NO852408L - Concrete element for bearing tires. - Google Patents

Concrete element for bearing tires.

Info

Publication number
NO852408L
NO852408L NO852408A NO852408A NO852408L NO 852408 L NO852408 L NO 852408L NO 852408 A NO852408 A NO 852408A NO 852408 A NO852408 A NO 852408A NO 852408 L NO852408 L NO 852408L
Authority
NO
Norway
Prior art keywords
concrete
lower layer
concrete element
density
ballast
Prior art date
Application number
NO852408A
Other languages
Norwegian (no)
Inventor
Thomas Oesterberg
Original Assignee
A Betong Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Betong Ab filed Critical A Betong Ab
Publication of NO852408L publication Critical patent/NO852408L/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Panels For Use In Building Construction (AREA)
  • Floor Finish (AREA)
  • Rolling Contact Bearings (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Description

Den foreliggende oppfinnelse vedrører et betongelementThe present invention relates to a concrete element

for oppbygning av et bærende dekke, hvilket element har en prefabrikert bunnplate av betong, hvilken bærer elementets armering, og en på bunnplaten utført påstøpning av betong. for the construction of a load-bearing deck, which element has a prefabricated concrete bottom plate, which carries the element's reinforcement, and a cast-in of concrete carried out on the bottom plate.

En kjent, prefabrikert betongplate, såkalt filigranplate, som i samsvar med det ovenstående anvendes som bunnplate ved oppbygning av et bærende dekke, bringes på plass på byggeplassen hvoretter et lag av betong støpes på dette. Bunnplaten bærer en armering som rager ut fra bunnplatens øvre flate for å gripe inn i påstøpningen. Når bunnplaten er bragt på plass, er dermed også armeringen på plass. Størstedelen av det besværlige armeringsarbeid er således allerede gjort på fabrikk. Filigranplaten tjenestegjør som blivende form ved støping av et bærende dekke, hvilket gjør at formsettingen forenkles betydelig og formrivingen elimineres, slik at byggetiden kan forkortes. Store for-deler oppnås således ved oppbygning av et bærende dekke ved hjelp av betongelement som består av en filigranplate og en på denne på byggeplassen anbragt påstøping av betong. Denne påstøping utgjøres ved kjente utførelser, av et sjikt av betong, idet lagets tykkelse og betongslaget velges i avhengighet av blant annet spennvidde. Betongen må ha tilstrekkelig trykkholdfasthet for å klare de trykk-påkjenninger som betongelementet vil komme til å bli ut-satt for, hvilket ifølge kjent teknikk har innebåret at en trykkholdfast betong med høy tetthet velges for hele påstøpingen. Ved store spennvidder, ca.10 m og mer, gir derfor den kjente teknikk den ulempe at betongelementer kommer til å bli nedbøyd som følge av den store egenvekt. A known, prefabricated concrete slab, so-called filigree slab, which, in accordance with the above, is used as a base slab when building a load-bearing cover, is brought into place on the construction site after which a layer of concrete is cast on it. The base plate carries a reinforcement that projects from the top surface of the base plate to engage the casting. When the bottom plate is in place, the reinforcement is also in place. The majority of the difficult reinforcement work has thus already been done in the factory. The filigree sheet serves as a permanent form when casting a load-bearing cover, which means that setting the form is considerably simplified and form tearing is eliminated, so that the construction time can be shortened. Great advantages are thus achieved by building a load-bearing cover using a concrete element which consists of a filigree plate and a pouring of concrete placed on this on the construction site. In known designs, this casting is made up of a layer of concrete, the thickness of the layer and the concrete layer being chosen depending on, among other things, the span. The concrete must have sufficient compressive strength to cope with the pressure stresses to which the concrete element will be exposed, which according to known technology has meant that a compressive-resistant concrete with a high density is chosen for the entire casting. For large spans, approx. 10 m and more, the known technique therefore gives the disadvantage that concrete elements will be bent down as a result of the large self-weight.

Formålet med den foreliggende oppfinnelse er derfor å til-veiebringe et betongelement, hvilket er av det ovenfor beskrevne slag og har en påstøping som har tilstrekkelig trykkholdfasthet, men fortsatt er så lett at noen merkbar nedbøyning av elementet ikke fåes selv ved store spennvidder. Dette formål oppnås med et betongelement som er av det innledningsvis angitte slag og som ifølge den foreliggende oppfinnelse erkarakterisert vedat påstøpingen utgjøres av et øvre sjikt av betong med en trykkholdfasthet på minst 30 MPa (etter 28 døgn) og en tetthet på minst 2.300 kg/m 3 og av et undre sjikt av lettballastbetong med en tetthet på 600-800 kg/m<3>. The purpose of the present invention is therefore to provide a concrete element, which is of the type described above and has a casting which has sufficient compressive strength, but is still so light that no noticeable deflection of the element is obtained even with large spans. This purpose is achieved with a concrete element which is of the type indicated at the outset and which, according to the present invention, is characterized in that the casting consists of an upper layer of concrete with a compressive strength of at least 30 MPa (after 28 days) and a density of at least 2,300 kg/m 3 and of a lower layer of light ballast concrete with a density of 600-800 kg/m<3>.

Det undre sjiktets lettballastbetong har hensiktsmessigThe lower layer's light ballast concrete has appropriate

en trykkholdfasthet på ca. 4 MPa (etter 28 døgn) og en tetthet på 650-750 kg/m<3>. a compressive strength of approx. 4 MPa (after 28 days) and a density of 650-750 kg/m<3>.

Det undre sjiktets lettballastbetong er fortrinnsvis fabrikkblandet silikabetong, inneholdende en ballast av polystyrenkuler. The lower layer's light ballast concrete is preferably factory-mixed silica concrete, containing a ballast of polystyrene balls.

Oppfinnelsen skal i det etterfølgende beskrives nærmere med henvisning til den etterfølgende tegning, hvilken viser et betongelement ifølge den foreliggende oppfinnelse delvis i snitt. In what follows, the invention will be described in more detail with reference to the subsequent drawing, which shows a concrete element according to the present invention in partial section.

Det.på tegningen viste betongelement er beregnet å bli an-vendt ved oppbygning av et bærende dekke. Betongelementet har en bunnplate 1 som utgjøres av en såkalt filigranplate av kjent slag, dvs. en prefabrikert betongplate, som bærer betongelementets armering 2. Armeringen 2 utgjøres i det viste eksempel av et armeringsnett 2a og tre i betongelementets lengderetning forløpende armeringsstiger 2b, som er forbundet med armeringsnettet 2a og rager ut fra tannn-platens 1 øvre flate. Armeringen 2 kan, når bunnplaten 1 er en forspent betongplate, hvilket kreves for lengre spennvidder, også omfatte et antall parallelt med stigene 2b forløpende spennliner (ikke vist). The concrete element shown in the drawing is intended to be used when building a load-bearing cover. The concrete element has a bottom plate 1 which is made up of a so-called filigree plate of a known type, i.e. a prefabricated concrete plate, which carries the concrete element's reinforcement 2. The reinforcement 2 is made up in the example shown of a reinforcing mesh 2a and three reinforcement ladders 2b running in the longitudinal direction of the concrete element, which are connected with the reinforcing mesh 2a and protrudes from the tooth plate 1's upper surface. The reinforcement 2 can, when the bottom plate 1 is a prestressed concrete plate, which is required for longer spans, also include a number of tension lines running parallel to the ladders 2b (not shown).

Betongelementet har videre en påstøpning 3 som består av et undre sjikt av lettballastbetong og et øvre sjikt 5 av trykkholdfast betong. Disse to sjikt 4 og 5 støpes på The concrete element also has a casting 3 which consists of a lower layer of light ballast concrete and an upper layer 5 of pressure-resistant concrete. These two layers 4 and 5 are cast on

den prefabrikerte bunnplate 1 når denne er bragt på plass på byggeplassen. the prefabricated base plate 1 when this has been brought into place on the construction site.

Det undre sjikts 4 lettballastbetong er hensiktsmessig fabrikkblandet lettballastbetong, inneholdende sement, sand, lettballast i form av polystyrenkuler samt silika, The lower layer's 4 lightweight ballast concrete is suitably factory-mixed lightweight ballast concrete, containing cement, sand, lightweight ballast in the form of polystyrene balls and silica,

og har en tetthet på 600-800 kg/m 3, fortrinnsvis 650-750 kg/m 3 og en trykkholdfasthet på ca. 4 MPa (etter 28 døgn). and has a density of 600-800 kg/m 3, preferably 650-750 kg/m 3 and a compressive strength of approx. 4 MPa (after 28 days).

Det øvre sjikts 5 betong er fortrinnsvis en fabrikkblandet betong med en trykkholdfasthet på minst 30 MPa (etter 28 døgn) og en tetthet på minst 2.300 kg/m 3. The upper layer 5 concrete is preferably factory-mixed concrete with a compressive strength of at least 30 MPa (after 28 days) and a density of at least 2,300 kg/m 3.

Betongelementet ifølge den foreliggende oppfinnelse ut-gjøres således av en kjent såkalt filigranplate 1 og en på-støpning 3 i to sjikt 4 og 5 og danner dermed en delvis prefabrikert sandwichkonstruksjon for oppbygning av et bærende dekke. The concrete element according to the present invention thus consists of a known so-called filigree plate 1 and a casting 3 in two layers 4 and 5 and thus forms a partially prefabricated sandwich construction for building a load-bearing cover.

Det øvre sjikts 5 trykkholdfasthet er tilpaset til på-støpningstverrsnittets største trykkpåkjenning, hvilket oppnås i tverrsnittets øvre del, dvs. i det øvre sjikt 5. Ettersom trykkpåkjenningene er betydelig lavere i tverrsnittets underliggende deler, kan en betong med betydelig lavere trykkholdfasthet og dermed lavere tetthet, nyttes i det undre sjikt 4. Herved gjøres betongelementet ifølge den foreliggende oppfinnelse meget lettere enn tidligere kjente betongelementer av dette slag, hvilket gjør at det uten å bli nedbøyd, også kan anvendes store spennvidder. The compressive strength of the upper layer 5 is adapted to the greatest compressive stress of the pouring cross-section, which is achieved in the upper part of the cross-section, i.e. in the upper layer 5. As the compressive stresses are significantly lower in the underlying parts of the cross-section, a concrete with significantly lower compressive strength and thus lower density can , is used in the lower layer 4. In this way, the concrete element according to the present invention is made much lighter than previously known concrete elements of this type, which means that without being bent down, large spans can also be used.

Ved en for en spennvidde på ca. 10 m beregnet utførelses-form av betongelementet ifølge den foreliggende oppfinnelse, er elementets bredde 1,2 m og dets lengde ca. 10 m, og bunnplaten 1, det undre sjikt 4 og det øvre sjikt At one for a span of approx. 10 m calculated embodiment of the concrete element according to the present invention, the width of the element is 1.2 m and its length approx. 10 m, and the bottom plate 1, the lower layer 4 and the upper layer

5 har en ca. tykkelse på 7 cm, 16 cm resp. 5cm. 5 has an approx. thickness of 7 cm, 16 cm resp. 5 cm.

Claims (5)

1. Betongelement for oppbygning av et bærende dekke, hvilket element har en prefabrikert bunnplate (1) av betong, hvilken bærer elementets armering (2), og en på bunnplaten utført påstøping (3) av betong, karakterisert ved at påstøpingen (3) utgjøres av et øvre sjikt (5) av betong med en trykkholdfasthet på minst 30 MPa (etter 28 døgn) og en tetthet på minst 2.300 kg/m 3 og av et undre sjikt (4) av lettballastbetong med en tetthet på ca. 600-800 kg/m .1. Concrete element for the construction of a load-bearing deck, which element has a prefabricated base plate (1) of concrete, which carries the element's reinforcement (2), and a casting (3) of concrete carried out on the base plate, characterized in that the casting (3) consists of of an upper layer (5) of concrete with a compressive strength of at least 30 MPa (after 28 days) and a density of at least 2,300 kg/m 3 and of a lower layer (4) of light ballast concrete with a density of approx. 600-800 kg/m . 2. Betongelement ifølge krav 1, karakterisert ved at det undre sjiktets (4) lettballastbetong har en trykkholdfasthet på ca. 4 MPa (etter 28 døgn).2. Concrete element according to claim 1, characterized in that the light ballast concrete of the lower layer (4) has a compressive strength of approx. 4 MPa (after 28 days). 3. Betongelement ifølge krav 1 eller 2, karakterisert ved at det undre sjiktets (4) lettballastbetong har en tetthet pa 650-750 kg/m 3.3. Concrete element according to claim 1 or 2, characterized in that the light ballast concrete of the lower layer (4) has a density of 650-750 kg/m 3. 4. Betongelement ifølge hvilke som helst av de foregående krav, karakterisert ved at det undre sjiktets (4) lettballastbetong er fabrikkbandet silikabetong.4. Concrete element according to any one of the preceding claims, characterized in that the light ballast concrete of the lower layer (4) is factory bonded silica concrete. 5. Betongelement ifølge hvilke som helst av de foregående krav, karakterisert ved at det undre sjiktets (4) lettballastbetong har en ballast av polystyrenkuler.5. Concrete element according to any of the preceding claims, characterized in that the light ballast concrete of the lower layer (4) has a ballast of polystyrene balls.
NO852408A 1984-06-15 1985-06-14 Concrete element for bearing tires. NO852408L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8403220A SE8403220L (en) 1984-06-15 1984-06-15 CONCRETE ITEMS

Publications (1)

Publication Number Publication Date
NO852408L true NO852408L (en) 1985-12-16

Family

ID=20356248

Family Applications (1)

Application Number Title Priority Date Filing Date
NO852408A NO852408L (en) 1984-06-15 1985-06-14 Concrete element for bearing tires.

Country Status (5)

Country Link
EP (1) EP0165222A3 (en)
DK (1) DK270985A (en)
FI (1) FI852385L (en)
NO (1) NO852408L (en)
SE (1) SE8403220L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20161000A1 (en) * 2016-06-14 2017-12-15 Polybo As A building structure connecting means and a method of using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2660345B1 (en) * 1990-03-27 1996-09-27 Moulet Jean SANDWICH FLOOR TILE WITH IMPROVED INSULATION.
AU2005244578B2 (en) * 2004-12-16 2012-03-15 The Austral Brick Company Pty Ltd Reinforced cementitious material product and method of manufacture of the same
ITUD20080074A1 (en) * 2008-04-04 2009-10-05 Riccardo Valente PRECOMPRESSED CONCRETE ELEMENT, SUITABLE FOR REALIZING BOTH EXTERNAL WALKING SURFACES, BETWEEN WALLS, AND ITS PRODUCTION PROCEDURE
NL2003247C2 (en) * 2009-07-20 2011-01-24 Aan De Stegge Roosendaal V O F CONCRETE SANDWICH PIPE FLOOR SYSTEM.
US11242689B2 (en) 2018-03-29 2022-02-08 Bailey Metal Products Limited Floor panel system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870553A (en) * 1970-07-08 1975-03-11 Domtar Ltd Cellular concrete unit coated with air permeable, water repellent concrete coating
AT301131B (en) * 1970-10-30 1972-08-25 Josef Weidinger Roof and ceiling boards
ATA19575A (en) * 1974-02-04 1977-07-15 Kunz Alfred & Co PRECAST PANEL
NO832425L (en) * 1983-07-04 1985-01-07 Elkem As BUILDING ELEMENT OR BUILDING PART MANUFACTURED FROM ARMED CONCRETE AND PROCEDURE FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20161000A1 (en) * 2016-06-14 2017-12-15 Polybo As A building structure connecting means and a method of using same
NO342534B1 (en) * 2016-06-14 2018-06-11 Polybo As A connecting means of a building structure and a method of using same

Also Published As

Publication number Publication date
DK270985D0 (en) 1985-06-14
DK270985A (en) 1985-12-16
FI852385A0 (en) 1985-06-14
EP0165222A2 (en) 1985-12-18
SE8403220L (en) 1985-12-16
SE8403220D0 (en) 1984-06-15
FI852385L (en) 1985-12-16
EP0165222A3 (en) 1988-01-13

Similar Documents

Publication Publication Date Title
Flaga Advances in materials applied in civil engineering
CN101260649A (en) Steel-concrete composite structure continuous beam bridge construction method
Sutherland et al. Historic concrete: background to appraisal
NO852408L (en) Concrete element for bearing tires.
EA018421B1 (en) Light-weight load-bearing structures reinforced by core elements made of segments and a method of casting such structures
Addis The Crystal Palace and its place in structural history
US455687A (en) mccarthy
CN206279680U (en) A kind of Lightweight core mould concrete folding rib floor based on non-dismantling formwork
Rajagopalan Prestressed concrete
GB2142674A (en) Reinforced concrete building elements
HUP0003142A2 (en) Grilled lightweight concrete masonry ceiling
Slaton et al. Reinforced Concrete
KR100685222B1 (en) Double concrete structures
GB748104A (en) Improvements relating to building structures
Edgell The remarkable structures of Paul Cottancin
Ward Beton in combination with iron as a building material
CN110055872A (en) Prestressing force gradient in cross-section UHPC beam bridge
JP2005336723A (en) Continuous composite girder for bridge
CN217326070U (en) Reinforced ALC (autoclaved lightweight concrete) batten, peripheral retaining wall structure and short wall structure
CN207567940U (en) A kind of frame structure of column and embedded linking beam combined earthquake-resistant
CN106760115A (en) A kind of lightweight assembled composite floor and its construction method
Lampariello Cells and Epines-Contreforts for a New Kind of Vaulted Roofing: The Church of Saint-Jean-de-Montmartre in Paris
GB650030A (en) Improvements in composite metal and concrete structures
JP2000356041A (en) Method for placing concrete
SU571561A1 (en) Reinforced composite block