JP2004513470A - Rechargeable dual cation electrochemical battery cell - Google Patents

Rechargeable dual cation electrochemical battery cell Download PDF

Info

Publication number
JP2004513470A
JP2004513470A JP2001587502A JP2001587502A JP2004513470A JP 2004513470 A JP2004513470 A JP 2004513470A JP 2001587502 A JP2001587502 A JP 2001587502A JP 2001587502 A JP2001587502 A JP 2001587502A JP 2004513470 A JP2004513470 A JP 2004513470A
Authority
JP
Japan
Prior art keywords
species
battery cell
battery
negative electrode
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001587502A
Other languages
Japanese (ja)
Inventor
グレン アマツッチ
Original Assignee
テルコーディア テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルコーディア テクノロジーズ インコーポレイテッド filed Critical テルコーディア テクノロジーズ インコーポレイテッド
Publication of JP2004513470A publication Critical patent/JP2004513470A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

高い動作電圧および非常に増大した固有容量を有する再充電可能バッテリセル(10)は、正極部材(13)と、負極部材(17)と、これらの間に置かれ、多価カチオン溶質を非水性溶媒に溶解した溶液を含む電解液を含んだ隔離板部材(15)とを含む。正極部材は、電池の動作中に反応性の多価カチオン化学種を可逆的に取り込み、放出する活物質を含み、負極の活物質はこれと同時に、一価カチオン化学種を可逆的に電解液溶媒中に放出し、電解液溶媒から取り込む。好ましいカチオン化学種は、Y3+などのアルカリ土類金属、Liなどのアルカリ金属カチオンである。A rechargeable battery cell (10) having a high operating voltage and a greatly increased specific capacity is placed between a positive electrode member (13), a negative electrode member (17) and a non-aqueous polyvalent cation solute. A separator member (15) containing an electrolytic solution containing a solution dissolved in a solvent. The positive electrode member contains an active material that reversibly captures and releases reactive polyvalent cation species during battery operation, while the negative electrode active material simultaneously reversibly converts monovalent cation species into an electrolyte. Released into the solvent and taken up from the electrolyte solvent. Preferred cationic species are alkaline earth metals such as Y 3+ metal, an alkali metal cation such as Li +.

Description

【0001】
(発明の背景)
本発明は、正極と、負極と、これらの間に置かれ電解液を含む隔離板とを備えた再充電可能な高電圧、大容量の電気化学バッテリセルに関する。この電解液は、電池の動作中にそれぞれの電極での酸化還元活動に個別に関与する一対の異なる移動性カチオン化学種を含む。より詳細には、本発明は、再充電可能なバッテリセルの作製および使用に関する。このバッテリセルは、電池の循環中の、一対のカチオン化学種のうち電解液中に存在する多価カチオンである第1の化学種との酸化還元反応に主に関与する多価電極材料を含み、第2のカチオン化学種は主に電池の対極で反応する。これらの同時酸化還元反応では、電池動作中に1イオンあたり複数の電子が移動することができ、その結果、高電圧出力を損なうことなく電池の容量が著しく増大する。
【0002】
軽量なリチウム電極および電解液成分材料のおかげで、相当なレベルの比容量(specific capacity)、すなわち電池に蓄積し電池から伝達することができる単位電池重量あたりのエネルギー量を提供するリチウムインターカレーション電池、特にLiイオン電池は、軽量かつコンパクトな再充電可能電池の現在の市場に大きく貢献している。リチウムの反応性の高さによって、リチウムを含む負極の電位が非常に低くなるという追加の利点が得られる。負極は、金属リチウムまたはリチウム合金、あるいはリチウムをインターカレートした材料を含むことができる。さらなる利点として、高い電位でリチウムと反応し、それによって、得られる高電圧バッテリセル内で正極成分として使用することができるさまざまな金属酸化物、硫化物またはフッ化物材料が使用可能である。
【0003】
しかし、結果として生じるこれらの再充電可能電池の比エネルギー密度に対するLiイオン電池の重量の軽さおよび高電圧動作の有利な複合効果は、電池動作が依存する移動性のリチウムカチオンが一価であり、したがって、使用可能なLiイオン1つあたり1電子しか有効に伝達できない原因となり得るという限界によって損なわれる。
【0004】
電池容量が電荷移動イオンの価数に依存することを考慮すれば、電気化学電池の容量を増大させる代替手段は論理的に言って、多価反応性成分の使用を含むものとなろう。このようなアプローチも米国特許第5601949号などのように検討されてはいるが、一価のリチウムの代わりに多価カチオンを使用してより高容量のインターカレーションバッテリセルを得ようとする試みは、実際にはほとんど成功しなかった。このような電池の失敗はいくつかの原因に起因していると考えられ、特に、多価イオンのサイズがかなり大きく、これが前記特許明細書で提案されている黒鉛または他の炭素材料などの負極組成物への効果的なインターカレーションを妨げることが少なくない。
【0005】
多価イオン電池の効果的な動作を妨げる他の要因が、固体/電解液界面(solid/electrolyte:SEI)と呼ばれる反応材料のパシベーション層である。これは一般に、最初の循環充電期間中に負極の電池の表面に形成される還元副生物、例えば電解液カチオンの酸化物、フッ化物、炭酸塩などである。一般的なLiイオンインターカレーションセルのLiイオンはSEI層を通して拡散して、負極と接触しそこで還元されることが可能であるが、多価カチオンはこのようにしては拡散することができず、負極での本質的な酸化還元反応への関与がかなり妨げられる。多価カチオンの還元もある程度は起こるが、この反応は、常に高いパシベーション層反応生成物の電位で起こり、したがって電極間の電位差は狭まり、その結果、電池の動作電圧は低下する。
【0006】
したがって、多価電気化学電池成分を実際に利用して電池容量を増大させるためには、移動性多価カチオン化学種の電池電極間の単純な伝達以外の機構を実現することが必要である。本発明は、多価電池成分を使用して容量を増大することができる新規かつ有効な機構を提供する。
【0007】
(発明の概要)
本発明に基づいて作製された再充電可能な電気化学電池は、正極部材と、負極部材と、これらの間に置かれたイオン透過性かつ電子絶縁性の隔離板部材とを含む。電極部材間にはさらに、多価カチオン化学種を含む電解液が含まれる。電解液は、例えばY3+、La3+、Mg2+、Ca2+、Ba2+、Sr2+などの多価カチオンを供給する溶質の非水性溶液であることが好ましい。正極部材は、電池の動作中のインターカレーション、合金化、吸着などの可逆的な酸化反応において多価カチオンを取り込み、放出することができる遷移金属の酸化物、硫化物およびフッ化物、フッ化炭素などの活物質を含む。負極部材は、負極に働く高反応性の第2のカチオン化学種の供給源を提供する活物質を含む。第2のカチオン化学種は、電池の動作中、可逆的に電解液溶媒中に放出され、電解液溶媒から取り込まれることが可能なLi、Na、K、Rb、Csなどのアルカリ金属カチオン化学種であることが好ましい。このような負極活物質は、アルカリ金属、アルカリ金属の合金、またはアルカリ金属陽イオンをインターカレートすることができる炭素材料、例えばコークス、ハードカーボン(hard carbon)または黒鉛とすることができる。
【0008】
本発明の電池の一実施形態は、Vから成る正極部材と、LiSiから成る負極部材と、炭酸エチレン(EC)と炭酸ジメチル(DMC)の2:1混合液に溶解した0.5M Y(C1O電解液で飽和したホウケイ酸塩ガラス繊維の隔離板膜とをを備える。電池の最初の放電の間に、電解液からのY3+イオンは正極での可逆反応に移動し、負極からのLiイオンは、電解液のEC:DMC溶媒中に放出される。主に、比較的に高い濃度のY3+イオンの正極へ物理的に近接し、全体的なインターカレーション電位がより高いため、これらの反応はそれらのそれぞれの電極のところで優位である。
【0009】
電池を再充電すると、反応は、通常の方法で逆方向に進む傾向がある。すなわち、正極からのY3+イオンのデインターカレーションまたは他の放出が起こり、両方のカチオン化学種が負極での還元に向かって移動する。しかし、負極の表面でのパシベーション生成物の急速な形成のため、LiイオンだけがSEI層を通して拡散して、LiSi負極材料に到達することができ、そこでそれらは、理論上約−3.0V vs. SHEの電位で還元される。より大きな再充電電圧が印加されるにもかかわらず、負極のパシベーション層は、Y3+イオンの還元を妨げ、Y3+イオンは電解質溶液中にとどまり、したがって負極の比較的に低い電位、およびその結果としての電池の高い動作電圧が維持される。
【0010】
米国特許5460904に記載のものなど、実際に広く使用されている積層ポリマー電解電池(electrolytic cell)電極部材を製作する手順は、本発明の電池の電極部材の作製にも十分に役立つ。このようにして、正極部材は、多価カチオンをインターカレートすることができる、好ましくはナノ材料形態の活物質、例えば任意の酸化バナジウムおよび酸化コバルト28部および導電性炭素6部を、ポリ(ビニリデンフルオリド−co−ヘキサフルオロプロピレン)などの結合剤ポリマー約15部と、ポリマーの一次可塑剤、例えばフタル酸ジブチル23部とを例えばアセトン28部に溶解した有機溶液を含むマトリックス組成物中に分散させることによって容易に作製することができる。
【0011】
この組成物を注型して層状にし、これを室温で空気乾燥して膜にし、その後、電池を製造するための所望のサイズにカットする。次いでこの膜試料を導電性集電部材に積層し、その後、対極および隔離板部材に積層する。次いで通常は、積層された組立品から中に含まれる可塑剤を、ジエチルエーテルなどのポリマー不活性溶媒を用いて抽出し、その後、電解質溶液を加える。市販の電池は、完全に積層された電極−隔離板アセンブリとして製造されることが好ましいが、実験用の実験室モデルは、Swagelokテストセル中で試験するためにより容易に組み立てられる。これらのモデルは本質において、よく知られている「ボタン」電池に代表される物理圧力スタイルのバッテリセルに非常によく似ている。この後者のスタイルのバッテリ構造を使用して本発明を実施することもできる。
【0012】
次に、添付図面を参照して本発明を説明する。
【0013】
(発明の説明)
本発明に有用なバッテリセル構造10は図1に示すとおり、正極部材13と、負極部材17と、これらの間に置かれ電池電解液を含む隔離板部材15とを、好ましくは前述の米国特許第5460904号に記載のものなどの積層部材アセンブリの形態で備える。それぞれの正極および負極部材に関連づけられた集電部材11、19は例えば延長端子タブ12、16などのところで、この電池に電気的な回路接続を提供する。実験室試験目的では、正負のそれぞれの半電池に対する準基準電位を確立するために、銀線14などの中間電極を隔離板部材15の中に配置すると有用である。
【0014】
正極13は一般に、多価電解液カチオン、例えばアルカリ土類族などのカチオンをインターカレートしまたは吸着することができるナノサイズの活物質、例えば遷移金属の酸化物、例えばV、MnO、Coの分散を含んだビニリデンコポリマーマトリックス膜を含む。対極の負極17は、Li、Na、他のアルカリなどの一価カチオンを可逆的にめっきし、これらと合金をつくり、これらをインターカレートし、またはこの他の方法でこれらと反応することができ、したがってこれらの供給源を提供することができるナノ材料化合物の同様のコポリマーマトリックス分散、あるいは単純に金属箔を含む。隔離板15も同様に、先に参照した明細書に記載のポリマー膜とすることができ、あるいは、広く使用されている微細孔膜または単純にガラス繊維マットを含むことができる。これらは全て、非水性電解液、例えば環式および非環式炭酸エステルの混合溶媒に溶解した0.5から2M多価カチオン化合物溶液を吸収することができる。このような電解液はさらに、負極の反応速度を高めることができ、放電された状態の電池の製造を可能にする小量の一価のアルカリ塩を含むことができる。
【0015】
オプションのAg電極14によって確立されるデータ基準は、選択された組成成分のそれぞれの電極での電解活動を個別に決定する好都合な手段を提供する。このようにして、効果的な電極と電解液の組合せを識別することができる。例えば、このような基準電極の実現は電解電池機構を確認するのに役立つ。この機構では、理論的に必要な電圧を大幅に上回る電圧を印加したにもかかわらず、多価カチオン化学種、例えばY3+が、不動態化されたアルカリ金属負極へのアクセスを拒絶され、したがってその電極でめっきしまたは還元することができず、電池の充電を達成することができない。このようにして、半電池において単一カチオン電池(single cation cell)の不動態化された負極のアクセス可能な表面のところで起こるY3+カチオンの非常にポジティブな還元反応が、後に例示する電池のうちの1つによって示される本質的に無効な合成電圧レベルの原因であることが分かった。
【0016】
実施バッテリセルの製作では、選択された電池組成物および成分を標準Swagelokテストセル装置の中で都合よく組み立てた。この組立では、電解液で飽和した隔離板部材を間に挟んだ正極部材と負極部材を、対向する集電ブロック部材の間で圧縮して、不可欠な部材間接触を達成する。組立後、それぞれの試験電池を、活物質1gあたり約7.6mAの予め選択された循環レートのガルバノスタティック(galvanostatic)モードで動作するMacPile自動サイクリング制御/データ記録システムを含む回路中に配置して、試験電池の特性シグネチャ電圧/容量プロファイルを得た。
【0017】
以上の議論を考慮して、以下の実施例では、本発明の効果的な実施のために有用な成分と組成物の組合せの選択のさらなるガイダンスを当業者に提供する。
【0018】
実施例I
従来技術で一般的な単一一価カチオンバッテリセルで達成される動作電圧レベルおよび容量の比較例として、リチウムインターカレーション試験用電池を製作した。正極は、ナノサイズV 28重量部、導電性カーボンブラック(MMM super P)6重量部、ポリ(ビニリデンフルオリド−co−ヘキサフルオロプロピレン)(Elf Atochem、Kynar 2801)15重量部およびフタル酸ジブチル可塑剤23重量部をアセトン28重量部中に含む組成物の層として注型した。この層を22℃で約0.5時間乾燥して自立膜を形成し、この膜から1cmの円盤を切り取って、活物質すなわちVを約4から10mg含む電極部材とした。従来技術の積層電池構造の方法で電池に電解液を導入するため、ジエチルエーテルを用いて電極円盤部材から可塑剤を抽出した。
【0019】
同様に、Vの代わりにSiを使用した以外は正極層と同様の組成物から成る注型層から、LiSiの負極部材を作製した。乾燥し抽出した一片の層をリチウム箔片の上にかぶせ、この複合材料から電極部材円盤を切り取った。電極円盤部材のそのままの位置で、約0.5m/g超の表面積を有するLiSi合金が短時間の間に自然に形成された。
【0020】
Swagelokテストセル中の実質的に無水の条件(露点−80℃)下でこれらの電極部材を組み立てた。このとき、炭酸エチレン(EC)と炭酸ジメチル(DMC)の2:1混合液に溶解した1M LiClO電解質溶液で飽和した円盤状のホウケイ酸塩ガラス繊維マットを間に挟んだ。次いでこの電池を、自動試験コントローラ/レコーダを含む回路中で数周期のあいだ循環させ、その間に、放電中の正極でのインターカレーションのLi電解液カチオン反応および再充電中の負極での還元を通常の方法で繰り返した。電池の2電極出力電圧を含み、約125mAh/gの一般的な固有容量を指示する記録されたデータをプロットして、図2に示した特性トレースを得た。
【0021】
実施例II
単一の多価カチオンを含むバッテリセルの第2の比較実施例を、実施例Iの正極部材と、ナノサイズのYSi紛状活物質を含む負極部材とを利用して実施例Iの方法で作製した。電解液は、2:1のEC:DMC混合液に溶解した0.5M Y(ClO溶液である。
【0022】
準基準電極14を用いて正負のそれぞれの電極でのY3+カチオン半電池反応を調べたところ、正極での明確なインターカレーションまたは吸着、および負極での還元または合金化が明らかになり、したがってこの電池での可逆的な多価Y3+カチオン活動が確認された。しかし残念ながら、この単一多価カチオンの負極材料反応の電圧は正極反応に対して高すぎて、バッテリセルで有用な結果として生じる作用電圧レベルを提供するにのに必要な電極間の電圧差を確立することができない。この短所は、図3に示した循環電圧トレースから明白である。図3では、電池容量は大幅に増大しているが、電圧出力はほとんど役立たない。
【0023】
実施例III
本発明を実施したバッテリセル、すなわちデュアルカチオンを含み、その少なくとも一方が多価カチオンであるバッテリセルを、概ね以上の実施例の方法で作製した。このバッテリセルは、正および負の電極中にそれぞれ、放電サイクル中に、イットリウム、ランタン、アルカリ土類金属カチオンなどの多価カチオンをインターカレートしまたは吸着することができる材料、および充電サイクル中に、より小さくより反応性の高い第2のカチオン、一般に一価のアルカリカチオンを還元し、めっきし、またはこれらと合金をつくることができる材料を含む。このような電極材料の組合せにすると、電解液が多価カチオンを供給し、第2のカチオン化学種を容易に受け取ることができる。
【0024】
具体的には、このデュアルカチオン電池の正極部材が実施例IのVナノ材料を含み、負極部材が実施例IのLiSiを含む。したがって、電池の電極活物質は、本発明の電池構造中でも従来技術の構造中と同じように機能することができるが、使用される電解液カチオンに驚くほど有効な差異が見られる。本発明によれば電解液のカチオンが、デュアルカチオン組合せの多価カチオンとして選択され、相補的なカチオンが一般に、負極組成物の一価カチオン成分となる。この実施例では、電解液が0.5M Y(ClO溶液である。この電池の循環電圧のトレースが図4に示されているが、それは約250mAh/gに達する顕著な固有容量を示し、結果として生じる作用電圧は安定で、約3から3.5Vの範囲にある。
【0025】
本発明のデュアルカチオン電池の理論化された動作モードは、一般化されたプロセスに従うように見える。すなわち、電池の放電中には、電解質溶液中の多価Y3+カチオンが正極で取り込まれ、負極からLiカチオンが溶液に入り、電池再充電中には、Y3+多価カチオン化学種が電解質溶液に再び入り、Liカチオンが負極で還元、めっきされ、または合金化されて、約−3V vs. SHEの安定した低電圧電池データを維持する。
【0026】
一方のカチオン化学種の反応が一方の電極のところで優位であり、それに相補的なカチオン化学種の反応が他方の電極のところで優位であるこの動作モードは、さまざまな可逆的循環段階での試料電池電極の一連のエネルギー分散スペクトロスコピー(EDS)検定から、それを支持する証拠を受け取っている。これらのEDS検査結果から、カチオン反応のそれぞれの電極優位性は、正極におけるY/V比が電池放電および再充電の程度と一致していることで確認される。
【0027】
実施例IV
ニッケル支持体上の金属リチウム負極部材と、Co活物質を含む正極部材と、0.5M Y(ClO電解質溶液とを含む、本発明のデュアルカチオン電池の他の実施形態を作製した。この電池は、実施例IIIの電池と同様の結果を示した。
【0028】
実施例V
ステンレス鋼支持体上の金属ナトリウム負極部材と、実施例IIIと同じV活物質を含む正極部材と、0.33M Y(CFSO電解質溶液とを含む、本発明の他の実施形態をさらに作製した。図5に示した電池の循環特性のトレースから、このデュアルカチオン構成の電池の高電圧安定性および向上した容量を確認することができる。一価カチオン構成に限定した同様の電池、すなわち炭酸プロピレンに溶解したNaClOを含む電解液を利用した電池では、約90mAh/gの活性容量しか得られなかった。
【0029】
以上の説明および実施例を考慮すれば、当業者には本発明の他の実施形態および変形が容易に明らかとなると予想される。このような実施形態および変形形態も、添付の特許請求の範囲に開示した本発明の範囲に含むものとする。
【図面の簡単な説明】
【図1】
本発明を具体化した積層バッテリセルの概略断面図である。
【図2】
従来技術の単一一価カチオン電池の特性リサイクル電圧および固有容量をトレースしたグラフである。
【図3】
単一多価カチオン電池の特性リサイクル電圧および固有容量をトレースしたグラフである。
【図4】
本発明のデュアルカチオン電池の一実施形態の特性リサイクル電圧および固有容量をトレースしたグラフである。
【図5】
本発明のデュアルカチオン電池の他の実施形態の特性リサイクル電圧および固有容量をトレースしたグラフである。
[0001]
(Background of the Invention)
The present invention relates to a rechargeable, high-voltage, high-capacity electrochemical battery cell comprising a positive electrode, a negative electrode, and a separator interposed therebetween and containing an electrolyte. The electrolyte contains a pair of different mobile cationic species that are individually involved in redox activity at each electrode during battery operation. More particularly, the present invention relates to making and using rechargeable battery cells. The battery cell includes a multivalent electrode material mainly involved in an oxidation-reduction reaction with a first chemical species that is a polyvalent cation present in an electrolyte among a pair of cationic chemical species in the circulation of the battery. , The second cationic species react mainly at the counter electrode of the battery. In these simultaneous oxidation-reduction reactions, a plurality of electrons can move per ion during the operation of the battery, and as a result, the capacity of the battery is significantly increased without impairing the high voltage output.
[0002]
Lithium intercalation that provides a significant level of specific capacity, ie, the amount of energy per unit cell weight that can be stored in and transferred from the battery, thanks to the lightweight lithium electrode and electrolyte component materials Batteries, especially Li-ion batteries, make a significant contribution to the current market for lightweight and compact rechargeable batteries. The high reactivity of lithium has the additional advantage that the potential of the negative electrode containing lithium is very low. The negative electrode can include lithium metal or a lithium alloy, or a lithium intercalated material. As a further advantage, a variety of metal oxide, sulfide or fluoride materials are available that can react with lithium at high potentials and thereby be used as positive electrode components in the resulting high voltage battery cells.
[0003]
However, the advantageous combined effect of light weight and high voltage operation of Li-ion batteries on the specific energy density of these resulting rechargeable batteries is that the mobile lithium cation on which the battery operation depends is monovalent. Thus, it is impaired by the limitations that can cause only one electron to be effectively transferred per available Li + ion.
[0004]
Given that cell capacity depends on the valency of charge transfer ions, an alternative to increasing the capacity of an electrochemical cell would logically involve the use of multivalent reactive components. Although such an approach is being considered, such as in US Pat. No. 5,601,949, attempts to obtain higher capacity intercalation battery cells using polyvalent cations instead of monovalent lithium. Had little success in practice. The failure of such a battery is believed to be due to several causes, in particular, the size of the multiply charged ions is quite large, which is the negative electrode of graphite or other carbon materials proposed in the patent specification. It often hinders effective intercalation into the composition.
[0005]
Another factor that hinders the efficient operation of a multi-ion battery is a passivation layer of a reactive material called the solid / electrolyte interface (SEI). This is typically a reduction by-product formed on the surface of the negative electrode battery during the first cyclic charging period, such as oxides, fluorides, carbonates, etc. of electrolyte cations. The Li + ions of a typical Li ion intercalation cell can diffuse through the SEI layer and come into contact with the negative electrode and be reduced there, while the polyvalent cations can diffuse in this manner. In addition, participation in the essential oxidation-reduction reaction at the negative electrode is considerably hindered. Although some reduction of polyvalent cations also occurs, this reaction always occurs at a high potential of the passivation layer reaction product, thus reducing the potential difference between the electrodes and consequently lowering the operating voltage of the battery.
[0006]
Thus, in order to actually utilize multivalent electrochemical cell components to increase battery capacity, it is necessary to implement a mechanism other than simple transfer of mobile multivalent cationic species between battery electrodes. The present invention provides a new and effective mechanism that can increase capacity using multivalent battery components.
[0007]
(Summary of the Invention)
A rechargeable electrochemical cell made according to the present invention includes a positive electrode member, a negative electrode member, and an ion-permeable and electronically insulating separator member interposed therebetween. An electrolytic solution containing a polyvalent cation species is further included between the electrode members. The electrolytic solution is preferably a non-aqueous solution of a solute that supplies a multivalent cation such as Y 3+ , La 3+ , Mg 2+ , Ca 2+ , Ba 2+ , and Sr 2+ . The positive electrode member is a transition metal oxide, sulfide and fluoride, capable of capturing and releasing polyvalent cations in a reversible oxidation reaction such as intercalation, alloying, or adsorption during battery operation. Contains active materials such as carbon. The negative electrode member includes an active material that provides a source of a highly reactive second cationic species that acts on the negative electrode. The second cationic species is reversibly released into the electrolyte solvent during operation of the battery and can be taken up from the electrolyte solvent, such as Li + , Na + , K + , Rb + , Cs + . Preferably, it is an alkali metal cation species. Such a negative electrode active material may be an alkali metal, an alkali metal alloy, or a carbon material capable of intercalating an alkali metal cation, such as coke, hard carbon, or graphite.
[0008]
One embodiment of the battery of the present invention comprises a positive electrode member made of V 2 O 5 , a negative electrode member made of LiSi, and 0.5M dissolved in a 2: 1 mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). Y comprises a separator film (C1O 4) 3 borosilicate glass fibers saturated with electrolyte. During the initial discharge of the battery, Y3 + ions from the electrolyte go to a reversible reaction at the positive electrode, and Li + ions from the negative electrode are released into the electrolyte EC: DMC solvent. These reactions are dominant at their respective electrodes, primarily due to the physical proximity of the higher concentration of Y3 + ions to the positive electrode and the higher overall intercalation potential.
[0009]
When the battery is recharged, the reaction tends to go in the opposite direction in the usual way. That is, deintercalation or other release of Y3 + ions from the positive electrode occurs, and both cationic species migrate toward reduction at the negative electrode. However, due to the rapid formation of passivation products at the surface of the negative electrode, only Li + ions can diffuse through the SEI layer and reach the LiSi negative electrode material, where they are theoretically at about -3.0 V vs. It is reduced at the potential of SHE. Despite the greater recharge voltage is applied, a passivation layer of the negative electrode, prevent the reduction of Y 3+ ions, Y 3+ ion remains in the electrolyte solution, thus a relatively low potential of the negative electrode, and as a result The high operating voltage of the battery is maintained.
[0010]
The procedure for fabricating a practically widely used laminated polymer electrolysis cell electrode member, such as that described in US Pat. No. 5,460,904, also suffices for the fabrication of the electrode member of the battery of the present invention. In this way, the positive electrode member is provided with an active material capable of intercalating polyvalent cations, preferably in the form of nanomaterials, for example 28 parts of any vanadium and cobalt oxides and 6 parts of conductive carbon, with poly ( In a matrix composition comprising an organic solution of about 15 parts of a binder polymer such as vinylidene fluoride-co-hexafluoropropylene) and a primary plasticizer of the polymer, for example 23 parts of dibutyl phthalate, for example in 28 parts of acetone. It can be easily prepared by dispersing.
[0011]
The composition is cast into layers, which are air-dried at room temperature into membranes, which are then cut to the desired size for manufacturing batteries. Next, the membrane sample is laminated on the conductive current collecting member, and then laminated on the counter electrode and the separator member. The plasticizer contained therein is then typically extracted from the laminated assembly using a polymer inert solvent such as diethyl ether, after which the electrolyte solution is added. Commercially available batteries are preferably manufactured as fully stacked electrode-separator assemblies, but laboratory laboratory models are more easily assembled for testing in Swagelok test cells. These models are very similar in nature to physical pressure style battery cells represented by the well-known "button" battery. The present invention can also be practiced using this latter style of battery structure.
[0012]
Next, the present invention will be described with reference to the accompanying drawings.
[0013]
(Description of the invention)
A battery cell structure 10 useful in the present invention, as shown in FIG. 1, comprises a positive electrode member 13, a negative electrode member 17, and a separator member 15 interposed therebetween and containing a battery electrolyte, preferably as described in the aforementioned U.S. Pat. No. 5,460,904, in the form of a laminated member assembly. Current collecting members 11, 19 associated with the respective positive and negative electrode members provide an electrical circuit connection to the battery, such as at the extension terminal tabs 12, 16, etc. For laboratory testing purposes, it is useful to place an intermediate electrode, such as a silver wire 14, in the separator member 15 to establish a quasi-reference potential for each of the positive and negative half cells.
[0014]
Positive electrode 13 is generally a nanosized active material capable of intercalating or adsorbing polyvalent electrolyte cations, for example cations such as alkaline earths, for example oxides of transition metals, for example V 2 O 5 , MnO. 2 , a vinylidene copolymer matrix film containing a dispersion of Co 3 O 4 . The negative electrode 17 of the counter electrode can reversibly plate monovalent cations such as Li, Na and other alkalis, form alloys with them, intercalate them, or react with them in other ways. A similar copolymer matrix dispersion of nanomaterial compounds that can, and thus, provide these sources, or simply include metal foils. The separator 15 may also be a polymer membrane as described in the above-referenced specification, or may comprise a widely used microporous membrane or simply a glass fiber mat. All of these can absorb non-aqueous electrolytes, such as 0.5 to 2 M polyvalent cation compound solutions in a mixed solvent of cyclic and acyclic carbonates. Such electrolytes can further include small amounts of monovalent alkali salts that can increase the reaction rate of the negative electrode and allow for the production of a discharged battery.
[0015]
The data criteria established by the optional Ag electrode 14 provide a convenient means to individually determine the electrolysis activity at each electrode of the selected composition. In this way, effective electrode and electrolyte combinations can be identified. For example, the realization of such a reference electrode helps to confirm the electrolysis cell mechanism. In this mechanism, despite applying a voltage well above the theoretically required voltage, the polyvalent cation species, eg, Y 3+, is denied access to the passivated alkali metal anode, thus The electrode cannot be plated or reduced and the battery cannot be charged. In this way, a very positive reduction reaction of the Y3 + cation that takes place at the accessible surface of the passivated negative electrode of the single cation cell in the half-cell, Has been found to be responsible for the essentially invalid combined voltage level indicated by one of the following:
[0016]
In making the working battery cells, the selected battery compositions and components were conveniently assembled in a standard Swagelok test cell apparatus. In this assembly, the positive electrode member and the negative electrode member sandwiching the separator member saturated with the electrolytic solution are compressed between the opposing current collecting block members to achieve indispensable inter-member contact. After assembly, each test cell was placed in a circuit containing a MacPile automatic cycling control / data recording system operating in a galvanostatic mode at a preselected circulating rate of about 7.6 mA / g of active material. The characteristic signature voltage / capacity profile of the test battery was obtained.
[0017]
In view of the above discussion, the following examples provide those skilled in the art with further guidance in selecting combinations of components and compositions useful for effective practice of the present invention.
[0018]
Example I
As a comparative example of the operating voltage level and capacity achieved with a single monovalent cation battery cell common in the prior art, a lithium intercalation test battery was fabricated. The positive electrode was composed of 28 parts by weight of nanosize V 2 O 5, 6 parts by weight of conductive carbon black (MMM super P), 15 parts by weight of poly (vinylidene fluoride-co-hexafluoropropylene) (Elf Atochem, Kynar 2801) and phthalate. The composition was cast as a layer containing 23 parts by weight of dibutyl acid plasticizer in 28 parts by weight of acetone. This layer was dried at 22 ° C. for about 0.5 hour to form a free-standing film, and a 1 cm 2 disk was cut from the film to obtain an electrode member containing about 4 to 10 mg of an active material, that is, V 2 O 5 . A plasticizer was extracted from the electrode disk member using diethyl ether in order to introduce an electrolytic solution into the battery by a conventional method of a stacked battery structure.
[0019]
Similarly, a negative electrode member of LiSi was prepared from a casting layer having the same composition as the positive electrode layer except that Si was used instead of V 2 O 5 . A layer of the dried and extracted piece was placed over a piece of lithium foil and an electrode member disk was cut from the composite material. At the position of the electrode disk member, a LiSi alloy having a surface area of more than about 0.5 m 2 / g was spontaneously formed in a short time.
[0020]
These electrode members were assembled under substantially anhydrous conditions (dew point -80 ° C) in a Swagelok test cell. At this time, a disk-shaped borosilicate glass fiber mat saturated with a 1M LiClO 4 electrolyte solution dissolved in a 2: 1 mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) was sandwiched. The battery is then cycled through the circuit containing the automatic test controller / recorder for several cycles, during which the Li + electrolyte cation reaction at the positive electrode during discharge and reduction at the negative electrode during recharge Was repeated in the usual manner. The recorded data, including the two-electrode output voltage of the battery and indicating a typical intrinsic capacity of about 125 mAh / g, was plotted to obtain the characteristic trace shown in FIG.
[0021]
Example II
The method of Example I utilizing a second comparative example of a battery cell containing a single multivalent cation utilizing the positive electrode member of Example I and the negative electrode member containing a nanosized YSi 2 powdery active material. It was produced in. The electrolyte is a 0.5 M Y (ClO 4 ) 3 solution dissolved in a 2: 1 EC: DMC mixture.
[0022]
Examination of the Y 3+ cation half-cell reaction at each of the positive and negative electrodes using the quasi-reference electrode 14 reveals a clear intercalation or adsorption at the positive electrode and a reduction or alloying at the negative electrode, Reversible multivalent Y 3+ cation activity in this battery was confirmed. Unfortunately, however, the voltage of this single multivalent cation negative electrode material reaction is too high for the positive electrode reaction and the voltage difference between the electrodes required to provide the resulting resulting working voltage level useful in battery cells. Can not be established. This disadvantage is evident from the circulating voltage trace shown in FIG. In FIG. 3, the battery capacity is greatly increased, but the voltage output is of little use.
[0023]
Example III
A battery cell embodying the present invention, that is, a battery cell containing dual cations, at least one of which is a multivalent cation, was produced by the method of the above-described embodiments. The battery cell is capable of intercalating or adsorbing multivalent cations, such as yttrium, lanthanum, alkaline earth metal cations, during the discharge cycle, respectively, in the positive and negative electrodes, and during the charge cycle. In addition, it includes materials capable of reducing, plating, or alloying with smaller, more reactive second cations, generally monovalent alkali cations. With such a combination of electrode materials, the electrolyte can supply multivalent cations and easily receive the second cation species.
[0024]
Specifically, the positive electrode member of the dual cation battery includes the V 2 O 5 nanomaterial of Example I, and the negative electrode member includes LiSi of Example I. Thus, the battery electrode active material can function in the battery structure of the present invention in the same manner as in the prior art structure, but there are surprisingly effective differences in the electrolyte cations used. According to the present invention, the cation of the electrolyte solution is selected as a multivalent cation in a dual cation combination, and the complementary cation is generally the monovalent cation component of the negative electrode composition. In this embodiment, the electrolyte is a 0.5 MY (ClO 4 ) 3 solution. A trace of the circulating voltage of this cell is shown in FIG. 4, which shows a significant intrinsic capacity of up to about 250 mAh / g and the resulting working voltage is stable, in the range of about 3 to 3.5 V .
[0025]
The theorized mode of operation of the dual cation battery of the present invention appears to follow a generalized process. That is, during discharge of the battery, the polyvalent Y 3+ cations in the electrolyte solution are taken in by the positive electrode, Li + cations enter the solution from the negative electrode, and during recharge of the battery, the Y 3+ polyvalent cation species The solution is re-entered and the Li + cation is reduced, plated, or alloyed at the negative electrode to about -3 V vs. -3V. Maintain stable low voltage battery data for SHE.
[0026]
This mode of operation, in which the reaction of one cationic species is dominant at one electrode and the reaction of the complementary cationic species is dominant at the other electrode, is the mode of operation of the sample cell at various reversible circulation stages. Supporting evidence has been received from a series of energy dispersive spectroscopy (EDS) assays of the electrodes. From these EDS test results, the superiority of each of the electrodes in the cation reaction is confirmed by the fact that the Y / V ratio in the positive electrode matches the degree of battery discharge and recharge.
[0027]
Example IV
Another embodiment of the dual cation battery of the present invention, comprising a lithium metal negative electrode member on a nickel support, a positive electrode member containing a Co 3 O 4 active material, and a 0.5 MY (ClO 4 ) 3 electrolyte solution. Produced. This battery showed similar results as the battery of Example III.
[0028]
Example V
Another embodiment of the present invention comprising a metal sodium negative electrode member on a stainless steel support, a positive electrode member containing the same V 2 O 5 active material as in Example III, and a 0.33 MY (CF 3 SO 3 ) 3 electrolyte solution Was further fabricated. The high voltage stability and improved capacity of this dual cation configuration battery can be confirmed from the cycling characteristics trace of the battery shown in FIG. A similar battery limited to the monovalent cation configuration, that is, a battery utilizing an electrolyte containing NaClO 4 dissolved in propylene carbonate, provided only an active capacity of about 90 mAh / g.
[0029]
In view of the above description and examples, it is expected that other embodiments and modifications of the invention will be readily apparent to those skilled in the art. Such embodiments and modifications are intended to be included within the scope of the present invention as set forth in the appended claims.
[Brief description of the drawings]
FIG.
1 is a schematic sectional view of a laminated battery cell embodying the present invention.
FIG. 2
5 is a graph tracing the characteristic recycle voltage and the specific capacity of a prior art single monovalent cation battery.
FIG. 3
4 is a graph tracing the characteristic recycle voltage and specific capacity of a single multivalent cation battery.
FIG. 4
4 is a graph tracing the characteristic recycle voltage and the specific capacity of one embodiment of the dual cation battery of the present invention.
FIG. 5
5 is a graph tracing the characteristic recycle voltage and the specific capacity of another embodiment of the dual cation battery of the present invention.

Claims (11)

正極部材と、負極部材と、これらの間に配置された電解液を含む隔離板部材とを具備する再充電可能なバッテリセルであって、
a)前記電解液は、多価カチオン化学種を供給する溶質を非水性溶媒に溶解した溶液を具備し、
b)前記正極部材は、前記電池の動作中に前記多価カチオン化学種を可逆的に取り込み、放出することができる活物質を具備し、
c)前記負極部材は、前記電池の動作中に第2のカチオン化学種を可逆的に前記溶媒中に放出し、前記溶媒から取り込むことができる活物質を具備する
ことを特徴とするバッテリセル。
A rechargeable battery cell comprising a positive electrode member, a negative electrode member, and a separator member including an electrolyte disposed therebetween.
a) the electrolyte comprises a solution in which a solute supplying a polyvalent cation species is dissolved in a non-aqueous solvent;
b) the positive electrode member comprises an active material capable of reversibly capturing and releasing the polyvalent cation species during operation of the battery;
c) The battery cell, wherein the negative electrode member includes an active material capable of reversibly releasing a second cationic species into the solvent during operation of the battery and taking in the second cationic species from the solvent.
a)前記多価カチオン化学種は、イットリウム、ランタンおよびアルカリ土類金属から成るグループから選択され、
b)前記第2のカチオン化学種は、アルカリ金属から成るグループから選択される
ことを特徴とする請求項1に記載のバッテリセル。
a) said polyvalent cation species is selected from the group consisting of yttrium, lanthanum and alkaline earth metals;
2. The battery cell of claim 1, wherein b) said second cationic species is selected from the group consisting of alkali metals.
前記正極活物質は、遷移金属の酸化物、硫化物およびフッ化物、ならびにフッ化炭素から成るグループから選択されることを特徴とする請求項2に記載のバッテリセル。The battery cell according to claim 2, wherein the positive electrode active material is selected from the group consisting of transition metal oxides, sulfides and fluorides, and fluorocarbons. 前記正極活物質は、バナジウム、マンガンおよびコバルトの酸化物から成るグループから選択されることを特徴とする請求項3に記載のバッテリセル。The battery cell according to claim 3, wherein the positive electrode active material is selected from the group consisting of oxides of vanadium, manganese, and cobalt. 前記負極活物質は、アルカリ金属、アルカリ金属合金、およびアルカリ金属カチオンをインターカレートすることができる炭素材料から成るグループから選択されることを特徴とする請求項2に記載のバッテリセル。The battery cell according to claim 2, wherein the negative electrode active material is selected from the group consisting of an alkali metal, an alkali metal alloy, and a carbon material capable of intercalating an alkali metal cation. 前記負極活物質は、リチウム、ナトリウム、リチウム合金およびナトリウム合金から成るグループから選択されることを特徴とする請求項5に記載のバッテリセル。The battery cell according to claim 5, wherein the negative electrode active material is selected from the group consisting of lithium, sodium, a lithium alloy, and a sodium alloy. 前記多価カチオン化学種は、Y3+、La3+、Mg2+、Ca2+、Ba2+およびSr2+から成るグループから選択され、前記第2のカチオン化学種は、Li、Na、K、RbおよびCsから成るグループから選択されることを特徴とする請求項2に記載のバッテリセル。The multivalent cationic species is selected from the group consisting of Y 3+ , La 3+ , Mg 2+ , Ca 2+ , Ba 2+ and Sr 2+, and the second cationic species is Li + , Na + , K + , The battery cell according to claim 2, wherein the battery cell is selected from the group consisting of Rb + and Cs + . 正極部材と、負極部材と、これらの間に配置された電解液を含む隔離板部材とを具備し、充放電による可逆動作が可能なバッテリセルであって、
前記電池の動作中に、
a)前記電解液は、少なくとも2種類の反応性カチオン化学種をさまざまな濃度で含む非水性溶媒を具備し、
b)前記カチオン化学種のうちの第1のカチオン化学種は前記正極部材のところで主に反応し、
c)前記カチオン化学種のうちのもう一方のカチオン化学種は前記負極部材のところで主に反応する
ことを特徴とするバッテリセル。
Positive electrode member, a negative electrode member, comprising a separator member containing an electrolytic solution disposed therebetween, a battery cell capable of reversible operation by charging and discharging,
During operation of the battery,
a) the electrolyte comprises a non-aqueous solvent comprising at least two reactive cationic species at various concentrations;
b) a first of the cationic species reacts primarily at the positive electrode member;
c) The other of the cationic species reacts mainly at the negative electrode member.
a)前記化学種の前記第1の化学種は、Y3+、La3+およびアルカリ土類金属カチオンから成るグループから選択される多価カチオンであり、
b)前記化学種の前記もう一方の化学種は、アルカリ金属カチオンから成るグループから選択される一価カチオンである
ことを特徴とする請求項8に記載のバッテリセル。
a) said first species of said species is a multivalent cation selected from the group consisting of Y 3+ , La 3+ and alkaline earth metal cation;
9. The battery cell of claim 8, wherein b) the other species of the species is a monovalent cation selected from the group consisting of alkali metal cations.
a)前記電池の放電中に、前記カチオン化学種の前記第1の化学種は、前記正極反応において前記溶媒から取り込まれ、前記カチオン化学種のもう一方の化学種は、前記負極反応において前記溶媒中に放出され、
b)前記電池の充電中に、前記カチオン化学種の前記第1の化学種は、前記正極反応において前記溶媒中に放出され、前記カチオン化学種のもう一方の化学種は、前記負極反応において前記溶媒から取り込まれる
ことを特徴とする請求項8に記載のバッテリセル。
a) during the discharge of the battery, the first species of the cationic species is taken from the solvent in the positive electrode reaction, and the other species of the cationic species is the solvent in the negative electrode reaction. Released into the
b) during charging of the battery, the first species of the cationic species is released into the solvent in the positive electrode reaction, and the other species of the cationic species is released in the negative electrode reaction. The battery cell according to claim 8, wherein the battery cell is taken from a solvent.
前記カチオン化学種の第1の化学種は、Y3+、La3+、Mg2+、Ca2+、Ba2+およびSr2+から成るグループから選択され、前記もう一方のカチオン化学種は、Li、Na、K、RbおよびCsから成るグループから選択されることを特徴とする請求項8に記載のバッテリセル。The first species of the cationic species is selected from the group consisting of Y 3+ , La 3+ , Mg 2+ , Ca 2+ , Ba 2+ and Sr 2+, and the other cationic species is Li + , Na + , K +, battery cell according to claim 8, characterized in that it is selected from the group consisting of Rb + and Cs +.
JP2001587502A 2000-05-24 2001-05-07 Rechargeable dual cation electrochemical battery cell Pending JP2004513470A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US57764300A 2000-05-24 2000-05-24
PCT/US2001/014681 WO2001091209A1 (en) 2000-05-24 2001-05-07 Dual cation rechargeable electrochemical battery cell

Publications (1)

Publication Number Publication Date
JP2004513470A true JP2004513470A (en) 2004-04-30

Family

ID=24309563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001587502A Pending JP2004513470A (en) 2000-05-24 2001-05-07 Rechargeable dual cation electrochemical battery cell

Country Status (6)

Country Link
EP (1) EP1287569A1 (en)
JP (1) JP2004513470A (en)
KR (1) KR20030007651A (en)
AU (1) AU2001259584A1 (en)
TW (1) TW506154B (en)
WO (1) WO2001091209A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187752B2 (en) * 2008-04-16 2012-05-29 Envia Systems, Inc. High energy lithium ion secondary batteries
CN102171868A (en) 2008-09-30 2011-08-31 安维亚系统公司 Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
US10056644B2 (en) 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
TWI437753B (en) 2009-08-27 2014-05-11 Envia Systems Inc Metal oxide coated positive electrode materials for lithium-based batteries
WO2011031546A2 (en) 2009-08-27 2011-03-17 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US9843041B2 (en) 2009-11-11 2017-12-12 Zenlabs Energy, Inc. Coated positive electrode materials for lithium ion batteries
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
US8765306B2 (en) 2010-03-26 2014-07-01 Envia Systems, Inc. High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
US8741484B2 (en) 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
MX2013001029A (en) 2010-07-30 2013-03-22 Nissan Motor Laminated cell.
US9083062B2 (en) 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
BR112013004949A2 (en) 2010-09-01 2018-01-30 Nissan Motor Bipolar battery.
US8928286B2 (en) 2010-09-03 2015-01-06 Envia Systems, Inc. Very long cycling of lithium ion batteries with lithium rich cathode materials
US8663849B2 (en) 2010-09-22 2014-03-04 Envia Systems, Inc. Metal halide coatings on lithium ion battery positive electrode materials and corresponding batteries
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
US9159990B2 (en) 2011-08-19 2015-10-13 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
WO2013090263A1 (en) 2011-12-12 2013-06-20 Envia Systems, Inc. Lithium metal oxides with multiple phases and stable high energy electrochemical cycling
US9070489B2 (en) 2012-02-07 2015-06-30 Envia Systems, Inc. Mixed phase lithium metal oxide compositions with desirable battery performance
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9552901B2 (en) 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
US10115962B2 (en) 2012-12-20 2018-10-30 Envia Systems, Inc. High capacity cathode material with stabilizing nanocoatings
WO2015024004A1 (en) 2013-08-16 2015-02-19 Envia Systems, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953302A (en) * 1973-08-16 1976-04-27 P. R. Mallory & Co. Inc. Prevention of dendritic plating of lithium
US4316777A (en) * 1979-10-01 1982-02-23 Duracell International Inc. Rechargeable nonaqueous silver alloy anode cell
US4403021A (en) * 1980-05-08 1983-09-06 Gte Laboratories Incorporated Electrochemical cell and electrolytic solution therefor
JPH0195649A (en) * 1987-10-08 1989-04-13 Hitachi Ltd Communication method
JPH04179065A (en) * 1990-11-09 1992-06-25 Ricoh Co Ltd Ion conductive visco-elastic substance and secondary battery
JP2000133307A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Non-aqueous secondary battery

Also Published As

Publication number Publication date
AU2001259584A1 (en) 2001-12-03
EP1287569A1 (en) 2003-03-05
WO2001091209A1 (en) 2001-11-29
KR20030007651A (en) 2003-01-23
TW506154B (en) 2002-10-11

Similar Documents

Publication Publication Date Title
JP2004513470A (en) Rechargeable dual cation electrochemical battery cell
CA2345518C (en) Sandwich cathode design for alkali metal electrochemical cell with high discharge rate capability
US9123941B2 (en) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US6403253B1 (en) Aqueous rechargeable battery
KR101338142B1 (en) Lithium air battery
CN100373663C (en) Nonaqueous electrolyte secondary battery and charge/discharge system thereof
US10615452B2 (en) High voltage rechargeable magnesium cell
EP3712987A1 (en) Anode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising anode for lithium secondary battery
KR20140004640A (en) A rechargeable electrochemical energy storage device
US20220052333A1 (en) Rechargeable battery cell
JPWO2010073978A1 (en) Lithium secondary battery
KR20230117195A (en) SO2-based electrolytes and rechargeable battery cells for rechargeable battery cells
JP2002124300A (en) Lithium ion secondary electrochemical battery provided with multiple electrode plates having different discharge speed region
CN109037789B (en) Lithium-aluminum double-ion rechargeable battery
US6482548B2 (en) Lithium-aluminum dual-cation rechargeable electrochemical battery cell
CN102195073A (en) Nonaqueous electrolyte battery
CN106252643A (en) Positive active material and battery
US20160372737A1 (en) Electrode material and battery
DE102013206740A1 (en) Alkali-oxygen cell with titanate anode
KR20220113449A (en) cathode active material
JPH10188667A (en) Manufacture of polymer electrolyte
KR100500886B1 (en) Anode active material for rechargeable lithium battery, producing method thereof and lithium secondary battery using the same
KR20220167329A (en) A cathode active material and a lithium ion battery containing the cathode active material
JP2022550831A (en) Use of transition metal sulfide compounds in positive electrodes of solid-state batteries
WO2001071833A1 (en) TRANSITION METAL CHALCOGENIDE ELECTRODE COMPONENTS FOR LOW-VOLTAGE RECHARGEABLE Li AND Li-ION BATTERIES

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508