NO892045L - ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION. - Google Patents

ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION.

Info

Publication number
NO892045L
NO892045L NO89892045A NO892045A NO892045L NO 892045 L NO892045 L NO 892045L NO 89892045 A NO89892045 A NO 89892045A NO 892045 A NO892045 A NO 892045A NO 892045 L NO892045 L NO 892045L
Authority
NO
Norway
Prior art keywords
solar energy
active
integrated solar
absorption
energy
Prior art date
Application number
NO89892045A
Other languages
Norwegian (no)
Other versions
NO892045D0 (en
Inventor
Trond Kanstad
Original Assignee
Trond Kanstad
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trond Kanstad filed Critical Trond Kanstad
Priority to NO89892045A priority Critical patent/NO892045L/en
Publication of NO892045D0 publication Critical patent/NO892045D0/en
Priority to AU56669/90A priority patent/AU5666990A/en
Priority to PCT/NO1990/000088 priority patent/WO1990014477A1/en
Publication of NO892045L publication Critical patent/NO892045L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/80Solar heat collectors using working fluids comprising porous material or permeable masses directly contacting the working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/61Passive solar heat collectors, e.g. operated without external energy source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Description

Aktiv, integrert solenergikonstruksjonActive, integrated solar energy construction

Oppfinnelsen er et prinsipp for aktiv utnyttelse av solenergi, integrert i konstruksjonssammenhengen hvor konstruksjonselementene utgjør selve systemet. The invention is a principle for active utilization of solar energy, integrated in the construction context where the construction elements make up the system itself.

Oppfinnelsen bygger i hovedsak på kjente prinsipper for opptak og lagring av solenergi: "Drivhuseffekten" og "Trombe-veggen" og "Dynamisk isolasjon" (eller "motstrømsisolasjon") for øket isolasjonseffekt og energitransport. Disse prinsippene kombineres og gir på denne måten en økt effektivitet med hensyn til energiopptak og isolasjonsevne. Konstruksjonselementene utgjør selve solenergisystemet, med energiopptak, lagring og transport. The invention is mainly based on known principles for recording and storing solar energy: the "Greenhouse effect" and the "Trombe wall" and "Dynamic insulation" (or "counter current insulation") for increased insulation effect and energy transport. These principles are combined and in this way give an increased efficiency with regard to energy absorption and insulation capacity. The construction elements make up the solar energy system itself, with energy absorption, storage and transport.

Anvendelsen for oppfinnelsen er som et integrert energiopptak- og energisparessystem i deler av bygninger av forskjellig slag. Man kan også tenke seg prinsippet anvendt på skip eller andre farkoster, eller installasajoner i industrien med behov for energitilskudd til oppvarming og/eller isolasjon. The application of the invention is as an integrated energy absorption and energy saving system in parts of buildings of different types. One can also imagine the principle applied to ships or other vessels, or installations in industry with a need for energy subsidies for heating and/or insulation.

Prinsippet angir hvordan man kan oppnå energigevinst og isolasjon gjennom et konstruksjonsprinsipp, enten ved sammensetning av komponenter eller ved bruk av ferdige elementer. The principle indicates how energy gains and insulation can be achieved through a construction principle, either by combining components or by using ready-made elements.

Tidligere anvendelse av de nevnte prinsippene hver for seg, har hatt en mindre energigevinst og vært vanskelig å integrere som en del av konstruksjonen. Kombinasjonen øker effektiviteten og åpner for langt mer økonomiske løsninger og et bredere anvendelsesområde. Prinsippet kan for eksempel med fordel fungere som både værhud og bærevegg i bygningssammenheng. Previous application of the aforementioned principles separately has had a smaller energy gain and has been difficult to integrate as part of the construction. The combination increases efficiency and opens up far more economical solutions and a wider area of application. The principle can, for example, advantageously function as both a weather skin and load-bearing wall in a building context.

Prinsippet er vist i figur 1 .som er et snitt gjennom konstruksjonen.The principle is shown in figure 1, which is a section through the construction.

Effekten og anvendeligheten ved systemet oppnås ved at et ytre transparent eller translusent skikt etableres foran et indre luft/gass åpent skikt. Mellom disse er et luftlag. Dette fører til at kortbølget solstråling går gjennom det ytre skiktet, varmer opp det bakenforliggende skiktet, langbølget stråling fra indre skikt reflekteres og fanges. Dette er også kjent som "drivhuseffekten" og er benyttet i "Trombe-veggen". The effect and applicability of the system is achieved by an outer transparent or translucent layer being established in front of an inner air/gas open layer. Between these is an air layer. This causes short-wave solar radiation to pass through the outer layer, heating up the underlying layer, while long-wave radiation from the inner layer is reflected and captured. This is also known as the "greenhouse effect" and is used in the "Trombe wall".

Det indre skiktet bir varmet opp og lagrer varmen.Ved at dette skiktet er luftåpent, bestående av materialer med tilpasset luftgjennomgang og masse/varmelagringskapasitet, blir denne energien dratt innover ved et innvendig undertrykk som etableres i innvendig rom ved naturlig avtrekk eller ved annen teknikk The inner layer warms up and stores the heat. As this layer is open to the air, consisting of materials with adapted air passage and mass/heat storage capacity, this energy is drawn inward by an internal negative pressure that is established in the interior space by natural exhaust or by other techniques

Konstruksjonen eller prinsippet består i hovedsak av 3 deler: Det ytre skiktet (a) som er en gjennomsiktig eller gjennomskinnelig, enkel, eller dobbel glassplate eller tilsvarende materiale. Mellom det ytre skiktet (a) og det indre skiktet (c) er en luftspalte (b) på min. 4 cm. Det indre skiktet (c) er luftåpent og ved et etablert undertrykk i det indre rommet (d) vil luft fra (b) bli trukket inn i (d) gjennom (c) .Det indre skiktet (c) består av materiale, enten homogent f.eks lettbetongblokker eller sammensatt, fylt ribbe eller stenderkonstruksjon, som tillater tilstrekkelig luftgjennomgang. The construction or principle mainly consists of 3 parts: The outer layer (a) which is a transparent or translucent, single or double glass plate or similar material. Between the outer layer (a) and the inner layer (c) is an air gap (b) of min. 4 cm. The inner layer (c) is open to the air and with an established negative pressure in the inner space (d) air from (b) will be drawn into (d) through (c). The inner layer (c) consists of material, either homogeneous eg lightweight concrete blocks or composite, filled rib or stud construction, which allows sufficient air passage.

Luftskiktet (b) er luftåpent i bunnen (f) hvor luft utenfra slipper inn. Kortbølget solstråling (i) slipper gjennom det ytre skiktet (a) og varmer opp luften i mellomskiktet (b) og materialet i innerskiktet (c). Langbølget stråling (j) slipper ikke ut gjennom (a) og man oppnår et effektiv energiopptak. The air layer (b) is open to the air at the bottom (f) where air from the outside is admitted. Shortwave solar radiation (i) escapes through the outer layer (a) and heats the air in the intermediate layer (b) and the material in the inner layer (c). Long-wave radiation (j) does not escape through (a) and an efficient energy absorption is achieved.

Luften i (b) trekkes gjennom det luftåpne indre skiktet (c) mot det indre rommet (d) hvor et undertrykk er etablert enten ved naturlig eller mekanisk avtrekk (g). Luftgjennomgangen er illustrert ved (k). I denne siste prosessen blir opptatt varmeenergi avgitt til rommet (d) eller det skjer en varmeveksling mellom innadgående luft og materialet i (c). Denne effekten er kalt "dynamisk isolasjon" eller "motstrømsisolasjon". The air in (b) is drawn through the air-open inner layer (c) towards the inner space (d) where a negative pressure is established either by natural or mechanical extraction (g). The air passage is illustrated at (k). In this last process, absorbed heat energy is released to the room (d) or a heat exchange takes place between the incoming air and the material in (c). This effect is called "dynamic isolation" or "countercurrent isolation".

Størrelsen på feltene må tilpasses det volum de skal betjene, og effektiviteten vil være avhengig av graden av transparens og refleksjon i ytterskikt, absorpsjons og varmelagringskapasitet, samt luftgjennomgangsegenskaper på det indre skiktet. I tillegg kommer ytre klimatiske forhold og orientering som bør være sydøst til sydvest. The size of the fields must be adapted to the volume they will serve, and the efficiency will depend on the degree of transparency and reflection in the outer layer, absorption and heat storage capacity, as well as air passage properties of the inner layer. In addition, there are external climatic conditions and orientation, which should be south-east to south-west.

Prinsippet kan anvendes vertikalt eller skråstilt.The principle can be applied vertically or at an angle.

For fleksibilitet ved bruk og økte tilpassingsmuligheter må luftrommet mellom ytre og indre skikt ha mulighet for utlufting. Dette betjenes ved spjeld knyttet til åpning (h). For flexibility in use and increased customization options, the air space between the outer and inner layers must have the possibility of venting. This is operated by a damper connected to opening (h).

Selv ved manglende solbestråling vil konstruksjonen fungere som en god isolator.Even in the absence of solar radiation, the construction will act as a good insulator.

Prinsippet kan med fordel kombineres med andre oppvamingskilderog energigjennvinningsteknikker for på denne måten å suppleres og bli bedre utnyttet. The principle can be advantageously combined with other heating sources and energy recovery techniques in order to be supplemented and better utilized in this way.

Figur 2 illustrerer hvordan prinsippet kan anvendes i bygningsmessig sammenheng. Solstrålene (i) går gjennom det transparente laget (a), varmer opp veggen (c) og luften i mellomskisktet (b). Det indre skiktet eller vegggen (c) kan være lettbetongblokker eller annet materiale med tilpasset luftgjennomgang. Luften dras gjennom veggen (c) og varmer opp det indre rommet (d). I det indre rommet (d) er det etablert et undertrykk ved naturlig eller mekanisk avtrekk gjennom ventil (g). Figure 2 illustrates how the principle can be applied in a building context. The sun's rays (i) pass through the transparent layer (a), heating the wall (c) and the air in the intermediate layer (b). The inner layer or wall (c) can be lightweight concrete blocks or other material with adapted air passage. The air is drawn through the wall (c) and heats the inner space (d). A negative pressure has been established in the inner space (d) by natural or mechanical extraction through valve (g).

Hvis man ikke ønsker oppvarming luftes (b) og (c) ut gjennom åpning (h) som er betjent av spjeld. If you do not want heating, (b) and (c) are vented through opening (h), which is operated by a damper.

Hvis avluft fra (g) gjennvinnes kan denne benyttes i tilknytning til radiator (j) og/eller gulvvarme i dekke (I). Radiatoren (j) tjener også til å forhindre kulderas fra vindu (e) og for å gi tilskuddsvarme når luften (k) gjennom veggen holder for lav temperatur. If exhaust air from (g) is recovered, it can be used in connection with the radiator (j) and/or underfloor heating in the cover (I). The radiator (j) also serves to prevent cold drafts from the window (e) and to provide additional heat when the air (k) through the wall is too low in temperature.

Claims (6)

1 .Aktiv, integrert solenergikonstruksjon er karakterisert ved kombinasjonen av: solenergiopptak ved "drivhuseffekten", opptak og lagring i bakenforliggende skikt, samt varmetransport og isolasjonseffekt ved "dynamisk iolasjon".1. Active, integrated solar energy construction is characterized by the combination of: solar energy absorption by the "greenhouse effect", absorption and storage in the underlying layer, as well as heat transport and insulation effect by "dynamic insulation". 2. Aktiv, integrert solenergikonstruksjon ifølge krav 1 , karakterisert ved energiopptak og transport som en integrert del av konstruksjonen hvor konstruksjonskomponentene utgjør selve energisystemet.2. Active, integrated solar energy construction according to claim 1, characterized by energy absorption and transport as an integral part of the construction where the construction components make up the energy system itself. 3. Aktiv, integrert solenergikonstruksjon ifølge krav 1-2, karakterisert ved kombinasjonen av solenergiopptak ved absorpsjon og ved refleksjon av langbølget varmestråling, som settes sammen med lagring og transport gjennom et luftåpent, innenforliggende skikt ved bruk av undertrykk i innvendig rom og som på denne måten avgir energigevinst direkte som varme.3. Active, integrated solar energy construction according to claims 1-2, characterized by the combination of solar energy uptake by absorption and by reflection of long-wave heat radiation, which is combined with storage and transport through an air-open, inner layer using negative pressure in the interior space and as on this the method emits energy gain directly as heat. 4. Aktiv, integrert solenergikonstruksjon ifølge krav 1-3, vil gi en god isolerende egenskap også når aktiv solenergiopptak ikke finner sted. Dette da ytterskiktet a vil fungere som værhud, mellomskiktet som isolator og innerskiktet som dynamisk isolator.4. Active, integrated solar energy construction according to claims 1-3 will provide a good insulating property even when active solar energy absorption does not take place. This because the outer layer a will function as a weather skin, the middle layer as an insulator and the inner layer as a dynamic insulator. 5. Aktiv, integrert solenergikonstruksjon ifølge krav 1-4 har store muligheter til anvendelse sammen med andre enrgisparende og utvinnende teknikker.5. Active, integrated solar energy construction according to claims 1-4 has great potential for use together with other energy-saving and recovery techniques. 6. Aktiv, integrert solenergikonstruksjon ifølge krav 1-5 , vil fungerer som ventilasjon og friskluftskilde.6. Active, integrated solar energy construction according to requirements 1-5, will function as ventilation and source of fresh air.
NO89892045A 1989-05-23 1989-05-23 ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION. NO892045L (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO89892045A NO892045L (en) 1989-05-23 1989-05-23 ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION.
AU56669/90A AU5666990A (en) 1989-05-23 1990-05-23 A building structure apparatus
PCT/NO1990/000088 WO1990014477A1 (en) 1989-05-23 1990-05-23 A building structure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO89892045A NO892045L (en) 1989-05-23 1989-05-23 ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION.

Publications (2)

Publication Number Publication Date
NO892045D0 NO892045D0 (en) 1989-05-23
NO892045L true NO892045L (en) 1990-11-26

Family

ID=19892032

Family Applications (1)

Application Number Title Priority Date Filing Date
NO89892045A NO892045L (en) 1989-05-23 1989-05-23 ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION.

Country Status (3)

Country Link
AU (1) AU5666990A (en)
NO (1) NO892045L (en)
WO (1) WO1990014477A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727790A1 (en) * 1994-12-02 1996-06-07 Cythelia Sarl Hybrid solar panel generating photovoltaic electricity and heat
CN101846404B (en) * 2010-05-27 2012-05-30 北京工业大学 Porous material solar energy air heat-collecting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102532A (en) * 1961-03-27 1963-09-03 Res Prod Corp Solar heat collector media
US3875925A (en) * 1974-01-08 1975-04-08 John G Johnston Solar heater
JPS5321436A (en) * 1976-08-06 1978-02-27 Union Carbide Corp Solar air heater
US4062347A (en) * 1976-08-24 1977-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar heating system
US4393861A (en) * 1979-10-09 1983-07-19 Beard Buddy M Apparatus for the utilization of solar energy
US4398529A (en) * 1981-10-21 1983-08-16 Schoenfelder James L Solar heating wall

Also Published As

Publication number Publication date
WO1990014477A1 (en) 1990-11-29
NO892045D0 (en) 1989-05-23
AU5666990A (en) 1990-12-18

Similar Documents

Publication Publication Date Title
US4372373A (en) Casing for building works
US3310102A (en) Devices for lowering the temperature of a body by heat radiation therefrom
US3903665A (en) Heat energy transmission control panel
US10036575B2 (en) Solar thermal collecting system
NO170232B (en) HEAT-INSULATING BUILDING AND / OR LIGHTING ELEMENT
US4428358A (en) Solar skylight
Agrawal A review of passive systems for natural heating and cooling of buildings
FR2383280A1 (en) Roof covering with air conditioning - has channels between insulation and sealing layer for air conditioning, with solar heating
CA2254457C (en) Insulated greenhouse
NO892045L (en) ACTIVE, INTEGRATED SOLAR ENERGY CONSTRUCTION.
CN207376979U (en) A kind of light-conducting system structure suitable for Passive low-energy building
Lien et al. The use of transparent insulation in low energy dwellings in cold climates
US4121764A (en) Solar heating system
CN211739523U (en) Movable container solar heating room
FR2267531A1 (en) Sunlight actuated solar house heating panel - swings down to reflect heat inside, swings up to prevent heat loss
Braham Active glass walls: A typological and historical account
SU1665193A1 (en) Exhaust trunk
NO790160L (en) SOLAR PRISONERS.
Lin et al. Solar performance of a dome-covered house
Abdulsada et al. Experimental Study to Evaluate the Performance of Iraqi Passive House in Summer Season'
Argiriou Bioclimatic Architecture Prinicples
JP2022153247A (en) agricultural house structure
JP2000088305A (en) Ventilating structure
AU2021101539A4 (en) System and method for indoor clothes dryer using direct transportation of solar light
US4018214A (en) Heating and ventilation system