NO972970L - growth Medium - Google Patents

growth Medium

Info

Publication number
NO972970L
NO972970L NO972970A NO972970A NO972970L NO 972970 L NO972970 L NO 972970L NO 972970 A NO972970 A NO 972970A NO 972970 A NO972970 A NO 972970A NO 972970 L NO972970 L NO 972970L
Authority
NO
Norway
Prior art keywords
gel
lignosulfonate
plants
grown
lignosulfonates
Prior art date
Application number
NO972970A
Other languages
Norwegian (no)
Other versions
NO972970D0 (en
Inventor
Steinar Johansen
Gunn I Bakli
Original Assignee
Borregaard Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borregaard Ind filed Critical Borregaard Ind
Priority to NO972970A priority Critical patent/NO972970L/en
Publication of NO972970D0 publication Critical patent/NO972970D0/en
Priority to IL12509498A priority patent/IL125094A0/en
Priority to DE19828483A priority patent/DE19828483A1/en
Publication of NO972970L publication Critical patent/NO972970L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/80Soil conditioners
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • C09K17/18Prepolymers; Macromolecular compounds
    • C09K17/32Prepolymers; Macromolecular compounds of natural origin, e.g. cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds

Description

Foreliggende oppfinnelse vedrører lignosulfonatgel som binder vann og ioniske næringsstoffer i jorda. Lignosulfonatgelen fremstilles fra lignosulfonater ved en kryssbin-dingsreaksjon. Lignosulfonatgelen gir forbedret plantevekt, penere prydplanter og økt utbytte av grønnsaker. Oppfinnelsen egner seg også for bruk i ulike kunstige vekstmedia, enten alene eller i blanding med andre komponenter som torv, ekspandert polystyren, vermiculit, kokosfibre, sand, vulkansk pimpstein og andre vanlig brukte vekstmedia. Den presenterte oppfinnelsen kan også blandes i jord. The present invention relates to lignosulfonate gel that binds water and ionic nutrients in the soil. The lignosulfonate gel is produced from lignosulfonates by a cross-linking reaction. The lignosulfonate gel provides improved plant weight, prettier ornamental plants and an increased yield of vegetables. The invention is also suitable for use in various artificial growth media, either alone or in a mixture with other components such as peat, expanded polystyrene, vermiculite, coconut fibres, sand, volcanic pumice stone and other commonly used growth media. The presented invention can also be mixed in soil.

Oppfinnelsens anvendelsesområdeScope of the invention

Oppfinnelsen dreier seg om modifisert lignosulfonat brukt som jordforbedringsmiddel. Lignosulfonater er velkjente kompleksbindere for en rekke flerverdige metallioner. Metallioner er viktige mikronutrienter for planten. Vann-løselige salter vil vaskes ut av jorden. I tillegg til tap av viktige næringssalter for nyttevekstene vil denne avrenningen også gi økt næringsinnhold i bekker, elver og inn-sjøer og lede til en økt eutrofiering og forurensing. Lignosulfonater er velkjente kompleksbindere for en rekke flerverdige metallioner. ^Lignosulfonater er imidlertid kompleksbindere for en rekke flerverdige metallioner.^ Lignosulfonater er imidlertid selv vannløselig, og bruk av umodifiserte lignosulfonater som jordforbedringsmiddel vil derfor kun i liten grad løse problemet med utvasking av næringssalter. The invention relates to modified lignosulfonate used as a soil conditioner. Lignosulfonates are well-known complex binders for a number of polyvalent metal ions. Metal ions are important micronutrients for the plant. Water-soluble salts will be washed out of the soil. In addition to the loss of important nutrient salts for beneficial crops, this runoff will also increase the nutrient content of streams, rivers and lakes and lead to increased eutrophication and pollution. Lignosulfonates are well-known complex binders for a number of polyvalent metal ions. ^Lignosulfonates are, however, complex binders for a number of polyvalent metal ions.^ However, lignosulfonates are themselves water-soluble, and the use of unmodified lignosulfonates as a soil conditioner will therefore only solve the problem of leaching of nutrient salts to a small extent.

For å minske utlekkingen av lignin og næringssalter, er det derfor viktig å redusere løseligheten av lignosulfonater, uten å gjøre dem så hydrofobe at problemer med hydrofob sviing oppstår. Dette gjøres ved å kjemisk binde flere lignosulfonatmakromolekyler sammen, fortrinnsvis i så stor grad at det dannes en gel. Fordelen med en gel er at den i tillegg til å binde næringsstoffer også binder vann og dermed reduserer fordampningen fra jorden. Dette fører til et redusert vanningsbehov, noe som er spesielt viktig i nedbørsfattige strøk. Oppfinnelsen reduserer også sterkt avrenningen av nitritioner som bidrar til eutrofieringen av vassdrag. In order to reduce the leaching of lignin and nutrient salts, it is therefore important to reduce the solubility of lignosulfonates, without making them so hydrophobic that problems with hydrophobic burning occur. This is done by chemically binding several lignosulfonate macromolecules together, preferably to such an extent that a gel is formed. The advantage of a gel is that, in addition to binding nutrients, it also binds water and thus reduces evaporation from the soil. This leads to a reduced need for irrigation, which is particularly important in areas with poor rainfall. The invention also greatly reduces the run-off of nitrite ions which contribute to the eutrophication of watercourses.

Andre og uventede fordeler er at man får sterkere planter som utvikles raskere. En raskere utvikling fører til at det kreves kortere tid i drivhus. Frukt og grønnsaker kommer tidligere ut på markedet og bedre pris og fortjenes-te kan oppnås. Other and unexpected benefits are that you get stronger plants that develop faster. Faster development means that less time is required in the greenhouse. Fruit and vegetables hit the market earlier and a better price and profit can be achieved.

Metallioner er viktige mikronutrienter for planter. Vann-løselige salter vil vaskes ut av jorden. I tillegg til tap av viktige næringssalter for nyttevekstene vil denne avrenningen også gi økt næringsinnhold i bekker, elver og inn-sjøer og lede til en økt eutrofiering og forurensing. Lignosulfonater er velkjente kompleksbindere for en rekke flerverdige metallioner. Lignosulfonater er imidlertid selv vannløselige, og bruk av umodifiserte lignosulfonater som jordforbedringsmiddel (se f.eks. G. Sulga og med-arbeidere i USSR SU 269621 (1978)) vil derfor kun i liten grad løse problemet med utvasking av næringssalter. Løse-lig lignosulfonat kan også anrikes på overflaten av jorden eller vekstmediet. Lignosulfonatenes bindemiddelegenskaper vil her gi en hard overflate, noe som er klart negativt. Metal ions are important micronutrients for plants. Water-soluble salts will be washed out of the soil. In addition to the loss of important nutrient salts for beneficial crops, this runoff will also increase the nutrient content of streams, rivers and lakes and lead to increased eutrophication and pollution. Lignosulfonates are well-known complex binders for a number of polyvalent metal ions. However, lignosulfonates are themselves water-soluble, and the use of unmodified lignosulfonates as a soil conditioner (see e.g. G. Sulga et al. in USSR SU 269621 (1978)) will therefore only solve the problem of leaching of nutrient salts to a small extent. Soluble lignosulfonate can also be enriched on the surface of the soil or growing medium. The binder properties of the lignosulfonates will here give a hard surface, which is clearly negative.

Humussyre har vært benyttet i samme anvendelse. Humussyrer har imidlertid flere ulemper, de er sterkt hygroskopiske og vil dekke overflaten av sandpartikler. I disse områdene vil det bli lite vann tilgjengelig for plantene og det oppstår hygroskopisk sviing ("hygroscopic burns")^Humussyrer absorberer også fungicider og herbicider. Dette fører til at større mengder av disse kjemikaliene må benyt-tes . Humic acid has been used in the same application. However, humic acids have several disadvantages, they are highly hygroscopic and will cover the surface of sand particles. In these areas, there will be little water available for the plants and hygroscopic burns will occur.^Humic acids also absorb fungicides and herbicides. This means that larger quantities of these chemicals must be used.

For å minske utlekkingen av lignin og næringssalter, er det derfor viktig å redusere løseligheten av lignosulfonater, uten å gjøre dem så hygroskopiske at problemer med hygro skopisk sviing oppstår. Dette gjøres ved å kjemisk binde flere lignosulfonatmakromolekyler sammen, fortrinnsvis i så stor grad at det dannes en gel. Fordelen med en gel er at den i tillegg til å binde næringsstoffer også binder vann og dermed reduserer fordampning fra jorden. Dette fører til et redusert vanningsbehov, noe som er spesielt viktig i nedbørsfattige strøk. In order to reduce the leaching of lignin and nutrient salts, it is therefore important to reduce the solubility of lignosulfonates, without making them so hygroscopic that problems with hygroscopic burning occur. This is done by chemically binding several lignosulfonate macromolecules together, preferably to such an extent that a gel is formed. The advantage of a gel is that, in addition to binding nutrients, it also binds water and thus reduces evaporation from the soil. This leads to a reduced need for irrigation, which is particularly important in areas with poor rainfall.

Med lignosulfonater menes i denne forbindelse ikke bare biprodukter fra sulfittprosessen for celluloseframstilling, men også lignin fra Kraft-, soda-, Alcell- eller andre velkjente pulp-prosesser som er blitt sulfonert eller sulfometylert. Reaksjonsprodukter mellom lignosulfonater og lignin framstilt ved andre pulp-prosesser vil også i denne sammenheng bli regnet som lignosulfonater. Lignosulfonater kan være framstilt fra løvtrevirke eller bartre-virke eller fra andre vekster som risstilker, maiskolber, sukkerrør. In this context, lignosulphonates mean not only by-products from the sulphite process for cellulose production, but also lignin from Kraft, soda, Alcell or other well-known pulp processes that have been sulphonated or sulphomethylated. Reaction products between lignosulphonates and lignin produced by other pulp processes will also be considered lignosulphonates in this context. Lignosulfonates can be produced from hardwood or softwood or from other plants such as rice stalks, maize cobs, sugarcane.

Det finnes en rekke kommersielt tilgjengelige lignosulfonater. Disse kan karakteriseres som anioniske polyelektro-lytter med en midlere molekylvekt fra 1000 til 20000. Innholdet av sulfonsyregrupper -S03", beregnet som vektpro-sent svovel varierer fra 0,5 til 15. Reaksjoner mellom! lignosulfonatmakromolekyler for å gi et produkt med økt molekylvekt eller en gel er velkjente. De inkluderer kryssbinding ved hjelp av formaldehyd (Benko og Daneault US Patent 3...864.276^ og Stephen Y. Lin US Patent 4.332 .589) eller reagenser som avspalter formaldehyd (f.eks. Heksa-metylentetramin, dioksan, melaminharpikser), enzymatisk oksidasjon med laccase eller peroksidase (Hatakka, presentert på 6th International Conference on Biotechnology in the Pulp av Paper Industry, i Wien 1995), katalytisk oksidasjon (H.H. Nimz, I.Mogharab og I.Gurang, Applied Polymer Symposium nr. 28, s. 1225-30 (1976)), kombinert reaksjon med formaldehyd og oksidasjon (Stephen Y. Lin US Patent 4.221.798) , eller reaksjon med divalente monomerer som diisocyanater, disyreklorider, diestere (Ludwig US Patent 3.850.799) , diaminer, dioler, diepoksider (Briggs US Patent 3.857.830) eller blandinger av disse. Den, eller de kje- There are a number of commercially available lignosulfonates. These can be characterized as anionic polyelectrolytes with an average molecular weight from 1000 to 20000. The content of sulfonic acid groups -SO3", calculated as weight percent sulfur varies from 0.5 to 15. Reactions between lignosulfonate macromolecules to give a product with an increased molecular weight or a gel are well known. They include cross-linking by means of formaldehyde (Benko and Daneault US Patent 3...864,276^ and Stephen Y. Lin US Patent 4,332,589) or reagents which cleave off formaldehyde (eg, hexa-methylenetetramine, dioxane, melamine resins), enzymatic oxidation with laccase or peroxidase (Hatakka, presented at the 6th International Conference on Biotechnology in the Pulp of the Paper Industry, in Vienna 1995), catalytic oxidation (H.H. Nimz, I.Mogharab and I.Gurang, Applied Polymer Symposium no. 28, pp. 1225-30 (1976)), combined reaction with formaldehyde and oxidation (Stephen Y. Lin US Patent 4,221,798), or reaction with divalent monomers such as diisocyanates, diacid chlorides, diesters (Ludwig US Patent 3,850,799), diamines, diols, diepoxides (Briggs US Patent 3,857,830) or mixtures thereof. It, or they k-

miske reaksjonene brukt for å kryssbinde lignosulfonater spiller ingen rolle for denne oppfinnelse, så lenge ikke rester av reagenser eller biproduktene som dannes har en negativ virkning på planteveksten. the various reactions used to cross-link lignosulfonates do not play a role in this invention, as long as residual reagents or the by-products formed do not adversely affect plant growth.

For bruk som jordforbedringsmiddel er det viktig at ikkeFor use as a soil conditioner, it is important not to

gelen brytes ned for fort. Naturproduktbaserte geler som stivelse-polyakrylonitril kopolymer brytes ned i løpet av få uker, og taper 20% av sin vekt i løpet av seks uker (M.S. Johnson Arab Gulf J. Sci 3 (1985) 745-50). Lignin er en polymer som er mer stabil overfor mikrobiologisk ned-brytning. the gel breaks down too quickly. Natural product-based gels such as starch-polyacrylonitrile copolymer degrade within a few weeks, losing 20% of their weight within six weeks (M.S. Johnson Arab Gulf J. Sci 3 (1985) 745-50). Lignin is a polymer that is more stable against microbiological degradation.

I drivhus- og annen planteproduksjon brukes ofte andre dyrkingsmedia enn jord. Det kan dreie seg om torv, vul- In greenhouse and other plant production, cultivation media other than soil are often used. It can be peat, vul-

kansk aske og slagg, syntetiske polymerer som polystyren,perhaps ash and slag, synthetic polymers such as polystyrene,

bark, sand, steinull, glassvatt og blandinger av disse.bark, sand, stone wool, glass wool and mixtures of these.

For enkelthets skyld betegnes de her som kunstige vekstme-For the sake of simplicity, they are referred to here as artificial growth media

dia enten de har en mineralisk, organisk eller kjemisk opprinnelse. dia whether they have a mineral, organic or chemical origin.

Beskrivelse av oppfinnelsenDescription of the invention

Den presenterte oppfinnelsen vedrører således en lignosulfonatgel som binder vann og ioniske næringsstoffer i jorda.Lignosulfonatgelen fremstilles fra lignosulfonater ved en^^ kryssbindingsreaks jon. Lignosulf onatgelen presentert i denne oppfinnelsen gir forbedret plantevekst, penere prydplanter og økt utbytte av grønnsaker, og andre nytte- The presented invention thus relates to a lignosulfonate gel that binds water and ionic nutrients in the soil. The lignosulfonate gel is produced from lignosulfonates by a cross-linking reaction. The lignosulfonate gel presented in this invention provides improved plant growth, prettier ornamental plants and increased yield of vegetables, and other beneficial

vekster .growths.

EksemplerExamples

Eksempel 1.Example 1.

200 g Borresperse NA (et natriumlignosulfonat fra Borregaard LignoTech) ble løst i 800 gram vann. 57 gram 37% formaldehydløsning ble tilsatt og pH ble justert til 10,5 med 25% natriumhydroksid. Reaksjonsblandingen ble varmet til 50°C i 30 minutter. Temperaturen ble deretter økt til 80°C og holdt der i 5 timer. Den dannede gelen ble tørket i tørkeskap ved 130°C. 200 g of Borresperse NA (a sodium lignosulfonate from Borregaard LignoTech) was dissolved in 800 grams of water. 57 grams of 37% formaldehyde solution was added and the pH was adjusted to 10.5 with 25% sodium hydroxide. The reaction mixture was heated to 50°C for 30 minutes. The temperature was then increased to 80°C and held there for 5 hours. The gel formed was dried in a drying cabinet at 130°C.

Poinsetta dyrket i drivhus med kunstig vekstmedium og tilsats av 4% lignosulfonatgel laget som beskrevet ovenfor ga planter som utviklet seg raskere, hadde flere og sterkere røtter og en mer intens grønnfarge, sammenlignet med poinsetta dyrket uten lignosulfonatgel. Etter tre uker var 41% av plantene dyrket med lignosulfonatgel klare for salg, mens kun 27% av plantene dyrket uten lignosulfonatgel. Poinsetta grown in greenhouses with artificial growing medium and addition of 4% lignosulfonate gel made as described above gave plants that developed faster, had more and stronger roots and a more intense green color, compared to poinsetta grown without lignosulfonate gel. After three weeks, 41% of the plants grown with lignosulfonate gel were ready for sale, while only 27% of the plants grown without lignosulfonate gel.

Eksempel 2.Example 2.

1000 gram Borresperse CAF (et kalsiumlignosulfonat fra Borregaard Ligno Tech) med 40% tørrstoffinnhold ble pH-justert til pH 4 med svovelsyre. 6,3 gram 1000 grams Borresperse CAF (a calcium lignosulfonate from Borregaard Ligno Tech) with 40% solids content was pH-adjusted to pH 4 with sulfuric acid. 6.3 grams

jern(II)sulfatheptahydrat ble tilsatt og løsningen rørt inntil alt jern(II)sulfat var løst opp. Løsningen ble varmet til 40°C, og 30% hydrogenperoksidløsning ble tilsatt langsomt 2-4 ml/minutt under konstant røring. Hydrogenper-oksidtilsettingen ble stoppet da gelen var dannet. Gelen ble tørket i vakuumovn ved 25 mmHg og 45°C). iron (II) sulfate heptahydrate was added and the solution stirred until all the iron (II) sulfate had dissolved. The solution was heated to 40°C, and 30% hydrogen peroxide solution was added slowly at 2-4 ml/minute with constant stirring. The hydrogen peroxide addition was stopped when the gel had formed. The gel was dried in a vacuum oven at 25 mmHg and 45°C).

Tomater ble dyrket i et vekstmedium bestående av 2 deler Perlite og 1 del Vermicolite. 2,5% av lignosulfonatgelen ble tilsatt. Planter dyrket med lignosulfonatgel ga 75 modne tomater, med en totalvekt på 9,64 kg per m<2>. Planter uten lignosulfonatgel ga 59 modne tomater med en totalvekt på 7,66 kg per m<2>. Tomatoes were grown in a growing medium consisting of 2 parts Perlite and 1 part Vermicolite. 2.5% of the lignosulfonate gel was added. Plants grown with lignosulfonate gel produced 75 ripe tomatoes, with a total weight of 9.64 kg per m<2>. Plants without lignosulfonate gel produced 59 ripe tomatoes with a total weight of 7.66 kg per m<2>.

Eksempel 3.Example 3.

En lignosulfonatgel ble laget som i eksempel 2.A lignosulfonate gel was made as in Example 2.

Kål ble dyrket i et vekstmedium bestående av 2 deler Perlite og 1 del Vermicolite. 2,5% av lignosulfonatgelen ble tilsatt. Planter dyrket med lignosulfonatgel ga større planter med flere blader. Cabbage was grown in a growing medium consisting of 2 parts Perlite and 1 part Vermicolite. 2.5% of the lignosulfonate gel was added. Plants grown with lignosulfonate gel produced larger plants with more leaves.

Eksempel 4.Example 4.

En lignosulfonatgel ble laget som i eksempel 2.A lignosulfonate gel was made as in Example 2.

Auberginer ble dyrket i et vekstmedium bestående av 2 deler Perlite og 1 del Vermicolite. 2,5% av lignosulfonatgelen ble tilsatt. Planter dyrket med lignosulfonatgel ga større planter med bedre røtter og bedre planter. Eggplants were grown in a growing medium consisting of 2 parts Perlite and 1 part Vermicolite. 2.5% of the lignosulfonate gel was added. Plants grown with lignosulfonate gel produced larger plants with better roots and better plants.

Eksempel 5.Example 5.

375 ml 37% formaldehyd og 520 ml vann ble varmet til 50°C. 1000 gram Borresperse NH (et ammoniumlignosulfonat fra Borregaard Ligno Tech) ble tilsatt. Etter 30 minutter ble pH justert til 9,0 med 3,2 mol NaOH. Temperaturen ble hevet til 80°C. Blandingen ble holdt på pH 9 ved 80°C i tre timer, til en gel var dannet. Den dannede gelen ble tørket i varmeskap ved 130°C. 375 ml of 37% formaldehyde and 520 ml of water were heated to 50°C. 1000 grams of Borresperse NH (an ammonium lignosulfonate from Borregaard Ligno Tech) was added. After 30 minutes the pH was adjusted to 9.0 with 3.2 mol NaOH. The temperature was raised to 80°C. The mixture was kept at pH 9 at 80°C for three hours, until a gel was formed. The gel formed was dried in an oven at 130°C.

ItalienskRaigras ble dyrket i 5 liters potter. Gresset ble høstet tre ganger i løpet av sesongen. Planter dyrket med 5% av lignosulfonatgelen i vekstmediet ga 45% høyere utbytte enn de dyrket uten i løpet av vekstsesongen. Italian ryegrass was grown in 5 liter pots. The grass was harvested three times during the season. Plants grown with 5% of the lignosulfonate gel in the growing medium gave 45% higher yields than those grown without during the growing season.

Eksempel 6.Example 6.

En lignosulfonatgel ble laget som i eksempel 2. A lignosulfonate gel was made as in Example 2.

Pelargonium dyrket med 5% lignosulfonatgel i vekstmediet ga større planter med sterkere røtter og bedre utseende. Plantene nådde salgbart stadium 4 uker tidligere enn planter dyrket uten lignosulfonatgel. Pelargonium grown with 5% lignosulfonate gel in the growing medium produced larger plants with stronger roots and a better appearance. The plants reached the marketable stage 4 weeks earlier than plants grown without lignosulfonate gel.

Eksempel 7.Example 7.

En lignosulfonatgel ble laget som i eksempel 2.A lignosulfonate gel was made as in Example 2.

Geranium dyrket med 5% lignosulfonatgel i vekstmediet ga større planter med sterkere røtter og bedre utseende. Plantene nådde salgbart stadium 4 uker tidligere enn planter dyrket uten lignosulfonatgel. Geranium grown with 5% lignosulfonate gel in the growing medium produced larger plants with stronger roots and better appearance. The plants reached the marketable stage 4 weeks earlier than plants grown without lignosulfonate gel.

Eksempel 8.Example 8.

En lignosulfonatgel ble laget som i eksempel 2.A lignosulfonate gel was made as in Example 2.

Meloner dyrket med 5% lignosulfonatgel i vekstmediet ga 25% mer frukt. Fruktene ble modne 2 uker tidligere enn planter dyrket uten lignosulfonatgel. Melons grown with 5% lignosulfonate gel in the growing medium produced 25% more fruit. The fruits matured 2 weeks earlier than plants grown without lignosulfonate gel.

Eksempel 9.Example 9.

En lignosulfonatgel ble laget som i eksempel 1. 5% av lignosulfonatgelen ble blandet med Vermicolite. Potteplan-ter ble dyrket i Vermicolite og 5% lignosulfonatgel i Vermicolite. Etter en dyrkingssesong med samme vannings-og gjødslingsregime inneholdt Vermicoliten 6 milliekvivalenter nitrat, mens vekstmediet med lignosulfonatgel inneholdt 22 milliekvivalenter nitrat. Lignosulfonatgelen har altså hindret avrenning av nitrat. A lignosulfonate gel was made as in Example 1. 5% of the lignosulfonate gel was mixed with Vermicolite. Potted plants were grown in Vermicolite and 5% lignosulfonate gel in Vermicolite. After a growing season with the same watering and fertilization regime, the Vermicolite contained 6 milliequivalents of nitrate, while the growth medium with lignosulfonate gel contained 22 milliequivalents of nitrate. The lignosulfonate gel has thus prevented the run-off of nitrate.

Eksempel 1 0.Example 1 0.

En lignosulfonatgel ble laget som i eksempel 5. Siltig lettleire (26% sand, 52% silt og 20% leire) ble tilsatt 0,0% (referanse), 0,1%, 0,5% og 1,0% av lignosulfonatgelen. Mengden av fysisk nyttbart vann ble bestemt i de forskjel-lige prøvene. Fysisk nyttbart vann gir et mål for hvor mye vann som er tilgjengelig for plantene. Mengden av fysisk nyttbart vann va 19,3% for referansen og økte til hhv. 19,6%, 21,4% og 23,9% ved tilsetning av 0,1%, 0,5% og 1,0% av lignosulfonatgelen. A lignosulfonate gel was made as in Example 5. Silty light clay (26% sand, 52% silt and 20% clay) was added to 0.0% (reference), 0.1%, 0.5% and 1.0% of the lignosulfonate gel . The amount of physically usable water was determined in the various samples. Physically usable water provides a measure of how much water is available for the plants. The amount of physically usable water was 19.3% for the reference and increased to 19.6%, 21.4% and 23.9% when adding 0.1%, 0.5% and 1.0% of the lignosulfonate gel.

Eksempel 11.Example 11.

En lignosulfonatgel ble laget som i eksempel 1 . Jord ble tilsatt 5% av lignosulfonatgelen. Mengden fysisk utnytt-bart vann økte fra 20 til 40% ved tilsats av lignosulfonatgelen . A lignosulfonate gel was made as in example 1. Soil was added to 5% of the lignosulfonate gel. The amount of physically usable water increased from 20 to 40% when the lignosulfonate gel was added.

Eksempel 12.Example 12.

En lignosulfonatgel ble laget som i eksempel 2. Vermiculite ble tilsatt 2,5% av lignosulfonatgelen. Planter ble dyrket i vermiculite og vermiculite med 2,5% lignosulfonatgel. Standard NPK-gjødsel ble tilsatt ved begynnelsen av vekstsesongen. Ved avslutningen av vekstsesongen inneholdt vermiculiten 5,5 milliekvivalenter nitrat pr. kilo substrat, mens vermiculite med 2,5% lignosulfonatgel inneholdt 22 milliekvivalenter nitrat pr. kilo substrat. A lignosulfonate gel was made as in example 2. Vermiculite was added to 2.5% of the lignosulfonate gel. Plants were grown in vermiculite and vermiculite with 2.5% lignosulfonate gel. Standard NPK fertilizer was added at the beginning of the growing season. At the end of the growing season, the vermiculite contained 5.5 milliequivalents of nitrate per kilogram of substrate, while vermiculite with 2.5% lignosulfonate gel contained 22 milliequivalents of nitrate per kilo of substrate.

Tilsvarende for andre ioner var:Correspondingly for other ions were:

Kalium 3,3 mekv/kg med 2,5% lignosulfonatgel og 2,0 mekv/kg uten. Potassium 3.3 meq/kg with 2.5% lignosulfonate gel and 2.0 meq/kg without.

Kalsium 11,5 mekv/kg med 2,5% lignosulfonatgel og 5,8 mekv/kg uten. Calcium 11.5 meq/kg with 2.5% lignosulfonate gel and 5.8 meq/kg without.

Magnesium 16,5 mekv/kg med 2,5% lignosulfonatgel og 9,5 mekv/kg uten. Magnesium 16.5 meq/kg with 2.5% lignosulfonate gel and 9.5 meq/kg without.

Natrium 24,0 mekv/kg med 2,5% lignosulfonatgel og 7,0 mekv/kg uten. Sodium 24.0 meq/kg with 2.5% lignosulfonate gel and 7.0 meq/kg without.

Klorid 22,0 mekv/kg med 2,5% lignosulfonatgel og 8,0 mekv/kg uten. Chloride 22.0 meq/kg with 2.5% lignosulfonate gel and 8.0 meq/kg without.

Fosfat 3,5 mekv/kg med 2,5% lignosulfonatgel og 0,7 mekv/kg uten. Phosphate 3.5 meq/kg with 2.5% lignosulfonate gel and 0.7 meq/kg without.

Som det fremgår av eksemplet fører tilstedeværelsen av lignosulfonatgelen til at næringsstoffene tilbakeholdes i vekstmediet. As can be seen from the example, the presence of the lignosulfonate gel causes the nutrients to be retained in the growth medium.

Om ønskelig kan næringssalter tilsettes og være tilstede under dannelse av gelen og således vil plantenæringsmidlene være tilstede i den ferdige tørkede gel. If desired, nutrient salts can be added and be present during the formation of the gel and thus the plant nutrients will be present in the finished dried gel.

Claims (4)

1. Jordforbedringsmiddel eller plantevekstmedium, karakterisert ved at det består av eller som en vesentlig bestanddel inneholder en lignosulfonatgel.1. Soil conditioner or plant growth medium, characterized in that it consists of or contains a lignosulphonate gel as a significant component. 2. Middel ifølge krav 1, karakterisert ved at lignosulfonatgelen inneholder eller er blandet med plantenæringsmidler.2. Means according to claim 1, characterized in that the lignosulfonate gel contains or is mixed with plant nutrients. 3. Middel ifølge de foregående krav, karakterisert ved at lignosulfonatgelen 3,-/ 0 har en vannretensjon pa f-teee- ganger lignosulfonatets tørrvekt.3. Agent according to the preceding claims, characterized in that the lignosulfonate gel 3,-/ 0 has a water retention of five times the lignosulfonate's dry weight. 4. Middel ifølge de foregående krav, karakterisert ved at lignosulfonatet utviser retensjon av kationer og anioner.4. Agent according to the preceding claims, characterized in that the lignosulfonate exhibits retention of cations and anions.
NO972970A 1997-06-25 1997-06-25 growth Medium NO972970L (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO972970A NO972970L (en) 1997-06-25 1997-06-25 growth Medium
IL12509498A IL125094A0 (en) 1997-06-25 1998-06-24 Growth medium
DE19828483A DE19828483A1 (en) 1997-06-25 1998-06-25 Product for soil improvement comprises lignin sulphonate gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO972970A NO972970L (en) 1997-06-25 1997-06-25 growth Medium

Publications (2)

Publication Number Publication Date
NO972970D0 NO972970D0 (en) 1997-06-25
NO972970L true NO972970L (en) 1998-12-28

Family

ID=19900867

Family Applications (1)

Application Number Title Priority Date Filing Date
NO972970A NO972970L (en) 1997-06-25 1997-06-25 growth Medium

Country Status (3)

Country Link
DE (1) DE19828483A1 (en)
IL (1) IL125094A0 (en)
NO (1) NO972970L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2184608B1 (en) * 2001-04-23 2005-03-16 Enmiendas Y Abonos Organicos S.L. COMPLEX ORGANIC-MINERAL FERTILIZERS.
DE10163079A1 (en) 2001-12-20 2003-07-03 Basf Ag Process for improving plant growth by applying a mixture of sulfur and complexing agent
DE102010008393A1 (en) 2010-02-10 2011-10-06 Technische Universität Dresden Substrate for soil improvement with water-retaining property, process for its preparation and its use
AT522066A1 (en) * 2019-01-24 2020-08-15 Univ Wien Bodenkultur Process for the preparation of a lignosulfonate polymer
WO2021005230A1 (en) * 2019-07-10 2021-01-14 Suncoal Industries Gmbh Method for producing stabilized lignin having a high specific surface

Also Published As

Publication number Publication date
IL125094A0 (en) 1999-01-26
NO972970D0 (en) 1997-06-25
DE19828483A1 (en) 1999-01-07

Similar Documents

Publication Publication Date Title
Singh et al. Effects of fertilizer factory effluent on soil and crop productivity
Acosta-Motos et al. Irrigation of Myrtus communis plants with reclaimed water: Morphological and physiological responses to different levels of salinity
Kumar et al. Performance of a new superabsorbent polymer on seedling and post planting growth and water use pattern of chrysanthemum grown under controlled environment
NO972970L (en) growth Medium
Al-Far et al. Evaluation of different soilless media on growth, quality, and yield of cucumber ('Cucumis sativus' L.) grown under greenhouse conditions
Satti et al. Salinity induced changes in vegetative and reproductive growth in tomato
Maboko et al. Yield and mineral content of hydroponically grown mini-cucumber (Cucumis sativus L.) as affected by reduced nutrient concentration and foliar fertilizer application
Shaaban Injection fertilization: A full nutritional technique for fruit trees saves 90-95% of fertilizers and maintains a clean environment
Maher et al. Yield and quality of polyhouse grown strawberries as affected by soilless media and jeevamrit
RU2348148C1 (en) Substrate for indoor growth of plants
Gao et al. Effects of different compound substrates on growth, yield and fruit quality of cucumber
Igwe et al. Effects of NPK fertiliser (15-15-15) on the growth performance of three arable crops grown on degraded kaolin mined soil in Abia State, Southeast Nigeria
Rusli et al. Effect of indigenous microorganisms (IMO) and rice husk on pH of soilless media and yield of Cucumis Sativus
El-Gamal Interaction between cobalt and salinity on the plant growth
CN110140468B (en) Improvement method of saline-alkali soil
Browder et al. Growth response of container-grown pin oak and Japanese maple seedlings to sulfur fertilization
Shojaee et al. Evaluation of growth characteristicsthe and changes in the concentration of macro and micro nutrients of garlic affected by alkalinity and nitrogen sources in hydroponic culture
EP4269374A1 (en) Growth medium comprising wood fiber and method for producing wood fiber
Wang et al. Responses of woody plant root and xylem sap ATP to soil drying
REZAEI et al. Soilless greenhouse cultivation: growth and yield of ginger in response to the pot size and culture media
Soloviev et al. The Functional Status of Some Genotypes of Tomato Plants under Salty Conditions in Greenhouse
Ollrady et al. Effect of Nitrogen Fertilization on Growth, Yield and Fruit Quality of Superior Grapevines.
Khelikuzzaman Effect of different potting media on growth of a hanging ornamental plant (Tradescantia sp.)
Tuwar et al. Comparison in growth of hydroponic cultivated crop plants with normal soil cultivated crop plants by using non circulating culture and aggregate culture methods of hydroponics
عبد الراضي et al. Effect of Nitrogen Fertilization on Growth, Yield and Fruit Quality of Superior Grapevines