NZ243979A - One-way gas valve with multiple sealing contact, for use in gas lighter - Google Patents

One-way gas valve with multiple sealing contact, for use in gas lighter

Info

Publication number
NZ243979A
NZ243979A NZ243979A NZ24397992A NZ243979A NZ 243979 A NZ243979 A NZ 243979A NZ 243979 A NZ243979 A NZ 243979A NZ 24397992 A NZ24397992 A NZ 24397992A NZ 243979 A NZ243979 A NZ 243979A
Authority
NZ
New Zealand
Prior art keywords
fuel
plug
valve
burner
seal
Prior art date
Application number
NZ243979A
Inventor
Friedrich Schachter
Michel Doucet
Original Assignee
Minitek Feinmech Prod
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minitek Feinmech Prod filed Critical Minitek Feinmech Prod
Publication of NZ243979A publication Critical patent/NZ243979A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q2/00Lighters containing fuel, e.g. for cigarettes
    • F23Q2/16Lighters with gaseous fuel, e.g. the gas being stored in liquid phase
    • F23Q2/162Lighters with gaseous fuel, e.g. the gas being stored in liquid phase with non-adjustable gas flame
    • F23Q2/163Burners (gas valves)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S251/00Valves and valve actuation
    • Y10S251/90Valves with o-rings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lighters Containing Fuel (AREA)
  • Lift Valve (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Multiple-Way Valves (AREA)

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">243979 <br><br> Priority Date(s): ..fl. <br><br> Complete Specification Filed: .CV^. .°l Class: F.?-.3.9?AC1^. W . <br><br> /.(lfSr&gt;.?A.lv <br><br> | Publication Date: ..21.. <br><br> APR. .19.95 <br><br> ! P.O. Journal, No: <br><br> Patents Form No. 5 <br><br> NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION <br><br> ONE-WAY VALVE FOR FLUIDS <br><br> WE, MINITEK FEINMECHANISCHE PRODUKTE GESELLSCHAFT M.B.H., an Austrian company of Draschestrasse 31, Vienna, AUSTRIA A-1232 <br><br> hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: <br><br> - 1 - <br><br> (followed by page la) <br><br> 417-2 <br><br> 1 ONE-WAY VALVE FOR FLUIDS <br><br> BACKGROUND OF THE INVENTION <br><br> 1. FIELD OF THE INVENTION <br><br> 5 This invention relates to a one-way valve for fluids. In particular, one intended application of the valve is for use with gas lighters. <br><br> 2. DESCRIPTION OF THE PRIOR ART <br><br> In conventional gas lighters the fuel which is 10 generally stored in liquid form in a reservoir is generally selectively directed through a valve device in gaseous form, after which it arrives at a burner nozzle where it is ignited. The valve device generally consists of a hollow body of which one end has a bottom wall provided with an 15 orifice to permit the passage of the gaseous fuel coming from the reservoir. The orifice can be selectively closed by a valve seal when the lighter is not in use. <br><br> The valve seal is generally provided at the base of the burner tube, which is equipped with a gasket in the 20 form of a disc. The gasket is adapted to selectively close or open the orifice at will by the upward and downward movement of the nozzle and the burner tube. In fact, the burner tube, which normally includes a central channel which opens into at least one radial wall opening for the flow of 25 the gas, is mounted in movable fashion within the body while it is normally biased toward the "valve closed" position by a resilient spring positioned beneath the finger operated lever of the lighter. The seal provided by a conventional valve of the type described generally depends essentially 30 upon the characteristics of the gasket and the force of the <br><br> (followed by page 2) <br><br> 35 <br><br> -2- <br><br> o /, t n 7 <br><br> L s-i U W / <br><br> 1 resilient spring which is indirectly applied against the valve seat. <br><br> In general, since the seal is normally provided by engagement of the gasket with the valve seat over a single 5 peripheral contact portion, sealing of the opening can be further enhanced by providing a plurality of contact portions to seal the opening. The present invention relates to a valve device for selectively passing fluids therethrough and which provides multiple sealing contact 10 locations. One application of the valve device is for use with a gas lighter. <br><br> SUMMARY OF THE INVENTION <br><br> A valve for selectively permitting passage of 15 fluid media which comprises valve body means having one end portion defining an inner wall surface having an endless cross-sectional configuration and having a substantially flat annular valve seat extending inwardly of the wall surface. Plug means is positioned for axial movement toward 20 and away from the valve seat, and annular resilient seal means is positioned between the plug means and the valve seat and adapted to provide gaseous sealing contact between the plug means and the valve body means at least at a plurality of locations when the plug means is moved to a 25 first closed position which prevents gaseous communication between the valve seat and the plug means. <br><br> In one application, a valve is provided for selectively permitting passage of gaseous fuel from a fuel supply to burner means which comprises valve body means 30 having one end portion defining a substantially cylindrical inner wall surface and having a substantially flat annular <br><br> 35 <br><br> -3- <br><br> n / <br><br> / q. <br><br> 7 <br><br> n <br><br> 1 valve seat extending inwardly of the wall surface. Plug means is positioned for axial movement toward and away from the valve seat, and annular resilient seal means is positioned between the plug means and the valve seat and 5 adapted to provide gaseous sealing contact between the plug means and the valve body means at least at a plurality of locations when the plug means is moved to a first closed position which prevents gaseous communication between the fuel supply and the valve body. <br><br> 10 The cylindrical inner wall surface of the valve body means adjacent the seal means is preferably of lesser dimension than the wall surface of the remaining portion of the valve body means. The narrowing of the inner wall surface where the seal means seats is provided along an 15 axial length which is preferably at most equal to the corresponding dimension of the seal means in the closed position. Also, the cylindrical inner wall surface adjacent the seal means is preferably of axial length equal to or greater than the corresponding dimension of the seal means 20 when the plug means is moved to the fir.st closed position. The plug means comprises a disc-shaped head positioned adjacent the lower end of the valve body means, wherein the disc-shaped head is of diameter less than the cylindrical inner wall surface of the valve body means adjacent the 25 resilient seal means. <br><br> The annular resilient seal means defines a central opening and the plug means comprises a member extending downwardly from the disc-shaped head and positionable within the central opening of the annular resilient seal means. 30 Also, the axial length of the downwardly extending member positionable within the opening of the annular resilient <br><br> 35 <br><br> 9L3 0 7 0 <br><br> 1 seal means is less than the corresponding dimension of the opening of the seal means. <br><br> The reduced diameter cylindrical inner surface portion of the valve body means where the seal means sits is 5 connected to the cylindrical surface of the remaining portion of the valve body means by an inner shoulder having a generally convex cross-sectional configuration adjacent the valve seat. Also, the resilient seal means comprises a toric shaped gasket fabricated of a resilient material and 10 defining a central opening coaxial with an orifice in the body means, and the plug means comprises a generally cylindrical shaped member extending upwardly from the side of the disc-shaped head opposite the gasket. The cylindrical shaped member is attached to a member axially 15 movable within the valve body means. <br><br> The plug means is positioned at the lower end portion of the axially movable member and the axially movable member is movable such that the plug means is movable therewith between a first closed position whereby 20 the disc-like head compresses the toric shaped gasket to provide gaseous sealing contact between the gasket and the valve seat and a second open position which permits gaseous communication past the valve seat. The cylindrical inner surface portion of lesser dimension extends upwardly in a 25 direction generally perpendicular to the valve seat and the extension comprises at least one axially extending channel in the inner wall portion of the valve body. <br><br> In an application to lighters, the axially movable member comprises an elongated burner tube having a generally 30 cylindrical configuration wherein the burner tube has a generally axial elongated central opening which is <br><br> 35 <br><br> -5- <br><br> fi <br><br> 5 <br><br> "7 <br><br> 0 <br><br> "7 <br><br> 1 preferably tapered. Further, the elongated member extending upwardly of the disc-shaped head is positioned within the central opening of the burner tube at the lower end thereof in a manner to attach the plug means to the burner tube for 5 movement therewith toward and away from the valve seat. The member extending downwardly into the central opening of the annular seal means includes a portion which is substantially cylindrically shaped, and connected to the lower surface of the disc-like member of the plug means by a portion tapering TO inwardly toward the cylindrically shaped portion from the disc-like member. <br><br> The movable burner tube includes at least one radial extending opening which communicates with the axially extending channel for directing the flow of gaseous fuel 15 therethrough. The cylindrical inner wall surface comprises means to provide gaseous communication from the substantially reduced diameter inner wall surface portion to the at least one radial extending opening in the inner tube and the gaseous communication means comprises a plurality of 20 passageways extending from the reduced diameter inner wall surface upwardly toward the at least one radial opening in the inner tube. In one embodiment the passageways comprise a plurality of grooves in the cylindrical wall portion adjacent the reduced diameter inner wall portion. In 25 another embodiment, the passageways comprise a plurality of axially extending spaces positioned between portions of the cylindrical inner wall surface above the reduced diameter inner wall surface. The extension may include a plurality of channels, grooves or annular spaces to provide gaseous 30 communication to the burner tube. <br><br> 35 <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> In a preferred embodiment, the valve is adapted to be mounted to a gas lighter for selectively directing the passage of gaseous fuel between a fuel supply and a hollow burner tube. The burner tube has a nozzle at the upper end thereof whereby the gaseous fuel is selectively directed from the fuel supply toward the nozzle when the valve is in the open position and the valve is biased toward the closed position by a resilient spring device. <br><br> The gaseous sealing contact of the annular resilient seal ring is provided at least along two directions with respect to the seal ring, both radial and axial. Preferably, sealing contact is provided at least at four locations with respect to the seal ring to provide substantial sealing contact by substantial closing force. <br><br> The invention also relates to a fuel burning lighter which comprises, a reservoir supply of fuel, burner means communicating with the fuel supply, valve body means positioned between the fuel supply and the burner means, and annular seal means positioned between the burner means and the valve body means and seated coaxially with an orifice which communicates with the fuel supply reservoir. The seal means is adapted to provide gaseous sealing contact at a plurality of locations which prevent gaseous communication between the fuel supply reservoir and the burner means when the burner means is in a first position and permits gaseous communication therebetween when the burner means is moved to a second position. The plurality of gaseous sealing contact portions provide uniform force distribution with substantial total sealing force. The valve body means has one end portion defining a substantially cylindrical inner wall surface and a substantially flat annular valve seat extending inwardly <br><br> 1 of the wall surface. Plug means is positioned for axial movement toward and away from the valve seat, and annular resilient seal means is positioned between the plug means and the valve seat. The seal means is adapted to provide 5 gaseous sealing contact between the plug means and the valve body means at least at a plurality of locations when the plug means is moved to a first closed position whereby the seal means is compressed so as to prevent gaseous communication between the valve seat and the plug means at 10 more than one location. <br><br> BRIEF DESCRIPTION OF THE DRAWINGS <br><br> Preferred embodiments of the invention will be described hereinbelow with reference to the drawings 15 wherein: <br><br> Fig. 1 is a cross-sectional view of the upper portion of a lighter with the valve device constructed according to the invention in the closed position; <br><br> Fig. 2 is a perspective view with parts separated 20 for illustration purposes, of the burner tube, the end plug and sealing gasket constructed according to the invention; <br><br> Fig. 2A is a perspective view with parts separated for illustration purposes, of the membrane and related retainer disc of the type generally incorporated into such 25 valves; <br><br> Fig. 3 is an enlarged cross-sectional view of the valve device of the invention, incorporated into the lighter shown in Fig. 1, and illustrating further details of the invention; <br><br> -8- <br><br> n <br><br> ,/ <br><br> U <br><br> 1 Fig. 4 is a cross-sectional view of the valve device of Fig. 3, illustrating one operative mode of opening the valve device; <br><br> Fig. 5 is a cross-sectional view similar to Fig. <br><br> 5 4, illustrating an alternative operative mode of opening the valve device; <br><br> Fig. 6 is a plan view from below of an alternative embodiment of the valve device constructed according to the invention; <br><br> 10 Fig. 7 is a cross-sectional view of the valve device of Fig. 6 taken along lines 7-7 of Fig. 6; <br><br> Fig. 8 is a cross-sectional view of the valve device of Fig. 7 taken along lines 8-8; <br><br> Fig. 9 is a plan view from below of another 15 alternative embodiment of the valve device of the invention; <br><br> Fig. 10 is a cross-sectional view taken along lines 10-10 of Fig. 9; <br><br> Fig. 11 is a cross-sectional view taken along lines 11-11 of Fig. 10; <br><br> 20 Fig. 12 is an enlarged perspective view with parts separated for illustration purposes, of the alternative valve plug shown in Fig. 10; and <br><br> Fig. 12A is an enlarged perspective view with parts separated for illustration purposes, of the membrane 25 and related retainer disc of the type generally incorporated into such lighters. <br><br> DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS <br><br> In the description which follows the valve device 30 according to the invention is described in connection with a lighter which is operative by gaseous fuel. However, it <br><br> 35 <br><br> 1 <br><br> 5 <br><br> 10 <br><br> 15 <br><br> 20 <br><br> 25 <br><br> 30 <br><br> -9- <br><br> O <br><br> /' <br><br> itsry <br><br> J <br><br> 0 ^ <br><br> n should be understood that such valve devices according to the invention are applicable to uses other than lighters, in which case the lighter operative components may be substituted by components of such alternative environments. For example, in a lighter the burner tube 22 is movable as will be described hereinbelow to open and close the valve device. In such alternative environments, the burner tube may be substituted by a movable rod, for example. <br><br> Referring initially to Fig. 1, there is illustrated the upper operative portion of a lighter 10 which incorporates valve device 12 constructed according to the present invention. The lighter 10 includes lighter body 14 with fuel containing reservoir shown generally at 16. The valve device 12 is operated via finger operative lever 18 which is biased upwardly by coil spring 20 on the finger operative side. The lever 18 is pivotally mounted at 35 so as to normally assume a downwardly biased position on the valve device, i.e. the side opposite the finger operative side. The downward bias force is provided on burner tube 22 via annular rim 24 on the burner tube, causing the burner tube 22 and the valve device 12 at the lower end to move to the "valve closed" position and thereby block gaseous fuel communication between the reservoir 16 and the burner tube 22 and nozzle 28. When the finger operative lever 18 is depressed against spring 20, the forward extension 18a of lever 18 lifts the burner tube 22 and nozzle 28 via the annular rim 26 on the nozzle 28. The valve device 12 thereby opens at the lower end, thus permitting gaseous fuel to pass therethrough to the nozzle 28 where it is ignited by producing a spark with spark wheel 31 and a suitable spark <br><br> -10- <br><br> 24 39 79 <br><br> 1 producing flint 33. Alternative spark producing devices include piezoelectric devices. <br><br> The valve device according to the present invention will now be described. As shown in Figs. 3-5, in 5 conjunction with Figs. 2 and 2A, the valve device 12 <br><br> constructed according to the invention consists of a hollow cylindrical valve body 30 in which end plug 3 2 is mounted for axial movement with burner tube 22. The end plug 32 is fixed at the lower end of burner tube 22 and it has a flat 10 annular head 3 4 at the center of which is positioned downwardly extending guide shaft 3 6 having a cylindrical outer surface. As is shown more particularly in Figs. 3-5, the burner tube 22 is provided with an axial opening 38 for passage of gas from reservoir 16 to nozzle 28 shown in Fig. 15 1. The end plug 3 2 is attached to the burner tube 22 by upwardly extending shaft 4 0 formed integrally with discshaped annular head 34 and is securely attached by interference fit into the corresponding lower end of opening 3 3 of burner tube 22 as shown. Alternatively, end plug 3 2 may be 20 attached to burner tube 22 by other mechanical techniques such as threading, bonding or heat melt technigu,e$. _ <br><br> The valve body 30 defines elongated cylindrical opening 30a and has an annular botton wall 42 / having a central orifice 44 which forms a crown shaped valve seat 46. The dimension Y in Fig. 4 taken along an axial <br><br> 25 direction upwardly from the valve seat 46, defines a portion of the valve body 3 0 which exhibits a reduction in inner diameter as shown in the drawings. The inner walls of different diameters are connected through a shoulder 43 <br><br> which is chamfered to slope inwardly and has a slightly <br><br> 30 rounded - or convex - shape as shown in Figs. 3-5. <br><br> -11- <br><br> T <br><br> •) i 7 9 <br><br> ■I Referring once again to Figs. 3-4, the valve seat <br><br> 4 5 and the narrowed cylindrical inner wall portion Y are configured to receive annular seal ring 50 having a toric shaped configuration. The annular seal ring 50 is made of 5 an elastomeric material such as synthetic or natural rubber. <br><br> The toric shaped seal ring 50 has a central opening which receives guide shaft 3 6 as shown. Further, it will be appreciated that the seal ring 50 can be substituted by any suitable annular gasket, the cross-section of which TO can be elliptical, square, rectangular or the like. In the case of a rectangular cross-section, for example, the gasket may be in the form of a thick elastomeric washer. <br><br> As is shown in Fig. 4, the length of the guide shaft 3 6 defined by dimension X has a smaller diameter than 15 the diameter of the opening of the seal ring 50 whose own uncompressed diameter is less than or equal to the diameter of the reduced diameter inner cylindrical wall defined by axial length Y in Fig. 4. Furthermore, the outer diameter of the disc-shaped head 34 of the end plug 32 is smaller 20 than the inner diameter of the valve body 3 0 and preferably less than the inner diainetar of tha relatively narrowed 'inner wall defined by dimension ¥ in Fig. 4 at the lower end of the valve body 30. In addition, the diameter of the outer cylindrical surface of the guide shaft 3 6 is at least 25 equal to or greater than the diameter of the central opening in the seal ring 50 when the seal ring- is positioned within its seat as shown in Fig. 3 and when the seal ring is lifted out of its seat as shown in Fig. 4. <br><br> Referring now to Figs. 2-5 a preferred embodiment 30 for directing gaseous fuel from the reservoir 16 (Fig. 1) to the nozzle 28 (Fig. 1) is illustrated. The burner tube 22 is positioned within cylindrical opening 30a and has at least <br><br> 35 <br><br> M JL PflTjafT Of <br><br> 21 JUL 1993 r.gc&amp;yqp <br><br> -12- <br><br> 24 307:) <br><br> 1 two radial openings 52 positioned diametrically opposite each other as best shown in Fig. 2. It is noted that at least one such opening may be utilized without departing from the invention. Each opening 52 is preferably oblong in 5 shape and extends in the lower portion of the burner tube 2 2 from the lower end of the burner tube 22 which faces the disc-shaped head 34 of end plug 32 to a point above the upper end of shaft 40. The gaseous fuel arrives through the orifice 44 of valve body 3 0 and is prevented from further 10 upward movement when the end plug 3 2 and seal ring 50 are in the positions shown in Fig. 3 with the guide shaft 3 6 positioned within the central opening of seal ring 50. The elastomer seal ring is in compression due to the downward force of the disc-shaped head 34 of valve plug 3 2 provided 15 by spring 20 via burner tube 22. In the mode of operation of Fig. 4, the burner tube 22 and end plug 3 2 are moved upwardly such that seal ring 50 moves upwardly therewith thereby becoming unseated, and gaseous fuel is permitted to flow from reservoir 16 (Fig. 1) through orifice 44 around seal ring 20 50 and into axial opening 33 of burner tube 2 2 via oblong radial openings 52. This flow path is illustrated by arrows F2 and F4 in Fig. 4. <br><br> As seen in Fig. 3, the seal ring 50 is compressed, on the one hand axially between the disc-shaped head 34 and 25 the valve seat 45 of the valve body 30, and on the other hand radially between the guide shaft 3 6 and the relatively narrowed inner cylindrical wall Y of the lower portion of the valve body 30 as shown. In order to facilitate the introduction of the guide shaft 3 6 and improve its contact 30 with the seal ring 50, as is best shown in Figs. 4 and 5, <br><br> the guide shaft 3 6 has a cylindrical part 3 6a which connects <br><br> 35 <br><br> /"✓ <br><br> f - <br><br> :il <br><br> -13- <br><br> 243979 <br><br> ■I with the annular disc^s|iaped .he^d a tapering part 3 6b. <br><br> The outer extremity/3 6a of guide shaft 3 6 is also chamfered at the lower end 3 6c as shown. <br><br> As can be seen clearly in the Figs., particularly 5 Fig. 3, the valve device constructed according to the invention provides a double seal, namely an axial seal at El' and E2 and a radial seal at El and E2'. The references El, El', E2 and E21 schematically represent the seal surface portions, considering these references as representing 10 annular surfaces or at least circular lines of contact. <br><br> Thus, for gaseous fuel to pass from fuel supply reservoir 16 to burner tube 22, it must pass a plurality of seal portions, such as seal portions El' and El, or E2' and E2. Hence a double seal is assured along two distinct axes as 15 shown. Clearly, the multiple sealing surfaces provide enhanced sealability between the fuel supply reservoir 16 and the burner nozzle 28. For example, the seal paths shown thus assume that for gaseous fuel to pass the contact portion El, the fuel must first pass contact portion El*. 20 Further, for fuel to pass contact portion E2 it must first pass £2'. <br><br> In the embodiment of Fig. 4, the relevant dimensions are selected such that when burner tube 22 is moved axially in the upward direction, the end plug 32 as 25 well as seal ring 50, moves with the burner tube in the direction away from the valve seat 4 6 as shown. In the embodiment of Fig. 5, the relevant dimensions are selected such that axial upward movement of burner tube 22 results in upward movement of only end plug 32, while seal ring 50 30 remains in the position shown. Entry and reentry of shaft 36 into the central opening of seal ring 50 is facilitated <br><br> 35 ' <br><br> -14- <br><br> 243!)7i) <br><br> 1 by chamfered end 36C. In the embodiment of Fig. 4 gaseous fuel is permitted to pass from the reservoir 16 (Fig. 1) past the outer periphery of seal ring 50 into radial extending apertures 52 and opening 33 of burner tube 2 2 via arrows F2 5 and F4. In the embodiment of Fig. 5, gaseous fuel passes from reservoir 15 through the central opening of seal ring 50 into radial extending apertures 52 of burner tube 22. In either case the fuel travels from the reservoir 15 to the nozzle 28. <br><br> TO The structural differences between the embodiments shown in Figs. 4 and 5 clearly reside in the dimensions selected for these components. The selection of the relevant dimensions determines the mode of operation of the valve device 12. For example, in Fig. 4, the uncompressed 15 outer diameter of seal 50 is equal to, or slightly less than the dimension of the reduced diameter of the cylindrical wall portion defined by axial dimension Y, whereas in the embodiment of Fig. 5 the uncompressed outer diameter of seal ring 50 is slightly greater than the surrounding reduced 20 diameter of the cylindrical wall Y causing the seal to remain in the position shown at all times. Further, in Fig. 4 the diameter of guide shaft 3 6 may be such as to provide sufficiently snug fit into seal ring 50 to lift the seal ring 50 when the valve device 12 is opened. 25 As noted, in Fig. 5, the relevant dimensions are such that guide shaft 3 6 is withdrawn from the seal ring 50 and as noted, the seal ring 50 remains in the seated position at all times. Numerous variations of the relevant dimensions can be envisioned and incorporated to accomplish 30 the desired mode of operation without departing from the scope of the invention. <br><br> 35 <br><br> o <br><br> I -l <br><br> .-•s <br><br> •* &gt; * ♦ ~ <br><br> -15- <br><br> 24 39 79 <br><br> Referring once again to Fig. 4, the seal ring 50 <br><br> remains on the guide shaft 3 6 while the fluid coming from the orifice 44 can travel around the seal ring 50 in the direction of arrow F2, owing in particular to the fact that <br><br> 5 the seal ring 50 has withdrawn from the narrowed cylindrical portion Y of the valve body 30. As noted, the fluid can then flow through into opening 38 of the burner tube 22 <br><br> .extending after it has passed the radial/apertures 52 as illustrated by arrows F4 in Fig. 4. <br><br> 10 In Fig. 5, the seal ring 50 remains in position and the gas then travels in the direction of arrows F3, through the inside of the seal ring 50. Then, the flow of fluid can take place as already described in connection with Fig. 4, i.e. through apertures 52 and into opening 38 and 15 upward as illustrated by arrows F4 in Figs. 4 and 5. <br><br> either as in Fig. 4 or as in Fig. 5, it is clear that the burner tube 22 must travel a minimum distance in order to completely disengage the guide shaft 3 6 as in Fig. 5, or the 20 seal ring 50 as in Fig. 4. <br><br> the invention wherein the modified like compartments are numbered similar to the previous embodiments with the addition of the letter "a" where appropriate. In Figs. 6-8, 25 the disc shaped head 34a of end plug 32a has a tapered upper surface which is substantially frusto-conical and connected to shaft 40a. Fig. 8 is a cross-sectional view taken along lines 8-8 of Fig. 7 illustrating the radial apertures 52a in burner tube 22 which communicate with the central 30 opening 38 of burner tube 22. <br><br> In particular, in the embodiment of Figs. 6-8, the frusto-conical shaped upper surface creates a cirular gaseous flow <br><br> Moreover, whether the dimensions are selected <br><br> Figs. 6-3 illustrate an alternative embodiment of <br><br> 35 <br><br> -15- <br><br> 2431)71) <br><br> ■] path with the lower end portion of burner tube 22 by- <br><br> defining an angular space 22a as shown in Fig. 7. This flow path enhances the vortex- movement of the gaseous fuel thus further enhancing the flow of fuel into radial apertures 52 5 and up to nozzle 23 as shown by arrows Fs, F6 and F4 as shown in Figs. 4 and 7. <br><br> Referring now to Figs. 9-12 an alternative embodiment is illustrated wherein further modified like components are numbered similar to the previous embodiments with the addition of the letter "b" where appropriate. In 10 Figs. 9-12, selective communication between the gaseous fuel reservoir 16 (Fig. 1) of lighter 10 and the inner opening 38b of burner tube 22b is provided by an aperture 54 in end plug 34b configured as shown. In particular, the aperture 54 is substantially "J" shaped as best shown in Figs. 10 and 12, 13 and communicates gaseous fuel which passes seal ring 50 into the lower portion of the aperture 54 and up into the inner opening 38b of burner tube 22b. <br><br> The mode of operation of the embodiment of Figs. 9-12 involves the feature of providing the opening 54 in the 20 end plug 32b, which opens at one end, into the periphery of the head 34b and at the other end, into the inner opening 3 8b of the burner tube 22b following substantially the axis of the upwardly extending shaft 40b as shown. It is clear that the aperture 54 (optionally several may be provided) 25 replaces the apertures 52 disclosed in connection with the previous embodiments. <br><br> Furthermore, in the mode of operation of the embodiment of Figs. 9-12, the narrowed cylindrical portion Y of the body 30 is perpendicular to the seat 45b, and an 30 extension 57 is thus formed and provided with passageways in the form of grooves 55 as shown. The grooves 55 appear in <br><br> 35 <br><br> "V A ?rp"." <br><br> •5 <br><br> ■.S <br><br> V A. , <br><br> Vv o\\ <br><br> *Ti li <br><br> C/^ <br><br> C if ^ r <br><br> 6a <br><br> * 'V ; <br><br> ■' ? t p- <br><br> 243979 <br><br> T the form of channels, here longitudinal and selectively numbered four, which are formed in the inner wall of the body 30. Thus, the narrowed portion is provided along a longer axial length than in the previous embodiments while 5 the grooves 56 are provided along a portion of the length, starting from the side opposite the seat 46b. Furthermore, in Fig. 11, the grooves 56 are shown convex facing outwardly. Such grooves may be replaced by a plurality of spaced ribs, with the convex side facing inwardly and 10 sufficient in number to uniformly support the annular seal such that fuel will flow upwardly through passageways between the ribs. <br><br> The function of extension 57 shown in Fig. 10 and of grooves 56 is clear. For the mode of operation of the 15 type shown in Fig. 4 to be incorporated into the structure of Fig. 10, the grooves 56 would allow the fluid to flow upwardly while the extension prevents the seal 50 from expanding outwardly during the valve opening movement and guides it during the subsequent closing operation. 20 As mentioned, the invention may have several end use applications. In one preferred application to gas lighters, as described above, it is understood that the burner tube 22 includes the nozzle 23 with the valve opening movement being controlled by pivotal lever 18 as shown in 25 Fig. 1. In this embodiment valve device 12 is closed when burner tube 22 is pushed towards' the "valve closed" position by an elastic device such as resilient spring 20. Furthermore, the valve body 30 may be fixed within the lighter body 14 adjacent the reservoir by interference fit 30 with a suitably dimensioned opening in the lighter body 12. <br><br> -13- <br><br> 2439 79 <br><br> 1 Fig. 1 represents one preferred application of the invention to such liquified gas lighters. Hence the reason for the shape of the burner 22 whose outer diameter is close to the inner diameter of the valve body 30. For other non-5 lighter applications, burner tube 22 could be narrower and without grooves and may be in the form of an elongated rod or a dispensing tube for dispensing any suitable liquid or gaseous media. <br><br> For the application to gas lighters, as shown in 10 Figs. 1-3, the lower end of the valve body 30 is provided with orifice 44, under which is provided a flow restricting membrane 58 held in place by a disc 60 shown in Fig. 12A Disc 60 may be made of any suitable metal and may be secured in position as shown at the extremity of the valve body 3 0 15 by crimping the rim 62 of the valve body. One material of which disc 60 may be made is aluminum. The flow restricting membrane 53 and disc 60 are best shown in Figs. 2A and 12A In these Figs., the web section forming the seat of the valve body 3 0 is not shown for convenience of illustration. 20 In addition, though the particular application described herein involves a fixed flame lighter, the invention applies equally as well to adjustable flame lighters equipped for example with a compressible filter. <br><br> In general, although the invention has been 25 described in connection with a lighter, it is clear that the improved valve is applicable to end uses of all types wherein a fluid in liquid or gaseous form is to be selectively passed from one location to another and where capability to selectively block the passage of the media is 30 required. The present invention is applicable to all such end uses. <br><br> 35 MZ.PATBWrOHHi <br><br> 21 JUL 1993 <br><br> R9CST*g <br><br></p> </div>

Claims (1)

<div class="application article clearfix printTableText" id="claims"> <p lang="en"> -19-<br><br> WHAT WE CLAIM IS:<br><br> 243979<br><br> l.A valve for a fuel burning lighter for selectively permitting passage of fuel from fuel supply means which comprises:<br><br> a) valve body means having one end portion defining a substantially cylindrical or continuous inner wall surface and having an annular valve seat extending inwardly of said wall surface and fuel passageway means communicating with said fuel supply means ;<br><br> 10<br><br> b) plug means positioned within said valve body means for axial movement toward and away from said annular valve seat , said plug means having at least two distinct outer surface portions ;<br><br> 15 one of (c) (1) or (c) (2):<br><br> either c) (1) annular resilient seal means positioned between said plug means and said annular valve seat to provide sealing contact between 20 said plug means and said annular seal means at least at said at least two distinct outer surface portions of said plug means 1 and at at least one location between said annular seal means and said continuous inner wall 25 surface and at at least one location between said seal means and said annular valve seat when said plug means is moved toward said annular valve seat to a first position in which said seal means is in a closed position which ^ prevents fuel passage between said valve body means and said plug means ; or<br><br> 35<br><br> 243979<br><br> -20-<br><br> c) (2) annular resilient seal means positioned between said plug means and said annular valve seat to provide continuous annular sealing contact between said plug means and said seal means at least at said at least two distinct surface portions of said plug means and between said seal means and said valve body means at at least two distinct surface portions of said valve body means when said plug means is moved axially to a first position whereby said seal means is in a closed position which prevents fuel passage between said fuel supply means and said seal means ; and d) burner means defining an inner opening and having two opposed end portions; and e) means associated with said plug means and said burner means for directing fuel from said fuel passageway means toward said inner opening of said burner means<br><br> 2. The valve according to claim 1, wherein d) a first of said end portions of said burner means is connected to said plug means and the second end portion is adapted for directing said fuel for burning.<br><br> 3. The valve according to claim 1 for selectively permitting passage of fuel from the fuel supply means to the burner means , wherein<br><br> a) said annular valve seat is substantially flat;<br><br> d) one of said end portions of said burner means is connected 5 to said plug means ; and additionally comprising f) nozzle means positioned at the other end portion of said burner means for reception of said fuel from said burner means inner<br><br> 10<br><br> opening to be burned.<br><br> 4. The valve according to claim 1 for selectively permitting passage of gaseous fuel from the fuel supply means to the burner means ,<br><br> 15<br><br> wherein a) said substantially cylindrical wall surface of said valve body has at the lower end portion a second substantially cylindrical inner wall<br><br> 20<br><br> surface of relatively reduced diameter, said valve seat extending generally radially inwardly of said second substantially cylindrical wall surface and defining a fuel passageway for passage of fuel from said fuel supply means ; 25 b &amp; c) said annular resilient seal means comprises a member positioned within said portion of said valve body defined by said second substantially cylindrical wall surface of reduced diameter;<br><br> -22-<br><br> 2439<br><br> 10<br><br> 15<br><br> said plug means comprises an end plug positioned above said annular resilient seal member and having at least two distinct outer surface 5 portions , said plug being movable between a first closed position which provides sealing contact between said end plug and said annular resilient seal member at said at least two distinct outer surface portions of said end plug and at at least one distinct surface portion between said annular resilient seal member and said inner wall surface and at at least one distinct surface portion between said annular resilient seal member and said annular valve seal which sealing contacts prevent fuel communication from said fuel supply means past said seal member , and a second position wherein said end plug is moved away of said valve seat whereby fuel passage from said fuel supply means past said seal member is permitted;<br><br> d) said burner means comprises an elongated burner tube comprising said two end portions and defining the inner opening for reception of gaseous fuel from said fuel passageway;<br><br> 25 e) said means permits fuel communication between said fuel supply means and said elongated burner tube inner opening ; and additionally comprising<br><br> 30<br><br> 20<br><br> 35<br><br> -23-<br><br> 243979<br><br> 10<br><br> 1<br><br> f) nozzle means positioned at the other end portion of said elongated burner tube for reception of said fuel from said burner tube to be 5 burned.<br><br> 5. The valve according to claim 1, wherein a) said annular valve seat is substantially flat and extends in a manner to define at least part of said fuel passageway means ;<br><br> b) said plug means comprises an end plug having a disclike head and a substantially cylindrically shaped member extending from said disc-like head toward said annular valve seat ;<br><br> c) said annular resilient seal means defines a central opening for reception of said substantially cylindrically shaped member when said end plug is moved toward said annular resilient seal means and said seal means is compressed in a first direction between a surface portion of said disc-like head of said end plug and a surface portion of said flat annular valve seat and in a second direction between a surface portion of said 25 substantially cylindrically shaped member of said end plug portion of said substantially cylindrical inner wall surface<br><br> 15<br><br> 20<br><br> and a surface , whereby gaseous<br><br> 30<br><br> 35 ___<br><br> N.2. KYi'i-i'i r Orf-j<br><br> 13 Jflfi 1995<br><br> RECEIVED I<br><br> 243979<br><br> 1<br><br> sealing contact is provided between said end plug and said valve body means at a plurality of adjacent series locations to prevent fuel passage from said fuel supply 5 means past said annular resilient seal means ;<br><br> d) one of said end portions of said burner means is connected to said end plug ;<br><br> e) said means permits fuel communication between said fuel<br><br> 10<br><br> supply means (16) and said burner means ; and additionally comprising f) nozzle means positioned at the other end portion of said<br><br> 15<br><br> burner means for reception of said fuel from said burner means for reception of said fuel from said burner means in opening to be burned for burning.<br><br> 6. The valve according to claim 1, wherein said fuel supply<br><br> 20<br><br> means comprises a supply of fuel; and a) valve means is positioned between said fuel supply and said burner means and comprises said valve body means having one end portion 25 defining said substantially cylindrical inner wall surface and having said annular valve seat which is substantially flat, said valve body means defining the fuel passageway means communicating with said supply of fuel ;<br><br> 30<br><br> 35<br><br> OFFsCE<br><br> SC t3 JAN 1095<br><br> -25-<br><br> 243979<br><br> i b-d) said burner means is elongated and defines the inner opening for reception of fuel to be burned;<br><br> 5 said plug means is connected at one portion of said burner means and has at least two distinct outer surface portions ; and when said seal means is in said closed position, said seal means is compressed so as to prevent fuel passage at more than one location ,<br><br> 10<br><br> from said supply of fuel past said seal means;<br><br> e) said means permits passage of fuel between said supply of fuel and said burner means when said plug means is moved away from<br><br> 15<br><br> said annular valve seat ; and additionally comprising f) nozzle means positioned at the other and end portion of said<br><br> 20<br><br> burner means and having means for reception of said fuel from said burner means inner opening for burning.<br><br> 7. A valve according to claim 1 for selectively permitting 25 passage of fluid fuel media from a fuel supply toward nozzle means wherein a) said annular valve seat is substantially flat and extends inwardly from said substantially continuous inner wall surface to define the fuel 30 passageway means communicating with the fuel supply ;<br><br> 35<br><br> 13 j At:<br><br> &lt; r» n u<br><br> 243 9 79<br><br> 1<br><br> d) the burner means defines the inner opening 1 for reception of fuel to be burned, and said plug means is connected to one end<br><br> 5 portion of said burner means for axial movement therewith;<br><br> e) said means permits passage of fuel between said fuel supply and said burner means when said plug means is moved away from said valve seat ; and<br><br> 10<br><br> additionally comprising f) said nozzle means positioned at the other end portion of said burner means for reception of said fuel from said inner opening of said<br><br> 15<br><br> burner means to be burned.<br><br> 8. The valve according to claim 1, wherein said substantially cylindrical inner wall surface of said valve body means adjacent said seal<br><br> 20<br><br> means is of lesser dimension than the wall surface of the remaining portion of said valve body means.<br><br> 9. The valve according to claim 8, wherein said substantially 25 cylindrical inner wall surface adjacent said seal means is of axial length equal to or greater than the corresponding dimension of said seal means when said plug means is moved to said first closed position.<br><br> 30 35<br><br> — N-Z- pATEtMT OFFICE<br><br> 22FEB 1995<br><br> 243979<br><br> 10. The valve according to claim 1, wherein said plug means comprises a disc-shaped head positioned adjacent the lower end of said valve body means<br><br> 11. The valve according to claim 10, wherein said disc-shaped head is of diameter less than said substantially cylindrical inner wall surface of said valve body means adjacent said resilient seal means<br><br> 12. The valve according to claim 11, wherein said annular resilient seal means defines a central opening and said plug means comprises a member extending downwardly from said disc-shaped head and positionable within said central opening of said annular resilient seal means<br><br> 13. The valve according to claim 12, wherein the axial length of said downwardly extending member positionable within said opening of said annular resilient seal means is less than the corresponding dimension of said opening of said seal means<br><br> 14. The valve according to claim 13, wherein a reduced diameter cylindrical inner surface portion of said valve body means adjacent said seal means . is connected to said substantially cylindrical surface of the remaining portion of said valve body means by an inner shoulder<br><br> -28-<br><br> 243979<br><br> 1<br><br> 15. The valve according to claim 14, wherein said inner shoulder has a generally convex cross-sectional configuration adjacent said valve seat. 5 16. The valve ' according to claim 15, wherein said resilient seal means comprises a toric shaped gasket fabricated of a resilient material and defining a central opening.<br><br> 17. The valve according to claim 16, wherein said plug means<br><br> 10<br><br> comprises a generally cylindrical shaped member extending upwardly from the side of said disc-shaped head opposite said gasket and said cylindrical member is attached to a member of said burner means axially movable<br><br> 15<br><br> within said valve body means<br><br> 18. The valve according to claim 17, wherein said plug means is positioned at the lower end portion of said axially movable member and<br><br> 20<br><br> said axially movable member is movable such that said plug means is movable therewith between a first closed position whereby said disc-like head compresses said toric shaped gasket to provide gaseous sealing contact between 25 said gasket and said valve seat and a second open position which permits gaseous communication past said valve seat<br><br> 30<br><br> 35<br><br> 243979<br><br> -2 9-<br><br> 1<br><br> 19. The valve according to claim 18, wherein said cylindrical inner surface portion of lesser dimension extends upwardly in a direction<br><br> 5 generally perpendicular to said valve seat and an extension thereof comprises at least one axially extending channel in said inner wall portion (30a) of said valve<br><br> J<br><br> body<br><br> 20. The valve according to claim 18, wherein said axially movable<br><br> 10<br><br> member comprises an elongated burner tube having a generally cylindrical configuration.<br><br> 21. The valve according to claim 20, wherein said burner tube<br><br> 15<br><br> has a generally axial elongated tapered central opening<br><br> 22. The valve according to claim 21, wherein said elongated .<br><br> member extending upwardly of said disc-shaped head is positioned within<br><br> 20<br><br> said central opening of said burner tube at the lower end thereof in a manner to attach said plug means to said burner tube for movement therewith toward and away from said valve seat 25 23. The valve according to claim 22, wherein said member<br><br> ' extending downwardly into said central opening of said annular seal means includes a portion which is substantially cylindrically shaped, said cylindrically<br><br> 30<br><br> 35<br><br> fj.z. PATENT OFFICE<br><br> 13 JAN 1335<br><br> ' *<br><br> 243979<br><br> 1<br><br> shaped portion ■ being connected to the lower surface of said disc-like member of said plug means by a portion tapering inwardly toward said 5 cylindrically shaped portion from said disc-like member.<br><br> 24. The valve according to claim 23, wherein said movable burner tube includes at least one radial extending opening which communicates with said axially extending channel for directing the flow of gaseous fuel therethrough.<br><br> 10<br><br> 25. The valve according to claim 24, wherein said substantially cylindrical inner wall surface comprises means to provide gaseous communication from said substantially reduced diameter inner wall surface portion<br><br> 15<br><br> to said at least one radial extending opening in said burner tube<br><br> 26. The valve according to claim 25, wherein said gaseous communication means comprises a plurality of passageways extending from<br><br> 20<br><br> said reduced diameter inner wall surface upwardly toward said at least one radial opening in said inner tube<br><br> 27. The valve according to claim 26, wherein said passageways 25 comprise a plurality of grooves in said cylindrical wall portion adjacent said reduced diameter inner wall portion<br><br> 30<br><br> 35<br><br> PATf-ft'f CH-!CG<br><br> 13 JAM 1995<br><br> 243979<br><br> 1<br><br> 28. The valve according to claim 26, wherein said passageways comprise a plurality of axially extending spaces positioned between portions<br><br> 5 of said cylindrical inner wall surface adjacent said reduced diameter inner wall surface<br><br> 29. The valve according to claim 1, adapted to be mounted to a ^ ^ gas lighter for selectively directing the passage of gaseous fuel between a fuel supply and a hollow burner tube , said burner tube having a nozzle at the upper end thereof, whereby said gaseous fuel is selectively directed from said fuel supply toward said nozzle when said valve is in the open position<br><br> 15<br><br> and said valve being biased toward the closed position by a resilient spring device<br><br> 30. A valve for selectively permitting passage of gaseous fuel<br><br> 20<br><br> from a fuel supply to burner means which comprises:<br><br> a) a valve body having a substantially cylindrical inner wall surface having at the lower end portion a second substantially cylindrical inner 25 wall surface of relatively reduced diameter, said valve body having a valve seat extending generally radially inwardly of said second substantially cylindrical wall surface and defining an opening for passage of gaseous fuel from the 30 fuel supply ;<br><br> 35<br><br> i'.'.Z. PATc.,s ! u.-'<br><br> I - , 1 7. !S ?•&lt; IDQt 5
1-J ,Wii! IJJJ<br><br> 243979<br><br> 1<br><br> b) an annular resilient seal member positioned within said portion of said valve body defined by said second substantially cylindrical wall<br><br> 5 surface of reduced diameter and in engagement with said inwardly extending valve seat ■ ; and c) an end plug positioned above said resilient seal member in engagement therewith and movable between a first closed position which provides a<br><br> 10<br><br> plurality of gaseous sealing contact surfaces which prevent gaseous communication from the fuel supply past said seal member and a second position wherein said end plug is moved away from said valve seat whereby<br><br> 15<br><br> gaseous communication from said fuel supply is permitted.<br><br> 31. A valve for selectively permitting passage of gaseous media which comprises:<br><br> 20<br><br> a) valve body means having one end portion defining a substantially cylindrical inner wall surface . . and having a substantially flat annular valve seat extending inwardly of said wall surface ; 25 b) an end plug positioned for axial movement toward and away from said valve seat , said end plug . having a disc-like head having a substantially cylindrically shaped member extending from said disc-like head 30 toward said valve seat and<br><br> )<br><br> 243979<br><br> 5<br><br> 10<br><br> 15<br><br> 20<br><br> 25<br><br> )<br><br> 30<br><br> c) annular resilient seal means . defining a central opening for reception of said substantially cylindrical member when said end plug is moved toward said seal means and said seal means is compressed between said end plug and said valve seat in a first direction and said substantially cylindrical member . and said substantially cylindrical inner wall surface in a second direction whereby gaseous sealing contact is provided at a plurality of locations<br><br> 32. The valve according to claim 31, wherein said gaseous sealing contact is provided at least at two locations with respect to said seal means<br><br> 33. The valve • according to claim 32, wherein said sealing contact is provided at least at four locations with respect to said seal means<br><br> MINITEK FEINMECHANISCHE PRODUCKTE GESELLSCHAFT M.B.H.<br><br> By their Attorneys<br><br> </p> </div>
NZ243979A 1991-08-19 1992-08-17 One-way gas valve with multiple sealing contact, for use in gas lighter NZ243979A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/746,935 US5277577A (en) 1991-08-19 1991-08-19 One-way valve for fluids

Publications (1)

Publication Number Publication Date
NZ243979A true NZ243979A (en) 1995-04-27

Family

ID=25002967

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ243979A NZ243979A (en) 1991-08-19 1992-08-17 One-way gas valve with multiple sealing contact, for use in gas lighter

Country Status (18)

Country Link
US (1) US5277577A (en)
EP (1) EP0600961B1 (en)
JP (1) JP3173787B2 (en)
KR (1) KR100218072B1 (en)
AR (1) AR248310A1 (en)
AT (1) ATE124527T1 (en)
AU (1) AU654390B2 (en)
BR (1) BR9206385A (en)
CA (1) CA2114723C (en)
DE (1) DE69203239T2 (en)
DK (1) DK0600961T3 (en)
ES (1) ES2076778T3 (en)
GR (1) GR3016983T3 (en)
MX (1) MX9204777A (en)
NZ (1) NZ243979A (en)
PH (1) PH30653A (en)
PT (1) PT100788B (en)
WO (1) WO1993004320A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655570A (en) * 1996-05-21 1997-08-12 Permea, Inc. Condensate drain device
JPH11166725A (en) * 1997-12-03 1999-06-22 Tokai:Kk Rubber part for igniter
JP3691433B2 (en) * 2001-12-05 2005-09-07 社団法人日本喫煙具協会 Hydrocarbon gas flow rate adjusting method and apparatus
US20060003280A1 (en) * 2003-06-03 2006-01-05 The Japan Smoking Articles Corporate Association Hydrocarbon gas flow rate adjusting method and apparatus
US6921262B2 (en) * 2003-07-28 2005-07-26 Beckett Gas, Inc. Burner manifold apparatus and method for making same
ES2258938B1 (en) * 2006-05-05 2007-04-16 Flamagas S.A. LIQUID GAS LIGHTER OF HEIGHT OF NON-ADJUSTABLE FLAME.
WO2020029242A1 (en) * 2018-08-10 2020-02-13 Sharkninja Operating Llc Blender system with vibration proof seal
CN111489785B (en) * 2020-03-28 2022-06-03 武汉精鸿电子技术有限公司 Heat dissipation and air supply device for aging test board card in semiconductor memory aging test equipment

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959188A (en) * 1955-02-11 1960-11-08 Hugh G Kepner Check valve
US2777735A (en) * 1955-12-14 1957-01-15 Edward H Green Aerosol dispensers
US3074601A (en) * 1956-11-20 1963-01-22 Aerosol Res Company Aerosol valve assembly
US2928646A (en) * 1958-06-10 1960-03-15 Clifford L Ashbrook Chlorine flow control valve
US3085590A (en) * 1960-02-15 1963-04-16 Mcilhenny Alan Flow control valve
DE1288835B (en) * 1965-05-06 1969-02-06 Maltner Heinrich Gmbh Gas lighter
FR1453313A (en) * 1965-06-02 1966-06-03 Dupont S T Removable waterproof junction system of two tanks
US3414363A (en) * 1965-12-28 1968-12-03 Rosfelder Andre Marcel Liquified gas cigarette lighters
GB1154553A (en) * 1966-07-19 1969-06-11 Leonard Shulman Dexter Lighter.
US3533721A (en) * 1969-04-28 1970-10-13 Francispam Burner valve for gas-fueled pipe and cigarette lighters
US3626977A (en) * 1970-01-21 1971-12-14 Circle Seal Corp Combination check and pressure relief valve
US4036579A (en) * 1975-04-30 1977-07-19 Bic Pen Corporation Lighter
US4077429A (en) * 1976-12-23 1978-03-07 Ronson Corporation Push-fit inlet valve assembly
US4332549A (en) * 1978-10-04 1982-06-01 Scripto, Inc. Gas pressure regulator for lighters
US4441687A (en) * 1978-12-22 1984-04-10 Pauliukonis Richard S O-ring solenoid valve
US4255119A (en) * 1979-04-30 1981-03-10 K-Whit Tools Incorporated Refillable gas burning lighter
US4316600A (en) * 1980-06-04 1982-02-23 Parise & Sons, Inc. Fast acting, nonrepairable plastic on/off valve
AT371583B (en) * 1980-11-24 1983-07-11 Schaechter Friedrich DEVICE FOR KEEPING THE FLAME SIZE OF A SMALL BURNER OPERATED WITH LIQUID GAS, PREFERABLY A LIGHTER BURNER
AT372773B (en) * 1981-03-19 1983-11-10 Schaechter Friedrich LIGHTER OPERATED WITH LIQUID GAS, IN PARTICULAR POCKET LIGHTER
US4680007A (en) * 1985-04-29 1987-07-14 Schaechter Friedrich Lighter with adjustable flame
US4773849A (en) * 1987-05-14 1988-09-27 Schaechter Friedrich Valve actuator for pocket lighter
US4889482A (en) * 1987-05-14 1989-12-26 Schaechter Friedrich Valve actuator for pocket lighter
DE3727891A1 (en) * 1987-08-21 1989-03-02 Messer Griesheim Gmbh VALVE FOR SECURING THE EXTERNAL CONTAINER OF DOUBLE-WALLED VACUUM-INSULATED STORAGE CONTAINERS FOR LOW-BOILED LIQUID GASES
US5002482B1 (en) * 1988-09-02 2000-02-29 Bic Corp Selectively actuatable lighter

Also Published As

Publication number Publication date
AU654390B2 (en) 1994-11-03
GR3016983T3 (en) 1995-11-30
ATE124527T1 (en) 1995-07-15
WO1993004320A1 (en) 1993-03-04
PT100788A (en) 1994-05-31
ES2076778T3 (en) 1995-11-01
DE69203239D1 (en) 1995-08-03
PT100788B (en) 1999-07-30
DK0600961T3 (en) 1995-12-04
US5277577A (en) 1994-01-11
JPH06509863A (en) 1994-11-02
AR248310A1 (en) 1995-07-12
CA2114723A1 (en) 1993-03-04
JP3173787B2 (en) 2001-06-04
BR9206385A (en) 1994-12-20
EP0600961B1 (en) 1995-06-28
DE69203239T2 (en) 1995-12-21
AU2438292A (en) 1993-03-16
EP0600961A1 (en) 1994-06-15
MX9204777A (en) 1994-06-30
CA2114723C (en) 2003-01-14
PH30653A (en) 1997-09-16
KR100218072B1 (en) 1999-09-01

Similar Documents

Publication Publication Date Title
US4108423A (en) Gas spring
US4079925A (en) Head end closure for the cylinder of a piston and cylinder assembly
US4101262A (en) Pressure regulator for gas lighter
US6206303B1 (en) Manually operated spray device for liquid
NZ243979A (en) One-way gas valve with multiple sealing contact, for use in gas lighter
US6296155B1 (en) Actuator with compressible internal component
US4243377A (en) Fluid flow control valve
JPS6210691B2 (en)
AU601377B2 (en) Pressure container valve
US4257560A (en) Plural spray pattern aerosol spray head
US3961876A (en) Valve assembly
US5083916A (en) Fuel combustion apparatus and method
US1185684A (en) Valve for pneumatic pillows and other articles.
US3963413A (en) Cigarette lighter having improved valve means
US3277674A (en) Burner-inlet valve for gas lighters
US4036579A (en) Lighter
US3525497A (en) Lighter valve
US3820941A (en) Lighter construction
US3763902A (en) Fuel injection valve
NZ308130A (en) Gas lighter has safety device in the form of a knurled wheel moved by a smooth surfaced carrier
US20020020721A1 (en) Dispenser and method for dispensing a product under pressure
US3622120A (en) Valved gas tank for a gas-fuelled lighter
KR910006652A (en) Reversible Poppet Valve Carridge
US3327504A (en) Burner-inlet valve
JPH0335402Y2 (en)

Legal Events

Date Code Title Description
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)
ASS Change of ownership

Owner name: SO.BI.TU., FR

Free format text: OLD OWNER(S): MINITEK FEINMECHANISCHE PRODUKTE GMBH

EXPY Patent expired