NO860936L - CLOSED LEAD BATTERY. - Google Patents
CLOSED LEAD BATTERY.Info
- Publication number
- NO860936L NO860936L NO860936A NO860936A NO860936L NO 860936 L NO860936 L NO 860936L NO 860936 A NO860936 A NO 860936A NO 860936 A NO860936 A NO 860936A NO 860936 L NO860936 L NO 860936L
- Authority
- NO
- Norway
- Prior art keywords
- battery
- negative
- electrolyte
- oxygen gas
- negative electrode
- Prior art date
Links
- 239000002253 acid Substances 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 230000005012 migration Effects 0.000 claims description 2
- 238000013508 migration Methods 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 15
- 229910001882 dioxygen Inorganic materials 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 13
- 239000011149 active material Substances 0.000 description 7
- 230000006798 recombination Effects 0.000 description 7
- 238000005215 recombination Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910000464 lead oxide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- -1 sulphate ions Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/342—Gastight lead accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Electromechanical Clocks (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
Foreliggende oppfinnelse angår lukkede blybatterier med elektroder for oksygengassrekombinasjon, med elektrodene adskilt av porøse separatorer som elektrolytten er oppsuget i. The present invention relates to closed lead batteries with electrodes for oxygen gas recombination, with the electrodes separated by porous separators into which the electrolyte is absorbed.
Såkalte vedlikeholdsfrie batterier forekommer i mange forskjellige utførelser for å tilgodese de spesielle krav som et batteri er tenkt å arbeide under. Arbeidsforholdene blir i høy grad bestemmende for den måte cellen eller batteriet opplades på. So-called maintenance-free batteries come in many different designs to meet the special requirements under which a battery is intended to work. The working conditions are to a large extent decisive for the way the cell or battery is charged.
Ved utladning med forholdsvis lav strøm under lang tid hvor utladningen er på mer enn ca. 90 % av batteriets totale kapasitet, utnyttes den største del av det aktive materiale i såvel den positive som den negative elektrode. When discharging with a relatively low current for a long time where the discharge is more than approx. 90% of the battery's total capacity, the largest part of the active material is utilized in both the positive and the negative electrode.
Ved utladning med høy strøm på kort tid utlades et batteri til mindre enn 50 % gjennom forholdsvis kort tid. Ved slike arbeidsforhold utnyttes det aktive materiale ufullstendig på grunn av at utladningsstrømmen er høy, slik at bare det ytre skikt av elektrodene deltar i joneutbyttet. When discharging with a high current in a short time, a battery is discharged to less than 50% in a relatively short time. In such working conditions, the active material is used incompletely because the discharge current is high, so that only the outer layer of the electrodes participates in the ion yield.
Når et konvensjonelt blybatteri opplades, vil praktisk talt all ladestrøm i begynnelsen av oppladningen omdanne det utladede aktive materiale til ladet aktivt materiale. I avhengighet av ladehastigheten oppstår det en påtagelig minskning av ladnings-effektiviteten når batteriet er oppladet til ca. 80 - 95 %. Jo høyere ladehastighet og ladestrøm man anvender desto tidligere opptrer denne ineffektivitet, som ved den positive elektrode ytrer seg i dannelsen av oksygengass. Den negative elektrode er mer tilbøyelig til å oppta ladning enn den positive elektrode og in-effektiviteten ved den negative elektrode ytrer seg i dannelsen av hydrogengass som imidlertid ikke opptrer før elektroden er nesten full-ladet, dvs. til 95 - 100 %. Denne ineffektivitet ved oppladningen krever i praksis at batteriet får en viss over-ladning av størrelsesorden 5 - 15 k. When a conventional lead-acid battery is charged, practically all the charging current at the beginning of the charge will convert the discharged active material into charged active material. Depending on the charging speed, a noticeable reduction in charging efficiency occurs when the battery is charged to approx. 80 - 95%. The higher the charging speed and charging current used, the earlier this inefficiency appears, which manifests itself at the positive electrode in the formation of oxygen gas. The negative electrode is more inclined to absorb charge than the positive electrode and the inefficiency of the negative electrode manifests itself in the formation of hydrogen gas which, however, does not occur until the electrode is almost fully charged, i.e. to 95 - 100%. In practice, this inefficiency during charging requires the battery to receive a certain over-charge of the order of 5 - 15 k.
I et konvensjonelt blybatteri med elektrolyttvæske vil den oksygengass som fremkommer ved den positive elektrode forlate batteriet unntatt en liten del som oppløses i elektrolytten og eventuelt reagerer med den negative elektrode. Oksygengassens løselighet i svovelsyren er imidlertid meget lav og jo hurtigere batteriet opplades, desto større mengde oksygengass vil bli av-gitt til atmosfæren. I vedlikeholdsfrie batterier har man der-for benyttet seg av lukkede batterikasser som hindrer avgang av oksygengass til atmosfæren og samtidig gjør det lettere for oksygengassen å komme i kontakt med den negative elektrode for der å rekombinere med det aktive materiale. For dette formål anvender man spesielle porøse separatorer i hvilke elektrolytten er absor-bert i en viss grad. Det er vesentlig at separatorene ikke er fullt mettet med elektrolytt for å tillate at oksygengass som dannes med den positive elektrode, hurtig diffunderer gjennom det porøse materiale fra den positive til den negative elektrode, In a conventional lead-acid battery with electrolyte liquid, the oxygen gas that emerges at the positive electrode will leave the battery, except for a small part that dissolves in the electrolyte and possibly reacts with the negative electrode. However, the solubility of oxygen gas in sulfuric acid is very low and the faster the battery is charged, the greater the amount of oxygen gas will be released into the atmosphere. In maintenance-free batteries, closed battery cases have therefore been used, which prevent the escape of oxygen gas into the atmosphere and at the same time make it easier for the oxygen gas to come into contact with the negative electrode to recombine with the active material there. For this purpose, special porous separators are used in which the electrolyte is absorbed to a certain extent. It is essential that the separators are not fully saturated with electrolyte to allow oxygen gas formed with the positive electrode to rapidly diffuse through the porous material from the positive to the negative electrode,
hvor rekombinasjon skjer. Under oppladningen skal altså den oksygengass som utvikles ved den positive elektrode, diffundere til den negative elektrode hvor den raskt reagerer med den aktive mas-se, hvorunder blyet omdannes til blyoksyd. Denne reaksjon inne-bærer at den negative elektrode blir partielt utladet, hvilket hindrer den i å nå sin fullt oppladede tilstand og derved for-hindrer man også at det dannes' hydrogengass ved denne elektrode. Eftersom hastigheten av oksygengassrekombinasjonen ved den negative elektrode er større enn den hastighet som oksygengass dannes med ved den positive elektrode, blir det praktisk talt intet væske-tap samtidig som overtrykket i det lukkede batteri begrenses. where recombination occurs. During charging, the oxygen gas developed at the positive electrode must therefore diffuse to the negative electrode where it quickly reacts with the active mass, during which the lead is converted into lead oxide. This reaction means that the negative electrode is partially discharged, which prevents it from reaching its fully charged state and thereby also prevents the formation of hydrogen gas at this electrode. Since the rate of oxygen gas recombination at the negative electrode is greater than the rate at which oxygen gas is formed at the positive electrode, there is practically no liquid loss at the same time as the overpressure in the closed battery is limited.
Ulempen med vedlikeholdsfrie batterier med elektrolytten oppsuget i porøse separatorer som bare delvis er fyllt med elektrolytt, er at det ved utladning oppstår en mangel på sulfatjoner som kan reagere med det aktive materiale, og denne mangel er spesielt påtagelig ved utladning med lave strømmer. Som beskrevet ovenfor kan da praktisk talt alt aktivt materiale i batteriet utnyttes. Batterier av denne type vil altså få en forholdsvis lavere kapasitet enn konvensjonelle batterier med flytende elektrolytt . The disadvantage of maintenance-free batteries with the electrolyte absorbed in porous separators that are only partially filled with electrolyte is that during discharge there is a lack of sulfate ions that can react with the active material, and this lack is particularly noticeable when discharging with low currents. As described above, practically all active material in the battery can then be utilized. Batteries of this type will therefore have a relatively lower capacity than conventional batteries with liquid electrolyte.
Lukkede blybatterier med delte negative elektroder er i og for seg tidligere kjent, f.eks. fra US-patent 3 457 112. Ved denne konstruksjon er imidlertid rommet mellom de negative elektroder ikke fyllt med elektrolytt, men er utelukkende beregnet til å øke elektrodenes aktive overflater og dermed rekombinasjons-effekten. Closed lead-acid batteries with split negative electrodes are in and of themselves previously known, e.g. from US patent 3 457 112. With this construction, however, the space between the negative electrodes is not filled with electrolyte, but is exclusively intended to increase the active surfaces of the electrodes and thus the recombination effect.
Formålet med foreliggende oppfinnelse er imidlertid å mulig-gjøre en konstruksjon av et vedlikeholdsfritt batteri hvor det ikke oppstår mangel på sulfatjoner ved lave strømutladninger og som altså fra et kapasitetssynspunkt er vesentlig bedre enn konvensjonelle lukkede batterier med enten enkle eller dobbelte negative elektroder. The purpose of the present invention, however, is to enable the construction of a maintenance-free battery where there is no shortage of sulfate ions at low current discharges and which is therefore significantly better from a capacity point of view than conventional closed batteries with either single or double negative electrodes.
Dette formål realiseres ifølge oppfinnelsen i hovedsaken ved at en med elektrolytt mettet porøs separator er anordnet mellom de negative elektroder. According to the invention, this purpose is mainly realized by a porous separator saturated with electrolyte being arranged between the negative electrodes.
Ved å dublere de negative elektroder og innføre en porøs separator mellom dem skaper man altså et ekstra forråd for sul-fat jonene i elektrolytten og dermed får batteriet betydelig bedre utladningsegenskaper ved lave strømuttak enn ved konvensjonelle lukkede batterier. By duplicating the negative electrodes and introducing a porous separator between them, you thus create an additional store for the sulphate ions in the electrolyte, and thus the battery has significantly better discharge characteristics at low current draw than with conventional sealed batteries.
Eventuelt kunne man også tenke seg å anordne oksygenreserven mellom dobbelte positive elektroder, men eftersom oksygengassen dannes ved den positive platen, ville rekombinasjonen avta og gass-avgangen fra cellen øke, fordi bare en mindre mengde oksygengass kan nå den negative elektrode ved diffusjon i den porøse separator. Ved delt negativ elektrode blir dessuten rekombinasjonen mer effektiv eftersom man får en større aktiv overflate på den negative elektrode. Alternatively, one could also think of arranging the oxygen reserve between double positive electrodes, but since the oxygen gas is formed at the positive plate, the recombination would decrease and the gas exit from the cell would increase, because only a small amount of oxygen gas can reach the negative electrode by diffusion in the porous separator. In the case of a shared negative electrode, the recombination also becomes more efficient because a larger active surface is obtained on the negative electrode.
En eksempelvis valgt utførelsesform av oppfinnelsen beskrives nærmere nedenfor under henvisning til tegningen, som viser en battericelle ifølge oppfinnelsen med dobbelte negative plater. An exemplary selected embodiment of the invention is described in more detail below with reference to the drawing, which shows a battery cell according to the invention with double negative plates.
På figuren er det skjematisk vist et blybatteri hvor elektrodene er omsluttet av en lufttett kasse 1 og hvor de positive elektroder 2 og de negative elektroder 3 er adskilt av en separator av porøst materiale 4 i hvilket elektrolytten er oppsuget. Eftersom et lukket batteri av denne type ikke tillater at det forekommer fri elektrolytt i cellen, er den porøse separator bare mettet med syre til ca. 90 The figure schematically shows a lead-acid battery where the electrodes are enclosed by an airtight box 1 and where the positive electrodes 2 and the negative electrodes 3 are separated by a separator of porous material 4 in which the electrolyte is absorbed. Since a closed battery of this type does not allow free electrolyte to occur in the cell, the porous separator is only saturated with acid to approx. 90
Ifølge oppfinnelsen består de negative elektroder av minstAccording to the invention, the negative electrodes consist of at least
to elektrodeplater 3a og 3b, som er anordnet i en viss avstand fra hverandre og derved dannes et forrådsrom 5 for elektrolytten, som også her er oppsuget i en porøs separator. two electrode plates 3a and 3b, which are arranged at a certain distance from each other and thereby form a storage space 5 for the electrolyte, which is also absorbed here in a porous separator.
Ifølge en hensiktsmessig utførelsesform kan elektrodeplatene være forsynt med hull for å lette syrevandringen fra rommet mellom platene til den positive elektrode. According to an appropriate embodiment, the electrode plates can be provided with holes to facilitate the migration of acid from the space between the plates to the positive electrode.
Som tidligere påpekt kommer den oksygengass som dannes ved den positive plate, til å beredes gode muligheter til å nå den negative plate gjennom den porøse separator og oksydere blyet til blyoksyd. Ved lav strømbelastning vil overskuddet av syre mellom de to negative plater sikre batteriet høy kapasitet sam-menlignet med et konvensjonelt batteri av vedlikeholdsfri type. Den ringe mengde oksygengass som dannes ved den positive elektrode og som ikke umiddelbart når de tilstøtende negative elektroder, kommer til å forårsake en viss trykkøkning i kassen, men denne kan holdes på et forholdsvis lavt nivå eftersom rekombinasjonen ved dennegative plate blir mer effektiv på grunn av større overflate på den negative elektrode. Avstanden mellom de positive og negative elektrodeplater kan varieres, men bør passende holdes på omkring ca. 1 mm. Avstanden mellom de negative, elektroder kan varieres i avhengighet av nødvendig syrereserve, men bør i det normale tilfelle holdes mellom ca. 1-5 mm. As previously pointed out, the oxygen gas that is formed at the positive plate will have good opportunities to reach the negative plate through the porous separator and oxidize the lead to lead oxide. At a low current load, the excess of acid between the two negative plates will ensure the battery's high capacity compared to a conventional battery of the maintenance-free type. The small amount of oxygen gas that is formed at the positive electrode and does not immediately reach the adjacent negative electrodes will cause a certain pressure increase in the box, but this can be kept at a relatively low level since the recombination at the negative plate becomes more efficient due to larger surface area on the negative electrode. The distance between the positive and negative electrode plates can be varied, but should ideally be kept at around approx. 1 mm. The distance between the negative electrodes can be varied depending on the required acid reserve, but should normally be kept between approx. 1-5 mm.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8403704A SE8403704L (en) | 1984-07-13 | 1984-07-13 | END OF LEAD BATTERY FOR OXYGEN RECOVERY |
Publications (1)
Publication Number | Publication Date |
---|---|
NO860936L true NO860936L (en) | 1986-03-12 |
Family
ID=20356523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO860936A NO860936L (en) | 1984-07-13 | 1986-03-12 | CLOSED LEAD BATTERY. |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0217801A1 (en) |
JP (1) | JPS61502714A (en) |
DK (1) | DK109986A (en) |
NO (1) | NO860936L (en) |
SE (1) | SE8403704L (en) |
WO (1) | WO1986000759A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61179068A (en) * | 1985-02-04 | 1986-08-11 | Yuasa Battery Co Ltd | Enclosed lead storage battery |
US5175484A (en) * | 1988-09-26 | 1992-12-29 | Power Beat International, Ltd. | Electrical power distribution |
NZ226656A (en) * | 1988-10-21 | 1990-10-26 | Pita Witehira | Laminated electrode plate with electrolyte channels |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE524571A (en) * | 1952-03-28 | |||
DE1571961B2 (en) * | 1965-03-09 | 1973-01-04 | Robert Bosch Gmbh, 7000 Stuttgart | Gas-tight sealed lead accumulator with antimony-free plate grids |
US4276359A (en) * | 1978-09-01 | 1981-06-30 | Koehler Manufacturing Company | Lead-acid battery with tubular plate electrode |
JPH0677449B2 (en) * | 1982-03-09 | 1994-09-28 | 三洋電機株式会社 | Lead acid battery |
EP0131614A1 (en) * | 1983-01-13 | 1985-01-23 | Ove Nilsson | Sandwich electrode for a lead acid battery, a method for manufacturing such an electrode and a battery comprising the same |
-
1984
- 1984-07-13 SE SE8403704A patent/SE8403704L/en not_active Application Discontinuation
-
1985
- 1985-07-04 EP EP85903437A patent/EP0217801A1/en not_active Withdrawn
- 1985-07-04 JP JP60503237A patent/JPS61502714A/en active Pending
- 1985-07-04 WO PCT/SE1985/000271 patent/WO1986000759A1/en unknown
-
1986
- 1986-03-10 DK DK109986A patent/DK109986A/en not_active Application Discontinuation
- 1986-03-12 NO NO860936A patent/NO860936L/en unknown
Also Published As
Publication number | Publication date |
---|---|
SE8403704L (en) | 1986-01-14 |
WO1986000759A1 (en) | 1986-01-30 |
DK109986D0 (en) | 1986-03-10 |
SE8403704D0 (en) | 1984-07-13 |
DK109986A (en) | 1986-03-10 |
JPS61502714A (en) | 1986-11-20 |
EP0217801A1 (en) | 1987-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3765942A (en) | Accumulator or battery with sulfuric acid electrolyte containing phosphoric acid | |
US5075184A (en) | Sealed type lead acid storage battery | |
US3844837A (en) | Nonaqueous battery | |
JP2004513470A (en) | Rechargeable dual cation electrochemical battery cell | |
NO860936L (en) | CLOSED LEAD BATTERY. | |
US3170819A (en) | Electric battery | |
US4031293A (en) | Maintenance free lead storage battery | |
US3455739A (en) | Electric storage batteries | |
US3342639A (en) | Sealed alkaline cells and electrolytes therefor | |
GB2164484A (en) | Retainer type lead-acid battery | |
US5059495A (en) | Electric battery | |
US6265108B1 (en) | Flooded valve regulated lead-acid battery having improved life | |
US3928076A (en) | LiCl inhibitor for perchlorate battery | |
JPH04296464A (en) | Sealed-type lead-acid battery | |
US2905739A (en) | Alkaline storage battery | |
US3418166A (en) | Alkaline storage cell having silicate dissolved in the electrolyte | |
US3082279A (en) | Alkaline battery and electrode therefor | |
US3318733A (en) | Electrolytic cells and more especially in gas-tight storage cells operating without gas-evolution | |
RU220659U1 (en) | CYLINDRICAL LITHIUM-ION BATTERY WITH A CATHODE BASED ON LITHIUM DIMANGANGE TETRAOXIDE (LiMn2O4) | |
US3457111A (en) | Alkaline storage battery with be(oh)2 in the electrolyte | |
JPH0677449B2 (en) | Lead acid battery | |
US2988583A (en) | Accumulator | |
JPH0415989B2 (en) | ||
JPH042064A (en) | Bipolar type sealed lead acid battery | |
TWM629458U (en) | Aluminum cathode secondary battery structure |