NO884048L - ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON. - Google Patents

ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON.

Info

Publication number
NO884048L
NO884048L NO88884048A NO884048A NO884048L NO 884048 L NO884048 L NO 884048L NO 88884048 A NO88884048 A NO 88884048A NO 884048 A NO884048 A NO 884048A NO 884048 L NO884048 L NO 884048L
Authority
NO
Norway
Prior art keywords
electrolysis
copper
iron
value
solutions containing
Prior art date
Application number
NO88884048A
Other languages
Norwegian (no)
Other versions
NO884048D0 (en
Inventor
Thomas Thomassen
Original Assignee
Cheminor As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheminor As filed Critical Cheminor As
Priority to NO88884048A priority Critical patent/NO884048L/en
Publication of NO884048D0 publication Critical patent/NO884048D0/en
Priority to PCT/NO1989/000091 priority patent/WO1990002709A1/en
Publication of NO884048L publication Critical patent/NO884048L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/463Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4602Treatment of water, waste water, or sewage by electrochemical methods for prevention or elimination of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • C02F1/4678Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction of metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Chemically Coating (AREA)
  • Soft Magnetic Materials (AREA)

Description

Denne oppfinnelsen omfatter en metode for å kunne elektro-This invention includes a method for being able to electro-

lysere kobber fra tynne vannløsninger som inneholder større mengder jern, ved å innføre til elektrolyseinnretningen under elektrolysen et medium som feller ut ferri (Fe+++) ionene og gjør disse inerte med hensyn til selve elektrolysen av kobber. Dette skjer fortrinnsvis ved en pH-verdi på 3-4 pH-enheter. lighter copper from thin water solutions containing larger amounts of iron, by introducing a medium to the electrolysis device during the electrolysis which precipitates the ferric (Fe+++) ions and renders them inert with regard to the electrolysis of copper itself. This preferably takes place at a pH value of 3-4 pH units.

Det er kjendt for de som er kjendt med elektrolyse av verdimetaller såsom kobber, nikkel, kobolt, sink og kadmimum at såkalte red/ox-par, såsom paret Fe++/Fe+++ (f erro/ferri ) ioner, senker det teoretiske strømutbyttet med hensyn til det verdimetallet som skal elektrolyseres, at selve elektrolysen først blir ulønnsom for deretter ved større konsentrasjoner av Fe++/ Fe+++ ioner i løsningen, uteblir hele deponeringen av verdimetallet på katoden. It is known to those familiar with the electrolysis of valuable metals such as copper, nickel, cobalt, zinc and cadmium that so-called red/ox pairs, such as the pair Fe++/Fe+++ (f erro/ferri ) ions, lower the theoretical current yield with regard to the precious metal to be electrolysed, that the electrolysis itself first becomes unprofitable and then, with larger concentrations of Fe++/ Fe+++ ions in the solution, the entire deposition of the precious metal on the cathode fails.

Elektrolyse i tynne vannløsninger er godt kjendt. Imidlertid, ingen omtaler elektrolyse av kobber i tynne vannløsninger som inneholder større mengder jern, såsom av-vannet fra kobbergruver, som er kjendt for oss. Electrolysis in thin water solutions is well known. However, no one mentions the electrolysis of copper in thin water solutions containing larger amounts of iron, such as the waste water from copper mines, which is known to us.

Vi forsøkte elektrolyse av tynne kobberløsninger på bare 200 mg/l kobber som også inneholdt 2300 mg/l jern. Ved normal elektrolyse, der strømmen påført elektrolyseinnretningen var bare stor nok for teoretisk å utelektrolysere kobberet, gikk dette ikke i det hele tatt. Absolutt ingen kobber ble avsatt på katoden. We attempted electrolysis of thin copper solutions of only 200 mg/l copper which also contained 2300 mg/l iron. In normal electrolysis, where the current applied to the electrolysis device was only large enough to theoretically electrolyse the copper, this did not work at all. Absolutely no copper was deposited on the cathode.

Imidlertid, til vår store forbauselse, ved å innføre et medium, her skje1lsand(CaC03) eller natronlut (NaOH) til løsningen inne i selve elektrolyseinnretningen hadde en pH på mellom 3-4, However, to our great astonishment, by introducing a medium, here spoon sand (CaC03) or caustic soda (NaOH) to the solution inside the electrolysis device itself had a pH of between 3-4,

ble alle ferri (Fe+++) ionene som ellers forstyrret elektrolysen av kobber, feldt ut som et hydroksyd, og elektrolysen av kobber gikk som forventet. all the ferric (Fe+++) ions that otherwise interfered with the electrolysis of copper were precipitated as a hydroxide, and the electrolysis of copper proceeded as expected.

Dette med å elektrolysere verdimetallet fra vannløsningenThis by electrolysing the valuable metal from the water solution

og samtidig kontrollere pH i elektrolytten til en verdi påand at the same time control the pH in the electrolyte to a value of

3-4 pH-enheter ved før eller under elektrolysen å innføre et medium som gjør ferri-ionene inerte med hensyn til verdimetall-elektrolysen , er selve kjernen i denne oppfinnelsen. 3-4 pH units by introducing a medium before or during the electrolysis which makes the ferric ions inert with respect to the precious metal electrolysis, is the very core of this invention.

Her skal nevnes at vi har brukt her kalsiumkarbonat og natronlut, for å felle ferri-ionene som et hydroksyd. Selvsagt er det også innenfor denne oppfinnelsen å bruke andre medier som høyner pH-verdien til over pH-verdien for utfelling av ferri-hydroksyd i elektrolytten som anvendes. Her kan nevnes kalilut(KOH),metall-karbonater,metall-hydroksyder såsom for eksempel hydroksyder og karbonater av det verdimetallet som skal utelektrolyseres. It should be mentioned here that we have used calcium carbonate and caustic soda to precipitate the ferric ions as a hydroxide. Of course, it is also within this invention to use other media which raise the pH value to above the pH value for precipitation of ferric hydroxide in the electrolyte used. Mention may be made here of potassium hydroxide (KOH), metal carbonates, metal hydroxides such as, for example, hydroxides and carbonates of the precious metal to be electrolysed.

Det er vår følelse at denne oppfinnelsen ikke bare kan anvendesIt is our feeling that this invention cannot only be applied

på tynne gruve av-vann, men også selvsagt på alle tynne løsninger hvorfra verdimetaller skal gjennvinnes og jernet skal felles ut og fjernes det også. on thin mine waste water, but also of course on all thin solutions from which valuable metals are to be recovered and the iron is to be precipitated and removed as well.

Løsningen etter kobberelektrolysen inneholdt noen rester avThe solution after the copper electrolysis contained some residues of

jern (Fe++ ioner) og sink. Disse metallene ble deretter helt fjernet ved å forsette elektrolysen med innføring av kalsiumkarbonat eller natronlut til pH var mellom 6-7 enheter. iron (Fe++ ions) and zinc. These metals were then completely removed by continuing the electrolysis with the introduction of calcium carbonate or caustic soda until the pH was between 6-7 units.

Filtratet fra dette steget viste at samme teknikk som beskrevet ovenfor kan også brukes om alle metall ionene i elektrolytten skal fjernes. The filtrate from this step showed that the same technique as described above can also be used if all the metal ions in the electrolyte are to be removed.

Ovenfor beskrevet oppfinnelse skal beskrives nærmere i eksempelene nedenfor. The invention described above shall be described in more detail in the examples below.

Eksempel 1Example 1

Gruve av-vann ble elektrolysert i en elektrolyseinnretning som den nevnt i norsk søknad no 87.2388. Mine waste water was electrolysed in an electrolysis device such as the one mentioned in Norwegian application no 87.2388.

Strøm = 13 amp, celle spenning = 6,3 volt, temperatur = 20 °C. Væskeføding = 12 liter/time. Current = 13 amp, cell voltage = 6.3 volts, temperature = 20 °C. Liquid feeding = 12 litres/hour.

pH justert med skjellsand (72% CaC03)pH adjusted with shell sand (72% CaC03)

Eksempelet viser at med (her) tilsats av skjellsand til elektrolyse-enheten til utløpet viste en pH på 3,56, ble kobber fjernet fra dette gruve av-vannet fra 200 mg/l til 29 mg/l. Eksempelet viser også at uten denne pH justeringen var det The example shows that with (here) addition of shell sand to the electrolysis unit to the outlet showed a pH of 3.56, copper was removed from this mine wastewater from 200 mg/l to 29 mg/l. The example also shows that without this pH adjustment it was

ikke mulig å fjerne kobberet.not possible to remove the copper.

Eksempel 2Example 2

Objektet med dette eksempelet var å bevise at der finnes en pH-nisje mellom pH-verdiene på ca 3-4 der praktisk talt alt ferri-jern (Fe+++) er utfelt men at ikke noe kobber er utfelt som Cu(0H)2, og at en elektrolyse i dette pH-området er en reell elektrolyse av kobber. The object of this example was to prove that there is a pH niche between the pH values of about 3-4 where practically all ferric iron (Fe+++) is precipitated but that no copper is precipitated as Cu(0H)2, and that an electrolysis in this pH range is a real electrolysis of copper.

2 liter av et gruvevann ble titrert med en 1 molar NaOH-løsning fra en pH-verdi på 1,95 og opp til en pH-verdi på 5,08. Prøver ble tatt med jevne mellomrom og filtratet analysert på metall-konsentrasjonene ved forskjellige pH-verdier. 2 liters of a mine water was titrated with a 1 molar NaOH solution from a pH value of 1.95 up to a pH value of 5.08. Samples were taken at regular intervals and the filtrate analyzed for the metal concentrations at different pH values.

Eksempelet viser at ved pH-verdier > 4 felles kobber ut da sansynligvis som et Cu(0H)2-hydroksyd og at ved pH-verdier The example shows that at pH values > 4 copper probably precipitates as a Cu(0H)2 hydroxide and that at pH values

>5 begynner Fe(0H)2 og Zn(0H)2 type hydroksyder å felles ut. >5 Fe(0H)2 and Zn(0H)2 type hydroxides begin to precipitate.

Dette er kjendt kjemi for de som er kjendt med dette. This is familiar chemistry to those familiar with it.

Eksempel 3Example 3

Objektet med dette eksempelet var å vise at hvis det ikke er av interesse å ta vare på kobberet separat så virker denne teknikken også om en vil fjerne alle elementene med en høyere pH-verdi enn 4. The object of this example was to show that if it is not of interest to take care of the copper separately, this technique also works if you want to remove all the elements with a higher pH value than 4.

Et gruve av-vann ble ledet inn i en elektrolyse innretning som den nevnt i norsk søknad no 87.2388. Gruvevannet ble pumpet inn i ca 1 time uten strøm påsatt, men med pH regulert til ca 5,5-5,8. Denne pH verdien er i praksis rett under den pH-verdien som feller ut Fe(0H)2 og Zn(0H)2 hydroksydene, men over pH-verdiene som feller ut både Cu(0H)2 og Fe(0H)3 hydroksydene. A mine waste water was led into an electrolysis device such as the one mentioned in Norwegian application no 87.2388. The mine water was pumped in for about 1 hour without electricity applied, but with the pH regulated to about 5.5-5.8. This pH value is in practice just below the pH value that precipitates Fe(0H)2 and Zn(0H)2 hydroxides, but above the pH values that precipitate both Cu(0H)2 and Fe(0H)3 hydroxides.

Hensikten var å, vise at ved å sette på strømmen ble jern og tildels sink utfelt, noe som ellers ikke ville skjedd. The purpose was to show that by switching on the current, iron and partly zinc were precipitated, which would not otherwise have happened.

Skjellsand (CaC03) brukt til å justere pH.Shell sand (CaC03) used to adjust pH.

Eksempelet viser at strømmen lager ferri-ioner og at disse felles ut ved påsatt strøm. Videre at hvis det er ønskelig, kan alle tungmetaller som her vist fjernes, hvis det er snakk om miljøvern. The example shows that the current creates ferric ions and that these precipitate when current is applied. Furthermore, if it is desired, all heavy metals as shown here can be removed, if it is a question of environmental protection.

Eksempel 4Example 4

Dette eksempelet ble utført for ytterligere å bevise at alle tungmetallene Cu,Fe,Zn kunne fjernes fra en tynn løsning, ved en høyere pH. NaOH er her brukt for å justere pH. Eksempelet viser at ved å utføre elektrolysen ved en pH-verdi på 6,20 ble filtratet praktisk talt fritt for tungmetallene kobber, jern og sink. This example was carried out to further prove that all the heavy metals Cu,Fe,Zn could be removed from a thin solution, at a higher pH. NaOH is used here to adjust the pH. The example shows that by performing the electrolysis at a pH value of 6.20, the filtrate was practically free of the heavy metals copper, iron and zinc.

Claims (1)

Krav 1Requirements 1 Fremgangsmåte ved elektrolyse i tynne vannløsninger som inneholder kobber, jern og sink, samt eventuelt andre metaller,Procedure for electrolysis in thin water solutions containing copper, iron and zinc, as well as possibly other metals, karakterisert ved at det før eller under elektrolysen tilføres et medium som feller ut jernet som etcharacterized in that before or during the electrolysis, a medium is added which precipitates the iron as a hydroksyd.hydroxide. Krav 2Requirement 2 Fremgangsmåte i henhold til krav 1,Procedure according to claim 1, karakterisert ved at mediumet som tilsettes før eller under elektrolysen er hydroksyder eller forløpere derav såsom karbonater.characterized in that the medium added before or during the electrolysis is hydroxides or precursors thereof such as carbonates. Krav 3Requirement 3 Fremgangsmåte i henhold til krav 1,Procedure according to claim 1, karakterisert ved at surhetsgraden i vannløsningen under elektrolysen er mellom en pH-verdi på 3 og en pH-verdi på 4 for produksjon av metallisk kobber på katoden.characterized in that the degree of acidity in the water solution during the electrolysis is between a pH value of 3 and a pH value of 4 for the production of metallic copper on the cathode. Krav 4Requirement 4 Fremgangsmåte i henhold til krav 1,Procedure according to claim 1, karakterisert ved at surhetsgraden i vannløsningen under elektrolysen er større enn en pH-verdi på 4 for fullstendig fjerning av metallene kobber,jern og sink fra vannløsningen .characterized in that the degree of acidity in the water solution during electrolysis is greater than a pH value of 4 for complete removal of the metals copper, iron and zinc from the water solution.
NO88884048A 1988-09-12 1988-09-12 ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON. NO884048L (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO88884048A NO884048L (en) 1988-09-12 1988-09-12 ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON.
PCT/NO1989/000091 WO1990002709A1 (en) 1988-09-12 1989-09-11 Buffered electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO88884048A NO884048L (en) 1988-09-12 1988-09-12 ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON.

Publications (2)

Publication Number Publication Date
NO884048D0 NO884048D0 (en) 1988-09-12
NO884048L true NO884048L (en) 1990-03-13

Family

ID=19891238

Family Applications (1)

Application Number Title Priority Date Filing Date
NO88884048A NO884048L (en) 1988-09-12 1988-09-12 ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON.

Country Status (2)

Country Link
NO (1) NO884048L (en)
WO (1) WO1990002709A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643217B2 (en) * 1989-05-22 1993-11-11 F. Hoffmann-La Roche Ag Methods for tagging and tracing materials with nucleic acids
ES2118037B1 (en) * 1996-04-30 1999-09-16 Acuna Arranz Ladislao METHOD OF PURIFYING INDUSTRIAL WASTEWATER AND OBTAINING THE NECESSARY REAGENT FOR PURIFICATION.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE188897C1 (en) * 1963-01-01
DE1177081B (en) * 1960-04-06 1964-08-27 Guldager Electrolyse Process for the electrolytic removal of colloidal substances from wastewater containing wetting agents
DE1459451A1 (en) * 1962-05-29 1968-12-19 Asendorf Dr Erich Process for removing copper from sulfuric acid and nitric acid waste water with simultaneous destruction of water-insoluble copper compounds
EP0007325B1 (en) * 1975-07-18 1982-06-02 William Edward Lindman Process and assembly for removing a dissolved or suspended contaminant from a polar liquid as a solid substance
DE2548620C2 (en) * 1975-10-30 1977-12-22 Duisburger Kupferhütte, 4100 Duisburg Process for the production of retouched electrolytic copper by reducing electrolysis
CH647421A5 (en) * 1980-06-04 1985-01-31 Ciba Geigy Ag METHOD FOR SEPARATING OIL-IN-WATER EMULSIONS THAT MAY TENSIDE BY ELECTROLYSIS.
DE3867327D1 (en) * 1987-06-18 1992-02-13 Andco Environmental Processes METHOD FOR REMOVING ORGANIC COLORS AND HEAVY METALS FROM SEWAGE.

Also Published As

Publication number Publication date
NO884048D0 (en) 1988-09-12
WO1990002709A1 (en) 1990-03-22

Similar Documents

Publication Publication Date Title
Free Hydrometallurgy: fundamentals and applications
Dean et al. Removing heavy metals from waste water
US8518232B1 (en) Selective recovery of manganese, lead and zinc
US6458184B2 (en) Recovery of zinc from geothermal brines
CN102092872B (en) Method for recycling stainless steel neutral salt electrolysis waste solution
US4049519A (en) Carbonate reduction
GB1588565A (en) Electrolysis cell operation
NO884048L (en) ELECTROLYSE OF COPPER IN THIN SOLUTIONS CONTAINING LARGE AMOUNTS OF IRON.
WO2023069947A3 (en) Seawater electrolysis enables mg(oh)2 production and co2 mineralization
US4256557A (en) Copper electrowinning and Cr+6 reduction in spent etchants using porous fixed bed coke electrodes
WO2009019709A2 (en) Process for recovering substances from high salinity liquids
EP0235999A1 (en) Electrolytic process
GB1476048A (en) Electrolytic method of recovering metals
Sole et al. Recovery of copper from Chilean mine waste waters
KR960000306B1 (en) Membrane electrolysis apparatus
CN108085498B (en) A kind of comprehensive recovering process of Containing Zinc Chloride solution
NO146544B (en) PROCEDURE FOR ELECTROLYTIC CLEANING A NICKEL ELECTRIC REFINING ELECTROLYT
US2624702A (en) Separation of nickel from cobalt containing solutions
CN201729722U (en) Device for recycling stainless steel neutral salt waste electrolyte liquor
Hedrich et al. Selective chemical and biological metal recovery from Cu-rich bioleaching solutions
US3956087A (en) Electrochemical mining of copper
US1533741A (en) Metallurgical process
JP2002121626A (en) Method for recovering valuable metal from plating sludge
CN102092874A (en) Equipment for recycling stainless steel neutral salt waste electrolyte
US3914163A (en) Recovery of metal and sulfate values from electrochemical mining electrolytes