D <br><br> Control + MAMYI <br><br> 0.00 <br><br> 13.70 <br><br> 17.72 <br><br> 28.27 <br><br> 30.80 <br><br> 38.27 <br><br> E <br><br> Control +RXGA + AMY! flour <br><br> 0.00 <br><br> 16.85 <br><br> 21.60 <br><br> 33.95 <br><br> 3S.98 <br><br> 45.74 <br><br> F <br><br> ROGA flour <br><br> 0.00 <br><br> 9.81 <br><br> 11.74 <br><br> 16.96 <br><br> 18.39 <br><br> 23.17 <br><br> G <br><br> ROGA flour + MAMYI <br><br> 0.00 <br><br> 15.53 <br><br> 19.69 <br><br> 29.75 <br><br> 32,11 <br><br> 39.94 <br><br> H <br><br> ROGA flour + AMYI flour <br><br> 0.00 <br><br> 13.35 <br><br> 16.27 <br><br> 23.60 <br><br> 25.53 <br><br> 31.68 <br><br> These data show that the ROGA enzyme expressed in maize increases fermentation rate as compared to the no-enzyme control. It also confirms previous data indicating that the AMYI <br><br> 152 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> enzyme expressed in maize kernels is a potent activator of fermentation of the starch in corn. The ethanol contents are detailed below. <br><br> Table 23 <br><br> Flour <br><br> ETON <br><br> Standard <br><br> Sample <br><br> Composition <br><br> % v/v deviation <br><br> A <br><br> Control <br><br> 2.09 <br><br> 0.08 <br><br> B <br><br> Control + RXGA <br><br> 7.97 <br><br> 0,18 <br><br> C <br><br> Control + RXGA + MAMYI <br><br> 13.47 <br><br> 0.27 <br><br> D <br><br> Control + MAMYI <br><br> 11.26 <br><br> 0.12 <br><br> E <br><br> Control +RXGA + AMYI flour <br><br> 12.28 <br><br> 0.08 <br><br> F <br><br> ROGA flour <br><br> 3.55 <br><br> 0.05 <br><br> G <br><br> ROGA flour + MAMYI <br><br> 11.29 <br><br> 0.18 <br><br> H <br><br> ROGA flour + AMYI flour <br><br> 8.58 <br><br> 0.13 <br><br> These data also demonstrate that expressing Rhizopus oryzae glucoamylase in maize facilitates increased fermentation of the starch in com. Similarly, expression of the barley amylase in maize makes com starch more fermentable with out adding exogenous enzymes. <br><br> Example 55 <br><br> Cellobiohydrolase I <br><br> The Trichoderma reesei cellobiohydrolase I (CBH I) gene was amplified and cloned by RT-PCR based on a published database sequence (accession U E00389). The cDNA sequence was analyzed for the presence of a signal sequence using the SignalP program, which predicted a 17 amino acid signal sequence. The DNA sequence encoding the signal sequence was replaced with an ATG by PCR, as shown in the sequence (SEQ ID NO: 79). This cDNA sequence was used to make subsequent constructs. Additional constructs are made by substituting a maize optimised version of the gene (SEQ ID NO: 93). <br><br> Example 56 <br><br> Cellobiohydrolase II <br><br> The Trichoderma reesei cellobiohydrolase II (CBH II) gene was amplified and cloned by <br><br> RT-PCR based on a published database sequence (accession # M55080). The cDNA sequence was analyzed for the presence of a signal sequence using the SignalP program, which predicted <br><br> 153 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> an 18 amino acid signal sequence. The DNA sequence encoding the signal sequence was replaced with an ATG by PCR, as shown in the sequence (SEQ ID NO: 81). ThiscDNA sequence was used to make subsequent constructs. Additional constructs are made by substituting a maize optimised version (SEQ ID NO: 94) of the gene. <br><br> Example 57 <br><br> Construction of transformation vectors for the Trichoderma reesii cellobiohydrolase I and cellobiohydrolase II <br><br> Cloning of the Trichoderma reesii cellobiohydrolase I (cbhi)cDNA without the native N-terminal signal sequence is described in Example 55. Expression cassettes were constructed to express the Trichoderma reesii cellobiohydrolase I cDNA in maize endosperm with various targeting signals as follows: <br><br> Plasmid 12392 comprises the Trichoderma reesii cbhi cDNA cloned behind the y zein promoter for expression specifically in the endosperm for expression in the cytoplasm. <br><br> Plasmid 12391 comprises the maize y-zein N-terminal signal sequence (MRVLLVALALLALAASATS)(SEQ ID NO: 17) fused to Trichoderma reesii cbhi cDNA as described above in Example 1 for targeting to the endoplasmic reticulum and secretion into the apoplast (Torrent et al. 1997). The fusion was cloned behind the y zein promoter for expression v in thp pnHrkcnprm w -- r - <br><br> Plasmidl2392 comprises the y-zein N-terminal signal sequence fused to the Trichoderma reesii cbhi cDNA with a C-terminal addition of the sequence KDEL for targeting to and retention in the endoplasmic reticulum (ER) (Munro and Pelham, 1987). The fusion was cloned behind the maize y zein promoter for expression specifically in the endosperm. <br><br> Plasmidl2656 comprises the waxy amyloplast targeting peptide (Klosgen et al., 1986) fused to the Trichoderma reesii cbhi cDNA for targeting to the amyloplast. The fusion was cloned behind the maize y zein promoter for expression specifically in the endosperm. <br><br> All expression cassettes were moved into a binary vector (pNOV2117) for transformation into maize via Agrobacterium infection. The binary vector contained the phosphomannose <br><br> 154 <br><br> WO 2005/096804 <br><br> PCT/US2004/007I82 <br><br> isomerase (PMI) gene which allows for selection of transgenic cells with mannose. Transformed maize plants were either self-poliinated or outcrossed and seed was collected for analysis. <br><br> Additional constructs (plasmids 12652,12653,12654 and 12655) were made with the targeting signals described above fused to Trichoderma reesii cellobiohydrolasell (cbhii) cDNA in precisely the same manner as described for the Trichoderma reesii cbhi cDNA. These fusions were cloned behind the maize Q protein promoter (50Kd y zein) (SEQ ID NO: 98) for expression specifically in the endosperm and transformed into maize as described above. Transformed maize plants were either self-pollinated or outcrossed and seed was collected for analysis. <br><br> Combinations of the enzymes can be produced either by crossing plants expressing the individual enzymes or by cloning several expression cassettes into the same binary vector to enable co-transformation. <br><br> Example 58 <br><br> Expression of a Cbhi in corn <br><br> Tl seed from self-pollinated maize plants transformed with either plasmid 12390, 12391 or 12392 was obtained. The 12390 construct targets the expression of the Cbhi in the endoplasmic reticulum of the endosperm, the 12391 construct targets the expression of the Cbhi in the apoplast of the endosperm and the 12392 construct targets the expression of the Cbhi in the cytoplasm of the endosperm. <br><br> Extraction and detection of the Cbhi from com-flour: Polyclonal antibodies to Cbhi and Cbhii were produced in goat according to established protocols. Flour from the Cbhi transgenic seeds was obtained by grinding them in an Autogizer grinder. Approximately 50 mg of flour was resuspended in 0.5ml of 20mM NaP04 buffer (pH 7.4),150mM NaCI followed by incubation for 15 minutes at RT with continuous shaking. The incubated mixture was then spun for lOmin. at 10,000xg. The supernatant was used as enzyme source. 30 jil of this extract was loaded on a 4-12 % NuPAGE gel (invitrogen) and separated in the NuPAGE MES running buffer (invitrogen). Protein was blotted onto nitrocellulose membranes and Western blot <br><br> 155 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> analysis was done following established protocols using the specific antibodies described above followed by alkaline phosphatase conjugated rabbit antigoat IgG (H+L) . Alkaline phosphatase activity was detected by incubation of the membranes with ready to use BCIP/MBT (plus) substrate from Moss Inc. <br><br> Western Blot analysis was done of T1 seeds from different events transformed with plasmid 12390. Expression of Cbhi protein was compared to the non-transgenic control, and was detected in a number of events. <br><br> The Cracked Com Assay was performed essentially as described in Example 49, using transgenic seed expressing Cbhi. Starch recovery from the transgenic seed was measured and the results are set forth in Table 24. <br><br> Table 24. <br><br> Line 3-non expressing control Line 4- <br><br> CBHI expressing <br><br> Conditions <br><br> Starch (mg) <br><br> 400ppm S02-NO Bromelain <br><br> 40.2 <br><br> 78.1 <br><br> 400ppmS02-Plus Bromelain <br><br> 48.1 <br><br> 118.7 <br><br> 2000ppm S02-No Bromelain <br><br> 47.5 <br><br> 73.1 <br><br> 2000ppmS02-Plus Bromelain <br><br> 49.2 <br><br> 109 <br><br> Example 59 <br><br> Preparation of Endoglucanase I Constructs <br><br> A Trichoderma reesei endoglucanase I (EGLI) gene was amplified and cloned by PCR based on a published database sequence (Accession # M15665; Penttila et al., 1986). Because only genomic sequences could be obtained, the cDNA was generated from the genomic sequence by removing 2 introns using Overlap PCR. The resulting cDNA sequence was analyzed for the presence of a signal sequence using the SignalP program, which predicted a 22 amino acid signal sequence. The DNA sequence encoding the signal sequence was replaced with an ATG by PCR, as shown in the sequence (SEQ ID NO: 83). This cDNA sequence was used to make subsequent constructs as set forth below. <br><br> 156 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Overlap PCR <br><br> Overlap PCR is a technique (Ho et al., 1989) used to fuse complementary ends of two or more PCR products, and can be used to make base pair (bp) changes, add bp, or delete bp. At the site of the intended bp change, forward and reverse mutagenic primers (Mut-F and Mut-R) are made that contain the intended change and 15 bp of sequence on either side of the change. For example, to remove an intron, the primers would consist of the final 15 bp of exon 1 fused to the first 15 bp of exon 2. Primers are also prepared that anneal to the ends of the sequence to be amplified, e.g ATG and STOP codon primers. PCR amplification of the products proceeds with the ATG/Mut-R primer pair and the Mut-F/STOP primer pair in independent reactions. The products are gel purified and fused together in a PCR without added primers. The fusion reaction is separated on a gel, and the band of the correct size is gel purified and cloned. <br><br> Multiple changes can be accomplished simultaneously through the addition of additional mutagenic primer pairs. <br><br> EGLI Plant Expression Constructs Expression cassettes were made to express the Trichoderma reesei EGLI cDNA in maize endosperm as follows: <br><br> 13025 comprises the T. reesei EGLI gene cloned behind the maize y-zein promoter for cytoplasmic localization and expression specifically in the endosperm. <br><br> 13026 comprises the maize y-zein N-terminal signal peptide (MRVLLVALALLALAASATS) fused to the T. reesei EGLI gene for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> 13027 comprises the maize y-zein N-terminal signal peptide fused to the T. reesei EGLI gene with a C-terminal addition of the sequence KDEL for targeting to and retention in the endoplasmic reticulum. The fusion was cloned behind the maize y-zein promoter for expression specifically in the endosperm. <br><br> 157 <br><br> WO 2005/096804 <br><br> PCT/US2004/007I82 <br><br> 13028 comprises the maize Granule Bound Starch Synthase I (GBSSI) N-terminal signal peptide (N-terminal 77 amino acids) fused to the T. reesei EGLI gene for targeting to the lumen of the amyloplast. The fusion was cloned behind the maize 7-zein promoter for expression specifically in the endosperm. <br><br> 13029 comprises the maize GBSSI N-terminal signal peptide fused to the T, reesei EGLI gene with a C-terminal addition of the starch binding domain (C-terminal 301 amino acids) of the maize GBSSI gene for targeting to the starch granule. The fusion was cloned behind the maize 7-zein promoter for expression specifically in the endosperm. <br><br> Additional Expression cassettes are generated using a maize optimised version of EGLI (SEQ ID NO: 95) <br><br> EGLI Enzyme Assays <br><br> EGLI enzyme activity is measured in maize transgenics using the Malt Beta-Glucanase Assay Kit (Cat U K-MBGL) (Megazyme International Ireland Ltd.) The enzymatic activity of EGL I expressors is tested in the Com Fiber Hydrolysis Assay as described in Example 53. <br><br> 158 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Example 60 <br><br> g-filucosidase 2 <br><br> A Trichoderma reesei ^-Glucosidase 2 (BGL2) gene was amplified and cloned by RT-PCR based on sequence Accession # AB003110 (Takashima et al., 1999). <br><br> BGL2 Plant Expression Constructs <br><br> Expression cassettes were made to express the Trichoderma reesei BGL2 cDNA (SEQ ID NO: 89) in maize endosperm as follows: <br><br> 13030 comprises the T, reesei BGL2 gene cloned behind the maize 7-zein promoter for cytoplasmic localization and expression specifically in the endosperm. <br><br> 13031 comprises the maize 7-zein N-terminal signal peptide (MRVLLVALALLALAASATS) fused to the T. reesei BGL2 gene for targeting to the endoplasmic reticulum and secretion into the apoplast. The fusion was cloned behind the maize 7-zein promoter for expression specifically in the endosperm. <br><br> 13032 comprises the maize 7-zein N-terminal signal peptide fused to the T. reesei BGL2 gene with a C-terminal addition of the sequence KDEL for targeting to and retention in the endoplasmic reticulum. The fusion was cloned behind the maize 7-zein promoter for expression specifically in the endosperm. <br><br> 13033 comprises the maize Granule Bound Starch Synthase I (GBSSI) N-terminal signal peptide (N-terminal 77 amino acids) fused to the T. reesei BGL2 gene for targeting to the lumen of the amyloplast. The fiision was cloned behind the maize 7-zein promoter for expression specifically in the endosperm. <br><br> 13034 comprises the maize GBSSI N-terminal signal peptide fused to the T. reesei BGL2 gene with a C-terminal addition of the starch binding domain (C-terminal 301 amino acids) of the <br><br> 159 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> maize GBSSI gene for targeting to the starch granule. The fusion was cloned behind the maize 7-zein promoter for expression specifically in the endosperm. <br><br> Additional Expression cassettes are generated by substituting a maize optimized version of BGL2 (SEQ ID NO: 96). <br><br> All expression cassettes are inserted into the binary vector pNOV2117 for transformation into maize via Agrobacterium infection. The binary vector contained the phosphomannose isomerase (PMI) gene which allows for selection of transgenic cells with mannose. Transformed maize plants were either self-pollinated or outcrossed and seed was collected for analysis. <br><br> BGL2 Enzyme Assays <br><br> BGL2 enzyme activity is measured in transgenic maize using a protocol modified from Bauer and Kelly (Bauer, M.W. and Kelly, R.M. 1998. The family 1 /3-glucosidases from Pyrococcus furiosus and Agrobacterium faecalis share a common catalytic mechanism. Biochemistry 37: 17170-17178). The protocol can be modified to incubate samples at 37°C instead of 100°C. The enzymatic activity of BGL2-expressors is tested in the Fiber Hydrolysis Assay. <br><br> 160 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Example 61 <br><br> ^-Glucosidase D <br><br> The Trichoderma reesei |3-Glucosidase D (CEL3D) gene was amplified and cloned by PCR based on a published database sequence (accession # AY281378; Foreman et al„ 2003). Because only genomic sequences could be obtained, the cDNA was generated from the genomic sequence by removing an intron using Overlap PCR, as described in Example 58. The resulting cDNA (SEQ ID NO: 91) may be used for subsequent constructs. A maize optimised version (SEQ ID NO: 97) of the resulting cDNA may also be used for constructs. <br><br> Plant constructs can be generated and /^-glucosidase assays can be performed as described for BGL2 in Example 60, replacing BGL2 with CEL3D. <br><br> 161 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Example 62 Lipases cDNAs encoding lipases are generated using sequences from Accession # D85895, AF04488, and AF04489 (Tsuchiya et al., 1996; Yu et al., 2003) and methodology set forth in Examples 59-60. <br><br> Lipase enzyme activity can be measured in transgenic maize using the Fluorescent Lipase Assay Kit (Cat # M0612)(Marker Gene Technologies, Inc.). Lipase activity can also be measured in vivo using the fluorescent substrate 1,2-dioleoyl-3-(pyren-l -y])decanoyl-^c glycerol (M0258), also from Marker Gene Technologies, Inc. <br><br> Example 63 <br><br> Expression of Phvtase in Rice <br><br> Vectors 11267 and 11268 comprise binary vectors that encode Nov9x phytase. <br><br> Expression of the Nov9x phytase gene in both vectors is under the control of the rice glutelin-1 promoter (SEQ ID NO:67). Vectors 11267 and 11268 are derived from pNOV2117. <br><br> The Nov9x phytase expression cassette in vector 11267 comprises the rice glutelin-1 promoter, the Nov9x phytase gene with apoplast targeting signal, a PEPC intron, and the 35S terminator. The product of the Nov9x phytase cuuing sequence in vector 11267 is shewn in SEQ ID NO: 110. <br><br> The Nov9x phytase expression cassette in vector 11268 comprises the rice glutelin-1 promoter, the Nov9x phytase gene with ER retention (SEQ ED NO:l 11), a PEPC intron, and the 35S terminator. The product of the Nov9x phytase coding sequence in vector 11268 is shown in SEQ ID NO: 112. <br><br> 162 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 11267 Nov9x phytase with apoplast targeting DNA sequence (SEQ ID NO: 109). <br><br> Translation start and stop codons are underlined. The sequence encoding the signal sequence of the 27-kD gamma-zein protein is in bold, atgagggtgttgctcgttgccctcgctctcctggctctcgctgcgagcgccaccagcgctgcgcagtccgagccggagctgaagctgg agtccgtggtgatcgtgtcccgccacggcgtgcgcgccccgaccaaggccacccagctcatgcaggacgtgaccccggacgcctggcc gacctggccggtgaagctcggcgagcfgaccccgcgcggcggcgagctgatcgcctacctcggccactactggcgccagcgcctcgtg gccgacggcctcctcccgaagtgcggctgcccgcagtccggccaggtggccatcatcgccgacgtggacgagcgcacccgcaagacc ggcgaggccttcgccgccggcctcgccccggactgcgccatcaccgtgcacacccaggccgacacctcctccccggacccgctcttcaa cccgctcaagaccggcgtgtgccagctcgacaacgccaacgtgaccgacgccatcctggagcgcgccggcggctccatcgccgacttc accggccactaccagaccgccttccgcgagctggagcgcgtgctcaacttcccgcagtccaacctctgcctcaagcgcgagaagcagga cgagtcctgctccctcacccaggccctcccgtccgagctgaaggtgtccgccgactgcgtgtccctcaccggcgccgtgtccctcgcctcc atgctcaccgaaatcttcctcctccagcaggcccagggcatgccggagccgggctggggccgcatcaccgactcccaccagtggaacac cctcctctccctccacaacgcccagttcgacctcctccagcgcaccccggaggtggcccgctcccgcgccaccccgctcctcgacctcatc aagaccgccctcaccccgcacccgccgcagaagcaggcctacggcgtgaccctcccgacctccgtgctcttcatcgccggccacgacac caacctcgccaacctcggcggcgccctggagctgaactggaccctcccgggccagccggacaacaccccgccgggcggcgagctggt gttcgagcgctggcgccgcctctccgacaactcccagtggattcaggtgtccctcgtgttccagaccctccagcagatgcgcgacaagacc ccgctctccctcaacaccccgccgggcgaggtgaagctcaccctcgccggctgcgaggagcgcaacgcccagggcatgtgctccotcg ccggcttcacccagatcgtgaacgaggcccgcatcccggcctgctccctctaa <br><br> 11267 Nov9x phytase with apoplast targeting gene product (SEQ ID N0:110). The signal sequence of the 27-kD gamma-zein protein is in bold. <br><br> mrvllvalallalaasatsaaqsepelkleswivsrhgvraptkatqlniqdvtpdawptwpvklgeltprggeliaylghywrqrlva dgllpkcgcpqsgqvaiiadvdertrktgeafaaglapdcaitvhtqadtsspdplfhplktgvcqidnanvtdaileraggsiadflghy qtafrelervlnfpqsnlclkrekqdescsltqalpselkvsadcvsltgavslasmlteifllqqaqgmpepgwgritdshqwntllslhn aqfdllqrtpevarsratplldliktaltphppqkqaygvtlptsvlfiaghdtnlanlggalelnwtlpgqpdiitppggelvferwrrlsdn sqwiqvslvfqtlqqmrdktplslntppgevkltlagceemaqgmcslagftqivnearipacsl <br><br> 11268 Nov9x phytase with ER retention DNA sequence (SEQ ID NOrlll). The sequence eocuuiug the sign a! sequence of the 27-kD gam^.azeis protein is ie bo!d= The sequence encoding the SEKDEL hexapeptide ER retention signal is underlined. <br><br> atgagggtgttgctcgttgccctcgctctcctggctctcgctgcgagcgccaccagcgctgcgcagtccgagccggagctgaagctgg agtccgtggtgatcgtgtcccgccacggcgtgcgcgccccgaccaaggccacccagctcatgcaggacgtgaccccggacgcctggcc gacctggccggtgaagctcggcgagctgaccccgcgcggcggcgagctgatcgcctacctcggccactactggcgccagcgcctcgtg gccgacggcctcctcccgaagtgcggctgcccgcagtccggccaggtggccatcatcgccgacgtggacgagcgcacccgcaagacc ggcgaggccttcgccgccggcctcgccccggactgcgccatcaccgtgcacacccaggccgacacctcctccccggacccgctcttcaa cccgctcaagaccggcgtgtgccagctcgacaacgccaacgtgaccgacgccatcctggagcgcgccggcggctccatcgccgacttc accggccactaccagaccgccttccgcgagctggagcgcgtgctcaacttcccgcagtccaacctctgcctcaagcgcgagaagcagga cgagtcctgctccctcacccaggccctcccgtccgagctgaaggtgtccgccgactgcgtgtccctcaccggcgccgtgtccctcgcctcc atgctcaccgaaatcttcctcctccagcaggcccagggcatgccggagccgggctggggccgcatcaccgactcccaccagtggaacac cctcctctccctccacaacgcccagttcgacctcctccagcgcaccccggaggtggcccgctcccgcgccaccccgctcctcgacctcatc aagaccgccctcaccccgcacccgccgcagaagcaggcctacggcgtgaccctcccgacctccgtgctcttcatcgccggccacgacac caacctcgccaacctcggcggcgccctggagctgaactggaccctcccgggccagccggacaacaccccgccgggcggcgagctggt gttcgagcgctggcgccgcctctccgacaactcccagtggattcaggtgtccctcgtgttccagaccctccagcagatgcgcgacaagacc <br><br> 163 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ccgctctccctcaacaccccgccgggcgaggtgaagctcaccctcgccggctgcgaggagcgcaacgcccagggcatgtgctccctcg r.r.pgcttcacccagatcgtgaacgagecccgcatcccggcctgctccctctccgagaaggacgagctgtaa <br><br> 11268 Nov9x phytase with ER retention, gene product (SEQ ID NO: 112). The signal sequence of the 27-kD gamma-zein protein is in bold. The ER retention signal is underlined. <br><br> mrvllvalallalaasatsaaqsepelkleswivsrhgvraptkatqlmqdvtpdawptwpvklgeltprggeliaylghywrqrlva dgllpkcgcpqsgqvaiiadvdertrktgeafaaglapdcaitvhtqadtsspdplfhplktgvcqldnanvtdaileraggsiadftghy qtafrelervlnfpqsnlclkrekqdescsltqalpselkvsadcvsltgavslasmlteifllqqaqgmpepgwgritdshqwntllslhn aqfdllqrtpevarsratplldliktaltphppqkqaygvtlptsvlfiaghdtnlanlggalelnwtlpgqpdntppggelvferwrrlsdn sqwiqvslvfqtlqqmrdktplslntppgevkltlagceemaqgmcslagftqivnearipacslsekdel <br><br> Generation of transgenic rice plants <br><br> Rice (Oryza sativa) is used for generating transgenic plants. Various rice cultivars can be used (Hiei et al., 1994, Plant Journal 6:271-282; Dong et al., 1996, Molecular Breeding 2:267-276; Hiei et al., 1997, Plant Molecular Biology, 35:205-218). Also, the various media constituents described below may be either varied in concentration or substituted. Embryogenic responses are initiated and/or cultures are established from mature embryos by culturing on MS-CIM medium (MS basal salts, 4.3 g/liter; B5 vitamins (200 x), 5 ml/liter; Sucrose, 30 g/liter; proline, 500 mg/liter; glutamine, 500 mg/liter; casein hydrolysate, 300 mg/liter; 2,4-D (I mg/ml), 2 ml/liter; adjust pH to 5.8 with 1 N KOH; Phytagel, 3 g/liter). Either mature embryos at the initial stages of culture response or established culture lines are inoculated and co-cultivated with the Agrobacterium strain LBA4404 containing the desired vector construction. Agrobacterium is cuicured from glycerol siuuks on soliu YPC medium (100 mg/L spectincrnycin and any other appropriate antibiotic) for -2 days at 28 °C. Agrobacterium is re-suspended in liquid MS-CIM medium. The Agrobacterium culture is diluted to an OD6OO of 0.2-0,3 and acetosyringone is added to a final concentration of 200 uM. Agrobacterium is induced with acetosyringone before mixing the solution with the rice cultures. For inoculation, the cultures are immersed in the bacterial suspension. The liquid bacterial suspension is removed and the inoculated cultures are placed on co-cultivation medium and incubated at 22°C for two days. The cultures are then transferred to MS-CIM medium with Ticarcillin (400 mg/liter) to inhibit the growth of Agrobacterium. For constructs utilizing the PMI selectable marker gene (Reed et al., In Vitro Cell. Dev. Biol.-Plant 37:127-132), cultures are transferred to selection medium containing <br><br> 164 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Mannose as a carbohydrate source (MS with 2%Mannose, 300 mg/liter Ticarcillin) after 7 days, and cultured for 3-4 weeks in the dark. Resistant colonies are then transferred to regeneration induction medium (MS with no 2,4-D, 0,5 mg/liter 1AA, 1 mg/liter zeatin, 200 mg/liter Ticarcillin 2% Mannose and 3% Sorbitol) and grown in the dark for 14 days. Proliferating colonies are then transferred to another round of regeneration induction media and moved to the light growth room. Regenerated shoots are transferred to GA7-1 medium (MS with no hormones and 2% Sorbitol) for 2 weeks and then moved to the greenhouse when they are large enough and have adequate roots. Plants are transplanted to soil in the greenhouse and grown to maturity. <br><br> Example 64 <br><br> Analysis of Transgenic Rice Seed Expressing Nov9X Phytase <br><br> ELISA For The Quantitation Of Nov9X Phytase From Rice Seed <br><br> Quantitation of phytase expressed in transgenic rice seed was assayed by ELISA. One (lg) rice seed was ground to flour in a Kleco seed grinder. 50 mg of flour was resuspended in the sodium acetate buffer described in example - for Nov9X phytase activity assay and diluted as required for the immunoassay. The Nov9X immunoassay is a quantitative sandwich assay for the detection of phytase that employs two polyclonal antibodies. The rabbit antibody was purified using protein A, and the goat antibody was immunoaffinity purified against recombinant phytase (Nov9X) protein produced in E.coli inclusion bodies. Using these highly specific antibodies, the assay can measure picogram levels of phytase in transgenic plants. There are three basic parts to the assay. The phytase protein in the sample is captured onto the solid phase microliter well using the rabbit antibody. Then a "sandwich" is formed between the solid phase antibody, the phytase protein, and the secondary antibody that has been added to the well. After a wash step, where unbound secondary antibody has been removed, the bound antibody is detected using an alkaline phosphatase-labeled antibody. Substrate for the enzyme is added and color development is measured by reading the absorbance of each well. The standard curve uses a four-parameter curve fit to plot the concentrations versus the absorbance. <br><br> Phytase activity assay <br><br> 165 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Determination of phytase activity, based upon the estimation of inorganic phosphate released on hydrolysis of phytic acid, can be performed at 37°C following the method of Engelen, AJ. et al., J. AOAC. Inter.. 84. 629 (2001). One unit of enzyme activity is defined as the amount of enzyme that liberates 1 fimol of inorganic phosphate per minute under assay conditions. For example, phytase activity may be measured by incubating 2.0 ml of the enzyme preparation with 4.0 ml of 9.1 mM sodium phytate in 250 mM sodium acetate buffer pH 5.5, supplemented with 1 mM CaC12 for 60 minutes at 37°C. After incubation, the reaction is stopped by adding 4.0 ml of a color-stop reagent consisting of equal parts of a 10% (w/v) ammonium molybdate and a 0.235% (w/v) ammonium vanadate stock solution. Precipitate is removed by centrifugation, and phosphate released is measured against a set of phosphate standards spectrophotometrically at 415 nm. Phytase activity is calculated by interpolating the A415 nm absorbance values obtained for phytase containing samples using the generated phosphate standard curve. <br><br> This procedure may be scaled down to accommodate smaller volumes and adapted to preferred containers. Preferred containers include glass test tubes and plastic microplates. <br><br> Partial submersion of the reaction vessel(s) in a water bath is essential to maintain constant temperature during the enzyme reaction. <br><br> Table 24 <br><br> Trans-genic line <br><br> Mg phytase/g flour* <br><br> Phytase activity units per g flour** <br><br> Endogenous inorganic phosphate released by cooking of dehusked rice seed (umol/gseed) <br><br> Endogenous inorganic phosphate released by cooking of dehusked, polished rice seed (umol/gseed) <br><br> Wild type <br><br> 0 <br><br> 0 <br><br> 1.442 <br><br> 0.469 <br><br> 1 <br><br> 510 <br><br> 916 <br><br> 1.934 <br><br> 0.840 <br><br> 2 <br><br> 1518 <br><br> 2800 <br><br> 2.894 <br><br> 1.073 <br><br> *Hg phytase was assayed by a sandwich ELISA <br><br> **Phytase activity was assayed by Phytase activity assay as described above. <br><br> Assay of Inorganic Phosphate Release During Cooking of Transgenic Rice Expressing Phytase Two samples of lg seed from selected rice transgenic lines and a control wildtype line was dehusked using a benchtop Kett TR200 automatic rice husker. One sample was then <br><br> 166 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> polished for 30 seconds in a Kett Rice polisher. Two volumes of H20 was added to each sample and the rice was cooked by immersing the tubes into a beaker of water. The water was brought to a boil and held in a full rolling boil for 10 minutes. The "cooked" rice seed was then ground to a paste with water bringing the total volume of te slurry to 6 ml. The slurry was centrifuged at 15,000xg for 10 minutes and the clear supernatant assayed for released endogenous inorganic phosphate. The assay of released phosphate is based on color formation as a result of molybdate and vanadate ions complexing with inorganic phosphate and is measured spectrophotometrically at 415nm as described in example - for phytase enzymatic activity. The results are in Table 24. <br><br> All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details described herein may be varied considerably without departing from the basic principles of the invention. <br><br> SEQUENCE LISTING &lt;110&gt; Lanahan, Mike <br><br> &lt;120? Self-processing Plants and Plant Parts <br><br> 109846.317 <br><br> &lt;140&gt; US 60/315,281 &lt;141&gt; 2001-08-27 <br><br> &lt;1G0&gt; 60 <br><br> &lt;17Q&gt; FastSEQ for Windows Version 4.0 <br><br> &lt;210&gt; 1 <br><br> &lt;211&gt; 436 <br><br> &lt;212&gt; PRT <br><br> «213&gt; Artificial sequence <br><br> &lt;22 0&gt; &lt;22 3&gt; <br><br> &lt;400&gt; <br><br> synthetic 1 <br><br> 167 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Met Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val He Met Gin Ala <br><br> 15 10 15 <br><br> Phe Tyr Trp Asp Val Pro Ser Gly Gly lie Trp Trp Asp Thr lie Arg <br><br> 20 25 30 <br><br> Gin Lys lie Pro Glu Trp Tyr Asp Ala Gly lie Ser Ala lie Trp lie <br><br> 35 40 45 <br><br> Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp <br><br> 50 55 60 <br><br> Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gin Lys Gly Thr Val 65 70 75 80 <br><br> Glu Thr Arg Phe Gly Ser Lys Gin Glu Leu lie Asn Met lie Asn Thr <br><br> 85 90 95 <br><br> Ala His Ala Tyr Gly He Lys Val lie Ala Asp He Val lie Asn His <br><br> 100 105 110 <br><br> Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr <br><br> 115 120 125 <br><br> Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr <br><br> 130 135 140 <br><br> Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe 145 150 155 160 <br><br> Gly Gly Tyr Pro Asp lie Cys His Asp Lys Ser Trp Asp Gin Tyr Trp <br><br> 165 170 175 <br><br> Leu Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser lie Gly <br><br> 180 185 190 <br><br> lie Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val <br><br> 195 200 205 <br><br> Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr <br><br> 210 215 220 <br><br> Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly 225 230 235 240 <br><br> Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe <br><br> 245 250 255 <br><br> Asp Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly <br><br> 260 265 270 <br><br> Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn' <br><br> 275 280 285 <br><br> His Asp Thr Asp lie lie Trp Asn Lys Tyr Pro Ala Tyr Ala Phe lie <br><br> 290 295 300 <br><br> Leu Thr Tyr Glu Gly Gin Pro Thr lie Phe Tyr Arg Asp Tyr Glu Glu 305 310 315 320 <br><br> Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His Asp Asn <br><br> 325 330 335 <br><br> Leu Ala Gly Gly Ser Thr Ser lie Val Tyr Tyr Asp Ser Asp Glu Met <br><br> 340 345 350 <br><br> lie Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu He Thr Tyr <br><br> 355 360 365 <br><br> lie Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys <br><br> 370 375 380 <br><br> Phe Ala Gly Ala Cys lie His Glu Tyr Thr Gly Asn Leu Gly Gly Trp 385 390 395 400 <br><br> Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu Ala Pro <br><br> 405 410 415 <br><br> Ala Tyr Asp Pro Ala Asn Gly Gin Tyr Gly Tyr Ser Val Trp Ser Tyr 420 425 430 <br><br> 168 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Cys Gly Val Gly 435 <br><br> &lt;210&gt; 2 c211&gt; 1308 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 2 <br><br> atggccaagt acctggagct ggaggagggc ggcgtgatca tgcaggcgtt ctactgggac 60 gtcccgagcg gaggcatctg gtgggacacc atccgccaga agatccccga gtggtacgac 120 gccggcatct ccgcgatctg gataccgcca gcttccaagg gcatgtccgg gggctactcg 180 atgggctacg acccgtacga ctacttcgac ctcggcgagt actaccagaa gggcacggtg 240 gagacgcgct tcgggtccaa gcaggagctc atcaacatga tcaacacggc gcacgcctac 3 00 ggcatcaagg tcatcgcgga catcgtgatc aaccacaggg ccggcggcga cctggagtgg 360 aacccgttcg tcggcgacta cacctggacg gacttctcca aggtcgcctc cggcaagtae 420 accgccaact acctcgactt ccaccccaac gagctgcacg cgggcgactc cggcacgttc 4 80 ggcggctacc cggacatctg ccacgacaag tcctgggacc agtactggct ctgggcctcg 54 0 caggagtcct acgcggccta cctgcgctcc atcggcatcg acgcgtggcg cttcgactac 600 gtcaagggct acggggcctg ggtggtcaag gactggctca actggtgggg cggctgggcg 660 gtgggcgagt actgggacac caacgtegac gegctgctca actgggccta ctcetccggc 720 gccaaggtgt tcgacttccc cctgtactac aagatggacg cggccttcga caacaagaac 780 atcccggcgc tcgtcgaggc cctgaagaac ggcggcacgg tggtctcccg cgacccgttc 84 0 aaggccgtga ccttcgtcgc caaccacgac acggacatca tctggaacaa gtacccggcg 900 tacgccttca tcctcaccta cgagggccag cccacgatct tctaccgcga ctacgaggag 960 tggctgaaca aggacaagct caagaacctg atctggattc acgacaacct cgcgggcggc 102 0 tccactagta tcgtgtacta cgactccgac gagatgatct tcgtccgcaa cggctacggc 1080 tccaagcccg gcctgatcac gtacatcaac ctgggctcct ccaaggtggg ccgctgggtg 1140 tacgtcccga agttcgccgg cgcgtgcatc cacgagtaca ccggcaacct cggcggctgg 1200 gtggacaagt acgtgtactc ctccggctgg gtctacctgg aggccccggc ctacgacccc 1260 gccaacggcc agtacggcta ctccgtgtgg tcctactgcg gcgtcggc 1308 <br><br> &lt;210&gt; 3 &lt;211&gt; 800 «212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 3 <br><br> Met <br><br> Gly <br><br> His <br><br> Trp <br><br> Tyr <br><br> Lys <br><br> His <br><br> Gin <br><br> Arg <br><br> Ala <br><br> Tyr <br><br> Gin <br><br> Phe <br><br> Thr <br><br> Gly <br><br> GlU <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Asp <br><br> Asp <br><br> Phe <br><br> Gly 20 <br><br> Lys <br><br> Val <br><br> Ala <br><br> Val <br><br> Val 25 <br><br> Lys <br><br> Leu <br><br> Pro <br><br> Met <br><br> Asp 30 <br><br> Leu <br><br> Thr <br><br> CO <br><br> &gt;1 <br><br> J <br><br> Val <br><br> Gly 35 <br><br> lie lie <br><br> Val <br><br> Arg <br><br> Leu 40 <br><br> Asn <br><br> Glu <br><br> Trp <br><br> Gin <br><br> Ala 45 <br><br> Lys <br><br> Asp val <br><br> Ala <br><br> Lys 50 <br><br> Asp <br><br> Arg <br><br> Phe lie <br><br> Glu 55 <br><br> lie <br><br> Lys <br><br> Asp <br><br> Gly <br><br> Lys 60 <br><br> Ala <br><br> Glu <br><br> Val <br><br> Trp lie <br><br> Leu Gin Gly <br><br> Val <br><br> Glu <br><br> Glu lie <br><br> Phe <br><br> Tyr <br><br> Glu <br><br> Lys <br><br> Pro <br><br> Asp <br><br> Thr <br><br> Ser <br><br> 169 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 65 70 75 80 <br><br> Pro Arg lie Phe Phe Ala Gin Ala Arg Ser Asn Lys Val lie Glu Ala <br><br> 85 90 95 <br><br> Phe Leu Thr Asn Pro Val Asp Thr Lys Lys Lys Glu Leu Phe Lys Val <br><br> 100 105 110 <br><br> Thr Val Asp Gly Lys Glu lie Pro Val Ser Arg Val Glu Lys Ala Asp <br><br> 115 120 125 <br><br> Pro Thr Asp lie Asp Val Thr Asn Tyr Val Arg lie Val Leu Ser Glu <br><br> 130 135 140 <br><br> Ser Leu Lys Glu Glu Asp Leu Arg Lys Asp Val Glu Leu He lie Glu 145 150 155 160 <br><br> Gly Tyr Lys Pro Ala Arg Val lie Met Met Glu He Leu Asp Asp Tyr <br><br> 165 170 175 <br><br> Tyr Tyr Asp Gly Glu Leu Gly Ala val Tyr Ser Pro Glu Lys Thr lie <br><br> 180 185 190 <br><br> Phe Arg Val Trp Ser Pro Val Ser Lys Trp Val Lys Val Leu Leu Phe <br><br> 195 200 205 <br><br> Lvs Asn Gly Glu Asp Thr Glu Pro Tyr Gin Val Val Asn Met Glu Tyr <br><br> 210 215 220 <br><br> Lys Gly Asn Gly Val Trp Glu Ala Val Val Glu Gly Asp Leu Asp Gly 225 230 235 240 <br><br> Val Phe Tyr Leu Tyr Gin Leu Glu Asn Tyr Gly Lys lie Arg Thr Thr <br><br> 245 250 255 <br><br> Val Asp Pro Tyr Ser Lys Ala Val Tyr Ala Asn Asn Gin Glu Ser Ala <br><br> 260 265 270 <br><br> Val Val Asn Leu Ala Arg Thr Asn Pro Glu Gly Trp Glu Asn Asp Arg <br><br> 275 2 BO 285 <br><br> Gly Pro Lys lie Glu Gly Tyr Glu Asp Ala lie lie Tyr Glu lie His <br><br> 290 295 300 <br><br> lie Ala Asp lie Thr Gly Leu Glu Asn Ser Gly val Lys Asn Lys Gly 305 310 315 320 <br><br> Leu Tyr Leu Gly Leu Thr Glu Glu Asn Thr Lys Gly Pro Gly Gly Val <br><br> 325 330 335 <br><br> Thr Thr Gly Leu Ser His Leu Val Glu Leu Gly Val Thr His Val His <br><br> 340 345 350 <br><br> lis Leu Pro Phe Phe Asp Phe Tyr Thr Gly Asp Glu Leu Asp Lys Asp <br><br> 355 360 365 <br><br> Phe Glu Lys Tyr Tyr Asn Trp Gly Tyr Asp Pro Tyr Leu Phe Met Val <br><br> 370 375 380 <br><br> Pro Glu Gly Arg Tyr Ser Thr Asp Pro Lys Asn Pro His Thr Arg lie 385 390 395 400 <br><br> Arg Glu Val Lys Glu Met Val Lys Ala Leu His Lys His Gly He Gly <br><br> 405 410 415 <br><br> Val lie Met Asp Met Val Phe Pro His Thr Tyr Gly lie Gly Glu Leu <br><br> 420 425 430 <br><br> Ser Ala Phe Asp Gin Thr Val Pro Tyr Tyr Phe Tyr Arg lie Asp Lys <br><br> 435 440 445 <br><br> Thr Gly Ala Tyr Leu Asn Glu Ser Gly Cys Gly Asn Val lie Ala Ser <br><br> 450 455 460 <br><br> Glu Arg Pro Met Met Arg Lys Phe lie Val Asp Thr Val Thr Tyr Trp 465 470 475 480 <br><br> Val Lys Glu Tyr His lie Asp Gly Phe Arg Phe Asp Gin Met Gly Leu <br><br> 485 490 495 <br><br> lie Asp Lys Lys Thr Met Leu Glu Val Glu Arg Ala Leu His Lys lie <br><br> 170 <br><br> WO 2005/096804 <br><br> PCT/US2004/007J 82 <br><br> 500 505 510 <br><br> Asp Pro Thr lie lie Leu Tyr Gly Glu Pro Trp Gly Gly Trp Gly Ala <br><br> 515 520 525 <br><br> Pro lie Arg Phe Gly Lys Ser Asp Val Ala Gly Thr His Val Ala Ala <br><br> 530 535 540 <br><br> Phe Asn Asp Glu Phe Arg Asp Ala lie Arg Gly Ser Val Phe Asn Pro 545 550 555 560 <br><br> Ser Val Lys Gly Phe Val Met Gly Gly Tyr Gly Lys Glu Thr Lys lie <br><br> 5S5 570 575 <br><br> Lys Arg Gly Val Val Gly Ser lie Asn Tyr Asp Gly Lys Leu lie Lys <br><br> 580 585 590 <br><br> Ser Phe Ala Leu Asp Pro Glu Glu Thr lie Asn Tyr Ala Ala Cys His <br><br> 595 600 605 <br><br> Asp Asn His Thr Leu Trp Asp Lys Asn Tyr Leu Ala Ala Lys Ala Asp <br><br> 610 615 620 <br><br> Lvs Lys Lys Glu Trp Thr Glu Glu Glu Leu Lys Asn Ala Gin. Lys Leu 625 630 635 640 <br><br> Ala Gly Ala lie Leu Leu Thr Ser Gin Gly Val Pro Phe Leu His Gly <br><br> 645 550 655 <br><br> Gly Gin Asp Phe Cys Arg Thr Thr Asn Phe Asn Asp Asn Ser Tyr Asn <br><br> 660 665 670 <br><br> Ala Pro lie Ser lie Asn Gly Phe Asp Tyr Glu Arg Lys Leu Gin Phe <br><br> 675 680 685 <br><br> lie Asp Val Phe Asn Tyr His Lys Gly Leu lie Lys Leu Arg Lys Glu <br><br> 690 695 700 <br><br> His Pro Ala Phe Arg Leu Lys Asn Ala Glu Glu He Lys Lys His Leu 705 710 715 720 <br><br> Glu Phe Leu Pro Gly Gly Arg Arg lie Val Ala Phe Met Leu Lys Asp <br><br> 725 730 735 <br><br> His Ala Gly Gly Asp Pro Trp Lys Asp lie Val Val lie Tyr Asn Gly <br><br> 740 745 750 <br><br> Asn Leu Glu Lye Thr Thr Tyr Lys Leu Pro Glu Gly Lys Trp Asn Val <br><br> 755 760 765 <br><br> Val Val Asn Ser Gin Lys Ala Gly Thr Glu Val lie Glu Thr Val Glu <br><br> 770 775 780 <br><br> Gly Thr lie Glu Leu Asp Pro Leu Ser Ala Tyr Val Leu Tyr Arg Glu 785 790 795 800 <br><br> &lt;210&gt; 4 &lt;211&gt; 2400 &lt;212&gt; DNA <br><br> c213&gt; Artificial Sequence &lt;22 0 &gt; <br><br> &lt;223&gt; synthetic &lt;400 &gt; 4 <br><br> atgggccact ggtacaagca ccagcgcgcc aaggtggccg tggtgaagct cecgatggac aacgagtggc aggcgaagga cgtggccaag gccgaggtgt ggatacteca gggegtggag ccgcgcatct tcttcgccca ggcccgctcc ccggtggaca ccaagaagaa ggagctgttc taccagttca ccggcgagga cgacttcggg 60 ctcaecaagg tgggcafccat cgtgegcctc 120 gaccgcttca tcgagatcaa ggacggcaag 180 gagatcttct acgagaagcc ggacacctcc 24 0 aacaaggtga tcgaggcctt cctcaccaac 300 aaggtgaccg tcgacggcaa ggagatcccg 36 0 <br><br> 171 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> gtgtcccgcg tggagaaggc cgacccgacc gacatcgacg tgaccaacta cgtgcgcatc 420 gtgctctccg agtccctcaa ggaggaggac ctccgcaagg acgtggagct gatcatcgag 4fi0 ggctacaagc cggcccgcgt gatcatgatg gagatcctcg acgactacta ctacgacggc 54 0 gagctggggg cggtgtactc cccggagaag accatcttcc gcgtgtggtc cccggtgtcc 600 aagtgggtga aggtgctcct cttcaagaac ggcgaggaca ccgagccgta ccaggtggtg 660 aacatggagt acaagggcaa cggcgtgtgg gaggccgtgg tggagggcga cctcgacggc 720 gtgttctacc tctaccagct ggagaactac ggcaagatcc gcaccaccgt ggacccgtac 780 tccaaggccg tgtacgccaa caaccaggag&gt;tctgcagtgg tgaacctcgc ccgcaccaac 840 ccggagggct gggagaacga ccgcggcccg aagatcgagg gctacgagga cgccatcatc 900 tacgagatcc acatcgccga caccaccggc ctggagaact ccggcgtgaa gaacaagggc 960 ctctacctcg gcctcaccga ggagaacacc aaggccccgg gcggcgtgac caccggcctc 102 0 tcccacctcg tggagctggg cgtgacccac gtgcacatcc tcccgttctt cgacttctac 1080 accggcgacg agctggacaa ggacttcgag aagtactaca actggggcta cgacccgtac 114 0 ctcttcatgg tgccggaggg ccgctactcc accgacccga agaacccgca cacccgaatt 1200 cgcgaggtga aggagatggt gaaggccctc cacaagcacg gcatcggcgt gatcatggac 1260 atggtgttcc cgcacaccta cggcatcggc gagctgtccg ccttcgacca gaccgtgccg 1320 tactacttct accgcatcga caagaccggc gcctacctca acgagtccgg ctgcggcaac 1380 gtgatcgcct ccgagcgccc gatgatgcgc aagttcatcg tggacaccgt gacctactgg 1440 gtgaaggagt accacatcga cggcttccgc ttcgaccaga tgggcctcat cgacaagaag 1500 accatgctgg aggtggagcg cgccctccac aagatcgacc cgaccatcat cctctacggc 1560 gagccgtggg gcggctgggg ggccccgatc cgcttcggca agtccgacgt ggccggcacc 162 0 cacgtggccg ccttcaacga cgagttccgc gacgccatec gcggctccgt gttcaacccg 1680 tccgtgaagg gcttcgtgat gggcggctac ggcaaggaga ccaagatcaa gcgcggcgtg 1740 gtgggctcca tcaactacga cggcaagctc atcaagtcct tcgccctcga cccggaggag 1800 accatcaact acgccgcctg ccacgacaac cacaccctct gggacaagaa ctacctcgcc 1860 gccaaggccg acaagaagaa ggagtggacc gaggaggagc tgaagaacgc ccagaagctc 1920 gccggcgcca tectcctcac tagtcagggc gtgccgttcc tccacggcgg ccaggacttc 1980 tgccgcacca ccaacttcaa cgacaactcc tacaacgccc cgatctccat caacggcttc 204 0 gactacgagc gcaagctcca gttcatcgac gtgttcaact accacaaggg cctcatcaag 2100 ctccgcaagg agcacccggc cttccgcctc aagaacgccg aggagatcaa gaagcacctg 2160 gagttcctcc cgggcgggcg ccgcatcgtg gccttcatgc tcaaggacca cgccggcggc 2220 gacccgtgga aggacatcgt ggtgatctac aacggcaacc tggagaagac cacctacaag 22 80 ctcccggagg gcaagtggaa cgtggtggtg aactcccaga aggccggcac cgaggtgatc 2 340 gagaccgtgg agggcaccat cgagctggac ccgctctccg cctacgtgct ctacegcgag 24 00 <br><br> &lt;210&gt; 5 &lt;211&gt; 693 &lt;212&gt; PRT <br><br> &lt;213&gt; Sulfolobus solfataricus <br><br> &lt;400&gt; 5 <br><br> Met <br><br> GlU <br><br> Thr lie <br><br> Lys lie <br><br> Tyr <br><br> Glu <br><br> Asn <br><br> Lys <br><br> Gly val <br><br> Tyr <br><br> Lys <br><br> Val val <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> lie <br><br> Gly <br><br> Glu <br><br> Pro 20 <br><br> Phe <br><br> Pro <br><br> Pro lie <br><br> Glu 25 <br><br> Phe <br><br> Pro <br><br> Leu <br><br> Glu <br><br> Gin 30 <br><br> Lys lie <br><br> Ser <br><br> Ser <br><br> Asn 35 <br><br> Lys <br><br> Ser <br><br> Leu <br><br> Ser <br><br> Glu 40 <br><br> Leu <br><br> Gly <br><br> Leu <br><br> Thr lie 45 <br><br> Val <br><br> Gin <br><br> Gin <br><br> Gly <br><br> Asn 50 <br><br> Lys <br><br> Val lie <br><br> Val <br><br> Glu 55 <br><br> Lys <br><br> Ser <br><br> Leu <br><br> Asp <br><br> Leu 60 <br><br> Lys <br><br> Glu <br><br> His lie lie <br><br> Gly <br><br> Leu <br><br> Gly <br><br> Glu <br><br> Lys <br><br> Ala <br><br> Phe <br><br> Glu <br><br> Leu <br><br> Asp <br><br> Arg <br><br> Lys <br><br> Arg <br><br> Lys <br><br> Arg <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Tyr val <br><br> Met <br><br> Tyr <br><br> Asn 85 <br><br> Val <br><br> Asp <br><br> Ala <br><br> Gly <br><br> Ala 90 <br><br> Tyr <br><br> Lys <br><br> Lys <br><br> Tyr <br><br> Gin 95 <br><br> Asp <br><br> 172 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Pro Leu Tyr Val Ser lie Pro Leu Phe lie Ser Val Lys Asp Gly Val <br><br> 100 105 110 <br><br> Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val lie Phe Asp Val <br><br> 115 120 125 <br><br> Gly Leu Glu Glu Tyr Asp Lys Val lie Val Thr lie Pro Glu Asp Ser <br><br> 130 135 140 <br><br> Val Glu Phe Tyr Val lie Glu Gly Pro Arg lie Glu Asp Val Leu Glu 145 150 155 160 <br><br> Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro Met Trp Ala <br><br> 165 170 175 <br><br> Phe Gly Tyr Met lie Ser Arg Tyr Ser Tyr Tyr Pro Gin Asp1 Lys Val <br><br> 180 185 190 <br><br> Val Glu Leu Val Asp lie Met Gin Lys Glu Gly Phe Arg Val Ala Gly <br><br> 195 200 205 <br><br> Val Phe Leu Asp lie His Tyr Met Asp Ser Tyr Lys Leu Phe Thr Trp <br><br> 210 215 220 <br><br> His Pro Tyr Arg Phe Pro Glu Pro Lys Lys Leu lie Asp Glu Leu His 225 230 235 240 <br><br> Lys Arg Asn Val Lys Leu lie Thr lie Val Asp His Gly lie Arg Val <br><br> 245 250 255 <br><br> Asp Gin Asn Tyr Ser Pro Phe Leu Ser Gly Met Gly Lys Phe Cys Glu <br><br> 260 265 270 <br><br> lie Glu Ser Gly Glu Leu Phe Val Gly Lys Met Trp Pro Gly Thr Thr <br><br> 275 280 285 <br><br> Val Tyr Pro Asp Phe Phe Arg Glu Asp Thr Arg Glu Trp Trp Ala Gly <br><br> 290 295 300 <br><br> Leu lie Ser Glu Trp Leu Ser Gin Gly Val Asp Gly lie Trp Leu Asp 305 310 315 320 <br><br> Met Asn Glu Pro Thr Asp Phe Ser Arg Ala He Glu lie Arg Asp Val <br><br> 325 330 335 <br><br> Leu Ser Ser Leu Pro Val Gin Phe Arg Asp Asp Arg Leu Val Thr Thr <br><br> 340 345 350 <br><br> Phe Pro Asp Asn Val Val His Tyr Leu Arg Gly Lys Arg Val Lys His <br><br> 355 360 365 <br><br> Glu Lys Val Arg Asn Ala Tyr Pro Leu Tyr Glu Ala Met Ala Thr Phe <br><br> 370 375 380 <br><br> Lys Gly Phe Arg Thr Ser His Arg Asn Glu lie Phe lie Leu Ser Arg 385 390 395 400 <br><br> Ala Gly Tyr Ala Gly lie Gin Arg Tyr Ala Phe lie Trp Thr Gly Asp <br><br> 405 410 415 <br><br> Asn Thr Pro Ser Trp Asp Asp Leu Lys Leu Gin Leu Gin Leu Val Leu <br><br> 420 425 430 <br><br> Gly Leu Ser He Ser Gly Val Pro Phe Val Gly Cys Asp lie Gly Gly <br><br> 435 440 445 <br><br> Phe Gin Gly Arg Asn Phe Ala Glu lie Asp Asn Ser Met Asp Leu Leu <br><br> 450 455 460 <br><br> Val Lys Tyr Tyr Ala Leu Ala Leu Phe Phe Pro Phe Tyr Arg Ser His 465 470 475 400 <br><br> Lys Ala Thr Asp Gly lie Asp Thr Glu Pro Val Phe Leu Pro Asp Tyr <br><br> 485 490 495 <br><br> Tyr Lys Glu Lys Val Lys Glu lie Val Glu Leu Arg Tyr Lys Phe Leu <br><br> 500 505 510 <br><br> Pro Tyr lie Tyr Ser Leu Ala Leu Glu Ala Ser Glu Lys Gly His Pro 515 520 525 <br><br> 173 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> val lie <br><br> 530 <br><br> Arg <br><br> Pro <br><br> Leu <br><br> Phe <br><br> Tyr 535 <br><br> Glu <br><br> Phe <br><br> Gin <br><br> Asp <br><br> Asp 540 <br><br> Asp <br><br> Asp <br><br> Met <br><br> Tyr <br><br> Arg lie <br><br> Glu <br><br> Asp <br><br> Glu <br><br> Tyr <br><br> Met <br><br> Val <br><br> Gly <br><br> Lys <br><br> Tyr <br><br> Leu <br><br> Leu <br><br> Tyr <br><br> Ala <br><br> Pro <br><br> 545 <br><br> 550 <br><br> 555 <br><br> 560 <br><br> lie <br><br> Val <br><br> Ser <br><br> Lys <br><br> Glu <br><br> 565 <br><br> Glu <br><br> Ser <br><br> Arg <br><br> Leu <br><br> Val 570 <br><br> Thr <br><br> Leu <br><br> Pro <br><br> Arg <br><br> Gly 575 <br><br> Lys <br><br> Trp Tyr <br><br> Asn <br><br> Tyr <br><br> Trp <br><br> Asn <br><br> Gly <br><br> Glu lie lie <br><br> Asn Gly <br><br> Lys <br><br> Ser <br><br> Val <br><br> Val <br><br> 580 <br><br> 585 <br><br> 590 <br><br> Lys <br><br> Ser <br><br> Thr <br><br> 5 95 <br><br> His <br><br> Glu <br><br> Leu <br><br> Pro lie 600 <br><br> Tyr <br><br> Leu <br><br> Arg <br><br> Glu <br><br> Gly 605 <br><br> Ser lie lie <br><br> Pro <br><br> Leu <br><br> Glu <br><br> Gly <br><br> Asp <br><br> Glu <br><br> Leu lie <br><br> Val <br><br> Tyr <br><br> Gly Glu <br><br> Thr <br><br> Ser <br><br> Phe <br><br> Lys <br><br> 610 <br><br> 615 <br><br> 620 <br><br> Arg <br><br> Tyr <br><br> Asp <br><br> Asn <br><br> Ala <br><br> Glu lie <br><br> Thr <br><br> Ser <br><br> Ser <br><br> Ser <br><br> Asn <br><br> Glu lie <br><br> Lys <br><br> Phe <br><br> 625 <br><br> 630 <br><br> 635 <br><br> 640 <br><br> Ser <br><br> Arg <br><br> Glu lie <br><br> Tyr 645 <br><br> Val <br><br> Ser <br><br> Lys <br><br> Leu <br><br> Thr <br><br> 650 <br><br> lie <br><br> Thr <br><br> Ser <br><br> Glu <br><br> Lys 655 <br><br> Pro <br><br> Val <br><br> Ser <br><br> Lys lie 660 <br><br> lie <br><br> Val <br><br> Asp <br><br> Asp <br><br> Ser 665 <br><br> Lys <br><br> Glu lie <br><br> Gin <br><br> Val 670 <br><br> Glu <br><br> Lys <br><br> Thr <br><br> Met <br><br> Gin 675 <br><br> Asn <br><br> Thr <br><br> Tyr <br><br> Val <br><br> Ala 680 <br><br> Lys lie <br><br> Asn <br><br> Gin <br><br> Lys 685 <br><br> lie <br><br> Arg <br><br> Gly <br><br> Lys lie 690 <br><br> Asn <br><br> Leu <br><br> Glu <br><br> &lt;210&gt; 6 &lt;211&gt; 2082 &lt;212&gt; DNA <br><br> &lt;213&gt; Sulfolobus solfataricus &lt;400&gt; 6 <br><br> atggagacca tcaagatcta cgagaacaag ggcgtgtaca aggtggtgat cggcgagccg 60 ttcccgccga tcgagttccc gctcgagcag aagatctcct ccaacaagtc cctctccgag 120 ctgggcctca ccatcgtgca gcagggcaac aaggtgatcg tggagaagtc cctcgacctc 180 aaggagcaca tcatcggcct cggcgagaag gccttcgagc tggaccgcaa gcgcaagcgc 24 0 tacgtgatgt acaacgtgga cgccggcgcc tacaagaagt accaggaccc gctctacgtg 300 tccatcccgc tcttcatctc cgtgaaggac ggcgtggcca ccggctactt cttcaactcc 360 gcctccaagg tgatcttcga cgtgggcctc gaggagtacg acaaggtgat cgtgaccatc 420 ccggaggact ccgtggagtt ctacgtgatc gagggcccgc gcatcgagga cgtgctcgag 4 80 aagtacaccg agctgaccgg caagccgttc ctcccgccga tgtgggcctt cggctacatg 540 atctcccgct actcctacta cccgcaggac aaggtggtgg agctggtgga catcatgcag 600 aaggagggct tccgcgtggc cggcgtgttc ctcgacatcc actacatgga ctcctacaag 660 ctcttcacct ggcacccgta ccgcttcccg gagccgaaga agctcatcga cgagctgcac 720 aagcgcaacg tgaagctcat caccatcgtg gaccacggca tccgcgtgga ccagaactac 780 cccccgttcc tccccggcat gggcaagttc tgcgagatcg agtccggcga gctgttcgtg 840 ggcaagatgt ggccgggcac caccgtgtac ccggacttct tccgcgagga cacccgcgag 900 tggtgggccg gcctcatctc cgagtggctc tcccagggcg tggacggcat ctggctcgac 960 atgaacgagc cgaccgactt ctcccgcgcc atcgagatcc gcgacgtgct ctcctccctc 1020 ccggtgcagt tccgcgacga ccgcctcgtg accaccttcc cggacaacgt ggtgcactac 1080 ctccgcggca agcgcgtgaa gcacgagaag gtgcgcaacg cctacccgct ctacgaggcg 1140 atggccacct tcaagggctt ccgcacctcc caccgcaacg agatcttcat cctctcccgc 1200 gccggctacg ccggcatcca gcgctacgcc ttcatctgga ccggcgacaa caccccgtcc 1260 tgggacgacc tcaagctcca gctccagctc gtgctcggcc tctccatctc cggcgtgccg 1320 ttcgtgggct gcgacatcgg cggcttccag ggccgcaact tcgccgagat cgacaactcg 13 80 atggacctcc tegtgaagta ctacgccctc gccctcttct tcccgttcta ccgctcccac 1440 <br><br> 174 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> aaggccaccg acggcatcga caccgagccg gtgttcctcc cggactacta-caaggagaag 1500 gtgaaggaga tcgtggagct gcgctacaag ttcctcccgt acatctactc cctcgccctc 1560 gaggcctccg agaagggcca cccggtgatc cgcccgctct tctacgagtt ccaggacgac 1620 gacgacatgt accgcatcga ggacgagtac atggtgggca agtacctcct ctacgccccg 1680 atcgtgtcca aggaggagtc ccgcctcgtg accctcccgc gcggcaagtg gtacaactac 1740 tggaacggeg agatcatcaa cggcaagtcc gtggtgaagt ccacccacga gctgccgatc 1800 tacctccgcg agggctccat catccogctc gagggcgacg agctgatcgt gtacggcgag i860 acctccttca agcgctacga caacgccgag atcacctcct cctccaacga gatcaagttc 1920 tcccgcgaga tctacgtgtc caagctcacc atcacctccg agaagccggt gtccaagatc 1980 atcgtggacg actccaagga gatccaggtg gagaagacca tgcagaacac ctacgtggcc 204 0 aagatcaacc agaagatccg cggcaagatc aacctcgagt ga 2 082 <br><br> &lt;210&gt; 7 &lt;211&gt; 1818 &lt;212&gt; DNA <br><br> &lt; 213 &gt; Artificial Sequence &lt;22 0 &gt; <br><br> &lt;22 3 &gt; synthetic &lt;400&gt; 7 <br><br> atggcggctc tggccacgtc gcagctcgtc gcaacgcgcg ccggcctggg cgtcccggac 60 gcgtccacgt tccgccgcgg cgccgcgcag ggcctgaggg gggcccgggc gtcggcggcg 120 gcggacacgc tcagcatgcg gaccagcgcg cgcgcggcgc ccaggcacca gcaccagcag 180 gcgcgccgcg gggccaggtt cccgtcgctc gtcgtgtgcg ccagcgccgg catgaacgtc 240 gtcttcgtcg gcgccgagat ggcgccgtgg agcaagaccg gaggcctcgg cgacgtcctc 3 00 ggcggcctgc cgccggccat ggccgcgaac gggcaccgtg tcatggtcgt ctctccccgc 360 tacgaccagt acaaggacgc ctgggacacc agcgtcgtgt ccgagatcaa gatgggagac 42 0 gggtaegaga cggtcaggtt cttccactgc tacaagcgcg gagtggaccg cgtgttcgtt 480 gaccacccac tgttcctgga gagggtttgg ggaaagaccg aggagaagat ctacgggcct 54 0 gtcgctggaa cggactacag ggacaaccag ctgcggttca gcctgctatg ccaggcagca 600 cttgaagctc caaggatcct gagcctcaac aacaacccat acttctccgg accatacggg 6G0 gaggacgtcg tgttcgtctg caacgactgg cacaccggcc ctctctcgtg ctacctcaag 720 agcaactacc agtcccacgg catctacagg gacgcaaaga ccgctttctg catccacaac 780 atctcctacc agggccggtt cgccttctcc gactacccgg agctgaacct ccccgagaga 840 ttcaaatcgt ccttcqattt catcqacggc tacgagaagc ccgtggaagg ccggaagatc 900 aactggatga aggccgggat cctcgaggcc gacagggtcc tcaccgtcag cccctactac 960 gccgaggagc tcatctccgg catcgccagg ggctgcgagc tcgacaacat catgcgcctc 1020 accggcatca ccggcatcgt caacggcatg gacgtcagcg agtgggaccc cagcagggac 1080 aagtacatcg ccgtgaagta cgacgtgtcg acggccgtgg aggccaaggc gctgaacaag 1140 gaggcgctgc aggcggaggt cgggctcccg gtggaccgga acatcccgct ggtggcgttc 1200 atcggcaggc tggaagagca gaagggcccc gacgtcatgg cggccgccat cccgcagctc 12 60 atggagatgg tggaggacgt gcagatcgtt ctgctgggca cgggcaagaa gaagttcgag 13 20 cgcatgctca tgagcgccga ggagaagttc ccaggcaagg tgcgcgccgt ggtcaagttc 13 80 aacgcggcgc tggcgcacca catcatggcc ggcgccgacg tgctcgccgt caccagccgc 144 0 ttcgagccct gcggcctcat ccagctgcag gggatgcgat acggaacgcc ctgcgcctgc 1500 gcgtccaccg gtggactcgt cgacaccatc atcgaaggca agaccgggtt ccacatgggc 1560 cgcctcagcg tcgactgcaa cgtcgtggag ccggcggacg tcaagaaggt ggccaccacc 1620 ttgeagcgcg ccatcaaggt ggtcggcacg ccggcgtacg aggagatggt gaggaactgc 1680 atgatccagg atctctcctg gaagggccct gccaagaact gggagaacgt gctgctcagc 1740 ctcggggtcg ccggcggcga gccaggggtt gaaggcgagg agatcgcgcc gctcgccaag 1800 gagaacgtgg ccgcgccc 1818 <br><br> &lt;210=. a <br><br> 175 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;211=. 606 &lt;212=- PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 8 <br><br> Met Ala Ala Leu Ala Thr Ser »Gln Leu Val Ala Thr Arg Ala Gly Leu <br><br> 15 10 15 <br><br> Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gin Gly Leu <br><br> 20 25 30 <br><br> Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg Thr <br><br> 35 40 45 <br><br> Ser Ala Arg Ala Ala Pro Arg His Gin His Gin Gin Ala Arg Arg Gly <br><br> 50 55 60 <br><br> Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Met Asn Val 65 70 75 80 <br><br> Val Phe Val Gly Ala Glu Met Ala Pro Trp Ser Lys Thr Gly Gly Leu <br><br> 85 90 95 <br><br> Gly Asp Val Leu Gly Gly Leu Pro Pro Ala Met Ala Ala Asn Gly Hie <br><br> 100 105 110 <br><br> Arg Val Met Val Val Ser Pro Arg Tyr Asp Gin Tyr Lys Asp Ala Trp <br><br> 115 120 12S <br><br> Asp Thr Ser Val Val Ser Glu lie Lys Met Gly Asp Gly Tyr Glu Thr <br><br> 130 135 140 <br><br> Val Arg Phe Phe His Cys Tyr Lys Arg Gly Val Asp Arg Val Phe Val 145 150 155 160 <br><br> Asp His Pro Leu Phe Leu Glu Arg Val Trp Gly Lys Thr Glu Glu Lys <br><br> 165 170 175 <br><br> lie Tyr Gly Pro Val Ala Gly Thr Asp Tyr Arg Asp Asn Gin Leu Arg <br><br> 180 185 190 <br><br> Phe Ser Leu Leu Cys Gin Ala Ala Leu Glu Ala Pro Arg He Leu Ser <br><br> 195 200 205 <br><br> Leu Asn Asn Asn Pro Tyr Phe Ser Gly Pro Tyr Gly Glu Asp Val Val <br><br> 210 215 220 <br><br> Phe Val Cys Asn Asp Trp His Thr Gly Pro Leu Ser Cys Tyr Leu Lys 225 230 235 240 <br><br> Ser Asn Tyr Gin ser His Gly lie Tyr Arg Asp Ala Lys Thr Ala Phe <br><br> 245 250 255 <br><br> Cys lie His Asn lie Ser Tyr Gin Gly Arg Phe Ala Phe Ser Asp Tyr <br><br> 260 265 270 <br><br> Pro Glu Leu Asn Leu Pro Glu Arg Phe Lys Ser Ser Phe Asp Phe lie <br><br> 275 280 285 <br><br> Asp Gly Tyr Glu Lys Pro Val Glu Gly Arg Lys lie Asn Trp Met Lys <br><br> 290 295 300 <br><br> Ala Gly lie Leu Glu Ala Asp Arg Val Leu Thr Val Ser Pro Tyr Tyr 305 310 315 320 <br><br> Ala Glu Glu Leu He Ser Gly lie Ala Arg Gly Cys Glu Leu Asp Asn <br><br> 325 330 335 <br><br> lie Met Arg Leu Thr Gly lie Thr Gly lie Val Asn Gly Met Asp Val <br><br> 340 345 350 <br><br> Ser Glu Trp Asp Pro Ser Arg Asp Lys Tyr lie Ala Val Lys Tyr Asp 355 360 365 <br><br> 176 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Val Ser Thr Ala Val Glu Ala Lys Ala Leu Aen Lys Glu Ala Leu Gin <br><br> 370 375 380 <br><br> Ala Glu Val Gly Leu Pro Val Asp Arg Asn He Pro Leu Val Ala Phe 385 390 395 400 <br><br> lie Gly Arg Leu Glu Glu Gin Lya Gly Pro Asp Val Met Ala Ala Ala <br><br> 405 410 415 <br><br> lie Pro Gin Leu Met Glu Met Val Glu Asp Val Gin lie Val Leu Leu <br><br> 420 425 430 <br><br> Gly Thr Gly Lys Lys Lys Phe Glu Arg Met Leu Met Ser Ala Glu Glu <br><br> 435 440 445 <br><br> Lys Phe Pro Gly Lys Val Arg Ala Val Val Lys Phe Asn Ala Ala Leu <br><br> 450 455 460 <br><br> Ala His His lie Met Ala Gly Ala Asp Val Leu Ala Val Thr Ser Arg 465 470 475 480 <br><br> Phe Glu Pro Cys Gly Leu lie Gin Leu Gin Gly Met Arg Tyr Gly Thr <br><br> 485 490 495 <br><br> Pro Cys Ala Cys Ala Ser Thr Gly Gly Leu Val Asp Thr lie lie Glu <br><br> 500 505 510 <br><br> Gly Lys Thr Gly Phe His Met Gly Arg Leu Ser Val Asp Cys Asn Val <br><br> 515 520 525 <br><br> Val Glu Pro Ala Asp Val Lys Lys Val Ala Thr Thr Leu Gin Arg Ala <br><br> 530 535 540 <br><br> lie Lys Val Val Gly Thr Pro Ala Tyr Glu Glu Met Val Arg Asn Cys 545 550 555 560 <br><br> Met lie Gin Asp Leu Ser Trp Lys Gly Pro Ala Lys Asn Trp Glu Asn <br><br> 565 570 575 <br><br> Val Leu Leu Ser Leu Gly Val Ala Gly Gly Glu Pro Gly Val Glu Gly <br><br> 580 585 590 <br><br> Glu Glu lie Ala Pro Leu Ala Lys Glu Asn Val Ala Ala Pro 595 600 605 <br><br> «210&gt; 9 «211&gt; 2223 &lt;212 &gt; DNA <br><br> &lt;213&gt; Artificial Sequence c220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 9 <br><br> atggccaagt acctggagct ggaggagggc gtcccgagcg gaggcatctg gtgggacacc gccggcatct ccgcgatctg gataccgcca atgggctacg acccgtacga ctacttcgac gagacgcgct tcgggtccaa gcaggagctc ggcatcaagg tcatcgcgga catcgtgatc aacccgttcg tcggcgacta cacctggacg accgccaact acctcgactt ccaccccaac ggcggctacc cggacatctg ccacgacaag caggagtcct acgcggccta cctgcgctcc gtcaagggct acggggcctg ggtggtcaag gtgggcgagt actgggacac caacgtcgac gccaaggtgt tcgacttccc cctgtactac ggcgtgatca tgcaggcgtt ctactgggac 60 <br><br> atccgccaga agatccccga gtggtacgac 12 0 <br><br> gcttccaagg gcatgtccgg gggctactcg 180 ctcggcgagt actaccagaa gggcacggtg 24 0 <br><br> atcaacatga tcaacacggc gcacgcctac 300 <br><br> aaccacaggg ccggcggcga cctggagtgg 360 <br><br> gacttctcca aggtcgcctc cggcaagtac 420 <br><br> gagctgcacg cgggcgactc cggcacgCtc 480 <br><br> tcctgggacc agtactggct ctgggcctcg 54 0 <br><br> atcggcatcg acgcgtggcg cttcgactac 600 <br><br> gactggctca actggtgggg cggctgggcg 660 <br><br> gcgctgctca actgggccta ctcctccggc 720 <br><br> aagatggacg cggccttcga caacaagaac 780 <br><br> 177 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> atcccggcgc tcgtcgaggc cctgaagaac aaggccgtga ccttcgtcgc caaccacgac tacgccttca tcctcaccta cgagggccag tggctgaaca aggacaagct caagaacctg tccaetagta tcgtgtacta cgactccgac tccaagcccg gcctgatcac gtacatcaac tacgtcccga agttcgccgg cgcgtgcatc gtggacaagt acgtgtactc ctccggctgg gccaacggcc agtacggcta ctccgtgtgg ggcatcctcg aggccgacag ggtcctcacc tccggcatcg ccaggggctg cgagctcgac atcgtcaaeg gcatggacgt cagcgagtgg aagtacgacg tgtcgacggc cgtggaggcc gaggtcgggc tcccggtgga ccggaacatc gagcagaagg gccccgacgt catggcggcc gacgtgcaga tcgttctgct gggcacgggc gccgaggaga agttcccagg caaggtgcgc ca^cacatca tggccggcgc cgacgtgctc ctcatccagc tgcaggggat gcgatacgga ctcgtcgaca ccatcatcga aggcaagacc tgcaacgtcg tggagccggc ggacgtcaag aaggtggteg gcacgccggc gtacgaggag tcctggaagg gccctgccaa gaactgggag ggcgagccag gggttgaagg cgaggagatc ccc ggcggcacgg tggtctcccg cgacccgttc 840 acggacatca tctggaacaa gtacccggcg 900 cccacgatct tctaccgcga ctacgaggag 960 atctggattc acgacaacct cgcgggcggc 102 0 gagatgatct tcgtccgcaa cggctacggc 10BO ctgggctcct ccaaggtggg ccgctgggtg 114 0 cacgagtaca ccggcaacct cggcggctgg 1200 gtctacctgg aggccccggc ctacgacccc 1260 tcctactgcg gcgtcggcac atcgattgct 1320 gtcagcccct actacgccga ggagctcatc 1380 aacatcatgc gcctcaccgg catcaccggc 1440 gacc'ccagca gggacaagta catcgccgtg 1500 aaggcgctga acaaggaggc gctgcaggcg 1560 ccgctggtgg cgttcatcgg caggctggaa 162 0 gccatcccgc agctcatgga gatggtggag 1680 aagaagaagt tcgagcgcat gctcatgagc 174 0 gccgtggtca agttcaacgc ggcgctggcg 1800 gccgtcacca gccgcttcga gccctgcggc I860 acgccctgcg cctgcgcgtc caccggtgga 1920 gggttccaca tgggccgcct cagcgtcgac 1980 aaggtggcca ccaccttgca gcgcgccatc 2040 atggtgagga'actgcatgat ccaggatctc 2100 aacgtgctgc tcagcctcgg ggtcgccggc 2160 gcgccgctcg ccaaggagaa cgtggccgcg 2220 <br><br> 2223 <br><br> &lt;2lo&gt; 10 <br><br> &lt;211&gt; 741 &lt;212 &gt; PRT <br><br> &lt;213&gt; Artificial <br><br> Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 10 <br><br> Mst <br><br> Al?. <br><br> I_.VR <br><br> Tvr <br><br> Leu <br><br> Glu <br><br> Leu <br><br> Glu Glu <br><br> Gly <br><br> Gly Val lie <br><br> Met Gin <br><br> Ala i <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Phe <br><br> Tyr <br><br> Trp <br><br> Asp <br><br> Val <br><br> Pro <br><br> Ser <br><br> Gly Gly <br><br> He <br><br> Trp Trp <br><br> Asp <br><br> Thr lie <br><br> Arg <br><br> 20 <br><br> 2 5 <br><br> 30 <br><br> Gin <br><br> Lys lie <br><br> Pro <br><br> Glu <br><br> Trp <br><br> Tyr <br><br> Asp Ala <br><br> Gly lie <br><br> Ser <br><br> Ala lie Trp lie <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Pro <br><br> Pro <br><br> Ala <br><br> Ser <br><br> Lys <br><br> Gly <br><br> Met <br><br> Ser Gly <br><br> Gly <br><br> Tyr <br><br> Ser <br><br> Met <br><br> Gly Tyr <br><br> Asp <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Pro <br><br> Tyr <br><br> Asp <br><br> Tyr <br><br> Phe <br><br> Asp <br><br> Leu <br><br> Gly Glu <br><br> Tyr <br><br> Tyr <br><br> Gin <br><br> Lys <br><br> Gly Thr <br><br> Val <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Glu <br><br> Thr <br><br> Arg <br><br> Phe <br><br> Gly <br><br> Ser <br><br> Lys <br><br> Gin Glu <br><br> Leu lie <br><br> Asn <br><br> Met lie Asn <br><br> Thr <br><br> 85 <br><br> 90 <br><br> 95 <br><br> Ala <br><br> His <br><br> Ala <br><br> Tyr <br><br> Gly lie <br><br> Lys <br><br> Val lie <br><br> Ala <br><br> Asp lie <br><br> Val lie Asn <br><br> His <br><br> 100 <br><br> 105 <br><br> 110 <br><br> Arg <br><br> Ala Gly <br><br> Gly Asp <br><br> Leu <br><br> Glu <br><br> Trp Asn <br><br> Pro <br><br> Phe <br><br> Val <br><br> Gly Asp Tyr <br><br> Thr <br><br> 115 <br><br> 120 <br><br> 125 <br><br> Trp <br><br> Thr <br><br> Asp <br><br> Phe <br><br> Ser <br><br> Lys <br><br> Val <br><br> Ala Ser <br><br> Gly <br><br> Lys <br><br> Tyr <br><br> Thr <br><br> Ala Asn <br><br> Tyr <br><br> 130 <br><br> 135 <br><br> 140 <br><br> Leu <br><br> Asp <br><br> Phe <br><br> His <br><br> Pro <br><br> Asn <br><br> Glu <br><br> Leu His <br><br> Ala <br><br> Gly Asp <br><br> Ser Gly Thr <br><br> Phe <br><br> 178 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 145 150 155 - ISO <br><br> Gly Gly Tyr Pro Asp lie Cys His Asp Lys Ser Trp Asp Gin Tyr Trp <br><br> 165 170 175 <br><br> Leu Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser lie Gly <br><br> 180 185 190 <br><br> lie Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val <br><br> 195 200 205 <br><br> Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr <br><br> 210 215 220 <br><br> Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly 225 230 235 240 <br><br> Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe <br><br> 245 250 255 <br><br> Asp Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly <br><br> 260 265 270 <br><br> Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn <br><br> 275 280 285 <br><br> His Asp Thr Asp He lie Trp Asn Lys Tyr Pro Ala Tyr Ala Phe lie <br><br> 290 295 300 <br><br> Leu Thr Tyr Glu Gly Gin Pro Thr lie Phe Tyr Arg Asp Tyr Glu Glu 305 310 315 320 <br><br> Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His Asp Asn <br><br> 325 330 335 <br><br> Leu Ala Gly Gly Ser Thr Ser lie Val Tyr Tyr Asp Ser Asp Glu Met <br><br> 340 345 350 <br><br> lie Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu lie Thr Tyr <br><br> 355 360 365 <br><br> lie Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys <br><br> 370 375 380 <br><br> Phe Ala Gly Ala Cys lie His Glu Tyr Thr Gly Asn Leu Gly Gly Trp 385 390 395 400 <br><br> Val Asp Lys Tyr Val Tyr Ser Sex Gly Trp Val Tyr Leu Glu Ala Pro <br><br> 405 410 415 <br><br> Ala Tyr Asp Pro Ala Asn Gly Gin Tyr Gly Tyr Ser Val Trp Ser Tyr <br><br> 420 425 430 <br><br> Cys Gly Val Gly Thr Ser lie Ala Gly He Leu Glu Ala Asp Arg Val <br><br> 435 440 445 <br><br> Leu Thr Val Ser Pro Tyr Tyr Ala Glu Glu Leu He Ser Gly lie Ala <br><br> 450 455 460 <br><br> Arg Gly Cys Glu Leu Asp Asn lie Met Arg Leu Thr Gly lie Thr Gly 465 470 475 480 <br><br> lie Val Asn Gly Met Asp Val Ser Glu Trp Asp Pro Ser Arg Asp Lys <br><br> 485 490 495 <br><br> Tyr lie Ala Val Lys Tyr Asp Val Ser Thr Ala Val Glu Ala Lys Ala <br><br> 500 505 510 <br><br> Leu Asn Lys Glu Ala Leu Gin Ala Glu Val Gly Leu Pro Val Asp Arg <br><br> 515 520 525 <br><br> Asn lie Pro Leu Val Ala Phe lie Gly Arg Leu Glu Glu Gin Lys Gly <br><br> 530 S3 5 540 <br><br> Pro Asp Val Met Ala Ala Ala lie Pro Gin Leu Met Glu Met Val Glu 545 550 555 560 <br><br> Asp Val Gin lie Val Leu Leu Gly Thr Gly Lys Lys Lys Phe Glu Arg <br><br> 565 570 575 <br><br> Met Leu Met Ser Ala Glu Glu Lys Phe Pro Gly Lys Val Arg Ala Val <br><br> 179 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 580 <br><br> 585 <br><br> 590 <br><br> Val <br><br> Lys <br><br> Phe 595 <br><br> Asn <br><br> Ala <br><br> Ala <br><br> Leu <br><br> Ala 600 <br><br> His <br><br> His lie <br><br> Met <br><br> Ala 60S <br><br> Gly <br><br> Ala <br><br> Asp <br><br> Val <br><br> Leu 610 <br><br> Ala <br><br> Val <br><br> Thr <br><br> Ser <br><br> Arg 615 <br><br> Phe <br><br> Glu <br><br> Pro <br><br> Cys <br><br> Gly 620 <br><br> Leu lie <br><br> Gin <br><br> Leu <br><br> Gin <br><br> Gly Met <br><br> Arg <br><br> Tyr <br><br> Gly <br><br> Thr <br><br> Pro <br><br> Cys <br><br> Ala <br><br> Cys <br><br> Ala <br><br> Ser <br><br> Thr <br><br> Gly <br><br> Gly <br><br> 625 <br><br> 630 <br><br> 635 <br><br> 640 <br><br> Leu val <br><br> Asp <br><br> Thr lie lie <br><br> Glu <br><br> Gly <br><br> Lys <br><br> Thr Gly <br><br> Phe <br><br> His <br><br> Met <br><br> Gly <br><br> Arg <br><br> 645 <br><br> 650 <br><br> 655 <br><br> Leu <br><br> Ser val <br><br> Asp 660 <br><br> Cys <br><br> Asn <br><br> Val <br><br> Val <br><br> Glu 665 <br><br> Pro <br><br> Ala <br><br> Asp <br><br> Val <br><br> Lys 670 <br><br> Lys <br><br> Val <br><br> Ala <br><br> Thr <br><br> Thr 675 <br><br> Leu <br><br> Gin <br><br> Arg <br><br> Ala lie 680 <br><br> Lys <br><br> Val <br><br> Val <br><br> Gly <br><br> Thr 685 <br><br> Pro <br><br> Ala <br><br> Tyr <br><br> Glu <br><br> Glu 690 <br><br> Met <br><br> Val <br><br> Arg <br><br> Asn <br><br> Cys 695 <br><br> Met <br><br> He <br><br> Gin <br><br> Asp <br><br> Leu 700 <br><br> Ser <br><br> Trp <br><br> Lys <br><br> Gly <br><br> Pro <br><br> Ala <br><br> Lys <br><br> Asn Trp <br><br> Glu <br><br> Asn <br><br> Val <br><br> Leu <br><br> Leu <br><br> Ser <br><br> Leu Gly <br><br> Val <br><br> Ala <br><br> Gly <br><br> 705 <br><br> 710 <br><br> 715 <br><br> 720 <br><br> Gly <br><br> Glu <br><br> Pro <br><br> Gly Val <br><br> Glu <br><br> Gly Glu <br><br> Glu <br><br> He <br><br> Ala <br><br> Pro <br><br> Leu <br><br> Ala <br><br> Lys <br><br> Glu <br><br> 725 <br><br> 730 <br><br> 735 <br><br> Asn <br><br> Val <br><br> Ala <br><br> Ala <br><br> Pro <br><br> 740 <br><br> &lt;210&gt; 11 &lt;211&gt; 1515 «212&gt; DNA &lt;213&gt; Zea mays <br><br> &lt;400:. 11 <br><br> ggagagctat gagacgtatg tcctcaaagc cactttgcat tgtgtgaaac caatatcgat 60 ctttgttact tcatcatgca tgaacatttg Cggaaactac tagcttacaa gcattagtga 120 cagctcagaa aaaagttatc tatgaaaggt ttcatgtgta ccgtgggaaa tgagaaatgt 180 tgccaactca aacaccttca atatgttgtt tgcaggcaaa ctcttctgga agaaaggtgt 240 ctaaaactat gaacgggtta cagaaaggta taaaccacgg ctgtgcattt tggaagtatc 300 atctatagat gtctgttgag gggaaagccg tacgccaacg ttatttactc agaaacagct 360 tcaacacsca gttgtctgct atetecacee agacacccac catcacctat 420 <br><br> ctctcgtgcc tgtttatttt cttgcccttt ctgatcataa aaaaacatta agagtttgca 480 aaeatgcata ggcatatcaa tatgctcatt tattaatttg ctagcagate atcttcctac 540 tctttacttt atttattgtt tgaaaaatat gtcctgcacc tagggagctc gtatacagta 600 ccaatgcatc ttcattaaat gtgaatttca gaaaggaagt aggaacctat gagagtattt 660 ttcaaaatta attagcggct tctattatgt ttatagcaaa ggccaagggc aaaattggaa 720 cactaatgat ggttggttgc atgagtctgt cgattacttg caagaaatgt gaacctttgt 780 ttctgtgcgt gggcataaaa caaacagctt ctagcctctt ttacggtact tgcacttgca 840 agaaatgtga actccttttc atttctgtat gtggacataa tgccaaagca tccaggcttt 900 ttcatggttg ttgatgtctt tacacagttc atctccacca gtatgccctc ctcatactct 960 atataaacac atcaacagca tcgcaattag ccacaagatc acttcgggag gcaagtgcga 1020 tttcgatctc gcagccacct ttttttgttc tgttgtaagt ataccttccc ttaccatctt 1080 tatctgttag tttaatttgt aattgggaag tattagtgga aagaggatga gatgctatca 1140 tctatgtact ctgcaaatgc atctgacgtt atatgggctg cttcatataa tttgaattgc 1200 tccattcttg ccgacaatat attgcaaggt atatgcctag ttccatcaaa agttctgttt 1260 tttcattcta aaagcatttt agtggcacac aatttttgtc catgagggaa aggaaatctg 1320 ttttggttac tttgcttgag gtgcattctt catatgtcca gttttatgga agtaataaac 1380 ttcagtttgg tcataagatg tcatattaaa gggcaaacat acattcaatg ttcaattcat 1440 cgtaaatgtt ccctttttgt aaaagattgc atactcattt atttgagttg caggtgtatc 1500 <br><br> 180 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> tagtagttgg aggag 1515 <br><br> &lt;210&gt; 12 <br><br> &lt;211&gt; 673 <br><br> c212&gt; DNA <br><br> &lt;213&gt; Zea mays c400&gt; 12 <br><br> gatcatccag gtgcaaccgt ataagtccta ttggcatgta aagctccaag aatttgttgt aattgcacgt caagggtatt gggtaagaaa aaacacggtg agtcatgccg agatcatact acattacaaa caactcatat tgcattacaa gacaggacaa aaatccttcfa cgtgtaaagt aagctaaatc taattcgttt tacgtagatc cacgcagaag tacagaatga ttccagatga gagtcatata catttggcaa gaaaccatga aacacaagaa. attgtgttaa ttaatcaaag tctccatcac caccactggg tcttcagacc aacccgatcg aca aagtggtgag gaacacgaaa caaccatgca SO atccttaaca actcacagaa catcaaccaa 120 caatcaaaca aatcctctct gtgtgcaaag 180 catctgatat acatgcttac agctcacaag 240 agatcgtttc atgaaaaata aaataggccg 300 aaatttacaa caaaaaaaaa gccatatgtc 360 aacaacctgt agaaggcaac aaaactgagc 420 accatcgacg tgctacgtaa agagagtgac 4 80 agctgcctac agccgtctcg gtggcataag 540 ctataaataa cgctcgcatg cctgtgcact 600 attagcttta tctactccag agcgcagaag 660 <br><br> 673 <br><br> &lt;210&gt; 13 &lt;211&gt; 454 &lt;212» PRT <br><br> e213&gt; Artificial Sequence &lt;220? <br><br> &lt;223&gt; synthetic &lt;400&gt; 13 <br><br> Met <br><br> Arg <br><br> Val <br><br> Leu <br><br> Leu val <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Leu <br><br> Ala,; Leu <br><br> Ala <br><br> Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Ala <br><br> Lys <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Leu <br><br> Glu <br><br> GlU <br><br> Gly Gly val lie <br><br> Met <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Gin <br><br> Ala <br><br> Phe <br><br> Tyr <br><br> Trp <br><br> Asp <br><br> Val <br><br> Pro <br><br> Ser Gly Gly lie Trp <br><br> Trp <br><br> Asp <br><br> Thr <br><br> 3 c <br><br> 40 <br><br> 45 <br><br> lie <br><br> Arg <br><br> Gin <br><br> Lys lie <br><br> Pro <br><br> Glu <br><br> Trp <br><br> Tyr <br><br> Asp <br><br> Ala <br><br> Gly lie <br><br> Ser <br><br> Ala lie <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Trp lie <br><br> Pro <br><br> Pro <br><br> Ala <br><br> Ser <br><br> Lys <br><br> Gly Met <br><br> Ser <br><br> Gly Gly Tyr <br><br> Ser <br><br> Met <br><br> Gly <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Tyr <br><br> Asp <br><br> Tyr <br><br> Phe <br><br> Asp <br><br> Leu Gly Glu Tyr Tyr <br><br> Gin <br><br> Lys <br><br> Gly <br><br> 85 <br><br> 90 <br><br> 95 <br><br> Thr val <br><br> Glu <br><br> Thr <br><br> Arg <br><br> Phe <br><br> Gly <br><br> Ser <br><br> Lys <br><br> Gin <br><br> Glu <br><br> Leu lie <br><br> Asn <br><br> Met lie <br><br> 100 <br><br> 105 <br><br> 110 <br><br> Asn <br><br> Thr <br><br> Ala <br><br> His <br><br> Ala <br><br> Tyr <br><br> Gly lie <br><br> Lys <br><br> Val lie <br><br> Ala Asp lie <br><br> Val <br><br> He <br><br> 115 <br><br> 120 <br><br> 125 <br><br> Asn <br><br> His <br><br> Arg <br><br> Ala <br><br> Gly Gly Asp <br><br> Leu <br><br> Glu <br><br> Trp <br><br> Asn <br><br> Pro Phe <br><br> Val <br><br> Gly <br><br> Asp <br><br> 130 <br><br> 135 <br><br> 140 <br><br> Tyr <br><br> Thr <br><br> Trp <br><br> Thr <br><br> Asp <br><br> Phe <br><br> Ser <br><br> Lys <br><br> Val <br><br> Ala <br><br> Ser <br><br> Gly Lys <br><br> Tyr <br><br> Thr <br><br> Ala <br><br> 145 <br><br> ISO <br><br> 155 <br><br> 160 <br><br> Asn <br><br> Tyr <br><br> Leu <br><br> Asp <br><br> Phe <br><br> His <br><br> Pro <br><br> Asn <br><br> Glu <br><br> Leu <br><br> His <br><br> Ala Gly <br><br> Asp <br><br> Ser <br><br> Gly <br><br> 165 <br><br> 170 <br><br> 175 <br><br> Thr <br><br> Phe <br><br> Gly Gly <br><br> Tyr <br><br> Pro Asp lie <br><br> Cys <br><br> His <br><br> Asp <br><br> Lys Ser <br><br> Trp <br><br> Asp <br><br> Gin <br><br> 180 <br><br> 185 <br><br> 190 <br><br> 181 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Tyr Trp Leu Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser <br><br> 195 200 205 <br><br> lie Gly lie Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala <br><br> 210 215 220 <br><br> Trp Val Val Lys Aep Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly 225 230 235 240 <br><br> Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser <br><br> 245 250 255 <br><br> Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala <br><br> 260 265 270 <br><br> Ala Phe Asp Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn <br><br> 275 280 285 <br><br> Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val <br><br> 290 295 300 <br><br> Ala Asn His Asp Thr Asp lie lie Trp Asn Lys Tyr Pro Ala Tyr Ala 305 310 315 320 <br><br> Phe lie Leu Thr Tyr Glu Gly Gin Pro Thr lie Phe Tyr Arg Asp Tyr <br><br> 325 330 335 <br><br> Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His <br><br> 340 345 350 <br><br> Asp Asn Leu Ala Gly Gly Ser Thr Ser lie Val Tyr Tyr Asp Ser Asp <br><br> 355 360 365 <br><br> Glu Met lie Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu lie <br><br> 370 375 380 <br><br> Thr Tyr lie Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val 385 390 395 400 <br><br> Pro Lys Phe Ala Gly Ala Cys lie His Glu Tyr Thr Gly Asn Leu Gly <br><br> 405 410 415 <br><br> Gly Trp Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu <br><br> 420 425 430 <br><br> Ala Pro Ala Tyr Asp Pro Ala Asn Gly Gin Tyr Gly Tyr Ser Val Trp <br><br> 435 440 445 <br><br> Ser Tyr Cys Gly Val Gly 450 <br><br> &lt;210&gt; 14 &lt;211&gt; 460 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 14 <br><br> Met <br><br> Arg <br><br> Val <br><br> Leu <br><br> Leu <br><br> Val <br><br> Ala <br><br> Leu <br><br> Ala Leu <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Ala <br><br> Lys <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Leu Glu <br><br> Glu <br><br> Gly Gly Val lie <br><br> Met <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Gin <br><br> Ala <br><br> Phe <br><br> Tyr <br><br> Trp <br><br> Asp <br><br> Val <br><br> Pro Ser Gly Gly lie <br><br> Trp <br><br> Trp Asp <br><br> Thr <br><br> 35 <br><br> 40 <br><br> 45 <br><br> lie <br><br> Arg 50 <br><br> Gin <br><br> Lys lie <br><br> Pro <br><br> Glu 55 <br><br> Trp <br><br> Tyr Asp <br><br> Ala <br><br> Gly 60 <br><br> lie <br><br> Ser <br><br> Ala lie <br><br> Trp <br><br> He <br><br> Pro <br><br> Pro <br><br> Ala <br><br> Ser <br><br> Lys <br><br> Gly <br><br> Met Ser <br><br> Gly Gly <br><br> Tyr <br><br> Ser <br><br> Met <br><br> Gly <br><br> 182 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> 65 70 75 80 <br><br> Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gin Lys Gly <br><br> 85 90 95 <br><br> Thr Val Glu Thr Arg Phe Gly Ser Lys Gin Glu Leu lie Aen Met lie <br><br> 100 105 110 <br><br> Asn Thr Ala His Ala Tyr Gly lie Lys Val lie Ala Asp lie Val lie <br><br> 115 120 125 <br><br> Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp <br><br> 130 135 140 <br><br> Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala 145 ISO 155 160 <br><br> Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly <br><br> 155 170 175 <br><br> Thr Phe Gly Gly Tyr Pro Asp lie Cys His Asp Lys Ser Trp Asp Gin <br><br> 180 185 190 <br><br> Tyr Trp Leu Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser <br><br> 195 200 205 <br><br> lie Gly lie Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala <br><br> 210 215 220 <br><br> Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly 225 230 235 240 <br><br> Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser <br><br> 245 250 255 <br><br> Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala <br><br> 260 265 270 <br><br> Ala Phe Asp Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn <br><br> 275 280 285 <br><br> Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val <br><br> 290 295 300 <br><br> Ala Asn His Asp Thr Asp lie lie Trp Asn Lys Tyr Pro Ala Tyr Ala 305 310 315 320 <br><br> Phe He Leu Thr Tyr Glu Gly Gin Pro Thr lie Phe Tyr Arg Asp Tyr <br><br> 325 330 335 <br><br> Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His <br><br> 340 345 350 <br><br> Asp Asn Lsu Ala Gly Gly Ser Thr Ser Tie Val Tyr Tyr Asd Ser Asp <br><br> 355 360 365 <br><br> Glu Met lie Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu lie <br><br> 370 375 380 <br><br> Thr Tyr lie Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val 385 390 395 400 <br><br> Pro Lys Phe Ala Gly Ala Cys He His Glu Tyr Thr Gly Asn Leu Gly <br><br> 405 410 415 <br><br> Gly Trp Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu <br><br> 420 425 430 <br><br> Ala Pro Ala Tyr Asp Pro Ala Asn Gly Gin Tyr Gly Tyr Ser Val Trp <br><br> 435 440 445 <br><br> Ser Tyr Cys Gly Val Gly Ser Glu Lys Asp Glu Leu 450 455 460 <br><br> &lt;210&gt; 15 &lt;211&gt; 518 &lt;212&gt; PRT <br><br> 183 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 15 <br><br> Met Leu Ala Ala Leu Ala Thr Ser Gin Leu Val Ala Thr Arg Ala Gly <br><br> 1 5 10 15 <br><br> Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gin Gly <br><br> 20 25 30 <br><br> Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg <br><br> 35 40 45 <br><br> Thr Ser Ala Arg Ala Ala Pro Arg His Gin His Gin Gin Ala Arg Arg <br><br> 50 55 60 <br><br> Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Ala Met 65 70 75 80 <br><br> Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val lie Met Gin Ala Phe <br><br> 85 90 95 <br><br> Tyr Trp Asp Val Pro Ser Gly Gly lie Trp Trp Asp Thr lie Arg Gin <br><br> 100 105 110 <br><br> Lys lie Pro Glu Trp Tyr Asp Ala Gly lie Ser Ala He Trp lie Pro <br><br> 115 120 125 <br><br> Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly Tyr Asp Pro <br><br> 130 135 140 <br><br> Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gin Lys Gly Thr Val Glu 145 150 155 160 <br><br> Thr Arg Phe Gly Ser Lys Gin Glu Leu lie Asn Met lie Asn Thr Ala <br><br> 165 170 175 <br><br> His Ala Tyr Gly He Lys val lie Ala Asp lie Val lie Asn His Arg <br><br> 180 185 190 <br><br> Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp Tyr Thr Trp <br><br> 195 200 205 <br><br> Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu <br><br> 210 215 220 <br><br> Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe Gly 225 230 235 240 <br><br> Gly Tyr Pro Asp He Cys His Asp Lys Ser Trp Asp Gin Tyr Trp Leu <br><br> 245 250 255 <br><br> Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser lie Gly He <br><br> 260 265 270 <br><br> Asp Ala Trp Arg phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val <br><br> 275 280 285 <br><br> Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp <br><br> 290 295 300 <br><br> Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala 305 310 • 315 320 <br><br> Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe Asp <br><br> 325 330 335 <br><br> Asn Lys Asn lie Pro Ala Leu val Glu Ala Leu Lys Asn Gly Gly Thr <br><br> 340 345 350 <br><br> val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His <br><br> 355 360 365 <br><br> Asp Thr Asp lie He Trp Asn Lys Tyr Pro Ala Tyr Ala Phe He Leu 370 375 380 <br><br> 184 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Thr <br><br> Tyr <br><br> Glu <br><br> Gly Gin <br><br> Pro <br><br> Thr lie <br><br> Phe Tyr Arg Asp <br><br> Tyr <br><br> Glu Glu <br><br> Trp <br><br> 385 <br><br> 390 <br><br> 395 <br><br> 400 <br><br> Leu <br><br> Asn <br><br> Lys <br><br> Asp Lys 405 <br><br> Leu <br><br> Lys <br><br> Asn <br><br> Leu He 410 <br><br> Trp lie <br><br> His <br><br> Asp Asn 415 <br><br> Leu <br><br> Ala Gly <br><br> Gly <br><br> Ser Thr <br><br> Ser <br><br> He <br><br> Val <br><br> Tyr Tyr <br><br> Asp <br><br> Ser <br><br> Asp <br><br> Glu Met lie <br><br> 420 <br><br> 425 <br><br> 430 <br><br> Phe <br><br> Val <br><br> Arg <br><br> Asn Gly <br><br> Tyr <br><br> Gly <br><br> Ser <br><br> Lys Pro Gly <br><br> Leu lie <br><br> Thr Tyr lie <br><br> 435 <br><br> 440 <br><br> 445 <br><br> Asn <br><br> Leu <br><br> Gly <br><br> Ser Ser <br><br> Lys <br><br> Val <br><br> Gly Arg Trp <br><br> Val <br><br> Tyr <br><br> Val <br><br> Pro Lys <br><br> Phe <br><br> 450 <br><br> 455 <br><br> 460 <br><br> Ala <br><br> Gly <br><br> Ala <br><br> Cys lie <br><br> His <br><br> Glu <br><br> Tyr <br><br> Thr Gly <br><br> Asn <br><br> Leu Gly <br><br> Gly Trp Val <br><br> 465 <br><br> 470 <br><br> 475 <br><br> 480 <br><br> Asp <br><br> Lys <br><br> Tyr <br><br> Val Tyr 485 <br><br> Ser <br><br> Ser <br><br> Gly <br><br> Trp Val 4 90 <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Ala Pro 495 <br><br> Ala <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Ala Asn 500 <br><br> Gly <br><br> Gin <br><br> Tyr <br><br> Gly Tyr <br><br> 505 <br><br> Ser <br><br> Val <br><br> Trp <br><br> Ser Tyr 510. <br><br> Cys <br><br> Gly <br><br> Val <br><br> Gly 515 <br><br> Thr Ser lie <br><br> &lt;210&gt; 16 &lt;211&gt; 820 <br><br> &lt;212? PRT <br><br> &lt;213? Artificial Sequence &lt;220? <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 16 <br><br> Met <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Gin <br><br> Leu <br><br> Val <br><br> Ala <br><br> Thr <br><br> Arg <br><br> Ala <br><br> Gly <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Leu <br><br> Gly val <br><br> Pro 20 <br><br> Asp <br><br> Ala <br><br> Ser <br><br> Thr <br><br> Phe 25 <br><br> Arg <br><br> Arg <br><br> Gly <br><br> Ala <br><br> Ala <br><br> 30 <br><br> Gin <br><br> Gly <br><br> Leu <br><br> Arg <br><br> Gly 35 <br><br> Ala <br><br> Arg <br><br> Ala <br><br> Ser <br><br> Ala 40 <br><br> Ala <br><br> Ala <br><br> Asp <br><br> Thr <br><br> Leu 45 <br><br> Ser <br><br> Met <br><br> Arg <br><br> Thr <br><br> Ser 50 <br><br> Ala <br><br> Arg <br><br> Ala <br><br> Ala <br><br> Pro 55 <br><br> Arg <br><br> His <br><br> Gin <br><br> His <br><br> Gin 60 <br><br> Gin <br><br> Ala <br><br> Arg <br><br> Arg <br><br> Gly <br><br> Ala <br><br> Arg <br><br> Phe <br><br> Pro <br><br> Ser <br><br> Leu <br><br> Val <br><br> Val <br><br> Cys <br><br> Ala <br><br> Ser <br><br> Ala <br><br> Gly Ala <br><br> Met <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Ala <br><br> Lys <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Leu <br><br> Glu Glu Gly Gly Val lie <br><br> Met <br><br> Gin <br><br> Ala <br><br> Phe <br><br> 85 <br><br> 90 <br><br> 95 <br><br> Tyr <br><br> Trp <br><br> Asp <br><br> Val <br><br> Pro <br><br> Ser <br><br> Gly Gly lie <br><br> Trp <br><br> Trp <br><br> Asp <br><br> Thr lie <br><br> Arg <br><br> Gin <br><br> 100 <br><br> 105 <br><br> 110 <br><br> Lys lie <br><br> Pro 115 <br><br> Glu <br><br> Trp <br><br> Tyr <br><br> Asp <br><br> Ala 120 <br><br> Gly <br><br> He <br><br> Ser <br><br> Ala <br><br> He 125 <br><br> Trp lie <br><br> Pro <br><br> Pro <br><br> Ala <br><br> Ser <br><br> Lys <br><br> Gly <br><br> Met <br><br> Ser <br><br> Gly Gly <br><br> Tyr <br><br> Ser <br><br> Met <br><br> Gly <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> 130 <br><br> 135 <br><br> 140 <br><br> Tyr <br><br> Asp <br><br> Tyr <br><br> Phe <br><br> Asp <br><br> Leu <br><br> Gly <br><br> Glu Tyr Tyr <br><br> Gin <br><br> Lys <br><br> Gly <br><br> Thr <br><br> Val <br><br> Glu <br><br> 145 <br><br> 150 <br><br> 155 <br><br> 160 <br><br> Thr <br><br> Arg <br><br> Phe <br><br> Gly <br><br> Ser 165 <br><br> Lys <br><br> Gin <br><br> Glu <br><br> Leu lie 170 <br><br> Asn <br><br> Met <br><br> He <br><br> Asn <br><br> Thr <br><br> 175 <br><br> Ala <br><br> His <br><br> Ala <br><br> Tyr <br><br> Gly 180 <br><br> lie <br><br> Lys <br><br> Val lie <br><br> Ala 185 <br><br> Asp lie val lie <br><br> Asn 190 <br><br> His <br><br> Arg <br><br> Ala <br><br> Gly <br><br> Gly <br><br> Asp <br><br> Leu <br><br> Glu <br><br> Trp <br><br> Asn <br><br> Pro <br><br> Phe val <br><br> Gly Asp <br><br> Tyr <br><br> Thr <br><br> Trp <br><br> 185 <br><br> WO 2005/096804 <br><br> PC TYUS2004/007182 <br><br> 195 200 205 <br><br> Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala Asn Tyr Leu <br><br> 210 215 220 <br><br> Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly Thr Phe Gly 225 230 235 240 <br><br> Gly 1Vr Pro AsP Cys His Asp Lys Ser Trp Asp Gin Tyr Trp Leu <br><br> 245 250 255 <br><br> Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser lie Gly lie <br><br> 260 265 270 <br><br> Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala Trp Val Val <br><br> 275 280 285 <br><br> Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly Glu Tyr Trp <br><br> 290 295 300 <br><br> Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser Ser Gly Ala 305 310 315 320 <br><br> Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala Ala Phe Asp <br><br> 325 330 335 <br><br> Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn Gly Gly Thr <br><br> 340 345 350 <br><br> Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val Ala Asn His <br><br> 355 360 365 <br><br> Asp Thr Asp lie He Trp Asn Lys Tyr Pro Ala Tyr Ala Phe lie Leu <br><br> 370 375 380 <br><br> Thr Tyr Glu Gly Gin Pro Thr lie Phe Tyr Arg Asp Tyr Glu Glu Trp 385 390 395 400 <br><br> Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His Asp Asn Leu <br><br> 405 410 415 <br><br> Ala Gly Gly Ser Thr Ser lie Val Tyr Tyr Asp Ser Asp Glu Met lie <br><br> 420 425 430 <br><br> Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu lie Thr Tyr lie <br><br> 435 440 445 <br><br> Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val Pro Lys Phe <br><br> 450 455 460 <br><br> Ala Gly Ala Cys lie His Glu Tyr Thr Gly Asn Leu Gly Gly Trp Val 465 470 475 480 <br><br> Asp Lys Tyr Val Tyr Ser Re* Gly Trp val Tyr Leu Glu Ala Pro Ala <br><br> 485 490 495 <br><br> Tyr Asp Pro Ala Asn Gly Gin Tyr Gly Tyr Ser Val Trp Ser Tyr Cys <br><br> 500 505 510 <br><br> Gly Val Gly Thr Ser He Ala Gly lie Leu Glu Ala Asp Arg Val Leu <br><br> 515 520 525 <br><br> Thr Val Ser Pro Tyr Tyr Ala Glu Glu Leu lie Ser Gly He Ala Arg <br><br> 530 535 540 <br><br> Gly Cys Glu Leu Asp Asn lie Met Arg Leu Thr Gly lie Thr Gly lie 545 550 555 560 <br><br> Val Asn Gly Met Asp Val Ser Glu Trp Asp Pro Ser Arg Asp Lys Tyr <br><br> 565 570 575 <br><br> lie Ala Val Lys Tyr Asp Val Ser Thr Ala Val Glu Ala Lys Ala Leu <br><br> 580 585 590 <br><br> Asn Lys Glu Ala Leu Gin Ala Glu Val Gly Leu Pro Val Asp Arg Asn <br><br> 595 600 605 <br><br> lie Pro Leu Val Ala Phe lie Gly Arg Leu Glu Glu Gin Lys Gly Pro <br><br> 610 615 620 <br><br> Asp Val Met Ala Ala Ala lie Pro Gin Leu Met Glu Met Val Glu Asp <br><br> 186 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 625 <br><br> 630 <br><br> 635 <br><br> 640 <br><br> Val <br><br> Gin lie <br><br> Val <br><br> Leu <br><br> Leu <br><br> Gly Thr Gly Lys <br><br> Lys <br><br> Lys <br><br> Phe <br><br> Glu <br><br> Arg <br><br> Met <br><br> 645 <br><br> 650 <br><br> 655 <br><br> Leu <br><br> Met <br><br> Ser <br><br> Ala 6 60 <br><br> Glu <br><br> Glu <br><br> Lys <br><br> Phe <br><br> Pro Gly 665 <br><br> Lys val <br><br> Arg <br><br> Ala 670 <br><br> Val <br><br> Val <br><br> Lys <br><br> Phe <br><br> Asn <br><br> Ala <br><br> Ala <br><br> Leu <br><br> Ala <br><br> His <br><br> His He <br><br> Met <br><br> Ala Gly Ala <br><br> Asp <br><br> Val <br><br> 675 <br><br> 680 <br><br> 685 <br><br> Leu <br><br> Ala 690 <br><br> val <br><br> Thr <br><br> Ser <br><br> Arg <br><br> Phe 695 <br><br> •Glu <br><br> Pro Cys <br><br> Gly <br><br> Leu 700 <br><br> He <br><br> Gin <br><br> Leu <br><br> Gin <br><br> Gly <br><br> Met <br><br> Arg <br><br> Tyr Gly <br><br> Thr <br><br> Pro <br><br> Cys <br><br> Ala Cys <br><br> Ala <br><br> Ser Thr Gly Gly Leu <br><br> 705 <br><br> 710 <br><br> 715 <br><br> 720 <br><br> Val <br><br> Asp <br><br> Thr lie <br><br> He <br><br> Glu <br><br> Gly <br><br> Lys <br><br> Thr Gly Phe <br><br> His <br><br> Met <br><br> Gly Arg <br><br> Leu <br><br> 725 <br><br> 730 <br><br> 735 <br><br> Ser <br><br> Val <br><br> Asp <br><br> Cys 740 <br><br> Asn val val <br><br> Glu <br><br> Pro Ala 745 <br><br> Asp <br><br> Val <br><br> Lys <br><br> Lys 750 <br><br> Val <br><br> Ala <br><br> Thr <br><br> Thr <br><br> Leu 755 <br><br> Gin <br><br> Arg <br><br> Ala lie <br><br> Lys 760 <br><br> Val Val <br><br> Gly <br><br> Thr <br><br> Pro <br><br> 765 <br><br> Ala <br><br> Tyr <br><br> Glu <br><br> Glu <br><br> Met <br><br> 770 <br><br> Val <br><br> Arg, <br><br> Asn <br><br> Cys <br><br> Met 775 <br><br> He <br><br> Gin Asp <br><br> Leu <br><br> Ser 780 <br><br> Trp <br><br> Lys <br><br> Gly <br><br> Pro <br><br> Lys <br><br> Asn <br><br> Trp <br><br> Glu <br><br> Asn val <br><br> Leu <br><br> Leu Ser <br><br> Leu <br><br> Gly <br><br> Val <br><br> Ala <br><br> Gly <br><br> Gly <br><br> 785 <br><br> 790 <br><br> 795 <br><br> "800 <br><br> Glu <br><br> Pro <br><br> Gly <br><br> Val <br><br> Glu 805 <br><br> Gly <br><br> GlU <br><br> Glu lie Ala 810 <br><br> Pro <br><br> Leu <br><br> Ala <br><br> Lys <br><br> Glu 815 <br><br> Asn <br><br> Val <br><br> Ala <br><br> Ala <br><br> Pro 820 <br><br> c210&gt; 17 &lt;211&gt; 19 c212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;22Q&gt; <br><br> &lt;223&gt; synthetic <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> 15 10 IS <br><br> Ala Thr Ser <br><br> &lt;210&gt; 18 &lt;211&gt; 444 &lt;212&gt; PRT <br><br> &lt;213&gt; Thermotoga maritima <br><br> &lt;400&gt; IB <br><br> Met <br><br> Ala <br><br> Glu <br><br> Phe <br><br> Phe <br><br> Pro <br><br> Glu lie <br><br> Pro <br><br> Lys lie <br><br> Gin <br><br> Phe <br><br> Glu Gly Lys <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Glu ser <br><br> Thr <br><br> Asn 20 <br><br> Pro <br><br> Leu <br><br> Ala <br><br> Phe <br><br> Arg 25 <br><br> Phe <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Asn Glu Val 30 <br><br> lie <br><br> Asp <br><br> Gly 35 <br><br> Lys <br><br> Pro <br><br> Leu <br><br> Lys <br><br> Asp 40 <br><br> His <br><br> Leu <br><br> Lys <br><br> Phe <br><br> Ser 45 <br><br> Val Ala Phe <br><br> 187 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly Asp Pro Thr <br><br> 50 55 60 <br><br> Ala Glu Arg Pro Trp Asn Arg Phe Ser Asp Pro Met Asp Lys Ala Phe 65 70 75 80 <br><br> Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu Asn lie Glu <br><br> 85 90 95 <br><br> Tyr Phe Cys Phe His Asp Arg Asp lie Ala Pro Glu Gly Lys Thr Leu <br><br> 100 105 110 <br><br> Arg Glu Thr Asn Lys lie Leu Asp Lys Val Val Glu Arg lie Lys Glu <br><br> 115 120 125 <br><br> Arg Met Lys Asp ser Asn val Lys Leu Leu Trp Gly Thr Ala Asn Leu <br><br> 130 135 140 <br><br> Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr Cys Ser Ala 145 150 155 160 <br><br> Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala Leu Glu lie <br><br> 165 170 175 <br><br> Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu <br><br> 180 185 190 <br><br> Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Leu Glu Leu Glu Asn <br><br> 195 200 205 <br><br> Leu Ala Arg Phe Leu Arg Met Ala Val Glu Tyr Ala Lys Lys He Gly . <br><br> 210 215 220 <br><br> Phe Thr Gly Gin Phe Leu lie Glu Pro Lys Pro Lys Glu Pro Thr Lys 225 230 235 240 <br><br> His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Asn <br><br> 245 250 255 <br><br> His Gly Leu Asp Glu Tyr Phe Lys Phe Asn lie Glu Ala Asn His Ala <br><br> 260 265 270 <br><br> Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met Ala Arg He <br><br> 275 280 285 <br><br> Leu Gly Lys Leu Gly Ser He Asp Ala Asn Gin Gly Asp Leu Leu Leu <br><br> 290 295 300 <br><br> Gly Trp Asp Thr Asp Gin Phe Pro Thr Asn lie Tyr Asp Thr Thr Leu 305 310 315 320 <br><br> Ala Met Tyr Glu Val lie Lys Ala Gly Gly Phe Thr Lys Gly Gly Leu <br><br> 325 330 335 <br><br> Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val Glu Asp Leu <br><br> 340 345 350 <br><br> Phe lie Gly His lie Ala Gly Met Asp Thr Phe Ala Leu Gly Phe Lys <br><br> 355 360 365 <br><br> lie Ala Tyr Lys Leu Ala Lys Asp Gly Val Phe Asp Lys Phe lie Glu <br><br> 370 375 380 <br><br> Glu Lys Tyr Arg Ser Phe Lys Glu Gly lie Gly Lys Glu lie Val Glu 38S 390 395 400 <br><br> Gly Lys Thr Asp Phe Glu Lys Leu Glu Glu Tyr He lie Asp Lys Glu <br><br> 405 410 415 <br><br> Asp He Glu Leu Pro Ser Gly Lys Gin Glu Tyr Leu Glu Ser Leu Leu <br><br> 420 425 430 <br><br> Asn ser Tyr lie Val Lys Thr He Ala Glu Leu Arg 435 440 <br><br> &lt;210? 19 &lt;211&gt; 1335 <br><br> 188 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;212&gt; DWA <br><br> &lt;213&gt; Thermotoga maritima &lt;400&gt; 19 <br><br> atggccgagt tcttcccgga gatcccgaag atccagttcg agggcaagga gtccaccaac 60 <br><br> ccgctcgcct tccgcttcta cgacccgaac gaggtgatcg acggcaagcc gctcaaggac 120 <br><br> cacctcaagt tctccgtggc cttctggcac accttcgtga acgagggccg cgacccgttc 180 <br><br> ggcgacccga ccgccgagcg cccgtggaac cgcttctccg acccgatgga caaggccttc 24 0 <br><br> gcccgcgtgg acgccctctt cgagttctgc gagaagctca acatcgagta cttctgcttc 300 <br><br> cacgaccgcg acatcgcccc ggagggcaag accctccgcg agaccaacaa gatcctcgac 360 <br><br> aaggtggtgg agcgcatcaa ggagcgcatg aaggactcca acgtgaagct cctctggggc 420 <br><br> accgccaacc tcttctccca cccgcgctac atgcacggcg ccgccaccac ctgctccgcc 480 <br><br> gacgtgttcg cctacgccgc cgcccaggtg aagaaggccc tggagatcac caaggagctg 54 0 <br><br> ggcggcgagg gctacgtgtt ctggggcggc cgcgagggct acgagaccct cctcaacacc 600 <br><br> gacctcggcc tggagctgga gaacctcgcc cgcttcctcc gcatggccgt ggagtacgcc 660 <br><br> aagaagatcg gcttcaccgg ccagttcctc atcgagccga agccgaagga gccgaccaag 720 <br><br> caccagtacg acttcgacgt ggccaccgcc tacgccttcc tcaagaacca cggcctcgac 780 <br><br> gagtacttca agttcaacat cgaggccaac cacgccaccc tcgccggcca caccttccag 840 <br><br> cacgagctgc gcatggcccg catcctcggc aagctcggct ccatcgacgc caaccagggc 900 <br><br> gacctcctcc tcggctggga caccgaccag ttcccgacca acatctacga caccaccctc 960 <br><br> gccatgtacg aggtgatcaa ggccggcggc ttcaccaagg gcggcctcaa cttcgacgcc 1020 <br><br> aaggtgcgcc gcgcctccta caaggtggag gacctcttca tcggccacat cgccggcatg 1080 <br><br> gacaccttcg ccctcggctt caagatcgcc tacaagctcg ccaaggacgg cgtgttcgac 1140 <br><br> aagttcatcg aggagaagta ccgctccttc aaggagggca tcggcaagga gatcgtggag 1200 <br><br> ggcaagaccg acttcgagaa gctggaggag tacatcatcg acaaggagga catcgagctg 1260 <br><br> ccgtccggca agcaggagta cctggagtcc ctcctcaact cctacatcgt gaagaccatc 1320 <br><br> gccgagctgc gctga 1335 <br><br> &lt;210&gt; 20 &lt;211&gt; 444 &lt;212&gt; PRT <br><br> &lt;213 &gt; Thermotoga neapolitana <br><br> &lt;400* 20 <br><br> Met <br><br> Ala <br><br> Glu <br><br> Phe <br><br> Phe <br><br> Pro <br><br> Glu lie <br><br> Pro <br><br> Lys <br><br> Val <br><br> Gin <br><br> Phe <br><br> Glu <br><br> Gly <br><br> Lys <br><br> 1 <br><br> C <br><br> 1 0 <br><br> 15 <br><br> Glu <br><br> Ser <br><br> Thr <br><br> Asn 20 <br><br> Pro <br><br> Leu <br><br> Ala <br><br> Phe <br><br> Lys 25 <br><br> Phe <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Glu 30 <br><br> Glu lie lie <br><br> Asp <br><br> Gly 35 <br><br> Lys <br><br> Pro <br><br> Leu <br><br> Lys <br><br> Asp 40 <br><br> His <br><br> Leu <br><br> Lys <br><br> Phe <br><br> Ser 45 <br><br> Val <br><br> Ala <br><br> Phe <br><br> Trp <br><br> His 50 <br><br> Thr <br><br> Phe <br><br> Val <br><br> Asn <br><br> Glu 55 <br><br> Gly <br><br> Arg <br><br> Asp <br><br> Pro <br><br> Phe 60 <br><br> Gly <br><br> Asp <br><br> Pro <br><br> Thr <br><br> Ala <br><br> Asp <br><br> Arg <br><br> Pro <br><br> Trp <br><br> Asn <br><br> Arg <br><br> Tyr <br><br> Thr <br><br> Asp <br><br> Pro <br><br> Met <br><br> Asp <br><br> Lys <br><br> Ala <br><br> Phe <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Ala <br><br> Arg <br><br> Val <br><br> Asp <br><br> Ala 85 <br><br> Leu <br><br> Phe <br><br> Glu <br><br> Phe <br><br> Cys 90 <br><br> Glu <br><br> Lys <br><br> Leu <br><br> Asn <br><br> He 95 <br><br> Glu <br><br> Tyr <br><br> Phe <br><br> Cys <br><br> Phe 100 <br><br> His <br><br> Asp <br><br> Arg <br><br> Asp lie 105 <br><br> Ala <br><br> Pro <br><br> Glu <br><br> Gly <br><br> Lys 110 <br><br> Thr <br><br> Leu <br><br> Arg <br><br> Glu <br><br> Thr 115 <br><br> Asn <br><br> Lys lie <br><br> Leu <br><br> Asp 120 <br><br> Lys <br><br> Val <br><br> Val <br><br> Glu <br><br> Arg 125 <br><br> lie <br><br> Lys <br><br> Glu <br><br> Arg <br><br> Met <br><br> Lys <br><br> Asp <br><br> Ser <br><br> Asn <br><br> Val <br><br> Lys <br><br> Leu <br><br> Leu <br><br> Trp Gly <br><br> Thr <br><br> Ala <br><br> Asn <br><br> Leu <br><br> 130 <br><br> 135 <br><br> 140 <br><br> Phe <br><br> Ser <br><br> His <br><br> Pro <br><br> Arg <br><br> Tyr <br><br> Met <br><br> His <br><br> Gly <br><br> Ala <br><br> Ala <br><br> Thr <br><br> Thr <br><br> Cys <br><br> Ser <br><br> Ala <br><br> 14 5 <br><br> 150 <br><br> 155 <br><br> 160 <br><br> 189 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala Leu Glu lie <br><br> 165 170 175 <br><br> Thr Lye Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu <br><br> 180 185 190 <br><br> Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu Leu Glu Asn <br><br> 195 2 00 2 05 <br><br> Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys Arg lie Gly <br><br> 210 215 220 <br><br> Phe Thr Gly Gin Phe Leu He Glu Pro Lys Pro Lys Glu Pro Thr Lys 225 230 235 240 <br><br> His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Ser <br><br> 245 250 255 <br><br> His Gly Leu Asp Glu Tyr Phe Lys Phe Asn He Glu Ala Asn His Ala <br><br> 260 265 270 <br><br> Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met Ala Arg lie <br><br> 275 280 285 <br><br> Leu Gly Lys Leu Gly Ser lie Asp Ala Asn Gin Gly Asp Leu Leu Leu <br><br> 290 295 300 <br><br> Gly Trp Asp Thr Asp Gin Phe Pro Thr Asn val Tyr Asp Thr Thr Leu 305 310 315 320 <br><br> Ala Met Tyr Glu Val lie Lys Ala Gly Gly Phe Thr Lys Gly Gly Leu <br><br> 325 330 335 <br><br> Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val Glu Asp Leu <br><br> 340 345 350 <br><br> Phe lie Gly His lie Ala Gly Met Asp Thr Phe Ala Leu Gly Phe Lys <br><br> 355 360 365 <br><br> Val Ala Tyr Lys Leu Val Lys Asp Gly Val Leu Asp Lys Phe lie Glu <br><br> 370 375 380 <br><br> Glu Lys Tyr Arg Ser Phe Arg Glu Gly lie Gly Arg Asp lie Val Glu 385 390 395 400 <br><br> Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr lie lie Asp Lys Glu <br><br> 405 410 415 <br><br> Thr He Glu Leu Pro Ser Gly Lys Gin Glu Tyr Leu Glu Ser Leu lie <br><br> 420 425 430 <br><br> Asn Ser Tyr lie Val Lys Thr lie Leu Glu Leu Arg 435 440 <br><br> &lt;210&gt; 21 «211&gt; 1335 &lt;2 12 &gt; DNA <br><br> &lt;213&gt; Thermotoga neapolitana &lt;4 00? 21 <br><br> atggccgagt tcttcccgga gatcccgaag gtgcagttcg agggcaagga gtccaccaac 60 ccgctcgcct tcaagttcta cgacccggag gagatcatcg acggcaagcc gctcaaggac 12 0 cacctcaagt tctccgtggc cttctggcac accttcgtga acgagggccg cgacccgttc 180 ggcgacccga ccgccgaccg cccgtggaac cgctacaccg acccgatgga caaggccttc 24 0 gcccgcgtgg acgccctctt cgagttctgc gagaagctca acatcgagta cttctgcttc 300 cacgaccgcg acatcgcccc ggagggcaag accctccgcg agaccaacaa gatcctcgac 360 aaggtggtgg agcgcatcaa ggagcgcatg aaggactcca acgtgaagct cctctggggc 42 0 accgccaacc tcttctccca cccgcgctac atgcacggcg ccgccaccac ctgctccgcc 480 gacgtgttcg cctacgccgc cgcccaggtg aagaaggccc tggagatcac caaggagctg 54 0 ggcggcgagg gctacgtgtt ctggggcggc cgcgagggct acgagaccct cctcaacacc 600 <br><br> 190 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007182 <br><br> gacetcggct tcgagctgga aagcgcatcg gcttcaccgg caccagtacg acttcgacgt gagtacttca agtccaacat cacgagctgc gcatggcccg gacctcctcc tcggctggga gccatgtacg aggtgatcaa aaggtgcgcc gcgcctccta gacaccttcg ccctcggctt aagttcatcg aggagaagta ggcaaggtgg acttcgagaa ccgtccggca agcaggagta ctggagctgc gctga gaacctcgcc cgcttcctcc ccagttcctc atcgagccga ggccaccgcc tacgccttcc cgaggccaac cacgccaccc catcctcggc aagctcggct caccgaccag ttcccgacca ggccggcggc ttcaccaagg caaggtggag gacctcttca caaggtggcc tacaagctcg ccgctccttc cgcgagggca gctggaggag tacatcatcg cctggagtcc ctcatcaact gcatggccgt ggactacgcc 66 0 agccgaagga gccgaccaag 72 0 tcaagtccca cggcctcgac 780 tcgccggcca caccttccag 840 ccatcgacgc caaccagggc 900 acgtgtacga caccaccctc 960 gcggcctcaa cttcgacgcc 1020 tcggccacat cgccggcatg 1080 tgaaggacgg cgtgctcgac li40 tcggccgcga catcgtggag 12 00 acaaggagac catcgagctg 1260 cctacatcgt gaagaceatc 1320 <br><br> 1335 <br><br> &lt;210&gt; 22 <br><br> &lt;211&gt; 28 <br><br> &lt;212? DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 22 <br><br> agcgaattca tggcggctct ggccacgt 28 <br><br> &lt;210&gt; 23 &lt;211&gt; 29 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial sequence &lt;220&gt; <br><br> &lt;223? synthetic &lt;400&gt; 23 <br><br> agctaagctt cagggcgcgg ccacgttct 2 9 <br><br> &lt;210&gt; 24 &lt;211&gt; 825 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 24 <br><br> Met <br><br> Arg <br><br> Val <br><br> Leu <br><br> Leu <br><br> Val <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Ala <br><br> Gly <br><br> His <br><br> Trp <br><br> Tyr <br><br> Lys <br><br> His <br><br> Gin <br><br> Arg <br><br> Ala <br><br> Tyr <br><br> Gin <br><br> Phe <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Thr <br><br> Gly Glu <br><br> Asp <br><br> Asp <br><br> Phe <br><br> Gly <br><br> Lys val <br><br> Ala <br><br> Val <br><br> Val <br><br> Lys <br><br> Leu <br><br> Pro <br><br> Met <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Asp <br><br> Leu <br><br> Thr <br><br> Lys <br><br> Val <br><br> Gly lie lie val <br><br> Arg <br><br> Leu <br><br> Asn <br><br> Glu <br><br> Trp <br><br> Gin <br><br> Ala <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Lys <br><br> Asp <br><br> Val <br><br> Ala <br><br> Lys <br><br> Asp <br><br> Arg <br><br> Phe lie <br><br> Glu lie <br><br> Lys <br><br> Asp Gly <br><br> Lys <br><br> Ala <br><br> 191 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 65 70 75 - 80 <br><br> Glu Val Trp lie Leu Gin Gly Val Glu Glu lie Phe Tyr Glu Lys Pro <br><br> 85 90 95 <br><br> Asp Thr Ser Pro Arg lie Phe Phe Ala Gin Ala Arg Ser Asn Lys Val <br><br> 100 105 110 <br><br> lie Glu Ala Phe Leu Thr Asn Pro Val Asp Thr Lys Lys Lys Glu Leu <br><br> 115 120 125 <br><br> Phe Lys Val Thr Val Asp Gly Lys Glu lie Pro Val Ser Arg Val Glu <br><br> 130 135 140 <br><br> Lys Ala Asp Pro Thr Asp lie Asp Val Thr Asn Tyr Val Arg lie Val 145 150 155 160 <br><br> Leu Ser Glu Ser Leu Lys Glu Glu Asp Leu Arg Lys Asp Val Glu Leu <br><br> 1G5 170 175 <br><br> lie lie Glu Gly Tyr Lys Pro Ala Arg Val lie Met Met Glu lie Leu <br><br> 180 185 190 <br><br> Asp Asp Tyr Tyr Tyr Asp Gly Glu Leu Gly Ala Val Tyr Ser Pro Glu <br><br> 195 200 205 <br><br> Lys Thr He Phe Arg Val Trp Ser Pro Val Ser Lys Trp Val Lys Val <br><br> 210 215 220 <br><br> Leu Leu Phe Lys Asn Gly Glu Asp Thr Glu Pro Tyr Gin Val Val Asn 225 230 235 240 <br><br> Met Glu Tyr Lys Gly Asn Gly Val Trp Glu Ala Val•Val Glu Gly Asp <br><br> 245 250 255 <br><br> Leu Asp Gly Val Phe Tyr Leu Tyr Gin Leu Glu Asn Tyr Gly Lys lie <br><br> 260 265 270 <br><br> Arg Thr Thr Val Asp Pro Tyr Ser Lys Ala Val Tyr Ala Asn Asn Gin <br><br> 275 280 285 <br><br> Glu Ser Ala Val Val Asn Leu Ala Arg Thr Asn Pro Glu Gly Trp Glu <br><br> 290 295 300 <br><br> Asn Asp Arg Gly Pro Lys lie Glu Gly Tyr Glu Asp Ala lie lie Tyr 305 310 315 320 <br><br> Glu lie His lie Ala Asp lie Thr Gly Leu Glu Asn Ser Gly Val Lys <br><br> 325 330 335 <br><br> Asn Lys Gly Leu Tyr Leu Gly Leu Thr Glu Glu Asn Thr Lys Ala Pro <br><br> 340 345 350 <br><br> Gly Gly Val Thr Thr Gly Leu Ser His Leu Val Glu Leu Gly val Thr <br><br> 355 360 365 <br><br> His Val His lie Leu Pro Phe Phe Asp Phe Tyr Thr Gly Asp Glu Leu <br><br> 370 375 380 <br><br> Asp Lys Asp Phe Glu Lys Tyr Tyr Asn Trp Gly Tyr Asp Pro Tyr Leu 385 390 395 400 <br><br> Phe Met Val Pro Glu Gly Arg Tyr Ser Thr Asp Pro Lys Asn Pro His <br><br> 405 410 415 <br><br> Thr Arg lie Arg Glu Val Lys Glu Met Val Lys Ala Leu His Lys His <br><br> 420 425 430 <br><br> Gly He Gly Val lie Met Asp Met Val Phe Pro His Thr Tyr Gly lie <br><br> 435 440 445 <br><br> Gly Glu Leu Ser Ala Phe Asp Gin Thr Val Pro Tyr Tyr Phe Tyr Arg <br><br> 450 455 460 <br><br> lie Asp Lys Thr Gly Ala Tyr Leu Asn Glu Ser Gly Cys Gly Asn Val 465 470 475 480 <br><br> lie Ala Ser Glu Arg Pro Met Met Arg Lys Phe lie Val Asp Thr Val <br><br> 485 490 495 <br><br> Thr Tyr Trp Val Lys Glu Tyr His lie Asp Gly Phe Arg Phe Asp Gin <br><br> 192 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 500 505 510 <br><br> Met Gly Leu lie Asp Lys Lys Thr Met Leu Glu Val Glu Arg Ala Leu <br><br> 515 520 525 <br><br> His Lys lie Asp Pro Thr lie lie Leu Tyr Gly Glu Pro Trp Gly Gly <br><br> 530 535 540 <br><br> Trp Gly Ala Pro lie Arg Phe Gly Lys Ser Asp Val Ala Gly Thr His 545 550 555 560 <br><br> Val Ala Ala Phe Asn Asp Glu Phe Arg Asp Ala He Arg Gly Ser Val <br><br> 565 570 575 <br><br> Phe Asn Pro Ser Val Lys Gly Phe Val Met Gly Gly Tyr Gly Lys Glu <br><br> 580 585 590 <br><br> Thr Lys He Lys Arg Gly Val Val Gly Ser lie Asn Tyr Asp Gly Lys <br><br> 595 600 605 <br><br> Leu lie Lys Ser Phe Ala Leu Asp Pro Glu Glu Thr lie Asn Tyr Ala <br><br> 610 615 620 <br><br> Ala Cys His Asp Asn His Thr Leu Trp Asp Lys Asn Tyr Leu Ala Ala 625 630 635 640 <br><br> Lys Ala Asp Lys Lys Lys Glu Trp Thr Glu Glu Glu Leu Lys Asn Ala <br><br> 645 650 655 <br><br> Gin Lys Leu Ala Gly Ala He Leu Leu Thr Ser Gin Gly Val Pro Phe <br><br> 660 665 670 <br><br> Leu His Gly Gly Gin Asp Phe Cys Arg Thr Thr Asn Phe Asn Asp Asn <br><br> 675 680 685 <br><br> Ser Tyr Asn Ala Pro lie Ser lie Asn Gly Phe Asp Tyr Glu Arg Lys <br><br> 690 695 700 <br><br> Leu Gin Phe lie Asp Val Phe Asn Tyr His Lys Gly Leu lie Lys Leu 705 710 715 720 <br><br> Arg Lys Glu His Pro Ala Phe Arg Leu Lys Asn Ala Glu Glu lie Lys <br><br> 725 730 735 <br><br> Lys His Leu Glu Phe Leu Pro Gly Gly Arg Arg lie Val Ala Phe Met <br><br> 740 745 750 <br><br> Leu Lys Asp His Ala Gly Gly Asp Pro Trp Lys Asp lie Val Val lie <br><br> 755 760 765 <br><br> Tyr Asn Gly Asn Leu Glu Lys Thr Thr Tyr Lys Leu Pro Glu Gly Lys <br><br> 770 775 780 <br><br> Trp Asn Val Val Val Asn Ser Gin Lys Ala Gly Thr Glu Val He Glu 785 790 795 800 <br><br> Thr Val Glu Gly Thr lie Glu Leu Asp Pro Leu Ser Ala Tyr Val Leu <br><br> 805 810 815 <br><br> Tyr Arg Glu Ser Glu Lys Asp Glu Leu 820 825 <br><br> &lt;210&gt; 25 &lt;2 11&gt; 2478 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> «223&gt; synthetic &lt;400&gt; 25 <br><br> atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc caccagcgct 60 ggccactggt acaagcacca gcgcgcctac cagttcaccg gcgaggacga cttcgggaag 120 <br><br> 193 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> gtggccgtgg tgaagctccc gatggacctc accaaggtgg gcatcatcgt gcgcctcaac 180 gagtggcagg cgaaggacgt ggccaaggac cgcttcatcg agatcaagga cggcaaggcc 240 gaggtgtgga tactccaggg cgtggaggag atcttctacg agaagccgga cacctccccg 300 cgcatcttct tcgcccaggc ccgctccaac aaggtgatcg aggccttcct caccaacccg 360 gtggacacca agaagaagga gctgttcaag gtgaccgtcg acggcaagga gatcccggtg 420 tcccgcgtgg agaaggccga cccgaccgac atcgacgtga ccaactacgt gcgcatcgtg 4 80 cectccgagt ccctcaagga ggaggacctc cgcaaggacg tggagctgat catcgagggc 540 tacaagccgg cccgcgtgat catgatggag atcctcgacg actactacta cgacggcgag 600 ctgggggcgg tgtactcccc ggagaagacc atcttccgcg tgtggtcccc ggtgtccaag 660 tgggtgaagg tgctcctctt casgaacggc gaggacaccg agccgtacca ggtggtgaac 720 atggagtaca agggcaacgg cgtgtgggag gccgtggtgg agggcgacct cgacggcgtg 780 ttctacctct accagctgga gaactacggc aagatccgca ccaccgtgga cccgtactcc 840 aaggccgtgt acgccaacaa ccaggagtct gcagtggtga acctcgcccg caccaacccg 900 gagggctggg agaacgaccg cggcccgaag atcgagggct acgaggacgc catcatctac 960 gagatccaca tcgccgacat caccggcctg gagaactccg gcgtgaagaa caagggcctc 1020 tacctcggcc tcaccgagga gaacaccaag gccccgggcg gcgtgaccac cggcctctcc 1080 cacctcgtgg agctgggcgt gacccacgtg cacatcctcc cgttcttcga cttctacacc 1140 ggcgacgagc tggacaagga cttcgagaag tactacaact ggggctacga cccgtacctc 1200 ttcatggtgc cggagggccg ctactccacc gacccgaaga acccgcacac ccgaattcgc 1260 gaggtgaagg agatggtgaa ggccctccac aagcacggca tcggcgtgat catggacatg 1320 gtgttcccgc acacctacgg catcggcgag ctgtccgcct tcgaccagac cgtgccgtac .1380 tacttctacc gcatcgacaa gaccggcgcc tacctcaacg agtccggctg cggcaacgtg 1440 atcgcctccg agcgcccgat gatgcgcaag ttcatcgtgg acaccgtgac ctactgggtg 1500 aaggagtacc acatcgacgg cttccgcttc gaccagatgg gcctcatcga caagaagacc 1560 atgctggagg tggagcgcgc cctccacaag atcgacccga ccatcatcct ctacggcgag 1620 ccgtggggcg gctggggggc cccgatccgc ttcggcaagt ccgacgtggc cggcacccac 1680 gtggccgcct tcaacgacga gttccgcgac gccatccgcg gctccgtgtt caacccgtcc 1740 gtgaagggct tcgtgatggg cggctacggc aaggagacca agatcaagcg cggcgtggtg 1800 ggctccatca actacgacgg caagctcatc aagtccttcg ccctcgaccc ggaggagacc 1860 atcaactacg ccgcctgcca cgacaaccac accctctggg acaagaacta cctcgccgcc 1920 aaggccgaca agaagaagga gtggaccgag gaggagctga agaacgccca gaagctcgcc 1980 ggcgccatcc tcctcactag tcagggcgtg ccgttcctcc acggcggcca ggacttctgc 2040 cgcaccacca acttcaacga caactcctac aacgccccga tctccatcaa cggcttcgac 2100 tacgagcgca agctccagtt catcgacgtg ttcaactacc aeaagggcct catcaagctc 2160 cgcaaggagc acccggcctt ccgcctcaag aacgccgagg agatcaagaa gcacctggag 2220 ttcctcccqq gcgggcgccg catcgtggcc ttcatgctca aggaccacgc cggcggcgac 2280 ccgtggaagg acatcgtggt gatctacaac ggcaacctgg agaagaccac ctacaagctc 2340 ccggagggca agtggaacgt ggtggtgaac tcccagaagg ccggcaccga ggtgatcgag 2400 accgtggagg gcaccatcga gctggacccg ctctccgcct acgtgctcta ccgcgagtcc 2460 gagaaggacg agctgtga 2478 <br><br> &lt;210&gt; 26 &lt;2ll&gt; 718 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> c223&gt; synthetic «400&gt; 26 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> 15 10 15 <br><br> Ala Thr Ser Met Glu Thr lie Lys lie Tyr Glu Asn Lys Gly Val Tyr 20 25 30 <br><br> 194 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Lys Val Val lie Gly Glu Pro Phe Pro Pro lie Glu Phe Pro Leu Glu <br><br> 35 40 45 <br><br> Gin Lys lie Ser Ser Asn Lys Ser Leu Ser Glu Leu Gly Leu Thr He <br><br> 50 55 60 <br><br> Val Gin Gin Gly Asn Lys Val lie Val Glu Lys Ser Leu Asp Leu Lys 65 70 75 80 <br><br> Glu His lie lie Gly Leu Gly Glu Lys Ala Phe Glu Leu Asp Arg Lys <br><br> 85 90 95 <br><br> Arg Lys Arg Tyr Val Met Tyr Asn Val Asp Ala Gly Ala Tyr Lys Lys <br><br> 100 105 110 <br><br> Tyr Gin Asp Pro Leu Tyr Val Ser lie Pro Leu Phe lie Ser Val Lys <br><br> 115 120 125 <br><br> Asp Gly Val Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val lie <br><br> 130 135 140 <br><br> Phe Asp Val Gly Leu Glu Glu Tyr Asp Lys Val lie Val Thr lie Pro 145 150 155 160 <br><br> Glu Asp Ser Val Glu Phe Tyr Val lie Glu Gly Pro Arg lie Glu Asp <br><br> 165 170 175 <br><br> Val Leu Glu Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro <br><br> 160 185 190 <br><br> Met Trp Ala Phe Gly Tyr Met lie Ser Arg Tyr Ser Tyr Tyr Pro Gin <br><br> 195 200 205 <br><br> Asp Lys Val Val Glu Leu Val Asp lie Met Gin Lys Glu Gly Phe Arg <br><br> 210 215 220 <br><br> Val Ala Gly Val Phe Leu Asp lie His Tyr Met Asp Ser Tyr Lys Leu 225 230 235 240 <br><br> Phe Thr Trp His Pro Tyr Arg Phe Pro Glu Pro Lys Lys Leu lie Asp <br><br> 245 250 255 <br><br> Glu Leu His Lys Arg Asn Val Lys Leu He Thr He Val Asp His Gly <br><br> 260 265 270 <br><br> lie Arg Val Asp Gin Asn Tyr Ser Pro Phe Leu Ser Gly Met Gly Lys <br><br> 275 280 285 <br><br> Phe Cys Glu lie Glu Ser Gly Glu Leu Phe Val Gly Lys Met Trp Pro <br><br> 290 295 300 <br><br> Gly Thr Thr Val Tyr Pro Asp Phe Phe Arg Glu Asp Thr Arg Glu Trp 305 310 315 320 <br><br> Trp Ala Gly Leu lie Ser Glu Trp Leu Ser Gin Gly Val Asp Gly lie <br><br> 325 330 335 <br><br> Trp Leu Asp Met Asn Glu Pro Thr Asp Phe Ser Arg Ala lie Glu lie <br><br> 340 345 350 <br><br> Arg Asp Val Leu Ser Ser Leu Pro Val Gin Phe Arg Asp Asp Arg Leu <br><br> 355 360 365 <br><br> Val Thr Thr Phe Pro Asp Asn Val Val His Tyr Leu Arg Gly Lys Arg <br><br> 370 375 380 <br><br> Val Lys His Glu Lys Val Arg Asn Ala Tyr Pro Leu Tyr Glu Ala Met 385 390 395 400 <br><br> Ala Thr Phe Lys Gly Phe Arg Thr Ser His Arg Asn Glu lie Phe lie <br><br> 405 410 415 <br><br> Leu Ser Arg Ala Gly Tyr Ala Gly He Gin Arg Tyr Ala Phe lie Trp <br><br> 420 425 430 <br><br> Thr Gly Asp Asn Thr Pro Ser Trp Asp Asp Leu Lys Leu Gin Leu Gin <br><br> 435 440 445 <br><br> Leu Val Leu Gly Leu Ser lie Ser Gly Val Pro Phe Val Gly Cys Asp 450 455 460 <br><br> 195 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> lie Gly Gly Phe Gin Gly Arg Asn Phe Ala Glu lie Asp Asn Ser Met 465 470 475 480 <br><br> Asp Leu Leu Val Lys Tyr Tyr Ala Leu Ala Leu Phe Phe Pro Phe Tyr <br><br> 485 490 , 495 <br><br> Arg Ser His Lys Ala Thr Asp Gly lie Asp Thr Glu Pro Val Phe Leu <br><br> 500 505 510 <br><br> Pro Asp T/r Tyr Lys Glu Lys Val Lys Glu lie Val Glu Leu Arg Tyr <br><br> 515 520 525 <br><br> Lys Phe Leu Pro Tyr He Tyr Ser Leu Ala Leu Glu Ala Ser Glu Lys <br><br> 530 535 540 <br><br> Gly His Pro Val He Arg Pro Leu Phe Tyr Glu Phe Gin Asp Asp Asp 545 550 555 560 <br><br> Asp Met Tyr Arg lie Glu Asp Glu Tyr Met Val Gly Lys Tyr Leu'Leu <br><br> 565 570 575 <br><br> Tyr Ala Pro lie Val Ser Lys Glu Glu Ser Arg Leu Val Thr Leu Pro <br><br> 580 585 590 <br><br> Arg Gly Lys Trp Tyr Asn Tyr Trp Asn Gly Glu lie lie Asn Gly Lys <br><br> 595 600 605 <br><br> Ser Val Val Lys Ser Thr His Glu Leu Pro lie Tyr Leu Arg Glu Gly <br><br> 610 615 620 <br><br> Ser He lie Pro Leu Glu Gly Asp Glu Leu lie Val Tyr Gly Glu Thr 625 630 635 640 <br><br> Ser Phe Lys Arg Tyr Asp Asn Ala Glu lie Thr Ser Ser Ser Asn Glu <br><br> 645 650 655 <br><br> lie Lys Phe Ser Arg Glu lie Tyr Val Ser Lys Leu Thr lie Thr Ser <br><br> 660 665 670 <br><br> Glu Lys Pro Val Ser Lys lie lie Val Asp Asp Ser Lys Glu lie Gin <br><br> 675 680 685 <br><br> Val Glu Lys Thr Met Gin Asn Thr Tyr Val Ala Lys lie Asn Gin Lys <br><br> 690 695 700 <br><br> lie Arg Gly Lys lie Asn Leu Glu Ser Glu Lys Asp Glu Leu 705 710 715 <br><br> &lt; 210 &gt; 27 <br><br> - T&gt; 1 ^ -&gt; <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223? synthetic <br><br> &lt;400&gt; 27 <br><br> Met <br><br> Arg val <br><br> Leu <br><br> Leu <br><br> Val <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Ala Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Met <br><br> Glu <br><br> Thr lie <br><br> Lys <br><br> He <br><br> Tyr <br><br> Glu <br><br> Asn <br><br> Lys <br><br> Gly Val <br><br> Tyr <br><br> 20 <br><br> 2 5 <br><br> 30 <br><br> Lys <br><br> Val <br><br> Val lie <br><br> Gly <br><br> Glu <br><br> Pro <br><br> Phe <br><br> Pro <br><br> Pro lie <br><br> Glu <br><br> Phe <br><br> Pro Leu <br><br> Glu <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Gin <br><br> Lys lie <br><br> Ser <br><br> Ser <br><br> Asn <br><br> Lys <br><br> Ser <br><br> Leu <br><br> Ser <br><br> Glu <br><br> Leu Gly Leu Thr lie <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Val <br><br> Gin <br><br> Gin <br><br> Gly Asn <br><br> Lys <br><br> Val lie <br><br> Val <br><br> Glu <br><br> Lys <br><br> Ser <br><br> Leu <br><br> Asp Leu <br><br> Lys <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Glu <br><br> His lie lie <br><br> Gly <br><br> Leu <br><br> Gly Glu <br><br> Lys <br><br> Ala <br><br> Phe <br><br> Glu <br><br> Leu <br><br> Asp Arg <br><br> Lys <br><br> 196 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 85 90 95 <br><br> Arg Lys Arg Tyr Val Met Tyr Asn Val Asp Ala Gly Ala Tyr. Lys Lys <br><br> 100 105 110 <br><br> Tyr Gin Asp Pro Leu Tyr Val Ser lie Pro Leu Phe lie Ser Val Lys <br><br> 115 120 125 <br><br> Asp Gly Val Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val lie <br><br> 130 135 140 <br><br> Phe Asp Val Gly Leu Glu Glu Tyr Asp Lys Val lie Val Thr He Pro 145 150 155 160 <br><br> Glu Asp Ser Val Glu Phe Tyr Val lie Glu Gly Pro Arg lie Glu Asp <br><br> 165 170 175 <br><br> Val Leu Glu Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro <br><br> 180 185 190 <br><br> Met Trp Ala.Phe Gly Tyr Met lie Ser Arg Tyr Ser Tyr Tyr Pro Gin <br><br> 195 200 205 <br><br> Asp Lys Val Val Glu Leu Val Asp lie Met Gin Lys Glu Gly Phe Arg <br><br> 210 215 220 <br><br> Val Ala Gly Val Phe Leu Asp lie His Tyr Met Asp Ser Tyr Lys Leu 225 230 235 240 <br><br> Phe Thr Trp His Pro Tyr Arg Phe Pro Glu Pro Lys Lys Leu lie Asp <br><br> 245 250 255 <br><br> Glu Leu His Lys Arg Asn Val Lys Leu lie Thr He Val Asp His Gly <br><br> 260 265 270 <br><br> lie Arg Val Asp Gin Asn Tyr Ser Pro Phe Leu Ser Gly Met Gly Lys <br><br> 275 280 265 <br><br> Phe Cys Glu lie Glu Ser Gly Glu Leu Phe val Gly Lys Met Trp Pro <br><br> 290 295 300 <br><br> Gly Thr Thr Val Tyr Pro Asp Phe Phe Arg Glu Asp Thr Arg Glu Trp 305 310 315 320 <br><br> Trp Ala Gly Leu lie Ser Glu Trp Leu Ser Gin Gly Val Asp Gly lie <br><br> 325 330 335 <br><br> Trp Leu Asp Met Asn Glu Pro Thr Asp Phe Ser Arg Ala lie Glu He <br><br> 340 - 345 350 <br><br> Arg Asp Val Leu Ser Ser Leu Pro Val Gin Phe Arg Asp Asp Arg Leu <br><br> 355 360 365 <br><br> V»1 Thr Thr Phe Pro Asp Asn Val val His Tyr Leu Arg Gly Lys Arg <br><br> 370 375 380 <br><br> Val Lys His Glu Lys Val Arg Asn Ala Tyr Pro Leu Tyr Glu Ala Met 385 390 395 400 <br><br> Ala Thr Phe Lys Gly Phe Arg Thr Ser His Arg Asn Glu lie Phe lie <br><br> 405 410 415 <br><br> Leu Ser Arg Ala Gly Tyr Ala Gly lie Gin Arg Tyr Ala Phe lie Trp <br><br> 420 425 430 <br><br> Thr Gly Asp Asn Thr Pro Ser Trp Asp Asp Leu Lys Leu Gin Leu Gin <br><br> 435 440 445 <br><br> Leu Val Leu Gly Leu Ser lie Ser Gly Val Pro Phe Val Gly Cys Asp <br><br> 450 455 460 <br><br> lie Gly Gly Phe Gin Gly Arg Asn Phe Ala Glu lie Asp Asn Ser Met 465 470 475 480 <br><br> Asp Leu Leu Val Lys Tyr Tyr Ala Leu Ala Leu Phe Phe Pro Phe Tyr <br><br> 485 490 495 <br><br> Arg Ser His Lys Ala Thr Asp Gly lie Asp Thr Glu Pro Val Phe Leu <br><br> 500 505 510 <br><br> Pro Asp Tyr Tyr Lys Glu Lys Val Lys Glu lie Val Glu Leu Arg Tyr <br><br> 197 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 515 <br><br> 520 <br><br> 525 <br><br> - <br><br> Lys <br><br> Phe <br><br> Leu <br><br> Pro <br><br> Tyr lie <br><br> Tyr <br><br> Ser <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Glu <br><br> Ala <br><br> Ser <br><br> Glu <br><br> Lys <br><br> 530 <br><br> 535 <br><br> 540 <br><br> Gly <br><br> His <br><br> Pro val lie <br><br> Arg <br><br> Pro <br><br> Leu <br><br> Phe <br><br> Tyr <br><br> Glu <br><br> Phe <br><br> Gin <br><br> Asp <br><br> Asp <br><br> Asp <br><br> 545 <br><br> 550 <br><br> 555 <br><br> 560 <br><br> Asp <br><br> Met <br><br> Tyr <br><br> Arg lie <br><br> Glu <br><br> Asp <br><br> Glu <br><br> Tyr <br><br> Met <br><br> Val <br><br> Gly Lys <br><br> Tyr <br><br> Leu <br><br> Leu <br><br> 565 <br><br> 570 <br><br> 575 <br><br> Tyr <br><br> Ala <br><br> Pro lie <br><br> Val <br><br> Ser <br><br> Lys <br><br> Glu <br><br> Glu <br><br> Ser <br><br> Arg <br><br> Leu <br><br> Val <br><br> Thr <br><br> Leu <br><br> Pro <br><br> 580 <br><br> 585 <br><br> 590 <br><br> Arg Gly <br><br> Lys <br><br> Trp <br><br> Tyr <br><br> Asn <br><br> Tyr <br><br> Trp Asn Gly Glu lie lie <br><br> Asn <br><br> Gly <br><br> Lys <br><br> 595 <br><br> 600 <br><br> 605 <br><br> Ser <br><br> Val <br><br> Val <br><br> Lys <br><br> Ser <br><br> Thr <br><br> His <br><br> Glu <br><br> Leu <br><br> Pro lie <br><br> Tyr <br><br> Leu <br><br> Arg <br><br> Glu Gly <br><br> 610 <br><br> 615 <br><br> 620 <br><br> Ser lie lie <br><br> Pro <br><br> Leu <br><br> Glu <br><br> Gly <br><br> Asp <br><br> Glu <br><br> Leu lie <br><br> Val <br><br> Tyr Gly <br><br> Glu <br><br> Thr <br><br> 625 <br><br> 630 <br><br> 635 <br><br> 640 <br><br> Ser <br><br> Phe <br><br> Lys <br><br> Arg <br><br> Tyr <br><br> Asp <br><br> Asn <br><br> Ala <br><br> Glu lie <br><br> Thr <br><br> Ser <br><br> Ser <br><br> Ser <br><br> Asn <br><br> Glu <br><br> 645 <br><br> 650 <br><br> 655 <br><br> lie <br><br> Lys <br><br> Phe ser <br><br> Arg <br><br> Glu lie <br><br> Tyr val <br><br> Ser <br><br> Lys <br><br> Leu <br><br> Thr lie <br><br> Thr <br><br> Ser <br><br> 660 <br><br> 665 <br><br> 670 <br><br> Glu <br><br> Lys <br><br> Pro <br><br> Val <br><br> Ser <br><br> Lys lie lie <br><br> Val <br><br> Asp <br><br> Asp <br><br> Ser <br><br> Lys <br><br> Glu <br><br> He <br><br> Gin <br><br> 675 <br><br> 680 <br><br> 685 <br><br> val <br><br> Glu <br><br> Lys <br><br> Thr <br><br> Met <br><br> Gin <br><br> Asn <br><br> Thr <br><br> Tyr <br><br> Val <br><br> Ala <br><br> Lys lie <br><br> Asn <br><br> Gin <br><br> Lys <br><br> 690 <br><br> 695 <br><br> 700 <br><br> lie <br><br> Arg Gly <br><br> Lys <br><br> He <br><br> Asn <br><br> Leu <br><br> Glu <br><br> 705 <br><br> 710 <br><br> &lt;2l0&gt; 28 &lt;211&gt; 469 &lt;212&gt; PRT <br><br> &lt;2i3&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 28 <br><br> Met <br><br> Arg <br><br> Val <br><br> Leu <br><br> Leu val <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Leu <br><br> Ala i.eu <br><br> Ala <br><br> Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Met 20 <br><br> Ala <br><br> Glu <br><br> Phe <br><br> Phe <br><br> Pro 25 <br><br> Glu lie <br><br> Pro <br><br> Lys lie 30 <br><br> Gin <br><br> Phe <br><br> Glu <br><br> Gly <br><br> Lys 35 <br><br> Glu <br><br> Ser <br><br> Thr <br><br> Asn <br><br> Pro 40 <br><br> Leu <br><br> Ala <br><br> Phe <br><br> Arg <br><br> Phe <br><br> 45 <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Asn <br><br> Glu 50 <br><br> Val <br><br> He <br><br> Asp <br><br> Gly <br><br> Lys 55 <br><br> Pro <br><br> Leu <br><br> Lys <br><br> Asp <br><br> His 60 <br><br> Leu <br><br> Lys <br><br> Phe <br><br> Ser <br><br> Val <br><br> Ala <br><br> Phe <br><br> Trp <br><br> His <br><br> Thr <br><br> Phe <br><br> Val <br><br> Asn <br><br> Glu <br><br> Gly Arg Asp <br><br> Pro <br><br> Phe <br><br> Gly <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Asp <br><br> Pro <br><br> Thr <br><br> Ala <br><br> Glu 85 <br><br> Arg <br><br> Pro <br><br> Trp <br><br> Asn <br><br> Arg 90 <br><br> Phe <br><br> Ser <br><br> Asp <br><br> Pro <br><br> Met <br><br> 95 <br><br> Asp <br><br> Lys <br><br> Ala <br><br> Phe <br><br> Ala 100 <br><br> Arg val <br><br> Asp <br><br> Ala <br><br> Leu 105 <br><br> Phe <br><br> Glu <br><br> Phe <br><br> Cys <br><br> Glu 110 <br><br> Lys <br><br> Leu <br><br> Asn lie <br><br> Glu <br><br> Tyr <br><br> Phe <br><br> Cys <br><br> Phe <br><br> His <br><br> Asp Arg Asp lie <br><br> Ala <br><br> Pro <br><br> Glu <br><br> Gly <br><br> 115 <br><br> 120 <br><br> 125 <br><br> Lys <br><br> Thr 130 <br><br> Leu <br><br> Arg <br><br> Glu <br><br> Thr <br><br> Asn 135 <br><br> Lys lie <br><br> Leu <br><br> Asp <br><br> Lys 140 <br><br> Val <br><br> Val <br><br> Glu <br><br> Arg <br><br> 198 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> lie Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr 145 ISO 155 ICO <br><br> Ala Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr <br><br> 165 170 175 <br><br> Cys Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala <br><br> 180 185 190 <br><br> Leu Glu lie Thr Lye Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly <br><br> 195 200 205 <br><br> Gly Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Leu Glu <br><br> 210 215 220 <br><br> Leu Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Glu Tyr Ala Lys 225 230 235 240 <br><br> Lys lie Gly Phe Thr Gly Gin Phe Leu lie Glu Pro Lys Pro Lys Glu <br><br> 245 250 255 <br><br> Pro Thr Lys His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe <br><br> 260 265 270 <br><br> Leu Lys Asn His Gly Leu Asp Glu Tyr Phe Lys Phe Asn lie Glu Ala <br><br> 275 280 285 <br><br> Asn His Ala Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met <br><br> 290 295 300 <br><br> Ala Arg lie Leu Gly Lys Leu Gly Ser lie Asp Ala Asn Gin Gly Asp 305 310 315 320 <br><br> Leu Leu Leu Gly Trp Asp Thr Asp Gin Phe Pro Thr Asn lie Tyr Asp <br><br> 325 330 335 <br><br> The Thr Leu Ala Met Tyr Glu Val lie Lys Ala Gly Gly Phe Thr Lys <br><br> 340 345 350 <br><br> Gly Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val <br><br> 355 360 365 <br><br> Glu Asp Leu Phe lie Gly His lie Ala Gly Met Asp Thr Phe Ala Leu <br><br> 370 375 380 <br><br> Gly Phe Lys lie Ala Tyr Lys Leu Ala Lys Asp Gly Val Phe Asp Lys 385 390 395 400 <br><br> Phe lie Glu Glu Lys Tyr Arg Ser Phe Lys Glu Gly lie Gly Lys Glu <br><br> 405 410 415 <br><br> lie Val Glu Gly Lys Thr Asp Phe Glu Lys Leu Glu Glu Tyr lie He <br><br> 420 425 430 <br><br> Asp Lys Glu Asp lie Glu Leu Pro Ser Gly Lys Gin Glu Tyr Leu Glu <br><br> 435 440 445 <br><br> Ser Leu Leu Asn Ser Tyr lie Val Lys Thr lie Ala Glu Leu Arg Ser <br><br> 450 455 460 <br><br> Glu Lys Asp Glu Leu 465 <br><br> &lt;210&gt; 29 &lt;211&gt; 469 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223? synthetic &lt;400? 29 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> 199 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 15 10 15 <br><br> Ala Thr Ser Met Ala Glu Phe Phe Pro Glu lie Pro Lys Val Gin Phe <br><br> 20 25 30 <br><br> Glu Gly Lys Glu Ser Thr Asn Pro Leu Ala Phe Lys Phe Tyr Asp Pro <br><br> 35 40 45 <br><br> Glu Glu lie He Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser <br><br> 50 55 60 <br><br> Val Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly 65 70 75 80 <br><br> Asp Pro Thr Ala Asp Arg Pro Trp Asn Arg Tyr Thr Asp Pro Met Asp <br><br> 85 90 95 <br><br> Lys Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu <br><br> 100 105 110 <br><br> Asn lie Glu Tyr Phe Cys Phe His Asp Arg Asp lie Ala Pro Glu Gly <br><br> 115 120 125 <br><br> Lys Thr Leu Arg Glu Thr Asn Lys lie Leu Asp Lys Val Val Glu Arg <br><br> 130 135 140 <br><br> He Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr 145 150 155 160 <br><br> Ala Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr <br><br> 165 170 175 <br><br> Cys Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala <br><br> 180 185 190 <br><br> Leu Glu lie Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly <br><br> 195 200 205 <br><br> Gly Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu <br><br> 210 215 220 <br><br> Leu Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys 225 230 235 240 <br><br> Arg lie Gly Phe Thr Gly Gin Phe Leu lie Glu Pro Lys Pro Lys Glu <br><br> 245 250 255 <br><br> Pro Thr Lys His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe <br><br> 260 255 270 <br><br> Leu Lys Ser His Gly Leu Asp Glu Tyr Phe Lys Phe Asn lie Glu Ala <br><br> 275 280 285 <br><br> Asn His Ala Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met <br><br> 290 295 300 <br><br> Ala Arg lie Leu Gly Lys Leu Gly Ser lie Asp Ala Asn Gin Gly Asp 305 310 315 320 <br><br> Leu Leu Leu Gly Trp Asp Thr Asp Gin Phe Pro Thr Asn Val Tyr Asp <br><br> 325 330 335 <br><br> Thr Thr Leu Ala Met Tyr Glu Val lie Lys Ala Gly Gly Phe Thr Lys <br><br> 340 345 350 <br><br> Gly Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val <br><br> 355 360 365 <br><br> Glu Asp Leu Phe lie Gly His lie Ala Gly Met Asp Thr Phe Ala Leu <br><br> 370 375 380 <br><br> Gly Phe Lys Val Ala Tyr Lys Leu val Lys Asp Gly Val Leu Asp Lys 385 390 395 400 <br><br> Phe lie Glu Glu Lys Tyr Arg Ser Phe Arg Glu Gly lie Gly Arg Asp <br><br> 405 410 415 <br><br> lie Val Glu Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr lie lie <br><br> 420 425 430 <br><br> Asp Lys Glu Thr lie Glu Leu Pro Ser Gly Lys Gin Glu Tyr Leu Glu <br><br> 200 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 435 440 445 <br><br> Ser Leu lie Asn Ser Tyr lie Val Lys Thr lie Leu Glu Leu Arg Ser <br><br> 450 455 460 <br><br> Glu Lys Asp Glu Leu 465 <br><br> &lt;210&gt; 30 t211&gt; 463 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;2 20 &gt; <br><br> &lt;223 &gt; synthetic &lt;400&gt; 30 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> 15 10 15 <br><br> Ala Thr Ser Met Ala Glu Phe Phe Pro Glu lie Pro Lys Val Gin Phe <br><br> 20 25 30 <br><br> Glu Gly Lys Glu Ser Thr Asn Pro Leu Ala Phe Lys Phe Tyr Asp Pro <br><br> 35 40 45 <br><br> Glu Glu lie lie Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser <br><br> 50 55 60 <br><br> Val Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly 65 70 75 80 <br><br> Asp Pro Thr Ala Asp Arg Pro Trp Asn Arg Tyr Thr Asp Pro Met Asp <br><br> 85 90 95 <br><br> Lys Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu <br><br> 100 105 110 <br><br> Asn lie Glu Tyr Phe Cys Phe His Asp Arg Asp lie Ala Pro Glu Gly <br><br> 115 120 125 <br><br> Lys Thr Leu Arg Glu Thr Asn Lys lie Leu Asp Lys Val Val Glu Arg <br><br> 130 135 140 <br><br> lie Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr 145 150 155 160 <br><br> Ala Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr <br><br> 165 170 175 <br><br> Cys Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala <br><br> 180 185 190 <br><br> Leu Glu lie Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly <br><br> 195 200 205 <br><br> Gly Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu <br><br> 210 215 220 <br><br> Leu Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys 225 230 235 240 <br><br> Arg He Gly Phe Thr Gly Gin Phe Leu lie Glu Pro Lys Pro Lys Glu <br><br> 245 250 255 <br><br> Pro Thr Lys His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe <br><br> 260 265 270 <br><br> Leu Lys Ser His Gly Leu Asp Glu Tyr Phe Lys Phe Asn lie Glu Ala <br><br> 275 280 285 <br><br> Asn His Ala Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met 290 295 300 <br><br> 201 <br><br> wo 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ala <br><br> Arg lie <br><br> Leu Gly <br><br> Lys <br><br> Leu <br><br> Gly <br><br> Ser lie <br><br> Asp' Ala <br><br> Asn <br><br> Gin Gly Asp <br><br> 305 <br><br> 310 <br><br> 315 <br><br> 320 <br><br> Leu <br><br> Leu <br><br> Leu <br><br> Gly Trp <br><br> Asp <br><br> Thr <br><br> Asp <br><br> Gin <br><br> Phe <br><br> Pro <br><br> Thr <br><br> Asn <br><br> Val <br><br> Tyr Asp <br><br> 325 <br><br> 330 <br><br> 335 <br><br> Thr <br><br> Thr <br><br> Leu <br><br> Ala <br><br> Met <br><br> Tyr <br><br> Glu <br><br> Val lie <br><br> Lys <br><br> Ala <br><br> Gly Gly Phe <br><br> Thr <br><br> Lys <br><br> 340 <br><br> 345 <br><br> 350 <br><br> Gly Gly <br><br> Leu <br><br> Asn <br><br> Phe <br><br> Asp <br><br> Ala <br><br> Lys <br><br> Val <br><br> Arg <br><br> Arg <br><br> Ala <br><br> Ser <br><br> Tyr <br><br> Lys <br><br> Val <br><br> 355 <br><br> 360 <br><br> 365 <br><br> Glu <br><br> Asp 370 <br><br> Leu <br><br> Phe lie <br><br> Gly <br><br> His 375 <br><br> lie <br><br> Ala <br><br> Gly <br><br> Met <br><br> Asp 380 <br><br> Thr <br><br> Phe <br><br> Ala <br><br> Leu <br><br> Gly <br><br> Phe <br><br> Lys <br><br> Val <br><br> Ala <br><br> Tyr <br><br> Lys <br><br> Leu <br><br> Val <br><br> Lys <br><br> Asp <br><br> Gly Val <br><br> Leu <br><br> Asp <br><br> Lys <br><br> 385 <br><br> 3 90 <br><br> 395 <br><br> 400 <br><br> Phe lie <br><br> Glu <br><br> Glu <br><br> Lys 405 <br><br> Tyr <br><br> Arg <br><br> Ser <br><br> Phe <br><br> Arg 4 10 <br><br> Glu <br><br> Gly lie <br><br> Gly <br><br> Arg 415 <br><br> Asp lie val <br><br> Glu <br><br> Gly 420 <br><br> Lys <br><br> Val <br><br> Asp <br><br> Phe <br><br> Glu 425 <br><br> Lys <br><br> Leu <br><br> Glu <br><br> Glu <br><br> Tyr 430 <br><br> lie lie <br><br> Asp <br><br> Lys <br><br> Glu 435 <br><br> Thr lie <br><br> Glu <br><br> Leu <br><br> Pro 440 <br><br> Ser <br><br> Gly <br><br> Lys <br><br> Gin <br><br> Glu 445 <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Ser <br><br> Leu 450 <br><br> lie <br><br> Asn <br><br> Ser <br><br> Tyr lie 455 <br><br> Val <br><br> Lys <br><br> Thr lie <br><br> Leu 460 <br><br> Glu <br><br> Leu <br><br> Arg <br><br> &lt;210&gt; 31 &lt;211&gt; 25 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;40G&gt; 31 <br><br> Met Gly Lys Asn Gly Asn Leu Cys <br><br> 1 5 <br><br> Leu Ala Gly Leu Ala Ser Gly His 20 <br><br> Cys Phe Ser Leu Leu Leu Leu Leu 10 15 <br><br> Gin 25 <br><br> &lt;210&gt; 32 &lt;211&gt; 30 &lt;212 &gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 32 <br><br> Met Gly Phe Val Leu Phe Ser Gin Leu Pro Ser Phe Leu Leu Val Ser <br><br> 15 10 15 <br><br> Thr Leu Leu Leu Phe Leu Val lie Ser His Ser Cys Arg Ala 20 25 30 <br><br> c210&gt; 33 *211&gt; 460 <br><br> 202 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 33 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> 15 10 15 <br><br> Ala Thr Ser Ala Lys Tyr Leu Glu Leu Glu Glu Gly Gly Val lie Met <br><br> 20 25 30 <br><br> Gin Ala Phe Tyr Trp Asp Val Pro Ser Gly Gly lie Trp Trp Asp Thr <br><br> 35 40 45 <br><br> lie Arg Gin Lys lie Pro Glu Trp Tyr Asp Ala Gly lie Ser Ala lie <br><br> 50 55 60 <br><br> Trp He Pro Pro Ala Ser Lys Gly Met Ser Gly Gly Tyr Ser Met Gly 65 70 75 80 <br><br> Tyr Asp Pro Tyr Asp Tyr Phe Asp Leu Gly Glu Tyr Tyr Gin Lys Gly <br><br> 85 90 95 <br><br> Thr Val Glu Thr Arg Phe Gly ser Lys Gin Glu Leu lie Asn Met He <br><br> 100 105 110 <br><br> Asn Thr Ala His Ala Tyr Gly lie Lys Val lie Ala Asp He Val lie <br><br> 115 120 125 <br><br> Asn His Arg Ala Gly Gly Asp Leu Glu Trp Asn Pro Phe Val Gly Asp <br><br> 130 135 140 <br><br> Tyr Thr Trp Thr Asp Phe Ser Lys Val Ala Ser Gly Lys Tyr Thr Ala 145 150 155 160 <br><br> Asn Tyr Leu Asp Phe His Pro Asn Glu Leu His Ala Gly Asp Ser Gly <br><br> 165 170 175 <br><br> Thr phe Gly Gly Tyr Pro Asp lie Cys His Asp Lys Ser Trp Asp Gin <br><br> 180 185 190 <br><br> Tyr Trp Leu Trp Ala Ser Gin Glu Ser Tyr Ala Ala Tyr Leu Arg Ser <br><br> 195 200 205 <br><br> lie Gly He Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala <br><br> 210 215 220 <br><br> Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly 225 230 235 240 <br><br> Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser <br><br> 245 250 255 <br><br> Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala <br><br> 260 265 270 <br><br> Ala Phe Asp Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn <br><br> 275 280 285 <br><br> Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val <br><br> 290 295 300 <br><br> Ala Asn His Asp Thr Asp lie lie Trp Asn Lys Tyr Pro Ala Tyr Ala 305 310 315 320 <br><br> Phe He Leu Thr Tyr Glu Gly Gin Pro Thr lie Phe Tyr Arg Asp Tyr <br><br> 325 330 335 <br><br> Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His <br><br> 340 345 350 <br><br> Asp Asn Leu Ala Gly Gly Ser Thr Ser lie Val Tyr Tyr Asp Ser Asp <br><br> 355 360 365 <br><br> Glu Met He Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu lie <br><br> 203 <br><br> WO 2005/096804 <br><br> PCTYUS2004/007182 <br><br> 370 <br><br> 375 <br><br> 380 <br><br> Thr <br><br> Tyr lie <br><br> Asn <br><br> Leu <br><br> Gly <br><br> Ser <br><br> Ser Lys Val Gly Arg <br><br> Trp <br><br> Val <br><br> Tyr <br><br> Val <br><br> 385 <br><br> 390 <br><br> 3 95 <br><br> 400 <br><br> Pro <br><br> Lys <br><br> Phe <br><br> Ala <br><br> Gly <br><br> Ala cys lie His Glu Tyr Thr Gly Asn Leu Gly <br><br> 405 <br><br> 410 <br><br> 415 <br><br> Gly <br><br> Trp <br><br> Val <br><br> Asp 420 <br><br> Lys <br><br> Tyr <br><br> Val <br><br> Tyr Ser Ser Gly Trp 425 <br><br> Val <br><br> Tyr 430 <br><br> Leu <br><br> Glu <br><br> Ala <br><br> Pro <br><br> Ala <br><br> Tyr <br><br> Asp <br><br> Pro Ala Asn Gly Gin Tyr Gly <br><br> Tyr <br><br> Ser <br><br> Val <br><br> Trp <br><br> 435 <br><br> 440 <br><br> 445 <br><br> Ser <br><br> Tyr <br><br> 450 <br><br> Cys <br><br> Gly <br><br> Val <br><br> Gly <br><br> Ser 455 <br><br> Glu Lys Asp Glu Leu 460 <br><br> &lt;210&gt; 34 &lt;211&gt; 825 &lt;212&gt; PRT <br><br> &lt;213&gt; Arcificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic <br><br> &lt;4 00&gt; 34 <br><br> Met <br><br> Arg <br><br> Val <br><br> Leu <br><br> Leu <br><br> Val <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Ala Gly <br><br> His <br><br> Trp <br><br> Tyr <br><br> Lys <br><br> His <br><br> Gin <br><br> Arg <br><br> Ala <br><br> Tyr <br><br> Gin <br><br> Phe <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Thr <br><br> Gly <br><br> Glu 35 <br><br> Asp <br><br> Asp <br><br> Phe <br><br> Gly <br><br> Lys 40 <br><br> Val <br><br> Ala val <br><br> Val <br><br> Lys 45 <br><br> Leu <br><br> Pro <br><br> Met <br><br> Asp <br><br> Leu 50 <br><br> Thr <br><br> Lys <br><br> Val <br><br> Gly <br><br> He 55 <br><br> lie <br><br> Val <br><br> Arg <br><br> Leu <br><br> Asn 60 <br><br> Glu <br><br> Trp <br><br> Gin <br><br> Ala <br><br> Lys <br><br> Asp <br><br> Val <br><br> Ala <br><br> Lys <br><br> Asp <br><br> Arg <br><br> Phe lie <br><br> Glu lie <br><br> Lys <br><br> Asp Gly <br><br> Lys <br><br> Ala <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Glu <br><br> Val <br><br> Trp lie <br><br> Leu 85 <br><br> Gin <br><br> Gly <br><br> Val <br><br> Glu <br><br> Glu 90 <br><br> lie <br><br> Phe <br><br> Tyr <br><br> Glu <br><br> Lys 95 <br><br> Pro <br><br> Asp <br><br> Thr <br><br> Ser <br><br> Pro <br><br> 100 <br><br> Arg lie <br><br> Phe <br><br> Phe <br><br> Ala 105 <br><br> Gin <br><br> Ala <br><br> Arg <br><br> Ser <br><br> Asn 110 <br><br> Lys <br><br> Val lie <br><br> Glu <br><br> Ala <br><br> 115 <br><br> Phe <br><br> Leu <br><br> Thr <br><br> Asn <br><br> Pro 120 <br><br> Val <br><br> Asp <br><br> Thr <br><br> Lys <br><br> Lys 125 <br><br> Lys <br><br> Glu <br><br> Leu <br><br> Phe <br><br> Lys 130 <br><br> Val <br><br> Thr <br><br> Val <br><br> Asp <br><br> Gly 135 <br><br> Lys <br><br> Glu lie <br><br> Pro <br><br> Val 140 <br><br> Ser <br><br> Arg <br><br> Val <br><br> Glu <br><br> Lys <br><br> Ala <br><br> Asp <br><br> Pro <br><br> Thr <br><br> Asp lie <br><br> Asp <br><br> Val <br><br> Thr <br><br> Asn <br><br> Tyr <br><br> Val <br><br> Arg lie val <br><br> 145 <br><br> 150 <br><br> 155 <br><br> 160 <br><br> Leu <br><br> Ser <br><br> Glu <br><br> Ser <br><br> Leu 165 <br><br> Lys <br><br> Glu <br><br> Glu <br><br> Asp <br><br> Leu 170 <br><br> Arg <br><br> Lys <br><br> Asp <br><br> Val <br><br> Glu 175 <br><br> Leu lie lie <br><br> Glu <br><br> Gly 180 <br><br> Tyr <br><br> Lys <br><br> Pro <br><br> Ala <br><br> Arg 185 <br><br> Val lie <br><br> Met <br><br> Met <br><br> Glu 190 <br><br> lie <br><br> Leu <br><br> Asp <br><br> Asp <br><br> Tyr <br><br> Tyr <br><br> Tyr <br><br> Asp Gly Glu Leu Gly Ala <br><br> Val <br><br> Tyr <br><br> Ser <br><br> Pro <br><br> Glu <br><br> 195 <br><br> 200 <br><br> 205 <br><br> Lys <br><br> Thr 210 <br><br> lie <br><br> Phe <br><br> Arg <br><br> Val <br><br> Trp 215 <br><br> Ser <br><br> Pro <br><br> Val <br><br> Ser <br><br> Lys 220 <br><br> Trp <br><br> Val <br><br> Lys <br><br> Val <br><br> Leu <br><br> Leu <br><br> Phe <br><br> Lys <br><br> Asn <br><br> Gly Glu Asp <br><br> Thr <br><br> Glu <br><br> Pro Tyr <br><br> Gin <br><br> Val <br><br> Val <br><br> Asn <br><br> 225 <br><br> 230 <br><br> 235 <br><br> 240 <br><br> Met <br><br> Glu <br><br> Tyr <br><br> Lys Gly <br><br> Asn Gly Val <br><br> Trp Glu <br><br> Ala <br><br> Val <br><br> Val <br><br> Glu <br><br> Gly Asp <br><br> 245 <br><br> 250 <br><br> 255 <br><br> 204 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Leu Asp Gly Val Phe Tyr Leu Tyr Gin Leu Glu Asn Tyr Gly Lys lie <br><br> 260 26 5 270 <br><br> Arg Thr Thr Val Asp Pro Tyr Ser Lys Ala Val Tyr Ala Asn Asn Gin <br><br> 275 280 285 <br><br> Glu Ser Ala Val Val Asn Leu Ala Arg Thr Asn Pro Glu Gly Trp Glu <br><br> 290 295 300 <br><br> Asn Asp Arg Gly Pro Lys lie Glu Gly Tyr Glu Asp Ala lie lie Tyr 305 310 315 320 <br><br> Glu lie His lie Ala Asp He Thr Gly Leu Glu Asn Ser Gly Val Lys <br><br> 325 330 ' 335 <br><br> Asn Lys Gly Leu Tyr Leu Gly Leu Thr Glu Glu Asn Thr Lys Ala Pro <br><br> 340 345 350 <br><br> Gly Gly Val Thr Thr Gly Leu Ser His Leu Val Glu Leu Gly Val Thr <br><br> 355 360 365 <br><br> His Val His lie Leu Pro Phe Phe Asp Phe Tyr Thr Gly Asp Glu Leu <br><br> 370 375 380 <br><br> Asp Lys Asp Phe Glu Lys Tyr Tyr Asn Trp Gly Tyr Asp Pro Tyr Leu 385 390 395 400 <br><br> Phe Met Val Pro Glu Gly Arg Tyr Ser Thr Asp Pro Lys Asn Pro His <br><br> 405 410 415 <br><br> Thr Arg He Arg Glu Val Lys Glu Met Val Lys Ala Leu His Lys His <br><br> 420 425 430 <br><br> Gly lie Gly Val lie Met Asp Met Val Phe Pro His Thr Tyr Gly lie <br><br> 435 440 445 <br><br> Gly Glu Leu Ser Ala Phe Asp Gin Thr Val Pro Tyr Tyr Phe Tyr Arg <br><br> 450 455 460 <br><br> lie Asp Lys Thr Gly Ala Tyr Leu Asn Glu Ser Gly Cys Gly Asn Val 465 470 475 480 <br><br> lie Ala Ser Glu Arg Pro Met Met Arg Lys Phe lie Val Asp Thr Val <br><br> 48S 490 495 <br><br> Thr Tyr Trp Val Lys Glu Tyr His lie Asp Gly Phe Arg Phe Asp Gin <br><br> 500 505 510 <br><br> Met Gly Leu He Asp Lys Lys Thr Met Leu Glu Val Glu Arg Ala Leu <br><br> 515 520 525 <br><br> His Lys lie Asp Pro Thr lie lie Leu Tyr Gly Glu Pro Trp Gly Gly <br><br> 530 535 540 <br><br> Trp Gly Ala Pro lie Arg Phe Gly Lys Ser Asp Val Ala Gly Thr His 545 550 555 560 <br><br> Val Ala Ala Phe Asn Asp Glu Phe Arg Asp Ala lie Arg Gly Ser Val <br><br> S65 570 575 <br><br> Phe Asn Pro Ser Val Lys Gly Phe Val Met Gly Gly Tyr Gly Lys Glu <br><br> 580 585 590 <br><br> Thr Lys lie Lys Arg Gly Val Val Gly Ser lie Asn Tyr Asp Gly Lys <br><br> 595 600 605 <br><br> Leu lie Lys Ser Phe Ala Leu Asp Pro Glu Glu Thr lie Asn Tyr Ala <br><br> 610 615 620 <br><br> Ala Cys His Asp Asn His Thr Leu Trp Asp Lys Asn Tyr Leu Ala Ala 625 630 635 640 <br><br> Lys Ala Asp Lys Lys Lys Glu Trp Thr Glu Glu Glu Leu Lys Asn Ala <br><br> 645 650 655 <br><br> Gin Lys Leu Ala Gly Ala lie Leu Leu Thr Ser Gin Gly Val Pro Phe <br><br> 660 665 670 <br><br> Leu His Gly Gly Gin Asp Phe Cys Arg Thr Thr Asn Phe Asn Asp Asn 675 680 685 <br><br> 205 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ser <br><br> Tyr 690 <br><br> Asn <br><br> Ala <br><br> Pro lie <br><br> Ser 695 <br><br> rle <br><br> Asn <br><br> Gly <br><br> Phe <br><br> Asp 700 <br><br> Tyr <br><br> Glu <br><br> Arg <br><br> Lys <br><br> Leu <br><br> Gin <br><br> Phe lie <br><br> Asp <br><br> Val <br><br> Phe <br><br> Asn <br><br> Tyr <br><br> His <br><br> Lys <br><br> Gly <br><br> Leu lie <br><br> Lys <br><br> Leu <br><br> 705 <br><br> 710 <br><br> 715 <br><br> 720 <br><br> Arg <br><br> Lys <br><br> Glu <br><br> His <br><br> Pro 72S <br><br> Ala <br><br> Phe <br><br> Arg <br><br> Leu <br><br> Lys 730 <br><br> Asn <br><br> Ala <br><br> Glu <br><br> Glu <br><br> He 735 <br><br> Lys <br><br> Lys <br><br> His <br><br> Leu <br><br> Glu <br><br> Phe <br><br> Leu <br><br> Pro Gly <br><br> Gly Arg <br><br> Arg lie <br><br> Val <br><br> Ala <br><br> Phe <br><br> Met <br><br> 740 <br><br> 745 <br><br> 750 <br><br> Leu <br><br> Lys <br><br> Asp <br><br> His <br><br> Ala <br><br> Gly <br><br> Gly Asp <br><br> Pro <br><br> Trp <br><br> Lys <br><br> Asp <br><br> He <br><br> Val <br><br> Val <br><br> He <br><br> 755 <br><br> 760 <br><br> 765 <br><br> Tyr <br><br> Asn 770 <br><br> Gly <br><br> Asn <br><br> Leu <br><br> Glu <br><br> Lys <br><br> 775 <br><br> Thr <br><br> Thr <br><br> Tyr <br><br> Lys <br><br> Leu 780 <br><br> Pro <br><br> Glu <br><br> Gly <br><br> Lys <br><br> Trp Asn <br><br> Val <br><br> Val <br><br> Val <br><br> Asn <br><br> Ser <br><br> Gin <br><br> Lys <br><br> Ala <br><br> Gly Thr Glu <br><br> Val <br><br> He <br><br> Glu <br><br> 785 <br><br> 790 <br><br> 795 <br><br> 800 <br><br> Thr <br><br> Val <br><br> Glu <br><br> Gly <br><br> Thr lie <br><br> Glu <br><br> Leu <br><br> Asp <br><br> Pro <br><br> Leu <br><br> Ser <br><br> Ala <br><br> Tyr <br><br> Val <br><br> Leu <br><br> 805 810 . 815 <br><br> Tyr Arg Glu Ser Glu Lys Asp Glu Leu 820 825 <br><br> &lt;210&gt; 35 e211&gt; 460 &lt;212 &gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 35 <br><br> Met <br><br> Arg val <br><br> Leu <br><br> Leu val <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Ser <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Ala <br><br> Thr <br><br> Ser <br><br> Ala <br><br> Lys <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Leu <br><br> Glu <br><br> Glu <br><br> Gly Gly Val lie <br><br> Met <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Gin <br><br> Ala <br><br> Phe <br><br> Tyr <br><br> Trp <br><br> Asp val <br><br> Pro <br><br> Ser <br><br> Gly Gly <br><br> He <br><br> Trp <br><br> Trp <br><br> Asp <br><br> Thr <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 11" <br><br> ft. -Vf* <br><br> *r-~ » <br><br> 50 <br><br> Gin <br><br> Lys <br><br> He <br><br> Pro <br><br> Glu 55 <br><br> Trp <br><br> Tyr <br><br> Asp <br><br> Ala <br><br> Gly 60 <br><br> lie <br><br> Ser <br><br> Ala lie <br><br> Trp lie <br><br> Pro <br><br> Pro <br><br> Ala <br><br> Ser <br><br> Lys <br><br> Gly <br><br> Met <br><br> Ser <br><br> Gly Gly <br><br> Tyr <br><br> Ser <br><br> Met <br><br> Gly <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Tyr <br><br> Asp 85 <br><br> Tyr <br><br> Phe <br><br> Asp <br><br> Leu <br><br> Gly 90 <br><br> Glu <br><br> Tyr <br><br> Tyr <br><br> Gin <br><br> Lys 95 <br><br> Gly <br><br> Thr val <br><br> Glu <br><br> Thr <br><br> 100 <br><br> Arg <br><br> Phe <br><br> Gly ser <br><br> Lys 105 <br><br> Gin <br><br> Glu <br><br> Leu lie <br><br> Asn <br><br> 110 <br><br> Met lie <br><br> Asn <br><br> Thr <br><br> Ala 115 <br><br> His <br><br> Ala <br><br> Tyr <br><br> Gly lie 120 <br><br> Lys <br><br> Val lie <br><br> Ala <br><br> Asp 125 <br><br> lie <br><br> Val lie <br><br> Asn <br><br> His <br><br> Arg <br><br> Ala <br><br> Gly <br><br> Gly <br><br> Asp <br><br> Leu <br><br> Glu <br><br> Trp <br><br> Asn <br><br> Pro <br><br> Phe <br><br> Val <br><br> Gly Asp <br><br> 130 <br><br> 135 <br><br> 140 <br><br> Tyr <br><br> Thr <br><br> Trp <br><br> Thr <br><br> ASP <br><br> Phe <br><br> Ser <br><br> Lys <br><br> Val <br><br> Ala <br><br> Ser Gly <br><br> Lys <br><br> Tyr <br><br> Thr <br><br> Ala <br><br> 145 <br><br> 150 <br><br> 155 <br><br> ISO <br><br> Asn <br><br> Tyr <br><br> Leu <br><br> Asp <br><br> Phe <br><br> 165 <br><br> His <br><br> Pro <br><br> Asn <br><br> Glu <br><br> Leu 170 <br><br> His <br><br> Ala <br><br> Gly <br><br> Asp <br><br> 175 <br><br> Gly <br><br> Thr <br><br> Phe <br><br> Gly <br><br> Gly Tyr <br><br> Pro <br><br> Asp lie <br><br> Cys <br><br> His <br><br> Asp <br><br> Lys <br><br> Ser Trp <br><br> Asp <br><br> Gin <br><br> 180 <br><br> 185 <br><br> 190 <br><br> Tyr <br><br> Trp <br><br> Leu <br><br> Trp Ala <br><br> Ser <br><br> Gin <br><br> Glu <br><br> Ser <br><br> Tyr <br><br> Ala <br><br> Ala <br><br> Tyr Leu Arg <br><br> Ser <br><br> 206 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 195 200 205 <br><br> lie Gly lie Asp Ala Trp Arg Phe Asp Tyr Val Lys Gly Tyr Gly Ala <br><br> 210 215 220 <br><br> Trp Val Val Lys Asp Trp Leu Asn Trp Trp Gly Gly Trp Ala Val Gly 225 230 235 240 <br><br> Glu Tyr Trp Asp Thr Asn Val Asp Ala Leu Leu Asn Trp Ala Tyr Ser <br><br> 245 250 255 <br><br> Ser Gly Ala Lys Val Phe Asp Phe Pro Leu Tyr Tyr Lys Met Asp Ala <br><br> 260 265 270 <br><br> Ala Phe Asp Asn Lys Asn lie Pro Ala Leu Val Glu Ala Leu Lys Asn <br><br> 275 280 285 <br><br> Gly Gly Thr Val Val Ser Arg Asp Pro Phe Lys Ala Val Thr Phe Val <br><br> 290 295 300 <br><br> Ala Asn His Asp Thr Asp lie lie Trp Asn Lys Tyr Pro Ala Tyr Ala 305 310 315 320 <br><br> Phe lie Leu Thr Tyr Glu Gly Gin Pro Thr He Phe Tyr Arg Asp Tyr <br><br> 325 330 335 <br><br> Glu Glu Trp Leu Asn Lys Asp Lys Leu Lys Asn Leu lie Trp lie His <br><br> 340 345 350 <br><br> Asp Asn Leu Ala Gly Gly Ser Thr Ser lie Val Tyr Tyr Asp Ser Asp <br><br> 355 360 365 <br><br> Glu Met lie Phe Val Arg Asn Gly Tyr Gly Ser Lys Pro Gly Leu He <br><br> 370 375 380 <br><br> Thr Tyr He Asn Leu Gly Ser Ser Lys Val Gly Arg Trp Val Tyr Val 385 390 395 400 <br><br> Pro Lys Phe Ala Gly Ala Cys He His Glu Tyr Thr Gly Asn Leu Gly <br><br> 405 410 415 <br><br> Gly Trp Val Asp Lys Tyr Val Tyr Ser Ser Gly Trp Val Tyr Leu Glu <br><br> 420 425 430 <br><br> Ala Pro Ala Tyr Asp Pro Ala Asn Gly Gin Tyr Gly Tyr Ser Val Trp <br><br> 435 440 445 <br><br> Ser Tyr Cys Gly Val Gly Ser Glu Lys Asp Glu Leu 450 455 460 <br><br> &lt;210&gt; 36 &lt;211&gt; 718 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 36 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> 15 10 15 <br><br> Ala Thr Ser Met Glu Thr lie Lys lie Tyr Glu Asn Lys Gly Val Tyr <br><br> 20 25 30 <br><br> Lys Val Val lie Gly Glu Pro Phe Pro Pro lie Glu Phe Pro Leu Glu <br><br> 35 40 45 <br><br> Gin Lys lie Ser Ser Asn Lys Ser Leu Ser Glu Leu Gly Leu Thr lie <br><br> 50 55 60 <br><br> Val Gin Gin Gly Asn Lys Val lie Val Glu Lys Ser Leu Asp Leu Lys £5 70 75 80 <br><br> 207 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Glu His lie lie Gly Leu Gly Glu Lys Ala Phe Glu Leu Asp Arg Lys <br><br> 85 90 95 <br><br> Arg Lys Arg Tyr Val Met Tyr Asn Val Asp Ala Gly Ala Tyr Lys Lys <br><br> 100 105 110 <br><br> Tyr Gin Asp Pro Leu Tyr Val Ser He Pro Leu Phe lie Ser val Lys <br><br> 11S 120 125 <br><br> Asp Gly Val Ala Thr Gly Tyr Phe Phe Asn Ser Ala Ser Lys Val He <br><br> 130 135 140 <br><br> Phe Asp Val Gly Leu Glu Glu Tyr Asp Lys Val lie Val Thr lie Pro 145 150 155 160 <br><br> Glu Asp Ser Val Glu Phe Tyr Val lie Glu Gly Pro Arg lie Glu Asp <br><br> 165 170 175 <br><br> Val Leu Glu Lys Tyr Thr Glu Leu Thr Gly Lys Pro Phe Leu Pro Pro <br><br> 180 185 190 <br><br> Met Trp Ala Phe Gly Tyr Met lie Ser Arg Tyr Ser Tyr Tyr Pro Gin <br><br> 195 200 205 <br><br> Asp Lys Val Val Glu Leu Val Asp lie Met Gin Lys Glu Gly Phe Arg <br><br> 210 215 220 <br><br> Val Ala Gly Val Phe Leu Asp lie His Tyr Met Asp Ser Tyr Lys Leu 225 230 235 240 <br><br> Phe Thr Trp His Pro Tyr Arg Phe Pro Glu Pro Lys Lys Leu lie Asp <br><br> 245 250 255 <br><br> Glu Leu His Lys Arg Asn Val Lys Leu lie Thr lie Val Asp His Gly <br><br> 260 265 270 <br><br> lie Arg Val Asp Gin Asn Tyr Ser Pro Phe Leu Ser Gly Met Gly Lys <br><br> 275 280 265 <br><br> Phe Cys Glu lie Glu Ser Gly Glu Leu Phe Val Gly Lys Met Trp Pro <br><br> 290 295 300 <br><br> Gly Thr Thr Val Tyr Pro Asp Phe Phe Arg Glu Asp Thr Arg Glu Trp 305 310 315 320 <br><br> Trp Ala Gly Leu lie Ser Glu Trp Leu Ser Gin Gly Val Asp Gly lie <br><br> 325 330 335 <br><br> Trp Leu Asp Met Asn Glu Pro Thr Asp Phe Ser Arg Ala lie Glu lie <br><br> 340 345 350 <br><br> Arg Asp Val Leu Ser Ser Leu Pro Val Gin Phe Arg Asp Asp Arg Leu 355 360 365 <br><br> 1 »nV- _ FT* I- — nL - — — "K — * l »».* _ m. * « • <br><br> yaii iiu rite c t. w e\s»u vox vai nxo a ^ i iicu stj. y \j±y Ijy a rt_L y <br><br> 370 375 380 <br><br> Val Lys His Glu Lys Val Arg Asn Ala Tyr Pro Leu Tyr Glu Ala Met 385 390 395 400 <br><br> Ala Thr Phe Lys Gly Phe Arg Thr Ser His Arg Asn Glu lie Phe lie <br><br> 405 410 415 <br><br> Leu Ser Arg Ala Gly Tyr Ala Gly lie Gin Arg Tyr Ala Phe lie Trp <br><br> 420 425 430 <br><br> Thr Gly Asp Asn Thr Pro Ser Trp Asp Asp Leu Lys Leu Gin Leu Gin <br><br> 435 440 445 <br><br> Leu Val Leu Gly Leu Ser lie Ser Gly Val Pro Phe Val Gly Cys Asp <br><br> 450 455 460 <br><br> lie Gly Gly Phe Gin Gly Arg Asn Phe Ala Glu lie Asp Asn Ser Met 465 470 475 480 <br><br> Asp Leu Leu Val Lys Tyr Tyr Ala Leu Ala Leu Phe Phe Pro Phe Tyr <br><br> 485 490 495 <br><br> Arg Ser His Lys Ala Thr Asp Gly lie Asp Thr Glu Pro Val Phe Leu 500 505 510 <br><br> 208 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Pro <br><br> Asp <br><br> Tyr <br><br> Tyr <br><br> Lys <br><br> Glu <br><br> Lys <br><br> Val <br><br> Lys <br><br> Glu lie <br><br> Val <br><br> Glu <br><br> Leu <br><br> Arg Tyr <br><br> 515 <br><br> 520 <br><br> 525 <br><br> Lys <br><br> Phe <br><br> Leu <br><br> Pro <br><br> Tyr lie <br><br> Tyr <br><br> Ser <br><br> Leu <br><br> Ala <br><br> Leu <br><br> Glu <br><br> Ala <br><br> Ser <br><br> Glu <br><br> Lys <br><br> 530 <br><br> 535 <br><br> 540 <br><br> Gly His <br><br> Pro <br><br> Val lie <br><br> Arg <br><br> Pro <br><br> Leu <br><br> Phe <br><br> Tyr <br><br> Glu <br><br> Phe <br><br> Gin <br><br> Asp <br><br> Asp <br><br> Asp <br><br> 545 <br><br> 550 <br><br> 555 <br><br> 560 <br><br> Asp <br><br> Met <br><br> Tyr <br><br> Arg lie <br><br> Glu <br><br> Asp <br><br> Glu <br><br> Tyr <br><br> Met <br><br> Val <br><br> Gly <br><br> Lys <br><br> Tyr <br><br> Leu <br><br> Leu <br><br> 565 <br><br> 570 <br><br> 575 <br><br> Tyr <br><br> Ala <br><br> Pro lie <br><br> Val <br><br> Ser <br><br> Lys <br><br> Glu <br><br> Glu- <br><br> Ser <br><br> Arg <br><br> Leu val <br><br> Thr <br><br> Leu <br><br> Pro <br><br> 560 <br><br> 565 <br><br> 590 <br><br> Arg Gly <br><br> Lys <br><br> Trp <br><br> Tyr <br><br> Asn <br><br> Tyr <br><br> Trp <br><br> Asn <br><br> Gly <br><br> Glu lie lie <br><br> Asn Gly <br><br> Lys <br><br> 595 <br><br> 600 <br><br> 605 <br><br> Ser <br><br> Val <br><br> Val <br><br> Lys <br><br> Ser <br><br> Thr <br><br> His <br><br> Glu <br><br> Leu <br><br> Pro lie <br><br> Tyr <br><br> Leu <br><br> Arg <br><br> Glu <br><br> Gly <br><br> 610 <br><br> 615 <br><br> 620 <br><br> Ser lie lie <br><br> Pro <br><br> Leu <br><br> Glu <br><br> Gly <br><br> Asp <br><br> Glu <br><br> Leu lie <br><br> Val <br><br> Tyr <br><br> Gly Glu <br><br> Thr <br><br> 625 <br><br> 630 <br><br> 635 <br><br> 640 <br><br> Ser <br><br> Phe <br><br> Lys <br><br> Arg <br><br> Tyr <br><br> Asp <br><br> Asn <br><br> Ala <br><br> Glu lie <br><br> Thr <br><br> Ser <br><br> Ser <br><br> Ser <br><br> Asn <br><br> Glu <br><br> 645 <br><br> 65 0 <br><br> 655 <br><br> lie <br><br> Lys <br><br> Phe <br><br> Ser <br><br> Arg <br><br> Glu lie <br><br> Tyr <br><br> Val <br><br> Ser <br><br> Lys <br><br> Leu <br><br> Thr lie <br><br> Thr <br><br> Ser <br><br> 650 <br><br> 665 <br><br> 670 <br><br> Glu <br><br> Lys <br><br> Pro <br><br> Val <br><br> Ser <br><br> Lys lie lie <br><br> Val <br><br> Asp <br><br> Asp <br><br> Ser <br><br> Lys <br><br> Glu lie <br><br> Gin <br><br> 675 <br><br> 680 <br><br> 6B5 <br><br> Val. <br><br> Glu <br><br> Lys <br><br> Thr <br><br> Met <br><br> Gin <br><br> Asn <br><br> Thr <br><br> Tyr val <br><br> Ala <br><br> Lys lie <br><br> Asn <br><br> Gin <br><br> Lys <br><br> 690 <br><br> 695 <br><br> 700 <br><br> lie <br><br> Arg <br><br> Gly <br><br> Lys lie <br><br> Asn <br><br> Leu <br><br> Glu <br><br> Ser <br><br> Glu <br><br> Lys <br><br> Asp <br><br> Glu <br><br> Leu <br><br> 705 <br><br> 710 <br><br> 715 <br><br> &lt;210&gt; 37 &lt;211&gt; 1434 &lt;212&gt; DNA <br><br> &lt;213&gt; Thermotoga maritima &lt;4 00&gt; 37 <br><br> atgaaagaaa ccgctgctgc taaattcgaa accctggtgc cacgcggttc catggccgag gagggcaagg agtccaccaa cccgctcgcc gacggcaagc cgctcaagga ccacctcaag aacgagggcc gcgacccgtt cggcgacccg gacccgatgg acaaggcctt cgcccgcgtg aacatcgagt acttctgctt ccacgaccgc gagaccaaca agatcctcga caaggtggtg aacgtgaagc tcctctgggg caccgccaac gccgccacca cctgctccgc cgacgtgttc ctggagatca ccaaggagct gggcggcgag tacgagaccc tcctcaacac cgacctcggc cgcatggccg tggagtacgc caagaagatc aagccgaagg agccgaccaa gcaccagtac ctcaagaacc acggcctcga cgagtacttc ctcgccggcc acaccttcca gcacgagctg tccatcgacg ccaaccaggg cgacctcctc aacatctacg acaccaccct cgccatgtac ggcggcctca acttcgacgc caaggtgcgc atcggccaca tcgccggcat ggacaccttc cgccagcaca tggacagccc agatctgggt 60 ttcttcccgg agatcccgaa gatccagttc 120 tcccgccccc acgacccgaa cgaggtgatc 160 ttctccgtgg ccttctggca caccttcgtg 240 accgccgagc gcccgtggaa ccgcttctcc 300 gacgccctct tcgagttctg cgagaagctc 360 gacatcgccc cggagggcaa gaccctccgc 42 0 gagcgcatca aggagcgcat gaaggactcc 480 ctcttctccc acccgcgcta catgcacggc 540 gcctacgccg ccgcccaggt gaagaaggcc 600 ggctacgtgt tctggggcgg ccgcgagggc 660 ctggagctgg agaacctcgc ccgcttcctc 720 ggcttcaccg gccagttcct catcgagccg 780 gacttcgacg tggccaccgc ctacgccttc 840 aagttcaaca tcgaggccaa ccacgccacc 900 cgcatggccc gcatcctcgg caagctcggc 960 ctcggctggg acaccgacca gttcccgacc 1020 gaggtgatca aggccggcgg cttcaccaag 1080 cgcgcctcct acaaggtgga ggacctcttc 114 0 gccctcggct tcaagatcgc ctacaagctc 1200 <br><br> 209 <br><br> WO 2005/096804 <br><br> PCT/U S2004/Q07182 <br><br> gccaaggacg gcgtgttcga caagttcatc gaggagaagt accgctcctt caaggagggc 1260 <br><br> atcggcaagg agatcgtgga gggcaagacc gacttcgaga agctggagga gtacatcatc 1320 <br><br> gacaaggagg acatcgagct gccgtccggc aagcaggagt acctggagtc cctcctcaac 13 80 <br><br> tcctacatcg tgaagaccat cgccgagctg cgctccgaga aggacgagct gtga 1434 <br><br> &lt;210&gt; 38 &lt;211&gt; 477 &lt;212&gt; PRT <br><br> &lt;213 &gt; Thermotoga maritima &lt;400&gt; 38 <br><br> Met Lye Glu Thr Ala Ala Ala Lys Phe Glu Arg Gin His Met Asp Ser <br><br> 1 5 10 15 <br><br> Pro Asp Leu Gly Thr Leu Val Pro Arg Gly Ser Met Ala Glu Phe Phe <br><br> 20 25 30 <br><br> Pro Glu lie Pro Lys lie Gin Phe Glu Gly Lys Glu Ser Thr Asn Pro <br><br> 35 40 45 <br><br> Leu Ala Phe Arg Phe Tyr Asp Pro Asn Glu val lie Asp Gly Lys Pro <br><br> 50 55 60 <br><br> Leu Lys Asp His Leu Lys Phe Ser Val Ala Phe Trp His Thr Phe Val 65 70 75 80 <br><br> Asn Glu Gly Arg Asp Pro Phe Gly Asp Pro Thr Ala Glu Arg Pro Trp <br><br> 85 90 95 <br><br> Asn Arg Phe Ser Asp Pro Met Asp Lys Ala Phe Ala Arg Val Asp Ala <br><br> 100 105 110 <br><br> Leu Phe Glu Phe Cys Glu Lys Leu Asn lie Glu Tyr Phe Cys Phe His <br><br> 115 120 125 <br><br> Asp Arg Asp He Ala Pro Glu Gly Lys Thr Leu Arg Glu Thr Asn Lys <br><br> 130 135 140 <br><br> lie Leu Asp Lys Val Val Glu Arg lie Lys Glu Arg Met Lys Asp Ser 145 150 155 160 <br><br> Asn Val Lys Leu Leu Trp Gly Thr Ala Asn Leu Phe Ser His Pro Arg <br><br> 165 170 175 <br><br> Tyr Met His Gly Ala Ala Thr Thr Cys Ser Ala Asp Val Phe Ala Tyr <br><br> 180 185 190 <br><br> Ala Ala Ala Gin Val Lys Lys Ala Leu Glu lie Thr Lys Glu Leu Gly i9S 200 205 <br><br> Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly Tyr Glu Thr Leu <br><br> 210 215 220 <br><br> Leu Asn Thr Asp Leu Gly Leu Glu Leu Glu Asn Leu Ala Arg Phe Leu 225 230 235 240 <br><br> Arg Met Ala Val Glu Tyr Ala Lys Lys lie Gly phe Thr Gly Gin Phe <br><br> 245 250 255 <br><br> Leu lie Glu Pro Lys Pro Lys Glu Pro Thr Lys His Gin Tyr Asp Phe <br><br> 260 265 270 <br><br> Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Asn His Gly Leu Asp Glu <br><br> 275 280 285 <br><br> Tyr Phe Lys Phe Asn lie Glu Ala Asn His Ala Thr Leu Ala Gly His <br><br> 290 295 300 <br><br> Thr Phe Gin His Glu Leu Arg Met Ala Arg lie Leu Gly Lys Leu Gly 305 310 315 320 <br><br> Ser lie Asp Ala Asn Gin Gly Asp Leu Leu Leu Gly Trp Asp Thr Asp <br><br> 325 330 335 <br><br> Gin Phe Pro Thr Asn He Tyr Asp Thr Thr Leu Ala Met Tyr Glu Val <br><br> 210 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 340 <br><br> 345 <br><br> 350 <br><br> lie <br><br> Lys <br><br> Ala <br><br> Gly Gly <br><br> Phe <br><br> Thr <br><br> Lys <br><br> Gly <br><br> Gly <br><br> Leu <br><br> Asn <br><br> Phe <br><br> Asp <br><br> Ala <br><br> Lys <br><br> 355 <br><br> 360 <br><br> 365 <br><br> Val <br><br> Arg <br><br> Arg <br><br> Ala Ser <br><br> Tyr <br><br> Lys <br><br> Val <br><br> Glu <br><br> Asp <br><br> Leu <br><br> Phe lie <br><br> Gly <br><br> His lie <br><br> 370 <br><br> 375 <br><br> 380 <br><br> Ala <br><br> Gly <br><br> Met <br><br> Asp Thr <br><br> Phe <br><br> Ala <br><br> Leu <br><br> Gly <br><br> Phe <br><br> Lys <br><br> He <br><br> Ala <br><br> Tyr <br><br> Lys <br><br> Leu <br><br> 385 <br><br> 390 <br><br> 395 <br><br> 400 <br><br> Ala <br><br> Lys <br><br> Asp <br><br> Gly Val <br><br> Phe <br><br> Asp <br><br> Lys <br><br> Phe lie <br><br> Glu <br><br> Glu <br><br> Lys <br><br> Tyr <br><br> Arg <br><br> Ser <br><br> 405 <br><br> 410 <br><br> 415 <br><br> Phe <br><br> Lys <br><br> Glu <br><br> Gly He <br><br> Gly <br><br> Lys <br><br> Glu lie <br><br> Val <br><br> Glu <br><br> Gly <br><br> Lys <br><br> Thr <br><br> Asp <br><br> Phe <br><br> 420 <br><br> 425 <br><br> 430 <br><br> Glu <br><br> Lys <br><br> Leu <br><br> Glu Glu <br><br> Tyr lie lie <br><br> Asp <br><br> Lys <br><br> Glu <br><br> Asp lie <br><br> Glu <br><br> Leu <br><br> Pro <br><br> 435 <br><br> 440 <br><br> 445 <br><br> Ser <br><br> Gly <br><br> Lys <br><br> Gin Glu <br><br> Tyr <br><br> Leu <br><br> Glu <br><br> Ser <br><br> Leu <br><br> Leu <br><br> Asn <br><br> Ser <br><br> Tyr <br><br> He <br><br> Val <br><br> 450 <br><br> 455 <br><br> 460 <br><br> Lys <br><br> Thr lie <br><br> Ala Glu <br><br> Leu <br><br> Arg <br><br> Ser <br><br> Glu <br><br> Lys <br><br> Asp <br><br> Glu <br><br> Leu <br><br> 465 <br><br> 470 <br><br> 475 <br><br> c210&gt; 39 &lt;211&gt; 1434 &lt;212&gt; DNA <br><br> &lt;213&gt; Thermotoga neapolitana &lt;400&gt; 39 <br><br> atgaaagaaa ccgctgctgc taaattcgaa cgccagcaca tggacagcco agatctgggt 60 accctggtgc cacgcggttc catggccgag ttcttcccgg agatcccgaa ggtgcagttc 120 gagggcaagg agtccaccaa cccgctcgcc ttcaagttct acgacccgga ggagatcatc 180 gacggcaagc cgctcaagga ccacctcaag ttctccgtgg ccttctggca caccttcgtg 240 aacgagggcc gcgacccgtt cggcgacccg accgccgacc gcccgtggaa ccgctacacc 300 gacccgatgg acaaggcctt cgcccgcgtg gacgccctct tcgagttctg cgagaagctc 360 aacatcgagt acttctgctt ccacgaccgc gacatcgccc cggagggcaa gaccctccgc 420 gagaccaaca agatcctcga caaggtggtg gagcgcatca aggagcgcat gaaggactcc 4 80 aacgtgaagc tcctctgggg caccgccaac ctcttctccc acccgcgcta catgcacggc 540 gccgccacca cctgctccgc cgacgtgttc gcctacgccg ccgcccaggt gaagaaggcc 600 ctggaqatca ccaaggagct gggcggcgag ggctacgtgt tctggggcgg ccgcgagggc 660 tacgagaccc tcctcaacac cgacctcggc ttcgagctgg agaacctcgc ccgcttcccc viO cgcatggccg tggactacgc caagcgcatc ggcttcaccg gccagttcct catcgagccg 700 aagccgaagg agccgaccaa gcaccagtac gacttcgacg tggccaccgc ctacgccttc 84 0 ctcaagtccc acggcctcga cgagtacttc aagttcaaca tcgaggccaa ccacgccacc 900 ctcgccggcc acaccttcca gcacgagctg cgcatggccc gcatcctcgg caagctcggc 960 tccatcgacg ccaaccaggg cgacctcctc ctcggctggg acaccgacca gttcccgacc 1020 aacgtgtacg acaccaccct cgccatgtac gaggtgatca aggccggcgg cttcaccaag 1080 ggcggcctca acttcgacgc caaggtgcgc cgcgcctcct acaaggtgga ggacctcttc 1140 atcggccaca tcgccggcat ggacaccttc gccctcggct tcaaggtggc ctacaagctc 1200 gtgaaggacg gcgtgctcga caagttcatc gaggagaagt accgctcctt ccgcgagggc 1260 atcggccgcg acatcgtgga gggcaaggtg gacttcgaga agctggagga gtacatcatc 1320 gacaaggaga ccatcgagct gccgtccggc aagcaggagt acctggagtc cctcatcaac 13 80 tcctacatcg tgaagaccat cctggagctg cgctccgaga aggacgagct gtga 1434 <br><br> &lt;210&gt; 40 &lt;211&gt; 477 &lt;212&gt; PRT <br><br> &lt;213&gt; Thermotoga neapolitana <br><br> 211 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;4QQ&gt; 40 <br><br> Met Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gin His Met Asp Ser <br><br> IS 10 15 <br><br> Pro Asp Leu Gly Thr Leu Val Pro Arg Gly Ser Met Ala Glu Phe Phe <br><br> 20 25 30 <br><br> Pro Glu lie Pro Lys Val Gin Phe Glu Gly Lys Glu Ser Thr Asn Pro <br><br> 35 40 45 <br><br> Leu Ala Phe Lys Phe Tyr Asp Pro Glu Glu lie He Asp Gly Lys Pro <br><br> 50 55 60 <br><br> Leu Lys Asp His Leu Lys Phe Ser Val Ala Phe Trp His Thr Phe Val 65 70 75 80 <br><br> Asn Glu Gly Arg Asp Pro Phe Gly Asp Pro Thr Ala Asp Arg Pro Trp <br><br> 8S 90 95 <br><br> Asn Arg Tyr Thr Asp Pro Met Asp Lys Ala Phe Ala Arg Val Asp Ala <br><br> 100 105 110. <br><br> Leu Phe Glu Phe Cys Glu Lys Leu Asn lie Glu Tyr Phe Cys Phe His <br><br> 115 120 125 <br><br> Asp Arg Asp lie Ala Pro Glu Gly Lys Thr Leu Arg Glu Thr Asn Lys <br><br> 130 135 140 <br><br> lie Leu Asp Lys Val Val Glu Arg lie Lys Glu Arg Met Lys Asp Ser 145 150 155 160 <br><br> Asn Val Lys Leu Leu Trp Gly Thr Ala Asn Leu Phe Ser His Pro Arg <br><br> 165 170 175 <br><br> Tyr Met His Gly Ala Ala Thr Thr Cys Ser Ala Asp Val Phe Ala Tyr <br><br> 180 185 190 <br><br> Ala Ala Ala Gin Val Lys Lys Ala Leu Glu lie Thr Lys Glu Leu Gly <br><br> 195 200 205 <br><br> Gly Glu Gly Tyr Val Phe Trp Gly Gly Arg Glu Gly Tyr Glu Thr Leu <br><br> 210 215 220 <br><br> Leu Asn Thr Asp Leu Gly Phe Glu Leu Glu Asn Leu Ala Arg Phe Leu 225 230 235 240 <br><br> Arg Met Ala Val Asp Tyr Ala Lys Arg lie Gly Phe Thr Gly Gin Phe <br><br> 245 250 255 <br><br> Leu lie Glu Pro Lys Pro Lys Glu Pro Thr Lys His Gin Tyr Asp Phe <br><br> 260 265 270 <br><br> Asp Val Ala Thr Ala Tyr Ala Phe Leu Lys Ser His Gly Leu Asp Glu <br><br> 275 280 285 <br><br> Tyr Phe Lys Phe Asn He Glu Ala Asn His Ala Thr Leu Ala Gly His <br><br> 290 295 300 <br><br> Thr Phe Gin His Glu Leu Arg Met Ala Arg lie Leu Gly Lys Leu Gly 305 310 315 320 <br><br> Ser lie Asp Ala Asn Gin Gly Asp Leu Leu Leu Gly Trp Asp Thr Asp <br><br> 325 330 335 <br><br> Gin Phe Pro Thr Asn Val Tyr Asp Thr Thr Leu Ala Met Tyr Glu Val <br><br> 340 345 350 <br><br> lie Lys Ala Gly Gly Phe Thr Lys Gly Gly Leu Asn Phe Asp Ala Lys <br><br> 355 360 365 <br><br> Val Arg Arg Ala Ser Tyr Lys Val Glu Asp Leu Phe He Gly His lie <br><br> 370 375 360 <br><br> Ala Gly Met Asp Thr Phe Ala Leu Gly Phe Lys Val Ala Tyr Lys Leu 385 390 395 400 <br><br> Val Lys Asp Gly val Leu Asp Lys Phe lie Glu Glu Lys Tyr Arg Ser 405 410 415 <br><br> 212 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Phe <br><br> Arg <br><br> Glu <br><br> Gly lie <br><br> Gly <br><br> Arg <br><br> Asp lie <br><br> Val <br><br> Glu Gly <br><br> Lys <br><br> Val <br><br> Asp <br><br> Phe <br><br> 420 <br><br> 425 <br><br> 430 <br><br> Glu <br><br> Lys <br><br> Leu <br><br> 435 <br><br> Glu <br><br> Glu <br><br> Tyr lie lie 440 <br><br> Asp <br><br> Lys <br><br> Glu <br><br> Thr lie 445 <br><br> Glu <br><br> Leu <br><br> Pro <br><br> Ser <br><br> Gly 450 <br><br> Lys <br><br> Gin <br><br> Glu <br><br> Tyr <br><br> Leu 455 <br><br> Glu <br><br> Ser <br><br> Leu lie <br><br> Asn 460 <br><br> Ser <br><br> Tyr lie <br><br> Val <br><br> Lys <br><br> Thr lie <br><br> Leu <br><br> Glu <br><br> Leu <br><br> Arg <br><br> Ser <br><br> Glu <br><br> Lys <br><br> Asp <br><br> Glu <br><br> Leu <br><br> 465 <br><br> 470 <br><br> 475 <br><br> e210&gt; 41 c211&gt; 1435 &lt;212&gt; DNA <br><br> e213&gt; Thermotoga maritima c400&gt; 41 <br><br> atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgccgcg cggcagccat SO atggctagca tgactggtgg acagcaaatg ggtcggatcc ccatggccga gttcttcccg 120 gagatcccga agatccagtt cgagggcaag gagtccacca acccgctcgc cttccgcttc 180 tacgacccga acgaggtgat cgacggcaag ccgctcaagg accacctcaa gttctccgtg 24 0 gccttctggc acaccttcgt gaacgagggc cgcgacccgt tcggcgaccc gaccgccgag 300 cgcccgcgga accgcttctc cgacccgatg gacaaggcct tcgcccgcgt ggacgccctc 350 ttcgagttct gcgagaagct caacatcgag tacttctgct tccacgaccg cgacatcccc 420 cggagggcaa gaccctccgc gagaccaaca agatcctcga caaggtggtg gagcgcatca 480 aggagcgcat gaaggactcc aacgtgaagc tcctctgggg caccgcoaac ctcttctccc 540 acccgcgcta catgcacggc gccgccacca cctgctccgc cgacgtgttc gcctacgccg 600 ccgcccaggt gaagaaggcc ctggagatca ccaaggagct gggcggcgag ggctacgtgt 660 tctggggcgg ccgcgagggc tacgagaccc tcctcaacac cgacctcggc ctggagctgg 720 agaacctcgc CCgCttcctc cgcatggccg tggagtacgc caagaagatc ggcttcaccg 780 gccagttcct catcgagccg aagccgaagg agccgaccaa gcaccagtac gcttcgacgt 84.0 ggccaccgcc tacgccttcc tcaagaacca cggcctcgac gagtacttca agttcaacat 900 cgaggccaac cacgccaccc tcgccggcca caccttccag cacgagctgc gcatggcccg 960 catcctcggc aagctcggct ccatcgacgc caaccagggc gacctcctcc tcggctggga 1020 caccgaccag ttcccgacca acatctacga caccaccctc gccatgtacg aggtgatcaa 1080 ggccggcggc ttcaccaagg gcggcctcaa cttcgacgcc aaggtgcgcc gcgcctccta 1140 caaggtggag gacctcttca tcggccacat cgccggcatg gacaccttcg ccctcggctt 1200 caagatcgcc tacaagctcg ccaaggacgg cgtgttcgac aagcccaccg aggagaagta 1260 ccgctccttc aaggagggca tcggcaagga gatcgtggag ggcaagaccg acttcgagaa 1320 gctggaggag tacatcatcg acaaggagga catcgagctg ccgtccggca agcaggagta 1380 cctggagtcc ctcctcaact cctacatcgt gaagaccatc gccgagctgc gctga 1435 <br><br> &lt;210&gt; 42 &lt;211&gt; 478 &lt;212&gt; PRT <br><br> &lt;213&gt; Thermotoga maritima &lt;400&gt; 42 <br><br> Met <br><br> Gly Ser <br><br> Ser <br><br> His <br><br> His <br><br> His <br><br> His <br><br> His <br><br> His <br><br> Ser Ser <br><br> Gly <br><br> Leu <br><br> Val <br><br> Pro <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Arg <br><br> Gly Ser <br><br> His <br><br> Met <br><br> Ala <br><br> Ser <br><br> Met <br><br> Thr <br><br> Gly <br><br> Gly Gin <br><br> Gin <br><br> Met <br><br> Gly <br><br> Arg <br><br> 20 <br><br> 25 <br><br> 30 <br><br> lie <br><br> Pro Met <br><br> Ala <br><br> Glu <br><br> Phe <br><br> Phe <br><br> Pro <br><br> Glu <br><br> He <br><br> Pro Lys lie <br><br> Gin <br><br> Phe <br><br> Glu <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Gly <br><br> Lys Glu <br><br> Ser <br><br> Thr <br><br> Asn <br><br> Pro <br><br> Leu <br><br> Ala <br><br> Phe <br><br> Arg Phe <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Asn <br><br> 213 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 50 55 60 <br><br> Glu Val lie Asp Gly Lys Pro Leu Lys Asp His Leu Lys Phe Ser Val 65 70 75 80 <br><br> Ala Phe Trp His Thr Phe Val Asn Glu Gly Arg Asp Pro Phe Gly Asp <br><br> 85 90 95 <br><br> Pro Thr Ala Glu Arg Pro Trp Asn Arg Phe Ser Asp Pro Met Asp Lys <br><br> 100 105 110 <br><br> Ala Phe Ala Arg Val Asp Ala Leu Phe Glu Phe Cys Glu Lys Leu Asn <br><br> 115 120 125 <br><br> lie Glu Tyr Phe Cys Phe His Asp Arg Asp lie Ala Pro Glu Gly Lys <br><br> 130 135 140 <br><br> Thr Leu Arg Glu Thr Asn Lys lie Leu Asp Lys Val Val Glu Arg lie 145 150 155 160 <br><br> Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr Ala <br><br> 165 170 175 <br><br> Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr Cys <br><br> 180 185 190 <br><br> Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala Leu <br><br> 195 200 205 <br><br> Glu He Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly <br><br> 210 215 220 <br><br> Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Leu Glu Leu 225 230 235 240 <br><br> Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Glu Tyr Ala Lys Lys <br><br> 245 250 255 <br><br> lie Gly Phe Thr Gly Gin Phe Leu lie Glu Pro Lys Pro Lys Glu Pro <br><br> 260 265 270 <br><br> Thr Lys His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu <br><br> 275 280 285 <br><br> Lys Asn His Gly Leu Asp Glu Tyr Phe Lys Phe Asn He Glu Ala Asn <br><br> 290 295 300 <br><br> His Ala Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met Ala 305 310 315 320 <br><br> Arg lie Leu Gly Lys Leu Gly Ser lie Asp Ala Asn Gin Gly Asp Leu <br><br> 325 330 335 <br><br> Leu Leu Gly Trp Asp Thr Asp Gin Phe Pro Thr Asn lie Tyr Asp Thr <br><br> 340 345 350 <br><br> Thr Leu Ala Met Tyr Glu Val lie Lys Ala Gly Gly Phe Thr Lys Gly <br><br> 355 3 60 365. <br><br> Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys Val Glu <br><br> 370 375 380 <br><br> Asp Leu Phe lie Gly His lie Ala Gly Met Asp Thr Phe Ala Leu Gly 385 390 395 400 <br><br> Phe Lys lie Ala Tyr Lys Leu Ala Lys Asp Gly Val Phe Asp Lys Phe <br><br> 405 410 415 <br><br> lie Glu Glu Lys Tyr Arg Ser Phe Lys Glu Gly lie Gly Lys Glu He <br><br> 420 425 430 <br><br> Val Glu Gly Lys Thr Asp Phe Glu Lys Leu Glu Glu Tyr lie lie Asp <br><br> 435 440 445 <br><br> Lys Glu Asp lie Glu Leu Pro Ser Gly Lys Gin Glu Tyr Leu Glu Ser <br><br> 450 455 460 <br><br> Leu Leu Asn Ser Tyr lie Val Lys Thr lie Ala Glu Leu Arg 465 470 475 <br><br> 214 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;210&gt; 43 &lt;211&gt; 1436 &lt;212&gt; DNA <br><br> &lt;213&gt; Thermotoga neapolitana &lt;400&gt; 43 <br><br> atgggcagca gccatcatca tcatcatcac agcagcggcc tggtgocgcg cggcagccat 60 atggctagca tgactggtgg acagcaaatg ggtcggatcc ccatggccga gttcttcccg 120 gagatcccga aggtgcagtt cgagggcaag gagtccacca acccgctcgc cttcaagttc 180 tacgacccgg aggagatcat cgacggcaag ccgctcaagg accacctcaa gttctccgtg 24 0 gccttctggc acaccttcgt gaacgagggc cgcgacccgt tcggcgaccc gaccgccgac 3 00 cgcccgtgga accgctacac cgacccgatg gacaaggcct tcgcccgcgt ggacgcectc 3 60 ttcgagttct gcgagaagct caacatcgag tacttctgct tccacgaccg cgacatcccc 420 cggagggcaa gaccctccgc gagaccaaca agatcctcga caaggtggtg gagcgcatca 4 80 aggagcgcat gaaggactcc aacgtgaagc tcctctgggg caccgccaac ctcttctccc 540 acccgcgcta catgcacggc gccgccacca cctgctccgc cgacgtgttc gcctacgccg 600 ccgcccaggt gaagaaggcc ctggagatca ccaaggagct gggcggcgag ggctacgtgt 660 tctggggcgg ccgcgagggc tacgagaccc tcctcaacac cgacctcggc ttcgagctgg 720 agaacctcgc ccgcttcctc cgcatggccg tggactacgc caagcgcatc ggcttcaccg 780 gccagttcct catcgagccg aagccgaagg agccgaccaa gcaccagtac gacttcgacg 840 tggccaccgc ctacgccttc ctcaagtccc acggcctcga cgagtacttc aagttcaaca 900 tcgaggccaa ccacgccacc ctcgccggcc acaccttcca gcacgagctg cgcatggccc 960 gcatcctcgg caagctcggc tccatcgacg ccaaccaggg cgacctcctc ctcggctggg 102 0 acaccgacca gttcccgacc aacgtgtacg acaccaccct cgccatgtac gaggtgatca 1080 aggccggcgg cttcaccaag ggcggcctca acttcgacgc caaggtgcgc cgcgcctcct 1140 acaaggtgga ggacctcttc atcggccaca tcgccggcat ggacaccctc gccctcggct 1200 tcaaggtggc ctacaagctc gtgaaggacg gcgtgctcga caagttcatc gaggagaagt 12S0 accgctcctt ccgcgagggc atcggccgcg acatcgtgga gggcaaggtg gacttcgaga 1320 agctggagga gtacatcatc gacaaggaga ccatcgagct gccgtccggc aagcaggagt 13 80 acctggagtc cctcatcaac tcctacatcg tgaagaccat cctggagctg cgctga 14 3 6 <br><br> &lt;210&gt; 44 &lt;211&gt; 478 &lt;212&gt; PRT <br><br> &lt;213» Thermotoga neapolitana <br><br> &lt;400» 44 <br><br> Met <br><br> Gly <br><br> Ser <br><br> Ser <br><br> His <br><br> His <br><br> His <br><br> His <br><br> His <br><br> His <br><br> Ser Ser <br><br> Gly Leu <br><br> Val <br><br> Pro <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Arg <br><br> Gly <br><br> Ser <br><br> His 20 <br><br> Met <br><br> Ala <br><br> Ser <br><br> Met <br><br> Thr 25 <br><br> Gly <br><br> Gly Gin <br><br> Gin <br><br> Met 30 <br><br> Gly <br><br> Arg lie <br><br> Pro <br><br> Met 35 <br><br> Ala <br><br> Glu <br><br> Phe <br><br> Phe <br><br> Pro 40 <br><br> Glu lie <br><br> Pro Lys <br><br> Val 45 <br><br> Gin <br><br> Phe <br><br> Glu <br><br> Gly <br><br> Lys 50 <br><br> Glu <br><br> Ser <br><br> Thr <br><br> Asn <br><br> Pro 55 <br><br> Leu <br><br> Ala <br><br> Phe <br><br> Lys Phe 60 <br><br> Tyr <br><br> Asp <br><br> Pro <br><br> Glu <br><br> Glu lie lie <br><br> Asp <br><br> Gly <br><br> Lys <br><br> Pro <br><br> Leu <br><br> Lys <br><br> Asp <br><br> His Leu <br><br> Lys <br><br> Phe <br><br> Ser <br><br> Val <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Ala <br><br> Phe <br><br> Trp <br><br> His <br><br> Thr 85 <br><br> Phe <br><br> Val <br><br> Asn <br><br> Glu <br><br> Gly 90 <br><br> Arg Asp <br><br> Pro <br><br> Phe <br><br> Gly 95 <br><br> Asp <br><br> Pro <br><br> Thr <br><br> Ala <br><br> Asp 100 <br><br> Arg <br><br> Pro <br><br> Trp <br><br> Asn <br><br> Arg 105 <br><br> Tyr <br><br> Thr Asp <br><br> Pro <br><br> Met <br><br> 110 <br><br> Asp <br><br> Lys <br><br> Ala <br><br> Phe <br><br> Ala 115 <br><br> Arg <br><br> Val <br><br> Asp <br><br> Ala <br><br> Leu 120 <br><br> Phe <br><br> Glu <br><br> Phe Cys <br><br> Glu 125 <br><br> Lys <br><br> Leu <br><br> Asn <br><br> 215 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> lie Glu Tyr Phe Cys Phe His Asp Arg Asp lie Ala Pro Glu Gly Lys <br><br> 130 135 140 <br><br> Thr Leu Arg Glu Thr Asn Lys lie Leu Asp Lys Val Val Glu Arg lie 145 150 155 160 <br><br> Lys Glu Arg Met Lys Asp Ser Asn Val Lys Leu Leu Trp Gly Thr Ala <br><br> 165 170 175 <br><br> Asn Leu Phe Ser His Pro Arg Tyr Met His Gly Ala Ala Thr Thr Cys <br><br> 180 185 190 <br><br> Ser Ala Asp Val Phe Ala Tyr Ala Ala Ala Gin Val Lys Lys Ala Leu <br><br> 195 200 205 <br><br> Glu lie Thr Lys Glu Leu Gly Gly Glu Gly Tyr Val Phe Trp Gly Gly <br><br> 210 215 220 <br><br> Arg Glu Gly Tyr Glu Thr Leu Leu Asn Thr Asp Leu Gly Phe Glu Leu 225 230 235 240 <br><br> Glu Asn Leu Ala Arg Phe Leu Arg Met Ala Val Asp Tyr Ala Lys Arg <br><br> 245 250 255 <br><br> lie Gly Phe Thr Gly Gin Phe Leu lie Glu Pro Lys Pro Lys Glu Pro <br><br> 260 265 270 <br><br> Thr Lys His Gin Tyr Asp Phe Asp Val Ala Thr Ala Tyr Ala Phe Leu <br><br> 275 280 285 <br><br> Lys Ser His Gly Leu Asp Glu Tyr Phe Lys Phe Asn lie Glu Ala Asn <br><br> 290 295 300 <br><br> His Ala Thr Leu Ala Gly His Thr Phe Gin His Glu Leu Arg Met Ala 305 310 315 320 <br><br> Arg lie Leu Gly Lys Leu Gly Ser lie Asp Ala Asn Gin Gly Asp Leu <br><br> 325 330 335 <br><br> Leu Leu Gly Trp Asp Thr Asp Gin Phe Pro Thr Asn Val Tyr Asp Thr <br><br> 340 345 350 <br><br> Thr Leu Ala Met Tyr Glu Val He Lys Ala Gly Gly Phe Thr Lys Gly <br><br> 355 360 365 <br><br> Gly Leu Asn Phe Asp Ala Lys Val Arg Arg Ala Ser Tyr Lys val Glu <br><br> 370 375 380 <br><br> Asp Leu Phe lie Gly His lie Ala Gly Met Asp Thr Phe Ala Leu Gly 385 390 395 400 <br><br> Phe Lys Val Ala Tyr Lys Leu Val Lys Asp Gly Val Leu Asp Lys Phe <br><br> 405 410 415 <br><br> lie (iiu Glu Lys Tyr Arg Ser Phe Arg Giu Gly He Gly Arg Asp lie <br><br> 420 425 430 <br><br> Val Glu Gly Lys Val Asp Phe Glu Lys Leu Glu Glu Tyr lie lie Asp <br><br> 435 440 445 <br><br> Lys Glu Thr lie Glu Leu Pro Ser Gly Lys Gin Glu Tyr Leu Glu Ser <br><br> 450 455 460 <br><br> Leu He Asn Ser Tyr He Val Lys Thr rle Leu Glu Leu Arg 465 470 475 <br><br> «:210&gt; 45 c211&gt; 1095 c212&gt; PRT <br><br> &lt;213&gt; Aspergillus shirousami &lt;400&gt; 45 <br><br> Ala Thr Pro Ala Asp Trp Arg Ser Gin Ser lie Tyr Phe Leu Leu Thr 15 10 15 <br><br> 216 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Asp Arg Phe Ala Arg Thr Asp Gly Ser Thr Thr Ala Thr Cys Asn Thr <br><br> 20 25 30 <br><br> Ala Asp Gin Lys Tyr Cys Gly Gly Thr Trp Gin Gly lie lie Asp Lys <br><br> 35 40 45 <br><br> Leu Asp Tyr He Gin Gly Met Gly Phe Thr Ala lie Trp lie Thr Pro <br><br> 50 55 60 <br><br> Val Thr Ala Gin Leu Pro Gin Thr Thr Ala Tyr Gly Asp Ala Tyr His 65 70 75 80 <br><br> Gly Tyr Trp Gin Gin Asp lie Tyr Ser Leu Asn Glu Asn Tyr Gly Thr <br><br> 85 90 95 <br><br> Ala Asp Asp Leu Lys Ala Leu Ser Ser Ala Leu His Glu Arg Gly Met <br><br> 100 105 110 <br><br> Tyr Leu Met Val Asp Val Val Ala Asn His Met Gly Tyr Asp Gly Ala <br><br> 115 120 125 <br><br> Gly Ser Ser Val Asp Tyr Ser Val Phe Lys Pro Phe Ser Ser Gin Asp <br><br> 130 135 140 <br><br> Tyr Phe His Pro Phe Cys Phe lie Gin Asn Tyr Glu Asp Gin Thr Gin 145 150 155 160 <br><br> Val Glu Asp Cys Trp Leu Gly Asp Asn Thr Val Ser Leu Pro Asp Leu <br><br> 165 170 175 <br><br> Asp Thr Thr Lys Asp Val Val Lys Asn Glu Trp Tyr Asp Trp Val Gly <br><br> 180 1B5 190 <br><br> Ser Leu Val Ser Asn Tyr Ser lie Asp Gly Leu Arg lie Asp Thr Val <br><br> 195 200 205 <br><br> Lys His Val Gin Lys Asp Phe Trp Pro Gly Tyr Asn Lys Ala Ala Gly <br><br> 210 215 220 <br><br> Val Tyr Cys lie Gly Glu Val Leu Asp Val Asp Pro Ala Tyr Thr Cys 225 230 235 240 <br><br> Pro Tyr Gin Asn Val Met Asp Gly Val Leu Asn Tyr Pro lie Tyr Tyr <br><br> 245 250 255 <br><br> Pro Leu Leu Asn Ala Phe Lys Ser Thr Ser Gly Ser Met Asp Asp Leu <br><br> 260 265 270 <br><br> Tyr Asn Met lie Asn Thr Val Lys Ser Asp Cys Pro Asp Ser Thr Leu <br><br> 275 280 285 <br><br> Leu Gly Thr Phe Val Glu Asn His Asp Asn Pro Arg Phe Ala Ser Tyr <br><br> 290 295 300 <br><br> Thr Asn Asp lie Ala Leu Ala Lys Asn Val Ala Ala Phe lie lie Leu 305 310 315 320 <br><br> Asn Asp Gly lie Pro lie lie Tyr Ala Gly Gin Glu Gin His Tyr Ala <br><br> 325 330 335 <br><br> Gly Gly Asn Asp Pro Ala Asn Arg Glu Ala Thr Trp Leu Ser Gly Tyr <br><br> 340 345 350 <br><br> Pro Thr Asp Ser Glu Leu Tyr Lys Leu lie Ala Ser Ala Asn Ala lie <br><br> 355 360 365 <br><br> Arg Asn Tyr Ala lie Ser Lys Asp Thr Gly Phe Val Thr Tyr Lys Asn <br><br> 370 375 380 <br><br> Trp Pro lie Tyr Ly3 Asp Asp Thr Thr lie Ala Met Arg Lys Gly Thr 385 390 395 400 <br><br> Asp Gly Ser Gin lie Val Thr lie Leu Ser Asn Lye Gly Ala Ser Gly <br><br> 405 410 415 <br><br> Asp Ser Tyr Thr Leu Ser Leu Ser Gly Ala Gly Tyr Thr Ala Gly Gin <br><br> 420 425 430 <br><br> Gin Leu Thr Glu Val lie Gly Cys Thr Thr Val Thr Val Gly Ser Asp 435 440 445 <br><br> 217 <br><br> WO 2005/096804 <br><br> PCT/U S2004/007J 82 <br><br> Gly Asn Val Pro Val Pro Met Ala Gly Gly Leu Pro Arg Val Leu Tyr <br><br> 450 455 460 <br><br> Pro Thr Glu Lys Leu Ala Gly Ser Lys lie Cys Ser Ser Ser Lys Pro 465 470 475 480 <br><br> Ala Thr Leu Asp Ser Trp Leu Ser Asn Glu Ala Thr Val Ala Arg Thr <br><br> 485 490 495 <br><br> Ala lie Leu Asn Asn lie Gly Ala Asp Gly Ala Trp Val Ser Gly Ala <br><br> 500 505 510 <br><br> Asp Ser Gly lie Val Val Ala Ser Pro Ser Thr Asp Asn Pro Asp Tyr <br><br> 515 520 525 <br><br> Phe Tyr Thr Trp Thr Arg Asp Ser Gly lie Val Leu Lys Thr Leu Val <br><br> 530 535 540 <br><br> Asp Leu Phe Arg Asn Gly Asp Thr Asp Leu Leu Ser Thr lie Glu His 545 550 555 5S0 <br><br> Tyr lie Ser Ser Gin Ala lie lie Gin Gly Val Ser Asn Pro Ser Gly <br><br> 565 570 575 <br><br> Asp Leu Ser Ser Gly Gly Leu Gly Glu Pro Lys Phe Asn Val Asp Glu <br><br> 580 585 590 <br><br> Thr Ala Tyr Ala Gly Ser Trp Gly Arg Pro Gin Arg Asp Gly Pro Ala <br><br> 595 600 605 <br><br> Leu Arg Ala Thr Ala Met lie Gly Phe Gly Gin Trp Leu Leu Asp Asn <br><br> 610 615 620 <br><br> Gly Tyr Thr Ser Ala Ala Thr Glu lie Val Trp Pro Leu Val Arg Asn 625 630 635 640 <br><br> Asp Leu Ser Tyr Val Ala Gin Tyr Trp Asn Gin Thr Gly Tyr Asp Leu <br><br> 645 650 655 <br><br> Trp Glu Glu Val Asn Gly Ser Ser Phe Phe Thr lie Ala Val Gin His <br><br> 660 665 670 <br><br> Arg Ala Leu Val Glu Gly Ser Ala Phe Ala Thr Ala Val Gly Ser Ser <br><br> 675 680 685 <br><br> Cys Ser Trp Cys Asp Ser Gin Ala Pro Gin lie Leu Cys Tyr Leu Gin <br><br> 690 695 700 <br><br> Ser Phe Trp Thr Gly Ser Tyr lie Leu Ala Asn Phe Asp Ser Ser Arg 705 710 715 720 <br><br> Ser Gly Lys Asp Thr Asn Thr Leu Leu Gly Ser lie His Thr Phe Asp <br><br> 725 730 735 <br><br> Pro Glu Ala Gly Cys Asp Asp Ser Thr Phe Gin Pro Cys Ser Pro Arg <br><br> 740 745 750 <br><br> Ala Leu Ala Asn His Lys Glu Val Val Asp Ser Phe Arg Ser lie Tyr <br><br> 755 760 765 <br><br> Thr Leu Asn Asp Gly Leu Ser Asp Ser Glu Ala Val Ala Val Gly Arg <br><br> 770 775 780 <br><br> Tyr Pro Glu Asp Ser Tyr Tyr Asn Gly Asn Pro Trp Phe Leu Cys Thr 785 790 795 800 <br><br> Leu Ala Ala Ala Glu Gin Leu Tyr Asp Ala Leu Tyr Gin Trp Asp Lys <br><br> 805 810 815 <br><br> Gin Gly Ser Leu Glu lie Thr Asp Val Ser Leu Asp Phe Phe Lys Ala <br><br> 820 825 830 <br><br> Leu Tyr Ser Gly Ala Ala Thr Gly Thr Tyr Ser Ser Ser Ser Ser Thr <br><br> 835 840 845 <br><br> Tyr Ser Ser lie val Ser Ala val Lys Thr Phe Ala Asp Gly Phe Val <br><br> 850 855 860 <br><br> Ser lie Val Glu Thr His Ala Ala Ser Asn Gly Ser Leu Ser Glu Gin 865 870 875 880 <br><br> 218 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Phe Asp Lys Ser Asp Gly Asp Glu Leu Ser Ala Arg Asp Leu' Thr Trp <br><br> 885 890 895 <br><br> Ser Tyr Ala Ala Leu Leu Thr Ala Asn Asn Arg Arg Asn Ser Val Val <br><br> 900 905 910 <br><br> Pro Pro Ser Trp Gly Glu Thr Ser Ala Ser Ser Val Pro Gly Thr Cys <br><br> 915 920 925 <br><br> Ala Ala Thr Ser Ala Ser Gly Thr Tyr Ser Ser Val Thr Val Thr Ser <br><br> 930 93S 940 <br><br> Trp Pro Ser lie Val Ala Thr Gly Gly Thr Thr Thr Thr Ala Thr Thr 945 950 95S 960 <br><br> Thr Gly Ser Gly Gly Val Thr Ser Thr Ser Lys Thr Thr Thr Thr Ala <br><br> 965 970 975 <br><br> Ser Lys Thr Ser Thr Thr Thr Ser Ser Thr Ser Cys Thr Thr Pro Thr <br><br> 980 985 990 <br><br> Ala Val Ala Val Thr Phe Asp Leu Thr Ala Thr Thr Thr Tyr Gly Glu <br><br> 995 1000 1005 <br><br> Asn lie Tyr Leu Val Gly Ser He Ser Gin Leu Gly Asp Trp Glu Thr <br><br> 1010 1015 1020 <br><br> Ser Asp Gly lie Ala Leu Ser Ala Asp Lys Tyr Thr Ser Ser Asn Pro 1025 1030 1035 1040 <br><br> Pro Trp Tyr Val Thr Val Thr Leu Pro Ala Gly Glu Ser Phe Glu Tyr <br><br> 1045 1050 1055 <br><br> Lys Phe lie Arg Val Glu Ser Asp Asp Ser val Glu Trp Glu Ser Asp <br><br> 1060 1055 1070 <br><br> Pro Asn Arg Glu Tyr Thr Val Pro Gin Ala Cys Gly Glu Ser Thr Ala <br><br> 1075 1080 1085 <br><br> Thr Val Thr Asp Thr Trp Arg 1090 1095 <br><br> &lt;210&gt; 46 &lt;211&gt; 3285 «212 &gt; DNA <br><br> &lt;213&gt; Aspergillus shirousami &lt;400&gt; 46 <br><br> gccaccccgg ccgactggcg ctcccagtcc atctacttcc tcctcaccga ccgcttcgcc 60 cgcaccgacg gctccaccac cgccacctgc aacaccgccg accagaagta ctgcggcggc 120 acctggcagg gcatcatcga caagctcgac tacatccagg gcatgggctt caccgccatc 180 tggatcaccc cggtgaccgc ccagctcccg cagaccaccg cctacggcga cgcctaccac 24 0 ggctactggc agcaggacat ctactccctc aacgagaact acggcaccgc cgacgacctc 300 aaggccctct cctccgccct ccacgagcgc ggcatgtacc tcatggtgga cgtggtggcc 360 aaccacatgg gctacgacgg cgccggctcc tccgtggact actccgtgtt caagccgttc 420 tcctcccagg actacttcca cccgttctgc ttcatccaga actacgagga ccagacccag 480 gtggaggact gctggctegg cgacaacacc gtgtccctcc cggacctcga caccaccaag 54 0 gacgtggtga agaacgagtg gtacgactgg gtgggctccc tcgtgtccaa ctactccatc 600 gacggcctcc gcatcgacac cgtgaagcac gtgeagaagg acttctggcc gggctaeaac 660 aaggccgccg gcgtgtactg catcggcgag gtgctcgacg tggacccggc ctacacctgc 720 ccgtaccaga acgtgatgga cggcgcgctc aactacccga tctactaccc gctcctcaac 780 gccttcaagt ccacctccgg ctcgatggac gacctctaca acatgatcaa caccgtgaag 840 tccgactgcc cggactccac cctcctcggc accttcgtgg agaaccacga caacccgcgc 900 ttcgcctcct acaccaacga catcgccctc gccaagaacg tggccgcctt catcatcctc 960 aacgacggca tcccgatcat ctacgccggc caggagcagc actacgccgg cggcaacgac 1020 ccggccaacc gcgaggccac ctggctctcc ggctacccga ccgactccga gctgtacaag 1080 <br><br> 219 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ctcatcgcct ccgccaacgc catccgcaac tacgccatct ccaaggacac cggcttcgtg 1140 acctacaaga actggccgat ctacaaggac gacaccacca tcgccatgcg caagggcacc 1200 gacggctccc agatcgtgac catcctctcc aacaagggcg cctccggcga ctcctacacc 1260 ctctccctct ccggcgcegg ctacaccgcc ggccagcagc tcaccgaggt gatcggctgc 1320 accaccgtga ccgtgggctc cgacggcaac gtgccggcgc egatggccgg cggcctcccg 1380 cgcgtgctct acccgaccga gaagctcgcc ggctccaaga tatgctcctc ctccaagccg 144 0 gccaccctcg actcctggct ctccaacgag gccaccgtgg cccgcaccgc catcctcaac 1500 aacatcggcg ccgacggcgc ctgggtgtcc ggcgccgact ccggcatcgt ggtggcctcc 1560 ccgtccaccg acaacccgga ctacttctac acctggaccc gcgactccgg categtgctc 1620 aagaccctcg tggacctctt ccgcaacggc gacaccgacc tcctctccac catcgagcac 1680 tacatctcct cccaggccat catccagggc gtgtccaacc cgtccggcga cctctcctcc 174 0 ggcggcctcg gcgagccgaa gttcaacgtg gacgagaccg cctacgccgg ctcctggggc 1800 cgcccgcagc gcgacggccc ggccctccgc gccaccgcca tgatcggctt cggccagtgg 1860 ctcctcgaca acggctacac ctccgccgcc accgagatcg tgtggccgct cgtgcgcaac 192 0 gacctctcct acgtggccca gtactggaac cagaccggct acgacctctg ggaggaggtg 1980 aacggctcct ccttcttcac catcgccgtg cagcaccgcg ccctcgtgga gggctccgcc 2040 ttcgccaccg ccgtgggctc ctcctgctcc tggtgcgact cccaggcccc gcagatcctc 2100 tgctacctcc agtccttctg gaccggctcc tacatcctcg ccaacttcga ctcctcccgc 2160 tccggcaagg acaccaacac cctcctcggc tccatccaca ccttcgaccc ggaggccggc 2220 tgcgacgact ccaccctcca gccgtgctcc ccgcgcgccc tcgccaacca caaggaggtg 2280 gtggactcct tccgctccat ctacaccctc aacgacggcc cceccgactc cgaggccgtg 2340 gccgtgggcc gctacccgga ggactcctac tacaacggca acccgtggtt cctctgcacc 2400 ctcgccgccg ccgagcagct ctacgacgcc ctctaccagt gggacaagca gggctccctg 2460 gagatcaccg acgtgtccct cgacttcttc aaggccctct actccggcgc cgccaccggc 2520 aectactcct cctcctcctc cacctactcc tccatcgtgt ccgccgtgaa gaccttcgcc 2580 gacggcttcg tgtccatcgt ggagacccac gccgcctcca acggctccct ctccgagcag 2640 ttcgacaagt ccgacggcga cgagctgtcc gcccgcgacc tcacctggtc ctacgccgcc 2700 ctcctcaccg ccaacaaccg ccgcaactcc gtggtgccgc cgtcctgggg cgagacctcc 2760 gcctcctccg tgccgggcac ctgcgccgcc acctccgcct ccggcaccta ctcctccgtg 2820 accgtgacct cctggccgtc caccgtggcc accggcggca ccaccaccac cgccaccacc 2880 accggctccg gcggcgtgac ctccacctcc aagaccacca ccaccgcctc caagacctcc 2 94 0 accaccacct cctccacctc ctgcaccacc ccgaccgccg tggccgtgac cttcgacctc 3000 accgccacca ccacctacgg cgagaacatc tacctcgtgg gctccatctc ccagctcggc 3060 gactgggaga cctccgacgg catcgccctc tccgccgaca agtacacctc ctccaacccg 3120 ccgtggtacg tgaccgtgac cctcccggcc ggcgagtcct tcgagtacaa gttcatccgc 3180 gtggagtccg aoga^t-ccgt agagtgagag tccgacccga accgcgagta caccgtgccg 3240 caggcctgcg gcgagtccac cgccaccgtg accgacacct ggcgc 3285 <br><br> &lt;210&gt; 47 &lt;211&gt; 679 c212&gt; PRT <br><br> &lt;213&gt; Thermoanaerobacterium thermosaccharolyticum c400&gt; 47 <br><br> Val <br><br> Leu <br><br> Ser Gly <br><br> Cys <br><br> Ser Asn <br><br> Asn <br><br> Val <br><br> Ser <br><br> Ser He <br><br> Lys lie <br><br> Asp <br><br> Arg <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Phe <br><br> Asn <br><br> Asn lie <br><br> Ser <br><br> Ala Val <br><br> Asn <br><br> Gly <br><br> Pro <br><br> Gly Glu <br><br> Glu <br><br> Asp <br><br> Thr <br><br> Trp <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Ala <br><br> Ser <br><br> Ala Gin <br><br> Lys <br><br> Gin Gly <br><br> Val <br><br> Gly <br><br> Thr <br><br> Ala Asn <br><br> Asn <br><br> Tyr <br><br> Val <br><br> Ser <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Arg val <br><br> Trp Phe <br><br> Thr <br><br> Leu Ala <br><br> Asn <br><br> Gly <br><br> Ala lie Ser <br><br> Glu <br><br> Val <br><br> Tyr <br><br> Tyr <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Pro <br><br> Thr lie Asp <br><br> Thr <br><br> Ala Asp <br><br> Val <br><br> Lys <br><br> Glu <br><br> He Lys <br><br> Phe lie val <br><br> Thr <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> 220 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Asp Gly Lys Ser Phe Val Ser Asp Glu Thr Lys Asp Ala lie Ser Lys <br><br> 85 90 95 <br><br> Val Glu Lys Phe Thr Asp Lys Ser Leu Gly Tyr Lys Leu Val Asn Thr <br><br> 100 105 110 <br><br> Asp Lys Lys Gly Arg Tyr Arg lie Thr Lys Glu lie Phe Thr Asp Val <br><br> 115 120 125 <br><br> Lys Arg Asn Ser Leu lie Met Lys Ala Lys Phe Glu Ala Leu Glu Gly <br><br> 130 135 140 <br><br> Ser lie His Asp Tyr Lys Leu Tyr Leu Ala Tyr Asp Pro His lie Lys 145 150 155 160 <br><br> Asn Gin Gly Ser Tyr Asn Glu Gly Tyr Val lie Lys Ala Asn Asn Asn <br><br> 165 170 175 <br><br> Glu Met Leu Met Ala Lys Arg Asp Asn Val Tyr Thr Ala Leu Ser Ser <br><br> 180 185 190 <br><br> Asn lie Gly Trp Lys Gly Tyr Ser lie Gly Tyr Tyr Lys Val Asn Asp <br><br> 135 200 205 <br><br> lie Met Thr Asp Leu Asp Glu Asn Lys Gin Met Thr Lys His Tyr Asp <br><br> 210 215 220 <br><br> Ser Ala Arg Gly Asn lie lie Glu Gly Ala Glu lie Asp Leu Thr Lys 225 230 235 240 <br><br> Asn Ser Glu Phe Glu He Val Leu Ser Phe Gly Gly Ser Asp Ser Glu <br><br> 245 250 255 <br><br> Ala Ala Lys Thr Ala Leu Glu Thr Leu Gly Glu Asp Tyr Asn Asn Leu <br><br> 260 265 270 <br><br> Lys Asn Asn Tyr lie Asp Glu Trp Thr Lys Tyr Cys Asn Thr Leu Asn <br><br> 275 280 285 <br><br> Asn Phe Asn Gly Lys Ala Asn Ser Leu Tyr Tyr Asn Ser Met Met He <br><br> 290 295 300 <br><br> Leu Lys Ala Ser Glu Asp Lys Thr Asn Lys Gly Ala -Tyr He Ala Ser 305 310 315 320 <br><br> Leu Ser lie Pro Trp Gly Asp Gly Gin Arg Asp Asp Asn Thr Gly Gly <br><br> 325 330 335 <br><br> Tyr His Leu Val Trp Ser Arg Asp Leu Tyr His Val Ala Asn Ala Phe <br><br> 340 345 350 <br><br> lie Ala Ala Gly Asp Val Asp Ser Ala Asn Arg Ser Leu Asp Tyr Leu <br><br> 355 360 365 <br><br> Ala Lys Val Val Lys Asp Asn Gly Met lie Pro Gin Asn Thr Trp He <br><br> 370 375 380 <br><br> Ser Gly Lys Pro Tyr Trp Thr Ser lie Gin Leu Asp Glu Gin Ala Asp 385 390 395 400 <br><br> Pro lie lie Leu Ser Tyr Arg Leu Lys Arg Tyr Asp Leu Tyr Asp Ser <br><br> 405 410 415 <br><br> Leu Val Lys Pro Leu Ala Asp Phe tie lie Lys lie Gly Pro Lys Thr <br><br> 420 425 430 <br><br> Gly Gin Glu Arg Trp Glu Glu lie Gly Gly Tyr Ser Pro Ala Thr Met <br><br> 435 440 445 <br><br> Ala Ala Glu Val Ala Gly Leu Thr Cys Ala Ala Tyr lie Ala Glu Gin <br><br> 450 455 460 <br><br> Asn Lys Asp Tyr Glu Ser Ala Gin Lys Tyr Gin Glu Lys Ala Asp Asn 465 470 475 480 <br><br> Trp Gin Lys Leu lie Asp Asn Leu Thr Tyr Thr Glu Asn Gly Pro Leu <br><br> 485 490 495 <br><br> Gly Asn Gly Gin Tyr Tyr lie Arg lie Ala Gly Leu Ser Asp Pro Asn 500 505 510 <br><br> 221 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> A J. a <br><br> ASp <br><br> Phe 515 <br><br> Met <br><br> He <br><br> Asn <br><br> He <br><br> Ala 520 <br><br> Asn <br><br> Gly <br><br> Gly <br><br> Gly <br><br> Val 525 <br><br> Tyr <br><br> Asp <br><br> Gin <br><br> Lys <br><br> Glu 530 <br><br> lie <br><br> Val <br><br> Asp <br><br> Pro <br><br> Ser 535 <br><br> Phe <br><br> Leu <br><br> Glu <br><br> Leu val 540 <br><br> Arg <br><br> Leu <br><br> Gly <br><br> Val <br><br> Lys <br><br> Ser <br><br> Ala <br><br> Asp <br><br> Asp <br><br> Pro <br><br> Lys lie <br><br> Leu <br><br> Asn <br><br> Thr <br><br> Leu <br><br> Lys <br><br> Val <br><br> Val <br><br> Asp <br><br> 545 <br><br> 550 <br><br> 555 <br><br> 560 <br><br> Ser <br><br> Thr lie <br><br> Lys <br><br> Val 565 <br><br> Asp <br><br> Thr <br><br> Pro <br><br> Lys <br><br> Gly 570 <br><br> Pro <br><br> Ser <br><br> Trp <br><br> Tyr <br><br> Arg 575 <br><br> Tyr <br><br> Asn <br><br> His <br><br> Asp <br><br> Gly 580 <br><br> Tyr <br><br> Gly <br><br> Glu <br><br> Pro <br><br> Ser 585 <br><br> Lys <br><br> Thr <br><br> Glu <br><br> Leu <br><br> Tyr 590 <br><br> His <br><br> Gly <br><br> Ala <br><br> Gly <br><br> Lys 595 <br><br> Gly <br><br> Arg <br><br> Leu <br><br> Trp <br><br> Pro 600 <br><br> Leu <br><br> Leu <br><br> Thr <br><br> Gly <br><br> Glu 60S <br><br> Arg <br><br> Gly <br><br> Met <br><br> Tyr <br><br> Glu 610 <br><br> lie <br><br> Ala <br><br> Ala <br><br> Gly <br><br> Lys 515 <br><br> Asp <br><br> Ala <br><br> Thr <br><br> Pro <br><br> Tyr 620 <br><br> Val <br><br> Lys <br><br> Ala <br><br> Met <br><br> Glu <br><br> Lys <br><br> Phe <br><br> Ala <br><br> Asn <br><br> Glu <br><br> Gly <br><br> Gly lie lie <br><br> Ser <br><br> Glu <br><br> Gin <br><br> Val <br><br> Trp <br><br> Glu <br><br> 625 <br><br> 630 <br><br> 635 <br><br> 640 <br><br> Asp <br><br> Thr Gly <br><br> Leu <br><br> Pro <br><br> Thr <br><br> Asp <br><br> Ser <br><br> Ala <br><br> Ser <br><br> Pro <br><br> Leu <br><br> Asn <br><br> Trp <br><br> Ala <br><br> His <br><br> 645 <br><br> 650 <br><br> 655 <br><br> Ala <br><br> Glu <br><br> Tyr <br><br> Val 660 <br><br> lie <br><br> Leu <br><br> Phe <br><br> Ala <br><br> Ser 665 <br><br> Asn <br><br> He <br><br> Glu <br><br> His <br><br> Lys 670 <br><br> Val <br><br> Leu <br><br> Asp <br><br> Met <br><br> Pro 675 <br><br> Asp lie val <br><br> Tyr <br><br> &lt;210&gt; 48 &lt;211&gt; 2037 &lt;212&gt; DNA <br><br> &lt;213&gt; Thermoanaerobacterium thermosaccharolyticum &lt;220&gt; <br><br> &lt;2 23&gt; synthetic &lt;400&gt; 48 <br><br> gtgctctccg gctgctccaa caacgtgtcc tccatcaaga tccgccgtga acggcccggg cgaggaggac acctgggcct ggcaccgcca acaactacqt gtcccgcgtg tggttcaccc gaggtgtact acccgaccat cgacaccgcc gacgtgaagg gacggcaagt ccttcgtgtc cgacgagacc aaggacgcca accgacaagt ccctcggcta caagctcgtg aacaccgaca accaaggaaa tcttcaccga cgtgaagcgc aactccctca gccctcgagg gctccatcca cgactacaag ctctacctcg aaccagggct cctacaacga gggctacgtg atcaaggcca gccaagcgcg acaacgtgta caccgccctc tcctccaaca atcggctact acaaggtgaa cgacatcatg accgacctcg aagcactacg actccgcccg cggcaacatc atcgagggcg aactccgagt tcgagatcgt gctctccttc ggcggctccg gccctcgaga ccctcggcga ggactacaac aacctcaaga aecaagtact gcaacaccct caacaacttc aacggcaagg tccatgatga tcctcaaggc ctccgaggac aagaccaaca ctctccatcc cgtggggcga cggccagcgc gacgacaaca tggtcccgcg acctctacca cgtggccaac gccttcatcg gccaaccgct ccctcgacta cctcgccaag gtggtgaagg aacacctgga tctccggcaa gccgtactgg acctccatcc ccgatcatcc tctcctaccg cctcaagcgc tacgacctct <br><br> 222 <br><br> tcgaccgctt caacaacatc 60 ccgcccagaa gcagggcgtg 120 tcgccaacgg cgccatctcc 180 agatcaagtt catcgtgacc 24 0 tctccaaggt ggagaagttc 300 agaagggccg ctaccgcatc 360 tcatgaaggc caagttcgag 420 cctacgaccc gcacatcaag 480 acaacaacga gatgctcatg 54 0 tcggctggaa gggctactcc 600 acgagaacaa gcagatgacc 660 ccgagatcga cctcaccaag 720 actccgaggc cgccaagacc 780 acaactacat cgacgagtgg 84 0 ccaactccct ctactacaac 900 agggcgccta catcgcctcc 960 ccggcggcta ccacctcgtg 102 0 ccgccggcga cgtggactcc 1080 acaacggcat gatcccgcag 114 0 agctcgacga gcaggccgac 1200 acgactccct cgtgaagccg 1260 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ctcgccgact tcatcatcaa gatcggcccg aagaccggcc aggagcgctg ggaggagafcc 1320 ggcggctact ccccggccac gatggccgcc gaggtggccg gcctcacctg cgccgcctac 13 80 atcgccgagc agaacaagga ctacgagtcc gcccagaagt accaggagaa ggccgaeaac 1440 tggcagaagc tcatcgacaa cctcacctac accgagaacg gcccgctcgg caacggccag 1500 tactacatcc gcatcgccgg cetctccgac ccgaacgccg acttcatgat caacatcgcc 1560 aacggcggcg gcgtgcacga ccagaaggag atcgtggacc cgtccttcct cgagctggtg 1620 cgecteggcg tgaagcccgc cgacgacccg aagatcctca acaccctcaa ggtggtggac 1680 tccaccatca aggtggacac cccgaagggc ccgtcctggt atcgctacaa ccacgacggc 1740 tacggcgagc cgtccaagac cgagctgtac cacggcgccg gcaagggccg cctctggccg 1800 ctcctcaccg gcgagcgcgg catgtacgag atcgccgccg gcaaggacgc caccccgtac 1860 gtgaaggcga tggagaagtt cgccaacgag ggcggcatca tctccgagca ggtgtgggag 1920 gacaccggcc tcccgaccga ctccgcctcc ccgctcaact gggcccacgc cgagtacgtg 1980 atcctcttcg cctccaacat cgagcacaag gtgctcgaca tgccggacat cgtgtac 2037 <br><br> c210&gt; 49 <br><br> &lt;211&gt; 579 <br><br> &lt;212-. PRT <br><br> &lt;213&gt; Rhizopus oryzae <br><br> &lt;400&gt; 49 <br><br> Ala <br><br> Ser <br><br> He <br><br> Pro <br><br> Ser <br><br> Ser <br><br> Ala <br><br> Ser <br><br> Val <br><br> Gin <br><br> Leu <br><br> Asp <br><br> Ser <br><br> Tyr <br><br> Asn <br><br> Tyr <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> Asp <br><br> Gly <br><br> Ser <br><br> Thr 20 <br><br> Phe <br><br> Ser <br><br> Gly <br><br> Lys lie 25 <br><br> Tyr <br><br> Val <br><br> Lys <br><br> Asn lie 30 <br><br> Ala <br><br> Tyr <br><br> Ser <br><br> Lys <br><br> Lys 35 <br><br> Val <br><br> Thr <br><br> Val lie <br><br> Tyr 40 <br><br> Ala <br><br> Asp <br><br> Gly <br><br> Ser <br><br> Asp 45 <br><br> Asn <br><br> Trp <br><br> Asn <br><br> Asn <br><br> Asn <br><br> Gly Asn <br><br> Thr lie <br><br> Ala <br><br> Ala <br><br> Ser <br><br> Tyr <br><br> Ser <br><br> Ala <br><br> Pro lie <br><br> Ser <br><br> Gly <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Ser <br><br> Asn <br><br> Tyr <br><br> Glu <br><br> Tyr <br><br> Trp <br><br> Thr <br><br> Phe <br><br> Ser <br><br> Ala <br><br> Ser lie <br><br> Asn <br><br> Gly lie <br><br> Lys <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Glu <br><br> Phe <br><br> Tyr lie <br><br> Lys 85 <br><br> Tyr <br><br> Glu <br><br> Val <br><br> Ser <br><br> Gly 90 <br><br> Lys <br><br> Thr <br><br> Tyr <br><br> Tyr <br><br> Asp 95 <br><br> Asn <br><br> Asn <br><br> Asn <br><br> Ser <br><br> Ala 100 <br><br> Asn <br><br> Tyr <br><br> Gin <br><br> Val <br><br> Ser 105 <br><br> Thr <br><br> Ser <br><br> Lys <br><br> Pro <br><br> Thr 110 <br><br> Thr <br><br> Thr <br><br> Thr <br><br> Ala <br><br> Thr <br><br> 115 <br><br> Ala <br><br> Thr <br><br> Thr <br><br> Thr <br><br> Thr 120 <br><br> Ala <br><br> Pro <br><br> Ser <br><br> Thr <br><br> Ser 125 <br><br> Thr <br><br> Thr <br><br> Thr <br><br> Pro <br><br> Pro <br><br> 130 <br><br> Ser <br><br> Arg <br><br> Ser <br><br> Glu <br><br> Pro <br><br> 135 <br><br> Ala <br><br> Thr <br><br> Phe <br><br> Pro <br><br> Thr 140 <br><br> Gly <br><br> Asn <br><br> Ser <br><br> Thr lie <br><br> Ser <br><br> Ser <br><br> Trp <br><br> He <br><br> Lys <br><br> Lys <br><br> Gin <br><br> Glu Gly <br><br> I le <br><br> Ser <br><br> Arg <br><br> Phe <br><br> Ala <br><br> Met <br><br> 145 <br><br> 150 <br><br> 155 <br><br> 160 <br><br> Leu <br><br> Arg <br><br> Asn lie <br><br> Asn <br><br> Pro <br><br> Pro <br><br> Gly Ser Ala <br><br> Thr <br><br> Gly <br><br> Phe <br><br> He <br><br> Ala <br><br> Ala <br><br> 165 <br><br> 170 <br><br> 175 <br><br> Ser <br><br> Leu <br><br> Ser <br><br> Thr <br><br> Ala <br><br> Gly <br><br> Pro <br><br> Asp Tyr Tyr <br><br> Tyr <br><br> Ala <br><br> Trp <br><br> Thr <br><br> Arg <br><br> Asp <br><br> 180 <br><br> 185 <br><br> 190 <br><br> Ala <br><br> Ala <br><br> Leu 195 <br><br> Thr <br><br> Ser <br><br> Asn <br><br> Val <br><br> He 200 <br><br> Val <br><br> Tyr <br><br> Glu <br><br> Tyr <br><br> Asn 205 <br><br> Thr <br><br> Thr <br><br> Leu <br><br> Ser <br><br> Gly 210 <br><br> Asn <br><br> Lys <br><br> Thr <br><br> He <br><br> Leu 215 <br><br> Asn <br><br> Val <br><br> Leu <br><br> Lys <br><br> Asp 220 <br><br> Tyr <br><br> Val <br><br> Thr <br><br> Phe <br><br> Ser <br><br> Val <br><br> Lys <br><br> Thr <br><br> Gin <br><br> Ser <br><br> Thr <br><br> Ser <br><br> Thr <br><br> Val <br><br> Cys <br><br> Asn <br><br> Cys <br><br> Leu <br><br> Gly <br><br> Glu <br><br> 225 <br><br> 230 <br><br> 235 <br><br> 240 <br><br> Pro <br><br> Lys <br><br> Phe <br><br> Asn <br><br> Pro Asp <br><br> Ala <br><br> Ser <br><br> Gly Tyr Thr <br><br> Gly <br><br> Ala <br><br> Trp <br><br> Gly <br><br> Arg <br><br> 245 <br><br> 250 <br><br> 255 <br><br> Pro <br><br> Gin <br><br> Asn <br><br> Asp 260 <br><br> Gly <br><br> Pro <br><br> Ala <br><br> Glu <br><br> Arg 265 <br><br> Ala <br><br> Thr <br><br> Thr <br><br> Phe lie 270 <br><br> Leu <br><br> Phe <br><br> 223 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ala Asp Ser Tyr Leu Thr Gin Thr Lys Asp Ala Ser Tyr Val Thr Gly <br><br> 275 280 285 <br><br> Thr Leu Lys Pro Ala lie Phe Lys Asp Leu Asp Tyr Val Val Asn Val <br><br> 290 295 300 <br><br> Trp Ser Asn Gly Cys Phe Asp Leu Trp Glu Glu Val Asn Gly Val His 305 310 315 320 <br><br> Phe Tyr Thr Leu Met val Met Arg Lys Gly Leu Leu Leu Gly Ala Asp <br><br> 325 330 335 <br><br> Phe Ala Lys Arg Asn Gly Asp Ser Thr Arg Ala Ser Thr Tyr Ser Ser <br><br> 340 345 350 <br><br> Thr Ala Ser Thr lie Ala Asn Lys lie Ser Ser Phe Trp Val Ser Ser <br><br> 355 360 365 <br><br> Asn Asn Trp He Gin Val Ser Gin Ser Val Thr Gly Gly Val Ser Lys <br><br> 370 375 380 <br><br> Lys Gly Leu Asp Val Ser Thr Leu Leu Ala Ala Asn Leu Gly Ser Val 385 390 395 400 <br><br> Asp Asp Gly Phe Phe Thr Pro Gly Ser Glu Lys lie Leu Ala Thr Ala <br><br> 405 410 415 <br><br> Val Ala Val Glu Asp Ser Phe Ala Ser Leu Tyr Pro lie Asn Lys Asn <br><br> 420 425 430 <br><br> Leu Pro Ser Tyr Leu Gly Asn Ser lie Gly Arg Tyr Pro Glu Asp Thr <br><br> 435 440 445 <br><br> Tyr Asn Gly Asn Gly Asn Ser Gin Gly Asn Ser Trp Phe Leu Ala val <br><br> 450 455 460 <br><br> Thr Gly Tyr Ala Glu Leu Tyr Tyr Arg Ala He Lys Glu Trp lie Gly 465 470 475 480 <br><br> Asn Gly Gly Val Thr val Ser Ser lie Ser Leu Pro Phe Phe Lys Lys <br><br> 485 490 495 <br><br> Phe Asp Ser Ser Ala Thr Ser Gly Lys Lys Tyr Thr Val Gly Thr Ser <br><br> 500 505 510 <br><br> Asp Phe Asn Asn Leu Ala Gin Asn lie Ala Leu Ala Ala Asp Arg Phe <br><br> 515 520 525 <br><br> Leu Ser Thr Val Gin Leu His Ala His Asn Asn Gly Ser Leu Ala Glu <br><br> 530 535 540 <br><br> Glu Phe Asp Arg Thr Thr Gly Leu Ser Thr Gly Ala Arg Asp Leu Thr 515 550 555 560 <br><br> Trp Ser His Ala Ser Leu lie Thr Ala Ser Tyr Ala Lys Ala Gly Ala 565 570 575 <br><br> Pro Ala Ala <br><br> &lt;210&gt; 50 &lt;211&gt; 1737 «212&gt; DNA <br><br> &lt;213&gt; Rhizopus oryzae &lt;400&gt; 50 <br><br> gcctccatcc cgtcctccgc ctccgtgcag ctcgactcct acaactacga cggctccacc 60 ttctccggca aaatctacgt gaag&amp;acatc gcctactcca agaaggtgac cgtgatctac 120 gccgacggct ccgacaactg gaacaacaac ggcaacacca tcgccgcctc ctactccgcc 180 ccgatctccg gctccaacta cgagtactgg accttctccg cctccatcaa cggcatcaag 240 gagttctaca tcaagtacga ggtgtcpggc aagacctact acgacaacaa caactccgcc 300 aactaccagg tgtccacctc caagccgacc accaccaccg ccaccgccac caccaccacc 360 <br><br> 224 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> gccccgtcca cctccaccac caccccgccg tcccgctccg agccggccac cttcccgacc 42 0 ggcaactcca ccatctcctc ctggatcaag aagcaggagg gcatctcccg cttcgccatg 480 ctccgcaaca tcaacccgcc gggctccgcc accggcttca tcgccgcctc cctctccacc 54 0 gccggcccgg actactacta cgcctggacc cgcgacgccg ccctcacctc caacgtgatc 60 0 gtgtacgagt acaacaccac cctctccggc aacaagacca tcctcaacgt gctcaaggac 660 tacgtgacct tctccgCgaa gacccagtce acctccaccg tgtgcaactg cctcggcgag 720 ccgaagttca acccggacgc ctccggctac accggcgcct ggggccgccc gcagaacgac 780 ggcccggccg agcgcgccac caccttcatc ctcttcgccg actcctacct cacccagacc 840 aaggacgcct cctacgtgac cggcaccctc aagccggcca tcttcaagga cctcgactac 900 gtggtgaacg tgtggtccaa cggctgcttc gacctctggg aggaggtgaa cggcgtgcac 960 ttctacaccc tcatggtgat gcgcaagggc ctcctcctcg gcgccgactt cgccaagcgc 1020 aacggcgact ccacccgcgc ctccacctac tcctccaccg cctccaccat cgccaacaaa 1080 atctcctcct tctgggtgtc ctccaacaac tggatacagg tgtcccagtc cgtgaccggc 1140 ggcgtgtcca agaagggcct cgacgtgtcc accctcctcg ccgccaacct cggctccgtg 1200 gacgacggct tcttcacccc gggctccgag aagatcctcg ccaccgccgt ggccgtggag 1260 gactecttcg cctccctcta cccgatcaac aagaacctcc cgtcctacct cggcaactcc 1320 atcggccgct acccggagga cacctacaac ggcaacggca actcccaggg caactcctgg 1380 ttcctcgccg tgaccggcta cgccgagctg tactaccgcg ccatcaagga gtggatcggc 144 0 aacggcggcg tgaccgtgtc ctccatctcc ctcccgttct tcaagaagtt cgactcctcc 1500 gccacctccg gcaagaagta caccgtgggc acctccgact tcaacaacct cgcccagaac 1560 atcgccctcg ccgccgaccg cttcctctcc accgtgcagc tccacgccca caacaacggc 1620 tccctcgccg aggagttcga ccgcaccacc ggcctctcca ccggcgcccg cgacctcacc 1680 tggtcccacg cctccctcat csccgcctcc tacgccaagg ccggcgcccc ggccgcc 1737 <br><br> c210&gt; SI &lt;211&gt; 439 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220» <br><br> &lt;223&gt; synthetic <br><br> &lt;400&gt; 51 <br><br> Met <br><br> Ala Lys <br><br> His <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Met <br><br> Cys <br><br> Trp <br><br> Cys <br><br> Ser <br><br> Leu <br><br> Leu <br><br> Val Leu <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> *1 <br><br> V CIA. <br><br> Leu Leu <br><br> C\/c ~~ <br><br> TjOij <br><br> 01 y <br><br> Ser <br><br> Gin <br><br> Leu <br><br> Ala <br><br> Gin <br><br> Ser <br><br> Gin <br><br> Val <br><br> Leu Phe <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Gin <br><br> Gly Phe <br><br> Asn <br><br> Trp <br><br> Glu <br><br> Ser <br><br> Trp <br><br> Lys <br><br> Lys <br><br> Gin Gly <br><br> Gly <br><br> Trp <br><br> Tyr Asn <br><br> 35 <br><br> 40 <br><br> 45 <br><br> Tyr <br><br> Leu Leu <br><br> Gly <br><br> Arg <br><br> Val <br><br> Asp <br><br> Asp lie <br><br> Ala <br><br> Ala <br><br> Thr <br><br> Gly <br><br> Ala <br><br> Thr His <br><br> 50 <br><br> 55 <br><br> 60 <br><br> Val <br><br> Trp Leu <br><br> Pro <br><br> Gin <br><br> Pro <br><br> Ser <br><br> His <br><br> Ser <br><br> Val <br><br> Ala <br><br> Pro <br><br> Gin <br><br> Gly <br><br> Tyr Met <br><br> 65 <br><br> 70 <br><br> 75 <br><br> 80 <br><br> Pro <br><br> Gly Arg Leu <br><br> Tyr <br><br> Asp <br><br> Leu <br><br> Asp Ala <br><br> Ser <br><br> Lys <br><br> Tyr <br><br> Gly <br><br> Thr <br><br> His Ala <br><br> 85 <br><br> 90 <br><br> 95 <br><br> Glu <br><br> Leu Lys <br><br> Ser <br><br> Leu <br><br> Thr <br><br> Ala <br><br> Ala <br><br> Phe <br><br> His <br><br> Ala <br><br> Lys <br><br> Gly <br><br> Val <br><br> Gin Cys <br><br> 100 <br><br> 105 <br><br> 110 <br><br> Val <br><br> Ala Asp <br><br> Val <br><br> Val lie <br><br> Asn <br><br> His <br><br> Arg <br><br> Cys <br><br> Ala <br><br> Asp <br><br> Tyr <br><br> Lys <br><br> Asp Gly <br><br> 115 <br><br> 120 <br><br> 125 <br><br> Arg <br><br> Gly lie <br><br> Tyr <br><br> Cys val <br><br> Phe <br><br> Glu <br><br> Gly <br><br> Gly <br><br> Thr <br><br> Pro <br><br> Asp <br><br> Ser <br><br> Arg Leu <br><br> 130 <br><br> 135 <br><br> 140 <br><br> Asp <br><br> Trp Gly Pro <br><br> Asp <br><br> Met <br><br> He <br><br> Cys <br><br> Ser <br><br> Asp <br><br> Asp <br><br> Thr <br><br> Gin <br><br> Tyr <br><br> Ser Asn <br><br> 14 5 <br><br> 150 <br><br> 155 <br><br> 160 <br><br> Gly <br><br> Arg Gly His <br><br> Arg <br><br> Asp <br><br> Thr <br><br> Gly Ala <br><br> Asp <br><br> Phe <br><br> Ala <br><br> Ala <br><br> Ala <br><br> Pro Asp <br><br> 225 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 165 <br><br> 170 <br><br> 175 <br><br> lie <br><br> Asp <br><br> His <br><br> Leu <br><br> Asn <br><br> Pro <br><br> Arg <br><br> Val <br><br> Gin <br><br> Gin <br><br> Glu <br><br> Leu <br><br> Ser Asp <br><br> Trp <br><br> Leu <br><br> 180 <br><br> 185 <br><br> 190 <br><br> Asn Trp Leu Lye <br><br> Ser <br><br> ASp <br><br> Leu <br><br> Gly <br><br> Phe <br><br> Asp <br><br> Gly Trp Arg Leu <br><br> Asp <br><br> Phe <br><br> 195 <br><br> 200 <br><br> 205 <br><br> Ala <br><br> Lys <br><br> Gly Tyr <br><br> Ser <br><br> Ala <br><br> Ala <br><br> Val <br><br> Ala <br><br> Lys val <br><br> Tyr <br><br> Val <br><br> Asp <br><br> Ser <br><br> Thr <br><br> 210 <br><br> 215 <br><br> 220 <br><br> Ala <br><br> Pro <br><br> Thr <br><br> Phe val val <br><br> Ala <br><br> Glu lie <br><br> Trp <br><br> Ser <br><br> Ser <br><br> Leu <br><br> His <br><br> Tyr <br><br> Asp <br><br> 225 <br><br> 230 <br><br> 235 <br><br> 240 <br><br> Gly Asn Gly Glu <br><br> Pro <br><br> Ser <br><br> Ser <br><br> Asn <br><br> Gin <br><br> Asp <br><br> Ala <br><br> Asp <br><br> Arg <br><br> Gin <br><br> Glu <br><br> Leu <br><br> 245 <br><br> 250 <br><br> 255 <br><br> val <br><br> Asn <br><br> Trp <br><br> Ala 260 <br><br> Gin <br><br> Ala <br><br> Val <br><br> Gly <br><br> Gly 265 <br><br> Pro <br><br> Ala <br><br> Ala <br><br> Ala <br><br> Phe 270 <br><br> Asp <br><br> Phe <br><br> Thr <br><br> Thr <br><br> Lys 275 <br><br> Gly <br><br> Val <br><br> Leu <br><br> Gin <br><br> Ala 280 <br><br> Ala <br><br> Val <br><br> Gin <br><br> Gly <br><br> Glu 285 <br><br> Leu <br><br> Trp <br><br> Arg <br><br> Met <br><br> Lys <br><br> Asp Gly <br><br> Asn <br><br> Gly <br><br> Lys <br><br> Ala <br><br> Pro <br><br> Gly <br><br> Met lie <br><br> Gly Trp <br><br> Leu <br><br> Pro <br><br> 290 <br><br> 295 <br><br> 300 <br><br> Glu <br><br> Lys <br><br> Ala <br><br> Val <br><br> Thr <br><br> Phe <br><br> Val <br><br> Asp <br><br> Asn <br><br> His <br><br> Asp <br><br> Thr Gly <br><br> Ser <br><br> Thr <br><br> Gin <br><br> 305 <br><br> 310 <br><br> 315 <br><br> 320 <br><br> Asn <br><br> Ser <br><br> Trp <br><br> Pro <br><br> Phe 325 <br><br> Pro <br><br> Ser <br><br> Asp <br><br> Lys <br><br> Val 330 <br><br> Met <br><br> Gin <br><br> Gly <br><br> Tyr <br><br> Ala 335 <br><br> Tyr lie <br><br> Leu <br><br> Thr <br><br> His 340 <br><br> Pro <br><br> Gly <br><br> Thr <br><br> Pro <br><br> Cys 345 <br><br> lie <br><br> Phe <br><br> Tyr <br><br> Asp <br><br> His 350 <br><br> val <br><br> Phe <br><br> ASP <br><br> Trp <br><br> Asn 355 <br><br> Leu <br><br> Lys <br><br> Gin <br><br> Glu lie <br><br> 360 <br><br> Ser <br><br> Ala <br><br> Leu <br><br> Ser <br><br> Ala 365 <br><br> Val <br><br> Arg <br><br> Ser <br><br> Arg <br><br> Asn Gly lie <br><br> His <br><br> Pro <br><br> Gly <br><br> Ser <br><br> Glu <br><br> Leu <br><br> Asn lie <br><br> Leu <br><br> Ala <br><br> Ala <br><br> Asp <br><br> 370 <br><br> 375 <br><br> 380 <br><br> Gly Asp <br><br> Leu <br><br> Tyr <br><br> Val <br><br> Ala <br><br> Lys <br><br> He <br><br> Asp <br><br> Asp <br><br> Lys <br><br> Val lie <br><br> Val <br><br> Lys lie <br><br> 385 <br><br> 390 <br><br> 395 <br><br> 400 <br><br> Gly <br><br> Ser Arg <br><br> Tyr <br><br> Asp <br><br> Val <br><br> Gly <br><br> Asn <br><br> Leu <br><br> He <br><br> Pro <br><br> Ser <br><br> Asp <br><br> Phe <br><br> His <br><br> Ala <br><br> 405 <br><br> 410 <br><br> 415 <br><br> Val <br><br> Ala <br><br> His <br><br> Gly 420 <br><br> Asn <br><br> Asn <br><br> Tyr <br><br> Cys <br><br> Val 425 <br><br> Trp <br><br> Glu <br><br> Lys <br><br> His <br><br> Gly 430 <br><br> Leu <br><br> Arg <br><br> Val Pro Ala Gly Arg His His 435 <br><br> &lt;210&gt; 52 &lt;211&gt; 1320 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 52 <br><br> atggcgaagc acttggctgc catgtgctgg ttgggctccc agctggccca atcccaggtc aagaagcaag gtgggtggta caactacctc ggggccacgc acgtctggct cccgcagccg cccggccggc tctacgacct ggacgcgtcc ctcaccgcgg cgttccacgc caagggcgtc cgctgcgccg actacaagga cggccgcggc gacagccgcc tcgactgggg ccccgacatg tgcagcctcc tagtgcttgt actgctctgc 60 ctcttccagg ggttcaactg ggagtcgtgg 120 ctggggcggg tggacgacat cgccgcgacg 180 tcgcactcgg tggcgccgca ggggtacatg 240 aagtacggca cccacgcgga gctcaagtcg 300 cagtgcgtcg ccgacgtcgt gatcaaccac 360 atctactgcg tcttcgaggg cggcacgccc 420 atctgcagcg acgacacgca gtactccaac 480 226 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> gggcgcgggc accgcgacac gggggecgac aacccgcgcg tgcagcagga gctctcggac ttcgacggct ggcgcctcga cttcgccaag gCcgacagca ccgcccccac cttcgtcgtc ggcaacggcg agccgtccag caaccaggac caggcggtgg gcggccccgc cgcggcgttc gccgtccagg gcgagctgtg gcgcatgaag ggctggctgc cggagaaggc cgtcacgttc aactcgtggc cattcccctc cgacaaggtc ccaggaactc catgcatctt ctacgaccac agcgcgctgt ctgcggtgag gtcaagaaac ctcgccgccg acggggatct ctacgtcgcc gggtcacggt acgacgtcgg gaacctgatc aacaactact gcgtttggga gaagcacggt ttegccgccg cgcccgacat cgaccacctc 540 tggctcaact ggctcaagtc cgacctcggc 600 ggctactccg ccgccgtcgc caaggtgtac S60 gccgagatat ggagctccct ccactacgac 720 gccgacaggc aggagctggt caactgggcg 780 gacttcacca ccaagggcgt gctgcaggcg 840 gacggcaacg gcaaggcgcc cgggatgatc 900 gtcgacaacc acgacaccgg ctccacgcag 960 atgcagggct acgcctatat cctcacgcac 102 0 gttttegact ggaacctgaa gcaggagatc 1080 gggatccacc cggggagcga gctgaacatc 1140 aagattgacg acaaggtcat cgtgaagatc 1200 ccctcagact tccacgccgt tgcccctggc 12 60 ctgagagttc cagcggggcg gcaccactag 1320 <br><br> &lt;210&gt; 53 &lt;211&gt; 45 &lt;212&gt; PRT <br><br> c213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 53 <br><br> Ala Thr Gly Gly Thr Thr Thr Thr <br><br> 1 5 <br><br> Val Thr Ser Thr Ser Lys Thr Thr 20 <br><br> Thr Thr Ser Ser Thr Ser Cys Thr 35 40 <br><br> Ala Thr Thr Thr Gly Ser Gly Gly <br><br> 10 15 <br><br> Thr Thr Ala Ser Lys Thr Ser Thr 25 30 <br><br> Thr Pro Thr Ala Val 45 <br><br> &lt;210&gt; 54 &lt;211&gt; 137 &lt;212&gt; DN&amp; <br><br> «213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 54 <br><br> gccaccggcg gcaccaccac caccgccacc accaccggct ccggcggcgt gacctccacc 60 tccaagacca ccaccaccgc ctccaagacc tccaccacca cctcctccac ctcctgcacc 12 0 accccgaccg ccgtgtc 137 <br><br> &lt;210&gt; 55 &lt;211&gt; 300 &lt;212&gt; PRT <br><br> &lt;213&gt; Pyrococcus furiosus &lt;400&gt; 55 <br><br> lie Tyr Phe Val Glu Lys Tyr His Thr Ser Glu Asp Lys Ser Thr Ser <br><br> 1 5 10 15 <br><br> Asn Thr Ser Ser Thr Pro Pro Gin Thr Thr Leu Ser Thr Thr Lys Val <br><br> 227 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 20 25 30 <br><br> Leu Lys lie Arg Tyr Pro Asp Asp Gly Glu Trp Pro Gly Ala Pro lie <br><br> 35 40 45 <br><br> Aap Lys Asp Gly Asp Gly Asn Pro Glu Phe Tyr lie Glu He Asn Leu <br><br> 50 55 60 <br><br> Trp Asn rle Leu Asn Ala Thr Gly Phe Ala Glu Met Thr Tyr Asn Leu 65 70 75 SO <br><br> Thr Ser Gly Val Leu His Tyr Val Gin Gin Leu Asp Asn lie Val Leu <br><br> 65 90 95 <br><br> Arg Asp Arg Ser Asn Trp Val His Gly Tyr Pro Glu lie Phe Tyr Gly <br><br> 100 105 110 <br><br> Asn Lys Pro Trp, Asn Ala Asn Tyr Ala Thr Asp Gly Pro He Pro Leu <br><br> 115 120 125 <br><br> Pro Ser Lys Val Ser Asn Leu Thr Asp Phe Tyr Leu Thr lie Ser Tyr <br><br> 130 135 140 <br><br> Lys Leu Glu Pro Lys Asn Gly Leu Pro lie Asn Phe Ala lie Glu Ser 145 150 155 160 <br><br> Trp Leu Thr Arg Glu Ala Trp Arg Thr Thr Gly lie Asn Ser Asp Glu <br><br> 165 170 175 <br><br> Gin Glu Val Met lie Trp lie Tyr Tyr Asp Gly Leu Gin Pro Ala Gly <br><br> 180 185 190 <br><br> Ser Lys Val Lys Glu lie Val Val Pro He He Val Asn Gly Thr Pro <br><br> 195 200 205 <br><br> Val Asn Ala Thr Phe Glu Val Trp Lys Ala Asn lie Gly Trp Glu Tyr <br><br> 210 215 220 <br><br> Val Ala Phe Arg lie Lys Thr Pro lie Lys Glu Gly Thr val Thr lie 225 230 235 240 <br><br> Pro Tyr Gly Ala Phe lie Ser Val Ala Ala Asn lie Ser Ser Leu Pro <br><br> 245 250 255 <br><br> Asn Tyr Thr Glu Leu Tyr Leu Glu Asp Val Glu He Gly Thr Glu Phe <br><br> 260 265 270 <br><br> Gly Thr Pro Ser Thr Thr Ser Ala His Leu Glu Trp Trp lie Thr Asn <br><br> 275 . 280 285 <br><br> lie Thr Leu Thr Pro Leu Asp Arg Pro Leu lie Ser 290 295 300 <br><br> &lt;210&gt; 56 &lt;211&gt; 903 &lt;212&gt; DNA <br><br> &lt;213 &gt; Pyrococcus furiosus &lt;40Q&gt; 56 <br><br> atctacttcg tggagaagta ccacacctcc gaggacaagt ccacccccaa cacctcctcc 60 accccgccgc agaccaccct ctccaccacc aaggtgctca agatccgcta cccggacgac 120 ggcgagtggc ccggcgcccc gatcgacaag gacggcgacg gcaacccgga gttctacatc 180 gagatcaacc tctggaacat cctcaacgcc accggcttcg ccgagatgac ctacaacctc 240 actagtggcg tgctccacta cgtgcagcag ctcgacaaca tcgtgctccg cgaccgctcc 3 00 aactgggtgc acggctaccc ggaaatcttc tacggcaaca agccgtggaa cgccaactac 3 60 gccaccgacg gcccgatccc gctcccgtcc aaggtgtcca acctcaccga cttctacctc 420 accatctcct acaagctcga gccgaagaac ggtctcccga tcaacttcgc catcgagtcc 4 80 tggctcaccc gcgaggcctg gcgcaccacc ggcatcaact ccgacgagca ggaggtgatg 54 0 atctggatct actacgacgg cctccagccc gcgggctcca aggtgaagga gatcgtggtg 600 ccgatcateg tgaacggcac cccggtgaac gccaccttcg aggtgtggaa ggccaacatc 660 ggctgggagt acgtggcctt ccgcatcaag accccgatca aggagggcac cgtgaccatc 72 0 <br><br> 228 <br><br> WO 2005/096804 <br><br> PCTYUS2004/007182 <br><br> ccgtacggcg ccttcatctc cgtggccgcc aagtacctcg aggacgtgga gatcggcacc cacctcgagt ggtggatcac caacatcacc tag e210&gt; 57 c211s 387 &lt;212&gt; PRT <br><br> &lt;213&gt; Thermus flavus aacatctcct ccctcccgaa ctacaccgag 780 gagttcggca ccccgtccac cacctccgcc 84 0 ctcaccccgc tcgaccgccc gctcatctcc 900 <br><br> 903 <br><br> &lt;4 00 &gt; 57 <br><br> Met Tyr Glu Pro Lys Pro Glu His Arg Phe Thr Phe Gly Leu Trp Thr <br><br> 1 5 10 15 <br><br> Val Asp Asn Val Asp Arg Asp Pro Phe Gly Asp Thr Val Arg Glu Arg <br><br> 20 25 30 <br><br> Leu Asp Pro Val Tyr Val Val His Lys Leu Ala Glu Leu Gly Ala Tyr <br><br> 35 40 45 <br><br> Gly Val Asn Leu His Asp Glu Asp Leu lie Pro Arg Gly Thr Pro Pro <br><br> 50 55 60 <br><br> Gin Glu Arg Asp Gin lie Val Arg Arg Phe Lys Lys Ala Leu Asp Glu 65 70 75 80 <br><br> Thr Val Leu Lys Val Pro Met Val Thr Ala Asn Leu Phe Ser Glu Pro <br><br> 85 90 95 <br><br> Ala Phe Arg Asp Gly Ala Ser Thr Thr Arg Asp Pro Trp Val Trp Ala <br><br> 100 105 110 <br><br> Tyr Ala Leu Arg Lys Ser Leu Glu Thr Met Asp Leu Gly Ala Glu Leu <br><br> 115 120 125 <br><br> Gly Ala Glu lie Tyr Met Phe Trp Met Val Arg Glu Arg Ser Glu Val <br><br> 130 135 140 <br><br> Glu Ser Thr Asp Lys Thr Arg Lys Val Trp Asp Trp Val Arg Glu Thr 145 150 155 160 <br><br> Leu Asn Phe Met Thr Ala Tyr Thr Glu Asp Gin Gly Tyr Gly Tyr Arg <br><br> 165 170 175 <br><br> Phe Ser Val Glu Pro Lys Pro Asn Glu Pro Arg Gly Asp lie Tyr Phe <br><br> 180 185 190 <br><br> Thr Thr Val Gly Ser Met Ha Leu lie His Thr Leu Asp Arg Pro <br><br> 195 200 205 <br><br> Glu Arg Phe Gly Leu Asn Pro Glu Phe Ala His Glu Thr Met Ala Gly <br><br> 210 215 220 <br><br> Leu Asn Phe Asp His Ala Val Ala Gin Ala Val Asp Ala Gly Lys Leu 225 230 235 240 <br><br> Phe His lie Asp Leu Asn Asp Gin Arg Met Ser Arg Phe Asp Gin Asp <br><br> 245 250 255 <br><br> Leu Arg Phe Gly Ser Glu Asn Leu Lys Ala Gly Phe Phe Leu Val Asp <br><br> 260 265 270 <br><br> Leu Leu Glu Ser Ser Gly Tyr Gin Gly Pro Arg His Phe Glu Ala His <br><br> 275 280 285 <br><br> Ala Leu Arg Thr Glu Asp Glu Glu Gly Val Trp Thr Phe Val Arg Val <br><br> 290 295 300 <br><br> Cys Met Arg Thr Tyr Leu He lie Lys Val Arg Ala Glu Thr Phe Arg 305 310 315 320 <br><br> Glu Asp Pro Glu Val Lys Glu Leu Leu Ala Ala Tyr Tyr Gin Glu Asp <br><br> 325 330 335 <br><br> Pro Ala Thr Leu Ala Leu Leu Asp Pro Tyr Ser Arg Glu Lys Ala Glu <br><br> 229 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 340 <br><br> Ala Leu Lys Arg Ala Glu Leu Pro 355 360 <br><br> Tyr Ala Leu Glu Arg Leu Asp Gin <br><br> 370 375 <br><br> Val Arg Gly 385 <br><br> 345 350 <br><br> Leu Glu Thr Lys Arg Arg Arg Gly 365 <br><br> Leu Ala Val Glu Tyr Leu Leu Gly 380 <br><br> &lt;210&gt; 58 &lt;211&gt; 978 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;2 20 &gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 58 <br><br> atggggaaga acggcaacct gtgctgcttc tctctgctgc tgcttcttct cgccgggttg 60 <br><br> gcgtccggcc atcaaatcta cttcgtggag aagtaccaca cctccgagga caagtccacc 120 <br><br> tccaacacct cctccacccc gccgcagacc accctctcca ccaccaaggt gctcaagatc 180 <br><br> cgctacccgg acgacggtga gtggcccggc gccccgatcg acaaggacgg cgacggcaac 240 <br><br> ccggagttct acatcgagat caacctctgg aacatcctca acgccaccgg cttcgccgag 300 <br><br> atgacctaca acctcactag tggcgtgctc cactacgtgc agcagctcga caacatcgtg 360 <br><br> ctccgcgacc gctccaactg ggtgcacggc tacccggaaa tcttctacgg caacaagccg 420 <br><br> tggaacgcca actacgccac cgacggcccg atcccgctcc cgtccaaggt gtccaacctc 480 <br><br> accgacttct acctcaccat ctcctacaag ctcgagccga agaacggtct cccgatcaac 540 <br><br> ttcgccatcg agtcctggct cacccgcgag gcctggcgca ccaccggcat caactccgac 600 <br><br> gagcaggagg tgatgatctg gatctactac gacggcctcc agcccgcggg ctccaaggtg 660 <br><br> aaggagatcg tggtgccgat catcgtgaac ggcaccccgg tgaacgccac cttcgaggtg 720 <br><br> tggaaggcca acatcggctg ggagtacgtg gccttccgca tcaagacccc gatcaaggag 780 <br><br> ggcaccgtga ccatcccgta eggcgccttc atctccgtgg ccgccaacat ctcctccctc 840 <br><br> ccgaactaca ccgagaagta cctcgaggac gtggagatcg gcaccgagtt cggcaccccg 900 <br><br> tccaccacct ccgcccacct cgagtggtgg atcaccaaca tcaccctcac cccgctcgac 960 cgcccgctca tctcctag 978 <br><br> &lt;210&gt; 59 c211&gt; 1920 &lt;212&gt; DNA <br><br> &lt;213&gt; Aspergillus niger &lt;400&gt; 59 <br><br> atgtccttcc gctccctcct cgccctctcc ggcctcgtgt gcaccggcct cgccaacgtg 60 atctccaagc gcgccaccct cgactcctgg ctctccaacg aggccaccgt ggcccgcacc 12 0 gccatcctca acaacatcgg cgccgacggc gcctgggtgt ccggcgccga ctccggcatc 18 0 gtggtggcct ccccgtccac cgacaacccg gactacttct acacctggac ccgcgactcc 24 0 ggcctcgtgc tcaagaccct cgtggacctc ttccgcaacg gcgacacctc cctcctctcc 300 accatcgaga actacatctc cgcccaggcc atcgtgcagg gcatctccaa cccgtccggc 360 gacctctcct ccggcgccgg cctcggcgag ccgaagttca acgtggacga gaccgcctac 420 <br><br> 230 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> accggccccc ggggccgccc gcagcgcgac ggcttcggcc agtggctcct cgacaacggc ccgctcgtgc gcaacgacct ctcctacgtg ctctgggagg aggtgaacgg ctcctccttc gtggagggct ccgccttcgc caccgccgtg gccccggaga tcctctgcta cctccagtcc ttcgactcct cccgctccgg caaggacgcc gacccggagg ccgcctgcga cgactccacc aaccacaagg aggtggtgga ctccttccgc gactccgagg ccgtggccgt gggccgctac tggttcctct gcacectcgc cgccgccgag aagcagggct ccctcgaggt gaccgacgtg gacgccgcca ccggcaccta ctcctcctcc gtgaagacct tcgccgacgg cttcgtgtcc tccatgtccg agcagtacga caagtccgac tggtcctacg ccgccctcet caccgccaac tggggcgaga cctccgcctc ctccgtgccg acctactcct ccgtgaccgt gacctcctgg accaccgcca ccccgaccgg ctccggctcc gcctccaaga cctccacctc cacctcctcc gtgaccttcg acctcaccgc caccaccacc atctcccagc tcggcgactg ggagacctcc acctcctccg acccgctctg gtacgtgacc tacaagttca tccgcatcga gtccgacgac gagtacaccg tgccgcaggc ctgcggcacc ggcccggccc tccgcgccac cgccatgacc 4 80 tacacctcca ccgccaccga catcgtgtgg 540 gcccagtact ggaaccagac cggctacgac 600 ttcaccatcg ccgtgcagca ccgcgccctc 660 ggctcctcct gctcctggtg cgactcccag 720 ttctggaccg gctccttcat cctcgccaac 780 aacaccctcc tcggctccat ccacaccttc 840 ttccagccgt gctccccgcg cgccctcgcc 900 tccatctaca ccctcaacga cggcctctcc 960 ccggaggaca cctactacaa cggcaacccg 1020 cagctctacg acgccctcta ccagtgggac 1080 tccctcgact tcttcaaggc cctctactcc 1140 tcctccacct actcctccat cgtggacgcc 1200 atcgtggaga cccacgccgc ctccaacggc 1260 ggcgagcagc tctccgcccg cgacctcacc 1320 aaccgccgca actccgtggt gccggcctcc 1380 ggcacctgcg ccgccacctc cgccatcggc 1440 ccgtccatcg tggccaccgg cggcaccacc 1500 gtgacctcca cctccaagac caccgccacc 1560 acctcctgca ccaccccgac cgccgtggcc 1620 tacggcgaga acatctacct cgtgggctcc 16B0 gacggcatcg ccctctccgc cgacaagtac 1740 gtgaccctcc cggccggcga gtccttcgag 1800 tccgtggagt gggagtccga cccgaaccgc I860 tccaccgcca ccgtgaccga cacctggcgc 1920 <br><br> &lt;210&gt; 60 &lt;211&gt; 6 &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic &lt;400&gt; 60 <br><br> Swir Glu Lys As*"4 Glu i 1 5 <br><br> &lt;210&gt; 61 <br><br> &lt;211&gt; 561 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Xylanase BD7436 <br><br> c220&gt; <br><br> &lt;221&gt; CDS &lt;2225 (1) .. (561) <br><br> &lt;400&gt; 61 <br><br> atg get age ace ttc tac tgg cat ttg tgg acc gac ggc ate ggc acc 48 <br><br> Met Ala Ser Thr Phe Tyr Trp His Leu Trp Thr Asp Gly lie Gly Thr <br><br> 231 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 15 10 15 <br><br> gtg aac get acc aac ggc age gac ggc aac tac age gtg age tgg age 96 <br><br> Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 25 30 <br><br> aac tgc ggc aac ttc gtg gtg ggc aag ggc tgg acc acc ggc age get 144 <br><br> Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala 35 40 45 <br><br> acc agg gtg ate aac tac aac get cat get ttc age gtg gtg ggc aac 192 <br><br> Thr Arg Val lie Asn Tyr Asn Ala His Ala Phe Ser Val Val Gly Asn 50 55 SO <br><br> get tac ttg get ttg tac ggc tgg acc agg aac age ttg ate gag tac 240 <br><br> Ala Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu lie Gin Tyr 65 70 75 80 <br><br> tac gtg gtg gac age tgg ggc acc tac agg cca acc ggc acc tac aag 288 <br><br> Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys 85 90 95 <br><br> ggc acc gtg acc age gac ggc ggc acc tac gac ate tac acc acc acc 336 <br><br> Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp lie Tyr Thr Thr Thr 100 105 110 <br><br> agg acc aac get cca age ate gac ggc aac aac acc acc ttc acc caa 384 <br><br> Arg Thr Asn Ala Pro Ser lie Asp Gly Asn Asn Thr Thr Phe Thr Gin 115 120 125 <br><br> ttc tgg age gtg agg eaa age aag agg cca ate ggc acc aac aac acc 4 32 <br><br> Phe Trp Ser Val Arg Gin Ser Lys Arg Pro lie Gly Thr Asn Asn Thr <br><br> 130 135 140 <br><br> ate acc ttc age aac cat gtg aac get tgg aag age aag ggc atg aac 4B0 <br><br> lie Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 115 150 155 160 <br><br> ttg ggc age age tgg age tac caa gtg ttg get acc gag ggc tac caa 52B <br><br> Leu Gly Ser Ser Trp Ser Tyr Gin Val Leu Ala Thr Glu Gly Tyr Gin 165 170 175 <br><br> age age ggc tac age aac gtg acc gtg tgg tag 561 <br><br> Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180 185 <br><br> &lt;210&gt; <br><br> 62 <br><br> &lt;211&gt; <br><br> 186 <br><br> &lt;212&gt; <br><br> PRT <br><br> &lt;213 &gt; <br><br> Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; <br><br> Synthetic Construct <br><br> &lt;400&gt; <br><br> 62 <br><br> 232 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Met Ala Ser Thr Phe Tyr Trp His Leu Trp Thr Asp Gly lie Gly Thr 15 10 15 <br><br> 5 Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 25 30 <br><br> Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala 10 35 40 45 <br><br> Thr Arg Val lie Asn Tyr Asn Ala His Ala Phe Ser Val Val Gly Asn 50 55 60 <br><br> 15 <br><br> Ala Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu lie Glu Tyr 65 70 75 80 <br><br> 20 <br><br> Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys 85 90 95 <br><br> 25 Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp He Tyr Thr Thr Thr 100 105 110 <br><br> Arg Thr Asn Ala Pro Ser lie Asp Gly Asn Asn Thr Thr Phe Thr Gin 30 115 120 125 <br><br> Phe Trp Ser Val Arg Gin Ser Lys Arg Pro lie Gly Thr Asn Asn Thr 130 135 140 <br><br> 35 <br><br> He Thr Phs Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 145 150 155 160 <br><br> 40 <br><br> Leu Gly Ser Ser Trp Ser Tyr Gin Val Leu Ala Thr Glu Gly Tyr Gin 165 170 175 <br><br> 45 Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180 185 <br><br> &lt;210&gt; <br><br> 63 <br><br> 50 <br><br> &lt;2ll&gt; <br><br> 561 <br><br> &lt;212&gt; <br><br> DNA <br><br> &lt;213&gt; <br><br> Artificial Sequence <br><br> &lt;220&gt; <br><br> 55 <br><br> &lt;223&gt; <br><br> Xylanase BD6002A <br><br> 233 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> &lt;220&gt; <br><br> &lt;221&gt; CDS &lt;222&gt; (1)..(561) <br><br> 5 &lt;400=. 63 <br><br> atg get age acc gac tac tgg caa aac tgg acc gac ggc ggc ggc acc 48 <br><br> Met Ala Ser Thr Asp Tyr Trp Gin Asn Trp Thr Asp Gly Gly Gly Thr <br><br> 15 10 15 <br><br> 10 gtg aac get acc aac ggc age gac ggc aac tac age gtg age tgg age 96 <br><br> Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 2S 30 <br><br> aac tgc ggc aac ttc gtg gtg ggc aag ggc tgg acc acc ggc age get 144 <br><br> 15 Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala 35 40 45 <br><br> acc agg gtg ate aac tac aac get ggc get ttc age cca age ggc aac 192 <br><br> Thr Arg Val lie Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn 20 50 55 SO <br><br> ggc tac ttg get ttg tac ggc tgg acc agg aac age ttg ate gag tac 240 <br><br> Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu lie Glu Tyr <br><br> 65 70 75 80 <br><br> 25 <br><br> tac gtg gtg gac age tgg ggc acc tac agg cca acc ggc acc tac aag 2 88 <br><br> Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys <br><br> 85 90 95 <br><br> 30 ggc acc gtg acc age gac ggc ggc acc tac gac ate tac acc acc acc 336 <br><br> Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp He Tyr Thr Thr Thr 100 105 110 <br><br> agg acc aac get cca age ate gac ggc aac aac acc acc ttc acc caa 3 84 <br><br> 35 Arg Thr Asn Ala Pro Ser lie Asp Gly Asn Asn Thr Thr Phe Thr Gin 115 120 125 <br><br> ttc tgg age gtg agg caa age aag agg cca ate ggc acc aac aac acc 4 32 <br><br> Phe Trp Ser Val Arg Gin Ser Lys Arg Pro lie Gly Thr Asn Asn Thr <br><br> 40 130 135 140 <br><br> ate acc ttc age aac cat gtg aac get tgg aag age aag ggc atg aac 480 <br><br> lie Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 145 . 150 155 160 <br><br> 45 <br><br> ttg ggc age age tgg age tac caa gtg ttg get acc gag ggc tac caa 52 8 <br><br> Leu Gly Ser Ser Trp Ser Tyr Gin Val Leu Ala Thr Glu Gly Tyr Gin 165 170 175 <br><br> 50 age age ggc tac age aac gtg acc gtg tgg tag 561 <br><br> Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180 185 <br><br> 55 «210&gt; 64 &lt;211&gt; 186 &lt;212&gt; PRT <br><br> 234 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;213&gt; Artificial Sequence &lt;22Q&gt; <br><br> &lt;223&gt; Synthetic Construct &lt;400&gt; 64 <br><br> Met Ala Ser Thr Asp Tyr Trp Gin Asn Trp Thr Asp Gly Gly Gly Thr 15 10 15 <br><br> Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 25 30 <br><br> Asn Cys Gly Asn Phe Val val Gly Lys Gly Trp Thr Thr Gly Ser Ala 35 40 45 <br><br> Thr Arg Val lie Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn 50 55 60 <br><br> Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu lie Glu Tyr 65 70 75 80 <br><br> Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys 85 90 95 <br><br> Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp lie Tyr Thr Thr Thr 100 105 110 <br><br> Arg Thr Asn Ala Pro Ser lie Asp Gly Asn Asn Thr Thr Phe Thr Gin IIS 120 125 <br><br> Phe Trp Ser Val Arg Gin Ser Lys Arg Pro lie Gly Thr Asn Asn Thr 130 135 140 <br><br> lie Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 145 150 155 160 <br><br> Leu Gly Ser Ser Trp Ser Tyr Gin Val Leu Ala Thr Glu Gly Tyr Gin 165 170 175 <br><br> Ser ser Gly Tyr Ser Asn Val Thr Val Trp 180 185 <br><br> &lt;210&gt; 65 *211&gt; 561 <br><br> 235 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Xylanase BD6002B <br><br> &lt; 2 2 0 &gt; <br><br> &lt;221&gt; CDS <br><br> &lt;222 &gt; (1) . . (561) <br><br> &lt;400&gt; 65 <br><br> atg gcc tcc acc gac tac tgg cag aac tgg acc gac ggc ggc ggc acc 4 8 <br><br> Met Ala Ser Thr Asp Tyr Trp Gin Asn Trp Thr Asp Gly Gly Gly Thr 15 10 15 <br><br> gtg aac gcc acc aac ggc tcc gac ggc aac tac tcc gtg tcc tgg tcc 96 <br><br> Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 25 30 <br><br> aac tgc ggc aac ttc gtg gtg ggc aag ggc tgg acc acc ggc tcc gcc 144 <br><br> Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala 35 40 45 <br><br> acc ego gtg ate aac tac aac gcc ggc gcc ttc tcc ccg tcc ggc aac 192 <br><br> Thr Arg Val lie Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn 50 55 60 <br><br> ggc tac ctc gcc ctc tac ggc tgg acc cgc aac tcc ctc ate gag tac 240 <br><br> Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu lie Glu Tyr 65 70 75 80 <br><br> tac gtg gtg gac tcc tgg ggc acc tac cgc ccg acc ggc acc tac aag 288 <br><br> Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys 85 90 95 <br><br> yyc ace gtg acc tcc gac ggc ggc see tac gac ate tac acc acc acc 336 <br><br> Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp lie Tyr Thr Thr Thr 100 105 110 <br><br> cgc acc aac gcc ccg tcc ate gac ggc aac aac acc acc ttc acc cag 3 84 <br><br> Arg Thr Asn Ala Pro Ser lie Asp Gly Asn Asn Thr Thr Phe Thr Gin 115 120 125 <br><br> ttc tgg tcc gtg cgc cag tcc aag cgc ccg ate ggc acc aac aac acc 432 <br><br> Phe Trp Ser Val Arg Gin Ser Lys Arg Pro lie Gly Thr Asn Asn Thr 130 135 140 <br><br> ate acc ttc tcc aac cac gtg aac gcc tgg aag tcc aag ggc atg aac 4 80 <br><br> lie Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser.Lys Gly Met Asn 145 150 155 160 <br><br> ctc ggc tcc tcc tgg tcc tac cag gtg ctc gee acc gag ggc tac cag 528 <br><br> Leu Gly Ser Ser Trp Ser Tyr Gin Val Leu Ala Thr Glu Gly Tyr Gin 165 170 175 <br><br> tcc tcc ggc tac tcc aac gtg acc gtg tgg tga 561 <br><br> 236 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 1B0 185 <br><br> 5 <br><br> &lt;210&gt; <br><br> 66 <br><br> &lt;211&gt; <br><br> 186 <br><br> &lt;212&gt; <br><br> PRT <br><br> &lt;213&gt; <br><br> Artificial Sequence <br><br> 10 <br><br> &lt;220&gt; <br><br> &lt;223&gt; <br><br> Synthetic Construct <br><br> &lt;400&gt; <br><br> 66 <br><br> 15 Met Ala Ser Thr Asp Tyr Trp Gin Asn Trp Thr Asp Gly Gly Gly Thr 15 10 15 <br><br> Val Asn Ala Thr Asn Gly Ser Asp Gly Asn Tyr Ser Val Ser Trp Ser 20 20 25 30 <br><br> Asn Cys Gly Asn Phe Val Val Gly Lys Gly Trp Thr Thr Gly Ser Ala 35 40 45 <br><br> 25 <br><br> Thr Arg Val lie Asn Tyr Asn Ala Gly Ala Phe Ser Pro Ser Gly Asn 50 55 60 <br><br> 30 <br><br> Gly Tyr Leu Ala Leu Tyr Gly Trp Thr Arg Asn Ser Leu lie Glu Tyr 65 70 75 80 <br><br> 35 Tyr Val Val Asp Ser Trp Gly Thr Tyr Arg Pro Thr Gly Thr Tyr Lys <br><br> 85 90 95 <br><br> Gly Thr Val Thr Ser Asp Gly Gly Thr Tyr Asp lie Tyr Thr Thr Thr 40 100 105 110 <br><br> Arg Thr Asn Ala Pro Ser lie Asp Gly Asn Asn Thr Thr Phe Thr Gin 115 120 125 <br><br> 45 <br><br> Phe Trp Ser Val Arg Gin Ser Lys Arg Pro lie Gly Thr Asn Asn Thr 130 135 140 <br><br> so lie Thr Phe Ser Asn His Val Asn Ala Trp Lys Ser Lys Gly Met Asn 145 150 155 160 <br><br> 55 Leu Gly Ser Ser Trp Ser Tyr Gin Val Leu Ala Thr Glu Gly Tyr Gin <br><br> 1S5 170 175 <br><br> 237 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ser Ser Gly Tyr Ser Asn Val Thr Val Trp 180 185 <br><br> &lt;210&gt; 67 <br><br> &lt;211&gt; 2071 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Oryza sativa <br><br> &lt;220&gt; <br><br> &lt;221&gt; misc_feature &lt;222&gt; (1).. (2071) <br><br> &lt;223&gt; Promoter <br><br> &lt;400&gt; 67 <br><br> tccatgctgt cctactactt gcttcatccc cttctacatt ttgttctggt ttttggcctg 60 <br><br> catttcggat catgatgtat gtgatttcca atctgctgca atatgaatgg agactctgtg 120 <br><br> ctaaccatca acaacatgaa atgcttatga ggcctttgct gagcagccaa tcttgcctgt 180 <br><br> gtttatgtct tcacaggccg aattcctctg ttttgttttt caccctcaat atttggaaac 240 <br><br> atttatctag gttgtttgtg tccaggccta taaatcatac atgatgttgt cgtattggat 300 <br><br> gtgaatgtgg tggcgtgttc agtgcettgg atttgagttt gatgagagtt gcttctgggt 360 <br><br> caccactcac cattatcgat gctcctcttc agcataaggt aaaagtcttc cctgtttacg 420 <br><br> ttattttacc cactatggtt gcttgggttg gttttttcct gattgcttat gccatggaaa 480 <br><br> gtcatttgat atgttgaact tgaattaact gtagaattgt atacatgttc catttgtgtt 540 <br><br> gtacttcctt cttttctatt agtagcctca gatgagtgtg aaaaaaacag attatataac 600 <br><br> ttgccctata aatcatttga aaaaaatatt gtacagtgag aaattgatat atagtgaatt 660 <br><br> tttaagagca tgttttccta aagaagtata tattttctat gtacaaaggc cattgaagta 720 <br><br> attgtagata caggataatg tagacttttt ggacttacac tgctaccttt aagtaacaat 780 <br><br> catgagcaat agtgttgcaa tgatatttag gctgcattcg tttactctct tgatttccat 840 <br><br> gagcacgctt cccaaactgt taaactctgt gttttttgcc aaaaaaaaat gcataggaaa 900 <br><br> gttgctttta aaaaatcata tcaatccatt ttttaagtta tagctaatac ttaattaatc 960 <br><br> atgcgctaat aagtcactct gtttttcgta ctagagagat tgttttgaac cagcactcaa 1020 <br><br> gaacacagcc ttaacccagc caaataatgc tacaacctac cagtccacac ctcttgtaaa 1080 <br><br> gcatttgttg catggaaaag ctaagatgac agcaacctgt tcaggaaaac aactgacaag 1140 <br><br> gtcataggga gagggagctt ttggaaaggt gccgtgcagt tcaaacaatt agttagcagt 1200 <br><br> 238 <br><br> 10 <br><br> 20 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> agggtgttgg tttttgctca cagcaataag aagttaatca tggtgtaggc aacccaaata 1260 <br><br> aaacaccaaa atatgcacaa ggcagtttgt tgtatcctgt agtacagaca aaactaaaag 1320 <br><br> taatgaaaga agatgtggtg ttagaaaagg aaacaatatc atgagtaatg tgtgggcatt 1380 <br><br> atgggaccac gaaataaaaa gaacattttg atgagtcgtg tatcctcgat gagcctcaaa 1440 <br><br> agttctctca ccccggataa gaaaccctta agcaatgtgc aaagtttgca ttctccactg 1500 <br><br> acataatgca aaataagata tcatcgatga catagcaact catgcatcat atcatgcctc 1560 <br><br> tctcaaccta ttcattccta ctcatctaca taagtatctt cagctaaatg ttagaacata 1620 <br><br> 15 aacccataag tcacgtttga tgagtattag gcgtgacaca tgacaaatca cagactcaag 1680 <br><br> caagataaag caaaatgatg tgtacataaa actccagagc tatatgtcat attgcaaaaa 1740 <br><br> gaggagagct tataagacaa ggcatgacec acaaaaattc atttgccttt egtgtcaaaa 1800 <br><br> agaggagggc tttacattat ccatgtcata ttgcaaaaga aagagagaaa gaacaacaca 1860 <br><br> atgctgcgtc aattatacat atctgtatgt ccatcattat tcatccacct ttcgtgtacc 1920 <br><br> 25 acacttcata tatcatgagt cacttcatgt ctggacatta acaaactcta tcttaacatt 1980 <br><br> tagatgcaag agcctttatc tcactataaa tgcacgatga tttctcattg tttctcacaa 2040 <br><br> aaagcattca gttcattagt cctacaacaa c 2071 <br><br> 30 <br><br> &lt;210&gt; 58 &lt;211&gt; 79 &lt;212&gt; PRT 35 &lt;213&gt; Zea mays <br><br> &lt;220&gt; <br><br> c221&gt; SIGNAL <br><br> 40 &lt;222&gt; &lt;1)..(79) <br><br> &lt;223 &gt; Maize waxy signal sequence. <br><br> &lt;40Q=&gt; 68 <br><br> 45 Met Leu Ala Ala Leu Ala Thr Ser Gin Leu Val Ala Thr Arg Ala Gly 15 10 15 <br><br> Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gin Gly 50 20 25 30 <br><br> Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg 35 40 45 <br><br> 55 <br><br> Thr Ser Ala Arg Ala Ala Pro Arg His Gin His Gin Gin Ala Arg Arg <br><br> 239 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> 50 55 60 <br><br> Cly Ala Arg Phe Pro Ser Leu Val Val Cys -Ala Ser Ala Gly Ala 65 70 75 <br><br> &lt;210? 69 <br><br> &lt;211&gt; 1005 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic Bromelain Sequence <br><br> &lt;220s <br><br> &lt;221&gt; CDS <br><br> &lt;222&gt; (1) . . (1005) <br><br> &lt;223&gt; Synthetic Bromelain <br><br> &lt;400&gt; 69 <br><br> atg gcc tgg aag gtg cag gtg gtg ttc Met Ala Trp Lys Val Gin Val Val Phe 1 5 <br><br> ctc ttc ctc ttc ctc tgc gtg 48 <br><br> Leu Phe Leu Phe Leu Cys Val 10 15 <br><br> atg tgg gcc tcc ccg tcc gcc gcc tcc gcg gac gag ccg tcc gac ccg 96 <br><br> Met Trp Ala Ser Pro Ser Ala Ala Ser Ala Asp Glu Pro Ser Asp Pro 20 25 30 <br><br> atg atg aag cgc ttc gag gag tgg atg gtg gag tac ggc cgc gtg tac 144 <br><br> Met Met Lys Arg Phe Glu Glu Trp Met Val Glu Tyr Gly Arg Val Tyr 35 40 45 <br><br> aag gac aac gac gag aag Lys Asp Asn Asp Glu Lys <br><br> C A <br><br> gtg aac cac ate gag acc Val Asn His lie Glu Thr 65 70 <br><br> atg cgc cgc ttc cag ate Met Arg Arg Phe Gin lie SS 60 <br><br> ttc aac tcc cgc aac gag Phe Asn Ser Arg Asn Glu 75 <br><br> ttc aag aac aac 192 <br><br> Phe Lys Asn Asn aac tcc tac acc 240 <br><br> Asn Ser Tyr Thr 80 <br><br> ctc ggc ate aac cag ttc acc gac atg acc aac aac gag ttc ate gcc 288 <br><br> Leu Gly lie Asn Gin Phe Thr Asp Met Thr Asn Asn Glu Phe lie Ala 85 90 95 <br><br> cag tac acc ggc ggc ate tcc cgc ccg ctc aac ate gag cgc gag ccg 3 36 <br><br> Gin Tyr Thr Gly Gly lie Ser Arg Pro Leu Asn lie Glu Arg Glu Pro 100 105 110 <br><br> gtg gtg tcc ttc gac gac Val Val Ser Phe Asp Asp 115 <br><br> gac tgg cgc gac tac ggc Asp Trp Arg Asp Tyr Gly 130 <br><br> gtg gac ate tcc gcc gtg Val Asp lie Ser Ala Val 120 <br><br> gcc gtg acc tcc gtg aag Ala val Thr Ser Val Lys 135 140 <br><br> ccg cag tcc ate 384 <br><br> Pro Gin Ser lie <br><br> 125 <br><br> aac cag aac ccg 432 <br><br> Asn Gin Asn Pro <br><br> 240 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> tgc ggc gcc tgc tgg gcc ttc gcc gcc ate gcc acc gtg gag tcc ate 4 80 <br><br> Cys Gly Ala Cys Trp Ala Phe Ala Ala lie Ala Thr Val Glu Ser lie 145 150 155 160 <br><br> cac aag ate aag aag ggc ate ctc gag ccg ctc tcc gag cag cag gtg 528 <br><br> Tyr Lys lie Lys Lys Gly lie Leu Glu Pro Leu Ser Glu Gin Gin Val 165 170 175 <br><br> ctc gac tgc gcc aag ggc tac ggc tgc aag ggc ggc tgg gag ttc cgc S76 <br><br> Leu Asp Cys Ala Lys Gly Tyr Gly Cys Lys Gly Gly Trp Glu Phe Arg 180 185 190 <br><br> gcc ttc gag ttc ate ate tcc aac aag ggc gtg gcc tcc ggc gcc ate 624 <br><br> Ala Phe Glu Phe lie lie Ser Asn Lys Gly Val Ala Ser Gly Ala lie 195 200 205 <br><br> Cac ccg tac aag gcc gcc aag ggc acc tgc aag acc gac ggc gtg ccg 672 <br><br> Tyr Pro Tyr Lys Ala Ala Lys Gly Thr Cys Lys Thr Asp Gly Val Pro 210 215 220 <br><br> aac tcc gcc tac ate acc ggc tac gcc cgc gtg ccg cgc aac aac gag 720 <br><br> Asn Ser Ala Tyr lie Thr Gly Tyr Ala Arg Val Pro Arg Asn Asn Glu 225 230 235 240 <br><br> Ccc tcc atg atg tac gcc gtg tcc aag cag ccg ate acc gtg gcc gtg 768 <br><br> Ser Ser Met Met Tyr Ala Val Ser Lys Gin Pro lie Thr Val Ala Val 245 250 255 <br><br> gac gcc aac gcc aac ttc cag tac tac aag tcc ggc gtg ttc aac ggc 816 <br><br> Asp Ala Asn Ala Asn Phe Gin Tyr Tyr Lys Ser Gly Val Phe Asn Gly 260 265 270 <br><br> ccg tgc ggc acc tcc ctc aac cac gcc gtg acc gcc ate ggc tac ggc 864 <br><br> Pro Cys Gly Thr Ser Leu Asn His Ala Val Thr Ala He Gly Tyr Gly 275 280 285 <br><br> cag gac tcc ate ate tac ccg aag aag tgg ggc gcc aag tgg ggc gag 912 <br><br> Gin Asp Ser lie lie Tyr Pro Lys Lys Trp Gly Ala Lys Trp Gly Glu 290 295 300 <br><br> gcc ggc tac ate cgc atg gcc cgc gac gtg tcc tcc tcc tcc ggc ate 960 <br><br> Ala Gly Tyr lie Arg Met Ala Arg Asp Val Ser Ser Ser Ser Gly He 305 310 315 320 <br><br> Cgc ggc ate gcc ate gac ccg ctc tac ccg acc ctc gag gag tag 1005 <br><br> Cys Gly lie Ala lie Asp Pro Leu Tyr Pro Thr Leu Glu Glu 325 330 <br><br> &lt;210&gt; 70 <br><br> &lt;211 &gt; 334 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Synthetic Construct <br><br> 241 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;400&gt; 70 <br><br> Met Ala Trp Lys Val Gin Val Val Phe Leu Phe Leu Phe Leu Cys Val 15 10 15 <br><br> Met Trp Ala Ser Pro Ser Ala Ala Ser Ala Asp Glu Pro Ser Asp Pro 20 25 30 <br><br> Met Met Lys Arg Phe Glu Glu Trp Met Val Glu Tyr Gly Arg Val Tyr <br><br> 35 40 45 <br><br> Lys Asp Asn Asp Glu Lys Met Arg Arg Phe Gin lie Phe Lys Asn Asn <br><br> 50 55 60 <br><br> Val Asn His lie Glu Thr Phe Asn Ser Arg Asn Glu Asn Ser Tyr Thr 65 70 75 80 <br><br> Leu Gly lie Asn Gin Phe Thr Asp Met Thr Asn Asn Glu Phe lie Ala 85 90 95 <br><br> Gin Tyr Thr Gly Gly lie Ser Arg Pro Leu Asn lie Glu Arg Glu Pro 100 105 110 <br><br> Val Val Ser Phe Asp Asp Val Asp lie Ser Ala Val Pro Gin Ser lie 115 120 125 <br><br> Asp Trp Arg Asp Tyr Gly Ala Val Thr Ser Val Lys Asn Gin Asn Pro 13C 135 140 <br><br> Cys Gly Ala Cys Trp Ala Phe Ala Ala He Ala Thr Val Glu Ser lie 145 150 155 160 <br><br> Tyr Lys lie Lys Lys Gly lie Leu Glu Pro Leu Ser Glu Gin Gin Val 165 170 175 <br><br> Leu Asp Cys Ala Lys Gly Tyr Gly Cys Lys Gly Gly Trp Glu Phe Arg 160 185 190 <br><br> Ala Phe Glu Phe lie lie Ser Asn Lys Gly Val Ala Ser Gly Ala lie 195 200 205 <br><br> Tyr Pro Tyr Lys Ala Ala Lys Gly Thr Cys Lys Thr Asp Gly Val Pro 210 215 220 <br><br> 242 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Asn Ser Ala Tyr lie Thr Gly Tyr Ala Arg Val Pro Arg Asn Asn Glu 225 230 235 240 <br><br> 5 <br><br> Ser Ser Met Met Tyr Ala Val Ser Lys Gin Pro lie Thr Val Ala Val 245 250 255 <br><br> 10 <br><br> Asp Ala Asn Ala Asn Phe Gin Tyr Tyr Lys Ser Gly Val Phe Asn Gly 260 265 270 <br><br> 15 Pro Cys Gly Thr Ser Leu Asn His Ala Val Thr Ala lie Gly Tyr Gly 275 280 285 <br><br> Gin Asp Ser lie lie Tyr Pro Lys Lys Trp Gly Ala Lys Trp Gly Glu 20 290 295 300 <br><br> Ala Gly Tyr lie Arg Met Ala Arg Asp Val Ser Ser Ser Ser Gly lie 305 310 315 320 <br><br> 25 <br><br> Cys Gly lie Ala lie Asp Pro Leu Tyr Pro Thr Leu Glu Glu 325 330 <br><br> 30 <br><br> &lt;210&gt; <br><br> 71 <br><br> &lt;211&gt; <br><br> 78 <br><br> &lt;212&gt; <br><br> DNA <br><br> &lt;213&gt; <br><br> Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;22 3&gt; <br><br> BroiTiEalir: signal sequence <br><br> &lt;400&gt; <br><br> 71 <br><br> 40 atggcctgga aggtgcaggt ggtgttcctc ttcctcttcc tctgcgtgat gtgggcctcc 60 ccgtccgccg cctccgcc 7 8 <br><br> 45 &lt;210&gt; 72 <br><br> &lt;211&gt; 26 <br><br> &lt;212 &gt; PRT <br><br> &lt;213&gt; Artificial Sequence <br><br> 50 &lt;220&gt; <br><br> &lt;223&gt; Bromealin signal peptide <br><br> &lt;400&gt; 72 <br><br> 55 Met Ala Trp Lys Val Gin Val Val Phe Leu Phe Leu Phe Leu Cys Val 15 10 15 <br><br> 243 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Met Trp Ala Ser Pro Ser Ala Ala Ser Ala 20 25 <br><br> c210&gt; 73 &lt;211&gt; 1050 &lt;212&gt; DNA <br><br> &lt;213=&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;22 3 &gt; pSYNllOOO &lt;400&gt; 73 <br><br> atggcctgga aggtgcaggt ggtgttcctc ttcctcttcc tctgcgtgat gtgggcctcc 60 <br><br> ccgtccgccg cctccgcgga cgagccgtcc gacccgatga tgaagcgctt cgaggagtgg 120 <br><br> atggtggagt acggccgcgt gtacaaggac aacgacgaga agatgcgccg cttccagatc 180 <br><br> ttcaagaaca acgtgaacca catcgagacc ttcaactccc gcaacgagaa ctcctacacc 240 <br><br> ctcggcatca accagttcac cgacatgacc aacaacgagt tcatcgccca gtacaccggc 300 <br><br> ggcatctccc gcccgctcaa catcgagcgc gagccggtgg tgtccttcga cgacgtggac 360 <br><br> atctccgccg tgccgcagtc catcgactgg cgcgactacg gcgccgtgac ctccgtgaag 420 <br><br> aaccagaacc cgtgcggcgc ctgctgggcc ttcgccgcca tcgccaccgt ggagtccatc 480 <br><br> tacaagatca agaagggcat cctcgagccg ctctccgagc agcaggtgct cgactgcgcc 540 <br><br> aagggctacg gctgcaaggg cggctgggag ttccgcgcct tcgagttcat catctccaac 600 <br><br> aagggcgtgg cctccggcgc catctacccg tacaaggccg ccaagggcac ctgcaagacc 660 <br><br> gacggcgtgc cgazctccgc ctacatr-ace ggctacerecc gegtgccgcq caacaacgag 720 <br><br> tcctccatga tgtacgccgt gtccaagcag ccgatcaccg tggccgtgga cgccaacgcc 780 <br><br> aacttccagt actacaagtc cggcgtgttc aacggcccgt gcggcacctc cctcaaccac 84 0 <br><br> gccgtgaccg ccatcggcta cggccaggac tccatcatct acccgaagaa gtggggcgcc 900 <br><br> aagtggggcg aggccggcta catccgcatg gcccgcgacg tgtcctcctc ctccggcatc 960 <br><br> tgcggcatcg ccatcgaccc gctctacccg accctcgagg aggtgttcgc cgaggccatc 1020 <br><br> gccgccaact ccaccctcgt ggccgagtag 1050 <br><br> &lt;210&gt; 74 <br><br> &lt;211&gt; 1067 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence c220&gt; <br><br> 244 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> &lt;223&gt; pSYN11589 &lt;4Q0&gt; 74 <br><br> tggcctggaa ggtgcaggtg gtgctcctct tcctcttcct ctgcgtgatg tgggcctccc 60 <br><br> 5 <br><br> cgtccgccgc ctccgcctcc tcctcctcct tcgccgactc caacccgatc cgcccggtga 120 ccgaccgcgc cgcctccacc gacgagccgt ccgacccgat gatgaagcgc ttcgaggagt 180 10 ggatggtgga gtacggccgc gtgtacaagg acaacgacga gaagatgcgc cgcttccaga 240 tcttcaagaa caacgtgaac cacatcgaga ccttcaactc ccgcaacgag aactcctaca 300 ccctcggcat caaccagttc accgacatga ccaacaacga gttcatcgcc cagtacaccg 360 <br><br> 15 <br><br> gcggcatctc ccgcccgctc aacatcgagc gcgagccggt ggtgtccttc gacgacgtgg 420 acatctccgc cgtgccgcag tccatcgact ggcgcgacta cggcgccgtg acctccgtga 4 80 20 agaaccagaa cccgtgcggc gcctgctggg ccttcgccgc catcgccacc gtggagtcca 540 tctacaagat caagaagggc atcctcgagc cgctctccga gcagcaggtg ctcgactgcg 600 ccaagggcta cggctgcaag ggcggctggg agttccgcgc cttcgagttc atcatctcca 660 <br><br> 25 <br><br> acaagggcgt ggcctccggc gccatctacc cgtacaaggc cgccaagggc acctgcaaga 720 ccgacggcgt gccgaactcc gcctacatca ccggctacgc ccgcgtgccg cgcaacaacg 780 30 agtcctccat gatgtacgcc gtgtccaagc agccgatcac cgtggccgtg gacgccaacg 840 ccaacttcca gtactacaag tccggcgtgt tcaacggccc gtgcggcacc tccctcaacc 900 acgccgtgac cgccatcggc tacggccagg actccatcat ctacccgaag aagtggggcg 960 <br><br> 35 <br><br> ccaagtgggg cgaggccggc tacatccgca tggcccgcga cgtgtcctcc tcctccggca 1020 tctgcggcat cgccatcgac ccgctctacc cgaccctcga ggagtag 10 67 <br><br> 40 <br><br> &lt;210&gt; 75 &lt;211&gt; 1023 &lt;212 &gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> 45 <br><br> &lt;220» <br><br> &lt;223 &gt; pSYM11587 Sequence &lt;400&gt; 75 <br><br> 50 atggcctgga aggtgcaggt ggtgttcctc ttcctcttcc tctgcgtgat gtgggcctcc 60 ccgtccgccg cctccgcgga cgagccgtcc gacccgatga tgaagcgctt cgaggagtgg 120 atggtggagt acggccgcgt gtacaaggac aacgacgaga agatgcgccg cttccagatc 180 <br><br> 55 <br><br> ttcaagaaca acgtgaacca catcgagacc ttcaactccc gcaacgagaa ctcctacacc 240 <br><br> 245 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> ctcggcatca accagttcac cgacatgacc aacaacgagt tcatcgccca gtacaccggc <br><br> 300 <br><br> ggcatctccc gcccgctcaa catcgagcgc gagccggtgg tgtccttcga cgacgtggac <br><br> 360 <br><br> 5 <br><br> atctccgccg tgccgcagtc catcgactgg cgcgactacg gcgccgtgac ctccgtgaag <br><br> 420 <br><br> aaccagaacc cgtgcggcgc ctgctgggcc ttcgccgcca tcgccaccgt ggagtccatc <br><br> 480 <br><br> 10 <br><br> tacaagatca agaagggcat cctcgagccg ctctccgagc agcaggtgct cgactgcgcc <br><br> 54 0 <br><br> aagggctacg gctgcaaggg cggctgggag ttccgcgcct tcgagttcat catctccaac <br><br> 600 <br><br> aagggcgtgg cctccggcgc catctacccg tacaaggccg ccaagggcac ctgcaagacc <br><br> 660 <br><br> 15 <br><br> gacggcgtgc cgaactccgc ctacatcacc ggctacgccc gcgtgccgcg caacaacgag <br><br> 720 <br><br> tcctccatga tgtacgccgt gtccaagcag ccgatcaccg tggccgtgga cgccaacgcc <br><br> 780 <br><br> 20 <br><br> aacttccagt actacaagtc cggcgtgttc aacggcccgt gcggcacctc cctcaaccac <br><br> 840 <br><br> gccgtgaccg ccatcggcta cggccaggac tccatcatct acccgaagaa gtggggcgcc <br><br> 900 <br><br> aagtggggcg aggccggcta catccgcatg gcccgcgacg tgtcctcctc ctccggcatc <br><br> 960 <br><br> 25 <br><br> tgcggcatcg tag ccatcgaccc gctctacccg accctcgagg agtccgagaa ggacgagctg <br><br> 1020 1023 <br><br> 30 &lt;210&gt; 76 <br><br> &lt;211&gt; 990 <br><br> &lt;212&gt; DNA. <br><br> c2l3&gt; Artificial Sequence <br><br> 35 &lt;220&gt; <br><br> &lt;223&gt; pSYN12169 Sequence <br><br> &lt;400&gt; 76 <br><br> atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc cacctccatg 60 <br><br> 40 <br><br> gcggacgagc cgtccgaccc gatgatgaag cgcttcgagg agtggatggt ggagtacggc 120 <br><br> cgcgtgtaca aggacaacga cgagaagatg cgccgcttcc agatcttcaa gaacaacgtg 180 <br><br> 45 aaccacatcg agaccttcaa ctcccgcaac gagaactcct acaccctcgg catcaaccag 240 <br><br> ttcaccgaca tgaccaacaa cgagttcatc gcccagtaca ccggcggcat ctcccgcccg 300 <br><br> ctcaacatcg agcgcgagcc ggtggtgtcc ttcgacgacg tggacatctc cgccgtgccg 360 <br><br> 50 <br><br> cagtccatcg actggcgcga ctacggcgcc gtgacctccg tgaagaacca gaacccgtgc 420 <br><br> ggcgcctgct gggccttcgc cgccatcgcc accgtggagt ccatctacaa gatcaagaag 480 <br><br> 55 ggcatcctcg agccgctctc cgagcagcag gtgctcgact gcgccaaggg ctacggctgc 54 0 <br><br> aagggcggct gggagttccg cgccttcgag ttcatcatct ccaacaaggg cgtggcctcc 600 <br><br> 246 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ggcgccatct acccgtacaa ggccgccaag ggcacctgca agaccgacgg cgtgccgaac 660 tccgcctaca tcaccggcta cgcccgcgtg ccgcgcaaca acgagtcctc catgatgtac 720 <br><br> 5 <br><br> gccgtgtcca agcagccgat caccgtggcc gtggacgcca acgccaactt ccagtactac 7 80 aagtccggcg tgttcaacgg cccgtgcggc acctccctca accacgccgt gaccgccatc 84 0 10 ggctacggcc aggactccat catctacccg aagaagtggg gcgccaagtg gggcgaggcc 900 ggctacatcc gcatggcccg cgacgtgtcc tcctcctccg gcatctgcgg catcgccatc 960 gacccgctct acccgaccct cgaggagtag 990 <br><br> 15 <br><br> &lt;210&gt; 77 &lt;211&gt; 1170 &lt;212&gt; DNA 20 &lt;213&gt; Artificial Sequence <br><br> &lt;22 0&gt; <br><br> &lt;223&gt; pSYN12575 Sequence 25 &lt;400&gt; 77 <br><br> atgctggcgg ctctggccac gtcgcagctc gtcgcaacgc gcgccggcct gggcgtcccg 60 <br><br> gacgcgtcca cgttccgccg cggcgccgcg cagggcctga ggggggcccg ggcgtcggcg 120 <br><br> 30 gcggcggaca cgctcagcat gcggaccagc gcgcgcgcgg cgcccaggca ccagcaccag 180 <br><br> caggcgcgcc gcggggccag gttcccgtcg ctcgtcgtgt gcgccagcgc cggcgccatg 240 <br><br> gcggacgagc cgtccgaccc gatgatgaag cgcttcgagg agtggatggt ggagtacggc 300 <br><br> 35 <br><br> cgcgtgtaca aggacaacga cgagaagatg cgccgcttcc agatcttcaa gaacaacgtg 360 <br><br> aaccacatcg agaccttcaa ctcccgcaac gagaactcct acaccctcgg catcaaccag 420 <br><br> 40 ttcaccgaca tgaccaacaa cgagttcatc gcccagtaca ccggcggcat ctcccgcccg 480 <br><br> ctcaacatcg agcgcgagcc ggtggtgtcc ttcgacgacg tggacatctc cgccgtgccg 540 <br><br> cagtccatcg actggcgcga ctacggcgcc gtgacctccg tgaagaacca gaacccgtgc 600 <br><br> 45 <br><br> ggcgcctgct gggccttcgc cgccatcgcc accgtggagt ccatctacaa gatcaagaag 660 <br><br> ggcatcctcg agccgctctc cgagcagcag gtgctcgact gcgccaaggg ctacggctgc 720 <br><br> 50 aagggcggct gggagttccg cgccttcgag ttcatcatct ccaacaaggg cgtggcctcc 780 <br><br> ggcgccatct acccgtacaa ggccgccaag ggcacctgca ^gaccgacgg cgtgccgaac 840 <br><br> tccgcctaca tcaccggcta cgcccgcgtg ccgcgcaaca acgagtcctc catgatgtac 900 <br><br> 55 <br><br> gccgtgtcca agcagccgat caccgtggcc gtggacgcca acgccaactt ccagtactac 960 <br><br> 247 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> aagtccggcg tgttcaacgg cccgtgcggc acctccctca accacgccgt gaccgccatc 102 0 <br><br> ggctacggcc aggactccat catctacccg aagaagtggg gcgccaagtg gggcgaggcc 1080 <br><br> ggctacatcc gcatggcccg cgacgtgtcc tcctcctccg gcatctgcgg catcgccatc 1140 <br><br> gacccgctct acccgaccct cgaggagtag 117 0 <br><br> &lt;210&gt; 78 &lt;211&gt; 1068 &lt;212 &gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220 &gt; <br><br> &lt;223&gt; pSM270 Sequence &lt;400&gt; 78 <br><br> atggcctgga aggtgcaggt ggtgttcctc ttcctcttcc tctgcgtgat gtgggcctcc 60 <br><br> ccgtccgccg cctccgcctc ctcctcctcc ttcgccgact ccaacccgat ccgcccggtg 120 <br><br> accgaccgcg ccgcctccac cgacgagccg tccgacccga tgatgaagcg cttcgaggag 130 <br><br> tggatggtgg agtacggccg cgtgtacaag gacaacgacg agaagatgcg ccgcttccag 240 <br><br> atcttcaaga acaacgtgaa ccacatcgag accttcaact cccgcaacga gaactcctac 300 <br><br> accctcggca tcaaccagtt caccgacatg accaacaacg agttcatcgc ccagtacacc 360 <br><br> ggcggcatct cccgcccgct caacatcgag cgcgagccgg tggtgtcctt cgacgacgtg 42 0 <br><br> gacatctccg ccgtgccgca gtccatcgac tggcgcgact acggcgccgt gacctccgtg 4 80 <br><br> aagaaccaga acccgtgcgg cgcctgctgg gccttcgccg ccatcgccac cgtggagtcc 54 0 <br><br> atctacaags tcssgsaggg catcctcgag ccg^tntecg aacagcaggt qctcgactgc 600 <br><br> gccaagggct acggctgcaa gggcggctgg gagttccgcg ccttegagtt catcatctcc 660 <br><br> aacaagggcg tggcctccgg cgccatctac ccgtacaagg ccgceaaggg cacctgcaag 720 <br><br> accgacggcg tgccgaactc cgcctacatc accggctacg cccgcgtgcc gcgcaacaac 780 <br><br> gagtcctcca tgatgtacgc cgtgtccaag cagccgatca ccgtggccgt ggacgccaac 84 0 <br><br> gccaacttcc agtactacaa gtccggcgtg ttcaacggcc cgtgcggcac ctccctcaac 900 <br><br> cacgccgtga ccgccatcgg ctacggccag gactccatca tctacccgaa gaagtggggc 960 <br><br> gccaagtggg gcgaggccgg ctacatccgc atggcccgcg acgtgtcctc ctcctccggc 1020 <br><br> atctgcggca tcgccatcga cccgctctac ccgaccctcg aggagtag 1068 <br><br> &lt;210&gt; 79 &lt;2115. 1497 <br><br> 248 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Trichoderma reesei <br><br> &lt;220&gt; <br><br> &lt;221&gt; CDS <br><br> &lt;222&gt; (1)..(1497) <br><br> &lt;223&gt; Trichoderma reesei cellobiohyrodlase I &lt;400&gt; 79 <br><br> atg cag teg gcg tgt act ctc caa teg gag act cac ccg cct ctg aca 48 <br><br> Met Gin Ser Ala Cys Thr Leu Gin Ser Glu Thr His Pro Pro Leu Thr 15 10 15 <br><br> tgg cag aaa tgc teg tct ggt ggc acg tgc act caa cag aca ggc tcc 96 <br><br> Trp Gin Lys Cys Ser Ser Gly Gly Thr Cys Thr Gin Gin Thr Gly Ser 20 25 30 <br><br> gtg gtc ate gac gcc aac tgg cgc tgg act cac get acg aac age age 144 <br><br> Val Val lie Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser 35 40 45 <br><br> acg aac tgc tac gat ggc aac act tgg age teg acc eta tgt cct gac 192 <br><br> Thr Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp 50 55 60 <br><br> aac gag acc tgc gcg aag aac tgc tgt ctg gac ggt gcc gcc tac gcg 240 <br><br> Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala 65 70 75 80 <br><br> tcc acg tac gga gtt acc acg age ggt aac age ctc tcc att ggc ttt 288 <br><br> Ser Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser lie Gly Phe 85 90 95 <br><br> gtc acc cag tct gcg cag aag aac gtt ggc get cgc ctt tac ctt atg 336 <br><br> Val Thr Gin Ser Ala Gin Lys Asn Val Gly Ala Arg Leu Tyr Leu Met 100 105 110 <br><br> gcg age gac acg acc tac cag gaa ttc acc ctg ctt ggc aac gag ttc 384 <br><br> Ala Ser Asp Thr Thr Tyr Gin Glu Phe Thr Leu Leu Gly Asn Glu Phe 115 120 125 <br><br> tct ttc gat gtt gat gtt teg cag ctg ccg tgc ggc ttg aac gga get 432 <br><br> Ser Phe Asp Val Asp Val Ser Gin Leu Pro Cys Gly Leu Asn Gly Ala 130 135 140 <br><br> ctc tac ttc gtg tcc atg gac gcg gat ggt ggc gtg age aag tat ccc 480 <br><br> Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro 145 150 15S 160 <br><br> acc aac acc get ggc gcc aag tac ggc acg ggg tac tgt gac age cag 528 <br><br> Thr Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gin 165 170 175 <br><br> tgt ccc cgc gat ctg aag ttc ate aat ggc cag gcc aac gtt gag ggc 576 <br><br> Cys Pro Arg Asp Leu Lys Phe lie Asn Gly Gin Ala Asn Val Glu Gly 180 185 190 <br><br> 249 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2Q04/007182 <br><br> tgg gag ccg tea tcc aac aac gcg aac acg ggc att gga gga cac gga Trp Glu Pro Ser Ser Asn Asn Ala Asn Thr Gly lie Gly Gly His Gly 195 200 205 <br><br> age tgc tgc tct gag atg gat ate tgg gag gcc aac tcc ate tcc gag Ser Cys Cys Ser Glu Met Asp lie Trp Glu Ala Asn Ser lie Ser Glu 210 215 220 <br><br> get ctt acc ccc cac cct tgc acg act gtc ggc cag gag ate tgc gag Ala Leu Thr Pro His Pro Cys Thr Thr Val Gly Gin Glu lie Cys Glu 225 230 235 240 <br><br> ggt gat ggg tgc ggc gga act tac tcc gat aac aga tat ggc gge act Gly Asp Gly Cys Gly Gly Thr Tyr Ser Asp Asn Arg Tyr Gly Gly Thr 245 250 255 <br><br> tgc gat ccc gat ggc tgc gac tgg aac cca tac cgc ctg ggc aac acc Cys Asp Pro Asp Gly Cys Asp Trp Asn Pro Tyr Arg Leu Gly Asn Thr <br><br> 260 265 270 <br><br> age ttc tac ggc cct ggc tct age ttt acc ctc gat acc acc aag aaa <br><br> Ser Phe Tyr Gly Pro Gly Ser Ser Phe Thr Leu Asp Thr Thr Lys Lys <br><br> 275 280 285 <br><br> ttg acc gtt gtc acc cag ttc gag acg teg ggt gcc ate aac- cga tac Leu Thr Val Val Thr Gin Phe Glu Thr Ser Gly Ala lie Asn Arg Tyr 290 295 300 <br><br> tat gtc cag aat ggc gtc act ttc cag cag ccc aac gcc gag ctt ggt Tyr Val Gin Asn Gly Val Thr Phe Gin Gin Pro Asn Ala Glu Leu Gly 305 310 315 320 <br><br> agt tac tct ggc aac gag ctc aac gat gat tac tgc aca get gag gag Ser Tyr Ser Gly Asn Glu Leu Asn Asp Asp Tyr Cys Thr Ala Glu Glu 325 330 335 <br><br> gca gaa ttc ggc gga tcc tct ttc tea gac aag ggc ggc ctg act cag Ala Glu Phe Gly Gly Ser Ser Phe Ser Asp Lys Gly Gly Leu Thr Gin 340 345 350 <br><br> ttc aag aag get acc tct ggc ggc atg gtt ctg gtc atg agt ctg tgg Phe Lys Lys Ala Thr Ser Gly Gly Met Val Leu Val Met Ser Leu Trp 355 360 365 <br><br> gat gat tac tac gcc aac atg ctg tgg ctg gac tcc acc tac ccg aca Asp Asp Tyr Tyr Ala Asn Met Leu Trp Leu Asp Ser Thr Tyr Pro Thr 370 375 380 <br><br> aac gag acc tcc tcc aca ccc ggt gcc gtg cgc gga age tgc tcc acc Asn Glu Thr Ser Ser Thr Pro Gly Ala Val Arg Gly Ser Cys Ser Thr 385 390 395 400 <br><br> age tcc ggt gtc cct get cag gtc gaa tct cag tct ccc aac gcc aag Ser Ser Gly Val Pro Ala Gin Val Glu Ser Gin Ser Pro Asn Ala Lys 405 410 415 <br><br> 624 <br><br> 672 <br><br> 720 <br><br> 768 <br><br> 816 <br><br> 864 <br><br> 912 <br><br> 960 <br><br> 1008 <br><br> 1056 <br><br> 1104 <br><br> 1152 <br><br> 1200 <br><br> 1248 <br><br> 250 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> gtc acc ttc tcc aac ate aag ttc gga ccc att ggc age acc ggc aac 1296 <br><br> Val Thr Phe Ser Asn lie Lys Phe Gly Pro lie Gly Ser-Thr Gly Asn 420 425 430 <br><br> 5 cct age ggc ggc aac cct ccc ggc gga aac ccg cct ggc acc acc acc 1344 Pro Ser Gly Gly Asn Pro Pro Gly Gly Asn Pro Pro Gly Thr Thr Thr 435 440 445 <br><br> acc cgc cgc cca gcc act acc act gga age tct ccc gga cct acc cag 1392 <br><br> 10 Thr Arg Arg Pro Ala Thr Thr Thr Gly Ser Ser Pro Gly Pro Thr Gin 4 50 455 4 60 <br><br> tct cac tac ggc cag tgc ggc ggt att ggc tac age ggc ccc acg gtc 1440 <br><br> Ser His Tyr Gly Gin Cys Gly Gly lie Gly Tyr Ser Gly Pro Thr Val 15 465 470 475 480 <br><br> tgc gcc age ggc aca act tgc cag gtc ctg aac cct tac tac tct cag 1488 Cys Ala Ser Gly Thr Thr Cys Gin Val Leu Asn Pro Tyr Tyr Ser Gin 485 490 495 <br><br> 20 <br><br> tgc ctg taa 1497 <br><br> Cys Leu <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> &lt;210&gt; 80 &lt;211&gt; 498 &lt;212&gt; PRT <br><br> &lt;213&gt; Trichoderma reesei &lt;400&gt; 80 <br><br> Met Gin Ser Ala Cys Thr Leu Gin Ser Glu Thr His Pro Pro Leu Thr 15 10 15 <br><br> Trp Gin Lys Cys Ser Ser Gly Gly Thr Cys Thr Gin Gin Thr Gly Ser 20 25 30 <br><br> Val Val lie Asp Ala Asn Trp Arg Trp Thr His Ala Thr Asn Ser Ser 35 40 45 <br><br> 45 Thr Asn Cys Tyr Asp Gly Asn Thr Trp Ser Ser Thr Leu Cys Pro Asp 50 55 60 <br><br> Asn Glu Thr Cys Ala Lys Asn Cys Cys Leu Asp Gly Ala Ala Tyr Ala 50 65 70 75 80 <br><br> Ser Thr Tyr Gly Val Thr Thr Ser Gly Asn Ser Leu Ser lie Gly Phe 85 90 95 <br><br> 55 <br><br> Val Thr Gin Ser Ala Gin Lys Asn Val Gly Ala Arg Leu Tyr Leu Met <br><br> 251 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 100 105 110 <br><br> Ala Ser Asp Thr Thr Tyr Gin Glu Phe Thr Leu Leu Gly Asn Glu Phe 115 120 125 <br><br> Ser Phe Asp Val Asp Val Ser Gin Leu Pro Cys Gly Leu Asn Gly Ala 130 135 140 <br><br> Leu Tyr Phe Val Ser Met Asp Ala Asp Gly Gly Val Ser Lys Tyr Pro 145 150 155 160 <br><br> Thr Asn Thr Ala Gly Ala Lys Tyr Gly Thr Gly Tyr Cys Asp Ser Gin 165 170 175 <br><br> Cys Pro Arg Asp Leu Lys Phe lie Asn Gly Gin Ala Asn Val Glu Gly 180 185 190 <br><br> Trp Glu Pro Ser Ser Asn Asn Ala Asn Thr Gly lie Gly Gly His Gly 195 200 205 <br><br> Ser Cys Cys Ser Glu Met Asp lie Trp Glu Ala Asn Ser He Ser Glu 210 215 220 <br><br> Ala Leu Thr Pro His Pro Cys Thr Thr Val Gly Gin Glu lie Cys Glu 225 230 235 240 <br><br> Gly Asp Gly Cys Gly Gly Thr Tyr Ser Asp Asn Arg Tyr Gly Gly Thr 245 250 255 <br><br> Cys Asp Pro Asp Gly Cys Asp Trp Asn Pro Tyr Arg Leu Gly Asn Thr 260 265 270 <br><br> Ser Phe Tyr Gly Pro Gly Ser Ser Phe Thr Leu Asp Thr Thr Lys Lys 275 280 285 <br><br> Leu Thr Val Val Thr Gin Phe Glu Thr Ser Gly Ala lie Asn Arg Tyr 290 295 300 <br><br> Tyr Val Gin Asn Gly Val Thr Phe Gin Gin Pro Asn Ala Glu Leu Gly 305 310 315 320 <br><br> Ser Tyr Ser Gly Asn Glu Leu Asn Asp Asp Tyr Cys Thr Ala Glu Glu 325 330 335 <br><br> 252 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Ala Glu Phe Gly Gly Ser Ser Phe Ser Asp Lys Gly Gly Leu Thr Gin 340 345 350 <br><br> Phe Lys Lys Ala Thr Ser Gly Gly Met Val Leu Val Met Ser Leu Trp 355 360 365 <br><br> Asp Asp Tyr Tyr Ala Asn Met Leu Trp Leu Asp Ser Thr Tyr Pro Thr 370 375 380 <br><br> Asn Glu Thr Ser Ser Thr Pro Gly Ala Val Arg Gly Ser Cys Ser Thr 385 390 395 400 <br><br> Ser Ser Gly Val Pro Ala Gin Val Glu Ser Gin Ser Pro Asn Ala Lys 405 410 415 <br><br> val Thr Phe Ser Asn lie Lys Phe Gly Pro lie Gly Ser Thr Gly Asn 420 425 430 <br><br> Pro Ser Gly Gly Asn Pro Pro Gly Gly Asn Pro Pro Gly Thr Thr Thr 435 440 445 <br><br> Thr Arg Arg Pro Ala Thr Thr Thr Gly Ser Ser Pro Gly Pro Thr Gin 450 455 460 <br><br> Ser His Tyr Gly Gin Cys Gly Gly lie Gly Tyr Ser Gly Pro Thr Val 465 470 475 480 <br><br> Cys Ala Ser Gly Thr Thr Cys Gin Val Leu Asn Pro Tyr Tyr ser Gin 485 490 495 <br><br> Cys Leu <br><br> &lt;210&gt; 81 <br><br> &lt;211&gt; 1365 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Trichoderma reesei <br><br> &lt;220&gt; <br><br> &lt;221&gt; CDS <br><br> &lt;222&gt; (1)-.(1365) <br><br> &lt;223&gt; trichoderma reesei cellobiohydrolase II <br><br> 253 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> c400&gt; 81 <br><br> atg gtg cct eta gag gag egg caa get tgc tea age gtc tgg ggc caa 48 <br><br> Met Val Pro Leu Glu Glu Arg Gin Ala Cys Ser Ser Val Trp Gly Gin 15 10 15 <br><br> tgt ggt ggc cag aat tgg teg ggt ccg act tgc tgt get tcc gga age 96 <br><br> Cys Gly Gly Gin Asn Trp Ser Gly Pro Thr Cys Cys Ala Ser Gly Ser 20 25 30 <br><br> aca tgc gtc tac tcc aac gac tat tac tcc cag tgt ctt ccc ggc get 144 <br><br> Thr Cys Val Tyr Ser Asn Asp Tyr Tyr Ser Gin Cys Leu Pro Gly Ala 35 40 45 <br><br> gca age tea age teg tcc acg cgc gcc gcg teg acg act tea cga gta 192 <br><br> Ala Ser Ser Ser Ser Ser Thr Arg Ala Ala Ser Thr Thr Ser Arg Val 50 55 60 <br><br> tcc ccc aca aca tcc egg teg age tcc gcg acg cct cca cct ggt tct 240 <br><br> Ser Pro Thr Thr Ser Arg Ser Ser Ser Ala Thr Pro Pro Pro Gly Ser 65 70 75 80 <br><br> acc act acc aga gta cct cca gtc gga teg gga acc get acg tat tea 288 <br><br> Thr Thr Thr Arg Val Pro Pro Val Gly Ser Gly Thr Ala Thr Tyr Ser 85 90 95 <br><br> gge aac cct ttt gtt ggg gtc act cct tgg gcc aat gca tat tac gcc 336 <br><br> Gly Asn Pro Phe Val Gly Val Thr Pro Trp Ala Asn Ala Tyr Tyr Ala 100 105 110 <br><br> tct gaa gtt age age ctc get att cct age ttg act gga gcc atg gcc 384 <br><br> Ser Glu val Ser Ser Leu Ala lie Pro Ser Leu Thr Gly Ala Met Ala 115 120 125 <br><br> act get gca gca get gtc gca aag gtt ccc tct ttt atg tgg eta gat 432 <br><br> Thr Ala Ala Ala Ala Val Ala Lys Val Pro Ser Phe Met Trp Leu Asp 130 135 140 <br><br> act ctt gac aag acc cct ctc atg gag caa acc ttg gcc gac ate cgc 480 <br><br> Thr Leu Asp Lys Thr Pro Leu Met Glu Gin Thr Leu Ala Asp lie Arg 145 150 155 160 <br><br> acc gcc aac aag aat ggc ggt aac tat gcc gga cag ttt gtg gtg tat 528 <br><br> Thr Ala Asn Lys Asn Gly Gly Asn Tyr Ala Gly Gin Phe Val Val Tyr 165 170 175 <br><br> gac ttg ccg gat cgc gat tgc get gcc ctt gcc teg aat ggc gaa tac 576 <br><br> Asp Leu Pro Asp Arg Asp Cys Ala Ala Leu Ala Ser Asn Gly Glu Tyr 180 185 190 <br><br> tct att gee gat ggt ggc gtc gcc aaa tat aag aac tat ate gac acc 624 <br><br> Ser lie Ala Asp Gly Gly Val Ala Lys Tyr Lys Asn Tyr He Asp Thr 195 200 205 <br><br> att cgt caa att gtc gtg gaa tat tcc gat ate egg acc ctc ctg gtt 672 <br><br> lie Arg Gin lie Val Val Glu Tyr Ser Asp lie Arg Thr Leu Leu Val 210 215 220 <br><br> 254 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> att gag cct gac tct ctt gcc aac ctg gtg acc aac ctc ggt act cca 720 <br><br> lie Glu Pro Asp Ser Leu Ala Asn Leu Val Thr Asn Leu Gly Thr Pro 225 230 235 240 <br><br> 5 aag tgt gcc aat get cag tea gcc tac ctt gag tgc ate aac tac gcc 768 <br><br> Lys Cys Ala Asn Ala Gin. Ser Ala Tyr Leu Glu Cys lie Asn Tyr Ala 245 250 255 <br><br> gtc aca cag ctg aac ctt cca aat gtt gcg atg tat ttg gac get ggc 816 <br><br> 10 Val Thr Gin Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly 260 265 270 <br><br> cat gca gga tgg ctt ggc tgg ccg gca aac caa gac ccg gcc get cag 864 <br><br> His Ala Gly Trp Leu Gly Trp Pro Ala Asn Gin Asp Pro Ala Ala Gin 15 275 280 285 <br><br> eta ttt gca aat gtt tac aag aat gca teg tct ccg aga get ctt cgc 912 <br><br> Leu Phe Ala Asn Val Tyr Lys Asn Ala Ser Ser Pro Arg Ala Leu Arg 290 295 300 <br><br> 20 <br><br> gga ttg gca acc aat gtc gcc aac tac aac ggg tgg aac att acc age 960 <br><br> Gly Leu Ala Thr Asn Val Ala Asn Tyr Asn Gly Trp Asn lie Thr Ser 305 310 315 320 <br><br> 25 ccc cca teg tac acg caa ggc aac get gtc tac aac gag aag ctg tac 1008 Pro Pro Ser Tyr Thr Gin Gly Asn Ala Val Tyr Asn Glu Lys Leu Tyr 325 330 335 <br><br> ate cac get att gga cct ctt ctt gcc aat cac ggc tgg tcc aac gcc 1056 30 He His Ala lie Gly Pro Leu Leu Ala Asn His Gly Trp Ser Asn Ala 340 345 350 <br><br> ttc ttc ate act gat caa ggt cga teg gga aag cag cct acc gga cag 1104 Phe Phe lie Thr Asp Gin Gly Arg Ser Gly Lys Gin Pro Thr Gly Gin 35 355 360 365 <br><br> c»a cag tag goa aac tgg tgc aat qtg ate ggc acc gga ttt ggt att 1152 <br><br> Gin Gin Trp Gly Asp Trp Cys Asn Val lie Gly Thr Gly Phe Gly lie <br><br> 370 375 380 <br><br> 40 <br><br> cgc cca tcc gca aac act ggg gac teg ttg ctg gat teg ttt gtc tgg 1200 <br><br> Arg Pro Ser Ala Asn Thr Gly Asp Ser Leu Leu Asp Ser Phe Val Trp <br><br> 385 390 395 400 <br><br> 45 gtc aag cca ggc ggc gag tgt gac ggc acc age gac age agt gcg cca 124 8 Val Lys Pro Gly Gly Glu Cys Asp Gly Thr Ser Asp Ser Ser Ala Pro 405 410 415 <br><br> cga ttt gac tcc cac tgt gcg ctc cca gat gcc ttg caa ccg gcg cct 1296 50 Arg Phe Asp Ser His Cys Ala Leu Pro Asp Ala Leu Gin Pro Ala Pro 420 425 430 <br><br> caa get ggt get tgg ttc caa gcc tac ttt gtg cag ctt ctc aca aac 1344 Gin Ala Gly Ala Trp Phe Gin Ala Tyr Phe Val Gin Leu Leu Thr Asn 55 435 440 445 <br><br> gca aac cca teg ttc ctg tag 1365 <br><br> 255 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ala Asn Pro Ser Phe Leu 450 <br><br> &lt;210&gt; 82 «211&gt; 454 &lt;212&gt; PRT <br><br> &lt;213? Trichoderma reesei <br><br> &lt;4QQ&gt; 82 <br><br> Met Val Pro Leu Glu Glu Arg Gin Ala Cys Ser Ser Val Trp Gly Gin 15 10 15 <br><br> Cys Gly Gly Gin Asn Trp Ser Gly Pro Thr Cys Cys Ala Ser Gly Ser 20 25 30 <br><br> Thr Cys Val Tyr Ser Asn Asp Tyr Tyr Ser Gin Cys Leu Pro Gly Ala 35 40 45 <br><br> Ala Ser Ser Ser Ser Ser Thr Arg Ala Ala Ser Thr Thr Ser Arg Val 50 55 60 <br><br> Ser Pro Thr Thr Ser Arg Ser Ser Ser Ala Thr Pro Pro Pro Gly Ser 65 70 75 80 <br><br> Thr Thr Thr Arg Val Pro Pro Val Gly Ser Gly Thr Ala Thr Tyr Ser 85 90 95 <br><br> Gly Asn Pro Phe Val Gly Val Thr Pro Trp Ala Asn Ala Tyr Tyr Ala 100 105 110 <br><br> Ser Glu Val Ser Ser Leu Ala lie Pro Ser Leu Thr Gly Ala Met Ala 115 120 125 <br><br> Thr Ala Ala Ala Ala Val Ala Lys Val Pro Ser Phe Met Trp Leu Asp 130 135 140 <br><br> Thr Leu Asp Lys Thr Pro Leu Met Glu Gin Thr Leu Ala Asp lie Arg 145 150 155 160 <br><br> Thr Ala Asn Lys Asn Gly Gly Asn Tyr Ala Gly Gin Phe Val Val Tyr 165 170 175 <br><br> Asp Leu Pro Asp Arg Asp Cys Ala Ala Leu Ala Ser Asn Gly Glu Tyr 180 185 190 <br><br> 256 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ser lie Ala Asp Gly Gly Val Ala Lys Tyr Lys Asn Tyr lie Asp Thr 195 200 205 <br><br> lie Arg Gin lie Val Val Glu Tyr Ser Asp lie Arg Thr Leu Leu Val 210 215 220 <br><br> ♦ <br><br> lie Glu Pro Asp Ser Leu Ala Asn Leu Val Thr Asn Leu Gly Thr Pro 225 230 235 240 <br><br> Lys Cys Ala Asn Ala Gin Ser Ala Tyr Leu Glu Cys lie Asn Tyr Ala 245 250 255 <br><br> Val Thr Gin Leu Asn Leu Pro Asn Val Ala Met Tyr Leu Asp Ala Gly 260 265 270 <br><br> His Ala Gly Trp Leu Gly Trp Pro Ala Asn Gin Asp Pro Ala Ala Gin 275 2S0 285 <br><br> Leu Phe Ala Asn Val Tyr Lys Asn Ala Ser Ser Pro Arg Ala Leu Arg 290 295 300 <br><br> Gly Leu Ala Thr Asn Val Ala Asn Tyr Asn Gly Trp Asn He Thr Ser 305 310 315 320 <br><br> Pro Pro Ser Tyr Thr Gin Gly Asn Ala Val Tyr Asn Glu Lys Leu Tyr 325 330 335 <br><br> lie His Ala lie Gly Pro Leu Leu Ala Asn His Gly Trp Ser Asn Ala 340 345 350 <br><br> Phe Phe He Thr Asp Gin Gly Arg Ser Gly Lys Gin Pro Thr Gly Gin 355 360 365 <br><br> Gin Gin Trp Gly Asp Trp Cys Asn Val He Gly Thr Gly Phe Gly lie 370 375 380 <br><br> Arg Pro Ser Ala Asn Thr Gly Asp Ser Leu Leu Asp Ser Phe Val Trp 385 350 395 400 <br><br> Val Lys Pro Gly Gly Glu Cys Asp Gly Thr Ser Asp Ser Ser Ala Pro 4 05 410 415 <br><br> 257 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Arg Phe Asp ser His Cys Ala Leu Pro Asp Ala Leu Gin Pro Ala Pro 420 425 430 <br><br> Gin Ala Gly Ala Trp Phe Gin Ala Tyr Phe Val Gin Leu Leu Thr Asn 435 440 445 <br><br> Ala Asn Pro Ser Phe Leu <br><br> 450 <br><br> &lt;21Q&gt; 83 <br><br> &lt;211&gt; 1317 <br><br> &lt;212 &gt; DNA <br><br> &lt;213&gt; Trichoderma reesei <br><br> &lt;220 &gt; <br><br> &lt;221&gt; CDS &lt;222&gt; (1) . . (1317) <br><br> &lt;223&gt; Trichoderma reesei endoglucanase I &lt;400 &gt; 83 <br><br> atg cag caa ccg gga acc age acc ccc gag gtc cat ccc aag ttg aca 48 <br><br> Met Gin Gin Pro Gly Thr Ser Thr Pro Glu Val His Pro Lys Leu Thr 15 10 15 <br><br> acc tac aag tgc aca aag tcc ggg ggg tgc gtg gcc cag gac acc teg 96 <br><br> Thr Tyr Lys Cys Thr Lys Ser Gly Gly Cys Val Ala Gin Asp Thr Ser 20 25 30 <br><br> gtg gtc ctt gac tgg aac tac cgc tgg atg cac gac gca aac tac aac 144 <br><br> Val Val Leu Asp Trp Asn Tyr Arg Trp Met His Asp Ala Asn Tyr Asn 35 40 45 <br><br> teg tgc acc gtc aac ggc ggc gtc aac acc acg ctc tgc cct gac gag 192 <br><br> Ser Cys Thr Val Asn Gly Gly Val Asn Thr Thr Leu Cys Pro Asp Glu 50 55 60 <br><br> gcg acc tgt ggc aag aac tgc ttc ate gag ggc gtc gac tac gcc gcc 24 0 <br><br> Ala Thr Cys Gly Lys Asn Cys Phe lie Glu Gly Val Asp Tyr Ala Ala 65 70 75 80 <br><br> teg ggc gtc acg acc teg ggc age age ctc acc atg aac cag tac atg 28 8 <br><br> Ser Gly Val Thr Thr Ser Gly Ser Ser Leu Thr Met Asn Gin Tyr Met 85 90 95 <br><br> ccc age age tct ggc ggc tac age age gtc tct cct egg ctg tat ctc 336 <br><br> Pro Ser Ser Ser Gly Gly Tyr Ser Ser Val Ser Pro Arg Leu Tyr Leu 100 105 110 <br><br> ctg gac tct gac ggt gag tac gtg atg ctg aag ctc aac ggc cag gag 384 <br><br> Leu Asp Ser Asp Gly Glu Tyr Val Met Leu Lys Leu Asn Gly Gin Glu 115 120 125 <br><br> 258 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> ctg age ttc gac gtc gac etc tct get ctg ccg tgt gga gag aac ggc 432 <br><br> Leu Ser Phe Asp Val Asp Leu Ser Ala Leu Pro Cys Gly Glu Asn Gly 130 135 140 <br><br> 5 teg ctc tac ctg tct cag atg gac gag aac ggg ggc gcc aac cag tat 480 <br><br> Ser Leu Tyr Leu Ser Gin Met Asp Glu Asn Gly Gly Ala Asn Gin Tyr 145 150 155 160 <br><br> aac acg gcc ggt gcc aac tac ggg age ggc tac tgc gat get cag tgc 52 8 <br><br> 10 Asn Thr Ala Gly Ala Asn Tyr Gly Ser Gly Tyr Cys Asp Ala Gin Cys <br><br> 165 170 175 <br><br> ccc gtc cag aca tgg agg aac ggc acc ctc aac act age cac cag ggc 576 <br><br> Pro Val Gin Thr Trp Arg Asn Gly Thr Leu Asn Thr Ser His Gin Gly 15 180 185 190 <br><br> ttc tgc tgc aac gag atg gat ate ctg gag ggc aac teg agg gcg aat 624 <br><br> Phe Cys Cys Asn Glu Met Asp lie Leu Glu Gly Asn Ser Arg Ala Asn 195 200 205 <br><br> 20 <br><br> gcc ttg acc cct cac tct tgc acg gcc acg gcc tgc gac tct gcc ggt 672 <br><br> Ala Leu Thr Pro His Ser Cys Thr Ala Thr Ala Cys Asp Ser Ala Gly 210 215 220 <br><br> 25 tgc ggc ttc aac ccc tat ggc age ggc tac aaa age tac tac ggc ccc 720 <br><br> Cys Gly Phe Asn pro Tyr Gly Ser Gly Tyr Lys Ser Tyr Tyr Gly Pro <br><br> 225 230 235 240 <br><br> gga gat acc gtt gac acc tcc aag acc ttc acc ate ate acc cag ttc 758 <br><br> 30 Gly Asp Thr Val Asp Thr Ser Lys Thr Phe Thr lie lie Thr Gin Phe <br><br> 245 250 255 <br><br> aac acg gac aac ggc teg ccc teg ggc aac ctt gtg age ate acc cgc 816 <br><br> Asn Thr Asp Asn Gly Ser Pro Ser Gly Asn Leu Val Ser lie Thr Arg 35 260 265 270 <br><br> asg tac cag caa aac ggc gtc gac ate ccc age gcc cag ccc ggc ggc 864 <br><br> Lys Tyr Gin Gin Asn Gly Val Asp lie Pro Ser Ala Gin Pro Giy Giy <br><br> 275 280 285 <br><br> 40 <br><br> gac acc ate teg tcc tgc ccg tcc gcc tea gcc tac ggc ggc ctc gcc 912 <br><br> Asp Thr lie Ser Ser Cys Pro Ser Ala Ser Ala Tyr Gly Gly Leu Ala 290 295 300 <br><br> 45 acc atg ggc aag gcc ctg age age ggc atg gtg ctc gtg ttc age att 960 <br><br> Thr Met Gly Lys Ala Leu Ser Ser Gly Met Val Leu Val Phe Ser lie 305 310 315 320 <br><br> tgg aac gac aac age cag tac atg aac tgg ctc gac age ggc aac gcc 1008 50 Trp Asn Asp Asn Ser Gin Tyr Met Asn Trp Leu Asp Ser Gly Asn Ala <br><br> 325 330 335 <br><br> ggc ccc tgc age age acc gag ggc aac cca tcc aac acc ctg gcc aac 1056 Gly Pro Cys Ser Ser Thr Glu Gly Asn Pro Ser Asn Thr Leu Ala Asn 55 340 345 350 <br><br> aac ccc aac acg cac gtc gtc ttc tcc aac ate cgc tgg gga gac att 1104 <br><br> 259 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Asn Pro Asn Thr His Val Val Phe Ser Asn lie Arg Trp Gly Asp lie 355 360 365 <br><br> ggg tct act acg aac teg act gcg ccc ccg ccc ccg cct gcg tcc age 1152 Gly Ser Thr Thr Asn Ser Thr Ala Pro Pro Pro Pro Pro Ala Ser Ser 370 375 380 <br><br> acg acg ttt teg act aca egg agg age teg acg act teg age age ccg 1200 Thr Thr Phe Ser Thr Thr Arg Arg Ser Ser Thr Thr Ser Ser Ser Pro 385 390 395 400 <br><br> age tgc acg cag act cac tgg ggg cag tgc ggt ggc att ggg tac age 1248 <br><br> Ser Cys Thr Gin Thr His Trp Gly Gin Cys Gly Gly lie Gly Tyr Ser 405 410 415 <br><br> ggg tgc aag acg tgc acg teg ggc act acg tgc cag tat age aac gac 1296 <br><br> Gly Cys Lys Thr Cys Thr Ser Gly Thr Thr Cys Gin Tyr Ser Asn Asp 420 425 430 <br><br> tae tac teg caa tgc ctt tag 1317 <br><br> Tyr Tyr Ser Gin Cys Leu 435 <br><br> &lt;210&gt; 84 <br><br> c211&gt; 438 <br><br> &lt;212&gt; PRT <br><br> &lt;213&gt; Trichoderma reesei <br><br> &lt;400&gt; 84 <br><br> Met Gin Gin Pro Gly Thr Ser Thr Pro Glu Val His Pro Lys Leu Thr 1 5 10 15 <br><br> Thr Tyr Lys Cys Thr Lys Ser Gly Gly Cys Val Ala Gin Asp Thr Ser 20 25 30 <br><br> Val Val Leu Asp Trp Asn Tyr Arg Trp Met His Asp Ala Asn Tyr Asn 35 40 45 <br><br> Ser Cys Thr Val Asn Gly Gly Val Asn Thr Thr Leu Cys Pro Asp Glu 50 55 60 <br><br> Ala Thr Cys Gly Lys Asn" Cys Phe lie Glu Gly Val Asp Tyr Ala Ala 65 70 75 80 <br><br> Ser Gly Val Thr Thr Ser Gly Ser Ser Leu Thr Met Asn Gin Tyr Met 85 90 95 <br><br> Pro Ser Ser Ser Gly Gly Tyr Ser Ser Val Ser Pro Arg Leu Tyr Leu 100 105 110 <br><br> 260 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> &gt;5 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Leu Asp Ser Asp Gly Glu Tyr Val Met Leu Lys Leu Asn Gly Gin Glu 115 120 125 <br><br> Leu Ser Phe Asp Val Asp Leu Ser Ala Leu Pro Cys Gly Glu Asn Gly 130 135 140 <br><br> Ser Leu Tyr Leu Ser Gin Met Asp Glu Asn Gly Gly Ala Asn Gin Tyr 145 150 155 150 <br><br> Asn Thr Ala Gly Ala Asn Tyr Gly Ser Gly Tyr Cys Asp Ala Gin Cys <br><br> 165 170 175 <br><br> Pro Val Gin Thr Trp Arg Asn Gly Thr Leu Asn Thr Ser His Gin Gly 180 185 190 <br><br> Phe Cys Cys Asn Glu Met Asp lie Leu Glu Gly Asn Ser Arg Ala Asn 195 200 205 <br><br> Ala Leu Thr Pro His Ser Cys Thr Ala Thr Ala Cys Asp Ser Ala Gly 210 215 220 <br><br> Cys Gly Phe Asn Pro Tyr Gly Ser Gly Tyr Lys Ser Tyr Tyr Gly Pro 22S 230 235 240 <br><br> Gly Asp Thr val Asp Thr Ser Lys Thr Phe Thr lie lie Thr Gin Phe 245 250 255 <br><br> Asn Thr Asp Asn Gly Ser Pro Ser Gly Asn Leu Val Ser lie Thr Arg 260 265 1 270 <br><br> Lys Tyr Gin Gin Asn Gly Val Asp lie Pro Ser Ala Gin Pro Gly Gly 275 280 285 <br><br> Asp Thr lie Ser Ser Cys Pro Ser Ala Ser Ala Tyr Gly Gly Leu Ala 290 295 300 <br><br> Thr Met Gly Lys Ala Leu Ser Ser Gly Met Val Leu Val Phe Ser lie 305 310 315 320 <br><br> Trp Asn Asp Asn Ser Gin Tyr Met Asn Trp Leu Asp Ser Gly Asn Ala 325 330 335 <br><br> 261 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Gly Pro Cys Ser Ser Thr Glu Gly Asn Pro Ser Asn Thr "Leu Ala Asn 340 345 350 <br><br> Asn Pro Asn Thr His Val Val Phe Ser Asn lie Arg Trp Gly Asp lie 355 360 365 <br><br> Gly Ser Thr Thr Asn Ser Thr Ala Pro Pro Pro Pro Pro Ala Ser'Ser 370 375 380 <br><br> Thr Thr Phe Ser Thr Thr Arg Arg Ser Ser Thr Thr Ser Ser Ser Pro 385 390 395 400 <br><br> Ser Cys Thr Gin Thr His Trp Gly Gin Cys Gly Gly lie Gly Tyr Ser 405 410 415 <br><br> Gly Cys Lys Thr Cys Thr Ser Gly Thr Thr Cys Gin Tyr Ser Asn Asp 420 425 430 <br><br> Tyr Tyr Ser Gin Cys Leu 435 <br><br> &lt;21Q&gt; 85 <br><br> &lt;211&gt; 954 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; 6GP1 <br><br> &lt;220&gt; <br><br> &lt;22 Ip- CDS <br><br> &lt;222&gt; (1)..(954) <br><br> &lt;223&gt; 6GP1 <br><br> &lt;400&gt; 85 <br><br> atg ggc gtg gac ccg ttc gag cgc aac aag ate ctc ggc cgc ggc ate 4 8 <br><br> Met Gly Val Asp Pro Phe Glu Arg Asn Lys lie Leu Gly Arg Gly lie 15 10 15 <br><br> aac ate ggc aac gcc ctg gag gcc ccg aac gag ggc gac tgg ggc gtg 96 <br><br> Asn lie Gly Asn Ala Leu Glu Ala Pro Asn Glu Gly Asp Trp Gly Val 20 25 30 <br><br> gtg ate aag gac gag ttc ttc gac ate ate aag gag gcc ggc ttc tec 144 <br><br> Val lie Lys Asp Glu Phe Phe Asp lie He Lys Glu Ala Gly Phe Ser 35 40 45 <br><br> cac gtg cgc ate ccg ate cgc tgg tcc acc cac gcc tac gcc ttc ccg 192 <br><br> 262 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> His Val Arg lie Pro lie Arg Trp Ser Thr His Ala Tyr Ala Phe Pro 50 55 60 <br><br> ccg tac aag ate atg gac cgc ttc ttc aag cgc gtg gac gag gtg ate 240 <br><br> Pro Tyr Lys lie Met Asp Arg Phe Phe Lys Arg Val Asp Glu Val lie 65 70 75 80 <br><br> aac ggc gee ctc aag cgc ggc ctc gcc gtg gcc ate aac ate cac cac 288 <br><br> Asn Gly Ala Leu Lys Arg Gly Leu Ala Val Ala lie Asn lie His His 85 90 95 <br><br> tac gag gag ctc atg aac gac ccg gag gag cac aag gag cgc ttc ctc 33 6 <br><br> Tyr Glu Glu Leu Met Asn Asp Pro Glu Glu His Lys Glu Arg Phe Leu 100 105 110 <br><br> gcc ctc tgg aag cag ate Ala Leu Trp Lys Gin lie 115 <br><br> ctc ttc ttc gag ate ctc Leu Phe Phe Glu lie Leu 130 <br><br> aag tgg aac gag ctg ctc Lys Trp Asn Glu Leu Leu 145 150 <br><br> gcc gac cgc tac aag gac Ala Asp Arg Tyr Lys Asp 120 <br><br> aac gag ccg cac ggc aac Asn Glu Pro Kis Gly Asn 135 140 <br><br> gag gag gcc ctc aag gtg Glu Glu Ala Leu Lys Val 155 <br><br> tac ccg gag acc 384 <br><br> Tyr Pro Glu Thr <br><br> 125 <br><br> ctc acc ccg gag 4 32 <br><br> Leu Thr Pro Glu ate cgc tcc ate 480 <br><br> lie Arg Ser lie 160 <br><br> gac aag aag cac acc ate ate att ggc acc gca gag tgg gga ggc ate 528 <br><br> Asp Lys Lys His Thr lie lie lie Gly Thr Ala Glu Trp Gly Gly lie 165 170 175 <br><br> tcc gcc ctc gag aag ctc tcc gtg ccg aag tgg gag aag aat tcc ate 5 76 <br><br> Ser Ala Leu Glu Lys Leu Ser Val Pro Lys Trp Glu Lys Asn Ser He 180 185 190 <br><br> gtg acc ate cac tac tac aac ccg ttc gag ttc acg cac cag ggc gcc 624 <br><br> Val Thr lie His Tvr Tyr Asn Pro Phe Glu Phe Thr His Gin Gly Ala 195 200 205 <br><br> gag tgg gtg gag ggc tcc gag aag tgg ctt ggc cgc aag tgg ggc tcc 672 <br><br> Glu Trp Val Glu Gly Ser Glu Lys Trp Leu Gly Arg Lys Trp Gly Ser 210 215 220 <br><br> ccg gac gac cag aag cac ctc ate gag gag ttc aac ttc ate gag gag 720 <br><br> Pro Asp Asp Gin Lys His Leu He Glu Glu Phe Asn Phe lie Glu Glu 225 230 235 240 <br><br> tgg tcc aag aag aac aag cgc ccg ate tac ate ggc gag ttt ggc gcc 768 <br><br> Trp Ser Lys Lys Asn Lys Arg Pro He Tyr lie Gly Glu Phe Gly Ala <br><br> 245 250 255 <br><br> tac cgc aag gcc gac ctc gag tcc cgc ate aag tgg acc tcc ttc gtg 816 <br><br> Tyr Arg Lys Ala Asp Leu Glu Ser Arg lie Lys Trp Thr Ser Phe Val <br><br> 260 265 270 <br><br> gtg cgt gag atg gag aag cgc cgc tgg tcc tgg gcc tac tgg gag ttc 864 <br><br> Val Arg Glu Met Glu Lys Arg Arg Trp Ser Trp Ala Tyr Trp Glu Phe <br><br> 263 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 275 280 285 <br><br> tgc tcc ggc ttc ggc gtg tac gac acc ctc cgc aag acc tgg aac aag 912 <br><br> Cys Ser Gly Phe Gly Val Tyr Asp Thr Leu Arg Lys Thr Trp Asn Lys 290 295 300 <br><br> gac ctc ctc gag gcc ctc ate ggc ggc gac tcc ate gag tag 954 <br><br> Asp Leu Leu Glu Ala Leu lie Gly Gly Asp Ser lie Glu 305 310 315 <br><br> e 2 10&gt; <br><br> 86 <br><br> &lt;211&gt; <br><br> 317 <br><br> &lt;212 &gt; <br><br> PRT <br><br> &lt;2 13 &gt; <br><br> Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223 &gt; <br><br> Synthetic Construct <br><br> &lt;4 00=- <br><br> 86 <br><br> Met Gly Val Asp Pro Phe Glu Arg Asn Lys lie Leu Gly Arg Gly lie 1 5 10 15 <br><br> Asn lie Gly Asn Ala Leu Glu Ala Pro Asn Glu Gly Asp Trp Gly Val 20 25 30 <br><br> Val He Lys Asp Glu Phe Phe Asp He lie Lys Glu Ala Gly Phe Ser 35 40 45 <br><br> His Val Arg lie Pro lie Arg Trp Ser Thr His Ala Tyr Ala Phe Pro 50 55 60 <br><br> Pro Tyr Lys lie Met Asp Arg Phe Phe Lys Arg Val Asp Glu vai J.ie 65 70 75 80 <br><br> Asn Gly Ala Leu Lys Arg Gly Leu Ala Val Ala lie Asn lie His His 85 90 95 <br><br> Tyr Glu Glu Leu Met Asn Asp Pro Glu Glu His Lys Glu Arg Phe Leu 100 105 110 <br><br> Ala Leu Trp Lys Gin lie Ala Asp Arg Tyr Lys Asp Tyr Pro Glu Thr 115 120 125 <br><br> Leu Phe Phe Glu lie Leu Asn Glu Pro His Gly Asn Leu Thr Pro Glu 130 135 140 <br><br> 264 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Lys Trp Asn Glu Leu Leu Glu Glu Ala Leu Lys Val lie Arg Ser lie 145 150 155 ISO <br><br> Asp Lys Lys His Thr He lie lie Gly Thr Ala Glu Trp Gly Gly lie 165 170 175 <br><br> Ser Ala Leu Glu Lys Leu Ser Val Pro Lys Trp Glu Lys Asn Ser lie 180 185 190 <br><br> Val Thr lie His Tyr Tyr Asn Pro Phe Glu Phe Thr His Gin Gly Ala 195 200 205 <br><br> Glu Trp Val Glu Gly Ser Glu Lys Trp Leu Gly Arg Lys Trp Gly Ser 210 215 220 <br><br> Pro Asp Asp Gin Lys His Leu lie Glu Glu Phe Asn Phe lie Glu Glu 225 230 235 240 <br><br> Trp Ser Lys Lys Asn Lys Arg Pro lie Tyr lie Gly Glu Phe Gly Ala 245 250 255 <br><br> Tyr Arg Lys Ala Asp Leu Glu Ser Arg lie Lys Trp Thr Ser Phe Val 260 265 270 <br><br> Val Arg Glu Met Glu Lys Arg Arg Trp Ser Trp Ala Tyr Trp Glu Phe 275 280 285 <br><br> Cys Ser Gly Phe Gly Val Tyr Asp Thr Leu Arg Lys Thr Trp Asn Lys 290 295 300 <br><br> Asp Leu Leu Glu Ala Leu lie Gly Gly Asp Ser lie Glu 305 310 315 <br><br> &lt;2lOs 87 &lt;211i 1248 &lt;212&gt; DNA <br><br> &lt;213i Hordeum vulgare <br><br> &lt;220&gt; <br><br> &lt;221&gt; CDS <br><br> &lt;222&gt; (1)..(1248) <br><br> &lt;223&gt; Barley Amyl amylase <br><br> &lt;400&gt; 87 <br><br> atg gca cac caa gtc ctc ttt cag ggg ttc aac tgg gag teg tgg aag 4B <br><br> 265 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Met Ala His Gin Val Leu Phe Gin Gly Phe Asn Trp Glu Ser Trp Lys <br><br> 15 10 15 <br><br> cag age ggc ggg tgg tac aac atg atg atg ggc aag gtc gac gac ate 96 <br><br> Gin Ser Gly Gly Trp Tyr Asn Met Met Met Gly Lys Val Asp Asp He <br><br> 20 25 30 <br><br> gcc get gcc gga gtc acc cac gtc tgg ctg cca ccg ccg teg cac tcc 144 <br><br> Ala Ala Ala Gly Val Thr His Val Trp Leu Pro Pro Pro Ser His Ser <br><br> 35 40 45 <br><br> gtc tcc aac gaa ggt tac atg cct ggt Val Ser Asn Glu Gly Tyr Met Pro Gly 50 55 <br><br> tcc aag tac ggc aac gcg gcg gag ctc <br><br> Ser Lys Tyr Gly Asn Ala Ala Glu Leu 65 70 <br><br> egg ctg tac gac ate gac gcg 192 <br><br> Arg Leu Tyr Asp lie Asp Ala 60 <br><br> aag teg ctc ate ggc gcg ctc 24 0 <br><br> Lys Ser Leu lie Gly Ala Leu 75 BO <br><br> cac ggc aag ggc gtg cag gcc ate gcc gac ate gtc ate aac cac cgc 288 <br><br> His Gly Lys Gly Val Gin Ala lie Ala Asp lie Val lie Asn His Arg 85 90 95 <br><br> tgc gcc gac tac aag gat age cgc ggc ate tac tgc ate ttc gag ggc 336 <br><br> Cys Ala Asp Tyr Lys Asp Ser Arg Gly lie Tyr Cys lie Phe Glu Gly 100 105 110 <br><br> ggc acc tcc gac ggc cgc Gly Thr Ser Asp Gly Arg 115 <br><br> gac gac acc aaa tac tcc Asp Asp Thr Lys Tyr Ser 130 <br><br> gac ttc gcc gcc gcg ccc Asp rhs Ala Ala Als Pro 145 ISO <br><br> ctc gac tgg ggc ccc cac Leu Asp Trp Gly Pro His 120 <br><br> gat ggc acc gca aac ctc Asp Gly Thr Ala Asn Leu 135 140 <br><br> gac ate gac cac ctc aac Assn Tie Asp His Leu Asn 155 <br><br> atg ate tgt cgc 384 <br><br> Met lie Cys Arg <br><br> 125 <br><br> gac acc gga gcc 432 <br><br> Asp Thr Gly Ala gac egg gtc cag 480 <br><br> Asp Arg Val Gin 160 <br><br> cgc gag ctc aag gag tgg ctc ctc tgg ctc aag age gac ctc ggc ttc 528 <br><br> Arg Glu Leu Lys Glu Trp Leu Leu Trp Leu Lys Ser Asp Leu Gly Phe 165 170 175 <br><br> gac gcg tgg cgc ctt gac ttc gcc agg ggc tac teg ccg gag atg gcc 576 <br><br> Asp Ala Trp Arg Leu Asp Phe Ala Arg Gly Tyr Ser Pro Glu Met Ala 180 185 190 <br><br> aag gtg tac ate gac ggc aca tec ccg age ctc gcc gtg gcc gag gtg 624 <br><br> Lys val Tyr lie Asp Gly Thr ser Pro Ser Leu Ala Val Ala Glu val 195 200 205 <br><br> tgg gac aat atg gcc acc ggc ggc gac Trp Asp Asn Met Ala Thr Gly Gly Asp 210 215 <br><br> gac gcg cac egg cag aat ctg gtg aac Asp Ala His Arg Gin Asn Leu Val Asn ggc aag ccc aac tac gac cag 672 <br><br> Gly Lys Pro Asn Tyr Asp Gin 220 <br><br> tgg gtg gac aag gtg ggc ggc 72 0 <br><br> Trp Val Asp Lys Val Gly Gly <br><br> 266 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 225 230 235 240 <br><br> gcg gcc teg gca ggc atg gtg ttc gac ttc acg acc aaa ggg ata ctg 768 <br><br> Ala Ala Ser Ala Gly Met Val Phe Asp Phe Thr Thr Lys Gly lie Leu 245 250 255 <br><br> aac get gcc gtg gag ggc gag ctg tgg agg ctg ate gac ccg cag ggg 816 <br><br> Asn Ala Ala Val Glu Gly Glu Leu Trp Arg Leu lie Asp Pro Gin Gly 260 265 270 <br><br> aag gcc ccc ggc gtg atg gga tgg tgg ccg gcc aag gcc gtc acc ttc 864 <br><br> Lys Ala Pro Gly Val Met Gly Trp Trp Pro Ala Lys Ala Val Thr Phe 275 280 285 <br><br> gtc gac aac cac gat aca ggc tcc acg cag gcc atg tgg cca ttc ccc 912 <br><br> Val Asp Asn His Asp Thr Gly Ser Thr Gin Ala Met Trp Pro Phe Pro 290 295 300 <br><br> tcc gac aag gtc atg cag ggc tac gcg tac ate ctc acc cac ccc ggc 960 <br><br> Ser Asp Lys Val Met Gin Gly Tyr Ala Tyr lie Leu Thr His Pro Gly 305 310 315 320 <br><br> ate cca tgc ate ttc tac gac cat ttc ttc aac tgg ggg ttt aag gac 1008 lie Pro Cys He Phe Tyr Asp His Phe Phe Asn Trp Gly Phe Lys Asp 325 330 335 <br><br> cag ate gcg gcg ctg gtg gcg ate agg aag cgc aac ggc ate acg gcg 1056 <br><br> Gin lie Ala Ala Leu Val Ala He Arg Lys Arg Asn Gly lie Thr Ala 340 345 350 <br><br> acg age get ctg aag ate ctc atg cac gaa gga gat gcc tac gtc gcc 1104 <br><br> Thr Ser Ala Leu Lys He Leu Met His Glu Gly Asp Ala Tyr Val Ala 355 360 365 <br><br> gag ata gac ggc aag gtg gtg gtg aag ate ggg tcc agg tac gac gtc 1152 <br><br> Glu lie Asp Gly Lys Val Val Val Lys lie Gly Ser Arg Tyr Asp Val 370 375 380 <br><br> ggg gcg gtg ate ccg gcc ggg ttc gtg acc teg gca cac ggc aac gac 1200 Gly Ala val lie Pro Ala Gly Phe Val Thr Ser Ala His Gly Asn Asp 385 390 395 400 <br><br> tac gcc gtc tgg gag aag aac ggt gcc gcg gca aca eta caa egg age 124 8 Tyr Ala Val Trp Glu Lys Asn Gly Ala Ala Ala Thr Leu Gin Arg Ser 405 410 415 <br><br> &lt;210&gt; 88 &lt; 211&gt; 416 &lt;212&gt; PRT <br><br> &lt;213&gt; Hordeum vulgare c400&gt; 88 <br><br> Met Ala His Gin Val Leu Phe Gin Gly Phe Asn Trp Glu Ser Trp Lys 15 10 15 <br><br> 267 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Gin Ser Gly Gly Trp Tyr Asn Met Met Met Gly Lys Val Asp Asp lie 20 25 30 <br><br> Ala Ala Ala Gly Val Thr His Val Trp Leu Pro Pro Pro Ser His Ser 35 40 45 <br><br> Val Ser Asn Glu Gly Tyr Met Pro Gly Arg Leu Tyr Asp Xle Asp Ala 50 5 5 60 <br><br> Ser Lys Tyr Gly Asn Ala Ala Glu Leu Lys Ser Leu lie Gly Ala Leu 65 70 7S SO <br><br> His Gly Lys Gly Val Gin Ala lie Ala Asp lie Val lie Asn His Arg 85 90 95 <br><br> Cys Ala Asp Tyr Lys Asp Ser Arg Gly Xle Tyr Cys lie Phe Glu Gly 100 105 110 <br><br> Gly Thr Ser Asp Gly Arg Leu Asp Trp Gly Pro His Met He Cys Arg 115 120 125 <br><br> Asp Asp Thr Lys Tyr Ser Asp Gly Thr Ala Asn Leu Asp Thr Gly Ala 130 135 140 <br><br> Asp Phe Ala Ala Ala Pro Asp lie Asp His Leu Asn Asp Arg Val Gin 145 150 1S5 160 <br><br> Arg Glu Leu Lys Glu Trp Leu Leu Trp Leu Lys Ser Asp Leu Gly Phe 165 170 175 <br><br> Asp Ala Trp Arg Leu Asp Phe Ala Arg Gly Tyr Ser Pro Glu Met Ala 180 165 190 <br><br> Lys Val Tyr lie Asp Gly Thr Ser Pro Ser Leu Ala Val Ala Glu Val 195 200 205 <br><br> Trp Asp Asn Met Ala Thr Gly Gly Asp Gly Lys Pro Asn Tyr Asp Gin 210 215 220 <br><br> Asp Ala His Arg Gin Asn Leu Val Asn Trp Val Asp Lys Val Gly Gly 225 230 235 240 <br><br> 268 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Ala Ala Ser Ala Gly Met Val Phe Asp Phe Thr Thr Lys Gly lie Leu 245 250 255 <br><br> Asn Ala Ala Val Glu Gly Glu Leu Trp Arg Leu lie Asp Pro Gin Gly 260 265 270 <br><br> Lys Ala Pro Gly Val Met Gly Trp Trp Pro Ala Lys Ala Val Thr Phe 275 280 285 <br><br> Val Asp Asn His Asp Thr Gly Ser Thr Gin Ala Met Trp Pro Phe Pro 290 295 300 <br><br> Ser Asp Lys Val Met Gin Gly Tyr Ala Tyr lie Leu Thr His Pro Gly 305 310 315 320 <br><br> lie Pro Cys He Phe Tyr Asp His Phe Phe Asn Trp Gly Phe Lys Asp 325 330 335 <br><br> Gin lie Ala Ala Leu Val Ala lie Arg Lys Arg Asn Gly lie Thr Ala 340 345 350 <br><br> Thr Ser Ala Leu Lys lie Leu Met His Glu Gly Asp Ala Tyr Val Ala 355 360 365 <br><br> Glu He Asp Gly Lys Val Val Val Lys He Gly Ser Arg Tyr Asp Val 370 375 380 <br><br> Gly Ala val lie Pro Ala Gly Phe Val Thr Ser Ala His Gly Asn Asp 385 390 3sb 400 <br><br> Tyr Ala Val Trp Glu Lys Asn Gly Ala Ala Ala Thr Leu Gin Arg Ser 405 410 415 <br><br> &lt;210&gt; 89 <br><br> &lt;211&gt; 1401 <br><br> &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223&gt; Trichoderma reesei ^-Glucosidase 2 <br><br> &lt;220&gt; <br><br> &lt;221&gt; CDS <br><br> &lt;222&gt; (1)..(1401) <br><br> &lt;223&gt; Trichoderma reesei S-Glucosidase 2 <br><br> 269 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;400 &gt; 89 <br><br> atg ttg ccc aag gac ttt cag tgg ggg Met Leu Pro Lys Asp Phe Gin Trp Gly 1 5 <br><br> ttc gcc acg get gcc tac cag 48 <br><br> Phe Ala Thr Ala Ala Tyr Gin 10 15 <br><br> ate gag ggc gcc gtc gac cag gac ggc cgc ggc ccc age ate tgg gac 96 <br><br> lie Glu Gly Ala Val Asp Gin Asp Gly Arg Gly Pro Ser lie Trp Asp 20 25 30 <br><br> acg ttc tgc gcg cag ccc ggc aag ate gcc gac ggc teg teg ggc gtg 144 <br><br> Thr Phe Cys Ala Gin pro Gly Lys lie Ala Asp Gly Ser Ser Gly Val <br><br> 35 40 45 <br><br> acg gcg tgc gac teg tac aac cgc acg gcc gag gac att gcg ctg ctg 192 <br><br> Thr Ala Cys Asp Ser Tyr Asn Arg Thr Ala Glu Asp lie Ala Leu Leu 50 55 60 <br><br> aag teg ctc ggg gcc aag age tac cgc ttc tcc ate teg tgg teg cgc 240 <br><br> Lys Ser Leu Gly Ala Lys Ser Tyr Arg Phe Ser lie Ser Trp Ser Arg 65 70 75 80 <br><br> ate ate ccc gag ggc ggc cgc ggc gat gcc gtc aac cag gcg ggc ate 288 <br><br> He lie Pro Glu Gly Gly Arg Gly Asp Ala Val Asn Gin Ala Gly He 85 90 95 <br><br> gac cac tac gtc aag ttc gtc gac gac ctg ctc gac gcc ggc ate acg 336 <br><br> Asp His Tyr Val Lys Phe Val Asp Asp Leu Leu Asp Ala Gly lie Thr <br><br> 100 105 110 <br><br> ccc ttc ate acc ctc ttc cac tgg gac ctg ccc gag ggc ctg cat cag 354 <br><br> Pro Phe lie Thr Leu Phe His Trp Asp Leu Pro Glu Gly Leu His Gin <br><br> 115 120 125 <br><br> egg tac ggg ggg ctg ctg aac cgc acc gag ttc ccg ctc gac ttt gaa 432 <br><br> Arg Tyr Gly Gly Leu Leu Asn Arg Thr Glu Phe Pro Leu Asp Phe Glu 130 135 140 <br><br> aac tac gcc cgc gtc atg ttc agg gcg ctg ccc aag gtg cgc aac tgg 480 <br><br> Asn Tyr Ala Arg Val Met Phe Arg Ala Leu Pro Lys Val Arg Asn Trp 145 150 155 160 <br><br> ate ace ttc aac gag ccg ctg tgc teg gee ate ccg ggc tac ggc tcc 52 8 <br><br> lie Thr Phe Asn Glu Pro Leu Cys Ser Ala lie Pro Gly Tyr Gly Ser 165 170 175 <br><br> ggc acc ttc gcc ccc ggc egg cag age acc teg gag ccg tgg acc gtc 576 <br><br> Gly Thr Phe Ala Pro Gly Arg Gin Ser Thr Ser Glu Pro Trp Thr Val 180 185 190 <br><br> ggc cac aac ate ctc gtc gcc cac ggc cgc gcc gtc aag gcg tac cgc 624 <br><br> Gly His Asn lie Leu Val Ala His Gly Arg Ala Val Lys Ala Tyr Arg 195 200 205 <br><br> gac gac ttc aag ccc gcc age ggc gac ggc cag ate ggc ate gtc ctc 672 <br><br> Asp Asp Phe Lys Pro Ala Ser Gly Asp Gly Gin lie Gly lie Val Leu 210 215 220 <br><br> 270 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> aac ggc gac ttc acc tac ccc tgg gac gcc gcc gac ccg gcc gac aag Asn Gly Asp Phe Thr Tyr Pro Trp Asp Ala Ala Asp Pro Ala Asp Lys 225 230 235 240 <br><br> gag gcg gcc gag egg cgc ctc gag ttc ttc acg gcc tgg ttc gcg gac Glu Ala Ala Glu Arg Arg Leu Glu Phe Phe Thr Ala Trp Phe Ala Asp 245 250 255 <br><br> ccc ate tac ttg ggc gac tac ccg gcg teg atg cgc aag cag ctg ggc Pro lie Tyr Leu Gly Asp Tyr Pro Ala Ser Met Arg Lys Gin Leu Gly 260 2 65 270 <br><br> gac egg ctg ccg acc ttt acg ccc gag gag cgc gcc ctc gtc cac ggc Asp Arg Leu Pro Thr Phe Thr Pro Glu Glu Arg Ala Leu Val His Gly 275 280 285 <br><br> tcc aac gac ttt tac ggc atg aac cac tac acg tcc aac tac ate cgc Ser Asn Asp Phe Tyr Gly Met Asn His Tyr Thr Ser Asn Tyr lie Arg 290 295 300 <br><br> cac cgc age teg ccc gcc tcc gcc gac gac acc gtc ggc aac gtc gac His Arg Ser Ser Pro Ala Ser Ala Asp Asp Thr Val Gly Asn Val Asp 305 310 315 320 <br><br> gtg ctc ttc acc aac aag cag ggc aac tgc ate ggc ccc gag acg cag Val Leu Phe Thr Asn Lys Gin Gly Asn Cys lie Gly Pro Glu Thr Gin <br><br> 325 330 335 <br><br> tcc ccc tgg ctg cgc ccc tgt gcc gcc ggc ttc cgc gac ttc ctg gtg Ser Pro Trp Leu Arg Pro Cys Ala Ala Gly Phe Arg Asp Phe Leu Val 340 345 350 <br><br> tgg ate age aag agg tac ggc tac ccg ccc ate tac gtg acg gag aac <br><br> Trp lie Ser Lys Arg Tyr Gly Tyr Pro Pro lie Tyr Val Thr Glu Asn 355 360 365 <br><br> ggc acg age ate aag ggc gag age gac ttg ccc aag gag aag att ctc Gly Thr Ser lie Lys Gly Glu Ser Asp Leu Pro Lys Glu Lys He Leu 370 375 380 <br><br> gaa gat gac ttc agg gtc aag tac tat aac gag tac ate cgt gcc atg Glu Asp Asp Phe Arg Val Lys Tyr Tyr Asn Glu Tyr lie Arg Ala Met 385 390 395 400 <br><br> gtt acc gcc gtg gag ctg gac ggg gtc aac gtc aag ggg tac ttt gcc Val Thr Ala Val Glu Leu Asp Gly Val Asn Val Lys Gly Tyr Phe Ala 405 410 415 <br><br> tgg teg ctc atg gac aac ttt gag tgg gcg gac ggc tac gtg acg agg Trp Ser Leu Met Asp Asn Phe Glu Trp Ala Asp Gly Tyr Val Thr Arg 420 425 430 <br><br> ttt ggg gtt acg tat gtg gat tat gag aat ggg cag aag egg ttc ccc Phe Gly Val Thr Tyr Val Asp Tyr Glu Asn Gly Gin Lys Arg Phe Pro 435 440 445 <br><br> 720 <br><br> 768 <br><br> 816 <br><br> 864 <br><br> 912 <br><br> 960 <br><br> 1008 <br><br> 1056 <br><br> 1104 <br><br> lis* <br><br> 1200 <br><br> 1248 <br><br> 1296 <br><br> 1344 <br><br> 271 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> aag aag age gca aag age ttg aag ccg Lys Lys Ser Ala Lys Ser Leu Lys Pro 450 455 <br><br> gcg gcg tga Ala Ala 465 <br><br> ctg ttt gac gag ctg att gcg 13 92 Leu Phe Asp Glu Leu lie Ala 4 60 <br><br> 1401 <br><br> &lt;210&gt; <br><br> 90 <br><br> &lt;211 &gt; <br><br> 466 <br><br> &lt;212 &gt; <br><br> PRT <br><br> &lt;213 &gt; <br><br> Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; <br><br> Synthetic Construct <br><br> &lt;400&gt; <br><br> 90 <br><br> Met Leu Pro Lys Asp Phe Gin Trp Gly Phe Ala Thr Ala Ala Tyr Gin <br><br> 15 10 15 <br><br> lie Glu Gly Ala Val Asp Gin Asp Gly Arg Gly Pro Ser lie Trp Asp 20 25 30 <br><br> Thr Phe Cys Ala Gin Pro Gly Lys lie Ala Asp Gly Ser Ser Gly Val 35 40 45 <br><br> Thr Ala Cys Asp Ser Tyr Asn Arg Thr Ala Glu Asp lie Ala Leu Leu 50 55 50 <br><br> Lys Ser Leu Gly Ala Lys Ser Tyr Arg Phe Ser lie Ser Trp Ser Arg 65 70 75 80 <br><br> lie lie Pro Glu Gly Gly Arg Gly Aep Ala Val Asn Gin Ala Gly lie 85 90 95 <br><br> Asp His Tyr Val Lys Phe Val Asp Asp Leu Leu Asp Ala Gly lie Thr 100 105 110 <br><br> Pro Phe lie Thr Leu Phe His Trp Asp Leu Pro Glu Gly Leu His Gin 115 120 125 <br><br> Arg Tyr Gly Gly Leu Leu Asn Arg Thr Glu Phe Pro Leu Asp Phe Glu 130 135 140 <br><br> Asn Tyr Ala Arg Val Met Phe Arg Ala Leu Pro Lys Val Arg Asn Trp 145 150 155 160 <br><br> 272 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> SO <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> lie Thr Phe Asn Glu Pro Leu Cys Ser Ala lie Pro Gly Tyr Gly Ser 165 170 175 <br><br> Gly Thr Phe Ala Pro Gly Arg Gin Ser Thr Ser Glu Pro Trp Thr Val 180 185 190 <br><br> Gly His Asn lie Leu Val Ala His Gly Arg Ala Val Lys Ala Tyr Arg 195 200 205 <br><br> Asp Asp Phe Lys Pro Ala Ser Gly Asp Gly Gin He Gly He Val Leu 210 215 220 <br><br> Asn Gly Asp Phe Thr Tyr Pro Trp Asp Ala Ala Asp Pro Ala Asp Lys 225 230 235 240 <br><br> Glu Ala Ala Glu Arg Arg Leu Glu Phe Phe Thr Ala Trp Phe Ala Asp 245 250 255 <br><br> Pro He Tyr Leu Gly Asp Tyr Pro Ala Ser Met Arg Lys Gin Leu Gly 2S0 265 270 <br><br> Asp Arg Leu Pro Thr Phe Thr Pro Glu Glu Arg Ala Leu Val His Gly 275 2B0 285 <br><br> Ser Asn Asp Phe Tyr Gly Met Asn His Tyr Thr Ser Asn Tyr lie Arg 290 295 300 <br><br> His Arg Ser Ser Pro Ala Ser Ala Asp Asp Thr Val Gly Asn Val Asp 305 310 315 320 <br><br> Val Leu Phe Thr Asn Lys Gin Gly Asn Cys lie Gly Pro Glu Thr Gin 325 330 335 <br><br> Ser Pro Trp Leu Arg Pro Cys Ala Ala Gly Phe Arg Asp Phe Leu Val 340 345 350 <br><br> Trp lie Ser Lys Arg Tyr Gly Tyr Pro Pro lie Tyr Val Thr Glu Asn 355 360 3S5 <br><br> Gly Thr Ser lie Lys Gly Glu Ser Asp Leu Pro Lys Glu Lys lie Leu 370 375 380 <br><br> 273 <br><br> 10 <br><br> IS <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Glu Asp Asp Phe Arg Val Lys Tyr Tyr Asn Glu Tyr lie Arg Ala Met 385 390 395 400 <br><br> Val Thr Ala Val Glu Leu Asp Giy Val Asn Val Lys Gly Tyr Phe Ala 405 410 415 <br><br> Trp Ser Leu Met Asp Asn Phe Glu Trp Ala Asp Gly Tyr Val Thr Arg 420 425 430 <br><br> Phe Gly Val Thr Tyr Val Asp Tyr Glu Asn Gly Gin Lys Arg Phe Pro 435 440 445 <br><br> Lys Lys Ser Ala Lys Ser Leu Lys Pro Leu Phe Asp Glu Leu lie Ala 450 455 460 <br><br> Ala Ala 465 <br><br> &lt;210&gt; 91 <br><br> &lt;211&gt; 2103 <br><br> &lt;212 &gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;22 0&gt; <br><br> &lt;223&gt; Trichoderma reesei B-Glucosidase D <br><br> &lt;220&gt; <br><br> &lt;221&gt; CDS ;222&gt; !1&gt;,, &lt;7103) <br><br> &lt;223&gt; Trichoderma reesei B-Glucosidase D &lt;4 00&gt; 91 <br><br> atg att ctc ggc tgt gaa age aca ggt gtc ate tct gcc gtc aaa cac 48 <br><br> Met lie Leu Gly Cys Glu Ser Thr Gly Val lie Ser Ala Val Lys His 15 10 IS <br><br> ttt gtc gcc aac gac cag gag cac gag egg cga gcg gtc gac tgt ctc 96 <br><br> Phe Val Ala Asn Asp Gin Glu His Glu Arg Arg Ala Val Asp Cys Leu 20 25 30 <br><br> ate acc cag egg get ctc lie Thr Gin Arg Ala Leu 35 <br><br> gta gcc cga gat gca agg Val Ala Arg Asp Ala Arg 50 <br><br> gtc aat ggc aag cac gtc egg gag gtc tat ctg cga Arg Glu Val Tyr Leu Arg 40 <br><br> ccc ggc gca ttg atg aca Pro Gly Ala Leu Met Thr 55 60 <br><br> get gac age gcc gag ttc ccc ttc cag ate 144 <br><br> Pro Phe Gin lie 45 <br><br> tcc tac aac aag 192 <br><br> Ser Tyr Asn Lys ctt cag ggc att 240 <br><br> 274 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> Val Asn Gly Lys His Val Ala Asp Ser Ala Glu Phe Leu Gin Gly lie 65 70 75 80 <br><br> ctc egg act gag tgg aat tgg gac cct ctc att gtc age gac tgg tac 288 <br><br> Leu Arg Thr Glu Trp Asn Trp Asp Pro Leu lie Val Ser Asp Trp Tyr 85 90 95 <br><br> ggc acc tac ace act att gat gcc ate aaa gcc ggc ctt gat ctc gag 336 <br><br> Gly Thr Tyr Thr Thr lie Asp Ala lie Lys Ala Gly Leu Asp Leu Glu 100 105 110 <br><br> atg ccg ggc gtt tea cga tat cgc ggc aaa tac ate gag tct get ctg 384 <br><br> Met Pro Gly Val Ser Arg Tyr Arg Gly Lys Tyr He Glu Ser Ala Leu 115 120 125 <br><br> cag gee cgt ttg ctg aag cag tcc act ate gat gag cgc get cgc cgc 432 <br><br> Gin Ala Arg Leu Leu Lys Gin Ser Thr lie Asp Glu Arg Ala Arg Arg 130 135 140 <br><br> gtg ctc agg ttc gcc cag aag gcc age cat ctc aag gtc tcc gag gta 480 <br><br> Val Leu Arg Phe Ala Gin Lys Ala Ser His Leu Lys Val Ser Glu Val 145 150 155 ISO <br><br> gag caa ggc cgt gac ttc cca gag gat Glu Gin Gly Arg Asp phe Pro Glu Asp 165 <br><br> cgc gtc ctc aac cgt cag ate 528 <br><br> Arg Val Leu Asn Arg Gin lie 170 175 <br><br> tgc ggc age age att gtc eta ctg aag aat gag aac tcc ate tta cct 576 <br><br> Cys Gly Ser Ser lie Val Leu Leu Lys Asn Glu Asn Ser lie Leu Pro 180 185 190 <br><br> ctc ccc aag tcc gtc aag aag gtc gcc ctt gtt ggt tcc cac gtg cgt 624 <br><br> Leu Pro Lys Ser Val Lys Lys Val Ala Leu Val Gly Ser His Val Arg 195 200 205 <br><br> eta ccg get ate teg gga gga ggc age gcc tct ctt gtc eet tac tat 672 <br><br> Leu Pro Ala lie Ser Gly Gly Gly Ser Ala Ser Leu Val Pro Tyr Tyr 210 215 220 <br><br> gcc ata tct eta tac gat gcc gtc tct gag gta eta gcc ggt gcc acg 720 <br><br> Ala rle Ser Leu Tyr Asp Ala Val Ser Glu Val Leu Ala Gly Ala Thr 225 230 235 240 <br><br> ate acg cac gag gtc ggt gcc tat gcc lie Thr His Glu Val Gly Ala Tyr Ala 245 <br><br> cac caa atg ctg ccc gtc ate 768 <br><br> His Gin Met Leu Pro val lie 250 255 <br><br> gac gca atg ate age aac gcc gta ate cac ttc tac aac gac ccc ate 816 <br><br> Asp Ala Met lie Ser Asn Ala Val lie His Phe Tyr Asn Asp Pro lie 260 265 270 <br><br> gat gtc aaa gac aga aag ctc ctt ggc agt gag aac gta teg teg aca 864 <br><br> Asp Val Lys Asp Arg Lys Leu Leu Gly Ser Glu Asn val ser Ser Thr 275 280 285 <br><br> teg ttc cag ctc atg gat tac aac aac ate cca acg ctc aac aag gcc 912 <br><br> Ser Phe Gin Leu Met Asp Tyr Asn Asn He Pro Thr Leu Asn Lys Ala <br><br> 275 <br><br> 5 <br><br> 10 <br><br> 25 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007I82 <br><br> 290 295 300 <br><br> atg ttc tgg ggt act etc gtg ggc gag ttt ate cct acc gcc acg gga Met Phe Trp Gly Thr Leu Val Gly Glu Phe lie Pro Thr Ala Thr Gly <br><br> 305 310 315 320 <br><br> att tgg gaa ttt ggc ctc agt gtc ttt ggc act gcc gac ctt tat att lie Trp Glu Phe Gly Leu Ser Val Phe Gly Thr Ala Asp Leu Tyr lie 325 330 335 <br><br> gat aat gag ctc gtg att gaa aat aca aca cat cag acg cgt gga acc Asp Asn Glu Leu Val He Glu Asn Thr Thr His Gin Thr Arg Gly Thr 340 345 350 <br><br> gcc ttt ttc gga aag gga acg acg gaa aaa gtc get acc agg agg atg Ala Phe Phe Gly Lys Gly Thr Thr Glu Lys Val Ala Thr Arg Arg Met 355 360 3S5 <br><br> gtg gcc ggc age acc tac aag ctg cgt ctc gag ttt ggg tct gcc aac Val Ala Gly Ser Thr Tyr Lys Leu Arg Leu Glu Phe Gly Ser Ala Asn 370 375 380 <br><br> acg acc aag atg gag acg acc ggt gtt gtc aac ttt ggc ggc ggt gcc Thr Thr Lys Met Glu Thr Thr Gly Val Val Asn Phe Gly Gly Gly Ala 385 390 395 400 <br><br> gta cac ctg ggt gcc tgt ctc aag gtc gac cca cag gag atg att gcg Val His Leu Gly Ala cys Leu Lys Val Asp Pro Gin Glu Met lie Ala 405 410 415 <br><br> egg gcc gtc aag gcc gca gcc gat gcc gac tac acc ate ate tgc acg Arg Ala Val Lys Ala Ala Ala Asp Ala Asp Tyr Thr lie lie Cys Thr 420 425 430 <br><br> gga ctc age ggc gag tgg gag tct gag ggt ttt gac egg cct cac atg Gly Leu Ser Gly Glu Trp Glu Ser Glu Gly Phe Asp Arg Pro His Met 435 440 445 <br><br> gac ctg ccc cct ggt gtg gac acc atg ate teg caa gtt ctt gac gcc Asp Leu Pro Pro Gly Val Asp Thr Met lie Ser Gin Val Leu Asp Ala 450 455 460 <br><br> get ccc aat get gta gtc gtc aac cag tea ggc acc cca gtg aca atg Ala Pro Asn Ala Val Val Val Asn Gin Ser Gly Thr Pro Val Thr Met 455 470 475 480 <br><br> age tgg get cat aaa gca aag gcc att gtg cag get tgg tat ggt ggt Ser Trp Ala His Lys Ala Lys Ala lie Val Gin Ala Trp Tyr Gly Gly 485 490 495 <br><br> aac gag aca ggc cac gga ate tcc gat gtg ctc ttt ggc aac gtc aac Asn Glu Thr Gly His Gly He Ser Asp Val Leu Phe Gly Asn Val Asn 500 505 510 <br><br> ccg teg ggg aaa ctc tee eta teg tgg cca gtc gat gtg aag cac aac <br><br> Pro Ser Gly Lys Leu Ser Leu Ser Trp Pro Val Asp Val Lys His Asn 515 520 525 <br><br> 960 <br><br> 1008 <br><br> 1056 <br><br> 1104 <br><br> 1152 <br><br> 1200 <br><br> 1248 <br><br> 1296 <br><br> 1344 <br><br> 1392 <br><br> 1440 <br><br> 14B8 <br><br> 1536 <br><br> 1584 <br><br> 276 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> cca gca tat ctc aac tac gcc age gtt ggt gga egg gtc ttg tat ggc 1632 Pro Ala Tyr Leu Asn Tyr Ala Ser Val Gly Gly Arg Val Leu Tyr Gly 530 535 540 <br><br> gag gat gtt tac gtt ggc tac aag ttc tac gac aaa acg gag agg gag 1680 Glu Asp Val Tyr Val Gly Tyr Lys Phe Tyr Asp Lys Thr Glu Arg Glu 545 550 555 560 <br><br> gtt ctg ttt cct ttt ggg cat ggc ctg tct tac get acc ttc aag ctc 1728 Val Leu Phe Pro Phe Gly His Gly Leu Ser Tyr Ala Thr Phe Lys Leu 565 570 575 <br><br> cca gat tct acc gtg agg acg gtc ccc gaa acc ttc cac ccg gac cag 1776 <br><br> Pro Asp Ser Thr Val Arg Thr Val Pro Glu Thr Phe His Pro Asp Gin 580 585 590 <br><br> ccc aca gta gcc att gtc aag ate aag aac acg age agt gtc ccg ggc 1824 Pro Thr Val Ala lie Val Lys lie Lys Asn Thr Ser Ser Val Pro Gly 595 600 605 <br><br> gcc cag gtc ctg cag tta tac att teg gcc cca aac teg cct aca cat 1872 <br><br> Ala Gin Val Leu Gin Leu Tyr He Ser Ala Pro Asn Ser Pro Thr His 610 ,615 620 <br><br> cgc ccg gtc aag gag ctg cac gga ttc gaa aag gtg tat ctt gaa get 1920 Arg Pro Val Lys Glu Leu His Gly Phe Glu Lys Val Tyr Leu Glu Ala 625 630 635 640 <br><br> ggc gag gag aag gag gta caa ata ccc att gac cag tac get act age 1968 <br><br> Gly Glu Glu Lys Glu Val Gin lie Pro lie Asp Gin Tyr Ala Thr Ser 645 650 655 <br><br> tte tgg gac gag att gag age atg tgg aag age gag agg ggc att tat 2016 Phe Trp Asp Glu He Glu Ser Met Trp Lys Ser Glu Arg Gly lie Tyr 660 665 670 <br><br> gat gtg ctt gta gga ttc teg agt cag gaa ate teg ggc aag ggg aag 2064 <br><br> Asp Val Leu Val Gly Phe Ser Ser Gin Glu lie Ser Gly Lys Gly Lys 675 680 685 <br><br> ctg att gtg cct gaa acg cga ttc tgg atg ggg ctg tag 2103 <br><br> Leu lie Val Pro Glu Thr Arg Phe Trp Met Gly Leu 690 695 700 <br><br> &lt;210&gt; <br><br> 92 <br><br> &lt;211&gt; <br><br> 700 <br><br> &lt;212&gt; <br><br> PRT <br><br> &lt;213&gt; <br><br> Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; <br><br> Synthetic Construct <br><br> &lt;4 00&gt; <br><br> 92 <br><br> Met lie Leu Gly Cys Glu Ser Thr Gly Val lie Ser Ala Val Lys His <br><br> 277 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCIYUS2004/007182 <br><br> 10 15 <br><br> Phe Val Ala Asn Asp Gin Glu His Glu Arg Arg Ala Val Asp Cys Leu 20 25 30 <br><br> lie Thr Gin Arg Ala Leu Arg Glu Val Tyr Leu Arg Pro Phe Gin lie 35 40 45 <br><br> val Ala Arg Asp Ala Arg Pro Gly Ala Leu MeC Thr Ser Tyr Asn Lys <br><br> 50 55 60 <br><br> Val Asn Gly Lys His Val Ala Asp Ser Ala Glu Phe Leu Gin Gly lie 65 70 75 80 <br><br> Leu Arg Thr Glu Trp Asn Trp Asp Pro Leu lie Val Ser Asp Trp Tyr 85 90 95 <br><br> Gly Thr Tyr Thr Thr lie Asp Ala lie Lys Ala Gly Leu Asp Leu Glu 100 105 110 <br><br> Met Pro Gly Val Ser Arg Tyr Arg Gly Lys Tyr lie Glu Ser Ala Leu 115 120 125 <br><br> Gin Ala Arg Leu Leu Lys Gin Ser Thr lie Asp Glu Arg Ala Arg Arg 130 135 140 <br><br> Val Leu Arg Phe Ala Gin Lys Ala Ser His Leu Lys Val Ser Glu Val 145 150 155 160 <br><br> Glu Gin Gly Arg Asp Phe Pro Glu Asp Arg Val Leu Asn Arg Gin lie <br><br> 165 170 175 <br><br> Cys Gly Ser Ser He Val Leu Leu Lys Asn Glu Asn Ser He Leu Pro 180 185 190 <br><br> Leu Pro Lys Ser Val Lys Lys Val Ala Leu Val Gly Ser His Val Arg 195 200 205 <br><br> Leu Pro Ala lie Ser Gly Gly Gly Ser Ala Ser Leu Val Pro Tyr Tyr 210 215 220 <br><br> Ala lie Ser Leu Tyr Asp Ala Val Ser Glu Val Leu Ala Gly Ala Thr 225 230 235 240 <br><br> 278 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> He Thr His Glu Val Gly Ala Tyr Ala His Gin Met Leu Pro Val lie 245 250 255 <br><br> 5 <br><br> Asp Ala Met lie Ser Asn Ala Val lie His Phe Tyr Asn Asp Pro lie 260 255 270 <br><br> 10 <br><br> Asp Val Lys Asp Arg Lys Leu Leu Gly Ser Glu Asn Val Ser Ser Thr 275 280 285 <br><br> 15 Ser Phe Gin Leu Met Asp Tyr Asn Asn lie Pro Thr Leu Asn Lys Ala 290 295 300 <br><br> Met Phe Trp Gly Thr Leu Val Gly Glu Phe lie Pro Thr Ala Thr Gly 20 305 310 315 320 <br><br> He Trp Glu Phe Gly Leu Ser Val Phe Gly Thr Ma Asp Leu Tyr rle 325 330 335 <br><br> 25 <br><br> Asp Asn Glu Leu Val lie Glu Asn Thr Thr His Gin Thr Arg Gly Thr 340 345 350 <br><br> 30 <br><br> Ala Phe Phe Gly Lys Gly Thr Thr Glu Lys Val Ala Thr Arg Arg Met 355 360 365 <br><br> 35 Val Ala Gly Ser Thr Tyr Lys Leu Arg Leu Glu Phe Gly Ser Ala Asn 370 375 380 <br><br> Thr Thr Lys Met Glu Thr Thr Gly Val Val Asn Phe Gly Gly Gly Ala 40 385 390 395 400 <br><br> Val His Leu Gly Ala Cys Leu Lys Val Asp Pro Gin Glu Met lie Ala 405 410 415 <br><br> 45 <br><br> Arg Ala Val Lys Ala Ala Ala Asp Ala Asp Tyr Thr He lie Cys Thr 420 425 430 <br><br> 50 <br><br> Gly Leu Ser Gly Glu Trp Glu Ser Glu Gly Phe Asp Arg Pro His Met 435 440 445 <br><br> 55 Asp Leu Pro Pro Gly Val Asp Thr Met lie Ser Gin Val Leu Asp Ala 450 455 460 <br><br> 279 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ala Pro Asn Ala Val Val Val Asn Gin Ser Gly Thr Pro Val Thr Met 4 65 470 475 480 <br><br> Ser Trp Ala His Lys Ala Lye Ala lie Val Gin Ala Trp Tyr Gly Gly 485 490 495 <br><br> Asn Glu Thr Gly His Gly lie Ser Asp Val Leu Phe Gly Asn Val Asn 500 505 510 <br><br> Pro Ser Gly Lys Leu Ser Leu Ser Trp Pro Val Asp Val Lys His Asn 515 520 525 <br><br> Pro Ala Tyr Leu Asn Tyr Ala Ser Val Gly Gly Arg Val Leu Tyr Gly 530 535 540 <br><br> Glu Asp Val Tyr Val Gly Tyr Lys Phe Tyr Asp Lys Thr Glu Arg Glu <br><br> 54 5 550 555 560 <br><br> Val Leu Phe Pro Phe Gly His Gly Leu Ser Tyr Ala Thr Phe Lys Leu 565 570 575 <br><br> Pro Asp Ser Thr Val Arg Thr Val Pro Glu Thr Phe His Pro Asp Gin 580 585 590 <br><br> Pro Thr Val Ala lie Val Lys lie Lys Asn Thr Ser Ser Val Pro Gly 595 600 605 <br><br> Ala Gin Val Leu Gin Leu Tyr lie Ser Ala Pro Asn Ser Pro Thr His 610 615 620 <br><br> Arg Pro Val Lys Glu Leu His Gly Phe Glu Lys Val Tyr Leu Glu Ala 625 630 635 640 <br><br> Gly Glu Glu Lys Glu Val Gin lie Pro He Asp Gin Tyr Ala Thr Ser 645 650 655 <br><br> Phe Trp Asp Glu lie Glu Ser Met Trp Lys Ser Glu Arg Gly lie Tyr 660 665 670 <br><br> Asp Val Leu Val Gly Phe Ser Ser Gin Glu He Ser Gly Lys Gly Lys 675 680 685 <br><br> 280 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Leu lie Val Pro Glu Thr Arg Phe Trp Met Gly Leu 690 695 700 <br><br> &lt;210&gt; 93 &lt;211&gt; 1496 &lt;212 &gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220&gt; <br><br> &lt;223 &gt; Maize optimized CBHI &lt;400&gt; 93 <br><br> tgcagtccgc ctgcaccctc cagtccgaga cccacccgcc gctcacctgg cagaagtgct SO <br><br> cctccggcgg cacctgcacc cagcagaccg gctccgtggt gatcgacgcc aactggcgct 120 <br><br> ggacccacgc caccaactcc tccaccaact gctacgacgg caacacctgg tcctccaccc 180 <br><br> tctgcccgga caacgagacc tgcgccaaga actgctgcct cgacggcgcc gcctacgcct 240 <br><br> ccacctacgg cgtgaccacc tccggcaact ccctctccat cggcttcgtg acccagtccg 300 <br><br> cccagaagaa cgtgggcgcc cgcctctacc tcatggcctc cgacaccacc taccaggagt 360 <br><br> tcaccctcct cggcaacgag ttctccttcg acgtggacgt gtcccagctc ccgtgcggcc 420 <br><br> tcaacggcgc cctctacttc gtgtccatgg acgccgacgg cggcgtgtcc aagtacccga 480 <br><br> ccaacaccgc cggcgccaag tacggcaccg gctactgcga ctcccagtgc ccgcgcgacc 540 <br><br> tcaagttcat caacggccag gccaacgtgg agggctggga gccgtcctcc aacaacgcca 600 <br><br> acaccggcat cggcggccac ggctcctgct gctccgagat ggacatctgg gaggccaact 660 <br><br> ccatctccga ggccctcacc ccgcacccgt gcaccaccgt gggccaggag atctgcgagg 720 <br><br> gcgacggctg cggcggcacc tactccgaca accgctacgg cggcacctgc gacccggacg 780 <br><br> gctgcgactg gaacccgtac cgcctcggca acacctcctt ctacggcccg ggctcctect 840 <br><br> tcaccctcga caccaccaag aagctcaccg tggtgaecca gttcgagacc tccggcgcca 900 <br><br> tcaaccgcta ctacgtgcag aacggcgtga ccttccagca gccgaacgcc gagctcggct 960 <br><br> cctactccgg caacgagctc aacgacgact actgcaccgc cgaggaggcc gagttcggcg 1020 <br><br> gctcctcctt ctccgacaag ggcggcctca cccagttcaa gaaggccacc tccggcggca 1080 <br><br> tggtgctcgt gatgtccctc tgggacgact actacgccaa catgctctgg ctcgactcca 1140 <br><br> cctacccgac caacgagacc tcctccaccc cgggcgccgt gcgcggctcc tgctccacct 1200 <br><br> cctccggcgt gccggcccag gtggagtccc agtccccgaa cgccaaggtg accttctcca 1260 <br><br> acatcaagtt cggcccgatc ggctccaccg gcaacccgtc cggcggcaac ccgccgggcg 1320 <br><br> 281 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> gcaacccgcc gggcaccacc accacccgcc gcccggceac caccacoggc tcctccccgg 1380 gcccgaccca gtcccactac ggccagtgcg gcggcatcgg ctactccggc ccgacegtgt 1440 5 gcgcctccgg caccacctgc caggtgctca acccgtacta ctcccagtgc ctctag 14 96 <br><br> &lt;210&gt; 94 &lt;211&gt; 1365 10 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Maize optimised CBHII <br><br> 15 <br><br> &lt;4Q0&gt; 94 <br><br> atggtgccgc tcgaggagcg ccaggcctgc tcctccgtgt ggggccagtg cggcggccag 60 <br><br> aactggtccg gcccgacctg ctgcgcctcc ggctccacct gcgtgtactc caacgactac 120 <br><br> 20 <br><br> tactcccagt gcctcccggg cgccgcctcc tcctcctcct ccacccgcgc cgcctccacc 180 <br><br> acctcccgcg tgtccccgac cacctcccgc tcctcctccg ccaccccgcc gccgggctcc 240 <br><br> 25 accaccaccc gcgtgccgcc ggtgggctcc ggcaccgcca cctactccgg caacccgttc 300 <br><br> gtgggcgtga ccccgtgggc caacgcctac tacgcctccg aggtgtcctc cctcgccatc 360 <br><br> ccgtccctca ccggcgccat ggccaccgcc gccgccgccg tggccaaggt gccgtccttc 420 <br><br> 30 <br><br> atgtggctcg acaccctcga caagaccccg ctcatggagc agaccctcgc cgacatccgc 480 <br><br> accgccaaca agaacggcgg caactacgcc ggccagttcg tggtgtacga cctcccggac 54 0 <br><br> 35 cgcgactgcg ccgccctcgc ctceaacgge gagtaeteea tcgccgacgg cggcgtggcc 500 <br><br> aagtacaaga actacat^ga caccatccqc caqatcgtgg tggagtactc cgacatccgc 660 <br><br> accctcctcg tgatcgagcc ggactccctc gccaacctcg tgaccaacct cggcaccccg 720 <br><br> 40 <br><br> aagtgcgcca acgcccagtc cgcctacctc gagtgcatca actacgccgt gacccagctc 780 <br><br> aacctcccga acgtggccat gtacctcgac gccggccacg ccggctggct cggctggccg 840 <br><br> 45 gccaaccagg acccggccgc ccagctcttc gccaacgtgt acaagaacgc ctcctccccg 900 <br><br> cgcgccctcc gcggcctcgc caccaacgtg gccaactaca acggctggaa catcacctcc 960 <br><br> ccgccgtcct acacccaggg caacgccgtg tacaacgaga agctctacat ccacgccatc 1020 <br><br> 50 <br><br> ggcccgctcc tegccaacca cggctggtcc aacgccttct teatcaccga ccagggccgc 1080 <br><br> tccggcaagc agccgaccgg ccagcagcag tggggcgact ggtgcaacgt gatcggcacc 1140 <br><br> 55 ggcttcggca tccgcccgtc cgccaacacc ggcgactccc tcctcgactc cttcgtgtgg 1200 <br><br> gtgaagccgg gcggcgagtg cgacggcacc tccgactcct ccgccccgcg cttcgactcc 1260 <br><br> 282 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> cactgcgccc tcccggacgc cctccagccg gccccgcagg ccggcgcctg gttccaggcc 1320 tacttcgtgc agctcctcac caacgccaac ccgtccttcc tctag 1365 <br><br> 5 <br><br> &lt;210&gt; 95 &lt;211&gt; 1317 &lt;212&gt; DNA 10 &lt;213&gt; Artificial Sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; Maize optimized EGLI 15 &lt;400&gt; 95 <br><br> atgcagcagc cgggcacctc caccccggag gtgcacccga agctcaccac ctacaagtgc 60 <br><br> accaagtccg gcggctgcgt ggcccaggac acctccgtgg tgctcgactg gaactaccgc 120 <br><br> 20 tggatgcacg acgccaacta caactcctgc accgtgaacg gcggcgtgaa caccaccctc 180 <br><br> tgcccggacg aggccacctg cggcaagaac tgcttcatcg agggcgtgga ctacgccgcc 240 <br><br> tccggcgtga ccacctccgg ctcctccctc accatgaacc agtacatgcc gtcctcctcc 300 <br><br> 25 <br><br> ggcggctact cctccgtgtc cccgcgcctc tacctcctcg actccgacgg cgagtacgtg 360 <br><br> atgctcaagc tcaacggcca ggagctctcc ttcgacgtgg acctctccgc cctcccgtgc 420 <br><br> 30 ggcgagaacg gctccctcta cctctcccag atggacgaga acggcggcgc caaccagtac 4 80 <br><br> aacaccgccg gcgccaacta cggctccggc tactgcgacg cccagtgccc ggtgcagacc 540 <br><br> tggcgcaacg gcaccctcaa cacctcccac cagggcttct gctgcaacga gatggacatc 600 <br><br> 35 <br><br> ctcgagggca actcccgcgc caacgccctc accccgcact cctgcaccgc caccgcctgc 660 <br><br> gactccgccg gctgcggctt caacccgtac ggctccggct acaagtccta ctacggcccg 720 <br><br> 40 ggcgacaccg tggacacctc caagaccttc accatcatca cccagttcaa caccgacaac 780 <br><br> ggctccccgt ccggcaacct cgtgtccatc acccgcaagt accagcagaa cggcgtggac 84 0 <br><br> atcccgtccg cccagccggg cggcgacacc atctcctcct gcccgtccgc ctccgcctac 900 <br><br> 45 <br><br> ggcggcctcg ccaccatggg caaggccctc tcctccggca tggtgctcgt gttctccatc 960 <br><br> tggaacgaca actcccagta catgaactgg ctcgactccg gcaacgccgg cccgtgctcc 1020 <br><br> 50 tccaccgagg gcaacccgtc caacaccctc gccaacaacc cgaacaccca cgtggtgttc 1080 <br><br> tccaacatcc gctggggcga catcggctcc accaccaact ccaccgcccc gccgccgccg 114 0 <br><br> ccggcctcct ccaccacctt ctccaccacc cgccgctcct ccaccacctc ctcctccccg 1200 <br><br> 55 <br><br> tcctgcaccc agacccactg gggccagtgc ggcggcatcg gctactccgg ctgcaagacc 1260 <br><br> 283 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> tgcacctccg gcaccacctg ccagtactcc aacgactact actcccagtg cctctag 1317 <br><br> &lt;210&gt; 96 &lt;211&gt; 1401 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;22 0&gt; <br><br> &lt;223&gt; Maize optimized BGLII &lt;400=&gt; 96 <br><br> atgctcccga aggacttcca gtggggcttc gccaccgccg cctaccagat cgagggcgcc 60 <br><br> gtggaccagg acggccgcgg cccgtccaCc tgggacacct tctgcgccca gccgggcaag 12 0 <br><br> atcgccgacg gctcctccgg cgtgaccgcc tgcgactcct acaaccgcac cgccgaggac 180 <br><br> atcgccctcc tcaagtccct cggcgccaag tcctaccgct tctccatctc ctggtcccgc 240 <br><br> atcatcccgg agggcggccg cggcgacgee gtgaaccagg ccggcatcga ccaceacgtg 300 <br><br> aagttcgtgg acgacctcct cgacgccggc atcaccccgt tcaCcaccct cttccactgg 360 <br><br> gacctcccgg agggcctcca ccagcgctac ggcggcctcc tcaaccgcac cgagttcccg 420 <br><br> ctcgacttcg agaactacgc ccgcgtgatg ttccgcgccc Ccccgaaggt gcgcaactgg 480 <br><br> atcaccctca acgagccgct cCgctccgcc atcccgggct acggctccgg caccttcgcc 540 <br><br> ccgggccgcc agtccacctc cgagccgtgg accgtgggcc acaacatccC cgtggcccac 600 <br><br> ggccgcgccg tgaaggccta ccgcgacgac ttcaagccgg cctccggega cggecagatc 660 <br><br> ggcatcgtgc tcaacggcga cttcacctac ccgtgggacg ccgccgaccc ggccgacaag 720 <br><br> gaggccgccg agcgccgcctr^gsgttcttc accgcctggt Ccqccgaccc gatctacctc 780 <br><br> ggcgactacc cggcctccat gcgcaagcag ctcggcgacc gcctcccgac cttcaccccg 840 <br><br> gaggagcgcg ccctcgtgca cggctccaac gacttctacg gcatgaacca ctacaccCcc 900 <br><br> aactacatcc gccaccgctc ctccccggcc tccgccgacg acaccgtggg caacgtggac 960 <br><br> gtgctcttca ccaacaagca gggcaactgc atcggcccgg agacccagtc cccgtggctc 1020 <br><br> cgcccgtgcg ccgccggctt ccgcgacttc ctcgtgtgga tctccaagcg ctacggctac 1080 <br><br> ccgccgatct acgtgaccga gaacggcacc tccatcaagg gcgagtccga cctcccgaag 1140 <br><br> gagaagatcc tcgaggacga cttccgcgtg aagtactaca acgagtacat ccgcgccatg 12 00 <br><br> gtgaccgccg tggagctcga cggcgtgaac gtgaagggct acttcgcetg gtccctcatg 12 60 <br><br> gacaacttcg agtgggccga cggctacgtg acccgcttcg gcgtgaccta cgtggactac 132 0 <br><br> gagaacggcc agaagcgctt cccgaagaag tccgccaagt ccctcaagcc gctcttcgac 1380 <br><br> 284 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> gagctcatcg ccgecgccta g 1401 <br><br> &lt;210&gt; 97 &lt;211&gt; 2103 &lt;212&gt; DNA <br><br> &lt;213&gt; Artificial Sequence &lt;220=&gt; <br><br> &lt;223&gt; Maize optimized CEL3D &lt;4 00 &gt; 97 <br><br> atgatcctcg gctgcgagtc caccggcgtg atctccgccg tgaagcactt cgtggccaac 60 <br><br> gaccaggagc acgagcgccg cgccgtggac tgcctcatca cccagcgcgc cctccgcgag 120 <br><br> gtgtacctcc gcccgttcca gatcgtggcc cgcgacgccc gcccgggcgc cctcatgacc 180 <br><br> tcctacaaca aggtgaacgg caagcacgtg gccgactccg ccgagttcct ccagggcatc 240 <br><br> ctccgcaccg agtggaactg ggacccgctc atcgtgtccg actggtacgg cacctacacc 300 <br><br> accatcgacg ccatcaaggc cggcctcgac ctcgagatgc cgggcgtgtc ccgctaccgc 360 <br><br> ggcaagtaca tcgagtccgc cctccaggcc cgcctcctca agcagtccac catcgacgag 4 20 <br><br> cgcgcccgcc gcgtgctccg cttcgcccag aaggcctccc acctcaaggt gtccgaggtg 480 <br><br> gagcagggcc gcgacttccc ggaggaccgc gtgctcaacc gccagatctg cggctcctcc 540 <br><br> atcgtgctcc tcaagaacga gaactccatc ctcccgctcc cgaagtccgt gaagaaggtg 600 <br><br> gcectcgtgg gctcccacgt gcgcctcccg gccatctccg gcggcggctc cgcctccctc 6SO <br><br> gtgccgtact acgccatctc cctctacgac gccgtgtccg aggtgctcgc cggcgccacc 720 <br><br> atcacccacg aggtgggcgc ctacgcccac cagatgctcc cggtgatcga cgccatgatc 780 <br><br> tccaacgccg tgatccactt ctacaacgac ccgatcgacg tgaaggaccg caagctcctc 84 0 <br><br> ggctccgaga acgtgtcctc cacctccttc cagctcatgg actacaacaa catcccgacc 900 <br><br> ctcaacaagg ccatgttetg gggcaccctc gtgggcgagt tcatcccgae cgccaccggc 960 <br><br> atctgggagt tcggcctctc cgtgttcggc accgccgacc tctaeatcga caacgagctc 1020 <br><br> gtgatcgaga acaccaccca ccagacccgc ggcaccgcct tcttcggcaa gggcaccacc 1080 <br><br> gagaaggtgg ccacccgccg catggtggcc ggctccacct acaagctccg cctcgagttc 1140 <br><br> ggctccgcca acaccaccaa gatggagacc accggcgtgg tgaacttcgg cggcggcgcc 1200 <br><br> gtgcacctcg gcgcctgcct caaggtggac ccgcaggaga tgatcgcccg cgccgtgaag 1260 <br><br> gccgccgccg acgccgacta caccatcatc tgcaccggcc tctccggcga gtgggagtcc 1320 <br><br> 285 <br><br> 10 <br><br> IS <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> gagggcttcg accgcccgca catggacctc ccgccgggcg tggacaccat gatctcecag 1380 <br><br> gtgctcgacg ccgccccgaa cgccgtggtg gtgaaccagt ccggcacccc ggtgaccatg 1440 <br><br> tcctgggccc acaaggccaa ggccatcgtg caggcctggt acggcggcaa cgagaccggc 1500 <br><br> cacggcatct ccgacgtgct cttcggcaac gtgaacccgt ccggcaagct ctccctctcc 1560 <br><br> tggccggtgg acgtgaagca caacccggcc tacctcaact acgcctccgt gggcggccgc 1620 <br><br> gtgctctacg gcgaggacgt gtacgtgggc tacaagttct acgacaagac cgagcgcgag 1680 <br><br> gtgcccttcc cgttcggcca cggcctctcc tacgccacct tcaagctccc ggactccacc 1740 <br><br> gtgcgcaccg tgccggagac cttccacccg gaccagccga ccgtggccat cgtgaagatc 1800 <br><br> aagaacacct cctccgtgcc gggcgcccag gtgctccagc tctaeatctc cgccccgaac i860 <br><br> tccccgaccc accgcccggt gaaggagctc cacggcttcg agaaggtgta cctcgaggcc 1920 <br><br> ggcgaggaga aggaggtgca gatcccgatc gaccagtacg ccacctcctt ctgggacgag 1980 <br><br> atcgagtcca tgtggaagtc cgagcgcggc atctacgacg tgctcgtggg cttctcctcc 2040 <br><br> caggagatct ccggcaaggg caagctcatc gtgccggaga cccgcttctg gatgggcctc 2100 <br><br> tag 2103 <br><br> &lt;210&gt; 98 &lt;211&gt; 420 &lt;212&gt; DNA &lt;213&gt; Zea mays <br><br> &lt;220&gt; <br><br> &lt;223&gt; Q protein promoter &lt;400&gt; 98 <br><br> gggctggtaa attacttggg agcaatggta tgcaaatcct ttgcatgtac gcaaaactag 60 <br><br> ctagttgtca caagttgtat atcgattcgt cgcgtttcaa caactcatgc aacattacaa 120 <br><br> acaagtaaca caatattaca aagttagttt catacaaagc aagaaaagga caataatact 180 <br><br> tgacatgtaa agtgaagctt attatacttc ctaatccaac acaaaacaaa aaaaagttgc 240 <br><br> acaaaggtcc aaaaatccac atcaaecatt aacctatacg taaagtgagt gatgagtcac 300 <br><br> attatccaac aaatgtttat caatgtggta tcatacaagc attgacatcc cataaatgca 360 <br><br> agaaattgtg ccaacaaagc tataagtaac cctcatatgt atttgcactc atgcatcaca 420 <br><br> &lt;210&gt; 99 <br><br> &lt;211&gt; 1188 <br><br> &lt;212&gt; DNA <br><br> &lt;213? artificial sequence <br><br> 286 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> &lt;220&gt; <br><br> &lt;223&gt; synthetic ferulic acid esterase &lt;4 00&gt; 99 <br><br> atggccgcct ccctcccgac catgccgccg tccggctacg accaggtgcg caacggcgtg 60 <br><br> ccgcgcggcc aggtggtgaa catctcctac ttctccaccg ccaccaactc cacccgcccg 120 <br><br> gcccgcgtgt acctcccgcc gggctactcc aaggacaaga agtactccgt gctctacctc 180 <br><br> ctccacggca tcggcggctc cgagaacgac tggttcgagg gcggcggccg cgccaacgtg 240 <br><br> atcgccgaca acctcatcgc cgagggcaag atcaagccgc tcatcatcgt gaccccgaac 3 00 <br><br> accaacgccg ccggcccggg catcgccgac ggctacgaga acttcaccaa ggacctcctc 3 60 <br><br> aactccctca tcccgtacat cgagtccaac tactccgtgt acaccgaccg cgagcaccgc 420 <br><br> gccatcgccg gcctctctat gggcggcggc cagtccttca acatcggcct caccaacctc 480 <br><br> gacaagttcg cctacatcgg cccgatctcc gccgccccga acacctaccc gaacgagcgc 54 0 <br><br> ctcttcccgg acggcggcaa ggccgcccgc gagaagctca agctcctctt catcgcctgc 600 <br><br> ggcaccaacg actccctcat cggcttcggc cagcgcgtgc acgagtactg cgtggccaac 660 <br><br> aacatcaacc acgtgtactg gctcatccag ggcggcggcc acgacttcaa cgtgtggaag 72 0 <br><br> ccgggcctct ggaacttcct ccagatggcc gacgaggccg gcctcacccg cgacggcaac 780 <br><br> accccggtgc cgaccccgtc cccgaagccg gccaacaccc gcatcgaggc cgaggactac 84 0 <br><br> gacggcatca actcctcctc catcgagatc atcggcgtgc cgccggaggg cggccgcggc 900 <br><br> atcggctaca tcacctccgg cgactacctc gtgtacaagt ccatcgactt cggcaacggc 960 <br><br> gccacctcct tcaaggccaa ggtggccaac gccaacacct ccaacatcga gcttcgcctc 1020 <br><br> aacggcccga acggcaccct catcggcacc ctctccgtga agtccaccgg cgactggaac 1080 <br><br> acctacgagg agcagacctg ctecatctcc aaggtgaccg gcatcaacga cctctacctc 1140 <br><br> gtgttcaagg gcccggtgaa catcgactgg ttcaccttcg gcgtgtag 1188 <br><br> &lt;210&gt; 100 &lt;211? 395 &lt;212&gt; PRT <br><br> &lt;213&gt; artificial sequence &lt;220&gt; <br><br> &lt;223&gt; synthetic ferulic acid esterase c400&gt; 100 <br><br> Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr Asp Gin Val <br><br> 287 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 10 IS <br><br> Arg Asn Gly Val Pro Arg Gly Gin Val Val Asn lie Ser Tyr Phe Ser 20 25 30 <br><br> Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu Pro Pro Gly 35 40 45 <br><br> Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu His Gly lie 50 55 60 <br><br> Gly Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Gly Arg Ala Asn Val 65 70 75 80 <br><br> lie Ala Asp Asn Leu lie Ala Glu Gly Lys lie Lys Pro Leu He Xle 85 90 95 <br><br> Val Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly He Ala Asp Gly Tyr 100 105 110 <br><br> Glu Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu lie Pro Tyr lie Glu 115 120 125 <br><br> Ser Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala lie Ala Gly 130 135 140 <br><br> Leu Ser Met Gly Gly Gly Gin Ser Phe Asn lie Gly Leu Thr Asn Leu 145 ISO 155 160 <br><br> Asp Lys Phe Ala Tyr lie Gly Pro lie Ser Ala Ala Pro Asn Thr Tyr 165 170 175 <br><br> Pro Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala Arg Glu Lys 180 185 190 <br><br> Leu Lys Leu Leu Phe He Ala Cys Gly Thr Asn Asp Ser Leu lie Gly 195 200 205 <br><br> Phe Gly Gin Arg Val His Glu Tyr Cys Val Ala Asn Asn lie Asn His 210 215 220 <br><br> Val Tyr Trp Leu He Gin Gly Gly Gly His Asp Phe Asn Val Trp Lys 225 230 235 240 <br><br> 288 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Pro Gly Leu Trp Asn Phe Leu Gin Met Ala Asp Glu Ala Gly Leu Thr 245 250 255 <br><br> 5 <br><br> Arg Asp Gly Asn Thr Pro Val Pro Thr Pro Ser Pro Lys Pro Ala Asn 260 265 270 <br><br> 10 <br><br> Thr Arg lie Glu Ala Glu Asp Tyr Asp Gly lie Asn Ser Ser Ser lie 275 280 285 <br><br> 15 Glu lie lie Gly Val Pro Pro Glu Gly Gly Arg Gly lie Gly Tyr lie 290 295 300 <br><br> Thr Ser Gly Asp Tyr Leu Val Tyr Lys Ser lie Asp Phe Gly Asn Gly 20 305 310 315 320 <br><br> Ala Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr Ser Asn lie 325 330 335 <br><br> 25 <br><br> Glu Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu lie Gly Thr Leu Ser 340 345 350 <br><br> 30 <br><br> Val Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gin Thr Cys Ser 355 360 365 <br><br> 35 lie Ser Lys Val Thr Gly lie Asn Asp Leu Tyr Leu Val Phe Lys Gly 370 375 380 <br><br> Pro Val Asn lie Asp Trp Phe Thr Phe Gly Val 40 385 390 395 <br><br> &lt;210:. 101 <br><br> &lt;211&gt; 1188 <br><br> 45 &lt;212&gt; DNA <br><br> &lt;213&gt; artificial sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; plasmid 13036 <br><br> 50 <br><br> &lt;400&gt; 101 <br><br> atggccgcct ccctcccgac catgccgccg tccggctacg accaggtgcg caacggcgtg 60 ccgcgcggcc aggtggtgaa catctcctac ttctccaccg ccaccaactc cacccgcccg 120 <br><br> 55 <br><br> gcccgcgtgt acctcccgcc gggctactcc aaggacaaga agtactccgt gctctacctc 180 <br><br> 289 <br><br> WO 2(105/096804 PCT/US2004/007182 <br><br> ctccacggca tcggcggctc cgagaacgac tggttcgagg gcggcggccg cgccaacgtg 240 <br><br> atcgccgaca acctcatcgc cgagggcaag atcaagccgc tcatcatcgt gaccccgaac 300 <br><br> accaacgccg ccggcccggg catcgccgac ggctacgaga acttcaccaa ggacctcctc 360 <br><br> aactccctca tcccgtacat cgagtccaac tactccgtgt acaccgaccg cgagcaccgc 420 <br><br> gccatcgccg gcctctctat gggcggcggc cagtccttca acatcggcct caccaacctc 4 80 <br><br> gacaagttcg cctacatcgg cccgatctcc gccgccccga acacctaccc gaacgagcgc 54 0 <br><br> ctcttcccgg acggcggcaa ggccgcccgc gagaagctca agctcctctt catcgcctgc 600 <br><br> ggcaccaacg actccctcat cggcttcggc cagcgcgtgc acgagtactg cgtggccaac S60 <br><br> aacatcaacc acgtgtactg gctcatccag ggcggcggcc acgacttcaa cgtgtggaag 72 0 <br><br> ccgggcctct ggaacttcct ccagatggcc gacgaggccg gcctcacccg cgacggcaac 780 <br><br> accccggtgc cgaccccgtc cccgaagccg gccaacaccc gcatcgaggc cgaggactac 840 <br><br> gacggcatca actectcctc catcgagatc atcggcgtgc cgccggaggg cggecgcggc 900 <br><br> atcggctaca tcacctccgg cgactacctc gtgtacaagt ccatcgactt cggcaacggc 950 <br><br> gccacctcct tcaaggccaa ggtggccaac gccaacacct ccaacatcga gcttcgcctc 1020 <br><br> aacggcccga acggcaccct catcggcacc ctctccgtga agtccaccgg cgactggaac 1080 <br><br> acctacgagg agcagacctg ctccatctcc aaggtgaccg gcatcaacga cctctacctc 1140 <br><br> gtgttcaagg gcccggtgaa catcgactgg ttcaccttcg gcgtgtag 1188 <br><br> &lt;210&gt; 102 &lt;211n 395 &lt;212 &gt; PRT <br><br> &lt;213&gt; artificial sequence &lt;220&gt; <br><br> &lt;223&gt; plasmid 13036 &lt;4 00&gt; 102 <br><br> Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr Asp Gin Val 15 10 15 <br><br> Arg Asn Gly Val Pro Arg Gly Gin Val Val Asn lie Ser Tyr Phe Ser 20 25 30 <br><br> Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu Pro Pro Gly 35 40 45 <br><br> 290 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT7US2004/007182 <br><br> Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu His Gly lie 50 55 60 <br><br> Gly Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Gly Arg Ala Asn Val 6S 70 75 80 <br><br> lie Ala Asp Asn Leu lie Ala Glu Gly Lys lie Lys Pro Leu lie lie 85 90 95 <br><br> Val Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly lie Ala Asp Gly Tyr 100 105 110 <br><br> Glu Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu lie Pro Tyr lie Glu 115 120 125 <br><br> Ser Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala He Ala Gly 130 135 140 <br><br> Leu Ser Met Gly Gly Gly Gin Ser Phe Asn lie Gly Leu Thr Asn Leu 145 150 155 160 <br><br> Asp Lys Phe Ala Tyr lie Gly Pro lie Ser Ala Ala Pro Asn Thr Tyr 165 170 175 <br><br> Pro Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala Arg Glu Lys 180 185 190 <br><br> "«j Lys Lsu Leu Phe tip. Ala Cys Gly Thr Asn Asp Ser Leu lie Gly 195 200 205 <br><br> Phe Gly Gin Arg Val His Glu Tyr Cys Val Ala Asn Asn He Asn His 210 215 220 <br><br> Val Tyr Trp Leu lie Gin Gly Gly Gly His Asp Phe Asn Val Trp Lys 225 230 235 240 <br><br> Pro Gly Leu Trp Asn Phe Leu Gin Met Ala Asp Glu Ala Gly Leu Thr 245 250 255 <br><br> Arg Asp Gly Asn Thr Pro Val Pro Thr Pro Ser Pro Lys Pro Ala Asn 260 265 270 <br><br> Thr Arg lie Glu Ala Glu Asp Tyr Asp Gly lie Asn Ser Ser Ser lie <br><br> 291 <br><br> 5 <br><br> JO <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 27S 280 285 <br><br> Glu lie lie Gly Val Pro Pro Glu Gly Gly Arg Gly lie Gly Tyr lie 290 29S 300 <br><br> Thr Ser Gly Asp Tyr Leu Val Tyr Lys Ser lie Asp Phe Gly Asn Gly 305 310 315 320 <br><br> Ala Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr Ser Asn lie 325 330 335 <br><br> Glu Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu He Gly Thr Leu Ser 340 345 350 <br><br> Val Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gin Thr Cys Ser 35S 360 365 <br><br> lie Ser Lys Val Thr Gly lie Asn Asp Leu Tyr Leu Val Phe Lys Gly 370 375 380 <br><br> Pro Val Asn He Asp Trp Phe Thr Phe Gly Val 385 390 395 <br><br> &lt;210&gt; <br><br> 103 <br><br> &lt;211&gt; <br><br> 1245 <br><br> &lt; 212 &gt; <br><br> DNA <br><br> «213&gt; <br><br> artificial sequence <br><br> -t» n — <br><br> &lt;223 &gt; <br><br> plasmid 13038 <br><br> &lt;400&gt; 103 atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc cacctccatg <br><br> SO <br><br> gccgcctccc tcccgaccat gccgcegtcc ggctacgacc aggtgcgcaa eggegtgceg <br><br> 120 <br><br> cgcggccagg tggtgaacat ctcctacttc tccaccgcca ccaactccac ccgcccggcc <br><br> 180 <br><br> cgcgtgtacc tcccgccggg ctactccaag gacaagaagt actccgtgct ctacctcctc <br><br> 240 <br><br> cacggcatcg gcggctccga gaacgactgg ttcgagggcg gcggccgcgc caacgtgatc <br><br> 300 <br><br> gccgacaacc tcatcgccga gggcaagatc aagccgctca tcatcgtgac cccgaacacc <br><br> 360 <br><br> aacgccgccg gcccgggcat cgccgacggc tacgagaact tcaccaagga cctcctcaac <br><br> 420 <br><br> tccctcatcc cgtacatcga gtccaactac tccgtgtaca ccgaccgcga gcaccgcgcc <br><br> 480 <br><br> atcgccggcc tctctatggg cggcggccag tccttcaaca tcggcctcac caacctcgac <br><br> 540 <br><br> 292 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> aagttcgcct acatcggccc gatctccgcc gccccgaaca cctacccgaa cgagcgcctc <br><br> 600 <br><br> ttcccggacg gcggcaaggc cgcccgcgag aagctcaagc tcctcttcat cgcctgcggc <br><br> 660 <br><br> accaacgact ccctcatcgg cttcggccag cgcgtgcacg agtactgcgt ggccaacaac <br><br> 720 <br><br> atcaaccacg tgtactggct catccagggc ggcggccaeg acttcaacgt gtggaagccg <br><br> 780 <br><br> ggcctctgga acttcctcca gatggccgac gaggccggcc tcacccgcga cggcaapacc' <br><br> 840 <br><br> ccggtgccga ccccgtcccc gaagccggcc aacacccgca tcgaggccga ggactacgac <br><br> 900 <br><br> ggcatcaact cctcctccat cgagatcatc ggcgtgccgc cggagggcgg ccgcggcatc <br><br> 960 <br><br> ggctacatca cctccggcga ctacctcgtg tacaagtcca tcgacttcgg caacggcgcc <br><br> 1020 <br><br> acctccttca aggccaaggt ggccaacgcc aacacctcca acatcgagct tcgcctcaac <br><br> 1080 <br><br> ggcccgaacg gcaccctcat cggcaccctc tccgtgaagt ccaccggcga ctggaacacc <br><br> 1140 <br><br> tacgaggagc agacctgctc catctccaag gtgaccggca tcaaegacet ctacctcgtg <br><br> 1200 <br><br> ttcaagggcc cggtgaacat cgactggttc accttcggcg tgtag <br><br> 1245 <br><br> &lt;210? 104 &lt;211&gt; 414 &lt;212&gt; PRT <br><br> &lt;213&gt; artificial sequence &lt;220? <br><br> &lt;223? plasmid 13038 aa &lt;400&gt; 104 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser 15 10 15 <br><br> Ala Thr Ser Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr 20 25 30 <br><br> Asp Gin Val Arg Asn Gly Val Pro Arg Gly Gin Val Val Asn lie Ser 35 40 45 <br><br> Tyr Phe Ser Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu 50 55 60 <br><br> Pro Pro Gly Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu 65 70 75 80 <br><br> His Gly lie Gly Gly Ser Glu Asn Asp Trp Phe Glu*Gly Gly Gly Arg <br><br> 293 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 85 90 95 <br><br> Ala Asn Val lie Ala Asp Asn Leu lie Ala Glu Gly Lys lie Lys Pro 100 105 110 <br><br> Leu lie lie Val Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly lie Ala 115 120 125 <br><br> Asp Gly Tyr Glu Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu lie Pro 130 135 140 <br><br> Tyr lie Glu Ser Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala 145 150 155 160 <br><br> lie Ala Gly Leu Ser Met Gly Gly Gly Gin Ser Phe Asn He Gly Leu 165 170 175 <br><br> Thr Asn Leu Asp Lys Phe Ala Tyr lie Gly Pro lie Ser Ala Ala Pro 180 185 190 <br><br> Asn Thr Tyr Pro Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala 195 200 205 <br><br> Arg Glu Lys Leu Lys Leu Leu Phe lie Ala Cys Gly Thr Asn Asp Ser 210 215 220 <br><br> Leu He Gly Phe Gly Gin Arg Val His Glu Tyr Cys Val Ala Asn Asn 225 230 235 240 <br><br> lie Asn His Val Tyr Trp Leu lie Gin Gly Gly Gly His Asp Phe Asn 245 250 255 <br><br> Val Trp Lys Pro Gly Leu Trp Asn Phe Leu Gin Met Ala Asp Glu Ala 260 265 270 <br><br> Gly Leu Thr Arg Asp Gly Asn Thr Pro val Pro Thr Pro Ser Pro Lys 275 280 285 <br><br> Pro Ala Asn Thr Arg lie Glu Ala Glu Asp Tyr Asp Gly lie Asn Ser 290 295 300 <br><br> Ser Ser lie Glu lie lie Gly Val Pro Pro Glu Gly Gly Arg Gly lie 305 310 315 320 <br><br> 294 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Gly Tyr lie Thr Ser Gly Asp Tyr Leu Val Tyr Lys Ser lie Asp Phe 325 330 335 <br><br> Gly Asn Gly Ala Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr 340 345 350 <br><br> Ser Asn lie Glu Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu lie Gly <br><br> 35S 360 365 <br><br> Thr Leu Ser Val Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gin 370 375 380 <br><br> Thr Cys Ser lie Ser Lys Val Thr Gly lie Asn Asp Leu Tyr Leu Val 385 390 395 400 <br><br> Phe Lys Gly Pro Val Asn lie Asp Trp Phe Thr Phe Gly Val 405 410 <br><br> &lt;210? 105 <br><br> &lt; 211 &gt; 1425 <br><br> &lt;212 &gt; DNA <br><br> &lt;213&gt; artificial sequence <br><br> &lt;220&gt; <br><br> &lt;223? plasmid 13039 <br><br> &lt;4 00 &gt; 105 atgctggcgg etc t cjgcccic gtcgcagctc gtcgcaacgc g cgccggcct gggcgtcccg <br><br> 60 <br><br> gacgcgtcca cgttccgccg cggcgccgcg cagggcctga ggggggcccg ggcgtcggcg <br><br> 120 <br><br> gcggcggaca cgctcagcat gcggaccagc gcgcgcgcgg cgcccaggca ccagcaccag <br><br> 180 <br><br> caggcgcgcc <br><br> 9=ggggccag gttcccgtcg ctcgtcgtgt gcgccagcgc cggcgccatg <br><br> 240 <br><br> gccgcctccc tcccgaccat gccgccgtcc ggctacgacc aggtgcgcaa cggcgtgccg <br><br> 300 <br><br> cgcggccagg tggtgaacat ctcctacttc tccaccgcca ccaactccac ccgcccggcc <br><br> 360 <br><br> cgcgtgtacc tcccgccggg ctactccaag gacaagaagt actccgtgct ctacctcctc <br><br> 420 <br><br> cacggcatcg gcggctccga gaacgactgg ttcgagggcg gcggccgcgc caacgtgatc <br><br> 4S0 <br><br> gccgacaacc tcatcgccga gggcaagatc aagccgctca teategtgae cccgaacacc <br><br> 540 <br><br> aacgccgccg gcccgggcat cgccgacggc tacgagaact tcaccaagga cctcctcaac <br><br> 600 <br><br> tccctcatcc cgtacatcga gtccaactac tccgtgtaca ccgaccgcga gcaecgcgcc <br><br> 660 <br><br> 295 <br><br> WO 2005/096804 PCT/US2004/007182 <br><br> atcgccggcc tctctatggg cggcggccag tccttcaaca tcggcctcac caacctcgac <br><br> 720 <br><br> aagttcgcct acatcggccc gatctccgcc gccccgaaca cctacccgaa cgagcgcctc <br><br> 780 <br><br> 5 <br><br> ttcccggacg gcggcaaggc cgcccgcgag aagctcaagc tcctctteat cgcctgcggc <br><br> 640 <br><br> accaacgact ccctcatcgg cttcggccag cgcgtgcacg agtactgcgt ggccaacaac <br><br> 900 <br><br> 10 <br><br> atcaaccacg tgtactggct catccagggc ggcggccacg acttcaacgt gtggaagccg <br><br> 960 <br><br> ggcctctgga acttcctcca gatggccgac gaggccggcc tcacccgcga cggcaacacc <br><br> 1020 <br><br> ccggtgccga ccccgtcccc gaagccggcc aacacccgca tcgaggccga ggactacgac <br><br> 1080 <br><br> 15 <br><br> ggcatcaact cctcctccat cgagatcatc ggcgtgccgc cggagggcgg ccgcggcatc <br><br> 1140 <br><br> ggctacatca cctccggcga ctacctcgtg tacaagtcca tcgacttcgg caacggcgcc <br><br> 1200 <br><br> 20 <br><br> acctccttca aggccaaggt ggccaacgcc aacacctcca acatcgagct tcgcctcaac <br><br> 1260 <br><br> ggcccgaacg gcaccctcat cggcaccctc tccgtgaagt ccaccggcga ctggaacacc <br><br> 1320 <br><br> tacgaggagc agacctgctc catctccaag gtgaccggca tcaacgacct ctacctcgtg <br><br> 1380 <br><br> 25 <br><br> ttcaagggcc cggtgaacat cgactggttc accttcggcg tgtag <br><br> 1425 <br><br> 30 <br><br> &lt;210 &gt; 106 &lt;211&gt; 474 &lt;212&gt; PRT <br><br> &lt;213&gt; artificial sequence <br><br> 35 <br><br> 40 <br><br> 45 <br><br> &lt;220» <br><br> &lt;223&gt; plasmid 13039 aa &lt;400&gt; 105 <br><br> Met Leu Ala Ala Leu Ala Thr Ser Gin Leu Val Ala Thr Arg Ala Gly 15 10 15 <br><br> Leu Gly Val Pro Asp Ala Ser Thr Phe Arg Arg Gly Ala Ala Gin Gly 20 25 30 <br><br> Leu Arg Gly Ala Arg Ala Ser Ala Ala Ala Asp Thr Leu Ser Met Arg 35 40 45 <br><br> 50 Thr Ser Ala Arg Ala Ala Pro Arg His Gin His Gin Gin Ala Arg Arg 50 55 60 <br><br> Gly Ala Arg Phe Pro Ser Leu Val Val Cys Ala Ser Ala Gly Ala Met 55 65 70 75 80 <br><br> 296 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr Asp Gin Val Arg 85 90 95 <br><br> Asn Gly Val Pro Arg Gly Gin Val Val Asn lie Ser Tyr Phe Ser Thr 100 105 110 <br><br> Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu Pro Pro Gly Tyr 115 120 125 <br><br> Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu His Gly lie Gly 130 135 140 <br><br> Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Gly Arg Ala Asn Val lie 145 150 155 ISO <br><br> Ala Asp Asn Leu lie Ala Glu Gly Lys Xle Lys Pro Leu lie lie Val 165 170 175 <br><br> Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly lie Ala Asp Gly Tyr Glu 180 185 190 <br><br> Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu He Pro Tyr He Glu Ser 195 200 205 <br><br> Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala lie Ala Gly Leu 210 215 220 <br><br> Ser Kst Gly Gly Gly Gin -Ser Phe Asn lie Gly Leu Thr Asn Leu Asp 225 230 235 240 <br><br> Lys Phe Ala Tyr lie Gly Pro lie Ser Ala Ala Pro Asn Thr Tyr Pro 245 250 255 <br><br> Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala Arg Glu Lys Leu 260 265 270 <br><br> Lys Leu Leu Phe lie Ala Cys Gly Thr Asn Asp Ser Leu lie Gly Phe 275 280 285 <br><br> Gly Gin Arg Val His Glu Tyr Cys Val Ala Asn Asn He Asn His Val 290 295 300 <br><br> Tyr Trp Leu Xle Gin Gly Gly Gly His Asp Phe Asn Val Trp Lys Pro <br><br> 297 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 305 310 315 320 <br><br> Gly Leu Trp Asn Phe Leu Gin Met Ala Asp Glu Ala Gly Leu Thr Arg 325 330 335 <br><br> Asp Gly Asn Thr Pro Val Pro Thr Pro Ser Pro Lys Pro Ala Asn Thr 340 345 350 <br><br> Arg lie Glu Ala Glu Asp Tyr Asp Gly lie Asn Ser Ser Ser lie Glu 355 360 365 <br><br> lie lie Gly Val Pro Pro Glu Gly Gly Arg Gly He Gly Tyr lie Thr 370 375 380 <br><br> Ser Gly Asp Tyr Leu Val Tyr Lys Ser lie Asp Phe Gly Asn Gly Ala 385 390 395 400 <br><br> Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr Ser Asn He Glu 405 410 415 <br><br> Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu lie Gly Thr Leu Ser Val 420 425 430 <br><br> Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gin Thr Cys Ser He 435 440 445 <br><br> Ser Lys Val Thr Gly lie Asn Asp Leu Tyr Leu Val Phe Lys Gly Pro 450 455 460 <br><br> Val Asn lie Asp Trp Phe Thr Phe Gly Val 465 470 <br><br> &lt;210* 107 &lt;211&gt; 1263 &lt;212&gt; DNA <br><br> &lt;213&gt; artificial sequence e220&gt; <br><br> &lt;223 &gt; plasmid 13347 &lt;400&gt; 107 <br><br> atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc cacctccatg 60 gccgcctccc tcccgaccat gccgccgtcc ggctacgacc aggtgcgcaa cggcgtgccg 12 0 cgcggccagg tggtgaacat ctcctacttc tccaccgcca ccaactccac ccgcccggcc 180 <br><br> 298 <br><br> 5 <br><br> 10 <br><br> IS <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> cgcgtgtacc tcccgccggg ctactccaag gacaagaagt actccgtgct ctacctcctc <br><br> 240 <br><br> cacggcatcg gcggctccga gaacgactgg <br><br> 11 eg agggcg gcggccgcgc caacgtgatc <br><br> 300 <br><br> gccgacaacc tcatcgccga gggcaagatc aagccgctca teategtgae cccgaacacc <br><br> 360 <br><br> aacgccgccg gcccgggcat cgccgacggc tacgagaact tcaccaagga cctcctcaac <br><br> 420 <br><br> tccctcatcc cgtacatcga gtccaactac tccgtgtaca ccgaccgcga gcaccgcgcc' <br><br> 480 <br><br> atcgccggcc tctctacggg cggcggccag tccttcaaca tcggcctcac caacctcgac <br><br> 540 <br><br> aagttcgcct acatcggccc gatctccgcc gccccgaaca cctacccgaa cgagcgcctc <br><br> 600 <br><br> ttcccggacg gcggcaaggc cgcccgcgag aagctcaagc tcctcttcat cgcctgcggc <br><br> 660 <br><br> accaacgact ccctcatcgg cttcggccag cgcgtgcacg agtactgcgt ggccaacaac <br><br> 720 <br><br> atcaaccacg tgtactggct catccagggc ggcggccacg acttcaacgt gtggaagccg <br><br> 780 <br><br> ggcctctgga acttcctcca gatggccgac gaggccggcc tcacccgcga cggcaacacc <br><br> 840 <br><br> ccggtgccga ccccgtcccc gaagccggcc aacacccgca tcgaggccga ggactacgac <br><br> 900 <br><br> ggcatcaact cctcctccat cgagatcatc ggcgtgccgc cggagggcgg ccgcggcatc <br><br> 960 <br><br> ggctacatca cctccggcga ctacctcgtg tacaagtcca tcgacttcgg caacggcgcc <br><br> 1020 <br><br> acctccttca aggccaaggt ccjcc aacacctcca acatcgagct tcgcctcaac <br><br> 1080 <br><br> ggcccgaacg gcaccctcat cggcaccctc tccgtgaagt ccaccggcga ctggaacacc <br><br> 1140 <br><br> tacgaggagc agacctgctc catctccaag gtgaccggca tcaacgacct ctacctcgtg <br><br> 1200 <br><br> ttcaagggcc cggtgaacat cgactggttc accttcggcg tgtccgagaa ggacgaactc <br><br> 1260 <br><br> tag <br><br> 1263 <br><br> &lt;210&gt; 108 &lt;211&gt; 420 &lt;212&gt; PRT <br><br> &lt;213&gt; artificial sequence &lt;220&gt; <br><br> &lt;223 &gt; plasmid 13347 &lt;4 00&gt; 108 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser 15 10 15 <br><br> Ala Thr Ser Met Ala Ala Ser Leu Pro Thr Met Pro Pro Ser Gly Tyr 20 25 30 <br><br> 299 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Asp Gin Val Arg Asn Gly Val Pro Arg Gly Gin Val Val Asn lie Ser 35 40 45 <br><br> Tyr Phe Ser Thr Ala Thr Asn Ser Thr Arg Pro Ala Arg Val Tyr Leu 50 55 60 <br><br> Pro Pro Gly Tyr Ser Lys Asp Lys Lys Tyr Ser Val Leu Tyr Leu Leu 65 70 75 80 <br><br> His Gly lie Gly Gly Ser Glu Asn Asp Trp Phe Glu Gly Gly Gly Arg 85 90 95 <br><br> Ala Asn Val lie Ala Asp Asn Leu lie Ala Glu Gly Lys lie Lys Pro 100 105 110 <br><br> Leu He lie Val Thr Pro Asn Thr Asn Ala Ala Gly Pro Gly He Ala 115 120 125 <br><br> Asp Gly Tyr Glu Asn Phe Thr Lys Asp Leu Leu Asn Ser Leu He Pro 130 135 140 <br><br> Tyr Xle Glu Ser Asn Tyr Ser Val Tyr Thr Asp Arg Glu His Arg Ala 145 150 155 160 <br><br> lie Ala Gly Leu Ser Met Gly Gly Gly Gin Ser Phe Asn lie Gly Leu 165 170 175 <br><br> Thr Asn Leu Asp Lys Phe Ala Tyr lie Gly Pro Xle Ser Ala Ala Pro 180 185 190 <br><br> Asn Thr Tyr Pro Asn Glu Arg Leu Phe Pro Asp Gly Gly Lys Ala Ala 195 200 205 <br><br> Arg Glu Lys Leu Lys Leu Leu Phe lie Ala Cys Gly Thr Asn Asp Ser 210 215 220 <br><br> Leu lie Gly Phe Gly Gin Arg Val His Glu Tyr Cys Val Ala Asn Asn 225 230 235 240 <br><br> lie Asn His Val Tyr Trp Leu He Gin Gly Gly Gly His Asp Phe Asn 245 250 255 <br><br> 300 <br><br> s <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Val Trp Lys Pro Gly Leu Trp Asn Phe Leu Gin Met Ala Asp Glu Ala 260 265 270 <br><br> Gly Leu Thr Arg Asp Gly Asn Thr Pro Val Pro Thr Pro Ser Pro Lys 275 280 285 <br><br> Pro Ala Asn Thr Arg lie Glu Ala Glu Asp Tyr Asp Gly lie Asn Ser 290 295 300 <br><br> Ser Ser lie Glu lie lie Gly Val Pro Pro Glu Gly Gly Arg Gly lie 305 310 315 320 <br><br> Gly Tyr lie Thr Ser Gly Asp Tyr Leu Val Tyr Lys Ser lie Asp Phe 325 330 335 <br><br> Gly Asn Gly Ala Thr Ser Phe Lys Ala Lys Val Ala Asn Ala Asn Thr 340 345 350 <br><br> Ser Asn He Glu Leu Arg Leu Asn Gly Pro Asn Gly Thr Leu lie Gly 355 360 365 <br><br> Thr Leu Ser Val Lys Ser Thr Gly Asp Trp Asn Thr Tyr Glu Glu Gin 370 375 380 <br><br> Thr Cys Ser lie Ser Lys Val Thr Gly lie Asn Asp Leu Tyr Leu Val 385 390 395 400 <br><br> Phe Lys Gly Pro Val Asn He Asp Trp Phe Thr Phe Gly Val Ser Glu 405 410 415 <br><br> Lys Asp Glu Leu 420 <br><br> &lt;210&gt; <br><br> 109 <br><br> &lt;211&gt; <br><br> 1296 <br><br> &lt;212 &gt; <br><br> DNA <br><br> &lt;213&gt; <br><br> artificial sequence <br><br> &lt;220&gt; <br><br> &lt;22 3 &gt; <br><br> plasmid 11267 <br><br> &lt;400&gt; 109 <br><br> atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc caccagcgct 60 gcgcagtccg agccggagct gaagctggag tccgtggtga tcgtgtcccg ccacggcgtg 120 <br><br> 301 <br><br> WO 2005/096804 PCT/US2004/007I82 <br><br> cgcgccccga ccaaggccac ccagctcatg caggacgtga ccccggacgc ctggccgacc 180 <br><br> tggccggtga agctcggcga gctgaccccg cgcggcggcg agctgatcgc ctacctcggc 240 <br><br> cactactggc gccagcgcct cgtggccgac ggcctcctcc cgaagtgcgg etgcccgcag 300 <br><br> tccggccagg tggccatcat cgccgacgtg gacgagcgca cccgcaagac cggcgaggcc 360 <br><br> ttcgccgccg gcctcgcccc ggactgcgcc atcaccgtgc acacccaggc cgacacctcc 420 <br><br> tccccggacc cgctcttcaa cccgctcaag accggcgtgt gccagctcga caacgccaac 4 80 <br><br> gtgaccgacg ccatcctgga gcgcgccggc ggctccatcg ccgacttcac cggccactac 540 <br><br> cagaccgcct tccgcgagct ggagcgcgtg ctcaacttcc cgcagtccaa cctctgcctc 600 <br><br> aagcgcgaga agcaggacga gtcctgctcc ctcacccagg ccctcccgtc cgagctgaag 660 <br><br> gtgtccgccg actgcgtgtc cctcaccggc gccgtgtccc tcgcctccat gctcaccgaa 720 <br><br> atcttcctcc tccagcaggc ccagggcatg ccggagccgg gctggggccg catcaccgac 780 <br><br> tcccaccagt ggaacaccct cctctccctc cacaacgccc agttcgacct cctccagcgc 840 <br><br> accccggagg tggcccgctc ccgcgccacc ccgctcctcg acctcatcaa gaccgccctc 900 <br><br> accccgcacc cgccgcagaa gcaggcctac ggcgtgaccc tcccgacctc cgtgctcttc 960 <br><br> atcgccggcc acgacaccaa cctcgccaac ctcggcggcg ccctggagct gaactggacc 1020 <br><br> ctcccgggcc agccggacaa caccccgccg ggcggcgagc tggtgttcga gcgctggcgc 1080 <br><br> cgcctctccg acaactccca gtggattcag gtgtccctcg tgttccagac cctccagcag 1140 <br><br> atgcgcgaca agaccccgct ctccctcaac accccgccgg gcgaggtgaa gctcaccctc 1200 <br><br> gccggctgcg aggagcgcaa cgccragggc atgtgctccc tcgccggctt cacccagatc 1260 <br><br> gtgaacgagg cccgcatccc ggcctgctcc ctctaa 1296 <br><br> &lt;210&gt; 110 &lt;211&gt; 431 &lt;212&gt; PRT <br><br> &lt;213&gt; artificial sequence &lt;220 &gt; <br><br> &lt;223 &gt; plasmid 11267 aa sequence &lt;400&gt; 110 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser <br><br> Ala Thr Ser Ala Ala Gin Ser Glu Pro Glu Leu Lys Leu Glu Ser Val <br><br> 302 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> val lie val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr Gin 35 40 45 <br><br> Leu Met Gin Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val Lys 50 55 GO <br><br> Leu Gly Glu Leu Thr Pro Arg Gly Gly Glu Leu lie Ala Tyr Leu Gly <br><br> 65 70 75 80 <br><br> His Tyr Trp Arg Gin Arg Leu Val Ala Asp Gly Leu Leu Pro Lys Cys 85 90 95 <br><br> Gly Cys Pro Gin Ser Gly Gin Val Ala lie lie Ala Asp Val Asp Glu 100 105 110 <br><br> Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro Asp 115 120 125 <br><br> Cys Ala He Thr Val His Thr Gin Ala Asp Thr Ser Ser Pro Asp Pro 130 135 140 <br><br> Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gin Leu Asp Asn Ala Asn 145 150 1S5 ISO <br><br> Val Thr Asp Ala lie Leu Glu Arg Ala Gly Gly Ser lie Ala Asp Phe 165 170 175 <br><br> Thr Gly His Tyr Gin Thr Ala Phe Arg Glu Leu Glu Arg Val Leu Asn <br><br> 180 185 190 <br><br> Phe Pro Gin Ser Asn Leu Cys Leu Lys Arg Glu Lys Gin Asp Glu Ser 195 200 205 <br><br> Cys Ser Leu Thr Gin Ala Leu Pro Ser Glu Leu Lys Val Ser Ala Asp 210 215 220 <br><br> Cys Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr Glu 225 230 235 240 <br><br> lie Phe Leu Leu Gin Gin Ala Gin Gly Met Pro Glu Pro Gly Trp Gly 245 250 255 <br><br> 303 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Arg lie Thr Asp Ser His Gin Trp Asn Thr Leu Leu Ser Leu His Asn 260 265 270 <br><br> Ala Gin Phe Asp Leu Leu Gin Arg Thr Pro Glu Val Ala Arg Ser Arg 275 280 285 <br><br> Ala Thr Pro Leu Leu Asp Leu lie Lys Thr Ala Leu Thr Pro His Pro <br><br> 290 295 300 <br><br> Pro Gin Lys Gin Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu Phe 305 310 315 320 <br><br> lie Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu Glu 325 330 335 <br><br> Leu Asn Trp Thr Leu Pro Gly Gin Pro Asp Asn Thr Pro Pro Gly Gly 340 345 350 <br><br> Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gin Trp 355 360 355 <br><br> lie Gin Val ser Leu Val Phe Gin Thr Leu Gin Gin Met Arg Asp Lys 370 375 380 <br><br> Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr Leu 385 390 395 400 <br><br> Ala Gly Cys Glu Glu Arg Asn Ala Gin Gly Met Cys Ser Leu Ala Gly 405 410 415 <br><br> Phe Thr Gin lie Val Asn Glu Ala Arg lie Pro Ala Cys Ser Leu 420 425 430 <br><br> &lt;210&gt; <br><br> ill <br><br> &lt;211&gt; <br><br> 1314 <br><br> &lt;212&gt; <br><br> DNA <br><br> &lt;213 &gt; <br><br> artificial sequence <br><br> &lt;220&gt; <br><br> &lt;223&gt; <br><br> plasmid 11268 <br><br> &lt;4 00&gt; <br><br> ill atgagggtgt tgctcgttgc cctcgctctc ctggctctcg ctgcgagcgc caccagcgct 60 <br><br> gcgcagtccg agccggagct gaagctggag tccgtggtga tcgtgtcccg ccacggcgtg 120 <br><br> 304 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> cgcgccccga ccaaggccac ccagctcatg caggacgtga ccccggacgc ctggccgacc 180 <br><br> tggccggtga agctcggcga gctgaccccg cgcggcggcg agctgatcgc ctacctcggc 240 <br><br> 5 <br><br> cactactggc gccagcgcct cgtggccgac ggcctcctcc cgaagtgcgg ctgcccgcag 300 <br><br> tccggccagg tggccatcat cgccgacgtg gacgagcgca cccgcaagac cggcgaggcc 360 <br><br> 10 ttcgccgccg gcctcgcccc ggactgcgcc atcaccgtgc acacccaggc cgacacctcc 420 <br><br> tccccggacc cgctcttcaa cccgctcaag accggcgtgt gccagotcga caacgccaac 480 <br><br> gtgaccgacg ccatcctgga gcgcgccggc ggctccatcg ccgacttcac cggccactac 540 <br><br> 15 <br><br> cagaccgcct tccgcgagct ggagcgcgtg ctcaacttcc cgcagtccaa cctctgcctc 600 <br><br> aagcgcgaga agcaggacga gtcctgctcc ctcacccagg ccctcccgtc cgagctgaag 660 <br><br> 20 gtgtccgccg actgcgtgtc cctcaccggc gccgtgtccc tcgcctccat gctcaccgaa 720 <br><br> atcttcctcc tccagcaggc ccagggcatg ccggagccgg gctggggccg catcaccgac 7 80 <br><br> tcccaccagt ggaacaccct cctctccctc cacaacgccc agttcgacct cctccagcgc 840 <br><br> 25 <br><br> accccggagg tggcccgctc ccgcgccaec ccgctcctcg acctcatcaa gaccgccctc 900 <br><br> accccgcacc cgccgcagaa gcaggcctac ggcgtgaccc tcccgacctc cgtgctcttc 960 <br><br> 30 atcgccggcc acgacaccaa cctcgccaac ctcggcggcg ccctggagct gaactggacc 1020 <br><br> ctcccgggcc agccggacaa caccccgccg ggcggcgagc tggtgttcga gcgctggcgc 1080 <br><br> cgcctctccg acaactccca gtggattcag gtgtccctcg tgttccagac cctccagcag 1140 <br><br> 35 <br><br> atgcgcgaca agaccccgct ctccctcaac accccgccgg gcgaggtgaa gctcaccctc 1200 <br><br> gccggctgcg aggagcgcaa cgcccaggge atgtgctccc tcgccggctt cacccagatc 1260 <br><br> 40 gtgaacgagg cccgcatccc ggcctgctcc ctctccgaga aggacgagct gtaa 1314 <br><br> &lt;210&gt; 112 <br><br> &lt;211&gt; 437 <br><br> 45 &lt;212&gt; PRT <br><br> &lt;213&gt; artificial sequence c220&gt; <br><br> &lt;223&gt; plasmid 11268 amino acid sequence <br><br> 50 <br><br> &lt;400&gt; 112 <br><br> Met Arg Val Leu Leu Val Ala Leu Ala Leu Leu Ala Leu Ala Ala Ser 15 10 15 <br><br> 55 <br><br> Ala Thr Ser Ala Ala Gin Ser Glu Pro Glu Leu Lys Leu Glu Ser Val <br><br> 305 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> 55 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> Val lie Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr Gin 35 40 45 <br><br> Leu Met Gin Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val Lys 50 55 60 <br><br> Leu Gly Glu Leu Thr Pro Arg Gly Gly Glu Leu lie Ala Tyr Leu Gly 65 70 75 80 <br><br> His Tyr Trp Arg Gin Arg Leu val Ala Asp Gly Leu Leu Pro Lys Cys 85 90 95 <br><br> Gly Cys Pro Gin Ser Gly Gin Val Ala lie lie Ala Asp Val Asp Glu 100 105 110 <br><br> Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro Asp 115 120 125 <br><br> Cys Ala lie Thr Val His Thr Gin Ala Asp Thr Ser Ser Pro Asp Pro 130 135 140 <br><br> Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gin Leu Asp Asn Ala Asn 145 150 155 160 <br><br> Val Thr Asp Ala lie Leu Glu Arg Ala Gly Gly Ser lie Ala Asp Phe 1*5 170 175 <br><br> Thr Gly His Tyr Gin Thr Ala Phe Arg Glu Leu Glu Arg Val Leu Asn 180 185 190 <br><br> Phe Pro Gin Ser Asn Leu Cys Leu Lys Arg Glu Lys Gin Asp Glu Ser 195 200 205 <br><br> Cys Ser Leu Thr Gin Ala Leu Pro Ser Glu Leu Lys Val Ser Ala Asp 210 215 220 <br><br> Cys Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr Glu 225 230 235 240 <br><br> He Phe Leu Leu Gin Gin Ala Gin Gly Met Pro Glu Pro Gly Trp Gly 245 250 255 <br><br> 306 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> 35 <br><br> 40 <br><br> 45 <br><br> 50 <br><br> WO 2005/096804 <br><br> PCT/US2004/007182 <br><br> Arg lie Thr Asp Ser His Gin Trp Asn Thr Leu Leu Ser Leu His Asn 260 265 270 <br><br> Ala Gin Phe Asp Leu Leu Gin Arg Thr Pro Glu Val Ala Arg Ser Arg 275 280 285 <br><br> Ala Thr Pro Leu Leu Asp Leu lie Lys Thr Ala Leu Thr Pro His Pro 290 295 300 <br><br> Pro Gin Lys Gin Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu Phe 305 310 315 320 <br><br> lie Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu Glu 325 330 335 <br><br> Leu Asn Trp Thr Leu Pro Gly Gin Pro Asp Asn Thr Pro Pro Gly Gly 340 345 350 <br><br> Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gin Trp 3S5 360 365 <br><br> lie Gin Val Ser Leu Val Phe Gin Thr Leu Gin Gin Met Arg Asp Lys 370 375 380 <br><br> Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr Leu 385 390 395 400 <br><br> Ala Gly Cys Glu Glu Arg Asn Ala Gin Gly Met Cys Ser Leu Ala Gly 405 410 415 <br><br> Phe Thr Gin lie Val Asn Glu Ala Arg lie Pro Ala Cys Ser Leu Ser 420 425 430 <br><br> Glu Lys Asp Glu Leu 435 <br><br> 307 <br><br></p> </div>

Claims (15)

<div class="application article clearfix printTableText" id="claims"> <p lang="en"> CLAIMS:<br><br>
1. A method of increasing starch recovery from maize seed, the method comprising:<br><br> 5 a) steeping transgenic maize seed comprising at least one cellulase;<br><br> b) further combining the maize seed of a) with a protease to produce steeped seed;<br><br> c) grinding said steeped seed to produce a maize slurry; and d) obtaining starch from maize seed.<br><br> 10
2. The method of claim 1, wherein the seed is steeped at about 0 ppm to about 2000 ppm sulfur dioxide.<br><br>
3. The method of claim 1 or claim 2, wherein the seed is steeped at about 37°C to about 50°C.<br><br> 15<br><br>
4. The method of any one of claims 1 to 3, wherein the seed is steeped for at least 24 hours.<br><br>
5. The method of any one of claims 1 to 4, wherein the cellulase is an 20 endoglucanase.<br><br>
6. The method of claim 5, wherein the endoglucanase is a thermostable endoglucanase.<br><br> 25
7. The method of claim 5, wherein the cellulase is a cellobiohydrolase,<br><br>
8. The method of any one of claims 1 to 7, wherein the protease is Bromelain.<br><br> INTELLECTUAL PROPERTY 308 OFFICE OF N.Z.<br><br> 19 OCT 2009 RECEIVED<br><br>
9.<br><br>
The method of any one of claims 1 to 8, wherein the protease is incorporated into the maize genome and expressed by the plant.<br><br> 5 10. The method of any one of claims 1 to 9, wherein the cellulase is targeted to any one of the group consisting of endoplasmic reticulum, vacuole, chloroplast, starch granule, or cell wall of the plant.<br><br>
11. The method of claim 1, wherein the maize slurry comprises an endoglucanase<br><br> 10 and a cellobiohydrolase.<br><br>
12. The method of claim 1, wherein the maize slurry comprises an endoglucanase, cellobiohydrolase and a protease.<br><br> 15
13. The method of claim 11 or claim 12, wherein the cellobiohydrolase is added exogenously.<br><br>
14. The method of claim 12, wherein the protease is added exogenously.<br><br> 20
15. The method of any one of claims 1 to 14 substantially as described herein with reference to any one of Examples 1 to 64, Figures 1 to 20, and/or the Sequence Listing thereof.<br><br> 309<br><br> INTEOFgcrAWzPERTY 19 OCT 2009<br><br> Received!<br><br> </p> </div>
NZ549679A 2004-03-08 2004-03-08 Self-processing plants and plant parts NZ549679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ549679A NZ549679A (en) 2004-03-08 2004-03-08 Self-processing plants and plant parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ549679A NZ549679A (en) 2004-03-08 2004-03-08 Self-processing plants and plant parts
PCT/US2004/007182 WO2005096804A2 (en) 2004-03-08 2004-03-08 Self-processing plants and plant parts

Publications (1)

Publication Number Publication Date
NZ549679A true NZ549679A (en) 2009-11-27

Family

ID=41459821

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ549679A NZ549679A (en) 2004-03-08 2004-03-08 Self-processing plants and plant parts

Country Status (1)

Country Link
NZ (1) NZ549679A (en)

Similar Documents

Publication Publication Date Title
AU2004318207B2 (en) Self-processing plants and plant parts
CA2457477C (en) Self-processing plants and plant parts
AU2002332666A1 (en) Self-processing plants and plant parts
US20120058523A1 (en) Tempering of cellulosic biomass
US20120054915A1 (en) Methods for increasing starch content in plant cobs
CA2704016A1 (en) Methods for increasing starch content in plants
AU2006225290B2 (en) Self-processing plants and plant parts
NZ549679A (en) Self-processing plants and plant parts
KR20070007817A (en) Self-processing plants and plant parts
MXPA06010197A (en) Self-processing plants and plant parts
BR122014007966B1 (en) Expression cassette comprising an alpha-amylase and a method of obtaining a plant comprising the same

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 3 YEARS UNTIL 08 MAR 2017 BY THOMSON REUTERS

Effective date: 20140214

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2018 BY THOMSON REUTERS

Effective date: 20170221

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2019 BY THOMSON REUTERS

Effective date: 20180217

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2020 BY THOMSON REUTERS

Effective date: 20190216

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2021 BY THOMSON REUTERS

Effective date: 20200205

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2022 BY THOMSON REUTERS

Effective date: 20210206

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2023 BY THOMSON REUTERS

Effective date: 20220302

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 08 MAR 2024 BY THOMSON REUTERS

Effective date: 20230201