NO892613L - Fuselage of an aircraft. - Google Patents

Fuselage of an aircraft.

Info

Publication number
NO892613L
NO892613L NO89892613A NO892613A NO892613L NO 892613 L NO892613 L NO 892613L NO 89892613 A NO89892613 A NO 89892613A NO 892613 A NO892613 A NO 892613A NO 892613 L NO892613 L NO 892613L
Authority
NO
Norway
Prior art keywords
microprocessor
aircraft
fuselage
information
voltage
Prior art date
Application number
NO89892613A
Other languages
Norwegian (no)
Other versions
NO892613D0 (en
Inventor
Gerd Baumann
Original Assignee
Honeywell Regelsysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Regelsysteme Gmbh filed Critical Honeywell Regelsysteme Gmbh
Publication of NO892613D0 publication Critical patent/NO892613D0/en
Publication of NO892613L publication Critical patent/NO892613L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C21/00Checking fuzes; Testing fuzes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Window Of Vehicle (AREA)

Description

Foreliggende oppfinnelse angår et flylegeme som angitt i den innledende del av patentkrav 1. The present invention relates to an aircraft body as stated in the introductory part of patent claim 1.

Visse flylegemer, som for eksempel raketter og prosjektiler, er som regel forsynt med en fenghette, hvor det i tilfelle feilfunksjon, men også for funksjonsanvisning er av interesse å vite hvorfor det foreligger en feilfunksjon eller hvilke årsaker som utløste funksjonen. For å bringe dette på det rene blir det, spesielt for utprøvning og feilanalyse, bygget telemetri-raketter, henholdsvis prosjektiler, som overforer flydata til en jordstasjon over tilsvarende antenner og en radio-forbindelse, slik at man ved hjelp av kompliserte måleserier kan få kjennskap til årsakene til en feilfunksjon, henholdsvis funksjonen. Disse undersøkelser er alltid svært dyre og krever meget store anstrengelser for bearbeidelse og modifikasjon av flylegemene. Feilrettingsprogrammer forårsaker enorme omkostninger og forsinker seriefremstilling av produktene. Plutselig opptredende feil ved avfyring kan bare vanskelig bli lokalisert og fører til stopp av hele produksjoner. Certain aircraft, such as rockets and projectiles, are usually equipped with a catch cap, where in the event of a malfunction, but also for functional instructions, it is of interest to know why there is a malfunction or what causes triggered the function. To bring this to light, telemetry rockets, respectively projectiles, are built, especially for testing and error analysis, which transmit flight data to a ground station via corresponding antennas and a radio connection, so that with the help of complicated measurement series one can gain knowledge to the causes of a malfunction, respectively the function. These investigations are always very expensive and require a great deal of effort for the processing and modification of the aircraft bodies. Debug programs cause enormous costs and delay mass production of the products. Sudden errors during firing can be difficult to localize and lead to the stoppage of entire productions.

Det er derfor en oppgave for foreliggende oppfinnelse å fremskaffe ét flylegeme av den art som ble nevnt innledningsvis, hvilket flylegeme på en praktisk måte blir utstyrt med en ferdsskriver, bare med en ubetydelig modifikasjon. Denne oppgave har det lykkes å løse ved hjelp av karakteristikken i patentkravet. It is therefore a task for the present invention to provide an aircraft body of the kind mentioned at the outset, which aircraft body is equipped in a practical way with a trip recorder, only with an insignificant modification. This task has been successfully solved with the help of the characteristic in the patent claim.

Ifølge oppfinnelsen tjener et EEPROM-lager som ferdsskriver, i hvilket lager en mikroprosessor innskriver de relevante informasjoner som opptrer under flylegemets ferd i kodet form. Dette lager kan etter nedstyrtning eller ødeleggelse av flylegemet bli berget, slik at informasjonene i dette uten mangler kan gi opplysninger for eksempel om en tidsinnstilt fenghette i flylegemet. According to the invention, an EEPROM storage serves as a trip recorder, in which storage a microprocessor records the relevant information that occurs during the flight of the fuselage in coded form. This warehouse can be salvaged after the crash or destruction of the fuselage, so that the information in it can provide information, for example, about a timed trap cap in the fuselage without any deficiencies.

I fly er ferdsskrivere i og for seg kjent, og består vanligvis av en lydbåndopptaker i en ferdsskriverboks som er utformet slik at den også ved flystyrt alltid kan berges. In aircraft, tachographs are known in and of themselves, and usually consist of an audio tape recorder in a tachograph box which is designed so that it can always be saved even when the aircraft is in flight.

Under henvisning til den eneste figur på vedlagte tegning skal oppfinnelsen i det følgende beskrives nærmere. With reference to the only figure in the attached drawing, the invention will be described in more detail below.

I en rakett som er forsynt med en tids-fenghette, fremkommer under ferden forskjellige relevante informasjoner, hvilke informasjoner blir tilført en mikroprosessor 10, henholdsvis blir oppnådd på grunn av styrefunksjoner som mikroprosessoren 10 utfører. Således blir for eksempel ved avfyring av raketten først et batteri aktivert og dettes spennings-stigningsfase blir overvåket, idet en analog/digital-omformer 12 tilfører mikroprosessoren en tilsvarende digital verdi. Fra denne stigende batterispenning erholdes for eksempel over en sperreomformer en regulert forsyningsspenning, hvis verdi på samme måte blir tilført mikroprosessoren 10 etter digitalisering ved hjelp av analog/digital-omformeren 12. Videre blir tennkretsene til en eksplosivladning tilført spenning, for for eksempel ved anslag av raketten eller etter utløpet av en bestemt tidsforsinkelse å bli tent ved lukking av en tilsvarende strømbryter. Også denne tennspenning blir målt og tilført mikroprosessoren 10 etter analog/digital-omforming i omformeren 12. In a rocket which is provided with a time capture cap, various relevant information appears during the journey, which information is supplied to a microprocessor 10, respectively is obtained due to control functions that the microprocessor 10 performs. Thus, for example, when the rocket is fired, a battery is first activated and its voltage rise phase is monitored, as an analogue/digital converter 12 supplies the microprocessor with a corresponding digital value. From this rising battery voltage, for example, a regulated supply voltage is obtained via a blocking converter, the value of which is supplied to the microprocessor 10 in the same way after digitization with the aid of the analogue/digital converter 12. Furthermore, the ignition circuits of an explosive charge are supplied with voltage, for example by the impact of the rocket or after the expiry of a certain time delay to be ignited by closing a corresponding power switch. This ignition voltage is also measured and supplied to the microprocessor 10 after analog/digital conversion in the converter 12.

Likeledes blir den målte fenghette-temperatur, rotor-stillingen til en mekanisk sikringsinnretning og en forutbestemt tidsinformasjon for eksempel fra en oscillator og en teller, tilført mikroprosessoren 10 over et drivtrinn 14. Likewise, the measured catch cap temperature, the rotor position of a mechanical safety device and predetermined time information, for example from an oscillator and a counter, are supplied to the microprocessor 10 via a drive stage 14.

Når det foreligger en bestemt konstellasjon av disse innhentede verdier og for eksempel på grunn av en innprogram-mert forsinkelsestid som ikke er nærmere beskrevet, utfører mikroprosessoren 10 bestemte styrefunksjoner, som f.eks. en for-avsikringsimpuls og en tennimpuls. Disse impulser blir også tilført mikroprosessoren 10 over komparatorene 16, 16'. When there is a certain constellation of these obtained values and, for example, due to a programmed delay time which is not described in more detail, the microprocessor 10 performs certain control functions, such as e.g. a pre-fuse pulse and an ignition pulse. These impulses are also supplied to the microprocessor 10 via the comparators 16, 16'.

Alle disse informasjoner blir lagret i kodet form i et EEPR0M-18-lager ved hjelp av mikroprosessoren 10. Dette lager beholder også de informasjoner det inneholder dersom drifts-spenningen faller ut, og det kan også ved anslag eller ødeleggelse av flylegemet bli reddet, slik at lagerets innhold kan bli tydet og gi svar på de forskjellige spørsmål. Innholdet gir for eksempel opplysning om hvorvidt elektronikken hadde riktig spenning, om den mekaniske sikringsinnretningen lukket bestemte brytere riktig, hvorvidt sikringsinnretningens rotor hadde dreiet fra sikringsstilling til skarpstilling, hvorvidt spenningsavbrudd under ferdsfasen var spesifisert, hvorledes oppstigningsfasen for det oppladbare batteri så ut, hvorledes tennkretsens ladetidspunkt og ladetilstand var under ferden, hvilke temperaturer som hersket under ferden i fenghetten, på hvilket tidspunkt for-avsikringsimpulsen ble utløst, når detonasjonen fant sted, osv. Det aktuelle EEPROM-lager i samarbeid med den aktuelle mikroprosessor fører på fordelaktig måte til integrasjon av en "ferdsskriver" hvis tydning gir informasjoner som ellers bare kan oppnås ved en omfattende telemetri-prosess og omfangsrike feilvurderingsprogrammer. All this information is stored in coded form in an EEPR0M-18 storage with the help of the microprocessor 10. This storage also retains the information it contains if the operating voltage drops out, and it can also be saved in the event of an impact or destruction of the fuselage, as that the warehouse's contents can be deciphered and provide answers to the various questions. The content provides, for example, information about whether the electronics had the correct voltage, whether the mechanical safety device closed certain switches correctly, whether the rotor of the safety device had turned from the safety position to the sharp position, whether a voltage interruption during the travel phase was specified, what the ascent phase of the rechargeable battery looked like, what the charging time of the ignition circuit was and state of charge was during the trip, what temperatures prevailed during the trip in the cap, at what time the pre-fuse impulse was triggered, when the detonation took place, etc. The relevant EEPROM storage in cooperation with the relevant microprocessor advantageously leads to the integration of a "journal recorder" whose interpretation provides information that can otherwise only be obtained through an extensive telemetry process and extensive fault assessment programs.

Claims (1)

Flylegeme, særlig prosjektiler eller raketter, med en mikroprosessor inneholdende koplingskrets til bearbeidelse av sensorsignaler og en tidsinformasjon og til utførelse av forut-bestemte styrefunksjoner,Airframe, in particular projectiles or rockets, with a microprocessor containing a circuit for processing sensor signals and a time information and for performing predetermined control functions, karakterisert vedat koder som er tilordnet sensorsignalene, tidsinformasjonen og styrefunksjonene, blir umistbart lagret i et lager (EEPROM-18) og at dette lager tjener som ferdsskriver.characterized in that codes assigned to the sensor signals, the time information and the control functions are permanently stored in a memory (EEPROM-18) and that this memory serves as a tachograph.
NO89892613A 1988-06-29 1989-06-23 Fuselage of an aircraft. NO892613L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE3821912A DE3821912A1 (en) 1988-06-29 1988-06-29 MISSILE

Publications (2)

Publication Number Publication Date
NO892613D0 NO892613D0 (en) 1989-06-23
NO892613L true NO892613L (en) 1990-01-02

Family

ID=6357510

Family Applications (1)

Application Number Title Priority Date Filing Date
NO89892613A NO892613L (en) 1988-06-29 1989-06-23 Fuselage of an aircraft.

Country Status (3)

Country Link
EP (1) EP0348880A1 (en)
DE (1) DE3821912A1 (en)
NO (1) NO892613L (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941301C1 (en) * 1999-08-31 2000-12-07 Honeywell Ag Electronic timed shell detonator has timing program for electronic control unit initiated only after closure of switch via mechanical safety device
CN111174650B (en) * 2020-02-11 2024-06-04 中国工程物理研究院总体工程研究所 Self-triggering missile-borne data recorder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604545B1 (en) * 1986-09-30 1989-06-09 Dassault Electronique FLIGHT RECORDING DEVICE WITH STATIC ELECTRONIC MEMORY
DE2824203A1 (en) * 1978-06-02 1979-12-06 Diehl Gmbh & Co BULLET WITH A MOUNTAINABLE IGNITION
US4638430A (en) * 1983-07-15 1987-01-20 United Technologies Corporation EAROM and EEPROM data storage management
US4694119A (en) * 1983-09-07 1987-09-15 Sundstrand Data Control, Inc. Heat shielded memory unit for an aircraft flight data recorder
DE3625302A1 (en) * 1986-07-25 1988-02-04 Diehl Gmbh & Co METHOD AND DEVICE FOR A FUNCTIONAL TEST OF ELECTRIC AMMUNITION IGNITION CIRCLES

Also Published As

Publication number Publication date
EP0348880A1 (en) 1990-01-03
DE3821912A1 (en) 1990-01-11
NO892613D0 (en) 1989-06-23

Similar Documents

Publication Publication Date Title
US5591031A (en) Missile simulator apparatus
US4807179A (en) Method and device for recording analog parameters on a static digital memory
NO892613L (en) Fuselage of an aircraft.
Chen et al. High-order iterative learning identification of projectile's aerodynamic drag coefficient curve from radar measured velocity data
GB2193331A (en) Testing munition ignition circuits
US6782298B2 (en) Electronics for a shock hardened data recorder
US3170655A (en) Horizon scanning method for firing rocket stage
US20240034476A1 (en) Precision guided mannequin arial unit
Scull Guidance and control of the Mariner planetary spacecraft
Pedrotty Seeker 1 Laser Rangefinder Performance Memo
Harrison et al. A free-fall technique to measure nutation divergence, and applications
DONATIS Problems related to FMECA(Failure Mode, Effects and Criticality Analysis of space systems)
Georgiev A feasibility study of an experiment for determining the properties of the Mars atmosphere. Volume I-Summary
Robillard Explorer Rocket Research Program
Nakamura et al. Solid motor diagnostic instrumentation
Sivo Automatic checkout and control
George et al. Embedded Environmental Stress Recorder for Launch Vehicle Subsystems
Bittner et al. Closed loop dynamic testing of the INTELSAT V attitude determination and control subsystem hardware
SU673928A1 (en) Device for measuring and registering impact processes
Davis Reliability in missile and space operations
CLARK Apollo/Saturn 5 consolidated instrumentation plan for AS-511(Apollo 16)(Optical and electronic data acquisition system for monitoring performance and trajectory of Apollo Saturn 5 vehicle)
Szabo et al. Applications of recoverable digital memory telemeters in artillery projectiles
JPH09207899A (en) Space broken piece observing device for artificial satellite
Holloway Apollo experience report: Guidance and control systems: Automated control system for unmanned mission AS-201
Keller Telemetering Missile Data