NZ280558A - Container closure cap with ratchet teeth on skirt having teeth abutment portions at an acute angle to plane of skirt open end - Google Patents

Container closure cap with ratchet teeth on skirt having teeth abutment portions at an acute angle to plane of skirt open end

Info

Publication number
NZ280558A
NZ280558A NZ280558A NZ28055893A NZ280558A NZ 280558 A NZ280558 A NZ 280558A NZ 280558 A NZ280558 A NZ 280558A NZ 28055893 A NZ28055893 A NZ 28055893A NZ 280558 A NZ280558 A NZ 280558A
Authority
NZ
New Zealand
Prior art keywords
skirt
cap
segments
inside surface
plug
Prior art date
Application number
NZ280558A
Inventor
Walter Edward Hidding
Douglas Jay Hidding
Robert Daniel Hidding
Original Assignee
Hidding Walter E
Douglas Jay Hidding
Hidding Robert D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/902,170 external-priority patent/US5385252A/en
Priority claimed from US07/916,815 external-priority patent/US5307945A/en
Application filed by Hidding Walter E, Douglas Jay Hidding, Hidding Robert D filed Critical Hidding Walter E
Publication of NZ280558A publication Critical patent/NZ280558A/en

Links

Landscapes

  • Closures For Containers (AREA)

Description

New Zealand No. International No. 280558 PCT/ TO BE ENTERED AFTER ACCEPTANCE AND PUBLICATION Priority dates: 26.06.1992;20.07.1992; Complete Specification Filed: 25.06.1993 Classification:^) B65D41/04.34 Publication date: 19 December 1997 Journal No.: 1423 NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION Title of Invention: Closure Name, address and nationality of applicant(s) as in international application form: WALTER EDWARD HIDDING, citizen of 367A Woodrock Road, Barrington Hills, Illinois 60010, United States of America; DOUGLAS JAY HIDDING, citizen of 801 E. Lake Shore Drive, Barrington, Illinois 60010, United States of America; ROBERT DANIEL HIDDING, citizen of 925 Harper Drive, Algonquin, Illinois 60102, United States of America 280558 Qndtor provistows <.* ;>u . .j v. (kf/Mu E>;r- *•- -...*1 Jr* -> »• :* «i* 0* (£5. 19 ?j$> V 29 NOV iggcj - /J \\ Patents Form No. 5 ' Our Ref: JT205679 This is a divisional out of application No. 247995 dated 25 June 1993 NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION CLOSURE We, WALTER EDWARD HIDDING, a U.S.A citizen of 367A Woodrock Road, Barrington Hills, Illinois 60010, U.S.A; DOUGLAS JAY HIDDING, a U.S.A. citizen of 801 E. Lake Shore Drive, Barrington, Illinois 60010, U.S.A.; and ROBERT DANIEL HIDDING, a U.S.A citizen of 925 Harper Drive, Algonquin, Illinois 60102, U.S.A. hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: PT0567811 (followed by page la) 2805 58 TITLE CLOSURE BACKGROUND AMD SUMMARY OF THE INVENTION The present invention relates to closure devices, and in particular, relates to injection molded caps for containers which hold liquid, such as milk.
Injection molded caps for blow molded milk bottles have been used for many years. Generally, two types of caps are available, push-on caps and thread-on caps. Push-on caps are installed by aligning the cap with the opening of a container and simply applying an axial force to the top of the cap. Thread-on caps generally require that the cap and container be aligned and that a rotative force be applied to the cap. In some cases, threaded caps, if carefully designed in conjunction with the container to which it is applied, can be made so that the rotative force required to install the cap is minimized or even eliminated. These kinds of injection molded caps are often made with low density polypropylene, a common material used in injection molding.
One of the problems associated with injection molded caps relates to dimensional stability. Polypropylene and other injection moldable materials tend to shrink when they are cooled. The amount of shrinkage is difficult to quantify, and depends on factors such as temperature, the presence or absence of additives such as pigments, the configuration of the product, and other factors. Another aspect of dimensional stability relates to the deformability of the cap at the time it is ejected from the mold. When the cap is still warm after being formed in the mold, forces la (followed by page 2) 2805 required to eject the cap can cause deformation of the cap. In some cases, this results in permanent changes in the shape of the product.
Another problem arising from the use of plastic caps and blow molded bottles relates to the seal which must be created between these two components. The imprecise nature of blow molding requires that cap designs be forgiving. Caps must be designed for a wide range of bottle neck shapes, since it is difficult to blow mold containers within tight tolerances.
The problem of matching a blow molded bottle neck with an injection molded cap manifests itself both with respect to the sealing of the two components and with respect to the formation of a tamper-evident connection between the two components. For example, plug-type caps have a downwardly depending plug formed on the underside of the cap. The plug is intended to seal against the inner edge of a lip formed at the top of a container. If the plug of the cap shrinks and the diameter of the container neck at the lip does not properly match the shrunken size of the plug, an effective seal may not be possible. Similarly, many threaded caps include a ratchet ring formed at the lower periphery of the cap. The ratchet ring engages matching ratchet teeth formed on a bottle neck. If the dimensional stability of the components is not sufficient, the tamper-evidency provided by the ratchet ring will not be accomplished.
A further problem arising from the use of plastic caps and blow-molded bottles relates to the automated installation of such caps onto the blow-molded bottles. The installation process involves the loose placement of a cap onto a container neck. 280558 such loose placement occasionally results in a "cocked" cap, which in the next step of installation can result in improper engagement between the tightening tool and the cap or cross-threading of the threads of the cap and the container neck. In these instances, the capping operation can be disrupted, requiring the attention of an operator.
It would be desirable to provide a cap having the following features: improved dimensional stability. the effects of shrinkage are reduced. a cap having improved sealing characteristics with respect to bottle containers which are manufactured to relatively loose tolerance requirements. an improved tamper-evident cap. a tamper-evident threaded cap with an improved ratchet ring which prevents removal of the cap unless the ratchet ring has previously been removed. a threaded cap which reduces the likelihood of disruptions in an automatic capping operation. a cap for a threaded container in which the amount of rotation required to secure and remove the caps is reduced. a cap which can be produced with less resin than other caps.
It is an object of the invention to provide a cap having at least some of the above features or to at least provide the public with a useful choice. 2.B 0 5 8® Accordingly there is provided a cap comprising a generally flat cover portion, a skirt depending from thei periphery of said cover, said skirt having a generally cylindrical shape with an inside surface and an outer surface, said cover forming a closed end of said skirt and said skirt having an open end opposite said closed end, thread means on said inside surface for holding said cap into engagement with a threaded neck of a container, said thread means comprising a plurality of thread segments, each of said segments extending along concentric helical paths at different locations on said inside surface of said skirt, and each of said segments having lower extremities at generally equal elevations on said skirt, and each of said segments having upper extremities at generally equal elevations on said skirt, said thread segments being generally disposed on approximately the upper half of said skirt, said inside surface of said skirt having an unthreaded section extending along generally the lower half of said inside surface, said skirt including splines on said outer surface, said splines including anti-stripping means for assisting in the prevention of stripping of said thread means with respeict to threads of a container neck during a tightening operation, said cap including first and second sets of splines, one of said sets comprising said anti-stripping means and defining a diameter greater than a diameter defined by the other of said set of splines. 16 SEP 1997 280 BRIEF DESCRIPTION OF THE DRAWINGS The objects and advantages of the present invention will be better understood by reading the following specification read in conjunction with the accompanying drawings wherein: Figure 1 is a perspective view of a cap of the present invention; Figure 2 is a top view of the cap shown in Figure 1; Figure 3 is a bottom plan view of the cap shown in Figures 1 and 2; Figure 4 is a cross-sectional view taken along line 4-4 of Figure 2; Figure 5 is an enlarged elevational view taken along line 5-5 of Figure 3; Figure 6 is an enlarged cross-sectional view of a plug and auxiliary sealing ring of the present invention; and Figure 7 is an enlarged end view of the tooth shown in Figure 5.
Figure 8 is a sectional view of an alternative embodiment of the invention.
Figure 9 is a bottom plan view of the cap shown in Figure 8. 2805R8 Figure 10 is an enlarged plan view of an edge of the cap shown in Figures 8 and 9.
DETAILED DESCRIPTION OP THE INVENTION Figures 1 and 2 generally depict the outside of a cap 10.
The cap 10 is comprised of a cover 12 and a depending skirt 14 with knurls 15 formed on the outside surface thereof. A bottom flange 16 is formed at the bottom of the skirt, and a ratchet ring 18 is frangibly connected to the bottom flange 16. The ratchet ring 18 includes a plurality of ratchet teeth 20, and a 10 pull-tab 22.
A smooth section 17 of the outside surface of the skirt 14 has no knurls. The smooth section 17 has a width about equal to the width of the pull-tab 22, and extends generally the full height of the skirt 14. The unknurled area 17 serves to clearly 15 identify the location of the pull-tab 22, since the pull-tab 22 itself has a low profile and blends somewhat with the rest of the ratchet ring 18.
Figure 3 shows the underside 24 of the cover 12. Four distinct threads .26 are formed on the inside surface of the skirt 20 14. A plug 28 and an auxiliary sealing ring 30 are also formed on the underside 24 of the cover 12.
Caps generally, and threaded caps in particular, tend to shrink most where there is substantial differential in volume of plastic material. Caps which are injection molded tend to shrink 25 in such a way as to deform an initially flat cover 12 into a dome-shaped surface. Significant volume of material is required to form threads which are sufficiently strong to hold the cap 10 6 2805 in place. The cover 12, on the other hand, needs only to have sufficient thickness to withstand puncturing forces. The shrinkage of the cap 10 to form a dome ("doming") creates problems as it relates to dimensional stability and sealing 5 effectiveness, and sometimes causes problems relating to the affixing of a label on the top of the cover 12. For example, radially inward shrinkage will tend to reduce the outside diameter of the plug 28. To reduce the effects of shrinkage, the cap 10 has means for limiting the doming of the cover 12. A 10 circumferential rib 32 is disposed about midway between the center of the cap 10 and the plug 28. Eight radial ribs 34 extend from the center of the cap 10 to the plug 28. The circumferential rib 32 and radial ribs 34 provide the cover 12 with structural integrity sufficient to withstand the tendency 15 for the cover 12 to assume a domed shape. In addition, by providing the cover 12 with additional volume of plastic material, the differential in material volume between the cover and the skirt is reduced, which tends to further reduce the distorting effects of shrinkage.
Figures 4 and 6 more clearly show the location and configuration of the auxiliary sealing ring 30. The plug 28 is a generally circumferentially continuous formation integrally connected to the underside 24 of the cover 12. The auxiliary sealing ring 30 is also circumferentially continuous, and extends 25 downwardly and outwardly from the base of the plug 28. Both the plug 28 and the auxiliary sealing ring 30 are disposed about the central axis 36 of the cap 10. The auxiliary sealing ring 3 0 is a thin flexible ring designed to engage the top surface of a 7 2805 container neck finish. The lower surface 38 makes an angle A with a line V, which is parallel to the axis 36, of about 55". The upper surface 40 makes an angle B of about 45* with respect to the line V. The rounded tip 42 of the auxiliary sealing ring 3 0 has a radius of about .005 inches, and the average thickness of the auxiliary sealing ring 30 is about .015 inches. The plug 28 has an outer surface 44 which is frustoconical about the axis 36. Similarly, the upper and lower surfaces 40 and 38 respectively of the auxiliary sealing ring 30 are also frustoconical about the axis 36. It is important in order to achieve proper sealing that the surfaces which comprise the plug 28 and the auxiliary sealing ring 30 be frustoconical and concentric about the central axis of the cap 10.
Figures 5 and 7 more clearly show the configuration of the ratchet teeth 20. Each tooth 20 is comprised of a ramp surface 48 and an abutting surface 50. Figure 7 is a bottom view of the tooth 20 shown in Figure 5. Arrow 52 indicates the direction in which the cap 10 moves when the cap 10 is installed or tightened. Arrow 54 indicates the direction required to unscrew the cap 10. The abutting surface 50 of the tooth 20 is sloped in such a way that the lower edge 56 of the tooth 20 is offset with respect to the upper portion 58 of the tooth 20 in the direction of unscrewing the cap 10. As a result, as the tooth 20 engages a mating ratchet tooth on a bottle neck, the bottom edge 56 of the tooth 20 will engage the mating ratchet tooth first. The sloping nature of the surface 50 will enhance the grouping engagement of the tooth 20, and will resist unintended camming or slippage of 28055 the teeth 20 on the cap 10 relative to the matching ratchet teeth on the bottle neck.
Again, because of the difficulty in maintaining tolerances when blow molding plastic bottles, it is important to design caps so that they can accommodate bottle necks of varying dimensions. This is particularly the case since bottle caps are often made in a relatively controlled manufacturing facility, whereas blow molded containers are often made on-site in dairies and other bottling facilities where it is difficult to carefully control dimensions of the containers and where blow molding is done without benefit of experienced operators. The shrinkage control, sealing and tamper-evident features of the present invention are intended to overcome the difficulty of ensuring an effective seal between an injection molded cap and a blow molded bottle.
Figures 8, 9 and 10 show an alternative embodiment of the present invention. The embodiment of Figures 8, 9 and 10 differs in two respects from the embodiment of Figures 1 through 7. First, the alternative embodiment does not contain a plug, although a plug could be used with the embodiment of Figures 8, 9 and 10. The absence of a plug means that the cap of Figures 8, 9 and 10 is one which could be used with a foil liner having a heat sensitive surface which can be heated into sealing engagement with the upper surface of a container neck by induction heating. The second and main difference between the embodiment of Figures 8, 9 and 10, and that of Figures 1 through 7, is the thread form. In describing and referring to the cap in Figures 8, 9 and 10, a letter "a" has been added to the reference numerals to indicate a feature which is characteristic 2805 of the alternative embodiment. Where features of the alternative embodiment of Figures 8, 9 and 10 are the same as the embodiment of Figures 1 through 7, the same reference numerals are used.
Figure 8 shows a cap 10a with discrete and relatively short thread segments 26a which are separated by unthreaded areas 60 which extend from the cover 12a to the bottom edge 62 of the skirt 14a.
The relatively short helical length of the thread segments 26a, together with the placement of the thread segments 26a generally on the upper half of the inside surface of the skirt 14a, leaves a relatively large, unthreaded section 64 beneath each of the thread segments 26a. The advantage of this configuration is that initiation of threaded engagement ("pickup") between the cap and the bottle neck is facilitated. It has been found that by providing an unthreaded section 64 of substantial axial length, caps are less likely to assume a "cocked" position when first placed on a bottle neck. Another advantage of the reduced helical length of the thread segments 26a is that less rotation is required to both tighten and untighten the cap.
In the thread form shown in Figures 8 and 9, the upper ends 29a of each thread segment 26a are at approximately the same elevation. Similarly, the lower ends 27a of each of the thread segments 26a are at approximately the same elevation on the inside surface of the skirt 14a. The distance A represents the distance between the lower ends 27a of the segments 26a and the bottom edge 62 of the skirt 14a. The distance B represents the distance between the cover 12a and the bottom edge 62. An 2805 effective ratio of the axial extent A of the unthreaded section 64 to the overall length B of the inside surface of the skirt 14a is about 0.43. This is arrived at by leaving a length of about 0.16 inches between the lower end 27a of each of the thread segments 26a and the bottom edge 62 on a cap having an overall inside skirt length of about 0.372 inches. Such a ratio provides caps with the ability to align themselves on a container neck to prevent or at least reduce the likelihood of misalignment.
As can be seen in Figure 9, each of the thread segments 26a is separated by an unthreaded area 60. The unthreaded areas 60 provide the skirt 14a with increased circumferential flexibility. This circumferential flexibility allows the cap to accommodate neck sizes which vary from one bottle to the next. The circumferential extent of the unthreaded areas 60 need only be about 5 degrees. On a four-thread cap, leaving four unthreaded areas 60 of about 5 degrees, results in the thread segments 26a having a circum-ferential extent of about 85 degrees each. Such an arrangement has been found to result in an effective cap which reduces the incidence of misalignment, and which requires a reduced amount of rotation in order to achieve tightening. A further advantage of the thread design of the cap shown in Figures 8 and 9 is the fact that less resin is required to form the cap. Reducing the amount of resin used in a cap to thereby reduce cost is generally known as "light weighting". The smaller helical length of the thread means that less resin is required to form the threaded portion of the cap.
Figure 10 shows the configuration of the splines 66, 67 and 68, which extend vertically on the outside surface of the skirt 11 28055 14a. The spline configuration includes a series of adjacent triangularly shaped splines 68 which extend outwardly to define a diameter 78. Between each spline 68 is an area of the skirt 14a having the smallest thickness T. The thickened area 70 of 5 the skirt 14a contains the splines 67, which extend outwardly to define a diameter 77, and splines 66 which extend outwardly to define diameter 76. On the cap 10a, there are twelve thickened areas 70 around the periphery of the cap. The caps described herein are generally installed by means of automated capping 10 lines which include tightening tools which engage the outside surface of the caps and rotate the caps into threaded engagement with a threaded container neck. The varying diametrical dimensions of the splines 66, 67 and 68 provide the cap with the ability to be engaged by tightening tools of various diameters. 15 The variation among tightening tools may be the result of wear or other factors, such as differences resulting from manufacturing techniques employed by various suppliers. When high density polyethylene is used to form the cap, the thickness T of the skirt 14 can be light weighted to a dimension as small as about 20 0.03 inches.
The presence of the splines of varying diameter compensates for the absence of material in the skirt of the cap which may be the result of light weighting the cap. Radial pressure applied to the outermost splines 66 by a tightening tool when the cap is 25 inserted into such tool is transferred radially through the skirt 14a to the threads 26a, thereby 'improving the engagement of the threads 26a with the corresponding threads on the container neck. The improved thread engagement afforded by the splines 66 assists 12 1605 in preventing stripping of the cap when it is initially being tightened onto a container neck.
While a specific embodiment of the invention has been shown and described, it will be apparent to those skilled in the art that numerous alternatives, modifications, and variations of the embodiment shown can be made without departing from the spirit and scope of the appended claims. 13 28 0 5 88

Claims (8)

1. A cap comprising a generally flat cover portion, a skirt depending from the periphery of said cover, said skirt having a generally cylindrical shape with an inside surface and an outside surface, said cover forming a closed end of said skirt and said skirt having an open end opposite said closed end, thread means on said inside surface for holding said cap into engagement with a threaded neck of a container, and a tamper evidencing ring connected to the open end of said skirt by frangible connections, said ring including a plurality of rachet teeth which are capable of meshing with a matching set of rachet teeth on a container neck, at least one of said rachet teeth of said ring having first and second tooth surfaces, said first tooth surface forming a ramp to facilitate placement of said cap on a container without breaking said frangible connections, said second tooth surface forming an abutment, said second tooth surface sloping over a substantial portion of its length with respect to a plane defined by the open end of said skirt, such that portions of said second surface nearer said open end of said skirt are offset with respect to portions nearer said closed end of said skirt.
2. A cap in accordance with claim 1 wherein: said second tooth surface makes an angle of about 85 degrees with respect to said plane.
3. A cap in accordance with claim 1 wherein: said thread means comprise a plurality of thread segments, each of said segments extending along concentric helical paths at different locations on said inside surface of said skirt, and each of said segments having lower extremities at generally equal elevations on said skirt, and each of said segments having upper extremities at generally equal elevations on said skirt, said thread segments being generally disposed on approximately the upper half of said skirt, said inside surface of said skirt having an unthreaded section extending along generally the lower half of said inside surface, the sum of the circumferential 14 N.2. PATFOFF!' 1 6 10Q7 V 280 5 5 8 extents of said thread segments being less than the circumference of said inside surface of said skirt, vertical unthreaded areas extending between said segments from the closed end to the open end of said skirt, said thread segments being four in number and each segment extending circumferentially on said inside surface of said skirt for about 85 degrees and each vertical unthreaded area having a circumferential extent of about 5 degrees.
4. A cap in accordance with claim 1 wherein: said thread means comprise a plurality of thread segments, each of said segments extending along concentric helical paths at different locations on said inside surface of said skirt, and each of said segments having lower extremities at generally equal elevations on said skirt, and each of said segments having upper extremities at generally equal elevations on said skirt, said thread segments being generally disposed on approximately the upper half of said skirt, said inside surface of said skirt having an unthreaded section extending along generally the lower half of said inside surface, said skirt including splines on said outer surface, said splines including anti-stripping means for assisting in the prevention of stripping of said thread means with respect to threads of a container neck during a tightening operation, said cap including first and second sets of splines, one of said sets comprising said anti-stripping means and defining a diameter greater than a diameter defined by the other of said set of splines.
5. A cap in accordance with claim 4 wherein: the ratio of the axial length of said unthreaded section to the overall length of said inside surface of said skirt is about 0.43.
6. A cap in accordance with claim 4 wherein: said first and second set of splines is each comprised of twelve groups of spline sections, the spline sections of each of said sets being alternately disposed on the periphery of said outer surface.
7. A cap in accordance with claim 1 further comprising: 15 28 U b D 9 a rigid inner plug integrally formed with said cover, said plug having a thickness at its base approximately equal to the thickness of said cover and an outside surface of said plug being conical, said plug being circumferentially continuous, whereby said closure can be removed axially from its mold without substantially deflecting said plug; and an auxiliary sealing ring adjacent to said plug, said auxiliary sealing ring being flexible, said auxiliary sealing ring being circumferentially continuous, said auxiliary sealing ring being tapered and extending downwardly and outwardly from an intersection of said plug and said cover.
8. A cap substantially as herein described with reference to the accompanying drawings. WALTER EDWARD HIDDING DOUGLAS JAY HIDDING and pcvrjrpt DANIEL HIDDING END OF CLAIMS 16
NZ280558A 1992-06-26 1993-06-25 Container closure cap with ratchet teeth on skirt having teeth abutment portions at an acute angle to plane of skirt open end NZ280558A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/902,170 US5385252A (en) 1992-06-26 1992-06-26 Closure
US07/916,815 US5307945A (en) 1992-06-26 1992-07-20 Closure
NZ247995A NZ247995A (en) 1992-06-26 1993-06-25 Internally threaded container closure with plug and seal to engage container neck inside and top; pull tab identified by sight and feel

Publications (1)

Publication Number Publication Date
NZ280558A true NZ280558A (en) 1997-12-19

Family

ID=27353692

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ280558A NZ280558A (en) 1992-06-26 1993-06-25 Container closure cap with ratchet teeth on skirt having teeth abutment portions at an acute angle to plane of skirt open end

Country Status (1)

Country Link
NZ (1) NZ280558A (en)

Similar Documents

Publication Publication Date Title
US5307945A (en) Closure
CA2261017C (en) Tamper resistant bottle cap and neck
EP1114781B1 (en) Tamper restistant bottle cap
US5385252A (en) Closure
US6439412B2 (en) Snap-on, screw-off cap and container neck
JP3574445B2 (en) Lid for tamper evident
US5213224A (en) Snap-on, screw-off cap and container neck
US6981602B2 (en) Tamper evident bottle cap
EP0200293B1 (en) Tamper-indicating closure, container and combination thereof
US4846361A (en) Tamper-indicating closure for a container and improved capping without top loading
US20100032402A1 (en) Tamper Evident Closure Cap, Container and Combination Thereof
US20010030164A1 (en) Tamper-proof bottle cap
NZ280558A (en) Container closure cap with ratchet teeth on skirt having teeth abutment portions at an acute angle to plane of skirt open end
GB2299807A (en) Tamper evident screw closure cap
GB2277080A (en) Tamper evident closure and container with thread positioning means
GB2186272A (en) Closure device
GB2322362A (en) Closure with liner for chimney necked container
NZ229831A (en) Container; lower bead on neck having a diameter less than the upper bead