NO863515L - SHIP PROGRESS SYSTEM. - Google Patents
SHIP PROGRESS SYSTEM.Info
- Publication number
- NO863515L NO863515L NO863515A NO863515A NO863515L NO 863515 L NO863515 L NO 863515L NO 863515 A NO863515 A NO 863515A NO 863515 A NO863515 A NO 863515A NO 863515 L NO863515 L NO 863515L
- Authority
- NO
- Norway
- Prior art keywords
- propulsion
- generator
- engine
- power
- diesel engine
- Prior art date
Links
- 230000001360 synchronised effect Effects 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/20—Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Control Of Eletrric Generators (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Description
Oppfinnelsen angår et fremdriftssystem for skip, især for et passasjerskip, hvor fremdriftssystemet omfatter minst en drivaksel med en innstillbar propell, som er direkte tilkoplet en langsomtløpende totakts dieselmotor som drifts-maskin, idet minst to dieselmotorer driver hver en generator for utvikling av den elektriske energi. The invention relates to a propulsion system for ships, in particular for a passenger ship, where the propulsion system comprises at least one drive shaft with an adjustable propeller, which is directly connected to a slow-running two-stroke diesel engine as operating machine, with at least two diesel engines each driving a generator for developing the electrical energy .
For passasjerskip, især for cruiseskip, ligger den krevede høyeste hastighet betydelig over den maksimalt nødven-dige reisehastighet. Denne topphastighet benyttes kun unntaks-vis, imidlertid må fremdriftssystemet dimensjoneres for topphastigheten, noe som medfører en overdimensjonering og derved en relativt dårlig utnyttelse av den installerte motoreffekt. For passenger ships, especially for cruise ships, the required highest speed is significantly above the maximum necessary travel speed. This top speed is only used in exceptional cases, however, the propulsion system must be dimensioned for the top speed, which entails an oversizing and thereby a relatively poor utilization of the installed engine power.
På den annen side stilles for fremstilling av den krevede elektriske energi betydlig større motoreffekt til rådighet enn nødvendig, idet den dermed krevede motoreffekt utelukkende utvikles av middels hurtige eller hurtigløpende hjelpemotorer. Den installerte overskytende effekt kan eksempelvis være 30 til 40%. On the other hand, significantly greater engine power than necessary is made available for the production of the required electrical energy, as the required engine power is thus exclusively developed by medium-speed or fast-running auxiliary motors. The installed excess power can be, for example, 30 to 40%.
Det er oppfinnelsens mål å forbedre utnyttelsen av den totalt installerte effekt på skipet i form av dieselmotorer. Denne oppgave løses ifølge oppfinnelsen ved at det mellom det elektriske nett ombord og hver fremdriftsdieselmotor er anordnet en elektrisk motor/generator som trekker effekt fra nettét og videregir den via fremdriftsdieselmotorens veivaksel til drivakselen, eller avgir overskytende fremdrif tseffekt til nettet. It is the aim of the invention to improve the utilization of the total installed power on the ship in the form of diesel engines. According to the invention, this task is solved in that an electric motor/generator is arranged between the on-board electrical network and each propulsion diesel engine which draws power from the network and passes it on via the propulsion diesel engine's crankshaft to the drive shaft, or emits excess propulsion power to the network.
På denne måte kan fremdriftsmotoren eller fremdriftsmotorene dimensjoneres slik at de, under hensyntagen til en sikkerhetsmargin, med eksempelvis 90% av den maksimale effekt, avgir kun den effekt som kreves for de vanligvis krevede maksimale reisehastigheter, altså en grunnbelastning for fremdriftseffekten , mens høyere hastigheter, hhv. fremdrif tsef f ekter trekkes fra den fortrinnsvis i serie med drivakselen og fremdriftsdieselmotoren anordnede motor/generator fra effektreserven i det elektriske nett ombord. In this way, the propulsion motor or propulsion motors can be dimensioned so that, taking into account a safety margin, with for example 90% of the maximum power, they emit only the power required for the usually required maximum travel speeds, i.e. a base load for the propulsion power, while higher speeds, respectively propulsion power is drawn from the engine/generator arranged preferably in series with the drive shaft and the propulsion diesel engine from the power reserve in the on-board electrical network.
For det vanligvis krevede hastighetsområde står såled-es et fremdriftssystem til rådighet med den direkte koplede totakts dieselmotor, som utmerker seg med et lavt brennstoff- forbruk, små vedlikeholdskostnader og bortfall av overførings-tamp. V For the usually required speed range, a propulsion system is thus available with the directly coupled two-stroke diesel engine, which is characterized by low fuel consumption, low maintenance costs and the elimination of transmission tamp. V
Ved bruk av en synkronmaskin som motor/generator, er det hensiktsmessig, etter at det synkrone turtall er oppnådd, å bevirke effektøkninger for fremdriftseffekten, dvs. for økede skipshastigheter utelukkende ved endring av de innstillbare propellvingers stigning. When using a synchronous machine as a motor/generator, it is appropriate, after the synchronous speed has been achieved, to cause power increases for the propulsion effect, i.e. for increased ship speeds exclusively by changing the pitch of the adjustable propeller blades.
Det kan være hensiktsmessig ved et bestemt effektoverskudd grunnet liten hastighet, å øke turtallet til motorens/ generatoren synkronturtall, uten å øke den effekt som står til rådighet for fremdriften, ved at de innstillbare propellvingers stigning endres. Fremdriftsmotorens forhåndenværende effektoverskudd ved synkronturtallet omsettes derved til elektrisk energi av motoren/generatoren og stilles til rådighet for det elektriske nett ombord. Generatorens/dieselmotor-enes effekt kan derved reduseres. Herved kan elektrisk energi utvikles av den økonomiske totakts dieselmotor. It may be appropriate in the event of a certain power surplus due to low speed, to increase the speed to the engine/generator's synchronous speed, without increasing the power available for propulsion, by changing the pitch of the adjustable propeller blades. The propulsion engine's existing power surplus at the synchronous speed is thereby converted into electrical energy by the engine/generator and made available to the on-board electrical network. The power of the generator/diesel engine can thereby be reduced. In this way, electrical energy can be developed by the economical two-stroke diesel engine.
Med dette formål er det mulig å kople en langsomtdrei-ende motor/generator direkte på fremdriftsmotoren veivaksel. Dersom dimensjonene for de elektriske maskiner som kreves For this purpose, it is possible to connect a slow-turning motor/generator directly to the propulsion motor's crankshaft. If the dimensions of the electrical machines required
i denne sammenheng, blir for omfangsrike, kan en reduksjonsveksel bygges inn mellom fremdriftsmotoren og motoren/generatoren. Det anordnes herved en elastisk kopling mellom vekselen og fremdriftsmotoren. in this context, become too bulky, a reduction gearbox can be built in between the propulsion motor and the motor/generator. An elastic coupling is thereby provided between the gearbox and the propulsion motor.
I det følgende beskrives oppfinnelsen eksempelvis under henvisning til tegningen hvor fig. 1 skjematisk viser det nye fremdriftssystem, fig. 2 viser et utsnitt av en vari-ant av fig. 1 og fig. 3 viser et diagram med den krevede f remdriftseffekt P som ordinat og til venstre skipets hastighet v og til høyre fremdriftsmotorens veivaksels n turtall som abscisse. In the following, the invention is described, for example, with reference to the drawing where fig. 1 schematically shows the new propulsion system, fig. 2 shows a section of a variant of fig. 1 and fig. 3 shows a diagram with the required propulsion power P as the ordinate and on the left the ship's speed v and on the right the speed of the propulsion engine's crankshaft n as the abscissa.
Det på fig. 1 viste fremdriftssystem har to drivakslerThat in fig. 1 shown propulsion system has two drive shafts
1, hver med en innstillbar propell 2 på enden. Fremdriftsaks1-ene 1 er hver koplet direkte med en fremdriftsdieselmotor 3 av typen en langsomt dreiende totaktsmotor. Selvfølgelig kan det isteden for to drivaksler 1 også benyttes kun en eller flere. 1, each with an adjustable propeller 2 on the end. The propulsion axles 1 are each connected directly to a propulsion diesel engine 3 of the type a slow-rotating two-stroke engine. Of course, instead of two drive shafts 1, only one or more can also be used.
For mating av det elektriske nett ombord som er symbo- lisert med en samleskinne 4, er anordnet fire, eller flere generatorer 5. Hver av disse generatorer 5 drives av en egen hjelpemotor 6 som består av en middels hurtig eller hurtigløp-ende firetaktsmotor. Den med disse motorer installerte effekt er så stor at behovet for elektrisk energi dekkes flere ganger, eksempelvis 1,25 til 1,5 ganger. Four or more generators 5 are arranged to feed the electrical network on board, which is symbolized by a busbar 4. Each of these generators 5 is driven by a separate auxiliary engine 6 which consists of a medium-speed or fast-running four-stroke engine. The power installed with these motors is so great that the need for electrical energy is covered several times, for example 1.25 to 1.5 times.
Ifølge oppfinnelsen er to motorer/generatorer 7 tilkoplet nettet 4 ombord, som på fig. 1 er forbundet med fremdrif tsdieselmotoren 3 via en reduksjonsveksel 8, og på fig. 2 direkte, idet på fig. 1 en elastisk kopling 10 muliggjør en mekanisk adskillelse av motoren/generatoren 7 fra veivakselen. Som ovenfor nevnt er fremdriftsmotorene 3 slik dimensjonert at de med 90% av deres maksimale effekt sikrer opprett-holdelse av den maksimalt nødvendige reisehastighet. According to the invention, two motors/generators 7 are connected to the network 4 on board, as in fig. 1 is connected to the propulsion diesel engine 3 via a reduction gear 8, and in fig. 2 directly, as in fig. 1, an elastic coupling 10 enables a mechanical separation of the engine/generator 7 from the crankshaft. As mentioned above, the propulsion motors 3 are so dimensioned that with 90% of their maximum power they ensure maintenance of the maximum required travel speed.
Denne effekt tilsvarer punktet 11 i det venstre diagram på fig. 3. På denne måte kan skipets hastighetsområde A dekkes alene av fremdriftsmotorene, idet det fordelaktig kan oppnås effekttilpasninger eksempelvis ved turtallendring-er. This effect corresponds to point 11 in the left diagram in fig. 3. In this way, the ship's speed range A can be covered by the propulsion engines alone, as power adaptations can advantageously be achieved, for example by rev changes.
Effektbehovet mellom punktene 11 og 12 i venstre del av fig. 3 for hastighetsområdet B kan ikke dekkes av fremdriftsmotorene 3 alene. Ifølge oppfinnelsen koples i dette område motorene/generatorene 7 som motorer i tillegg til veivakselen 9. The power requirement between points 11 and 12 in the left part of fig. 3 for the speed range B cannot be covered by the propulsion motors 3 alone. According to the invention, in this area the motors/generators 7 are connected as motors in addition to the crankshaft 9.
Slik høyre del av fig. 3 viser, er fremdriftseffekten i punkt 11 tilordnet et turtall for veivakslen (punkt 13) som stemmer overens (fig. 2), hhv. korresponderer (fig. 1) med motorens/generatorens synkronturtall n^. Thus the right part of fig. 3 shows, the propulsion effect in point 11 is assigned to a rotational speed for the crankshaft (point 13) which agrees (fig. 2), respectively. corresponds (Fig. 1) to the motor/generator's synchronous speed n^.
Den som sådan konvensjonelle turtallregulering av fremdriftsmotorene 3 er nå slik utformet at dette synkronturtall også beholdes konstant ved ytterligere effektstigning og en stigning av den krevede effekt oppnås ved endring av de innstillbare propellers vingers 2 stigning, på kjent måte. På denne måte oppnås i punkt 14 den nødvendige effekt for maksimale skipshastigheter 12, idet effektbehovet C frembring-es av de elektriske motorer/generatorer 7, hhv. fra nettet 4 ombord. As such, the conventional speed regulation of the propulsion motors 3 is now designed in such a way that this synchronous speed is also kept constant in case of a further power increase and an increase in the required power is achieved by changing the pitch of the adjustable propeller blades 2, in a known manner. In this way, the required power for maximum ship speeds 12 is achieved in point 14, the power requirement C being produced by the electric motors/generators 7, respectively. from network 4 on board.
Som allerede nevnt som kan man ved betydelige virk- ningsgradforskjeller mellom de benyttede totakts- og fire-taktsmotorer 3, hhv. 6, ved lave skipshastigheter, eksempelvis i punkt 15, hhv. 16 i diagrammet på fig. 3, gå over fra den turtallavhengige effektregulering til regulering av propell-vingene og samtidig øke turtallet fra verdien n^ til verdien n,,. Den derved foreliggende ef f ektreserve fra f remdrif tsmotor-ene 3 i området D, mates fra motorene/generatorene 7 inn i det elektriske nett 4 ombord som elektrisk energi. As already mentioned, if there are significant efficiency differences between the two-stroke and four-stroke engines used 3, resp. 6, at low ship speeds, for example in point 15, respectively 16 in the diagram in fig. 3, switch from the rpm-dependent power regulation to regulation of the propeller blades and at the same time increase the rpm from the value n^ to the value n,,. The resulting power reserve from the propulsion engines 3 in area D is fed from the engines/generators 7 into the electrical network 4 on board as electrical energy.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3778/85A CH667627A5 (en) | 1985-09-03 | 1985-09-03 | SHIP DRIVE. |
Publications (2)
Publication Number | Publication Date |
---|---|
NO863515D0 NO863515D0 (en) | 1986-09-02 |
NO863515L true NO863515L (en) | 1987-03-04 |
Family
ID=4263285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO863515A NO863515L (en) | 1985-09-03 | 1986-09-02 | SHIP PROGRESS SYSTEM. |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP0217049B1 (en) |
JP (1) | JPS6255294A (en) |
KR (1) | KR940001623B1 (en) |
CN (1) | CN1005477B (en) |
CA (1) | CA1266205A (en) |
CH (1) | CH667627A5 (en) |
DE (2) | DE3531990A1 (en) |
DK (1) | DK161629C (en) |
FI (1) | FI86395C (en) |
NO (1) | NO863515L (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4340747C1 (en) * | 1993-11-30 | 1995-04-27 | Nord Systemtechnik | Ship propulsion system with two propellers rotating in an opposed manner |
CN1044706C (en) * | 1994-01-13 | 1999-08-18 | 中国人民解放军中南新技术研究所 | Preparation method of calcium ascorbate |
DE4432483A1 (en) * | 1994-09-13 | 1996-03-14 | Blohm Voss Ag | Auxiliary drive for marine ship with diesel main engine driving propeller via shaft system |
DE4441604C2 (en) * | 1994-11-23 | 1997-09-04 | Stn Atlas Elektronik Gmbh | Ship propulsion system with two coaxial, counter-rotating propellers |
DE10061578A1 (en) * | 2000-12-11 | 2002-06-27 | Siemens Ag | Hybrid propulsion for ships |
DE10111910A1 (en) | 2001-03-13 | 2002-09-19 | Man B&W Diesel A/S, Copenhagen Sv | Hybrid diesel mechanical and electrical drive system for safe and adaptable ship operation |
AU2002318125A1 (en) * | 2001-05-08 | 2002-11-18 | Jim Wilson | Marine propulsion unit |
CN1326747C (en) * | 2002-10-07 | 2007-07-18 | 曼B与W狄赛尔公司 | Engine apparatus with two engine |
CA2544910C (en) * | 2005-04-25 | 2013-07-09 | Railpower Technologies Corp. | Multiple prime power source locomotive control |
DE102005062583A1 (en) * | 2005-12-27 | 2007-07-05 | Siemens Ag | Method for operating an energy system of a cargo ship comprises providing energy necessary for driving a ships propeller and for an electrical network by controlling the direction and size of the energy flow |
US7952306B2 (en) * | 2007-06-01 | 2011-05-31 | Progress Rail Services Corp | Power system with multiple generator units |
US7876061B2 (en) | 2007-06-01 | 2011-01-25 | Progress Rail Services Corp. | Power system with multiple generator units |
EP2225118B1 (en) * | 2007-12-12 | 2016-06-22 | Foss Maritime Company | Hybrid propulsion systems |
JP5324140B2 (en) * | 2008-06-19 | 2013-10-23 | 三菱重工コンプレッサ株式会社 | Rotating machine control device and control method, and rotating machine unit provided with control device |
ES2384816T3 (en) | 2009-02-16 | 2012-07-12 | Claus-D. Christophel | Boat propulsion system |
DK2218638T3 (en) | 2009-02-16 | 2012-07-16 | Claus-D Christophel | Propulsion system for a ship |
ATE553996T1 (en) | 2009-04-22 | 2012-05-15 | Claus-D Christophel | PROPULSION SYSTEM FOR A SHIP |
CN103415439A (en) * | 2010-12-31 | 2013-11-27 | Abb有限公司 | Propulsion system |
CN102975840A (en) * | 2012-11-15 | 2013-03-20 | 广新海事重工股份有限公司 | Marine diesel engine and reverse-supply shaft-driven motor united power system |
JP5696199B2 (en) * | 2013-10-23 | 2015-04-08 | 三菱重工業株式会社 | Ship |
JP6697218B2 (en) * | 2014-11-11 | 2020-05-20 | 川崎重工業株式会社 | Ship propulsion system |
CN104670455B (en) * | 2014-12-26 | 2017-04-05 | 大连中远船务工程有限公司 | The method that ship type overcomes energy consumption index is not changed |
CN106542072A (en) * | 2016-12-27 | 2017-03-29 | 中国船舶重工集团公司第七研究所 | A kind of boat diesel engine thrust power module |
JP6998125B2 (en) * | 2017-04-17 | 2022-01-18 | 川崎重工業株式会社 | Control method of ship propulsion system |
CN107444601B (en) * | 2017-08-15 | 2020-03-10 | 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) | Diesel-electric hybrid propulsion system and static PTI (packet transport interface) entering method |
US10644511B2 (en) * | 2017-11-06 | 2020-05-05 | Caterpillar Inc. | Multi-engine optimizer zone strategy |
CN109367750A (en) * | 2018-12-04 | 2019-02-22 | 上海振华重工(集团)股份有限公司 | Shaft generator control system and ship hybrid power system |
DE102019207936A1 (en) * | 2019-05-29 | 2020-12-03 | Siemens Aktiengesellschaft | Energy supply device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1250757B (en) * | ||||
DE668133C (en) * | 1931-04-18 | 1938-11-26 | Bbc Brown Boveri & Cie | Method for reversing an electrically powered ship |
FR53430E (en) * | 1944-01-03 | 1946-01-10 | Combined power unit for cargo ships and others | |
NO800935L (en) * | 1980-03-31 | 1981-10-01 | Moss Rosenberg Verft As | LNG SHIP PROGRAMMING MACHINE. |
JPS5820594A (en) * | 1981-07-31 | 1983-02-07 | Nippon Kokan Kk <Nkk> | Automatic load control unit for variable pitch propeller ship |
JPS5842238U (en) * | 1981-09-10 | 1983-03-19 | 三城建機株式会社 | coated H-beam |
-
1985
- 1985-09-03 CH CH3778/85A patent/CH667627A5/en not_active IP Right Cessation
- 1985-09-07 DE DE19853531990 patent/DE3531990A1/en not_active Ceased
-
1986
- 1986-06-30 DK DK311686A patent/DK161629C/en not_active IP Right Cessation
- 1986-07-10 FI FI862905A patent/FI86395C/en not_active IP Right Cessation
- 1986-07-28 JP JP61175859A patent/JPS6255294A/en active Pending
- 1986-07-29 DE DE8686110464T patent/DE3661812D1/en not_active Expired
- 1986-07-29 EP EP86110464A patent/EP0217049B1/en not_active Expired
- 1986-07-31 CN CN86104882.2A patent/CN1005477B/en not_active Expired
- 1986-08-04 KR KR1019860006426A patent/KR940001623B1/en not_active IP Right Cessation
- 1986-08-28 CA CA000517015A patent/CA1266205A/en not_active Expired - Lifetime
- 1986-09-02 NO NO863515A patent/NO863515L/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN86104882A (en) | 1987-03-04 |
FI862905A0 (en) | 1986-07-10 |
DK311686A (en) | 1987-03-04 |
DK311686D0 (en) | 1986-06-30 |
EP0217049B1 (en) | 1989-01-18 |
EP0217049A2 (en) | 1987-04-08 |
FI86395B (en) | 1992-05-15 |
FI86395C (en) | 1992-08-25 |
CA1266205A (en) | 1990-02-27 |
DE3531990A1 (en) | 1987-03-12 |
DK161629B (en) | 1991-07-29 |
NO863515D0 (en) | 1986-09-02 |
DK161629C (en) | 1996-06-24 |
FI862905A (en) | 1987-03-04 |
KR870002983A (en) | 1987-04-14 |
EP0217049A3 (en) | 1987-09-02 |
KR940001623B1 (en) | 1994-02-28 |
DE3661812D1 (en) | 1989-02-23 |
CN1005477B (en) | 1989-10-18 |
JPS6255294A (en) | 1987-03-10 |
CH667627A5 (en) | 1988-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO863515L (en) | SHIP PROGRESS SYSTEM. | |
US4661714A (en) | Electric marine propulsion system | |
US4114555A (en) | Apparatus for and method of interconnecting and controlling units of a power train for maximum flexibility and economy in operating auxilliary marine vessels | |
US9650120B2 (en) | Electric drive shaft and vehicle comprising such an electric drive shaft | |
CN101767645A (en) | Novel electric propulsion system | |
DE902116C (en) | Ship engine system with at least one gas turbine and an internal combustion engine | |
US2579126A (en) | Multiple power plant, including an electric generator | |
DK149479B (en) | APPARATUS FOR COMPENSATION OF FREE MILL POWER POWER IN A COMBUSTION ENGINE WHICH SERVES AS A PROJECTING MACHINE IN A SHIP | |
CN110267874A (en) | Marine propulsion system and ship | |
US2602901A (en) | Propulsion power plant | |
EP3381791A1 (en) | A vessel including a hybrid propulsion system | |
GB596174A (en) | Improvements in or relating to driving systems, for example, ship propulsion systems, of the type including opposed-piston engines | |
JPS62128997U (en) | ||
JPS6018495A (en) | Electrical propelling apparatus for emergency | |
US4501237A (en) | Control unit for the lubricating oil circulation pump and for the fuel injection system regulator of diesel engines | |
KR101932075B1 (en) | Powering system for a ship | |
JPS6260496A (en) | Control method for speed of motor-driven cargo pump | |
EP0018986A1 (en) | Power train controls and connections for auxiliary vessels | |
JPS5918216A (en) | Electrical propelling device | |
JPH0324399B2 (en) | ||
SU1717478A1 (en) | Ferry electric generating plant | |
CN202175193U (en) | Power-variable double-drive full-rotation rudder propeller | |
NO782899L (en) | PROCEDURE AND DEVICE FOR CONNECTION AND CONTROL OF PROGRAMMING MACHINES. | |
Thau | Electric propulsion of ships | |
JPH07115673B2 (en) | Drive system for cargo handling pumps for ships |