NO860165L - PROCEDURE FOR RECOVERY OF SOLVENTS BY CLEANING PROCESSES. - Google Patents

PROCEDURE FOR RECOVERY OF SOLVENTS BY CLEANING PROCESSES.

Info

Publication number
NO860165L
NO860165L NO860165A NO860165A NO860165L NO 860165 L NO860165 L NO 860165L NO 860165 A NO860165 A NO 860165A NO 860165 A NO860165 A NO 860165A NO 860165 L NO860165 L NO 860165L
Authority
NO
Norway
Prior art keywords
solvent
cleaning
activated carbon
vapor
air mixture
Prior art date
Application number
NO860165A
Other languages
Norwegian (no)
Inventor
Ewald Preisegger
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO860165L publication Critical patent/NO860165L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/0072Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/0081Feeding the steam or the vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Detergent Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

Oppfinnelsens gjenstand er en fremgangsmåte til gjenvinning av oppløsningsmidler ved renseprosesser med organiske opp-løsningsmidler, unntatt tekstilrensing og tekstilappretering, og som etter avpumping av de flytende oppløsningsmiddeldeler foreligger i form av en luft-/oppløsningsmiddeldampblanding og delvis utkondenseres ved avkjøling, idet de enda dampformet gjenblivende oppløsningsmiddeldeler deretter adsorberes ved aktivkull. The object of the invention is a method for the recovery of solvents in cleaning processes with organic solvents, excluding textile cleaning and textile finishing, and which, after pumping off the liquid solvent parts, is in the form of an air/solvent vapor mixture and partially condenses out during cooling, as the remaining vapors solvent parts are then adsorbed by activated carbon.

Ved renseprosesser anvendes i dag overveiende organiske oppløsningsmidler som triklorfluormetan (FKW 11), triklor-trifluoretan (FKW 113), perkloretylen eller metylenklorid. In cleaning processes today predominantly organic solvents such as trichlorofluoromethane (FKW 11), trichlorotrifluoroethane (FKW 113), perchlorethylene or methylene chloride are used.

Rensingen av f.eks. metalldeler, optiske apparater, medi-sinske apparater, elektriske bygningsdeler osv. finner van-ligvis sted i oventil åpne rensebeholdere. Gjenvinning av oppløsningsmidlet foregår ved kondensasjon i rensebehol-derens damprom. Uheldig er den ufullstendige kondensasjon, således at betraktelige mengder av oppløsningsmiddeldamp uttas i omgivelsene. The cleaning of e.g. metal parts, optical devices, medical devices, electrical building parts, etc. usually take place in cleaning containers open at the top. Recovery of the solvent takes place by condensation in the steam room of the cleaning container. Unfortunate is the incomplete condensation, so that considerable amounts of solvent vapor are released into the surroundings.

Disse organiske oppløsningsmidler må gjenvinnes ved rense-prosessen for å unngå oppløsningsmiddeltap og dermed for-bundede omgivelsesbelastninger. These organic solvents must be recovered during the cleaning process in order to avoid solvent loss and associated environmental pollution.

Til grunn for oppfinnelsen ligger følgelig den oppgave å tilveiebringe en fremgangsmåte, hvorved oppløsningsmiddel-tapene kan minskes betraktelig. The invention is therefore based on the task of providing a method by which the solvent losses can be reduced considerably.

i Oppgaven løses ved ovennevnte fremgangsmåte som erkarakterisert vedat det innstilles et metningspartialtrykk av opp-løsningsmidlet i oppløsningsmiddeldamp-/luftblandingen på maksimalt 0,25 bar, fortrinnsvis fra 0,05 til 0,2 bar og de i aktivkull adsorberte oppløsningsmiddeldeler desorberes ; med en oppløsningsmiddeldamp/-luftblanding av samme konsentrasjon som ved adsorpsjonen og ved temperaturer på i The task is solved by the above-mentioned method which is characterized by setting a saturation partial pressure of the solvent in the solvent vapor/air mixture of a maximum of 0.25 bar, preferably from 0.05 to 0.2 bar and the solvent parts adsorbed in activated carbon are desorbed; with a solvent vapor/air mixture of the same concentration as during the adsorption and at temperatures of

ca. 100 til 150°C.about. 100 to 150°C.

For bedre forståelse omtales fremgangsmåten ifølge oppfinnelsen ved hjelp av et renseanlegg, slik den er vist på teg-ningsfiguren. For a better understanding, the method according to the invention is described using a purification plant, as it is shown in the drawing figure.

Etter avslutning av renseprogrammet og avpumping av opp-løsningsmidlet til forrådstanken 10, lukkes i første rekke ventilene 1 og 2, ventilene 6 og 8 forblir lukket. Opp-løsningsmiddeldamp/luftblandingen føres ved hjelp av en vifte 11 i et lukket kretsløp, som består av rensebeholder 9, vifte 11, fordamper 12, ventil 3, flytendegjører 14, eventuelt varmeregister 16, ventilene 4 og 5 og rensebeholder 9. Kuldeanlegget består av fordamperen 12, kompre-merer 13, flytendegjører 14 og ekspansjonsventil 20. Deres ytelse dimensjoneres således at det innstiller et metningspartialtrykk av oppløsningsmidlet i oppløsningsmiddeldamp/ luftblandingen på maksimalt 0,25 bar, fortrinnsvis 0,05 til 0,2 bar. Dette er ved siden av tilstrekkelig komprimerings-ytelse å oppnå den tilsvarende dimensjonering av varmeut-vekslerflåtene på fordamperen 12. Viften 11 suger oppløs-ningsmiddeldamp/luftblanding fra rensebeholderen 9 og transporterer den over fordamperen 12 av kuldeanlegget, hvorved det innstiller seg en konsentrasjon av oppløsnings-middeldamp tilsvarende metningspartialtrykket ved temperaturen på fordamperuttredet. Overskytende oppløsningsmiddel-deler kondenseres og strømmer over en ledning 21 ved åpnet ventil 8 inn i forrådstanken 10. Den avfuktede oppløsnings-middeldamp/luftblanding kommer nå over ventil 3 inn i flyt-endegjøreren 14 av kuldeanlegget, hvor den igjen oppvarmes. Hvis nødvendig, f.eks. ved porøst rensegods, øker varme- After completion of the cleaning program and pumping of the solvent to the storage tank 10, valves 1 and 2 are first closed, valves 6 and 8 remain closed. The solvent vapour/air mixture is fed by means of a fan 11 in a closed circuit, which consists of cleaning container 9, fan 11, evaporator 12, valve 3, liquefier 14, possibly heat register 16, valves 4 and 5 and cleaning container 9. The cooling system consists of the evaporator 12, compressor 13, liquefier 14 and expansion valve 20. Their performance is dimensioned such that it sets a saturation partial pressure of the solvent in the solvent vapor/air mixture of a maximum of 0.25 bar, preferably 0.05 to 0.2 bar. This is in addition to sufficient compression performance to achieve the corresponding dimensioning of the heat exchanger fins on the evaporator 12. The fan 11 sucks solvent vapor/air mixture from the cleaning container 9 and transports it over the evaporator 12 of the cooling system, whereby a concentration of solvent is set -medium vapor corresponding to the saturation partial pressure at the temperature of the evaporator outlet. Surplus solvent parts are condensed and flow over a line 21 at opened valve 8 into the storage tank 10. The dehumidified solvent vapor/air mixture now comes via valve 3 into the flow finisher 14 of the cooling system, where it is heated again. If necessary, e.g. in the case of porous cleaning materials, heat increases

i registeret 16 temperaturen av denne blanding til ca. 25 til 4 0 K over oppløsningsmidlets koketemperatur. Den oppvarmede blanding kommer deretter over ventilene 4 og 5 igjen inn i rensebeholderen 9, hvor den igjen opptar oppløsningsmiddel-damp. Når tørkeprosessen er avsluttet, lukkes ventil 8 og i ventil 3 og 5 omstilles således at oppløsningsmiddeldamp/ luftblandingen etter å ha passert fordamperen 12 over led-ningene 15 og 18 passerer en aktivkullfilterlagring 17. in register 16 the temperature of this mixture to approx. 25 to 40 K above the boiling temperature of the solvent. The heated mixture then comes over the valves 4 and 5 back into the cleaning container 9, where it again takes up solvent vapour. When the drying process is finished, valve 8 is closed and valves 3 and 5 are adjusted so that the solvent vapor/air mixture, after passing through the evaporator 12 via the lines 15 and 18, passes an activated carbon filter storage 17.

Ventilene 6 og 7 åpnes samtidig. Oppløsningsmiddeldampen adsorberes på aktivkullet, den oppløsningsmiddelfrie luft utblåses over ventil 7. Samtidig spyles rensebeholderen 9 med friskluft, som tilsuges over ventil 6. Denne driftsmåte bibeholdes så lenge inntil rensebeholderen er fylt med friskluft. Etter avslutning av beholderspylingen med friskluft omkobles ventilene 4 og 5, således at det ikke mer noen forbindelse mellom aktivfilterlagring 17 og rensebeholder 9. Nå kan ifyllingsåpningen av rensebeholderen 9 åpnes og rensegodset uttas. Valves 6 and 7 are opened simultaneously. The solvent vapor is adsorbed on the activated carbon, the solvent-free air is blown out via valve 7. At the same time, the cleaning container 9 is flushed with fresh air, which is drawn in via valve 6. This mode of operation is maintained until the cleaning container is filled with fresh air. After completion of the container flushing with fresh air, valves 4 and 5 are switched, so that there is no longer any connection between active filter storage 17 and cleaning container 9. Now the filling opening of the cleaning container 9 can be opened and the cleaning material removed.

Etter innføring av nytt gods regenereres i første rekke aktivkullfilterlagringen 17. Dette foregår likeledes igjen i lukket kretsløp, idet aktivkullfilterlagringen gjennom-føres i motsatt retning som ved adsorpsjonen. For denne prosess lukkes i første rekke ventil 6, ventil 8 åpnes og ventil 3, 4 og 5 stilles således at gassen kan ta den nedenfor omtalte vei: Etter innkobling av viften 11 og kuldeanlegget tilsuges i første rekke luft fra rensebeholderen 9, avkjøles i fordamperen 12 av kuldeanlegget, oppvarmes igjen i flytende-gjøreren 14 og oppvarmes i varmeregisteret 16 så vidt at luftstrømmen ved uttreden når en temperatur på ca.100 til 150°C. Denne varme luftstrøm føres nå over ledning 19 til den allerede på forhånd oppvarmede aktivkullfilterlagring 17, hvorved adsorbert oppløsningsmiddel igjen desorberes og uttas med luftstrømmen over ledning 18. Eventuelt er det også tilstrekkelig allerede oppvarming av aktivkull-lagringen. Ved ytterligere passeringer anriker oppløs-ningsmiddeldampen seg i den sirkulerende gasstrøm. I fordamperen 12 kondenseres oppløsningsmidlet. Endelig innstiller det seg en likevekt tilsvarende metningspartialtrykket av det ved uttreden av fordamperen 12 herskende temperatur. Ventil 7 forblir ved denne prosess lukket. Denne driftsmåte fortsettes så lenge inntil det oppnås en ny likevektsoppladning av aktivkullfilterlagringen 17, som tilsvarer en oppløsningsmiddeldampdel på maksimalt 20 volum-% i den gjennomblåste luft ved en temperatur på ca. 150°C. Er denne tilstand nådd, utkobles oppvarmingen 22 av aktivkullfilterlagringen 17, samtidig stilles ventilene 4 og 5 således at det ikke mer består noen forbindelse mellom aktivkullfilterlagring og rensebeholder 9. Viften 11 avkobles, ventil 8 lukkes og ventilene 1 og 2 åpnes. Nå kan rensebeholderen 9 oppsvømmes med oppløs-ningsmiddel og renseprogrammet begynne. After the introduction of new goods, the activated carbon filter storage 17 is regenerated in the first place. This also takes place again in a closed circuit, as the activated carbon filter storage is carried out in the opposite direction to the adsorption. For this process, valve 6 is first closed, valve 8 is opened and valves 3, 4 and 5 are set so that the gas can take the path described below: After switching on the fan 11 and the cooling system, air is first sucked in from the cleaning container 9, cooled in the evaporator 12 of the cooling system, is heated again in the liquefier 14 and heated in the heat register 16 to such an extent that the air flow at the exit reaches a temperature of approx. 100 to 150°C. This hot air flow is now led via line 19 to the already pre-heated activated carbon filter storage 17, whereby adsorbed solvent is again desorbed and removed with the air flow via line 18. If necessary, already heating the activated carbon storage is also sufficient. During further passes, the solvent vapor enriches itself in the circulating gas stream. In the evaporator 12, the solvent is condensed. Finally, an equilibrium is established corresponding to the saturation partial pressure of the prevailing temperature at the outlet of the evaporator 12. Valve 7 remains closed during this process. This mode of operation is continued until a new equilibrium charging of the activated carbon filter storage 17 is achieved, which corresponds to a solvent vapor fraction of a maximum of 20% by volume in the blown air at a temperature of approx. 150°C. If this condition is reached, the heating 22 of the activated carbon filter storage 17 is switched off, at the same time the valves 4 and 5 are set so that there is no longer any connection between the activated carbon filter storage and cleaning container 9. The fan 11 is switched off, valve 8 is closed and valves 1 and 2 are opened. Now the cleaning container 9 can be flooded with solvent and the cleaning program can begin.

Over en overtrykksventil 23 (innstilling på ca. 1,4 bar absolutt) og ledning 25 kan eventuelt oppstått overtrykk avspennes (ved åpen ventil 7). Via an overpressure valve 23 (setting of approx. 1.4 bar absolute) and line 25, any overpressure that may have occurred can be relieved (with open valve 7).

Skal desorpsjonen tidsmessig gjennomføres parallelt med en annen chargedel, kan over en ekstra installert ledning 24 beholderrommet omgås. If the desorption is to be carried out in parallel with another charge part, the container compartment can be bypassed via an extra installed line 24.

Claims (1)

Fremgangsmåte til gjenvinning av oppløsningsmidlet ved renseprosesser med organiske oppløsningsmidler unntatt tekstilrensing og tekstilappretering, og som etter avpumping av den flytende oppløsningsmiddeldel foreligger i form av en oppløsningsmiddeldamp/luftblnding utkondenseres delvis ved avkjøling, idet den enda dampformet gjenblivne oppløsningsmiddeldel deretter adsorberes ved hjelp av aktivkull, karakterisert ved at det innstilles et metningspartialtrykk av oppløsningsmidlet i oppløsningsmiddeldampen/luftblandingen på maksiamlt 0,25 bar,fortrinnsvis fra 0,05 til 0,2 bar, og den i aktivkullet adsorberte oppløsningsmiddeldel desorberes med en oppløs-ningsmiddeldamp/luf tblanding av samme konsentrasjon som ved adsorpsjonen og ved temperaturer fra ca. 100 til 150°C.Procedure for recycling the solvent in cleaning processes with organic solvents, excluding textile cleaning and textile finishing, and which, after pumping off the liquid solvent part, exists in the form of a solvent vapor/air mixture that is partially condensed out by cooling, with the remaining solvent part still in vapor form then being adsorbed with the help of activated carbon, characterized by setting a saturation partial pressure of the solvent in the solvent vapor/air mixture of a maximum of 0.25 bar, preferably from 0.05 to 0.2 bar, and the solvent part adsorbed in the activated carbon is desorbed with a solvent vapor/air mixture of the same concentration as with the adsorption and at temperatures from approx. 100 to 150°C.
NO860165A 1985-01-19 1986-01-17 PROCEDURE FOR RECOVERY OF SOLVENTS BY CLEANING PROCESSES. NO860165L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19853501643 DE3501643A1 (en) 1985-01-19 1985-01-19 METHOD FOR RECOVERING SOLVENTS IN CLEANING PROCESSES

Publications (1)

Publication Number Publication Date
NO860165L true NO860165L (en) 1986-07-22

Family

ID=6260196

Family Applications (1)

Application Number Title Priority Date Filing Date
NO860165A NO860165L (en) 1985-01-19 1986-01-17 PROCEDURE FOR RECOVERY OF SOLVENTS BY CLEANING PROCESSES.

Country Status (6)

Country Link
EP (1) EP0189041A1 (en)
DE (1) DE3501643A1 (en)
DK (1) DK23286A (en)
FI (1) FI860196A (en)
NO (1) NO860165L (en)
PT (1) PT81866B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612799B1 (en) * 1987-03-27 1989-07-13 Ameg France PROCESS AND EQUIPMENT FOR TREATING AND RECOVERING SOLVENT VAPORS BY RECYCLING ON ACTIVE CARBON
DE3810705A1 (en) * 1988-03-25 1989-10-05 Silica Gel Gmbh Adsorptions Te Multistage process for removing solvents contained in a gas
CH681695A5 (en) * 1989-03-07 1993-05-14 Aquamot Ag
DE4016513A1 (en) * 1990-05-22 1991-11-28 Adelmann Gmbh METHOD AND SYSTEM FOR SEPARATING A MIXTURE FROM TWO GAS-SHAPED COMPONENTS
DE4040390C2 (en) * 1990-12-17 1994-08-25 Herco Kuehltechnik Hermanns Un Solvent condenser for a solvent recovery system
DE4131589A1 (en) * 1991-09-23 1993-04-01 Dieter Bazin Dry cleaning of textiles and leather with solvent esp. tetra:chloroethylene - with removal of solvent by centrifuging followed by blowing with air
DE4206020C1 (en) * 1992-02-27 1993-07-29 Peter W. D. Van Der Heijden Laborbedarf, 4926 Doerentrup, De Recovery of solvent from water-solvent mixt. - comprises container contg. evaporator and condenser connected by common cooling circuit with incorporated compressor
DE4225436C1 (en) * 1992-07-31 1993-11-25 Daimler Benz Ag Catalytic hardening of sand mould elements - with two-stage sepn. and removal of amine(s) and solvents from exhaust air
DE4227416C1 (en) * 1992-08-19 1993-12-23 Schwelm Anlagen App Hydrocarbon esp. gasoline fumes recovery from air - involves condensation using liq. coolant prior to adsorption
DE19635075A1 (en) 1996-08-30 1998-03-05 Maul & Co Chr Belser Gmbh Process and device for cleaning and reusing exhaust air
CN109316897A (en) * 2018-11-10 2019-02-12 江西瑞达新材料有限公司 A kind of organic solvent two stage cycle recovery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE411636C (en) * 1922-06-07 1925-04-02 Carl Mangold Dr Process and device for the recovery of condensable substances from mixtures with air or other gases by adsorption
US3070463A (en) * 1961-06-08 1962-12-25 Donald J Barday Solvent recovering and purifying method and apparatus

Also Published As

Publication number Publication date
PT81866A (en) 1986-02-01
FI860196A0 (en) 1986-01-16
DE3501643A1 (en) 1986-07-24
EP0189041A1 (en) 1986-07-30
PT81866B (en) 1987-08-03
FI860196A (en) 1986-07-20
DK23286D0 (en) 1986-01-17
DK23286A (en) 1986-07-20

Similar Documents

Publication Publication Date Title
KR950008626B1 (en) Adsorption condensation recovery system
NO860165L (en) PROCEDURE FOR RECOVERY OF SOLVENTS BY CLEANING PROCESSES.
US4056369A (en) Method of and apparatus for the recovery of a desired material from a carrier stream
US6802137B1 (en) Solvent drying method
KR102252302B1 (en) Sublimation device for high purity semiconductor
NO158632B (en) PROCEDURE FOR RECOVERY OF SOLVENTS STYLE TREATMENT.
EP0492814B1 (en) Method of and apparatus for controlling the solvent vapor concentration in a gas lock of an apparatus
US5277716A (en) Method of controlling the solvent vapor concentration in an apparatus
CN212468136U (en) Online activation device for adsorption material
JPH0515725A (en) Apparatus for concentrating and recovering solvent
EP0276876B1 (en) Method for degreasing articles in a vapour
JP5871308B2 (en) Low boiling point solvent recovery method and apparatus
JP2015160183A (en) Method and device of recovering adsorbed volatile organic compound
US20240207819A1 (en) Volatile Organic Compound Condensing System and Method for Enhancing Drying Efficiency of Filter Using Condensation Heat of VOC
EP0437038B1 (en) Method of controlling solvent vapor concentrations in the cleaning of articles and apparatus useful therefore
JPH0434474B2 (en)
JPH04341319A (en) Method for solvent recovery
JP2994806B2 (en) Dry cleaner solvent cooling method
JPH11507584A (en) Filter regeneration and dry cleaning system
JPH06198119A (en) Method for recovering volatile matter
JPS636680Y2 (en)
CN117029324A (en) Refrigerant recovery system and control method
JP2004344718A (en) Method for treating organic solvent-containing gas
JPS6045354A (en) Drying apparatus of high pressure steam pasturizer
JPH06296795A (en) Drying device for clothes and the like