NZ545892A - Turbulent flow heat exchanger - Google Patents

Turbulent flow heat exchanger

Info

Publication number
NZ545892A
NZ545892A NZ545892A NZ54589204A NZ545892A NZ 545892 A NZ545892 A NZ 545892A NZ 545892 A NZ545892 A NZ 545892A NZ 54589204 A NZ54589204 A NZ 54589204A NZ 545892 A NZ545892 A NZ 545892A
Authority
NZ
New Zealand
Prior art keywords
heat exchanger
pipes
housing
deflector
internal
Prior art date
Application number
NZ545892A
Inventor
John Verstappen
Original Assignee
Barlane Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003905295A external-priority patent/AU2003905295A0/en
Application filed by Barlane Pty Ltd filed Critical Barlane Pty Ltd
Publication of NZ545892A publication Critical patent/NZ545892A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • F28D7/1646Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger is disclosed. The heat exchanger includes a housing which includes first and second inlet ports in respective communication with corresponding first and second outlet ports and a first fluid circuit connecting the first inlet port to the first outlet port. The first fluid circuit includes a number of internal pipes located within the housing, and one or more obstacles to laminar flow disposed to produce turbulent flow through the internal pipes in use. The second fluid circuit connects the second inlet port to the second outlet port and includes a number of baffles arranged to direct fluid through the second fluid circuit about the number of pipes.

Description

TURBULENT FLOW HEAT EXCHANGER FIELD OF THE INVENTION The present invention relates to heat exchangers. The present invention finds 5 particular application in providing a heat exchanger suitable for heating swimming pools and spas.
BACKGROUND TO THE INVENTION Heat exchangers are well known in the prior art. Typically they consist of a 10 coil through which water to be heated is pumped. The coil is located within a jacket through which heated water is pumped in an opposite direction to the flow through the coil.
Heat exchangers of sufficient capacity to warm a swimming pool are typically quite bulky and accordingly expensive 15 It is an object of the present invention to provide an improved heat exchange unit which more efficiently provides for the exchange of heat and so which may be provided in a more compact form than heat exchangers which have hitherto been available.
SUMMARY OF THE INVENTION According to a first aspect of the present invention there is provided a heat exchanger including: a housing including first and second inlet ports in respective communication with corresponding first and second outlet ports; a first fluid circuit connecting the first inlet port to the first outlet port, the first fluid circuit including a number of internal pipes located within the housing, and one or more obstacles to laminar flow disposed to produce turbulent flow through the internal pipes in use; the second fluid circuit connecting the second inlet port to the second outlet port and including a number of baffles arranged to direct fluid through the second fluid circuit about the number of pipes.
Substitute Sheet (Rule 26) JtO/AU WO 2005/031241 PCT/AU2004/001329 2 Preferably the one or more obstacles to laminar flow comprise one or more deflectors arranged to interconnect at least two of the internal pipes.
In a preferred embodiment the deflectors comprise a number of plates each 5 located at ends of the internal pipes and configured to deflect fluid from a first pipe to a second pipe.
The internal pipes may be mounted in rows across an internal volume defined by the housing and wherein the baffles are located between the rows.
In one embodiment each deflector interconnects a number of internal pipes in 10 parallel.
The deflectors may be arranged on opposing outer sides of the housing. Preferably the baffles are arranged to leave gaps alternately between opposing internal walls of the housing.
Further preferred features of the present invention will be described in the 15 following detailed description which will refer to a number of figures as follows.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of a heat exchanger according to a first embodiment of the present invention.
Figure 2 is a front, and somewhat schematic, view of the heat exchanger of Figure 2.
Figure 3 is a side, and somewhat schematic, view of the heat exchanger of Figure 1.
Figure 4 is a multi-sectional perspective view of the heat-exchanger of Figure 1.
Figure 5 is a front, and somewhat schematic, view of the heat exchanger of Figure 1 in use.
Figure 6 is a perspective view of a heat exchanger according to a second, and preferred, embodiment of the present invention.
Figure 7 is a perspective and exploded view of the upperside of the heat exchanger of Figure 6.
Figure 8 is a perspective and exploded view of the underside of the heat exchanger of Figure 6.
Substitute Sheet (Rule 26) RO/AU 3 Figure 9A is a plan view of the upperside of the heat exchanger of Figure 6 depicting the flow of working fluid through the heat exchanger's upper deflectors.
Figure 9B is a perspective stylised view of the heat exchanger of Figure 6 5 depicting the heat exchanger's internal baffles.
Figure 9C is a plan view of the underside of the heat exchanger of Figure 6 depicting the flow of working fluid through the heat exchanger's lower deflectors.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS A heat exchanger 2 according to a first embodiment of the present invention is depicted in Figure 1. Heat exchanger 2 includes a housing 4 which defines an internal volume and from which extends a hot water inlet pipe 6 that communicates with a hot water outlet pipe 8. In the presently explained embodiment the working fluid of the heat exchanger is intended to be hot water however other working fluids 15 might also be applied.
An unheated water inlet pipe 10 also extends from housing 4 and communicates with a heated water outlet pipe 12. Four fluid deflectors 14, 16, 18, 20 are located across the top of housing 4 and three deflectors across the bottom. Each of the deflectors comprises a plate formed with slot or recess for conveying fluid. As 20 will be explained, the deflectors form portions of a first fluid circuit between unheated water inlet pipe 10 and heated water outlet pipe 12.
Figures 2 and 3 are partial cross-sectional views of the front and side of heat exchanger 2 while Figure 4 is an exploded view of the heat exchanger showing it cut horizontally into five sections in order to reveal its internal structure. The internal 25 path through exchanger 2, between unheated water inlet pipe 10 and heated water outlet pipe 12 will now be described. Inlet pipe 10 feeds into deflector 20. Deflector 20 in turn communicates with a first circulation leg comprising four pipes 32A-32D. Pipes 32A-32D descend down through the internal volume of housing 4 and open out into deflector 26. Deflector 26 in turn communicates with a second circulation leg 30 comprising four circulation pipes 34A-34D which rise up through housing 4 and out into deflector 18. A third circulation leg, comprising four internal pipes 36A-36D descends down through housing 4 and out into lower deflector 24. Deflector 24 in turn communicates with a fourth leg of four circulation pipes 38A-38D which rise up through housing 4 and out into upper deflector 16. Upper deflector 16 also Substitute Sheet (Rule 26) RO/AU 4 communicates with a fifth circulation leg comprising internal pipes 40A-40D which descend down through housing 4 and out into lower deflector 22. Lower deflector 22 in turn communicates with a final sixth circulation leg comprising four internal pipes 5 42A-42D which rise up through housing 4 and open into upper deflector 14. Upper deflector 14 in turn communicates with heated water outlet pipe 12.
It will be realised that the upper and lower deflectors and six circulation legs, each leg comprising a set of four internal pipes, provide a closed path through the internal volume defined by housing 4 between unheated water inlet pipe 10 and 10 heated outlet pipe 12. The deflectors provide sharp transitions between the internal pipes in order to produce turbulent non-laminar flow of fluid through the pipes. Furthermore, in the present embodiment the diameters of inlet pipe 10 and each of the internal pipes that constitute the various circulation legs are chosen so that the cross sectional area of inlet pipe 10 is slightly less than total cross-sectional area of 15 the pipes making up each of the legs. In the presently described embodiment the cross-sectional area of inlet pipe 10 is approximately 1520 mm2 whereas the cross sectional area of each of pipes 32A-32D is 387 mm2 so that the cross sectional area of piping exiting deflector 20 is approximately 28 mm2 greater than the cross sectional area of piping entering deflector 20. As a result, in use water pumped into 20 inlet 10 experiences a pressure drop on encountering deflector 20 which assists in producing a turbulent flow of water through each of pipes 32A-32D of the first circulation leg and indeed through each of the subsequent circulation legs.
It will be realised that other means for producing turbulent flow might be used apart from the deflectors. For example, the internal pipes might be formed with 25 protrusions into their lumens in order to encourage non-laminar turbulent flow.
A second fluid circuit through housing 4 between hot water inlet pipe 6 and hot water outlet pipe 8 will now be described. Pipe 6 descends down through housing 4 and terminates in an angled opening 44 as best seen in Figure 2. A series of six internal baffles 46, 48, 50, 52, 54, 56 separate angled opening 44 from hot water 30 outlet pipe 8. Each of the baffles 46, 50, 54 are disposed from front to back across the interior of the housing. A 10mm gap is left between, alternately, either the top of the baffle and the housing or the bottom of the baffle and the housing.
In use a hot water reservoir 60 is connected between inlet 6 and outlet 8. Similarly a reservoir of water to be heated 62, for example a swimming pool or spa, is Substitute Sheet (Rule 26) RO/AU connected between unheated inlet pipe 10 and heated water outlet pipe 12. Hot water is then pumped from the hot water reservoir, into hot water inlet pipe 6. The hot water flows out of angled opening 44 over and under baffles 46-56 and out 5 through hot water outlet pipe 8 from whence it returns to the hot water reservoir. The path of the hot water through the exchanger is shown as dashed line 58 in Figure 5. As the hot water flows through the baffle system it moves over the outer surfaces of each of the internal pipes 32A-32D to 42A-42D thereby heating them.
Water to be heated is pumped into unheated water inlet pipe 10 from which it 10 enters deflector 20. The unheated water is distributed from deflector 20 into each of internal pipes 32A-32D which comprise the first circulation leg. As previously mentioned the deflectors provide a series of sharp transitions that act to produce a turbulent flow through the internal pipes. As a result the flow through the circulation legs is not laminar so that water progressing through the circulation legs makes good 15 contact with the inner surfaces of the warmed pipes. The net effect is that water passing through the internal pipes is heated more rapidly than would be the case if the flow was non-turbulent.
The heat exchanger described with reference to the figures is intended to be used to heat a typical suburban swimming pool. The housing of the heat exchanger 20 is 500mm wide by 200mm deep and 750mm high and is of stainless steel construction. Pipes 10 and 12 are 1.5" diameter whereas the internal pipes and the hot water pipes 6 and 8 are 1" and are also stainless steel. The heat exchanger may be cut down so that the housing is 350mm if heating for a spa bath is required. A number of the heat exchangers may be required depending on the volume of the 25 swimming pool or spa.
Figure 6 is an external view of a heat exchanger 64 according to a further, and preferred, embodiment of the present invention. Heat exchanger 64 includes a housing 66 which defines an internal volume and from which extends a hot water inlet pipe 68 that communicates with a hot water outlet pipe 78. In the presently 30 explained embodiment the working fluid of the heat exchanger is intended to be hot water however other working fluids might also be applied.
An unheated water inlet pipe 76 also extends from housing 64 and communicates with a heated water outlet pipe 74. Eleven deflectors 81-91 are located across the top of housing 4 and twelve deflectors 92-93 across the underside Substitute Sheet (Rule 26) RO/AU 6 as best seen in Figure 7. As will be explained, the deflectors interconnect internal pipes to form a path between hot water inlet pipe 68 and hot water outlet pipe 78.
Figures 7 and 8 are perspective exploded views of heat exchanger 64 5 revealing twenty-four internal pipes A1-F4. The internal pipes extend the height of housing 66. At their upper limits pipes A1 and F1 communicate with hot water inlet pipe 68 and hot water outlet pipe 78 respectively. A first fluid circuit, between hot water inlet pipe 68 and hot water outlet pipe 78 is as follows, (with the direction of fluid flow through the deflectors being indicated by the arrows of figures 9A and 9C): Inlet pipe 68 to internal pipe A1 to underside deflector 92 to interna pipe A2 to upperside deflector 81 to interna pipe A3 to underside deflector 93 to interna pipe A4 to upperside deflector 82 to interna pipe B4 to underside deflector 95 to interna pipe B3 to upperside deflector 83 to interna pipe B2 to underside deflector 94 to interna pipe B1 to upperside deflector 84 to interna pipe C1 to underside deflector 96 to interna pipe C2 to upperside deflector 85 to interna pipe C3 to underside deflector 97 to interna pipe C4 to upperside deflector 86 to interna pipe D4 to underside deflector 99 to interna pipe D3 to upperside deflector 87 to interna pipe D2 to underside deflector 98 to interna pipe D1 to upperside deflector 88 to interna pipe E1 to underside deflector 100 to interna pipe E2 to upperside deflector 89 to interna pipe E3 to underside deflector 101 to interna pipe E4 to upperside deflector 90 to interna pipe F4 to underside deflector 103 to interna pipe F3 to upperside deflector 91 to interna pipe F2 to underside deflector 102 to interna pipe F1 to hot water outlet pipe 78.
Substitute Sheet (Rule 26) RO/AU 7 tt will be realised that the upper and lower deflectors and the internal pipes provide a closed path through the internal volume defined by housing 66 between hot water inlet pipe 68 and hot water outlet pipe 78. The deflectors provide a series of sharp 5 angles or "discontinuities" in order to produce a turbulent flow of fluid through each of pipes A1-F4 in use.
A second fluid circuit through housing 4 between unheated water inlet pipe 76 and heated water outlet pipe 74 will now be described with reference to Figure 9B. Internally housing 66 is partitioned into eight compartments by seven baffles 103-10 109. Baffles 109, 107, 105, 103 are connected across the top and sides of the inside of housing 66 with a gap, typically 10mm, left between their lowermost edge and the inside of the casing. Baffles 108, 106 and 104 are connected across the bottom and internal walls of housing 66 with a gap left between their uppermost edge and the inside of the housing. In use, water to be heated, for example from a swimming pool, 15 flows into inlet 76 and under the first baffle 109. It then flows up and around pipes A1-A4 and over the top of baffle 108 and down around pipes B1 to B4. This pattern of flowing over and under baffles and around the internal pipes repeats until the water finally flows under baffle 103 and up and out of heated water outlet 74 by which time it has been heated by contact with the internal pipes. in contrast to the firstly described embodiment, it is intended that a fluid to be heated be connected to the fluid circuit that passes over and under the baffles and that the fluid providing the heat be passed through the internal pipes. For example, a swimming pool to be heated might be connected between inlet 76 and outlet 74 and a source of heated water passed between inlet 68 and outlet 78. 25 As previously mentioned in relation to the first embodiment, the heat exchanger provides improved efficiency by producing turbulent, i.e. non-laminar, flow through the internal pipes. The non-laminar flow in turn has been found to increase the efficiency of the heat transfer from one fluid to the other.
The embodiments of the invention described herein are provided for purposes 30 of explaining the principles thereof, and are not to be considered as limiting or restricting the invention since many modifications may be made by the exercise of skill in the art without departing from the scope of the invention as defined in the following claims.
Substitute Sheet (Rule 26) RO/AU /07/2008 11:06 61-7-32160793 ENB IDEAS INTO ASSET PAGE 02/02 Received at IPONZ on 30 July 2008 8

Claims (7)

Claims
1. A heat exchanger including: a housing including first and second inlet ports in respective communication with corresponding first and second outlet ports; a first fluid circuit connecting the first inlet port to the first outlet port, the first fluid circuit including a number of internal pipes located within the housing, and one or more obstacles to laminar flow disposed to produce turbulent flow through the internal pipes in use; the second fluid circuit connecting the second inlet port to the second outlet port and including a number of baffles arranged to direct fluid through the second fluid circuit about the number of pipes.
2. A heat exchanger according to claim 1 „ wherein the one or more obstacles to laminar flow comprise one or more deflectors arranged to interconnect at least two of the internal pipes.
3. A heat exchanger according to claim 2, wherein each deflector comprises a plate located at an end of the internal pipes and configured to deflect fluid from a first pipe to a second pipe.
4. A heat exchanger according to claim 3, wherein the internal pipes are mounted in rows across an internal volume defined by the housing and wherein the baffles are located between the rows,
5. A heat exchanger according to claim 4, wherein each deflector interconnects a number of pipes in parallel.
6. A heat exchanger according to claim 3, wherein the deflectors are arranged on opposing outer sides of the housing. WO 2005/031241 PCT/AU2004/001329 9
7. A heat exchanger according to claim 4, wherein the baffles are arranged to leave gaps alternately between opposing internal walls of the housina. Substitute Sheet (Rule 26) RO/AU
NZ545892A 2003-09-29 2004-09-29 Turbulent flow heat exchanger NZ545892A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2003905295A AU2003905295A0 (en) 2003-09-29 Turbulent flow heat exchanger
PCT/AU2004/001329 WO2005031241A1 (en) 2003-09-29 2004-09-29 Turbulent flow heat exchanger

Publications (1)

Publication Number Publication Date
NZ545892A true NZ545892A (en) 2008-09-26

Family

ID=34382663

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ545892A NZ545892A (en) 2003-09-29 2004-09-29 Turbulent flow heat exchanger

Country Status (2)

Country Link
NZ (1) NZ545892A (en)
WO (1) WO2005031241A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799253A (en) * 2010-03-18 2010-08-11 王子异 Heat exchanger with sealed cover plate structure
FR2986608B1 (en) * 2012-02-03 2018-09-07 Valeo Systemes De Controle Moteur THERMAL EXCHANGER, IN PARTICULAR FOR A VEHICLE COMPRISING A THERMAL ENGINE

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2839564C2 (en) * 1978-09-12 1982-10-21 Hoechst Ag, 6000 Frankfurt Device with supply and removal of heat and for mixing liquid media
US5001906A (en) * 1989-05-04 1991-03-26 Chicago Bridge & Iron Technical Services Company High pressure heat exchanger for cooling high fouling liquids
DE3921485A1 (en) * 1989-06-30 1991-01-10 Erno Raumfahrttechnik Gmbh EVAPORATION HEAT EXCHANGER
DE4130692C2 (en) * 1991-09-14 1993-10-07 Erno Raumfahrttechnik Gmbh Evaporative heat exchanger
DE4136969A1 (en) * 1991-11-11 1993-05-13 Erno Raumfahrttechnik Gmbh EVAPORATION HEAT EXCHANGER
US5579650A (en) * 1994-12-05 1996-12-03 Cleland; Robert K. Heat exchanger
US5875837A (en) * 1998-01-15 1999-03-02 Modine Manufacturing Company Liquid cooled two phase heat exchanger
JP2003090690A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Lamination type heat exchanger and refrigerating cycle

Also Published As

Publication number Publication date
WO2005031241A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP2007120941A (en) Heat transfer device of plate sandwich structure
EP2474803B1 (en) Laminated heat exchanger
EP1607708A3 (en) Flat tube evaporator with enhanced refrigerant flow passages
AU2004236275B2 (en) Heat exchanger core
CA2184909A1 (en) Heat exchanger element and heat exchanger using same
EP3017261B1 (en) Asymmetrical exchanger with ancillary channels for connecting turns
US6325139B1 (en) Heat-exchange coil assembly
HK1072803A1 (en) Plate heat exchanger with double-walled heat exchanger plates
EP1435502A3 (en) Laminated heat exchanger
DE19517408A1 (en) Heat exchanger
CA2849154A1 (en) Energy transfer unit
AU2004276371B2 (en) Turbulent flow heat exchanger
NZ545892A (en) Turbulent flow heat exchanger
CN202255027U (en) Bionic honeycomb based heat exchanger plate
AU2007100970A5 (en) A heat exchanger
KR20150081904A (en) Module type heat exchanger and method for exchanging heat using the module type heat exchanger
KR20060104174A (en) Waste heat collector
US6425999B1 (en) Warm/cold double-circulation water filter system and swimming pool arrangement
CN111435031B (en) Heat exchanger and gas water heater using same
KR100417538B1 (en) Waste water heat collector by using heat exchange way
CN104713254A (en) Spiral flow hot water air heating water tank
JP2004219065A (en) Heat exchanger for waste heat recovery
KR20010023338A (en) Heat exchanger turbulizers with interrupted convolutions
KR200256619Y1 (en) Waste water heat collector by using heat exchange way
JPS59158986A (en) Laminated type heat exchanger

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)