NO850439L - PROCEDURE FOR POLYMERIZATION OF OLEFINES USING A CATALYST - Google Patents

PROCEDURE FOR POLYMERIZATION OF OLEFINES USING A CATALYST

Info

Publication number
NO850439L
NO850439L NO850439A NO850439A NO850439L NO 850439 L NO850439 L NO 850439L NO 850439 A NO850439 A NO 850439A NO 850439 A NO850439 A NO 850439A NO 850439 L NO850439 L NO 850439L
Authority
NO
Norway
Prior art keywords
approx
component
value
carbon atoms
alcohol
Prior art date
Application number
NO850439A
Other languages
Norwegian (no)
Inventor
Donald Earl Gessell
Ronald Leigh Gibbs
Ricardo Fuentes Jr
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of NO850439L publication Critical patent/NO850439L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Henvisning til beslektet ansøkningReference to related application

Dette er en delvis fortsettelse av ansøkning 192 960, innlevert 1. oktober 1980. This is a partial continuation of application 192,960, filed October 1, 1980.

Oppfinnelsens bakgrunnThe background of the invention

Denne oppfinnelse angår en ny katalysatorkomposisjonThis invention relates to a new catalyst composition

som er egnet for initiering og akselerering av polymerisasjon av ett eller flere a-olefiner, og en polymerisasjonsprosess hvor en slik katalysatorkomposisjon anvendes. which is suitable for initiating and accelerating the polymerization of one or more α-olefins, and a polymerization process where such a catalyst composition is used.

Det er velkjent at olefiner såsom etylen, propylen ogIt is well known that olefins such as ethylene, propylene and

1-buten i nærvær av metallkatalysatorer, særlig reaksjons-produktene av organometalliske forbindelser og overgangsmetall-forbindelser kan polymeriseres for å danne tilnærmet lineære polymerer med forholdsvis høy molekylvekt. Typiske slike polymerisasjoner utføres ved forholdsvis høye temperaturer og trykk. 1-butene in the presence of metal catalysts, especially the reaction products of organometallic compounds and transition metal compounds can be polymerized to form approximately linear polymers with a relatively high molecular weight. Typical polymerizations of this type are carried out at relatively high temperatures and pressures.

Blant metodene for fremstilling av slike lineære olefin-polymerer, er noen av de mest anvendte de som er beskrevet av professor Karl Ziegler i US-patenter 3 113 115 og 3 257 332. Among the methods for preparing such linear olefin polymers, some of the most widely used are those described by Professor Karl Ziegler in US Patents 3,113,115 and 3,257,332.

Ved disse metoder oppnåes den anvendte katalysator ved åIn these methods, the catalyst used is obtained by

blande en forbindelse av et overgangsmetall fra gruppe 4b, 5b,mix a compound of a transition metal from group 4b, 5b,

6b og 8 i Mendeleev's periodiske system med en organometallisk forbindelse. Generelt er halogenidene, oksyhalogenidene og alkoksydene eller estrene av titan, vanadium og zirkonium de mest anvendte overgangsmetallforbindelser. Vanlige eksempler på de organometalliske forbindelser omfatter hydridene, alkyl- 6b and 8 in Mendeleev's periodic table with an organometallic compound. In general, the halides, oxyhalides and alkoxides or esters of titanium, vanadium and zirconium are the most widely used transition metal compounds. Common examples of the organometallic compounds include the hydrides, alkyl-

og halogenalkyl-derivatene av aluminium, alkylaluminium-halogenider, Grignard-reagenser, alkalimetall-aluminiumhydrider, alkalimetall-borhydrider, alkalimetall-hydrider, jordalkalimetall-hydrider og lignende. Vanligvis utføres polymerisasjonen i et reaksjonsmedium som omfatter en inert organisk væske, for eksempel et alifatisk hydrokarbon og den ovennevnte katalysator. Ett eller flere olefiner kan bringes i kontakt med reaksjonsmediet på enhver egnet måte, og en molekylvekt-regulator, så- and the haloalkyl derivatives of aluminum, alkyl aluminum halides, Grignard reagents, alkali metal aluminum hydrides, alkali metal boron hydrides, alkali metal hydrides, alkaline earth metal hydrides and the like. Usually, the polymerization is carried out in a reaction medium comprising an inert organic liquid, for example an aliphatic hydrocarbon, and the above-mentioned catalyst. One or more olefins may be brought into contact with the reaction medium in any suitable manner, and a molecular weight regulator, so-

som hydrogen, settes ofte til reaksjonskaret for å regulere polymerenes molekylvekt. Slike polymerisasjonsprosesser ut- such as hydrogen, is often added to the reaction vessel to regulate the molecular weight of the polymers. Such polymerization processes out-

føres enten ved slurry-polymerisasjonstemperaturer (dvs. hvorconducted either at slurry polymerization temperatures (i.e. where

den resulterende polymer ikke er oppløst i hydrokarbon-reaksjonsmediet). eller ved oppløsningspolymerisasjonstempera- the resulting polymer is not dissolved in the hydrocarbon reaction medium). or at solution polymerization tempera-

turer (dvs. hvor temperaturen er tilstrekkelig høy til å trips (i.e. where the temperature is sufficiently high to

solubilisere polymeren i reaksjonsmediet).solubilize the polymer in the reaction medium).

Etter polymerisasjonen er det vanlig å fjerne katalysator-rester fra polymeren ved gjentatt behandling av polymeren med alkohol eller et annet deaktiverende middel såsom en vandig, basisk oppløsning. Slike katalysator-deaktiverings og/eller -fjernelsesprosesser er kostbare både med hensyn til tid og forbrukt materiale såvel som med hensyn til utstyr som kreves for å utføre slik behandling. After polymerization, it is common to remove catalyst residues from the polymer by repeated treatment of the polymer with alcohol or another deactivating agent such as an aqueous, basic solution. Such catalyst deactivation and/or removal processes are expensive both in terms of time and material consumed as well as in terms of equipment required to carry out such treatment.

Dessuten ledsages de fleste slurry-polymerisasjonsprosesser hvor de ovennevnte kjente katalysatorsysterner anvendes, av problemer med avsetning i reaktoren. Som et resultat av slik reaktor-avsetning, er det nødvendig å stoppe prosessen ofte for å rengjøre polymerisasjonsreaktoren. Moreover, most slurry polymerization processes where the above-mentioned known catalyst systems are used are accompanied by problems with deposition in the reactor. As a result of such reactor deposition, it is necessary to stop the process frequently to clean the polymerization reactor.

På bakgrunn av de ovennevnte problemer man støter på ved anvendelse av vanlige Ziegler-katalysatorer, ville det være meget ønskelig å tilveiebringe en polymerisasjonskatalysator som er tilstrekkelig aktiv til å eliminere behovet for fjernelse av katalysator-rester og som gjør at problemer med reaktor-avsetning blir minimale. Ved slurry-polymerisasjonsprosesser ville det være særlig ønskelig å tilveiebringe en høyeffektiv katalysator som fører til et polyolefin-pulver med øket romvekt . On the basis of the above-mentioned problems encountered when using conventional Ziegler catalysts, it would be highly desirable to provide a polymerization catalyst which is sufficiently active to eliminate the need for removal of catalyst residues and which causes problems with reactor deposition to be minimal. In slurry polymerization processes, it would be particularly desirable to provide a highly efficient catalyst that leads to a polyolefin powder with an increased bulk density.

Oppsummering av oppfinnelsenSummary of the invention

Et trekk ved foreliggende oppfinnelse er en katalysatorbærer som er det faste reaksjonsprodukt som dannes ved omsetning i et inert hydrokarbon-fortynningsmiddel av (1) reaksjonsproduktet av (a) en organomagnesium-forbindelse eller en hydrokarbyl- eller hydrokarbyloksy-aluminium, -sink eller -bor-blanding eller kompleks derav med (b) en oksygenholdig og/eller nitrogenholdig forbindelse; og (2) en halogenidkilde som er fri for et overgangsmetall. A feature of the present invention is a catalyst support which is the solid reaction product formed by reaction in an inert hydrocarbon diluent of (1) the reaction product of (a) an organomagnesium compound or a hydrocarbyl or hydrocarbyloxy aluminum, zinc or boron -mixture or complex thereof with (b) an oxygen-containing and/or nitrogen-containing compound; and (2) a halide source that is free of a transition metal.

For det formål å beskrive foreliggende oppfinnelse er organomagnesium-forbindelsen og blandingen eller komplekset av organomagnesiumforbindelsen og hydrokarbyl- eller hydrokarbyloksy-aluminium-, -sink- eller-bor-forbindelsene representert ved formelen MgR2"XMeR,x, som definert i det følgende. For the purpose of describing the present invention, the organomagnesium compound and the mixture or complex of the organomagnesium compound and the hydrocarbyl or hydrocarbyloxy aluminum, zinc or boron compounds are represented by the formula MgR2"XMeR,x, as defined below.

Den oksygenholdige og/eller nitrogenholdige forbindelseThe oxygen-containing and/or nitrogen-containing compound

er til stede i en mengde som er tilstrekkelig til å senke mengden av hydrokarbyl-grupper til stede i komponent (l-a) slik is present in an amount sufficient to lower the amount of hydrocarbyl groups present in component (l-a) such that

at det resulterende produkt ikke i vesentlig grad reduserer TiCl4 ved en temperatur på ca. 25°C. Halogenidkilden er til stede i en mengde som er tilstrekkelig til å omdanne tilnærmet alle de grupper som er bundet til et magnesiumatom i komponent (la) til en halogenid-gruppe. that the resulting product does not significantly reduce TiCl4 at a temperature of approx. 25°C. The halide source is present in an amount which is sufficient to convert almost all the groups which are bound to a magnesium atom in component (la) into a halide group.

Et annet trekk ved foreliggende oppfinnelse er det hydrokarbon-uoppløselige, faste reaksjonsprodukt av (A) det hydrokarbon-uoppløselige, faste reaksjonsprodukt av (1) reaksjonsproduktet av (a) en hydrokarbylmagnesium-forbindelse eller et hydrokarbyl- eller hydrokarbyloksy-aluminiumkompleks derav med (b) en oksygenholdig og/eller nitrogenholdig forbindelse, med (2) en halogenidkilde; (B) en overgangsmetall-forbindelse; og (C) et reduksjonsmiddel. Another feature of the present invention is the hydrocarbon-insoluble solid reaction product of (A) the hydrocarbon-insoluble solid reaction product of (1) the reaction product of (a) a hydrocarbyl magnesium compound or a hydrocarbyl or hydrocarbyloxy aluminum complex thereof with (b ) an oxygen-containing and/or nitrogen-containing compound, with (2) a halide source; (B) a transition metal compound; and (C) a reducing agent.

Komponentene anvendes i slike mengder at man oppnår en tilstrekkelig mengde av komponent (1-b) til å senke mengden av hydrokarbyl-grupper til stede i komponent (l-a) slik at det resulterende produkt i vesentlig grad ikke vil redusere TiCl^ved 2 5°C. Minst en tilstrekkelig mengde halogen fra komponent (2) anvendes for å omdanne tilnærmet alle gruppene bundet til magnesiumatomet i komponent (1) til en halogenidgruppe. Mengden av komponent (B) er den som er tilstrekkelig til å tilveiebringe et Mg:Tm atomforhold fra ca. 0,05:1 til ca. 50:1, fortrinnsvis fra ca. 0,1:1 til ca. 5:1, og mest foretrukket fra ca. 0,2:1 til ca. 1:1. Tilstrekkelige mengder av komponent (C) anvendes for teoretisk å redusere tilnærmet alt overgangsmetallet. The components are used in such amounts that a sufficient amount of component (1-b) is obtained to lower the amount of hydrocarbyl groups present in component (l-a) so that the resulting product will not substantially reduce TiCl^ at 2 5° C. At least a sufficient amount of halogen from component (2) is used to convert almost all the groups bound to the magnesium atom in component (1) into a halide group. The amount of component (B) is that which is sufficient to provide a Mg:Tm atomic ratio of about 0.05:1 to approx. 50:1, preferably from approx. 0.1:1 to approx. 5:1, and most preferably from approx. 0.2:1 to approx. 1:1. Sufficient amounts of component (C) are used to theoretically reduce almost all of the transition metal.

Foreliggende oppfinnelse angår faste, hydrokarbon-uoppløselige katalysatorer som når de anvendes med en aktivator eller kokatalysator, er egnet for polymerisasjon av a-olefiner, hvilke katalysatorer er det inerte, fortynningsmiddel-vaskede produkt som er resultatet av sammenblanding av: The present invention relates to solid, hydrocarbon-insoluble catalysts which, when used with an activator or co-catalyst, are suitable for the polymerization of α-olefins, which catalysts are the inert, diluent-washed product resulting from mixing of:

(I) reaksjonsproduktet av(I) the reaction product of

(A) reaksjonsproduktet av(A) the reaction product of

(1) en magnesium-komponent eller en blanding av slike komponenter representert ved formelen MgR2"xMeR'xl, hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, hver R' er uavhengig av hverandre hydrogen, en hydrokarbyl- eller en hydrokarbyl oksy-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, Me er Al, Zn eller B, x har en verdi fra 0 til 10, x' har en verdi lik valensen av Me, og (1) a magnesium component or a mixture of such components represented by the formula MgR2"xMeR'xl, where each R independently of one another is a hydrocarbyl group with from 1 to about 20, preferably from 1 to about 10 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or a hydrocarbyl oxy group having from 1 to about 20, preferably from 1 to about 10 carbon atoms, Me is Al, Zn or B, x has a value from 0 to 10, x' has a value equal to the valence of Me, and

(2) en oksygenholdig og/eller nitrogenholdig forbindelse i en mengde som er tilstrekkelig til å senke mengden av hydrokarbyl-grupper til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCl^ ved en temperatur på ca. 2 5°C; og (2) an oxygen-containing and/or nitrogen-containing compound in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not substantially reduce TiCl₂ at a temperature of about 25°C; and

(B) en egnet halogenidkilde eller blanding derav representert ved formlene AlR3_axa'siR4-bXb'(B) a suitable halide source or mixture thereof represented by the formulas AlR3_axa'siR4-bXb'

SnR4_bXb, POX3, PX3, PX5, S02X2, GeX4, R4(CO)X, TmY n X z-n og 3 RX hvor hvor R uavhengig av hverandre er hydrogen, en hydrokarbyl- eller en hydrokarbyloksy-gruppe med fra 1 til ca. 2 0 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer; hver R4er uavhengig av hverandre hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer; hver X er et halogenatom såsom klor eller brom; a har en verdi fra 1 til 3; b har en verdi fra 1 til 4; Tm er et metall valgt fra gruppene IV-B, V-B eller VI-B i det periodiske system; Y er oksygen, OR" eller NR"2; idet hver R" uavhengig av hverandre er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, z har en verdi lik valensen av nevnte overgangsmetall, n har en verdi fra 0 til 5, idet verdien av z-n er fra minst 1 opp til en verdi lik valensen av overgangsmetallet; nevnte halogenidkilde er til stede i en mengde som er tilstrekkelig til å omdanne tilnærmet alle gruppene bundet til et magnesiumatom i komponent (A) til en halogenid-gruppe; (II) en overgangsmetallforbindelse representert ved formelen TmY il X Z _ ™~ 2*1 hvor Tm, Y, X, z og n er som angitt ovenfor; n har en verdi fra 0 til 5, idet z-n er fra 0 opp til en verdi lik valensen av overgangsmetallet, i en mengde slik at man får et Mg:Tm atomforhold fra ca. 0,05:1 til ca. 50:1, fortrinnsvis fra ca. 0,1:1 til ca. 5:1, SnR4_bXb, POX3, PX3, PX5, SO2X2, GeX4, R4(CO)X, TmY n X z-n and 3 RX where where R independently of each other is hydrogen, a hydrocarbyl or a hydrocarbyloxy group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms; each R4 is independently hydrogen or a hydrocarbyl group with from 1 to about 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms; each X is a halogen atom such as chlorine or bromine; a has a value from 1 to 3; b has a value from 1 to 4; Tm is a metal selected from groups IV-B, V-B or VI-B of the periodic table; Y is oxygen, OR" or NR"2; each R" being independently hydrogen or a hydrocarbyl group with from 1 to about 20 carbon atoms, z having a value equal to the valence of said transition metal, n having a value from 0 to 5, the value of z-n being from at least 1 up to a value equal to the valence of the transition metal; said halide source is present in an amount sufficient to convert substantially all of the groups bonded to a magnesium atom in component (A) into a halide group; (II) a transition metal compound represented by the formula TmY il X Z _ ™~ 2*1 where Tm, Y, X, z and n are as indicated above; n has a value from 0 to 5, z-n being from 0 up to a value equal to the valence of the transition metal, in an amount such that one obtains a Mg:Tm atomic ratio from about 0.05:1 to about 50:1, preferably from about 0.1:1 to about 5:1,

særlig foretrukket fra ca. 0,2:1 til ca. 1:1; og particularly preferred from approx. 0.2:1 to approx. 1:1; and

(III) et egnet reduksjonsmiddel eller en blanding av (III) a suitable reducing agent or a mixture of

reduksjonsmidler betegnet med formlene B(R3)-, X ,reducing agents denoted by the formulas B(R3)-, X ,

J 3 J—m m J 3 J—m m

Al(R3)o X , ZnR<3>, MgR<3>X eller MgR3 hvor hver X Al(R3)o X , ZnR<3>, MgR<3>X or MgR3 where each X

3-m m 2 ^ 3 2 3-m m 2 ^ 3 2

uavhengig av hverandre er halogen, en hydrokarbyloksy-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer eller en NR<3>2~gruppe; hvor hver R<3>uavhengig av hverandre er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer; m har en verdi fra 0 til 2; independently of each other is halogen, a hydrocarbyloxy group having from 1 to about 20, preferably from 1 to approx. 10 carbon atoms or an NR<3>2~ group; where each R<3> independently of one another is hydrogen or a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms; m has a value from 0 to 2;

idet nevnte reduksjonsmiddel anvendes i en mengde slik at man får et R<3>:Tm-forhold fra ca. 1:1 til ca. 50:1, fortrinnsvis fra 1:1 til ca. 10:1, og særlig foretrukket fra ca. 1:1 til ca. 3:1. in that said reducing agent is used in an amount such that an R<3>:Tm ratio of approx. 1:1 to approx. 50:1, preferably from 1:1 to approx. 10:1, and particularly preferred from approx. 1:1 to approx. 3:1.

Når i ovennevnte katalysator halogenidkilden er en When in the above catalyst the halide source is a

reduserende halogenidkilde, kan reduksjonsmidlet (III) utelates, hvilket resulterer i et ytterligere trekk ved oppfinnelsen, som er den hydrokarbon-uoppløselige katalysator vasket med inert fortynningsmiddel, som omfatter: reducing halide source, the reducing agent (III) can be omitted, resulting in a further feature of the invention, which is the hydrocarbon-insoluble catalyst washed with inert diluent, comprising:

(I) reaksjonsproduktet av(I) the reaction product of

(A) reaksjonsproduktet av(A) the reaction product of

(1) en magnesium-komponent eller en blanding av slike komponenter er representert ved formelen MgR "xMeR' , hvor h<y>er R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, hver R' er uavhengig av hverandre hydrogen, en hydrokarbyl- eller hydrokarbyloksy-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, Me er Al, Zn eller B, x har en verdi fra 0 til 10, x<1>har en verdi lik valensen av Me, og (2) en oksygenholdig og/eller nitrogenholdig forbindelse i en mengde som er tilstrekkelig til å senke mengden av hydrokarbyl-grupper til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCl^ ved en temperatur på ca. 2 5°C; (1) a magnesium component or a mixture of such components is represented by the formula MgR "xMeR' , where R independently of each other is a hydrocarbyl group having from 1 to about 20, preferably from 1 to about 10 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20, preferably from 1 to about 10 carbon atoms, Me is Al, Zn or B, x has a value from 0 to 10, x<1> has a value equal to the valence of Me, and (2) an oxygen-containing and/or nitrogen-containing compound in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not significantly reduce TiCl^ at a temperature of about 25°C;

(B) en egnet reduserende halogenidkilde representert ved formelen Al (R3)J -, a. X cl hvor R<3>uavhengig av (B) a suitable reducing halide source represented by the formula Al (R3)J -, a. X cl where R<3>independent of

hverandre er hydrogen eller har samme definisjon som R ovenfor, X er som angitt ovenfor, og a har en verdi fra 1 til mindre enn 3; nevnte halogenid-kilde anvendes i en mengde som er tilstrekkelig til å omdanne tilnærmet alle gruppene bundet til magnesiumatomet til et halogenatom og å tilveiebringe etR<3>:Tm-forhold fra ca. 1:1 til ca. 50:1, fortrinnsvis fra ca. 1:1 til ca. 10:1, og mest foretrukket fra ca. 1:1 til ca. 3:1; each is hydrogen or has the same definition as R above, X is as defined above, and a has a value from 1 to less than 3; said halide source is used in an amount sufficient to convert virtually all the groups attached to the magnesium atom to a halogen atom and to provide an R<3>:Tm ratio from approx. 1:1 to approx. 50:1, preferably from approx. 1:1 to approx. 10:1, and most preferably from approx. 1:1 to approx. 3:1;

(C) en overgangsmetallforbindelse representert ved (C) a transition metal compound represented by

formelen TmY X hvor Tm er et metall valgt fra the formula TmY X where Tm is a metal selected from

n z—nn z—n

gruppene IV-B, V-B eller VI-B i det periodiske groups IV-B, V-B or VI-B in the periodic table

system; Y er oksygen, OR" eller NR"2; X er halogen; system; Y is oxygen, OR" or NR"2; X is halogen;

hver R" er uavhengig av hverandre hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer; n har en verdi fra 0 til 5 med z-n fra en opp til en verdi lik valensen av overgangsmetallet, i en mengde slik at man får et Mg:Tm atomforhold fra ca. 0,05:1 til ca. 50:1, fortrinnsvis fra ca. 0,1:1 til ca. 5:1. each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; n has a value from 0 to 5 with z-n from one up to a value equal to the valence of the transition metal, in an amount such that one obtains a Mg:Tm atomic ratio from about 0.05:1 to about 50:1, preferably from about 0.1:1 to about 5:1.

Et ytterligere trekk ved foreliggende oppfinnelse er en fremgangsmåte for fremstilling av en hydrokarbon-uoppløselig katalysator som omfatter: A further feature of the present invention is a method for producing a hydrocarbon-insoluble catalyst which comprises:

(I) omsetning i et inert fortynningsmiddel av(I) reaction in an inert diluent of

(A) reaksjonsproduktet av(A) the reaction product of

(1) en magnesium-komponent eller en blanding av slike komponenter representert ved formelen MgR2"xMeR'xlhvor hver R uavhengig av hverandre er hydrogen, en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 (1) a magnesium component or a mixture of such components represented by the formula MgR2"xMeR'xwhere each R is independently hydrogen, a hydrocarbyl group having from 1 to about 20, preferably from 1 to about 10

karbonatomer, hver R' er uavhengig av hverandre hydrogen, en hydrokarbyl- eller hydrokarbyloksy-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, Me er Al, B eller Zn, carbon atoms, each R' is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20, preferably from 1 to approx. 10 carbon atoms, Me is Al, B or Zn,

x har en verdi fra 0 til 10, x' har en verdi lik valensen av Me, x has a value from 0 to 10, x' has a value equal to the valence of Me,

(2) en oksygenholdig og/eller nitrogenholdig forbindelse i en mengde som er tilstrekkelig til å senke mengden av hydrokarbyl-gruppe til stede i komponent (A-I) slik at det resulterende produkt i vesentlig grad ikke reduserer TiCl4ved en temperatur på ca. 25°C; og (2) an oxygen-containing and/or nitrogen-containing compound in an amount sufficient to lower the amount of hydrocarbyl group present in component (A-I) so that the resulting product does not substantially reduce TiCl 4 at a temperature of about 25°C; and

(B) en egnet halogenidkilde eller blanding derav representert ved formlene AlR^_aXa, SiR4_bXb, SnR4_bXb, POX3, PX3, PX5, S02X2, GeX4, R4(CO)X, TmYnXz_nog R4X hvor hver R uavhengig av hverandre er hydrogen, en hydrokarbyl-gruppe eller en hydrokarbyloksy-gruppe som definert ovenfor, R4er hydrogen eller en hydrokarbylgruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer; hver X er et halogenatom såsom klor eller brom; a har en verdi fra 1 til 3; b har en verdi fra 1 til 4; Tm er et metall valgt fra gruppene IV-B, V-B eller VI-B i det periodiske system; Y er oksygen, OR" eller NR"2; hver R" er uavhengig av hverandre hydrogen eller en hydrokarbylgruppe med fra 1 til ca. 20 karbonatomer, z har en verdi lik valensen av nevnte overgangsmetall, n har en verdi fra 0 til 5 med verdien av z-n fra minst 1 opp til en verdi lik valensen av overgangsmetallet; idet nevnte halogenidkilde er til stede i en mengde tilstrekkelig til å omdanne tilnærmet alle gruppene bundet til et magnesiumatom i komponent (A) til en halogenid-gruppe; (II) utvinning av det resulterende hydrokarbon-uoppløselige produkt, vasking av produktet med friskt inert fortynningsmiddel; (III) blanding, i friskt, inert fortynningsmiddel, produktet fra (II) med (C) en overgangsmetall-forbindelse rep^ resentert ved formelen TmY n X z-n hvor Tm, Y, X, z og n er som ovenfor angitt; z-n har en.verdi fra 0 (B) a suitable halide source or mixture thereof represented by the formulas AlR^_aXa, SiR4_bXb, SnR4_bXb, POX3, PX3, PX5, SO2X2, GeX4, R4(CO)X, TmYnXz_and R4X wherein each R is independently hydrogen, a hydrocarbyl- group or a hydrocarbyloxy group as defined above, R 4 is hydrogen or a hydrocarbyl group with from 1 to about 20, preferably from 1 to approx. 10 carbon atoms; each X is a halogen atom such as chlorine or bromine; a has a value from 1 to 3; b has a value from 1 to 4; Tm is a metal selected from groups IV-B, V-B or VI-B of the periodic table; Y is oxygen, OR" or NR"2; each R" is independently hydrogen or a hydrocarbyl group with from 1 to about 20 carbon atoms, z has a value equal to the valence of said transition metal, n has a value from 0 to 5 with the value of z-n from at least 1 up to a value equal to the valence of the transition metal; said halide source being present in an amount sufficient to convert substantially all of the groups bonded to a magnesium atom in component (A) to a halide group; (II) recovering the resulting hydrocarbon-insoluble product, washing the product with fresh inert diluent; (III) mixing, in fresh, inert diluent, the product of (II) with (C) a transition metal compound represented by the formula TmY n X z-n where Tm, Y, X, z and n are as above stated; z-n has a value from 0

opp til en verdi lik valensen av overgangsmetallet, i en mengde slik at man får et Mg:Tm atomforhold fra ca. 0,05:1 til ca. 50:1, fortrinnsvis fra ca. 0,1:1 til ca. 5:1, særlig foretrukket fra ca. 0,2:1 til ca. 1:1; up to a value equal to the valence of the transition metal, in an amount such that a Mg:Tm atomic ratio of approx. 0.05:1 to approx. 50:1, preferably from approx. 0.1:1 to approx. 5:1, particularly preferred from approx. 0.2:1 to approx. 1:1;

(IV) omsetning av blandingen fra (III) med (D) et egnet reduksjonsmiddel eller en blanding av reduksjonsmidler valgt fra forbindelser representert ved formlene (IV) reacting the mixture from (III) with (D) a suitable reducing agent or a mixture of reducing agents selected from compounds represented by the formulas

B(R3K X , A1(R3)^ X , ZnR<3>~, ZnR<3>X, MgR<3>X ellerB(R3K X , A1(R3)^ X , ZnR<3>~, ZnR<3>X, MgR<3>X or

i -m m J -m m2. 3i -m m J -m m2. 3

MgR32 hvor hver X uavhengig av hverandre er halogen, en hydrokarbyloksy-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer eller en NR<3>2_gruppe; hver R<3>er uavhengig av hverandre hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer; m har en verdi fra 0 til 2, idet nevnte reduksjonsmiddel anvendes i en mengde slik at man får et R<3>:Tm-forhold fra ca. 1:1 til ca. 50:1, fortrinnsvis fra 1:1 til ca. 10:1, og mest foretrukket fra ca. 1:1 til ca. 3:1; og (V) utvinning og vasking med friskt, inert fortynningsmiddel av den resulterende, faste, hydrokarbon-uoppløselige katalysator fremstilt i trinn (IV). MgR32 where each X is independently halogen, a hydrocarbyloxy group with from 1 to about 20, preferably from 1 to approx. 10 carbon atoms or an NR<3>2_group; each R<3> is independently hydrogen or a hydrocarbyl group with from 1 to about 20, preferably from 1 to approx. 10 carbon atoms; m has a value from 0 to 2, as said reducing agent is used in an amount such that a R<3>:Tm ratio of approx. 1:1 to approx. 50:1, preferably from 1:1 to approx. 10:1, and most preferably from approx. 1:1 to approx. 3:1; and (V) recovering and washing with fresh inert diluent the resulting solid hydrocarbon-insoluble catalyst prepared in step (IV).

Når i den ovenstående fremgangsmåte halogenid-kilden er en reduserende halogenid-kilde, kan utvinningstrinnet II og reduksjonsmidlet (IV) utelates, hvilket resulterer i nok et trekk ved foreliggende oppfinnelse, som er en fremgangsmåte for fremstilling av en hydrokarbon-uoppløselig katalysator som omfatter: When in the above method the halide source is a reducing halide source, the extraction step II and the reducing agent (IV) can be omitted, resulting in another feature of the present invention, which is a method for producing a hydrocarbon-insoluble catalyst comprising:

(I) omsetning i et inert fortynningsmiddel av(I) reaction in an inert diluent of

(A) reaksjonsproduktet av(A) the reaction product of

(1) en magnesiumforbindelse eller en blanding av slike komponenter representert ved formelen MgR2"<x>MeR' ,; hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, hver R' er uavhengig av hverandre hydrogen, en hydrokarbyl- eller hydrokarbyloksy-gruppe med fra 1 til ca. 20, fortrinnvis fra 1 til ca. 10 karbonatomer; Me er Al, Zn eller (1) a magnesium compound or a mixture of such components represented by the formula MgR2"<x>MeR',; where each R is independently a hydrocarbyl group having from 1 to about 20, preferably from 1 to about 10, carbon atoms , each R' is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20, preferably from 1 to about 10 carbon atoms; Me is Al, Zn or

B; x har en verdi fra 0 til 10, og x' har en verdi lik valensen av Me; med B; x has a value from 0 to 10, and x' has a value equal to the valence of Me; with

(2) en oksygenholdig og/eller nitrogenholdig forbindelse i en mengde som er tilstrekkelig til å senke mengden av hydrokarbyl-grupper til stede i komponent (A-I) slik at det resulterende produkt i vesentlig grad ikke reduserer TiCl4ved en temperatur på ca. 25°C; og (2) an oxygen-containing and/or nitrogen-containing compound in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) so that the resulting product does not substantially reduce TiCl 4 at a temperature of about 25°C; and

(B) . en egnet reduserende halogenidkilde representert ved formelen AIR3, X hvor hver X er et halogen- (B) . a suitable reducing halide source represented by the formula AIR3, X where each X is a halogen

atom, fortrinnsvis klor, R<3>er hydrogen eller en hydrokarbyl-gruppe som definert ovenfor, og a har en verdi fra 1 til mindre enn 3; i en mengde slik at man får et R<3>:Ti-forhold fra 1:1 til ca. 50:1, fortrinnsvis fra ca. 1:1 til ca. 10:1 og til å tilveiebringe tilstrekkelig halogenatomer til å omdanne tilnærmet alle gruppene bundet til et magnesiumatom i komponent (A) til en halogenid-gruppe; og atom, preferably chlorine, R<3> is hydrogen or a hydrocarbyl group as defined above, and a has a value from 1 to less than 3; in an amount so that you get an R<3>:Ti ratio from 1:1 to approx. 50:1, preferably from approx. 1:1 to approx. 10:1 and to provide sufficient halogen atoms to convert substantially all of the groups attached to a magnesium atom in component (A) to a halide group; and

(C) en overgangsmetallforbindelse representert ved formelen TmY X hvor Tm er et metall valgt fra (C) a transition metal compound represented by the formula TmY X where Tm is a metal selected from

n z—nn z—n

gruppene IV-B, V-B eller VI-B i det periodiske system; Y er oksygen, OR" eller NR"2; X er halogen; groups IV-B, V-B or VI-B in the periodic table; Y is oxygen, OR" or NR"2; X is halogen;

hver R" er uavhengig av hverandre hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer; n har en verdi each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20, preferably from 1 to about 10 carbon atoms; n has a value

fra 0 til 5, idet z-n er fra en opp til en verdi lik valensen av overgangsmetallet, i en mengde slik at man får et Mg:Tm atomforhold fra ca. 0,05:1 til ca. 50:1, fortrinnsvis fra ca. 0,1:1 til ca. 5:1; from 0 to 5, z-n being from one up to a value equal to the valence of the transition metal, in an amount such that a Mg:Tm atomic ratio of approx. 0.05:1 to approx. 50:1, preferably from approx. 0.1:1 to approx. 5:1;

og and

(II) utvinning og vasking med friskt, inert fortynningsmiddel av den resulterende, faste, hydrokarbon-uoppløselige katalysator. (II) recovering and washing with fresh, inert diluent the resulting solid, hydrocarbon-insoluble catalyst.

Et ytterligere trekk ved oppfinnelsen er en fremgangsmåte for polymerisering av a-olefiner eller blandinger derav som omfatter at polymerisasjonen utføres i nærvær av de ovennevnte katalysatorer. , A further feature of the invention is a method for the polymerization of α-olefins or mixtures thereof which comprises that the polymerization is carried out in the presence of the above-mentioned catalysts. ,

Beskrivelse av foretrukne utførelsesformer Description of preferred embodiments

Organomagnesium-forbindelsene som hensiktsmessig anvendes ifølge foreliggende oppfinnelse, omfatter de som er representert ved formelen R2Mg"xMeR'x, hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe, og hver R' uavhengig av hverandre er hydrogen, en hydrokarbyl- eller hydrokarbyloksy-gruppe, Me er Al, Zn eller B, x har en verdi fra 0 til 10, og x' har en verdi lik valensen av Me. The organomagnesium compounds suitably used according to the present invention include those represented by the formula R2Mg"xMeR'x, where each R independently of one another is a hydrocarbyl group, and each R' independently of one another is hydrogen, a hydrocarbyl or hydrocarbyloxy -group, Me is Al, Zn or B, x has a value from 0 to 10, and x' has a value equal to the valence of Me.

Betegnelsen hydrokarbyl som her anvendt, betegner et enverdig hydrokarbon-radikal såsom alkyl, cykloalkyl, aryl, aralkyl, alkenyl og lignende hydrokarbon-radikaler med fra 1 til ca. 20 karbonatomer, idet alkyl med fra 1 til 10 karbonatomer foretrekkes. The term hydrocarbyl as used here denotes a monovalent hydrocarbon radical such as alkyl, cycloalkyl, aryl, aralkyl, alkenyl and similar hydrocarbon radicals with from 1 to approx. 20 carbon atoms, with alkyl having from 1 to 10 carbon atoms being preferred.

Betegnelsen hydrokarbyloksy som her anvendt betegner en-verdige oksyhydrokarbon-radikaler såsom alkoksy, cykloalkoksy, aryloksy, aralkoksy, alkenoksy og lignende oksyhydrokarbon-grupper med fra 1 til ca. 2 0 karbonatomer, idet alkoksy- The term hydrocarbyloxy as used here denotes monovalent oxyhydrocarbon radicals such as alkoxy, cycloalkyloxy, aryloxy, aralkyloxy, alkenoxy and similar oxyhydrocarbon groups with from 1 to approx. 2 0 carbon atoms, as alkoxy-

grupper med fra 1 til 10 karbonatomer er de foretrukne hydrokarbyloksy-radikaler. groups with from 1 to 10 carbon atoms are the preferred hydrocarbyloxy radicals.

Mengden av MeR'x,, dvs. verdien av x, er fortrinnsvisThe amount of MeR'x, i.e. the value of x, is preferably

den minimumsmengde som er tilstrekkelig til å gjøre magnesium-forbindelsen oppløselig i det inerte oppløsningsmiddel eller fortynningsmiddel, som vanligvis er et hydrokarbon eller blanding av hydrokarboner. Verdien av x er derfor fra 0 til ca. 10, vanligvis fra ca. 0,2 til ca. 2. the minimum amount sufficient to render the magnesium compound soluble in the inert solvent or diluent, which is usually a hydrocarbon or mixture of hydrocarbons. The value of x is therefore from 0 to approx. 10, usually from approx. 0.2 to approx. 2.

Særlig egnede organomagnesium-forbindelser omfatter for eksempel di-(n-butyl)-magnesium, n-butyl-sek-butyl-magnesium, diisopropyl-magnesium, di-n-heksyl-magnesium, isopropyl-n-butyl-magnesium, etyl-n-heksyl-magnesium, etyl-n-buty1-magnesium, di-(n-oktyl)-magnesium, butyl-oktyl- og slike komplekser som di-n-butyl-magnesium"1/3 aluminium-trietyl, di-(n-butyl)-magnesium"1/6 aluminium-trietyl, blandinger derav og lignende. Particularly suitable organomagnesium compounds include, for example, di-(n-butyl)-magnesium, n-butyl-sec-butyl-magnesium, diisopropyl-magnesium, di-n-hexyl-magnesium, isopropyl-n-butyl-magnesium, ethyl- n-hexyl-magnesium, ethyl-n-butyl1-magnesium, di-(n-octyl)-magnesium, butyl-octyl- and such complexes as di-n-butyl-magnesium"1/3 aluminum-triethyl, di-( n-butyl)-magnesium"1/6 aluminium-triethyl, mixtures thereof and the like.

Egnede oksygen-holdige forbindelser omfatter for eksempel vann, karbondioksyd, karbonmonoksyd, svoveldioksyd, hydroksyl-holdige organiske forbindelser såsom alkoholer, glykoler, polyoksyalkylen-glykoler og lignende, aldehyder, ketoner, acetaler, ketaler, karboksylsyrer, karboksylsyreestere, ortoestere eller halogenider, karboksylsyreanhydrider, organiske karbonater, blandinger derav og lignende. Suitable oxygen-containing compounds include, for example, water, carbon dioxide, carbon monoxide, sulfur dioxide, hydroxyl-containing organic compounds such as alcohols, glycols, polyoxyalkylene glycols and the like, aldehydes, ketones, acetals, ketals, carboxylic acids, carboxylic acid esters, orthoesters or halides, carboxylic acid anhydrides, organic carbonates, mixtures thereof and the like.

Egnede nitrogen-holdige forbindelser som her kan anvendes, omfatter for eksempel ammoniakk, aminer, nitriler, amider, oksimer, imider, isocyanater, blandinger derav og lignende. Suitable nitrogen-containing compounds which can be used here include, for example, ammonia, amines, nitriles, amides, oximes, imides, isocyanates, mixtures thereof and the like.

Egnede hydroksyl-holdige forbindelser omfatter de som er representert ved formlene Suitable hydroxyl-containing compounds include those represented by the formulas

hvor hver R er en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer eller en halogen-, NHR- eller NH2~substituert hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, hver R' er where each R is a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms or a halogen, NHR or NH2-substituted hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms, each R' is

uavhengig av hverandre en toverdig hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, hver R" er uavhengig av hverandre hydrogen, en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til 10 karbonatomer eller en halogen-, NHR- eller NH2_substituert hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, idet minst en av disse er hydrogen, Z er et flerverdig organisk radikal inneholdende fra 2 til ca. 20 karbonatomer, n har en verdi fra 0 til ca. 10, og n' har en verdi fra 2 til ca. 10. independently of each other a divalent hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms, each R" is independently hydrogen, a hydrocarbyl group with from 1 to about 20, preferably from 1 to 10 carbon atoms or a halogen, NHR- or NH 2 -substituted hydrocarbyl group with from 1 to about 20, preferably from 1 to about 10 carbon atoms, at least one of which is hydrogen, Z is a polyvalent organic radical containing from 2 to about 20 carbon atoms, n has a value from 0 to about 10, and n' has a value from 2 to about 10.

Spesielt egnede hydroksyl-holdige forbindelser omfatter alkoholer som for eksempel metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohdl, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol., glykoler, 1,2-butylenglykol, 1,3-propylenglykol, 1,4-butandiol, 1,6-heksan-diol, andre hydroksyl-holdige forbindelser som for eksempel glycerol, trimetylol-propan, heksan-triol, fenol, 2,6-di-tert-butyl-4-metylfenol, blandinger derav og lignende. Også egnet er adduktene av etylenoksyd, 1,2-propylenoksyd, 1,2-butylenoksyd, 2,3-butylenoksyd, styrenoksyd eller blandinger av slike oksyder med de tidligere nevnte eller andre hydroksyl-holdige forbindelser såsom pentaerytritol, sukrose, sorbitol og lignende, såvel som alkyl- og aryl-dominerte hydroksyl-holdige forbindelser så lenge som det er tilbake minst 1 hydroksyl-gruppe pr. molekyl. Particularly suitable hydroxyl-containing compounds include alcohols such as, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, glycols, 1,2-butylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexane-diol, other hydroxyl-containing compounds such as glycerol, trimethylol-propane, hexane-triol, phenol, 2,6-di-tert-butyl-4-methylphenol, mixtures thereof and such. Also suitable are the adducts of ethylene oxide, 1,2-propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, styrene oxide or mixtures of such oxides with the aforementioned or other hydroxyl-containing compounds such as pentaerythritol, sucrose, sorbitol and the like, as well as alkyl- and aryl-dominated hydroxyl-containing compounds as long as there remains at least 1 hydroxyl group per molecule.

Egnede aldehyder som kan anvendes her, omfatter de aldehyder som er representert ved formelen Suitable aldehydes that can be used here include the aldehydes represented by the formula

hvor R er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis en alifatisk hydrokarbyl-gruppe med fra 1 til ca. 10 karbonatomer. Særlig egnede aldehyder omfatter for eksempel formaldehyd, acetaldehyd, propionaldehyd, butyraldehyd, benzaldehyd, blandinger derav og lignende. where R is hydrogen or a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably an aliphatic hydrocarbyl group with from 1 to approx. 10 carbon atoms. Particularly suitable aldehydes include, for example, formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, benzaldehyde, mixtures thereof and the like.

Egnede ketoner som her kan anvendes, omfatter for eksempel de som er representert ved formelen Suitable ketones that can be used here include, for example, those represented by the formula

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede ketoner omfatter for eksempel aceton, metyletylketon, 2,6-dimetyl-4-heptanon, blandinger derav og lignende. where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms. Particularly suitable ketones include, for example, acetone, methyl ethyl ketone, 2,6-dimethyl-4-heptanone, mixtures thereof and the like.

De oksygen-holdige forbindelser, særlig alkoholene, aldehydene og ketonene, kan inneholde opp til ca. 50 vekt%, fortrinnsvis ca. 1 % eller mindre vann etter vekt. The oxygen-containing compounds, especially the alcohols, aldehydes and ketones, can contain up to approx. 50% by weight, preferably approx. 1% or less water by weight.

Egnede karboksylsyrer som her kan anvendes, omfatterSuitable carboxylic acids that can be used here include

de som er representert ved formlenethose represented by the formulas

hvor hver R er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, særlig fra ca. 1 til ca. 10 karbonatomer. Særlig egnede karboksylsyrer omfatter for eksempel maursyre, eddiksyre, propionsyre, oksalsyre, benzoesyre, 2-etyl-heksan-syre, akrylsyre, metakrylsyre, blandinger derav og lignende. Egnede acetaler som her kan anvendes, omfatter for eksempel de som er representert ved formelen hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede acetaler som kan anvendes, omfatter for eksempel acetal, 1,1-dietoksypropan, blandinger derav og lignende. Egnede ketaler som her kan anvendes, omfatter for eksempel de som er representert ved formelen where each R is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, especially from approx. 1 to approx. 10 carbon atoms. Particularly suitable carboxylic acids include, for example, formic acid, acetic acid, propionic acid, oxalic acid, benzoic acid, 2-ethylhexanoic acid, acrylic acid, methacrylic acid, mixtures thereof and the like. Suitable acetals that can be used here include, for example, those represented by the formula where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms. Particularly suitable acetals which can be used include, for example, acetal, 1,1-diethoxypropane, mixtures thereof and the like. Suitable ketals that can be used here include, for example, those represented by the formula

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10

karbonatomer. Særlig egnede ketaler omfatter for eksempel 2,2-dimetoksypropan, 2,2-dimetoksyheksan, 2,2-dietoksypropan, blandinger derav og lignende. carbon atoms. Particularly suitable ketals include, for example, 2,2-dimethoxypropane, 2,2-dimethoxyhexane, 2,2-diethoxypropane, mixtures thereof and the like.

Egnede estere av karboksylsyrer som her kan anvendes, omfatter for eksempel de som er representert ved formlene Suitable esters of carboxylic acids that can be used here include, for example, those represented by the formulas

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede estere omfatter for eksempel etylacetat, etylformiat, etylbenzoat, metylacetat, metyl-formiat, blandinger derav og lignende. Egnede ortoestere som her kan anvendes, omfatter for eksempel de som er representert ved formelen where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms. Particularly suitable esters include, for example, ethyl acetate, ethyl formate, ethyl benzoate, methyl acetate, methyl formate, mixtures thereof and the like. Suitable orthoesters that can be used here include for for example those represented by the formula

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede ortoestere omfatter for eksempel trietylortoformiat, trietylortoacetat, blandinger derav og lignende. Egnede karboksylsyrehalogenider omfatter de som er representert ved formlene where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms. Particularly suitable orthoesters include, for example, triethyl orthoformate, triethyl orthoacetate, mixtures thereof and the like. Suitable carboxylic acid halides include those which are represented by the formulas

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 2 0 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer, og hver X er halogen, fortrinnsvis klor eller brom. Særlig egnede syrehalogenider omfatter for eksempel acetylklorid, oksalylklorid, propionylklorid, benzoylklorid, blandinger derav og lignende. Egnede organiske karbonater som her kan anvendes, om fatter for eksempel de som er representert ved formlene where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms, and each X is halogen, preferably chlorine or bromine. Particularly suitable acid halides include, for example, acetyl chloride, oxalyl chloride, propionyl chloride, benzoyl chloride, mixtures thereof and the like. Suitable organic carbonates that can be used here, if includes, for example, those represented by the formulas

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 2 0 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede karbonater omfatter for eksempel dietylkarbonat, etylenkarbonat, dipropylkarbonat, propylenkarbonat, styrenkarbonat, blandinger derav og lignende. where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms. Particularly suitable carbonates include, for example, diethyl carbonate, ethylene carbonate, dipropyl carbonate, propylene carbonate, styrene carbonate, mixtures thereof and the like.

Egnede karboksylsyreanhydrider omfatter for eksempelSuitable carboxylic anhydrides include, for example

de som er representert ved formlenethose represented by the formulas

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede anhydrider omfatter for eksempel eddiksyreanhydrid, propionsyreanhydrid, blandinger derav og lignende. Egnede aminer som her kan anvendes, omfatter for eksempel de som er representert ved formelen where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20 carbon atoms, preferably from 1 to approx. 10 carbon atoms. Particularly suitable anhydrides include, for example, acetic anhydride, propionic anhydride, mixtures thereof and the like. Suitable amines that can be used here include, for example, those represented by the formula

hvor hver R uavhengig av hverandre er hydrogen, en hydroksyl-eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede aminer omfatter for eksempel ammoniakk, etylamin, dietylamin, diisopropylamin, where each R independently of one another is hydrogen, a hydroxyl or a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms. Particularly suitable amines include, for example, ammonia, ethylamine, diethylamine, diisopropylamine,

isopropylamin, hydroksylamin, blandinger derav og lignende. isopropylamine, hydroxylamine, mixtures thereof and the like.

Egnede amider som her kan anvendes, omfatter for eksempel de som er representert ved formelen Suitable amides that can be used here include, for example, those represented by the formula

hvor hver R uavhengig av hverandre er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede amider omfatter for eksempel formamid, N,N-dimetylformamid, blandinger derav og lignende. where each R independently of one another is hydrogen or a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms. Particularly suitable amides include, for example, formamide, N,N-dimethylformamide, mixtures thereof and the like.

Egnede imider som her kan anvendes, omfatter forSuitable imides that can be used here include for

eksempel de som er representert ved formelenfor example those represented by the formula

hvor hver R uavhengig av hverandre er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede imider omfatter for eksempel succinimid, ftalimid, blandinger derav og lignende. Egnede oksimer som her kan anvendes, omfatter for eksempel de som er representert ved formlene where each R independently of one another is hydrogen or a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms. Particularly suitable imides include, for example, succinimide, phthalimide, mixtures thereof and the like. Suitable oximes which can be used here include for for example those represented by the formulas

hvor hver R uavhengig av hverandre er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer. Særlig egnede oksimer omfatter for eksempel dimetylglyoksim, formamidoksim, acetoksim, acetaldoksim, metyl-etylketoksim, blandinger derav og lignende. Egnede nitriler som her kan anvendes, omfatter for eksempel de som representeres ved formelen where each R independently of one another is hydrogen or a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms. Particularly suitable oximes include, for example, dimethylglyoxime, formamidoxime, acetoxime, acetaldoxime, methyl ethyl ketoxime, mixtures thereof and the like. Suitable nitriles that can be used here include, for example, those represented by the formula

hvor R er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca: 10 karbonatomer. Særlig egnede nitriler omfatter for eksempel hydrogencyanid, aceto-nitril, propionitril, akrylnitril, blandinger derav og lignende. Egnede isocyanater som. her kan anvendes, omfatter for eksempel de som representeres ved formlene where R is hydrogen or a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to about: 10 carbon atoms. Particularly suitable nitriles include, for example, hydrogen cyanide, acetonitrile, propionitrile, acrylonitrile, mixtures thereof and the like. Suitable isocyanates such as. can be used here, includes for for example those represented by the formulas

hvor hver R uavhengig av hverandre er en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer, og y har en gjennomsnittsverdi fra ca. 1,01 til ca. 6. Særlig egnede isocyanater som her kan anvendes, omfatter for eksempel metylisocyanat, etylisocyanat, metyldiisocyanat, toluendiisocyanat, metylendifenyldiisocyanat, polymetylen-polyfenylisocyanat, blandinger derav og lignende. where each R independently of one another is a hydrocarbyl group with from 1 to approx. 20, preferably from 1 to approx. 10 carbon atoms, and y has an average value from approx. 1.01 to approx. 6. Particularly suitable isocyanates that can be used here include, for example, methyl isocyanate, ethyl isocyanate, methyl diisocyanate, toluene diisocyanate, methylene diphenyl diisocyanate, polymethylene-polyphenyl isocyanate, mixtures thereof and the like.

Eventuelt kan den oksygen- eller nitrogen-holdige forbindelse inneholde oppløst eller findispergert en eller flere overgangsmetallforbindelse(r) representert ved formelen Tm'YnXz n hvor Tm' er et overgangsmetall valgt fra gruppene IV-B, V-B, VI-B, VII-B, VIII, I-B i det periodiske system; Optionally, the oxygen- or nitrogen-containing compound may contain dissolved or finely dispersed one or more transition metal compound(s) represented by the formula Tm'YnXz n where Tm' is a transition metal selected from groups IV-B, V-B, VI-B, VII-B , VIII, I-B in the periodic table;

Y er oksygen, OR" eller NR^'; R" er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20, fortrinnsvis fra 1 til ca. 10 karbonatomer; X er et halogenatom, fortrinnsvis klor eller brom; z har en verdi svarende til valensen til overgangsmetallet, Y is oxygen, OR" or NR"; R" is hydrogen or a hydrocarbyl group having from 1 to about 20, preferably from 1 to approx. 10 carbon atoms; X is a halogen atom, preferably chlorine or bromine; z has a value corresponding to the valence of the transition metal,

Tm'; n har en verdi fra 0 til 5; og verdien av z-n er fra 0Tm'; n has a value from 0 to 5; and the value of z-n is from 0

opp til valensen av overgangsmetallet, Tm'.up to the valence of the transition metal, Tm'.

Særlig egnede overgangsmetall-forbindelser omfatter for eksempel CoCl2, CoCl2"6H20, NiCl2, NiCl2"6H20, FeCl3"6H20, FeCl3, FeCl2, CrCl3, CrCl2, CrCl3"6H20, MoCl5, WCXg, ZrCl4, Zr (0-iC.jH^) ^, V0C13, blandinger derav og lignende. Particularly suitable transition metal compounds include, for example, CoCl2, CoCl2"6H20, NiCl2, NiCl2"6H20, FeCl3"6H20, FeCl3, FeCl2, CrCl3, CrCl2, CrCl3"6H20, MoCl5, WCXg, ZrCl4, Zr (0-iC.jH^ ) ^, V0C13, mixtures thereof and the like.

Overgangsmetallforbindelsen, når den anvendes, er i en mengde slik at man får et Tm':Tm atomforhold fra ca. 0,01:1 The transition metal compound, when used, is in an amount such that a Tm':Tm atomic ratio of about 0.01:1

til ca. 0,5:1, fortrinnsvis fra ca. 0,02:1 til ca. 0,2:1. Overgangsmetallene betegnet med Tm og Tm' er også forskjellige. Overgangsmetall-delen av forbindelsen oppløst eller findispergert i den oksygen- eller nitrogen-holdige forbindelse er med andre ord forskjellig fra overgangsmetall-delen i to approx. 0.5:1, preferably from approx. 0.02:1 to approx. 0.2:1. The transition metals denoted by Tm and Tm' are also different. In other words, the transition metal part of the compound dissolved or finely dispersed in the oxygen- or nitrogen-containing compound is different from the transition metal part in

overgangsinetall-forbindelsen som senere anvendes ved fremstilling av katalysatoren ifølge foreliggende oppfinnelse. Ved anvendelse av slike overgangsmetall-forbindelser med oksygen-holdige eller nitrogen-holdige forbindelser, for-andres vanligvis egenskapene hos polymerene fremstilt ved polymerisasjon av monomer(er) i nærvær av katalysatorer fremstilt fra disse. Slike egenskaper omfatter (1) smelte-indeksen hos den fremstilte polymer ved en gitt hydrogen-konsentrasjon i polymerisasjonsreaktoren og/eller (2) polymer-pulver-romvekten for en polymer fremstilt under slurry-polymerisas jonsbetingelser eller ved gassfase-polymerisasjon. the transitional inetal compound which is later used in the production of the catalyst according to the present invention. When using such transition metal compounds with oxygen-containing or nitrogen-containing compounds, the properties of the polymers produced by polymerization of monomer(s) in the presence of catalysts produced from these are usually changed. Such properties include (1) the melt index of the produced polymer at a given hydrogen concentration in the polymerization reactor and/or (2) the polymer-powder bulk density for a polymer produced under slurry polymerization conditions or by gas phase polymerization.

Egnede halogenid-kilder som her kan anvendes, omfatter de som er representert ved formlene AIR^^X^, SiR4_bXb, SnR4_bXb, POX3, PX3, PX5, S02X2, GeX4, HX, R(CO)X og RX hvor hver R er uavhengig av hverandre hydrogen, en hydrokarbyl-gruppe eller en hydrokarbyloksy-gruppe som definert ovenfor, hver X er et halogenatom såsom klor eller brom, a har en verdi fra 1. til 3, og b har en verdi fra 1 til 4. Suitable halide sources that can be used herein include those represented by the formulas AIR^^X^, SiR4_bXb, SnR4_bXb, POX3, PX3, PX5, SO2X2, GeX4, HX, R(CO)X and RX where each R is independent of each other hydrogen, a hydrocarbyl group or a hydrocarbyloxy group as defined above, each X is a halogen atom such as chlorine or bromine, a has a value from 1 to 3, and b has a value from 1 to 4.

Når halogenid-kilden er et hydrokarbyl-halogenid, bør det inneholde et labilt halogen som er minst like aktivt, When the halide source is a hydrocarbyl halide, it should contain a labile halogen that is at least as active,

dvs. like lett tapes til en annen forbindelse, som halogenet i sek-butylklorid, fortrinnsvis så aktivt som t-butylklorid. i.e. just as easily lost to another compound, as the halogen in sec-butyl chloride, preferably as active as t-butyl chloride.

Særlig egnede halogenid-kilder omfatter for eksempel silisium-tetraklorid, tinntetraklorid, aluminiumtriklorid, triklorsilan, dimetyldiklorsilan, metyltriklorsilan, metyl-diklorsilan, etylaluminiumdiklorid, dietylaluminiumklorid, etylaluminiumseskviklorid, fosforoksytriklorid, fosfortriklorid, hydrogenklorid, t-butylklorid, benzylklorid, benzoylklorid, acetylklorid, blandinger derav og lignende. Particularly suitable halide sources include, for example, silicon tetrachloride, tin tetrachloride, aluminum trichloride, trichlorosilane, dimethyldichlorosilane, methyltrichlorosilane, methyldichlorosilane, ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, phosphorus oxytrichloride, phosphorus trichloride, hydrogen chloride, t-butyl chloride, benzyl chloride, benzoyl chloride, acetyl chloride, mixtures thereof and such.

Egnede halogenid-kilder omfatter også hydrokarbon-oppløselige overgangsmetallhalogenid-forbindelser representert ved formelen TmYnXz_nhvor Tm er et overgangsmetall valgt fra gruppene IV-B, V-B og VI-B i det periodiske system, Y er oksygen, OR" eller NR£; hver R" er uavhengig av hverandre hydrogen eller en hydrokarbyl-gruppe som definert ovenfor; Suitable halide sources also include hydrocarbon-soluble transition metal halide compounds represented by the formula TmYnXz_wherein Tm is a transition metal selected from groups IV-B, V-B and VI-B of the Periodic Table, Y is oxygen, OR" or NR£; each R" is independently hydrogen or a hydrocarbyl group as defined above;

X er halogen, fortrinnsvis klor eller brom; z har en verdi svarende til valensen til overgangsmetallet, Tm; n har en verdi fra 0 til 5, idet verdien av z-n er fra minst 1 opp til en verdi lik valenstrinnet til overgangsmetallet, Tm. X is halogen, preferably chlorine or bromine; z has a value corresponding to the valence of the transition metal, Tm; n has a value from 0 to 5, the value of z-n being from at least 1 up to a value equal to the valence step of the transition metal, Tm.

Særlig egnede overgangsmetall-halogenid-forbindelser omfatter slike forbindelser av titan, zirkonium, vanadium og krom, som for eksempel titantetraklorid, titantetrabromid, dibutoksy-titandiklorid, monoetoksytitantriklorid, isopropoksy-titantriklorid, kromylklorid, vanadiumoksytriklorid, zirkoniumtetraklorid, vanadiumtetraklorid, blandinger derav og lignende. Particularly suitable transition metal halide compounds include such compounds of titanium, zirconium, vanadium and chromium, such as, for example, titanium tetrachloride, titanium tetrabromide, dibutoxy titanium dichloride, monoethoxy titanium trichloride, isopropoxy titanium trichloride, chromyl chloride, vanadium oxytrichloride, zirconium tetrachloride, vanadium tetrachloride, mixtures thereof and the like.

Egnede reduksjonsmidler omfatter de som representeresSuitable reducing agents include those represented

ved formlene Al (R3)j-, -m X m , B(R3)j_ -m X m , ZnR3 2., ZnR<3>X, MgR3 Xby the formulas Al (R3)j-, -m X m , B(R3)j_ -m X m , ZnR3 2., ZnR<3>X, MgR3 X

eller MgR3,,, innbefattet blandinger derav, hvor hver R<3>uavhengig av hverandre er hydrogen eller en hydrokarbyl-gruppe som definert ovenfor; X er halogen, fortrinnsvis klor eller brom, en hydrokarbyloksy-gruppe som definert ovenfor eller en NR<3>2gruppe; R<3>er som ovenfor angitt; m har en verdi fra 0 or MgR3,,, including mixtures thereof, wherein each R<3> is independently hydrogen or a hydrocarbyl group as defined above; X is halogen, preferably chlorine or bromine, a hydrocarbyloxy group as defined above or an NR<3>2 group; R<3> is as above; m has a value from 0

til 2, fortrinnsvis 0 eller 1.to 2, preferably 0 or 1.

Særlig egnede reduksjonsmidler omfatter for. eksempel trietylaluminium, etylaluminium-diklorid, dietylaluminiumklorid, triisobutylaluminium, etylaluminium-seskviklorid, diisobutylaluminiumhydrid, trimetylaluminium, trietylbor, dietylsink, dibutylmagnesium-butyletylmagnesium, blandinger derav og lignende. Particularly suitable reducing agents include for for example triethylaluminum, ethylaluminum dichloride, diethylaluminum chloride, triisobutylaluminum, ethylaluminum sesquichloride, diisobutylaluminum hydride, trimethylaluminum, triethylboron, diethylzinc, dibutylmagnesium-butylethylmagnesium, mixtures thereof and the like.

Reduksjonsmidlene anvendes i mengder for å gi etR<3>:Tm forhold på fra ca. 1:1 til ca. 50:1, fortrinnsvis fra ca. 1:1 til ca. 10:1, og særlig foretrukket fra ca. 1:1 til ca. 3:1. Forholdet er antall R<3>grupper for hvert atom av overgangsmetall. The reducing agents are used in amounts to give an R<3>:Tm ratio of from approx. 1:1 to approx. 50:1, preferably from approx. 1:1 to approx. 10:1, and particularly preferred from approx. 1:1 to approx. 3:1. The ratio is the number of R<3> groups for each transition metal atom.

Egnede overgangsmetall-forbindelser som kan anvendes, omfatter de som rep r resenteres ved formelen TmY n X z-n , hvor Tm er et overgangsmetall i sin høyeste stabile valenstrinn og er valgt fra gruppene IV-B, V-B og VI-B i det periodiske system; Suitable transition metal compounds that can be used include those represented by the formula TmY n X z-n , where Tm is a transition metal in its highest stable valence step and is selected from groups IV-B, V-B and VI-B of the periodic table;

Y er oksygen, OR" eller NR£; R" er hydrogen eller en hydrokarbyl-gruppe med fra 1 til ca. 20 karbonatomer; X er halogen, fortrinnsvis klor eller brom; z har en verdi svarende til valensen av overgangsmetallet, Tm; n har en verdi fra 0 til 5, idet verdien av z-n er fra 0 opp til en verdi lik valenstrinnet for overgangsmetallet, Tm. Y is oxygen, OR" or NR£; R" is hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; X is halogen, preferably chlorine or bromine; z has a value corresponding to the valence of the transition metal, Tm; n has a value from 0 to 5, the value of z-n being from 0 up to a value equal to the valence level of the transition metal, Tm.

Særlig egnede overgangsmetall-forbindelser omfatterParticularly suitable transition metal compounds include

for eksempel titantetraklorid, titantetrabromid, dibutoksy-titandiklorid, monoetoksy-titantriklorid, isopropoksytitan-triklorid, tetraisopropoksytitan, kromylklorid, vanadiumoksytriklorid, zirkoniumtetraklorid, tetrabutoksyzirkonium, vanadiumtetraklorid, blandinger derav og lignende. for example titanium tetrachloride, titanium tetrabromide, dibutoxy titanium dichloride, monoethoxy titanium trichloride, isopropoxytitanium trichloride, tetraisopropoxytitanium, chromyl chloride, vanadium oxytrichloride, zirconium tetrachloride, tetrabutoxyzirconium, vanadium tetrachloride, mixtures thereof and the like.

Egnede organiske inerte fortynningsmidler i hvilke katalysator-bæreren og katalysatoren kan fremstilles og i hvilke a-olefin-polymerisasjonen kan utføres, omfatter for eksempel flytendegjort etan, propan, isobutan, n-butan, isopentan, n-pentan, n-heksan, de forskjellige isomere heksaner, isooktan, paraffiniske blandinger av alkaner med fra 8 til 12 karbonatomer, cykloheksan, metylcyklopentan, dimetylcykloheksan, dodekan, eicosan, industrielle opp-løsningsmidler sammensatt av mettede eller aromatiske hydrokarboner såsom kerosen, naftaer osv., særlig når det er be-fridd for eventuelle olefin-forbindelser og andre forurensninger, og særlig de som har kokepunkter i området fra ca. -50 til ca. 200°C. Også innbefattet som egnede inerte fortynningsmidler er benzen, toluen, etylbenzen, kumen, dekalin og lignende. Suitable organic inert diluents in which the catalyst support and catalyst can be prepared and in which the α-olefin polymerization can be carried out include, for example, liquefied ethane, propane, isobutane, n-butane, isopentane, n-pentane, n-hexane, the various isomeric hexanes, isooctane, paraffinic mixtures of alkanes with from 8 to 12 carbon atoms, cyclohexane, methylcyclopentane, dimethylcyclohexane, dodecane, eicosane, industrial solvents composed of saturated or aromatic hydrocarbons such as kerosene, naphthas, etc., especially when liberated for any olefin compounds and other contaminants, and especially those with boiling points in the range from approx. -50 to approx. 200°C. Also included as suitable inert diluents are benzene, toluene, ethylbenzene, cumene, decalin and the like.

Katalysatoren og katalysator-bærerene ifølge oppfinnelsen fremstilles fordelaktig under en inert atmosfære såsom nitrogen, argon eller en annen inert gass, ved temperaturer i området fra ca. -50 til ca. 200°C, fortrinnsvis fra ca. 0 til ca. 100°C. Blandingstiden for de forskjellige komponenter er ikke kritisk, men tider fra ca. 1 minutt til ca. 36 timer ansees å være mest ønskelig. Tiden er vanligvis den som vil tillate fullstendig reaksjon ved reaksjonstemperaturen. Hurtig blanding av katalysator-komponentene eller dårlig omrøring fører til en katalysator som er forholdsvis uensartet med hensyn til partikkelstørrelsesfordeling og fører til polymerer med en uønsket bred partikkelstørrelsesfordeling. The catalyst and catalyst carriers according to the invention are advantageously produced under an inert atmosphere such as nitrogen, argon or another inert gas, at temperatures in the range from approx. -50 to approx. 200°C, preferably from approx. 0 to approx. 100°C. The mixing time for the different components is not critical, but times from approx. 1 minute to approx. 36 hours is considered to be most desirable. The time is usually that which will allow complete reaction at the reaction temperature. Rapid mixing of the catalyst components or poor stirring results in a catalyst that is relatively non-uniform in particle size distribution and leads to polymers with an undesirably broad particle size distribution.

Magnesium-forbindelsen, den eventuelle aluminium-, sink-eller bor-forbindelse, og den oksygen-holdige og/eller nitrogen-holdige forbindelse kan blandes i en hvilken som helst rekkefølge. Et bunnfall dannes noen ganger, avhengig av den anvendte oksygen- eller nitrogen-holdige forbindelse, når den oksygen-holdige og/eller nitrogen-holdige forbindelse og magnesium-forbindelse blandes, og klumper vil dannes hvis reaksjonskomponentene blandes med dårlig omrøring, for raskt eller i for konsentrert blanding. Disse klumper resulterer i en ferdig katalysator som inneholder klumper som i sin tur fører til en polymer under slurry-polymerisasjonsbetingelser med en uønsket bred partikkelstørrelsesfordeling med en betydelig prosentandel av partikler som ikke kan passere gjennom en 40 mesh sikt. Tilsetning av en aluminium-, sink-eller bor-forbindelse kan resultere i en hydrokarbon-oppløs-ning av blandingen av magnesium-forbindelse og oksygen-holdig og/eller nitrogen-holdig forbindelse og eliminerer de tidligere nevnte uønskede virkninger. Det foretrekkes å sette den' oksygen-holdige og/eller nitrogen-holdige forbindelse til en oppløsning av magnesium-forbindelsen og aluminium-, sink- eller bor-forbindelsen for å oppnå en ønsket jevn polymerpartikkel-størrelsesfordeling. The magnesium compound, the possible aluminum, zinc or boron compound, and the oxygen-containing and/or nitrogen-containing compound can be mixed in any order. A precipitate is sometimes formed, depending on the oxygen- or nitrogen-containing compound used, when the oxygen-containing and/or nitrogen-containing compound and magnesium compound are mixed, and lumps will form if the reaction components are mixed with poor stirring, too quickly or in too concentrated mixture. These lumps result in a finished catalyst containing lumps which in turn lead to a polymer under slurry polymerization conditions with an undesirably broad particle size distribution with a significant percentage of particles that cannot pass through a 40 mesh sieve. Addition of an aluminum, zinc or boron compound can result in a hydrocarbon solution of the mixture of magnesium compound and oxygen-containing and/or nitrogen-containing compound and eliminates the previously mentioned undesirable effects. It is preferred to add the oxygen-containing and/or nitrogen-containing compound to a solution of the magnesium compound and the aluminium, zinc or boron compound in order to achieve a desired uniform polymer particle size distribution.

Når katalysatoren ifølge oppfinnelsen anvendes under opp-løsnings-polymerisasjonsbetingelser, er den ovennevnte katalysator-partikkelstørrelsesfordeling ikke så viktig. Hvis imidlertid en aluminium-forbindelse tilsettes som et solubili-serende middel, forenkles katalysatorfremstillingen når det anvendes lukkede metallkar for katalysatorfremstillingen, slik som man vil anvende ved kommersiell fremstilling av polymerer og kopolymerer av etylen. When the catalyst according to the invention is used under solution polymerization conditions, the above-mentioned catalyst particle size distribution is not so important. If, however, an aluminum compound is added as a solubilizing agent, the catalyst production is simplified when closed metal vessels are used for the catalyst production, as would be used in the commercial production of polymers and copolymers of ethylene.

Egnede kokatalysatorer eller aktivatorer som katalysa-torene ifølge oppfinnelsen kan omsettes med, bringes i kontakt med eller anvendes sammen med ved polymerisasjonen av a-olefiner, omfatter de aluminium-, bor-, sink- eller magnesium-forbindelser som representeres ved formlene Al (R3)., X , B(R<3>)3_aXa,MgR<3>2,MgR<3>X, ZnR<3>2eller blandinger derav, hvor Suitable cocatalysts or activators with which the catalysts according to the invention can be reacted with, brought into contact with or used together with in the polymerization of α-olefins include the aluminium, boron, zinc or magnesium compounds represented by the formulas Al (R3 )., X , B(R<3>)3_aXa,MgR<3>2,MgR<3>X, ZnR<3>2or mixtures thereof, where

X og R<3>er som tidligere angitt, og a har en verdi fra 0 tilX and R<3> are as previously indicated, and a has a value from 0 to

2, fortrinnsvis 0 til 1, og særlig foretrukket 0.2, preferably 0 to 1, and particularly preferably 0.

Spesielt egnede kokatalysatorer eller aktivatorer omfatter for eksempel dietylaluminiumklorid, etylaluminium-diklorid, dietylaluminiumbromid, trietylaluminium, triisobutylaluminium, dietylsink, dibutylmagnesium, butyletylmagnesium, butylmagnesiumklorid, diisobutylaluminiumhydrid, isoprenylaluminium, trietylbor, trimetylaluminium, blandinger derav og lignende. Particularly suitable cocatalysts or activators include, for example, diethyl aluminum chloride, ethyl aluminum dichloride, diethyl aluminum bromide, triethyl aluminum, triisobutyl aluminum, diethyl zinc, dibutyl magnesium, butyl ethyl magnesium, butyl magnesium chloride, diisobutyl aluminum hydride, isoprenyl aluminum, triethyl boron, trimethyl aluminum, mixtures thereof and the like.

Kokatalysatorene eller aktivatorene anvendes i slike mengder at Al, B, Mg, Zn:Ti eller blandinger derav atomforholdet er fra ca. 0,1:1 til ca. 1000:1, fortrinnsvis fra ca. 5:1 til ca. 500:1, og særlig foretrukket fra ca. 10:1 The cocatalysts or activators are used in such quantities that Al, B, Mg, Zn:Ti or mixtures thereof have an atomic ratio of from approx. 0.1:1 to approx. 1000:1, preferably from approx. 5:1 to approx. 500:1, and particularly preferred from approx. 10:1

til ca. 200:1.to approx. 200:1.

Katalysatoren og kokatalysatoren eller aktivatoren kan settes separat til polymerisasjonsreaktoren, eller de kan blandes sammen før tilsetning til polymerisasjonsreaktoren. The catalyst and cocatalyst or activator may be added separately to the polymerization reactor, or they may be mixed together prior to addition to the polymerization reactor.

Olefiner som hensiktsmessig homopolymeriseres eller kopolymeriseres ved utførelse av foreliggende oppfinnelse, er generelt ett eller flere av de alifatiske a-olefiner som for eksempel etylen, propylen, buten-1, penten-1, 3-metyl-buten-1, 4-metylpenten-l, heksen-1, okten-1, dodecen-1, oktadecen-1, 1,7-oktadien og lignende. Det skal forståes at a-olefiner kan kopolymeriseres med ett eller flere andre a-olefiner og/eller med små mengder, dvs. opp til 2 5 vekt% basert på polymeren, av andre etyleriisk umettede monomerer såsom styren, a-metylstyren og lignende etylenisk umettede monomerer som ikkeødelegger vanlige Ziegler-katalysatorer. Olefins which are suitably homopolymerised or copolymerised in carrying out the present invention are generally one or more of the aliphatic α-olefins such as ethylene, propylene, butene-1, pentene-1, 3-methyl-butene-1, 4-methylpentene- 1, hexene-1, octene-1, dodecene-1, octadecene-1, 1,7-octadiene and the like. It should be understood that α-olefins can be copolymerized with one or more other α-olefins and/or with small amounts, i.e. up to 25% by weight based on the polymer, of other ethylenically unsaturated monomers such as styrene, α-methylstyrene and similar ethylenically unsaturated monomers which do not destroy ordinary Ziegler catalysts.

De fleste fordeler oppnåes ved polymerisasjonen av alifatiske a-monoolefiner, særlig etylen og blandinger av etylen og opp til 50 vekt%, særlig fra ca. 0,1 til ca. 40 vekt% av propylen, buten-1, heksen-1, okten-1, 4-metylpenten-l, 1,7-oktadien eller lignende a-olefin eller a-diolefin basert på total monomer. Most advantages are achieved by the polymerization of aliphatic α-monoolefins, especially ethylene and mixtures of ethylene and up to 50% by weight, especially from approx. 0.1 to approx. 40% by weight of propylene, butene-1, hexene-1, octene-1, 4-methylpentene-1, 1,7-octadiene or similar α-olefin or α-diolefin based on total monomer.

Ved polymerisasjonsprosessen hvor det ovennevnte katalytiske reaksjonsprodukt anvendes, foretaes polymerisasjonen ved tilsetning av en katalytisk mengde av den ovennevnte katalysator-komposisjon til en polymerisasjonssone inneholdende en a-olefinmonomer, eller vice versa. Polymerisasjonssonen holdes ved temperaturer i området fra ca. 0 til ca. 300°C, fortrinnsvis ved slurry-polymerisasjonstemperaturer, for eksempel fra ca. 0 til ca. 95°C, mer foretrukket fra ca. 50 til 90°C, med en oppholdstid på ca. 15 minutter til 24 timer, fortrinnsvis 30 minutter til 8 timer. Det er vanligvis ønskelig å ut-føre . polymerisas jonen i fravær av fuktighet og oksygen, og en katalytisk mengde av det katalytiske reaksjonsprodukt er vanligvis i området fra ca. 0,0001 til ca. 0,1 milligram-atomer titan pr. liter fortynningsmiddel. Det skal imidlertid forståes at den mest fordelaktige katalysator-konsentrasjon vil være avhengig av polymerisasjonsbetingelsene såsom temperatur, trykk, fortynningsmiddel og tilstedeværelse av katalysator-gifter, og at det ovennevnte område er angitt for å vise maksimale katalysator-utbytter. Ved polymerisasjonsprosessen kan det generelt anvendes et bæremiddel som kan være et inert organisk fortynningsmiddel eller overskudd av monomer. For å utnytte den fulle fordel av den høy-effektive katalysator ifølge foreliggende oppfinnelse må man ta sikte på å unngå overmetning av fortynningsmidlet med polymer. Hvis slik metning finner sted før katalysatoren blir oppbrukt, oppnåes ikke den fulle effektivitet av katalysatoren. For de beste resultater foretrekkes at mengden av polymer i bæremidlet ikke overstiger ca. 50 vekt% basert på den totale vekt av reaksjonsblandingen. In the polymerization process where the above-mentioned catalytic reaction product is used, the polymerization is carried out by adding a catalytic amount of the above-mentioned catalyst composition to a polymerization zone containing an α-olefin monomer, or vice versa. The polymerization zone is kept at temperatures in the range from approx. 0 to approx. 300°C, preferably at slurry polymerization temperatures, for example from approx. 0 to approx. 95°C, more preferably from approx. 50 to 90°C, with a residence time of approx. 15 minutes to 24 hours, preferably 30 minutes to 8 hours. It is usually desirable to carry out . The ion is polymerized in the absence of moisture and oxygen, and a catalytic amount of the catalytic reaction product is usually in the range from about 0.0001 to approx. 0.1 milligram-atoms of titanium per liter of diluent. However, it should be understood that the most advantageous catalyst concentration will depend on the polymerization conditions such as temperature, pressure, diluent and presence of catalyst poisons, and that the above range is indicated to show maximum catalyst yields. In the polymerization process, a carrier can generally be used which can be an inert organic diluent or an excess of monomer. In order to take full advantage of the high-efficiency catalyst of the present invention, one must aim to avoid supersaturation of the diluent with polymer. If such saturation takes place before the catalyst is used up, the full efficiency of the catalyst is not achieved. For the best results, it is preferred that the amount of polymer in the carrier does not exceed approx. 50% by weight based on the total weight of the reaction mixture.

Det skal forståes at inerte fortynningsmidler som anvendes i polymerisasjonsblandingen, kan anvendes slik som angitt ovenfor. It should be understood that inert diluents used in the polymerization mixture can be used as indicated above.

De polymerisasjonstrykk som fortrinnsvis anvendes, er forholdsvis lave, for eksempel fra ca. 0,7 til ca. 35 ato. Polymerisasjonen ifølge oppfinnelsen kan imidlertid skje ved trykk fra atmosfæretrykk opp til trykk som bestemmes av kapasiteten hos polymerisasjonsutstyret. Under polymerisasjonen er det ønskelig å omrøre polymerisasjonsblandingen for å oppnå bedre temperatur-kontroll og for å opprettholde jevne polymerisasjonsblandinger i hele polymerisasjonssonen. The polymerization pressures that are preferably used are relatively low, for example from approx. 0.7 to approx. 35 ato. However, the polymerization according to the invention can take place at pressures from atmospheric pressure up to a pressure determined by the capacity of the polymerization equipment. During the polymerization, it is desirable to stir the polymerization mixture to achieve better temperature control and to maintain uniform polymerization mixtures throughout the polymerization zone.

Hydrogen anvendes ofte ved utførelse av foreliggende oppfinnelse for å regulere molekylvekten av den resulterende polymer. For denne oppfinnelses formål er det gunstig å anvende hydrogen i konsentrasjoner varierende fra ca. 0 til ca. 80 volum% i gass- eller flytende fase i polymerisasjonskaret. De høyere mengder hydrogen innenfor dette område er funnet å føre til generelt mer lavmolekylære polymerer. Det skal forståes at hydrogen kan tilsettes med en monomer-strøm til polymerisasjonskaret eller settes separat til karet før, under eller etter tilsetningen av monomer til polymerisasjonskaret, men under eller før tilsetningen av katalysatoren. Under anvendelse av den generelt beskrevne metode kan polymerisasjonsreaktoren drives med flytende materiale eller med en gassfase og ved oppløsnings- eller slurry-polymerisasjonsbetingelser. Hydrogen is often used in carrying out the present invention to regulate the molecular weight of the resulting polymer. For the purposes of this invention, it is advantageous to use hydrogen in concentrations varying from approx. 0 to approx. 80% by volume in gas or liquid phase in the polymerization vessel. The higher amounts of hydrogen within this range have been found to lead to generally lower molecular weight polymers. It should be understood that hydrogen can be added with a monomer stream to the polymerization vessel or added separately to the vessel before, during, or after the addition of monomer to the polymerization vessel, but during or before the addition of the catalyst. Using the generally described method, the polymerization reactor can be operated with liquid material or with a gas phase and under solution or slurry polymerization conditions.

Monomeren eller blandingen av monomerer bringes i kontakt med det katalytiske reaksjonsprodukt på vanlig måte, fortrinnsvis ved å bringe katalysator-komposisjonen og monomer sammen med omhyggelig omrøring som oppnåes ved passende røring The monomer or mixture of monomers is brought into contact with the catalytic reaction product in a conventional manner, preferably by bringing the catalyst composition and monomer together with thorough agitation achieved by suitable stirring

eller på annen måte. Røring kan fortsettes under polymerisasjonen. Når det gjelder raskere reaksjoner med mer aktive katalysatorer, kan man anvende midler for tilbakeløpskjøling av monomer og oppløsningsmiddel, hvis en av de sistnevnte or otherwise. Stirring can be continued during the polymerization. In the case of faster reactions with more active catalysts, means for reflux cooling of monomer and solvent can be used, if one of the latter

er til stede og således fjerne reaksjonsvarmen. I ethvert tilfelle må man sørge for å fjerne den eksoterme polymerisa-sjonsvarme, for eksempel ved avkjøling av reaktorveggene osv. Eventuelt kan monomeren bringes i dampfase i kontakt med det katalytiske reaksjonsprodukt, i nærvær eller fravær av flytende materiale. Polymerisasjonen kan utføres på satsvis måte eller på kontinuerlig måte, som for eksempel ved å føre reaksjonsblandingen gjennom et langstrakt reaksjonsrør som utvendig er i kontakt med et egnet kjølemedium for å opprettholde den ønskede reaksjonstemperatur, eller ved å føre reaksjonsblandingen gjennom en likevekts-overstrømningsreaktor eller en serie av slike. is present and thus remove the heat of reaction. In any case, care must be taken to remove the exothermic polymerization heat, for example by cooling the reactor walls, etc. Optionally, the monomer can be brought in vapor phase into contact with the catalytic reaction product, in the presence or absence of liquid material. The polymerization can be carried out in a batch manner or in a continuous manner, such as by passing the reaction mixture through an elongated reaction tube which is externally in contact with a suitable cooling medium to maintain the desired reaction temperature, or by passing the reaction mixture through an equilibrium overflow reactor or a series of such.

Polymeren utvinnes lett fra polymerisasjonsblandingenThe polymer is easily recovered from the polymerization mixture

ved å avdrive uomsatt monomer og oppløsningsmiddel hvis slikt anvendes. Ingen ytterligere fjernelse av forurensninger kreves. En betydelig fordel ved foreliggende oppfinnelse er således by driving off unreacted monomer and solvent if such is used. No further removal of contaminants is required. A significant advantage of the present invention is thus

at man eliminerer trinnene med fjernelse av katalysator-rest.that one eliminates the steps of removing catalyst residue.

I noen tilfeller kan det imidlertid være ønskelig å tilsetteIn some cases, however, it may be desirable to add

en liten mengde av et katalysator-deaktiverende reagens.a small amount of a catalyst-deactivating reagent.

Den resulterende polymer finnes å inneholde ubetydelige mengder av katalysator-rest. The resulting polymer is found to contain negligible amounts of catalyst residue.

De følgende eksempler er gitt for å illustrere oppfinnelsen og skal ikke ansees som begrensende for dennes om-fang. Alle deler og prosentdeler er etter vekt hvis ikke annet er angitt. The following examples are given to illustrate the invention and should not be regarded as limiting its scope. All parts and percentages are by weight unless otherwise stated.

I de følgende eksempler ble smelteindeks-verdiene 1^In the following examples, the melt index values were 1^

og I1Qbestemt ved ASTM D 1238 henholdsvis betingelser E og N. Den tilsynelatende romvekt ble bestemt som en ikke-sammensunket romvekt i henhold til fremgangsmåten ifølge ASTM 1895 under anvendelse av et maling-volumeter fra Sargent-Welch Scientific Company (catalog no. S-64985) som sylinderen istedenfor den som er spesifisert ifølge ASTM-metoden. and I1Q determined by ASTM D 1238 conditions E and N, respectively. The apparent bulk density was determined as a non-compromised bulk density according to the method of ASTM 1895 using a paint volume meter from Sargent-Welch Scientific Company (catalog no. S-64985 ) as the cylinder instead of the one specified according to the ASTM method.

Generell fremgangsmåteGeneral procedure

I hvert av de følgende eksempler, hvis ikke annet er angitt, ble katalysator-komponentene blandet mens de var i en lukket boks fylt med tørr oksygen-fri nitrogen. In each of the following examples, unless otherwise indicated, the catalyst components were mixed while in a closed box filled with dry oxygen-free nitrogen.

I eksemplene var dibutylmagnesium et kommersieltIn the examples, dibutylmagnesium was a commercial one

materiale oppnådd som en oppløsning i en heptan-heksan-blanding fra Lithium Corporation of America, diheksylmagnesium material obtained as a solution in a heptane-hexane mixture from Lithium Corporation of America, dihexylmagnesium

var et kommersielt materiale oppnådd som en heksan-oppløsning fra Ethyl Corporation, og butyletylmagnesium var et kommersielt materiale oppnådd som en heptan-oppløsning fra Texas Alkyls, Inc. Alle forhold er molforhold hvis ikke annet er angitt. 1,4 6 molar dietylaluminiumklorid, 0,616 molar triisobutylaluminium og 0,921 molar trietylaluminium ble oppnådd som oppløsninger i heksan fra Ethyl Corporation eller Texas Alkyls, Inc. Isopar<->E ble oppnådd fra Exxon Company USA og er en blanding av mettede paraffiner med hovedsakelig 8 til 9 karbonatomer. was a commercial material obtained as a hexane solution from Ethyl Corporation, and butylethylmagnesium was a commercial material obtained as a heptane solution from Texas Alkyls, Inc. All ratios are molar ratios unless otherwise noted. 1.4 6 molar diethylaluminum chloride, 0.616 molar triisobutylaluminum and 0.921 molar triethylaluminum were obtained as solutions in hexane from Ethyl Corporation or Texas Alkyls, Inc. Isopar<->E was obtained from Exxon Company USA and is a mixture of saturated paraffins with mainly 8 to 9 carbon atoms.

EKSEMPEL 1EXAMPLE 1

A. Katalysator fremstilling:A. Catalyst preparation:

532 milliliter av en 0,470 molar dibutylmagnesium-oppløsning (250 millimol) ble dråpevis tilsatt en omrørt oppløsning av n-propylalkohol (38 ml, 505 millimol) i heksan (400 ml). En opp-løsning av titantetraklorid (55 ml, 500 millimol) i heksan (200 ml) ble dråpevis tilsatt til den resulterende oppslemning under kontinuerlig omrøring. 342 milliliter av 1,46 molar dietylaluminiumklorid (500 millimol) ble dråpevis tilsatt over en periode på 2 timer under kontinuerlig omrøring. De hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, og den overliggende oppløsning ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan. Dekanteringsprosedyren ble gjentatt ytterligere 4 ganger for å fjerne de heksan-oppløselige reaksjonsprodukter. 532 milliliters of a 0.470 molar dibutylmagnesium solution (250 mmol) was added dropwise to a stirred solution of n-propyl alcohol (38 mL, 505 mmol) in hexane (400 mL). A solution of titanium tetrachloride (55 mL, 500 mmol) in hexane (200 mL) was added dropwise to the resulting slurry with continuous stirring. 342 milliliters of 1.46 molar diethyl aluminum chloride (500 millimoles) was added dropwise over a period of 2 hours with continuous stirring. The hydrocarbon-insoluble products were allowed to settle, and the supernatant solution was removed by decantation. The solids were reslurried in fresh hexane. The decantation procedure was repeated an additional 4 times to remove the hexane-soluble reaction products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

En målt porsjon av katalysatoroppslemning, fremstilt i A ovenfor, innholdende 0,025 millimol titan ble tilsatt til en 1,8 liters omrørt reaktor av rustfritt stål inneholdende 1,0 liter tørt, oksygenfritt heksan og 2,0 ml av 0,616 molar triisobutylaluminium. De molare forhold Al:Ti var 49:1. Reaktorens nitrogenatmosfære ble erstattet med hydrogen ved gjennomblåsing, reaktorens innhold ble oppvarmet til 85°C, og reaktorens trykk ble regulert til 70 psig (5 kg/cm ) med hydrogen. Etylen ble så tilsatt for opprettholdelse av et reaktortrykk på 170 psig (12 kg/cm.2) . Etter to timer ved 85°C ble reaktorens innhold filtrert og polyetylenet tørket i et vakuum natten over ved ca. 60°C, hvilket gav 283 gram polyetylen med en smelteindeks på 0,7 og en romvekt på 19,3 lbs/ft 3 (0,31 g/ml). Katalysatorens effektivitet var 236 000 gram polyetylen pr. gram titan. A metered portion of catalyst slurry, prepared in A above, containing 0.025 millimoles of titanium was added to a 1.8 liter stirred stainless steel reactor containing 1.0 liters of dry, oxygen-free hexane and 2.0 ml of 0.616 molar triisobutylaluminum. The Al:Ti molar ratio was 49:1. The reactor nitrogen atmosphere was replaced with hydrogen by purging, the reactor contents were heated to 85°C, and the reactor pressure was regulated to 70 psig (5 kg/cm 2 ) with hydrogen. The ethylene was then added to maintain a reactor pressure of 170 psig (12 kg/cm 2 ). After two hours at 85°C, the contents of the reactor were filtered and the polyethylene dried in a vacuum overnight at approx. 60°C, yielding 283 grams of polyethylene with a melt index of 0.7 and a bulk density of 19.3 lbs/ft 3 (0.31 g/ml). The catalyst's efficiency was 236,000 grams of polyethylene per grams of titanium.

EKSEMPEL 2EXAMPLE 2

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av n-propylalkohol (37,6 ml, 500 millimol) i heksan (100 ml) ble dråpevis tilsatt på 1/2 time til en om-rørt oppløsning av 532 ml 0,470 molar dibutylmagnesium (250 millimol). Heksan ble tilsatt til den resulterende oppslemning til et totalvolum på 800 ml. En oppløsning av TiCl4 (55,0 ml, 500 millimol) i heksan (200 ml) ble dråpevis tilsatt over en periode på en time. Oppslemningen ble fortynnet med heksan til 1200 ml og de hydrokarbon-uoppløselige produkter tillatt å sedimentere. En del av den overliggende væske (600 ml) ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan (600 ml). Dekanteringen ble gjentatt ytterligere to ganger for fjerning av heksanoppløselige reaksjonsprodukter. De hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, og den overliggende væske ble fjernet ved dekantering, hvorved det erholdtes en oppslemning med et volum på 450. En del (45 ml) av denne oppslemning ble uttatt og ved analyse funnet å ha et molart forhold Mg:Ti på 3,2:1. Den gjenværende oppslemning (405 ml) ble blandet med 49 ml TiCl^(446 millimol). En dietylaluminiumkloridoppløsning (370 ml av 1,46 molar, 540 millimol) ble dråpevis tilsatt den omrørte oppslemning. De hydrokarbon-uoppløselige produkter ble tillatt å sedimentere i ca. 1/2 time, og den overliggende væske ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan. Dekanteringen ble gjentatt ytterligere 5 ganger for fjerning av heksanoppløselige reaksjonsprodukter. A solution of n-propyl alcohol (37.6 mL, 500 mmol) in hexane (100 mL) was added dropwise over 1/2 hour to a stirred solution of 532 mL of 0.470 molar dibutylmagnesium (250 mmol). Hexane was added to the resulting slurry to a total volume of 800 ml. A solution of TiCl 4 (55.0 mL, 500 mmol) in hexane (200 mL) was added dropwise over a period of one hour. The slurry was diluted with hexane to 1200 ml and the hydrocarbon insoluble products allowed to settle. A portion of the supernatant (600 mL) was removed by decantation. The solids were reslurried in fresh hexane (600 mL). The decantation was repeated twice more to remove hexane-soluble reaction products. The hydrocarbon-insoluble products were allowed to settle, and the supernatant was removed by decantation, yielding a slurry with a volume of 450. A portion (45 ml) of this slurry was withdrawn and found by analysis to have a molar ratio Mg:Ti of 3.2:1. The remaining slurry (405 mL) was mixed with 49 mL of TiCl₂ (446 mmol). A diethyl aluminum chloride solution (370 mL of 1.46 molar, 540 mmol) was added dropwise to the stirred slurry. The hydrocarbon-insoluble products were allowed to settle for approx. 1/2 hour, and the overlying liquid was removed by decantation. The solids were reslurried in fresh hexane. The decantation was repeated an additional 5 times to remove hexane-soluble reaction products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

En målt andel av katalysatoroppslemning, fremstilt i A ovenfor, inneholdende 0,027 millimol titan ble tilsatt til en 1,8 liters omrørt reaktor av rustfritt stål inneholdende 1,0 liter tørt, oksygenfritt heksan og 0,88 ml 0,616 molar triisobutylaluminium i heksan. Atomforholdet Al:Ti var 20:1. Reaktorens nitrogenatmosfære ble erstattet med hydrogen ved gjennomblåsing, reaktorens innhold ble oppvarmet til 85°C, og reaktorens trykk ble innstilt på 90 psig (6 kg/cm ) med hydrogen. Etylen ble så tilsatt for opprettholdelse av et reaktortrykk på 170 (12 kg/cm ). Etter to timer ved 85°C ble reaktorens innhold filtrert og polyetylenet tørket i et vakuum natten over ved ca. 60°C, hvilket gav 383 gram polyetylen som hadde en smelteindeks på 2,7 og en romvekt på 15,4 lbs/ft 3 (0,25 g/ml). Katalysatorens effektivitet var 295 000 gram polyetylen pr. gram titan. A measured portion of catalyst slurry, prepared in A above, containing 0.027 millimoles of titanium was added to a 1.8 liter stirred stainless steel reactor containing 1.0 liters of dry, oxygen-free hexane and 0.88 ml of 0.616 molar triisobutylaluminum in hexane. The atomic ratio Al:Ti was 20:1. The reactor's nitrogen atmosphere was replaced with hydrogen by purging, the reactor's contents were heated to 85°C, and the reactor's pressure was adjusted to 90 psig (6 kg/cm 2 ) with hydrogen. The ethylene was then added to maintain a reactor pressure of 170 (12 kg/cm 2 ). After two hours at 85°C, the contents of the reactor were filtered and the polyethylene dried in a vacuum overnight at approx. 60°C, yielding 383 grams of polyethylene having a melt index of 2.7 and a bulk density of 15.4 lbs/ft 3 (0.25 g/ml). The catalyst's efficiency was 295,000 grams of polyethylene per grams of titanium.

EKSEMPEL 3EXAMPLE 3

A. Katalysator fremstilling:A. Catalyst preparation:

En 100 ml heksanoppløsning inneholdende 32,9 ml (438 millimol) n-propylalkohol ble dråpevis tilsatt til en omrørt 350 ml heksanoppløsning inneholdende 210,8 ml (125 millimol) 0,593 molar-dibutylmagnesium og 101,5 ml (62,5 millimol) 0,616 triisobutylaluminium. Suksessivt ble en 100 ml heksanoppløsning inneholdende 54,9 ml (500 millimol) TiCl4dråpevis tilsatt den omrørte magnesiumalkyl-aluminiumalkyl-alkohol-blanding. Det resulterende faste stoff ble tillatt å sedimentere i 20 minutter, og den overliggende væske ble dekantert. Det faste stoff ble igjen oppslemmet i frisk heksan, og den overliggende væske igjen dekantert. Ytterligere 6 dekanteringer ble utført med frisk heksan. Til den endelige omrørte oppslemning ble det tilsatt 27,5 ml (250 millimol) TiCl4, fulgt av dråpevis tilsetning av en 250 ml heksanoppløs-ning inneholdende 171,2 ml (250 millimol) 1,46 molar dietylaluminiumklorid. Det resulterende faste stoff ble tillatt å sedimentere i 20 minutter, og den overliggende væske ble dekantert. Ytterligere 7 dekanteringer ble utført med frisk heksan. Analyse av katalysatoren gav et atomforhold Mg:Ti på 0,5:1. A 100 mL hexane solution containing 32.9 mL (438 mmol) n-propyl alcohol was added dropwise to a stirred 350 mL hexane solution containing 210.8 mL (125 mmol) 0.593 molar dibutylmagnesium and 101.5 mL (62.5 mmol) 0.616 triisobutylaluminum. Successively, a 100 mL hexane solution containing 54.9 mL (500 mmol) of TiCl 4 was added dropwise to the stirred magnesium alkyl-aluminum alkyl alcohol mixture. The resulting solid was allowed to settle for 20 minutes and the supernatant was decanted. The solid was again suspended in fresh hexane, and the overlying liquid was again decanted. A further 6 decantations were performed with fresh hexane. To the final stirred slurry was added 27.5 mL (250 mmol) of TiCl 4 , followed by the dropwise addition of a 250 mL hexane solution containing 171.2 mL (250 mmol) of 1.46 molar diethylaluminum chloride. The resulting solid was allowed to settle for 20 minutes and the supernatant was decanted. A further 7 decantations were performed with fresh hexane. Analysis of the catalyst gave an atomic ratio Mg:Ti of 0.5:1.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymerisering av etylen ble utført i en omrørt 1,0 liters reaktor av rustfritt stål inneholdende 0,5 liter tørt, oksygenfritt heksan. Triisobutylaluminium (0,81 ml 0,616 molar; 0,50 millimol) og deretter en målt andel av katalysator inneholdende 0,01 millimol Ti, fremstilt i A ovenfor, ble tilsatt reaktoren. Atomforholdet Al:Ti var 50:1. Reaktoren ble satt under trykk til ca. 50 psig (4 kg/cm 2) med hydrogen ved romtemperatur og deretter ventilert til 5 psig (0,4 kg/cm 2). Trykk-ventileringen med hydrogen ble gjentatt 9 ganger. Deretter ble reaktoren oppvarmet til 85°C og reaktorens trykk innstilt på 60 psig (4 kg/cm 2) med hydrogen. Etylen ble tilført og reaktortrykket holdt ved 170 psig (12 kg/cm ) med etylen. Polymerisasjon ble tillatt å fortsette Polymerization of ethylene was carried out in a stirred 1.0 liter stainless steel reactor containing 0.5 liters of dry, oxygen-free hexane. Triisobutylaluminum (0.81 mL 0.616 molar; 0.50 mmol) and then a measured portion of catalyst containing 0.01 mmol Ti, prepared in A above, was added to the reactor. The atomic ratio Al:Ti was 50:1. The reactor was pressurized to approx. 50 psig (4 kg/cm 2 ) with hydrogen at room temperature and then vented to 5 psig (0.4 kg/cm 2 ). The pressure ventilation with hydrogen was repeated 9 times. The reactor was then heated to 85°C and the reactor pressure adjusted to 60 psig (4 kg/cm 2 ) with hydrogen. The ethylene was added and the reactor pressure was maintained at 170 psig (12 kg/cm 2 ) with ethylene. Polymerization was allowed to proceed

i 2 timer ved 85°C, hvoretter reaktoren ble kjølt til romtemperatur. Reaktorens innhold ble filtrert og polyetylenet tørket i et vakuum natten over ved ca. 6 0°C. Det erholdte polyetylen for 2 hours at 85°C, after which the reactor was cooled to room temperature. The contents of the reactor were filtered and the polyethylene dried in a vacuum overnight at approx. 60°C. Polyethylene was obtained

veide 117 gram. Polyetylenets smelteindeks var 0,64, og polymeren hadde en romvekt på 18,0 lbs/ft 3 (0,29 g/ml). Katalysatorens effektivitet var 244 000 gram polyetylen pr. gram titan og 58 000 gram polyetylen pr. gram samlet katalysator beregnet som vist i fotnote 8 i tabell I. weighed 117 grams. The melt index of the polyethylene was 0.64 and the polymer had a bulk density of 18.0 lbs/ft 3 (0.29 g/ml). The catalyst's efficiency was 244,000 grams of polyethylene per grams of titanium and 58,000 grams of polyethylene per grams of total catalyst calculated as shown in footnote 8 in Table I.

EKSEMPEL 4EXAMPLE 4

A. Katalysator fremstilling:A. Catalyst preparation:

En 100 ml heksanoppløsning inneholdende 37,6 ml n-propylalkohol (500 millimol) ble dråpevis tilsatt til en omrørt 375 ml heksanoppløsning inneholdende 168,6 ml 0,593 molar dibutylmagnesium (100 millimol) og 162,3 ml 0,616 molar triisobutylaluminium (100 millimol). Suksessivt ble en 100 ml heksanopp-løsning inneholdende 44,0 ml TiCl4(400 millimol) dråpevis tilsatt til den omrørte magnesiumalkyl-aluminiumalkyl-alkohol-blanding. Det resulterende faste stoff ble tillatt å sedimentere i 15 minutter, og den overliggende væske ble dekantert. Det faste stoff ble igjen oppslemmet i frisk heksan, og den overliggende væske igjen dekantert. Ytterligere 6 dekanteringer ble foretatt med frisk heksan. Til den endelige omrørte oppslemning ble det tilsatt 11,0 ml TiCl4(100 millimol) fortynnet til 25 ml med heksan, fulgt av dråpevis tilsetning av en 100 ml heksanoppløs-ning inneholdende 68,5 ml 1,46 molar dietylaluminiumklorid (100 millimol). Det resulterende faste stoff ble tillatt å sedimentere i 20 minutter, og den overliggende væske ble dekantert. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. Analyse av den endelige katalysator gav et atomforhold Mg:Ti på 1,0:1. A 100 ml hexane solution containing 37.6 ml n-propyl alcohol (500 millimoles) was added dropwise to a stirred 375 ml hexane solution containing 168.6 ml 0.593 molar dibutylmagnesium (100 millimoles) and 162.3 ml 0.616 molar triisobutylaluminum (100 millimoles). Successively, a 100 mL hexane solution containing 44.0 mL TiCl 4 (400 mmol) was added dropwise to the stirred magnesium alkyl aluminum alkyl alcohol mixture. The resulting solid was allowed to settle for 15 minutes and the supernatant was decanted. The solid was again suspended in fresh hexane, and the overlying liquid was again decanted. A further 6 decantations were made with fresh hexane. To the final stirred slurry was added 11.0 mL of TiCl 4 (100 mmol) diluted to 25 mL with hexane, followed by dropwise addition of a 100 mL hexane solution containing 68.5 mL of 1.46 molar diethylaluminum chloride (100 mmol). The resulting solid was allowed to settle for 20 minutes and the supernatant was decanted. A further 7 decantations were made with fresh hexane. Analysis of the final catalyst gave an atomic ratio Mg:Ti of 1.0:1.

B. Polymerisering av etylen:B. Polymerization of ethylene:

I samsvar med prosedyren i eksempel 3B ble polymerisasjon av etylen utført under anvendelse av 1,6 0 ml 0,616 molar triisobutylaluminium (0,986 millimol) og en målt andel av katalysator fremstilt i A ovenfor, inneholdende 0,0048 millimol titan. Reaktortrykket ble innstilt på • 50 psig (4 kg/cm 2) med hydrogen istedenfor 60 psig (4 kg/cm 2). Det erholdte polyetylen veide 134 gram, hadde en smelteindeks på 0,36 og hadde en romvekt på 19,8 lbs/ft<3>(0,32 g/ml). Katalysatorens effektivitet var 582 000 g PE/g Ti og 112 000 gram polyetylen pr. gram samlet katalysator In accordance with the procedure of Example 3B, polymerization of ethylene was carried out using 1.60 ml of 0.616 molar triisobutylaluminum (0.986 millimoles) and a measured portion of catalyst prepared in A above, containing 0.0048 millimoles of titanium. The reactor pressure was set to • 50 psig (4 kg/cm 2 ) with hydrogen instead of 60 psig (4 kg/cm 2 ). The resulting polyethylene weighed 134 grams, had a melt index of 0.36 and had a bulk density of 19.8 lbs/ft<3> (0.32 g/ml). The catalyst's efficiency was 582,000 g PE/g Ti and 112,000 grams of polyethylene per grams of total catalyst

beregnet som beskrevet i fotnote 8 i tabell I.calculated as described in footnote 8 in Table I.

EKSEMPEL 5EXAMPLE 5

A. Katalysator fremstilling:A. Catalyst preparation:

En 100 ml heksanoppløsning inneholdende 39,0 ml n-propylalkohol (519 millimol) ble dråpevis tilsatt til en omrørt 425 ml heksanoppløsning inneholdende 316,2 ml 0,593 molar dibutylmagnesium (187,5 millimol) og 75,0 ml 0,616 molar triisobutylaluminium (46,2 millimol). Suksessivt ble en 250 ml heksanoppløsning inneholdende 82,4 ml TiCl4(750 millimol) dråpevis tilsatt til den omrørte magnesiumalkyl-aluminiumalkyl-alkohol-blanding. Det resulterende hydrokarbon-uoppløselige faste stoff ble tillatt å sedimentere i 20 minutter, fulgt av dekantering av den overliggende væske. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. Deretter ble 81,4 ml TiCl4(750 millimol) tilsatt til den omrørte omslemning, fulgt av dråpevis tilsetning av en 600 ml heksanoppløsning inneholdende 513,7 ml 1,46 molar dietylaluminiumklorid (750 millimol). Det faste stoff ble tillatt å sedimentere i 30 minutter, fulgt av dekantering av den overliggende væske. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. Analyse av den endelige katalysator gav et atomforhold Mg:Ti på 0,25:1 ,0. A 100 ml hexane solution containing 39.0 ml n-propyl alcohol (519 mmol) was added dropwise to a stirred 425 ml hexane solution containing 316.2 ml 0.593 molar dibutylmagnesium (187.5 mmol) and 75.0 ml 0.616 molar triisobutylaluminum (46, 2 millimoles). Successively, a 250 mL hexane solution containing 82.4 mL TiCl 4 (750 mmol) was added dropwise to the stirred magnesium alkyl aluminum alkyl alcohol mixture. The resulting hydrocarbon-insoluble solid was allowed to settle for 20 minutes, followed by decantation of the supernatant. A further 7 decantations were made with fresh hexane. Next, 81.4 mL of TiCl 4 (750 mmol) was added to the stirred slurry, followed by the dropwise addition of a 600 mL hexane solution containing 513.7 mL of 1.46 molar diethylaluminum chloride (750 mmol). The solid was allowed to settle for 30 minutes, followed by decantation of the supernatant. A further 7 decantations were made with fresh hexane. Analysis of the final catalyst gave a Mg:Ti atomic ratio of 0.25:1.0.

B. Polymerisering av etylen:B. Polymerization of ethylene:

I samsvar med prosedyren i eksempel 3 (B) ble etylen ble etylenpolymerisering utført under anvendelse av 3,20 ml 0,616 molar triisobutylaluminium (1,97 millimol) og en målt andel av katalysator, fremstilt i (A) ovenfor, inneholdende 0,018 millimol titan. Det oppsamlede polyetylen veide 104 gram, hadde en smelteindeks på 0,10 og hadde en romvekt på 18,1 lbs/ft 3 (0,29 g/ml). Katalysatorens effektivitet var 121 000 gram polyetylen pr. gram titan og 32 000 gram polyetylen pr. gram samlet katalysator beregnet som beskrevet i fotnote 8 i tabell I. In accordance with the procedure of Example 3 (B), ethylene polymerization was carried out using 3.20 ml of 0.616 molar triisobutylaluminum (1.97 millimoles) and a measured portion of catalyst, prepared in (A) above, containing 0.018 millimoles of titanium. The collected polyethylene weighed 104 grams, had a melt index of 0.10 and had a bulk density of 18.1 lbs/ft 3 (0.29 g/ml). The catalyst's efficiency was 121,000 grams of polyethylene per grams of titanium and 32,000 grams of polyethylene per grams of total catalyst calculated as described in footnote 8 in Table I.

EKSEMPEL 6EXAMPLE 6

A. Katalysator fremstilling:A. Catalyst preparation:

En 60 ml heksanoppløsning inneholdende 21,3 ml n-propylalkohol (283 millimol) ble dråpevis tilsatt til en omrørt 200 ml heksanoppløsning inneholdende 126,5 ml 0,593 molar dibutylmagnesium (75,0 millimol) og 34,7 ml 1,08 molar-oppløsning av dietylsink (37,5 millimol) i heksan. Suksessivt ble en 60 ml heksan-oppløsning inneholdende 16,5 ml TiCl4(150 millimol) dråpevis tilsatt til den omrørte magnesiumalkyl-sinkalkyl-alkohol-blanding. Den resulterende oppslemning ble tillatt å sedimentere i 15 minutter, og den overliggende væske ble så dekantert. Ytterligere 6 dekanteringer ble foretatt med frisk heksan. Det faste stoff ble igjen oppslemmet i heksan og 8,25 ml TiCl^(75 millimol) ble tilsatt, fulgt av dråpevis tilsetning av en 150 ml heksanopp-løsning inneholdende 51,4 ml 1,46 molar dietylaluminiumklorid (75,0 millimol). Det faste stoff ble tillatt å sedimentere i 15 minutter, og den overliggende væske ble dekantert. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. Analyse av kata-lysatoroppslemningen gav et atomforhold Mg:Ti på 1,0:1,0. A 60 ml hexane solution containing 21.3 ml n-propyl alcohol (283 mmol) was added dropwise to a stirred 200 ml hexane solution containing 126.5 ml 0.593 molar dibutylmagnesium (75.0 mmol) and 34.7 ml 1.08 molar solution of diethylzinc (37.5 mmol) in hexane. Successively, a 60 mL hexane solution containing 16.5 mL TiCl 4 (150 mmol) was added dropwise to the stirred magnesium alkyl-zinc alkyl alcohol mixture. The resulting slurry was allowed to settle for 15 minutes and the supernatant was then decanted. A further 6 decantations were made with fresh hexane. The solid was reslurried in hexane and 8.25 mL of TiCl₂ (75 mmol) was added, followed by the dropwise addition of a 150 mL hexane solution containing 51.4 mL of 1.46 molar diethylaluminum chloride (75.0 mmol). The solid was allowed to settle for 15 minutes and the supernatant was decanted. A further 7 decantations were made with fresh hexane. Analysis of the catalyst slurry gave an atomic ratio Mg:Ti of 1.0:1.0.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Prosedyren i eksempel 3 (B) ble fulgt med unntagelse av at hydrogentrykket ble innstilt på 4 0 psig og 0,80 ml 0,616 molar triisobutylaluminium (0,493 millimol), 0,93 ml 1,08 molar dietylsink (1,00 millimol) i heksan, og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,015 millimol titan ble tilsatt reaktoren for å katalysere polymerisasjonsreaksjonen. The procedure of Example 3 (B) was followed except that the hydrogen pressure was set at 40 psig and 0.80 mL of 0.616 molar triisobutylaluminum (0.493 mmol), 0.93 mL of 1.08 molar diethylzinc (1.00 mmol) in hexane , and a measured portion of catalyst prepared in (A) above containing 0.015 millimole of titanium was added to the reactor to catalyze the polymerization reaction.

Det erholdte polyetylen veide 228 gram, hadde en smelteindeks på 0,99 og hadde en romvekt på 18,1 lbs/ft 3 (0,29 g/ml). Katalysatorens effektivitet var 317 000 gram polyetylen pr. gram titan og 61 000 gram polyetylen pr. gram samlet katalysator beregnet som beskrevet i fotnote 8 i tabell I. The resulting polyethylene weighed 228 grams, had a melt index of 0.99 and had a bulk density of 18.1 lbs/ft 3 (0.29 g/ml). The catalyst's efficiency was 317,000 grams of polyethylene per grams of titanium and 61,000 grams of polyethylene per grams of total catalyst calculated as described in footnote 8 in Table I.

EKSEMPEL 7EXAMPLE 7

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av n-propylalkohol og vann (35,0 ml; 375 millimol vann og 375 millimol n-propylalkohol) ble dråpevis tilsatt til en omrørt oppløsning av 406 ml 0,616 molar triisobutylaluminium (250 millimol) og 210 ml 0,595 molar diheksylmagnesium (125 millimol). Til den resulterende omrørte oppløsning ble det dråpevis tilsatt en oppløsning av 13,7 ml titantetraklorid A solution of n-propyl alcohol and water (35.0 mL; 375 mmol water and 375 mmol n-propyl alcohol) was added dropwise to a stirred solution of 406 mL 0.616 molar triisobutylaluminum (250 mmol) and 210 mL 0.595 molar dihexylmagnesium (125 mmol ). To the resulting stirred solution was added dropwise a solution of 13.7 ml of titanium tetrachloride

(125 millimol) oppløst i 200 ml heksan. Den resulterende opp- (125 millimoles) dissolved in 200 ml of hexane. The resulting up-

slemning ble fortynnet til 800 ml med heksan. En porsjon av oppslemningen (400 ml) ble omrørt mens 64,2 ml 1,46 molar dietylaluminiumklorid (94 millimol) ble tilsatt dråpevis over en periode på ca. 1 time. De hydrokarbon-uoppløselige faste stoffer ble tillatt å sedimentere i 20 minutter, og den overliggende væske ble dekantert. Frisk heksan ble tilsatt til et volum på 400 ml, og dekanteringsprosedyren ble gjentatt ytterligere 4 ganger for fjerning av de hydrokarbonoppløselige produkter. slurry was diluted to 800 mL with hexane. A portion of the slurry (400 ml) was stirred while 64.2 ml of 1.46 molar diethylaluminum chloride (94 millimoles) was added dropwise over a period of approx. 1 hour. The hydrocarbon-insoluble solids were allowed to settle for 20 minutes, and the supernatant was decanted. Fresh hexane was added to a volume of 400 ml and the decantation procedure was repeated 4 more times to remove the hydrocarbon soluble products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Prosedyren i eksempel 1(B) ble anvendt med 2,4 ml 0,616 molar triisobutylaluminium og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,030 millimol titan. Atomforholdet Al:Ti var 50:1. Reaktortrykket ble innstilt på 60 psig (4 kg/cm 2) med hydrogen før etylentilsetning. Det erholdte polyetylen veide 183 gram, hadde en smelteindeks på 0,15 og hadde en romvekt på 15,5 lbs/ft 3 (0,25 g/ml). Katalysatorens effektivitet var 127 000 gram polyetylen pr. gram titan. The procedure in Example 1(B) was used with 2.4 ml of 0.616 molar triisobutylaluminum and a measured portion of catalyst prepared in (A) above containing 0.030 millimoles of titanium. The atomic ratio Al:Ti was 50:1. The reactor pressure was adjusted to 60 psig (4 kg/cm 2 ) with hydrogen prior to ethylene addition. The resulting polyethylene weighed 183 grams, had a melt index of 0.15 and had a bulk density of 15.5 lbs/ft 3 (0.25 g/ml). The catalyst's efficiency was 127,000 grams of polyethylene per grams of titanium.

EKSEMPLER 8- 14EXAMPLES 8-14

A. Katalysator fremstilling:A. Catalyst preparation:

Under anvendelse av de mengder som er angitt i tabell I, ble en blanding av en oksygen- eller nitrogen-inneholdende forbindelse og heksan dråpevis tilsatt til en omrørt dialkylmagne-sium-oppløsning. En oppløsning av titantetraklorid i heksan ble deretter dråpevis tilsatt til den resulterende oppslemning. Et aluminiumalkyl-reduksjonsmiddel ble så dråpevis tilsatt til den omrørte oppslemning. De hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, og den overliggende oppløsning ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet med frisk heksan. Dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de hydrokarbonoppløselige reaksjonsprodukter. Using the amounts indicated in Table I, a mixture of an oxygen or nitrogen containing compound and hexane was added dropwise to a stirred dialkylmagnesium solution. A solution of titanium tetrachloride in hexane was then added dropwise to the resulting slurry. An aluminum alkyl reducing agent was then added dropwise to the stirred slurry. The hydrocarbon-insoluble products were allowed to settle, and the supernatant solution was removed by decantation. The solids were reslurried with fresh hexane. The decantation procedure was repeated an additional 5 times to remove the hydrocarbon soluble reaction products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Under anvendelse av de mengder som er angitt i tabell I, ble en målt andel av den i (A) ovenfor fremstilte katalysator tilsatt til en 1,8 liters omrørt reaktor av rustfritt stål inneholdende 1,0 liter tørt, oksygenfritt heksan og den mengde av triisobutylaluminium som er angitt i tabell I. Reaktorens nitrogen ble erstattet med hydrogen ved gjennomblåsing, reaktorens innhold ble oppvarmet til 85°C, og reaktortrykket ble innstilt på 70 psig (5 kg/cm 2) med hydrogen. Etylen ble så tilsatt for opprettholdelse av et reaktortrykk på 170 psig (12 kg/cm 2). Etter to timer ved 85°C ble reaktorens innhold filtrert og polyetylenet tørket i et vakuum natten over ved ca. 60°C. Resultatene er opp-listet i tabell I. Using the quantities indicated in Table I, a measured portion of the catalyst prepared in (A) above was added to a 1.8 liter stirred stainless steel reactor containing 1.0 liter of dry, oxygen-free hexane and the amount of triisobutylaluminum as set forth in Table I. The reactor nitrogen was replaced with hydrogen by purging, the reactor contents were heated to 85°C, and the reactor pressure was adjusted to 70 psig (5 kg/cm 2 ) with hydrogen. The ethylene was then added to maintain a reactor pressure of 170 psig (12 kg/cm 2 ). After two hours at 85°C, the contents of the reactor were filtered and the polyethylene dried in a vacuum overnight at approx. 60°C. The results are listed in Table I.

EKSEMPEL 15 EXAMPLE 15

A. Katalysator fremstilling:A. Catalyst preparation:

I en inert atmosfære ved romtemperatur ble en 100 ml heksan-oppløsning inneholdende 3,55 g (50 millimol) etylisocyanat dråpevis tilsatt til en omrørt 200 ml heksanoppløsning av 42,2 ml 0,593 molar dibutylmagnesium (25 millimol). Suksessivt ble en 200 ml heksanoppløsning inneholdende 32,7 ml (50 millimol) 1,53 molar dietylaluminiumklorid i heksan dråpevis tilsatt til magnesiumalkyl-etylisocyanat-reaksjonsblandingen under omrøring. Den resulterende oppslemning ble tillatt å sedimentere, den overliggende væske ble dekantert, og det gjenværende faste stoff ble oppslemmet i frisk heksan. En ytterligere dekantering ble foretatt med frisk heksan. En 50 ml heksanoppløsning av 5,50 ml (50 millimol) TiCl^ble under omrøring dråpevis tilsatt til heksanoppslemningen av det ovenfor fremstilte stoff. Det resulterende faste stoff ble tillatt å sedimentere, den overliggende væske ble dekantert, og det faste stoff ble igjen oppslemmet i frisk heksan. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. Analyse av den endelige katalysator gav et atomforhold Mg:Ti på 4 ,3:1. In an inert atmosphere at room temperature, a 100 ml hexane solution containing 3.55 g (50 millimoles) ethyl isocyanate was added dropwise to a stirred 200 ml hexane solution of 42.2 ml 0.593 molar dibutyl magnesium (25 millimoles). Successively, a 200 mL hexane solution containing 32.7 mL (50 mmol) of 1.53 molar diethylaluminum chloride in hexane was added dropwise to the magnesium alkyl-ethyl isocyanate reaction mixture while stirring. The resulting slurry was allowed to settle, the supernatant was decanted, and the remaining solid was slurried in fresh hexane. A further decantation was carried out with fresh hexane. A 50 ml hexane solution of 5.50 ml (50 millimoles) TiCl 2 was added dropwise with stirring to the hexane slurry of the substance prepared above. The resulting solid was allowed to settle, the supernatant was decanted, and the solid was reslurried in fresh hexane. A further 7 decantations were made with fresh hexane. Analysis of the final catalyst gave an atomic ratio of Mg:Ti of 4.3:1.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 3(B) ble gjentatt under anvendelse av 1,6 ml 0,616 molar triisobutylaluminium The polymerization procedure of Example 3(B) was repeated using 1.6 mL of 0.616 molar triisobutylaluminum

(1,0 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,010 millimol titan. Det erholdte polyetylen veide 232 gram, hadde en smelteindeks på 2,57 og hadde en romvekt på 16,1 lbs/ft 3 (0,26 g/ml). Katalysatorens effektivitet var 480 000 gram polyetylen pr. gram titan og 41 000 (1.0 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.010 millimoles of titanium. The resulting polyethylene weighed 232 grams, had a melt index of 2.57 and had a bulk density of 16.1 lbs/ft 3 (0.26 g/ml). The catalyst's efficiency was 480,000 grams of polyethylene per grams of titanium and 41,000

gram polyetylen pr. gram samlet katalysator beregnet som beskrevet i fotnote 8 i tabell I. grams of polyethylene per grams of total catalyst calculated as described in footnote 8 in Table I.

EKSEMPEL 16EXAMPLE 16

A. Katalysator fremstilling:A. Catalyst preparation:

I en inert atmosfære ved romtemperatur ble en 100 ml heksanoppløsning inneholdende 15,0 (200 millimol) n-propylalkohol dråpevis tilsatt til en omrørt 200 ml heksanoppløsning av 169 ml 0,593 molar dibutylmagnesium (100 millimol). Suksessivt ble en 125 ml oppløsning inneholdende 23,3 ml (261 millimol) fosfortriklorid tilsatt dråpevis, og reaksjonsblandingen ble omrørt i 30 minutter. Oppslemningen ble tillatt å omirøres i 15 minutter, den overliggende væske ble dekantert, og det faste stoff ble oppslemmet i frisk heksan. Ytterligere 5 dekanteringer ble foretatt med frisk heksan. En 200 ml heksanoppløsning inneholdende 22,0 ml (2 00 millimol) TiCl^ble under omrøring dråpevis tilsatt til heksanoppslemningen av det ovenfor fremstilte faste stoff. Suksessivt ble en 200 ml heksanoppløsning inneholdende 137,0ml(200millimol) 1,46 molar dietylaluminiumklorid tilsatt dråpevis. Den resulterende oppslemning ble tillatt å om-røres i 20 minutter, den overliggende væske ble dekantert, og det gjenværende faste stoff ble oppslemmet i frisk heksan. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. Det endelige faste stoff ble oppslemmet i frisk heksan og lagret i en dekket kolbe. Analyse av katalysatoren gav et atomforhold Mg:Ti på 0,21:1. In an inert atmosphere at room temperature, a 100 ml hexane solution containing 15.0 (200 millimoles) n-propyl alcohol was added dropwise to a stirred 200 ml hexane solution of 169 ml 0.593 molar dibutyl magnesium (100 millimoles). Successively, a 125 mL solution containing 23.3 mL (261 mmol) of phosphorus trichloride was added dropwise, and the reaction mixture was stirred for 30 minutes. The slurry was allowed to stir for 15 minutes, the supernatant was decanted, and the solid was slurried in fresh hexane. A further 5 decantations were made with fresh hexane. A 200 ml hexane solution containing 22.0 ml (200 millimoles) TiCl 2 was added dropwise to the hexane slurry of the above-prepared solid with stirring. Successively, a 200 ml hexane solution containing 137.0 ml (200 millimoles) 1.46 molar diethyl aluminum chloride was added dropwise. The resulting slurry was allowed to stir for 20 minutes, the supernatant was decanted, and the remaining solid was slurried in fresh hexane. A further 7 decantations were made with fresh hexane. The final solid was slurried in fresh hexane and stored in a capped flask. Analysis of the catalyst gave an atomic ratio Mg:Ti of 0.21:1.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 3(B) ble gjentatt under anvendelse av 2,8 ml 0,616 molar triisobutylaluminium The polymerization procedure of Example 3(B) was repeated using 2.8 mL of 0.616 molar triisobutylaluminum

(1,75 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,0175 millimol titan. Det erholdte polyetylen veide 131 gram, hadde en smelteindeks på 2,61 og hadde en romvekt på 15,4 lbs/ft 3 (0,25 g/ml). Katalysatorens effektivitet var 156 000 gram polyetylen pr. gram titan og 43 000 gram polyetylen pr. gram samlet katalysator beregnet som beskrevet i fotnote 8 i tabell I. (1.75 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.0175 millimoles of titanium. The resulting polyethylene weighed 131 grams, had a melt index of 2.61 and had a bulk density of 15.4 lbs/ft 3 (0.25 g/ml). The catalyst's efficiency was 156,000 grams of polyethylene per grams of titanium and 43,000 grams of polyethylene per grams of total catalyst calculated as described in footnote 8 in Table I.

EKSEMPEL 17EXAMPLE 17

A. Katalysator fremstilling:A. Catalyst preparation:

En inert atomosfære ved romteperatur ble 23,20 g (200 millimol) dimetylglyoksim oppslemmet i 300 ml heksan. En heksan-oppløsning av 100 millimol dibutylmagnesium ble dråpevis til- An inert atomosphere at room temperature, 23.20 g (200 millimoles) of dimethylglyoxime was slurried in 300 ml of hexane. A hexane solution of 100 millimoles of dibutylmagnesium was added dropwise to

satt til den omrørte dimetylglyoksin-heksan-oppslemning. En 200added to the stirred dimethylglyoxin-hexane slurry. A 200

ml heksanoppløsning inneholdende 230,7 ml (200 millimol) 1,53 molar ml of hexane solution containing 230.7 ml (200 millimoles) 1.53 molar

etylaluminiumdiklorid ble deretter dråpevis tilsatt til magnesiumalkyl-dimetylglyoksim-blandingen. Den resulterende oppslemning ble tillatt å stå i 30 minutter, den overliggende væske ble dekantert, og det gjenværende faste stoff ble oppslemmet i frisk heksan. Ytterligere 5 dekanteringer ble foretatt med frisk heksan. En 100 ml heksanoppløsning av 22,0 ml (200 millimol) TiCl4ble dråpevis tilsatt til det faste stoff tidligere fremstilt ovenfor, og dette ble fulgt av den dråpevise tilsetning av en 100 ml heksanoppløsning inneholdende 137,0 ml (200 millimol) ethyl aluminum dichloride was then added dropwise to the magnesium alkyl-dimethylglyoxime mixture. The resulting slurry was allowed to stand for 30 minutes, the supernatant was decanted, and the remaining solid was slurried in fresh hexane. A further 5 decantations were made with fresh hexane. A 100 mL hexane solution of 22.0 mL (200 mmol) TiCl4 was added dropwise to the solid previously prepared above, and this was followed by the dropwise addition of a 100 mL hexane solution containing 137.0 mL (200 mmol)

1,46 molar dietylaluminiumklorid. Suksessivt ble det resulterende faste stoff tillatt å sedimentere, den overliggende væske ble dekantert, og det faste stoff ble igjen oppslemmet i frisk heksan. Ytterligere 7 dekanteringer ble foretatt med frisk heksan. 1.46 molar diethyl aluminum chloride. Successively, the resulting solid was allowed to settle, the supernatant was decanted, and the solid was reslurried in fresh hexane. A further 7 decantations were made with fresh hexane.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 3(B) ble gjentatt under anvendelse av 2,4 ml 0,616 molar triisobutylaluminium (1,50 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,030 millimol titan. Det erholdte polyetylen veide 115 gram, hadde en smelteindeks på 0,19 og hadde en romvekt på 12,8 lbs/ft 3 (0,21 g/ml). Katalysatorens effektivitet var 80 000 gram polyetylen pr. gram titan. The polymerization procedure of Example 3(B) was repeated using 2.4 ml of 0.616 molar triisobutylaluminum (1.50 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.030 millimoles of titanium. The resulting polyethylene weighed 115 grams, had a melt index of 0.19 and had a bulk density of 12.8 lbs/ft 3 (0.21 g/ml). The catalyst's efficiency was 80,000 grams of polyethylene per grams of titanium.

EKSEMPEL 18EXAMPLE 18

A. Katalysator fremstilling:A. Catalyst preparation:

Til en oppløsning av 101 ml 0,593 molar dibutylmagnesium (60 millimol) og 200 ml heksan ble det under omrøring tilsatt isobutyronitril (120 millimol) i heksanoppløsning (50 ml heksan). Tilsetningen ble gjort dråpevis over 30 minutter og gav et krem-farget fast stoff. Det faste stoff ble oppslemmet i heksanet, To a solution of 101 ml of 0.593 molar dibutylmagnesium (60 millimoles) and 200 ml of hexane was added with stirring isobutyronitrile (120 millimoles) in hexane solution (50 ml of hexane). The addition was done dropwise over 30 minutes and gave a cream-colored solid. The solid was slurried in the hexane,

og TiCl^(120 millimol) i 70 ml heksan ble tilsatt dråpevis over 20 minutter. Det resulterende faste stoff ble vasket og dekantert flere ganger og deretter igjén oppslemmet i 300 ml heksan. Til denne blanding ble det tilsatt dietylaluminiumklorid (130 millimol) i heksanoppløsning. Denne tilsetning ble regulert for opprettholdelse av en temperatur under 4 0°C. Det resulterende brune faste stoff ble dekantert som i eksempel 1(A) for fjerning av de heksan-oppløselige materialer. and TiCl₂ (120 mmol) in 70 mL of hexane was added dropwise over 20 minutes. The resulting solid was washed and decanted several times and then again slurried in 300 ml of hexane. To this mixture was added diethylaluminum chloride (130 millimoles) in hexane solution. This addition was regulated to maintain a temperature below 40°C. The resulting brown solid was decanted as in Example 1(A) to remove the hexane-soluble materials.

B. Polymerisering av etylen:B. Polymerization of ethylene:

En målt andel av katalysatoroppslemning fremstilt i (A) ovenfor inneholdende 0,050 millimol titan ble tilsatt til en 1,8 liters omrørt reaktor av rustfritt stål inneholdende 1,0 liter tørt oksygenfritt heksan og 3,9 ml 0,616 molar triisobutylaluminium (2,40 millimol). Reaktorens nitrogenatmosfære ble erstattet med hydrogen ved gjennomblåsing, reaktorens innhold ble oppvarmet til 85°C, og reaktortrykket ble innstilt på 50 psig (3,52 kg/cm ) med hydrogen. Etylen ble deretter tilsatt for opprettholdelse av et reaktortrykk på 170 psig. Etter to timer ved 85°C ble reaktorens innhold filtrert og polyetylenet tørket i et vakuum natten over ved ca. 6 0°C, hvilket gav 74 gram polyetylen med en smelteindeks på 0,01. Katalysatorens effektivitet var 31 000 gram polyetylen pr. gram titan. A measured portion of catalyst slurry prepared in (A) above containing 0.050 millimoles of titanium was added to a 1.8 liter stirred stainless steel reactor containing 1.0 liters of dry oxygen-free hexane and 3.9 ml of 0.616 molar triisobutylaluminum (2.40 millimoles) . The reactor's nitrogen atmosphere was replaced with hydrogen by purging, the reactor contents were heated to 85°C, and the reactor pressure was adjusted to 50 psig (3.52 kg/cm 2 ) with hydrogen. The ethylene was then added to maintain a reactor pressure of 170 psig. After two hours at 85°C, the contents of the reactor were filtered and the polyethylene dried in a vacuum overnight at approx. 6 0°C, which gave 74 grams of polyethylene with a melt index of 0.01. The catalyst's efficiency was 31,000 grams of polyethylene per grams of titanium.

EKSEMPEL 19EXAMPLE 19

A. Katalysator fremstilling:A. Catalyst preparation:

Til en 1 liters rund kolbe utstyrt med et nitrogeninnløp, magnetisk rørestav og et frittet glass-dypperør ble det tilsatt 143 ml 0,593 molar dibutylmagnesium (85 millimol) og 500 ml heksan, Mens oppløsningen ble omrørt, ble ammoniakkgass boblet gjennom væsken, og en eksoterm reaksjon begynte som forårsaket dannelse av et hvitt utfeldt stoff. Når ingen ytterligere eksoterm kunne påvises, ble blandingen omrørt i ytterligere 30 minutter, idet innholdet ble tillatt å kjølne til omgivelsestemperatur. Det hvite faste stoff ble suspendert med omrøring, og TiCl4(290 millimol) oppløst i 50 ml heksan ble tilsatt dråpevis over 20 minutter. To a 1 L round bottom flask equipped with a nitrogen inlet, magnetic stir bar, and a fritted glass dipper was added 143 mL of 0.593 molar dibutylmagnesium (85 millimoles) and 500 mL of hexane. While the solution was stirred, ammonia gas was bubbled through the liquid, and an exotherm reaction began which caused the formation of a white precipitate. When no further exotherm could be detected, the mixture was stirred for an additional 30 minutes, allowing the contents to cool to ambient temperature. The white solid was suspended with stirring, and TiCl 4 (290 mmol) dissolved in 50 mL hexane was added dropwise over 20 minutes.

En øyeblikkelig reaksjon fant sted i hvilken det hvite faste stoff ble omdannet til et gult fast stoff. Dette materialet ble vasket og dekantert flere ganger for fjerning av alle heksanoppløselige forbindelser. Det faste stoff ble oppslemmet i 300 ml heksan, og TiCl^(60 millimol) ble tilsatt i en enkelt porsjon. Til denne blanding ble det tilsatt, over en 30 minutters periode, dietylaluminiumklorid (120 millimol) oppløst i 100 ml heksan. Det resulterende brune faste stoff ble vasket og dekantert flere ganger for fjerning av de hydrokarbonoppløselige produkter. An immediate reaction took place in which the white solid was converted to a yellow solid. This material was washed and decanted several times to remove all hexane soluble compounds. The solid was slurried in 300 mL of hexane, and TiCl₂ (60 mmol) was added in a single portion. To this mixture was added, over a 30 minute period, diethylaluminum chloride (120 millimoles) dissolved in 100 ml of hexane. The resulting brown solid was washed and decanted several times to remove the hydrocarbon soluble products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 18 (B) ble gjentatt under anvendelse av 1,46 ml 0,616 molar triisobutylaluminium The polymerization procedure of Example 18 (B) was repeated using 1.46 mL of 0.616 molar triisobutylaluminum

(0,90 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,030 millimol titan. Det erholdte polyetylen veide 150 gram og hadde en smelteindeks på 0,4. Katalysatorens effektivitet var 104 000 gram polyetylen pr. gram titan. (0.90 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.030 millimoles of titanium. The polyethylene obtained weighed 150 grams and had a melt index of 0.4. The catalyst's efficiency was 104,000 grams of polyethylene per grams of titanium.

EKSEMPEL 20EXAMPLE 20

A. Katalysator fremstilling:A. Catalyst preparation:

Til en 1 liters rund kolbe utstyrt med et nitrogeninnløp, magnetisk rørestav og et frittet glass-dupperør ble det tilsatt 50,6 ml 0,593 molar dibutylmagnesium (30 millimol) og 350 ml tørt heksan. Kolben var utstyrt for opprettholdelse av en nitrogenatmosfære over væsken. Mens oppløsningen ble omrørt, ble ammoniakkgass boblet gjennom væsken, og en eksoterm reaksjon begynte som forårsaket dannelse av et hvitt utfeldt stoff. Når ingen ytterligere eksoterm ble påvist, ble blandingen omrørt i ytterligere 30 minutter mens tørt nitrogen ble ledet gjennom dupperøret. Det resulterende hvite faste stoff ble suspendert med omrøring mens SiCl^(30 millimol) oppløst i 50 ml heksan ble tilsatt dråpevis. Etter at tilsetningen var fullført ble oppløsningen omrørt i ytterligere 15 minutter. Det hvite faste stoff ble vasket og dekantert flere ganger for fjerning av alt heksanoppløselig materiale. Det faste stoff ble oppslemmet i 300 ml tørt heksan, og en enkelt porsjon av TiCl4(30 millimol) ble tilsatt. Til denne blanding ble det under omrøring tilsatt dietylaluminiumklorid (35 millimol) i 100 ml heksan, dråpevis, over en 20 minutters periode mens en temperatur under 40°C ble opprettholdt. Det resulterende faste stoff ble vasket og dekantert flere ganger for fjerning av de heksanoppløselige produkter . To a 1 liter round bottom flask equipped with a nitrogen inlet, magnetic stir bar and a fritted glass dipper was added 50.6 ml of 0.593 molar dibutylmagnesium (30 millimoles) and 350 ml of dry hexane. The flask was equipped to maintain a nitrogen atmosphere over the liquid. While the solution was stirred, ammonia gas was bubbled through the liquid and an exothermic reaction began which caused the formation of a white precipitate. When no further exotherm was detected, the mixture was stirred for an additional 30 minutes while passing dry nitrogen through the dip tube. The resulting white solid was suspended with stirring while SiCl₂ (30 mmol) dissolved in 50 mL of hexane was added dropwise. After the addition was complete, the solution was stirred for an additional 15 minutes. The white solid was washed and decanted several times to remove all hexane soluble material. The solid was slurried in 300 mL of dry hexane, and a single portion of TiCl 4 (30 mmol) was added. To this mixture was added, with stirring, diethylaluminum chloride (35 millimoles) in 100 ml of hexane, dropwise, over a 20 minute period while maintaining a temperature below 40°C. The resulting solid was washed and decanted several times to remove the hexane soluble products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 18(B) ble gjentatt under anvendelse av 1,22 ml 0,616 molar triisobutylaluminium (0,75 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,015 millimol titan. Det erholdte polyetylen veide 115 gram og hadde en smelteindeks på 0,15. Katalysatorens effektivitet var 160 000 gram polyetylen pr. gram titan. The polymerization procedure of Example 18(B) was repeated using 1.22 ml of 0.616 molar triisobutylaluminum (0.75 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.015 millimoles of titanium. The polyethylene obtained weighed 115 grams and had a melt index of 0.15. The catalyst's efficiency was 160,000 grams of polyethylene per grams of titanium.

heksan. De hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, og den overliggende oppløsning ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan. Dekanteringsprosedyren ble deretter gjentatt ytterligere 2 ganger for fjerning av de hydrokarbonoppløselige reaksjonsprodukter. Heksan ble tilsatt til et volum på ca. 300 ml, og oppslemningen ble blandet med 200 ml 1,0 molar titantetraklorid (200 millimol) hexane. The hydrocarbon-insoluble products were allowed to settle, and the supernatant solution was removed by decantation. The solids were reslurried in fresh hexane. The decantation procedure was then repeated 2 more times to remove the hydrocarbon soluble reaction products. Hexane was added to a volume of approx. 300 ml, and the slurry was mixed with 200 ml of 1.0 molar titanium tetrachloride (200 millimoles)

i heksan. Til den omrørte blanding ble det dråpevis tilsattin hexane. To the stirred mixture was added dropwise

137,0 ml 1,47 molar dietylaluminiumklorid (200 millimol). De hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, 137.0 mL of 1.47 molar diethylaluminum chloride (200 millimoles). The hydrocarbon-insoluble products were allowed to settle,

og den overliggende oppløsning ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan. Dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de heksanoppløselige reaksjonsprodukter. and the supernatant was removed by decantation. The solids were reslurried in fresh hexane. The decantation procedure was repeated an additional 5 times to remove the hexane-soluble reaction products.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 8(B) ble gjentatt under anvendelse av 3,2 ml 0,616 molar triisobutylaluminium The polymerization procedure of Example 8(B) was repeated using 3.2 mL of 0.616 molar triisobutylaluminum

(2,0 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,020 millimol titan. Det erholdte polyetylen veide 183 gram og hadde en smelteindeks på 0,20. Katalysatorens effektivitet var 191 000 gram polyetylen pr. gram titan. (2.0 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.020 millimoles of titanium. The polyethylene obtained weighed 183 grams and had a melt index of 0.20. The catalyst's efficiency was 191,000 grams of polyethylene per grams of titanium.

EKSEMPEL 23EXAMPLE 23

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av 7,9 ml metylacetat (100 millimol) iA solution of 7.9 ml of methyl acetate (100 millimoles) i

100 ml heksan ble dråpevis tilsatt til en omrørt oppløsning100 ml of hexane was added dropwise to a stirred solution

av 84,3 ml (50 millimol) 0 ,593 molar dibutylmagnesium. Silisium-tetraklorid (23,0 ml, 200 millimol) i heksan (100 ml) ble tilsatt dråpevis, og de hydrokarbon-uoppløselige faste stoffer ble tillatt å sedimentere. Den overliggende oppløsning ble fjernet ved dekantering og frisk heksan tilsatt. Dekanteringsprosedyren ble deretter gjentatt ytterligere 3 ganger for fjerning av de hydro-karbonoppløselige reaksjonsprodukter. Titantetraklorid (100 ml 1,0 molar i heksan, 100 millimol) ble tilsatt. En 1,46 molar dietylaluminiumklorid-oppløsning (68 ml, 100 millimol) ble dråpevis tilsatt til den omrørte oppslemning. De faste stoffer of 84.3 ml (50 millimoles) of 0.593 molar dibutylmagnesium. Silicon tetrachloride (23.0 mL, 200 mmol) in hexane (100 mL) was added dropwise and the hydrocarbon-insoluble solids were allowed to settle. The supernatant solution was removed by decantation and fresh hexane added. The decantation procedure was then repeated an additional 3 times to remove the hydrocarbon soluble reaction products. Titanium tetrachloride (100 mL 1.0 molar in hexane, 100 mmol) was added. A 1.46 molar diethylaluminum chloride solution (68 mL, 100 mmol) was added dropwise to the stirred slurry. The solids

ble tillatt å sedimentere, og den overliggende væske ble fjernet ved dekantering. Frisk heksan ble tilsatt, og dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de heksan-oppløselige stoffer. was allowed to settle, and the supernatant was removed by decantation. Fresh hexane was added and the decantation procedure was repeated 5 more times to remove the hexane solubles.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 8(B) ble gjentatt under anvendelse av 5,7 ml 0,616 molar triisobutylaluminium The polymerization procedure of Example 8(B) was repeated using 5.7 mL of 0.616 molar triisobutylaluminum

(3,5 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,035 millimol titan. Det erholdte polyetylen veide 219 gram, hadde en smelteindeks på 1,37 og hadde en romvekt på 15,5 lbs/ft 3 (0,248 g/ml). Katalysatorens effektivitet var 131 000 gram polyetylen pr. gram titan. (3.5 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.035 millimoles of titanium. The resulting polyethylene weighed 219 grams, had a melt index of 1.37 and had a bulk density of 15.5 lbs/ft 3 (0.248 g/ml). The catalyst's efficiency was 131,000 grams of polyethylene per grams of titanium.

EKSEMPEL 24EXAMPLE 24

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av 12,0 ml dietylkarbonat (100 millimol)A solution of 12.0 ml of diethyl carbonate (100 millimoles)

i 100 ml heksan ble dråpevis tilsatt til en omrørt oppløsning av 84,3 ml 0,593 molar dibutylmagnesium (50 millimol). En heksan-oppløsning av etylaluminiumdiklorid (49,0 ml 1,53 molar, 75 millimol) ble dråpevis tilsatt til den omrørte blanding av dibutylmagnesium og dietylkarbonat. De faste stoffer ble tillatt å sedimentere, og den overliggende væske ble dekantert. Frisk heksan ble tilsatt og dekanteringen gjentatt inntil i alt 3 dekanteringer var foretatt. En titantetrakloridoppløsning (25,0 ml 1,0 molar, 25 millimol) i heksan ble tilsatt sammen med heksan til et totalvolum på ca. 250 ml. Blandingen ble omrørt mens 17,1 ml 1,46 molar dietylaluminiumklorid-oppløsning (25 ml, in 100 ml of hexane was added dropwise to a stirred solution of 84.3 ml of 0.593 molar dibutylmagnesium (50 millimoles). A hexane solution of ethyl aluminum dichloride (49.0 mL 1.53 molar, 75 mmol) was added dropwise to the stirred mixture of dibutyl magnesium and diethyl carbonate. The solids were allowed to settle, and the overlying liquid was decanted. Fresh hexane was added and the decantation repeated until a total of 3 decantations had been made. A titanium tetrachloride solution (25.0 mL 1.0 molar, 25 mmol) in hexane was added with hexane to a total volume of approx. 250 ml. The mixture was stirred while 17.1 mL of 1.46 molar diethylaluminum chloride solution (25 mL,

100 millimol) ble tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere, og den overliggende væske ble fjernet ved dekantering. Frisk heksan ble tilsatt og dekanteringen gjentatt i alt 6 ganger for fjerning av de heksanoppløselige stoffer. 100 millimol) was added dropwise. The solids were allowed to settle, and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation repeated a total of 6 times to remove the hexane-soluble substances.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 8(B) ble gjentatt under anvendelse av 5,2 ml 0,616 molar triisobutylaluminium (3,2 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,0 35 millimol titan. Det erholdte poly etylen veide 264 gram, hadde en smelteindeks på 2,44 og hadde en romvekt på 10,3 lbs/ft 3 (0,17 g/ml). Katalysatorens effektivitet var 172 000 gram polyetylen pr. gram titan. The polymerization procedure of Example 8(B) was repeated using 5.2 mL of 0.616 molar triisobutylaluminum (3.2 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.035 millimoles of titanium. The obtained poly ethylene weighed 264 grams, had a melt index of 2.44, and had a bulk density of 10.3 lbs/ft 3 (0.17 g/ml). The catalyst's efficiency was 172,000 grams of polyethylene per grams of titanium.

EKSEMPEL 25EXAMPLE 25

A. Katalysator fremstilling; A. Catalyst preparation;

Succinimid (4,95 gram, 50 millimol) ble langsomt tilsatt til en omrørt oppløsning av 42,2 ml (25 millimol) 0,593 molar dibutylmagnesium. Etter 2 timers kontinuerlig omrøring ble 32,7 ml 1,53 molar etylaluminiumdiklorid (50 millimol) i heksan tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere, og den overliggende væske ble fjernet ved dekantering. Frisk heksan ble tilsatt til oppslemningen og dekanteringen gjentatt inntil ialt 3 dekanteringer var foretatt. Frisk heksan ble tilsatt til et totalvolum på ca. 7 5 ml. Deretter ble 100 ml 1,0 molar titantetraklorid (100 millimol) tilsatt til den omrørte blanding, fulgt av dråpevis tilsetning av 68,5 ml 1,46 molar dietylaluminiumklorid (200 millimol). Den tidligere dekanteringsprosedyre ble gjentatt 6 ganger for fjerning av de hydrokarbonoppløselige stoffer. Succinimide (4.95 grams, 50 mmol) was slowly added to a stirred solution of 42.2 mL (25 mmol) of 0.593 molar dibutylmagnesium. After 2 hours of continuous stirring, 32.7 ml of 1.53 molar ethyl aluminum dichloride (50 millimoles) in hexane was added dropwise. The solids were allowed to settle, and the overlying liquid was removed by decantation. Fresh hexane was added to the slurry and the decantation repeated until a total of 3 decantations had been made. Fresh hexane was added to a total volume of approx. 7 5 ml. Then, 100 ml of 1.0 molar titanium tetrachloride (100 millimoles) was added to the stirred mixture, followed by the dropwise addition of 68.5 ml of 1.46 molar diethylaluminum chloride (200 millimoles). The previous decanting procedure was repeated 6 times to remove the hydrocarbon solubles.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 3(B) ble gjentatt under anvendelse av 70 psig (4,92 kg/cm 2) hydrogen, 3,2 ml 0,616 molar triisobutylaluminium (2,0 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,020 millimol titan. Det erholdte polyetylen veide 181 gram, hadde en smelteindeks på 1,78 og hadde en romvekt på 10,6 lbs/ft<3>The polymerization procedure of Example 3(B) was repeated using 70 psig (4.92 kg/cm 2 ) of hydrogen, 3.2 ml of 0.616 molar triisobutylaluminum (2.0 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.020 millimoles of titanium. The resulting polyethylene weighed 181 grams, had a melt index of 1.78 and had a bulk density of 10.6 lbs/ft<3>

(0,17 g/ml). Katalysatorens effektivitet var 147 000 gram polyetylen pr. gram titan. (0.17 g/ml). The catalyst's efficiency was 147,000 grams of polyethylene per grams of titanium.

EKSEMPEL 26EXAMPLE 26

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av 8,6 ml isopropylamin (100 millimol)A solution of 8.6 ml of isopropylamine (100 millimoles)

i 100 ml heksan ble dråpevis tilsatt til en omrørt oppløsning av 84,3 ml 0,593 molar dibutylmagnesium (50 millimol). En heksan-oppløsning av etylaluminiumdiklorid (49,0 ml 1,53 molar, 75 millimol) ble dråpevis tilsatt til den omrørte blanding av dibutylmagnesium og isopropylamin. De faste stoffer ble tillatt å in 100 ml of hexane was added dropwise to a stirred solution of 84.3 ml of 0.593 molar dibutylmagnesium (50 millimoles). A hexane solution of ethyl aluminum dichloride (49.0 mL 1.53 molar, 75 mmol) was added dropwise to the stirred mixture of dibutyl magnesium and isopropylamine. The solids were allowed to

sedimentere, og den overliggende væske ble dekantert. Frisk heksan ble tilsatt og dekanteringsprosedyren gjentatt inntil ialt 4 dekanteringer var foretatt. Et titantetraklorid (100 ml, 1,0 molar, 100 millimol) i heksan ble tilsatt sammen med heksan til,et totalvolum på ca. 300 ml. Blandingen ble omrørt mens 68,5 ml 1,46 molar dietylaluminiumklorid (100 millimol) ble tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt og dekanteringen gjentatt ialt 6 ganger for fjerning av de heksanoppløselige stoffer. settle, and the overlying liquid was decanted. Fresh hexane was added and the decantation procedure repeated until a total of 4 decantations had been made. A titanium tetrachloride (100 mL, 1.0 molar, 100 mmol) in hexane was added with hexane to a total volume of approx. 300 ml. The mixture was stirred while 68.5 mL of 1.46 molar diethylaluminum chloride (100 mmol) was added dropwise. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation repeated a total of 6 times to remove the hexane-soluble substances.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel. 8(B) ble gjentatt under anvendelse av 4,2 ml 0,616 molar triisobutylaluminium (2,6 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,026 millimol titan. Det erholdte polyetylen veide 181 gram, hadde en smelteindeks på 0,12. Katalysatorens affek-tivitet var 145 000 gram polyetylen pr. gram titan. The polymerization procedure in example. 8(B) was repeated using 4.2 mL of 0.616 molar triisobutylaluminum (2.6 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.026 millimoles of titanium. The polyethylene obtained weighed 181 grams, had a melt index of 0.12. The catalyst's effectiveness was 145,000 grams of polyethylene per grams of titanium.

EKSEMPEL 27EXAMPLE 27

A. Katalysator fremstilling:A. Catalyst preparation:

En blanding av 169 ml 0,59 3 molar dibutylmagnesiumA mixture of 169 ml of 0.59 3 molar dibutylmagnesium

(100 millimol) og 325 ml 0,616 molar triisobutylaluminium (200 millimol) ble tilsatt til en 1 liters omrørt reaktor av rustfritt stål. Karbondioksyd ble tilsatt i reaktoren til et trykk på 30 psig. Reaksjonens varmeutvikling oppvarmet reaktoren til 50 - 60°C. Etter 2 timer var reaktoren kjølt til omgivelsestemperatur. Karbondioksydatmosfæren i reaktoren ble erstattet med nitrogen (100 millimoles) and 325 mL of 0.616 molar triisobutylaluminum (200 millimoles) were added to a 1 liter stainless steel stirred reactor. Carbon dioxide was added to the reactor to a pressure of 30 psig. The reaction's heat generation heated the reactor to 50 - 60°C. After 2 hours, the reactor had cooled to ambient temperature. The carbon dioxide atmosphere in the reactor was replaced with nitrogen

ved gjennomblåsing, og reaktoren ble satt inn i en behandsket kasse. Reaktorens innhold ble fylt opp til 500 ml med heksan, hvilket gav en blanding som var 0,20 molar i magnesium. 250 ml av ovennevnte blanding med 0,20 molar magnesium (50 millimol magnesium) ble plassert i en omrørt glassbeholder. Etylaluminiumdiklorid (49,0 ml 1,53 molar, 75 millimol) ble tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt og dekanteringsprosedyren gjentatt inntil ialt 3 dekanteringer var gjort. Et titantetraklorid (100 ml 1,0 molar, by blow-through, and the reactor was placed in a glove box. The contents of the reactor were filled up to 500 ml with hexane, which gave a mixture which was 0.20 molar in magnesium. 250 ml of the above mixture with 0.20 molar magnesium (50 millimoles magnesium) was placed in a stirred glass container. Ethyl aluminum dichloride (49.0 mL 1.53 molar, 75 mmol) was added dropwise. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation procedure repeated until a total of 3 decantations had been made. A titanium tetrachloride (100 ml 1.0 molar,

100 millimol) i heksan ble tilsatt sammen med heksan til et totalvolum på ca. 4 00 ml. Blandingen ble omrørt mens 68,5 ml 100 millimoles) in hexane was added together with hexane to a total volume of approx. 400 ml. The mixture was stirred while 68.5 ml

1,46 molar dietylaluminiumklorid (100 millimol) ble tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt og de - kanteringen gjentatt ialt 6 ganger for fjerning av de heksanopp-løselige stoffer. 1.46 molar diethylaluminum chloride (100 millimoles) was added dropwise. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation repeated a total of 6 times to remove the hexane-soluble substances.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Polymeriseringsprosedyren i eksempel 8(B) ble gjentatt under anvendelse av 4,1 ml 0,616 molar triisobutylaluminium (2,5 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,025 millimol titan. Det erholdte polyetylen veide 126 gram, hadde en smelteindeks på 0,40 og hadde en romvekt på 15,1 lbs/ft 3 (0,24 g/ml). Katalysatorens effektivitet var 105 000 gram polyetylen pr. gram titan. The polymerization procedure of Example 8(B) was repeated using 4.1 mL of 0.616 molar triisobutylaluminum (2.5 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.025 millimoles of titanium. The resulting polyethylene weighed 126 grams, had a melt index of 0.40 and had a bulk density of 15.1 lbs/ft 3 (0.24 g/ml). The catalyst's efficiency was 105,000 grams of polyethylene per grams of titanium.

EKSEMPEL 28EXAMPLE 28

A. Katalysator fremstilling:A. Catalyst preparation:

I en inert atmosfære ved romtemperatur ble en 100 ml heksanoppløsning inneholdende 350 millimol av en n-propylalkohol dråpevis tilsatt til en omrørt 500 ml heksanoppløsning inneholdende 168,6 ml 0,593 molar dibutylmagnesium (100 millimol) og 81,2 ml 0,616 molar triisobutylaluminium (50 millimol) suksessivt ble en 100 ml heksanoppløsning inneholdende 22,0 ml 9,1 molar TiCl^(200 millimol) tilsatt dråpevis. Det resulterende faste stoff ble tillatt å sedimentere i 15 minutter, og den overliggende væske ble avdekantert. Det faste stoff ble igjen oppslemmet i frisk heksan, og den overliggende væske ble igjen dekantert. Ytterligere 6 dekanteringer ble foretatt med frisk heksan. Oppslemningen ble delt i to like volumdeler, og en del ble kastet. Til den annen del ble det tilsatt 11,0 ml 9,1 molar TiCl^(100 millimol), fulgt av dråpevis tilsetning av en 200 ml heksanoppløsning inneholdende 74,8 ml 1,47 molar dietylaluminium-diklorid (110 millimol). Det endelige faste stoff ble tillatt å sedimentere i 10 minutter, deretter ble den overliggende væske dekantert. Det faste stoff ble igjen oppslemmet i frisk heksan og den overliggende væske igjen dekantert. Ytterligere 6 dekanteringer ble foretatt med frisk heksan. Det vaskede faste stoff ble deretter anvendt som en polymerisasjonskatalysator i In an inert atmosphere at room temperature, a 100 ml hexane solution containing 350 millimoles of an n-propyl alcohol was added dropwise to a stirred 500 ml hexane solution containing 168.6 ml 0.593 molar dibutylmagnesium (100 millimoles) and 81.2 ml 0.616 molar triisobutylaluminum (50 millimoles ) successively, a 100 ml hexane solution containing 22.0 ml 9.1 molar TiCl 2 (200 millimoles) was added dropwise. The resulting solid was allowed to settle for 15 minutes and the supernatant was decanted. The solid was reslurried in fresh hexane, and the supernatant was again decanted. A further 6 decantations were made with fresh hexane. The slurry was divided into two parts of equal volume, and one part was discarded. To the second portion was added 11.0 mL of 9.1 molar TiCl₂ (100 mmol), followed by the dropwise addition of a 200 mL hexane solution containing 74.8 mL of 1.47 molar diethylaluminum dichloride (110 mmol). The final solid was allowed to settle for 10 minutes, then the supernatant was decanted. The solid was again slurried in fresh hexane and the overlying liquid was again decanted. A further 6 decantations were made with fresh hexane. The washed solid was then used as a polymerization catalyst i

eksempler B og C nedenfor.examples B and C below.

B. Kopolymerisering av etylen og 1- okten:B. Copolymerization of ethylene and 1-octene:

Til en omrørt 1,0 liters reaktor inneholdende 375 ml tørt oksygenfritt heksan ble det tilsatt 1,6 ml 0,616 molar triisobutylaluminium (0,986 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,0195 millimol titan. Etter at trykkventileringsprosedyren i eksempel 3(B) var anvendt, ble reaktoren satt under et trykk på 15 psig med hydrogen, og reaktorens temperatur ble innstilt på 7 5°C. Deretter ble 1-oktenet ført inn i reaktoren ved at etylen ved 170 psig ble blåst gjennom en sidestrømssylinder inneholdende 125 ml 1-okten. Reaktortrykket ble deretter holdt ved 170 psig med etylen. Den erholdte polymer veide 136 gram. Polymerens smelteindeks var 0,27, og den-siteten, målt i henhold til ASTM-D792-66, var 0,9444 gram pr. cm 3. Katalysatorens effektivitet var 145 000 gram polymer pr. gram titan og 35 000 gram polymer pr. gram samlet katalysator beregnet ut fra forholdet Mg:Ti forutsettende en blanding av MgCl2og TiCl3. To a stirred 1.0 liter reactor containing 375 ml of dry oxygen-free hexane was added 1.6 ml of 0.616 molar triisobutylaluminum (0.986 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.0195 millimoles of titanium. After the pressure venting procedure of Example 3(B) was used, the reactor was pressurized to 15 psig with hydrogen, and the reactor temperature was set at 75°C. Then the 1-octene was fed into the reactor by blowing ethylene at 170 psig through a side-flow cylinder containing 125 ml of 1-octene. The reactor pressure was then maintained at 170 psig with ethylene. The polymer obtained weighed 136 grams. The melt index of the polymer was 0.27, and the density, measured according to ASTM-D792-66, was 0.9444 grams per cubic meter. cm 3. The catalyst's efficiency was 145,000 grams of polymer per grams of titanium and 35,000 grams of polymer per grams of total catalyst calculated from the ratio Mg:Ti assuming a mixture of MgCl2 and TiCl3.

C. Kopolymerisering av etylen og 1- buten:C. Copolymerization of ethylene and 1-butene:

Prosedyren i (B) ovenfor ble fulgt med unntakelse av at reaktoren ble satt under et trykk på 10 psig med hydrogen og 1,6 ml 0,616 molar triisobutylaluminium (0,986 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor inneholdende 0,200 millimol titan ble tilsatt reaktoren for å katalysere polymerisasjonsreaksjonen. 1-butenet ble ført inn i reaktoren ved at etylengass ved 170 psig ble blåst gjennom en sidestrøms-sylinder inneholdende 16,0 gram 1-buten. Reaktortrykket ble holdt ved 170 psig med etylen. Den erholdte polymer veide 158 gram, hadde en smelteindeks på 0,15 og hadde en densitet, målt i henhold til ASTM-D792-66, på 0,9304 gram pr. cm 3. Katalysatorens effektivitet var 165 000 gram polymer pr. gram titan og 39 000 gram polymer pr. gram samlet katalysator beregnet ut fra forholdet Mg:Ti forutsettende en blanding av MgCl ^ og TiCl^. The procedure in (B) above was followed except that the reactor was pressurized to 10 psig with hydrogen and 1.6 mL of 0.616 molar triisobutylaluminum (0.986 millimoles) and a measured portion of catalyst prepared in (A) above containing 0.200 millimoles titanium was added to the reactor to catalyze the polymerization reaction. The 1-butene was fed into the reactor by blowing ethylene gas at 170 psig through a side-flow cylinder containing 16.0 grams of 1-butene. The reactor pressure was maintained at 170 psig with ethylene. The resulting polymer weighed 158 grams, had a melt index of 0.15 and had a density, measured according to ASTM-D792-66, of 0.9304 grams per cubic meter. cm 3. The catalyst's efficiency was 165,000 grams of polymer per grams of titanium and 39,000 grams of polymer per grams of total catalyst calculated from the ratio Mg:Ti assuming a mixture of MgCl^ and TiCl^.

EKSEMPEL 2 9EXAMPLE 2 9

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av 30,1 ml n-propylalkohol (400 millimol) og 100 ml heksan ble dråpevis tilsatt til en omrørt oppløsning av 157 ml 0,637 molar butyletylmagnesium (100 millimol) i heptan og 81 ml 0,616 molar triisobutylaluminium (50 millimol) heksan. Den resulterende oppløsning ble kjølt til 30°C, og en oppløsning av 44,0 ml titantetraklorid (400 millimol) i 200 ml heksan ble tilsatt dråpevis under kontinuerlig omrøring. Oppslemningen ble omrørt i 1/2 time, de hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, og den overliggende oppløsning ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan. Dekanteringsprosedyren ble gjentatt ytterligere 2 ganger for fjerning av det meste av de heksanoppløselige reaksjonsprodukter. De hydrokarbon-uoppløselige produkter ble oppslemmet i heksan til et totalvolum på 800 ml. Halvparten av denne oppslemning (400 ml) ble blandet med 44,0 ml titantetraklorid (400 millimol) og 274 ml 1,46 molar dietylaluminiumklorid i heksan ble dråpevis tilsatt til den omrørte blanding over en periode på ca. 1 time. Den resulterende blanding ble omrørt i ytterligere 1 time, de hydrokarbon-uoppløselige produkter ble tillatt å sedimentere, og den overliggende oppløsning ble fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan. Dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de hydrokarbonoppløselige produkter. En målt andel av katalysatoroppslemning ble fortynnet med Isopar E til en oppslemning som var 0,001 molar med hensyn på titan. A solution of 30.1 ml of n-propyl alcohol (400 millimoles) and 100 ml of hexane was added dropwise to a stirred solution of 157 ml of 0.637 molar butylethylmagnesium (100 millimoles) in heptane and 81 ml of 0.616 molar triisobutylaluminum (50 millimoles) in hexane. The resulting solution was cooled to 30°C, and a solution of 44.0 mL of titanium tetrachloride (400 mmol) in 200 mL of hexane was added dropwise with continuous stirring. The slurry was stirred for 1/2 hour, the hydrocarbon insoluble products were allowed to settle, and the supernatant was removed by decantation. The solids were reslurried in fresh hexane. The decantation procedure was repeated 2 more times to remove most of the hexane-soluble reaction products. The hydrocarbon insoluble products were slurried in hexane to a total volume of 800 ml. Half of this slurry (400 ml) was mixed with 44.0 ml of titanium tetrachloride (400 millimoles) and 274 ml of 1.46 molar diethylaluminum chloride in hexane was added dropwise to the stirred mixture over a period of approx. 1 hour. The resulting mixture was stirred for an additional 1 hour, the hydrocarbon insoluble products were allowed to settle, and the supernatant was removed by decantation. The solids were reslurried in fresh hexane. The decantation procedure was repeated an additional 5 times to remove the hydrocarbon soluble products. A measured portion of catalyst slurry was diluted with Isopar E to a slurry that was 0.001 molar with respect to titanium.

B. Polymerisering av etylen:B. Polymerization of ethylene:

En 1,8 liters omrørt reaktor av rustfritt stål inneholdende 1,0 liter tørt, oksygenfritt Isopar E og 0,54 ml 0,921 molar trietylaluminium (0,50 millimol) i heksan ble ventilert til 0 psig. Reaktoren ble oppvarmet til 150°C og hydrogen tilsatt til et reaktortrykk på 25 psig. Deretter ble etylen tilsatt reaktoren til et trykk på 120 psig. Katalysatoren (25 ml 0,001 molar oppslemning i Isopar E) fremstilt i eksempel 29(A) ble satt under trykk i reaktoren under anvendelse av nitrogen. Reaktorens temperatur ble holdt ved 150°C ved oppvarmning eller kjøling, og reaktortrykket ble holdt ved 145 psig ved tilsetning av etylen. Etter 15 minutter ble 0,27 ml 0,921 molar trietyl aluminium (0,25 millimol) i heksan fortynnet til ca. 10 ml med Isopar E satt under trykk i reaktoren med nitrogen. Etter 15 minutter ble reaktorens innhold kjølt til romtemperatur, reaktorens innhold filtrert og polyetylenet tørket i et vakuum natten over ved ca. 60°C, hvilket gav 35,0 gram polyetylen med en smelteindeks på 0,48. Katalysatorens effektivitet var 29 200 gram polyetylen pr. gram titan. A 1.8 L stirred stainless steel reactor containing 1.0 L of dry, oxygen-free Isopar E and 0.54 mL of 0.921 molar triethylaluminum (0.50 mmol) in hexane was vented to 0 psig. The reactor was heated to 150°C and hydrogen added to a reactor pressure of 25 psig. Ethylene was then added to the reactor to a pressure of 120 psig. The catalyst (25 mL of 0.001 molar slurry in Isopar E) prepared in Example 29(A) was pressurized in the reactor using nitrogen. The reactor temperature was maintained at 150°C by heating or cooling, and the reactor pressure was maintained at 145 psig by addition of ethylene. After 15 minutes, 0.27 ml of 0.921 molar triethyl aluminum (0.25 millimoles) in hexane was diluted to approx. 10 ml of Isopar E pressurized in the reactor with nitrogen. After 15 minutes, the contents of the reactor were cooled to room temperature, the contents of the reactor were filtered and the polyethylene was dried in a vacuum overnight at approx. 60°C, which gave 35.0 grams of polyethylene with a melt index of 0.48. The catalyst's efficiency was 29,200 grams of polyethylene per grams of titanium.

EKSEMPEL 30EXAMPLE 30

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning (4,14 deler på vektbasis., dpv) av butyletylmagnesium inneholdende 2,40 vekt% magnesium i heptan og en oppløsning (2,19 dpv) av 20,3 vekt% triisobutylaluminium i heksan ble blandet i en omrørt reaktor med mantel. Oppløsningens temperatur ble holdt ved under 40°C mens 1,00 dpv n-propylalkohol og 6,33 dpv heksan ble tilsatt. Den resulterende oppløsnings-temperatur b-le holdt ved 35°C mens 3,08 dpv titantetraklorid langsomt ble tilsatt. Den resulterende oppslemning ble kjølt til ca. 25°C, de faste stoffer tillatt å sedimentere og den overliggende væske fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan og dekanteringsprosedyren gjentatt inntil mindre enn 10 mol% av det samlede titaninnhold er i oppløsning. A solution (4.14 parts by weight, dpv) of butylethylmagnesium containing 2.40 wt% magnesium in heptane and a solution (2.19 dpv) of 20.3 wt% triisobutylaluminum in hexane were mixed in a jacketed stirred reactor . The temperature of the solution was maintained at below 40°C while 1.00 dpv n-propyl alcohol and 6.33 dpv hexane were added. The resulting solution temperature was maintained at 35°C while 3.08 dpv of titanium tetrachloride was slowly added. The resulting slurry was cooled to approx. 25°C, the solids allowed to settle and the overlying liquid removed by decantation. The solids were reslurried in fresh hexane and the decantation procedure repeated until less than 10 mol% of the total titanium content is in solution.

Den resulterende oppslemning etter dekanteringene var 140 millimolar med hensyn på magnesium og hadde en samlet vekt på 6,84 dpv. Titantetraklorid (0,59 dpv) ble tilsatt til den omrørte oppslemning. En 25 vekt% dietylaluminiumklorid-oppløsning (1,64 dpv) i heksan ble langsomt tilsatt til den omrørte blanding. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. De faste stoffer ble igjen oppslemmet i frisk heksan og dekanteringsprosedyren gjentatt flere ganger for fjerning av de hydrokarbonoppløselige stoffer. The resulting slurry after the decantations was 140 millimolar with respect to magnesium and had a total weight of 6.84 dpv. Titanium tetrachloride (0.59 dpv) was added to the stirred slurry. A 25% by weight diethylaluminum chloride solution (1.64 dpv) in hexane was slowly added to the stirred mixture. The solids were allowed to settle and the overlying liquid was removed by decantation. The solids were reslurried in fresh hexane and the decantation procedure repeated several times to remove the hydrocarbon solubles.

B. Polymerisering:B. Polymerization:

Den i eksempel 30(A) fremstilte katalysator ble fortynnet med heksan til 0,3 millimolar med hensyn på titan. Denne fortynnede katalysator ble så tilsatt, med en hastighet på ca. 12 dpv pr. time, til en partielt full agitert reaktor. Samtidig ble 100 dpv etylen pr. time, 1 dpv buten-1 pr. time og 22 3 dpv heksan pr. time tilsatt reaktoren mens reaktorens temperatur og trykk ble regulert ved henholdsvis 85°C og 170 psig. En 2 vekt% oppløsning av triisobutylaluminium i heksan ble tilsatt med en slik hastighet at den gav et Al/Ti-atomforhold på ca. 50:1 i reaktoren. Hydrogen ble tilsatt til reaktorens gassformige fase slik at den ønskede polymer-smelteindeks ble oppnådd. Reaktorens innhold ble uttatt kontinuerlig, polymeren og heksanet ble separert og den tørkede polymer oppsamlet. Polymeren hadde en smelteindeks på 11. Katalysatorens effektivitet var ca. 400 000 pund polymer pr. pund titan. The catalyst prepared in Example 30(A) was diluted with hexane to 0.3 millimolar with respect to titanium. This diluted catalyst was then added, at a rate of approx. 12 dpv per hour, to a partially full agitated reactor. At the same time, 100 dpv ethylene per hour, 1 dpv buten-1 per hour and 22 3 dpv hexane per hour added to the reactor while the reactor temperature and pressure were regulated at 85°C and 170 psig respectively. A 2% by weight solution of triisobutylaluminum in hexane was added at such a rate that it gave an Al/Ti atomic ratio of approx. 50:1 in the reactor. Hydrogen was added to the gaseous phase of the reactor so that the desired polymer melt index was achieved. The contents of the reactor were withdrawn continuously, the polymer and hexane were separated and the dried polymer collected. The polymer had a melt index of 11. The catalyst's efficiency was approx. 400,000 pounds of polymer per pound of titanium.

EKSEMPEL 31EXAMPLE 31

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av 50 ml 0,5 molar vannfritt koboltdiklorid (25 millimol) i n-propylalkohol ble dråpevis tilsatt til 526 ml A solution of 50 ml of 0.5 molar anhydrous cobalt dichloride (25 millimoles) in n-propyl alcohol was added dropwise to 526 ml

av en omrørt oppløsning av 0,475 molar dibutylmagnesium (250 millimol). En oppløsning av 55 ml titantetraklorid (500 millimol) of a stirred solution of 0.475 molar dibutylmagnesium (250 millimoles). A solution of 55 ml titanium tetrachloride (500 millimoles)

i 100 ml heksan ble tilsatt dråpevis til den resulterende oppslemning. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt^ og dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de heksanoppløselige stoffer. Titantetraklorid (55 ml, 500 millimol) ble tilsatt til den omrørte heksanoppslemning, og deretter ble 342 ml av en 1,46 molar dietylaluminiumklorid-oppløsning tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt, og dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de heksanoppløselige stoffer. in 100 ml of hexane was added dropwise to the resulting slurry. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added^ and the decantation procedure was repeated an additional 5 times to remove the hexane solubles. Titanium tetrachloride (55 mL, 500 mmol) was added to the stirred hexane slurry, and then 342 mL of a 1.46 molar diethylaluminum chloride solution was added dropwise. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation procedure was repeated an additional 5 times to remove the hexane solubles.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Triiosobutylaluminium (0,49 ml 0,616 molar; 0,30 millimol) og deretter en målt andel av katalysator inneholdende 0,015 millimol Ti, fremstilt i (A) ovenfor, ble tilsatt til en omrørt 1,0 liters reaktor av rustfritt stål inneholdende 0,5 liter tørt, oksygenfritt heksan. Reaktoren ble satt under et trykk på ca. 50 psig (4 kg/cm 2) med hydrogen ved romtemperatur og deretter ventilert til 5 psig (0,4 kg/cm ). Trykkventileringen med hydrogen ble gjentatt 9 ganger. Deretter ble reaktoren oppvarmet til 85°C og reaktortrykket innstilt på 60 psig (4 kg/cm 2) ved tilsetning av hydrogen. Etylen ble tilført og reaktortrykket holdt ved 170 psig Triisobutylaluminum (0.49 mL 0.616 molar; 0.30 mmol) and then a measured portion of catalyst containing 0.015 mmol Ti, prepared in (A) above, was added to a stirred 1.0 liter stainless steel reactor containing 0.5 liter of dry, oxygen-free hexane. The reactor was put under a pressure of approx. 50 psig (4 kg/cm 2 ) with hydrogen at room temperature and then vented to 5 psig (0.4 kg/cm 2 ). The pressure ventilation with hydrogen was repeated 9 times. The reactor was then heated to 85°C and the reactor pressure set to 60 psig (4 kg/cm 2 ) by addition of hydrogen. The ethylene was added and the reactor pressure maintained at 170 psig

(12 kg/cm 2 ) med etylen. Polymeriseringen ble tillatt å 0 fortsette(12 kg/cm 2 ) with ethylene. The polymerization was allowed to proceed

i to timer ved 85°C, hvoretter reaktoren ble kjølt til romtemperatur. Reaktorens innhold ble filtrert og polyetylenet tørket i et vakuum natten over ved ca. 60°C. Det erholdte polyetylen veide 219 gram, hadde en smelteindeks på 0,35 og en romvekt på for two hours at 85°C, after which the reactor was cooled to room temperature. The contents of the reactor were filtered and the polyethylene dried in a vacuum overnight at approx. 60°C. The polyethylene obtained weighed 219 grams, had a melt index of 0.35 and a bulk density of

24,0 lbs/ft 3 (0,39 g/cc). Katalysatorens effektivitet var 305 000 gram polyetylen pr. gram titan. 24.0 lbs/ft 3 (0.39 g/cc). The catalyst's efficiency was 305,000 grams of polyethylene per grams of titanium.

EKSEMPEL 32EXAMPLE 32

A. Katalysator fremstilling:A. Catalyst preparation:

En oppløsning av 5,9 gram nikkeldiklorid-heksahydratA solution of 5.9 grams of nickel dichloride hexahydrate

(25 millimol) oppløst i 39,1 ml n-propylalkohol (520 millimol)(25 millimoles) dissolved in 39.1 ml of n-propyl alcohol (520 millimoles)

ble dråpevis tilsatt til 526 ml av en omrørt oppløsning av 0,475 molar dibutylmagnesium (250 millimol). En oppløsning av 55 ml titantetraklorid i 100 ml heksan ble dråpevis tilsatt til den resulterende oppslemning. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt, og dekanteringsprosedyren ble gjentatt was added dropwise to 526 mL of a stirred solution of 0.475 molar dibutylmagnesium (250 millimoles). A solution of 55 ml of titanium tetrachloride in 100 ml of hexane was added dropwise to the resulting slurry. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation procedure was repeated

ytterligere 5 ganger for fjerning av de heksanoppløselige stoffer. Titantetraklorid (55 ml, 500 millimol) ble tilsatt til den omrørte heksanoppslemning, og deretter ble 342 ml av en 1,46 molar dietylaluminiumklorid-oppløsning tilsatt dråpevis. De faste stoffer ble tillatt å sedimentere og den overliggende væske fjernet ved dekantering. Frisk heksan ble tilsatt, og dekanteringsprosedyren ble gjentatt ytterligere 5 ganger for fjerning av de heksanoppløselige stoffer. a further 5 times to remove the hexane-soluble substances. Titanium tetrachloride (55 mL, 500 mmol) was added to the stirred hexane slurry, and then 342 mL of a 1.46 molar diethylaluminum chloride solution was added dropwise. The solids were allowed to settle and the overlying liquid was removed by decantation. Fresh hexane was added and the decantation procedure was repeated an additional 5 times to remove the hexane solubles.

B. Polymerisering av etylen:B. Polymerization of ethylene:

Prosedyren i eksempel 31(B) ble gjentatt under anvendelse av 1,0 ml 0,616 molar triisobutylaluminium (0,62 millimol) og en målt andel av katalysator fremstilt i (A) ovenfor. Inneholdende 0,0312 millimol titan. Det erholdte polyetylen veide 227 gram, hadde en smelteindeks på 0,08 og en romvekt på 19,0 lbs/ft 3 (0,32 g/ml). Katalysatorens effektivitet var 152 000 gram polyetylen pr. gram titan. The procedure of Example 31(B) was repeated using 1.0 ml of 0.616 molar triisobutylaluminum (0.62 millimole) and a measured portion of catalyst prepared in (A) above. Containing 0.0312 millimoles of titanium. The resulting polyethylene weighed 227 grams, had a melt index of 0.08 and a bulk density of 19.0 lbs/ft 3 (0.32 g/ml). The catalyst's efficiency was 152,000 grams of polyethylene per grams of titanium.

Claims (68)

1. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser, hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene Al(R3)__ X , B(R3)_ X , MgR <3>0 , jaa j—a aM gR<3>X ,ZnR<3>2 , hvor hver R3 uavhengig av hverandre er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, og X er halogen; karakterisert ved å anvende som den overgangsmetallholdige katalysator det hydrokarbon-uløselige produkt som er vasket med inert løsningsmiddel, og som resulterer fra blanding av: (I) reaksjonsproduktet av (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav, hvor slike komponenter er representert ved formelen MgR2*xMeR1 ,, hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R' er uavhengig av hverandre hydrogen, en hydrokarbyl- eller hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi fra null til 10, og x <1> har en verdi lik valensen til Me; og (2) en overgangsmetallfri oksygenholdig forbindelse, en overgangsmetallfri nitrogenholdig forbindelse eller blanding av slike forbindelser i en mengde som er tilstrekkelig til å senke mengden av hydrokarbylgrupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCli, ved en temperatur på ca. 2 5°C; og (B) en passende halogenidkilde eller blanding derav representert ved formlene AlR^ _a Xa , SiR^^ Xtø ,1. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions, where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas Al(R3)__ X , B(R3)_ X , MgR <3>0 , jaa j—a aM gR<3>X ,ZnR<3>2 , where each R3 independently of one another is hydrogen or a hydrocarbyl group having from 1 to approx. 20 carbon atoms, and X is halogen; characterized by using as the transition metal-containing catalyst the hydrocarbon-insoluble product which has been washed with an inert solvent, and which results from the mixture of: (I) the reaction product of (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof, where such components are represented by the formula MgR2*xMeR1,, where each R independently is a hydrocarbyl group having from 1 to about 20 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value from zero to 10, and x <1> has a value equal to the valence of Me; and (2) a transition-metal-free oxygen-containing compound, a transition-metal-free nitrogen-containing compound, or mixture of such compounds in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not substantially reduce TiCl , at a temperature of approx. 25°C; and (B) a suitable halide source or mixture thereof represented by the formulas AlR^ _a Xa , SiR^^ Xtø , 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at i komponent (A-I) hver R- og R'-gruppe uavhengig er en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer; Me er Al og x' har en verdi på 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater, glykoler, alkoholer, aldehyder, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon; halogenidkilden er representert ved formlene A1R_ X eller j —a a TmY n X z-n ; i komp c onent (II) er Y lik OR"; reduks Jjonsmidlet er rep c resentert ved formel AIR3 3-m X m ; Mg^:Tm-atomforholdet er fra ca. 0,1:1 til ca. 5:1; og reduksjonsmidlet er til stede i en slik mengde at det tilveiebringes etR<3>;T m-forhold på fra ca. 1:1 til ca. 10:1; og hvor nevnte kokatalysator inneholder aluminium.2. Method as stated in claim 1, characterized in that in component (A-I) each R and R' group is independently an aliphatic hydrocarbon group having from 1 to approx. 10 carbon atoms; Me is Al and x' has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates, glycols, alcohols, aldehydes, ketones and carboxylic acids or mixture thereof in any combination; the halide source is represented by the formulas A1R_ X or j —a a TmY n X z-n ; in comp c onent (II) Y is equal to OR"; the reduct ion agent is represented by the formula AIR3 3-m X m ; the Mg^:Tm atomic ratio is from about 0.1:1 to about 5:1; and the reducing agent is present in such an amount as to provide an R<3>;T m ratio of from about 1:1 to about 10:1, and wherein said cocatalyst contains aluminum. 3. Fremgangsmåte som angitt i krav 2, karakterisert ved at R og R <1> og verdien av x er slik at organo-magnesiumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon; halogenidkilden er TiCl^ ; komponent (II) er utelatt; i formelen for reduksjonsmidlet er hver R3 uavhengig en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer, hver X er klor, m har en verdi av null eller 1; atomforholdetM g:Ti er fra ca. 0,2:1 til ca. 1:1 og reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes et R <3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.3. Method as stated in claim 2, characterized in that R and R <1> and the value of x is such that the organo-magnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones and carboxylic acids or mixture thereof in any combination; the halide source is TiCl^ ; component (II) is omitted; in the formula for the reducing agent, each R3 is independently an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms, each X is chlorine, m has a value of zero or 1; the atomic ratio M g:Ti is from approx. 0.2:1 to approx. 1:1 and the reducing agent is used in such an amount that an R<3>:Ti ratio of from approx. 1:1 to approx. 3:1. 4. Fremgangsmåte som angitt i krav 3, karakterisert ved at verdien av x og hver R og R <1> er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og nevnte kokatalysator inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i enhver kombinasjon.4. Method as stated in claim 3, characterized in that the value of x and each R and R <1> is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and said cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 5. Fremgangsmåte som angitt i krav 4, karakterisert ved at alkoholen er metylalkohol, etylalkohol, SnR4 _b Xb , POX3 , PX3 , PX5 , S02 X2 , GeX^ , R <1*> (CO)X, TmYn xz- n°9 rI*x nvor hver R uavhengig er hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer; hver R <1*> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; hver X er et halogenatom; a har en verdi på fra 1 til 3; b har en verdi på fra 1 til 4, Tm er et metall valgt fra gruppene IV-B, V-B og VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, z har en verdi lik valensen av nevnte overgangsmetall, n har en verdi fra null til 5, hvor verdien av z-n er fra minst 1 og opp til en verdi som er lik valensen til overgangsmetallet; idet nevnte halogenidkilde er til stede i en tilstrekkelig mengde til å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til en halogenidgruppe; (II) en overgangsmetallforbindelse representert ved formel TmY n X z-n hvor Tm, Y, X, z og - D n er som definert ovenfor; z-n har en verdi fra null og opp til valensen til Tm i en mengde så at det tilveiebringes et Mg:Tm-atomforhold på fra ca. 0,05:1 til ca. 50:1; og (III) et passende reduksjonsmiddel eller en blanding av re duks jonsmidler representert ved formlene B(R3)_ X , J e 3-m irr Al(R3) «3 in X Til ,ZnR3 X, ZnR3 4^ , MgR <3> X eller MgR3 £ hvor hver X uavhengig er halogen, en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer eller en NR <3> ,,-gruppe; hver R <3> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer hver; m har en verdi fra null til 2; idet det nevnte reduksjonsmiddel anvendes i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 50:1; på den betingelse at når komponent (I-B), halogenidkilden, inneholder en tilstrekkelig mengde av overgangsmetall til å tilfredsstille Mg:Tm-forholdet, så kan komponent (II) utelates. n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blanding derav i enhver kombinasjon .5. Method as stated in claim 4, characterized in that the alcohol is methyl alcohol, ethyl alcohol, SnR4 _b Xb , POX3 , PX3 , PX5 , SO2 X2 , GeX^ , R <1*> (CO)X, TmYn xz- n°9 rI*x nwhere each R independently is hydrogen, a hydrocarbyl or a hydrocarbyloxy group having from 1 to approx. 20 carbon atoms; each R<1*> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; each X is a halogen atom; a has a value of from 1 to 3; b has a value of from 1 to 4, Tm is a metal selected from groups IV-B, V-B and VI-B in the periodic table; Y is oxygen, OR" or NR"2; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms, z has a value equal to the valence of said transition metal, n has a value from zero to 5, where the value of z-n is from at least 1 and up to a value equal to the valence of the transition metal, said halide source being present in an amount sufficient to convert substantially all of the groups attached to a magnesium atom in component (A) to a halide group; (II) a transition metal compound represented by formula TmY n X z-n where Tm, Y, X, z and - D n are as defined above; z-n has a value from zero up to the valence of Tm in an amount so as to provide a Mg:Tm atomic ratio of from about 0.05:1 to approx. 50:1; and (III) a suitable reducing agent or a mixture of re dux ionic agents represented by the formulas B(R3)_ X , J e 3-m irr Al(R3) «3 in X Til ,ZnR3 X, ZnR3 4^ , MgR <3> X or MgR3 £ where each X independently is halogen, a hydrocarbyloxy group having from 1 to about. 20 carbon atoms or a NR <3> ,, group; each R<3> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms each; m has a value from zero to 2; the said reducing agent being used in such an amount that a R<3> :Tm ratio of from approx. 1:1 to approx. 50:1; provided that when component (I-B), the halide source, contains a sufficient amount of transition metal to satisfy the Mg:Tm ratio, then component (II) may be omitted. n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl-4-methylphenol, or mixture thereof in any combination. 6. Fremgangsmåte som angitt i krav 5, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol eller n-butylalkohol.6. Method as stated in claim 5, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol or n-butyl alcohol. 7. Fremgangsmåte som angitt i krav 1, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.7. Process as stated in claim 1, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 8. Fremgangsmåte som angitt i krav 7, karakterisert ved at komponent (A-2) er ammoniakk eller et amin.8. Method as stated in claim 7, characterized in that component (A-2) is ammonia or an amine. 9. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene Al(R3) j — a X a , B(R3)j _ — a X a , MgR3 2.,M gR<3>X , ZnR3^ hvor hverR<3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer og X er halogen; karakterisert ved å anvende som overgangsmetallholdig katalysator det med inert fortynningsmiddel vaskede hydrokarbon-uløselige reaksjonsprodukt av: (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav representert ved formelen MgR Å -xMeR' Xt hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R' er uavhengig hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi fra null til 10, x' har en verdi lik valensen av Me, og (2) en overgangsmetallfri oksygenholdig og/eller en overgangsmetallfri nitrogenholdig forbindel se i en tilstrekkelig mengde til å senke mengden av hydrokarbylgrupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCl^ ved en temperatur på ca. 25°C; (B) en passende reduserende halogenidkilde representert ved formlene Al (R3).- .X ; hvor R <3> uavhengig er 3 —a a hydrogen eller har samme definisjon som R ovenfor, X er som definert ovenfor og a har en verdi av fra 1 til mindre enn 3; nevnte halogenid anvendes i en tilstrekkelig mengde til å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til et halogenidatom og slik atR<3> :Tm-forholdet er fra ca. 1:1 til ca. 50:1; og (C) en overgangsmetallforbindelse representert ved formel TmYn Xz _n hvor Tm er et metall valgt fra gruppene IV-B, V-B eller VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; X er et halogen, hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; n har en verdi fra null til 5, idet z-n er fra 1 og opp til en verdi lik valensen av overgangsmetallet i en slik mengde at det tilveiebringes et Mg:Tm-atomforhold på fra ca. 0,05:1 til ca. 50:1.9. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas Al(R3) j — a X a , B(R3)j _ — a X a , MgR3 2.,M gR<3>X , ZnR3^ where each R<3> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms and X is halogen; characterized by using as transition metal-containing catalyst the hydrocarbon-insoluble reaction product washed with an inert diluent of: (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof represented by the formula MgR Å -xMeR' Xt where each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or a hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value from zero to 10, x' has a value equal to the valence of Me, and (2) a transition-metal-free oxygen-containing and/or a transition-metal-free nitrogen-containing compound in an amount sufficient to lower the amount of hydrocarbyl groups that are present in component (A-I) so that the resulting product does not significantly reduce TiCl^ at a temperature of approx. 25°C; (B) an appropriate reducing halide source represented by the formulas Al (R 3 ).- .X ; where R <3> is independently 3 —a a hydrogen or has the same definition as R above, X is as defined above and a has a value of from 1 to less than 3; said halide is used in a sufficient amount to convert essentially all the groups linked to a magnesium atom in component (A) to a halide atom and so that the R<3> :Tm ratio is from approx. 1:1 to approx. 50:1; and (C) a transition metal compound represented by formula TmYn Xz _n where Tm is a metal selected from groups IV-B, V-B or VI-B of the periodic table; Y is oxygen, OR" or NR"2; X is a halogen, each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; n has a value from zero to 5, z-n being from 1 up to a value equal to the valence of the transition metal in such quantity that a Mg:Tm atomic ratio of from approx. 0.05:1 to approx. 50:1. 10. Fremgangsmåte som angitt i krav 9, karakterisert ved at i komponent (A-I) er hver R- og R'-gruppe uavhengig et alifatisk hydrokarbon som har fra 1 til ca. 10 karbonatomer, Me er Al og x <1> har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater og glykoler, alkoholer, aldehyder, ketoner, karboksylsyrer, eller blanding derav i enhver kombinasjon; i komponent (C) er Y lik OR"; Mg:Tm-atomforholdet er fra ca. 0,1:1 til ca. 5:1, og det reduserende halogenid er til stede i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 10 :1; og hvor kokatalysatoren inneholder aluminium.10. Method as stated in claim 9, characterized in that in component (A-I) each R and R' group is independently an aliphatic hydrocarbon having from 1 to approx. 10 carbon atoms, Me is Al and x <1> has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates and glycols, alcohols, aldehydes, ketones, carboxylic acids , or mixture thereof in any combination; in component (C), Y is equal to OR"; the Mg:Tm atomic ratio is from about 0.1:1 to about 5:1, and the reducing halide is present in such an amount as to provide an R <3 > :Tm ratio of from about 1:1 to about 10:1; and wherein the cocatalyst contains aluminum. 11. Fremgangsmåte som angitt i krav 10, karakterisert ved at R og verdien av x er slik at organomagne-siumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner, karboksylsyrer eller blanding derav i enhver kombinasjon; halogenidkilden er dietylaluminiumklorid eller etylaluminiumdiklorid; i formelen for komponent (C) er hver X klor, Tm er titan, hver R" er en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer og n har en verdi av fra null til 2; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og det reduserende halogenid anvendes i en slik mengde at det tilveiebringes et R <3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.11. Method as stated in claim 10, characterized in that R and the value of x are such that the organomagnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones, carboxylic acids or mixtures thereof in any combination; the halide source is diethylaluminum chloride or ethylaluminum dichloride; in the formula for component (C), each X is chlorine, Tm is titanium, each R" is an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms and n has a value of from zero to 2; the atomic ratio Mg:Ti is from about .0.2:1 to about 1:1, and the reducing halide is used in such an amount as to provide an R<3> :Ti ratio of from about 1:1 to about 3:1. 12. Fremgangsmåte som angitt i krav 11, karakterisert ved at verdien av x og hver R og R <1> er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og nevnte kokatalysator inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i enhver kombinasjon.12. Method as stated in claim 11, characterized in that the value of x and each R and R <1> is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and said cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 13. Fremgangsmåte som angitt i krav 12, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blandinger derav.13. Method as stated in claim 12, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol, or mixtures thereof. 14. Fremgangsmåte som angitt i krav 13, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol eller n-butylalkohol.14. Method as stated in claim 13, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol or n-butyl alcohol. 15. Fremgangsmåte som angitt i krav 9, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.15. Method as stated in claim 9, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 16. Fremgangsmåte som angitt i krav 15, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et isocyanat eller blanding derav i enhver kombinasjon.16. Method as stated in claim 15, characterized in that component (A-2) is ammonia, an amine, an isocyanate or mixture thereof in any combination. 17. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene A1(R3)j_ —a X a , B(R <3> )j, —a X a , MgR3 z. , MgR <3> X, ZnR <3>2 hvor hver R <3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer og X er halogen; karakterisert ved at det som overgangsmetallholdig katalysator anvendes den hydrokarbon-uløselige katalysator fremstilt ved en fremgangsmåte som omfatter: (I) å omsette i et inert fortynningsmiddel (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav representert ved formelen MgR0«xMeR' , hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R' er uavhengig hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi på fra null til ca. 10; og x' har en verdi lik valensen til Me; og (2) en overgangsmetallfri oksygenholdig forbindelse, en overgangsmetallfri nitrogenholdig forbindelse eller blanding av slike forbindelser i en mengde som er tilstrekkelig til å senke mengden av hydrokarbylgrupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCli» ved en temperatur på ca. 2 5°C; og (B ) en passende halogenidkilde eller blanding derav representert ved formlene AIR-, X , SiR. , X, r 3-a a 4-b b ' SnR4 _b Xb , P0X3 , PX3 , PX5 , S02 X2 , GeX4, RMC0)X, TmY n X og R <4> X hvor hver R uavhengig er hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, R1* er uavhengig hydrogen eller en i hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; hver X er et halogenatom; a har en verdi av fra 1 til 3; b har en verdi av fra 1 til 4; Tm er et metall valgt fra gruppene IV-B, V-B og VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; z har en verdi lik valensen av nevnte overgangsmetall, n har en verdi av fra null til 5, idet verdien av z-n er fra minst 1 og opp til en verdi lik valensen til overgangsmetallet; idet nevnte halogenidkilde er til stede i en mengde som er tilstrekkelig til å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til en halogenidgruppe; (II) å utvinne det resulterende hydrokarbon-uløselige produkt, vaske produktet med friskt, inert fortynningsmiddel; og (III) å blande, i friskt, inert fortynningsmiddel, produktet fra (II) med (C) en overgangsmetallforbindelse representert ved formel TmY X hvor Tm, Y, X, z og n er som definert ovenfor; z-n har en verdi fra null og opp til valensen til Tm; i en slik mengde at det tilveiebringes et Mg:Tm-atomforhold på fra ca. 0,05:1 til ca. 50:1; (IV) å omsette produktet fra (III) med (D) et passende reduksjonsmiddel eller en blanding av reduksjonsmidler valgt fra forbindelser som er representert ved formlene B (R3) 0 X , AMR3)- X , ZnR <3> X, ZnR3, MgR<3>X eller j-m m j— m m 2 MgR32 hvor hver X er halogen eller en hydrokarbyloksy-gruppe som har fra 1 til ca. 20 karbonatomer eller enNR<3>2 -gruppe; hver R <3> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca- 20 karbonatomer; m har en verdi fra null til 2; idet reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes etR<3>:T m-forhold på fra ca. 1:1 til ca. 50:1; og (V) å utvinne og vaske, med friskt, inert fortynningsmiddel, den resulterende faste hydrokarbon-uløselige katalysator produsert i trinn IV.17. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas A1(R3)j_ —a X a , B(R <3> )j, —a X a , MgR 3 z. , MgR <3> X, ZnR <3>2 where each R <3> independently is hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms and X is halogen; characterized in that the hydrocarbon-insoluble catalyst produced by a method comprising: (I) reacting in an inert diluent (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof represented by the formula MgR0«xMeR', where each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or a hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value of from zero to approx. 10; and x' has a value equal to the valence of Me; and (2) a transition-metal-free oxygen-containing compound, a transition-metal-free nitrogen-containing compound, or mixture of such compounds in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not substantially reduce TiCli" at a temperature of approx. 25°C; and (B ) a suitable halide source or mixture thereof represented by the formulas AIR-, X , SiR. , X, r 3-a a 4-b b ' SnR4 _b Xb , P0X3 , PX3 , PX5 , SO2 X2 , GeX4, RMC0)X, TmY n X and R <4> X where each R independently is hydrogen, a hydrocarbyl or a hydrocarbyloxy group which has from 1 to approx. 20 carbon atoms, R1* is independently hydrogen or an i hydrocarbyl group having from 1 to approx. 20 carbon atoms; each X is a halogen atom; a has a value of from 1 to 3; b has a value of from 1 to 4; Tm is a metal selected from groups IV-B, V-B and VI-B of the periodic table; Y is oxygen, OR" or NR"2; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; z has a value equal to the valence of said transition metal, n has a value of from zero to 5, the value of z-n being from at least 1 and up to a value equal to the valence of the transition metal, said halide source being present in an amount sufficient to convert substantially all of the groups attached to a magnesium atom in component (A) to a halide group; (II) recovering the resulting hydrocarbon-insoluble product, washing the product with fresh, inert diluent; and (III) mixing, in fresh, inert diluent, the product of (II) with (C) a transition metal compound represented by formula TmY X wherein Tm, Y, X, z and n are as defined above; z-n has a value from zero up to the valence of Tm; in such an amount that a Mg:Tm atomic ratio of from approx. 0.05:1 to approx. 50:1; (IV) reacting the product of (III) with (D) a suitable reducing agent or a mixture of reducing agents selected from compounds represented by the formulas B (R 3 ) 0 X , AMR 3 )- X , ZnR < 3> X , ZnR 3 , MgR<3>X or j-m m j— m m 2 MgR32 where each X is halogen or a hydrocarbyloxy group having from 1 to approx. 20 carbon atoms or an NR<3>2 group; each R<3> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; m has a value from zero to 2; with the reducing agent being used in such an amount that a R<3>:T m ratio of from approx. 1:1 to approx. 50:1; and (V) recovering and washing, with fresh, inert diluent, the resulting solid hydrocarbon-insoluble catalyst produced in step IV. 18. Fremgangsmåte som angitt i krav 17, karakterisert ved at i komponent (A-I) er hver gruppe R og R <1> uavhengig en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer, Me er Al og x' har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blandt acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater, glykoler, alkoholer, aldehyder, ketoner, karboksylsyrer eller blanding derav i enhver kombinasjon; halogenid-kilden er rep^ resentert ved formlene AlR3_ -a X a eller TmY n X z-n; i komponent (C) er Y likOR "; reduksjonsmidlet er representert ved formel AIR33- -m X m ; Mg3:Tm-atomforholdet er fra ca. 0,1:1 til ca. 5:1; og reduksjonsmidlet er til stede i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 10:1; og hvor nevnte kokatalysator inneholder aluminium.18. Method as stated in claim 17, characterized in that in component (A-I) each group R and R<1> is independently an aliphatic hydrocarbon group having from 1 to approx. 10 carbon atoms, Me is Al and x' has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates, glycols, alcohols, aldehydes, ketones, carboxylic acids or mixtures thereof in any combination; the halide source is represented by the formulas AlR 3 -a X a or TmY n X z-n; in component (C), Y is equal to OR "; the reducing agent is represented by the formula AIR33- -m X m ; the Mg3:Tm atomic ratio is from about 0.1:1 to about 5:1; and the reducing agent is present in a such amount as to provide an R<3> :Tm ratio of from about 1:1 to about 10:1; and wherein said cocatalyst contains aluminium. 19. Fremgangsmåte som angitt i krav 18, karakterisert ved at R, R' og verdien av x er slik at organo-magnesiumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon; halogenidkilden er representert ved formelT iCl4 ; komponent (C) er TiCl4 , i formelen for reduksjonsmidlet er hverR<3> uavhengig en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer, hver X er klor; m har en verdi av null eller 1; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes et R <3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.19. Method as stated in claim 18, characterized in that R, R' and the value of x are such that the organo-magnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones and carboxylic acids or mixture thereof in any combination; the halide source is represented by the formula T iCl4 ; component (C) is TiCl4 , in the formula of the reducing agent each R<3> is independently an aliphatic hydrocarbon group having from 1 to approx. 10 carbon atoms, each X being chlorine; m has a value of zero or 1; the atomic ratio Mg:Ti is from approx. 0.2:1 to approx. 1:1, and the reducing agent is used in such an amount that a R<3>:Ti ratio of from approx. 1:1 to approx. 3:1. 20. Fremgangsmåte som angitt i krav 19, karakterisert ved at verdien av x og hver R og R' er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og nevnte kokatalysator inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenyl aluminium eller en blanding derav i enhver kombinasjon.20. Method as stated in claim 19, characterized in that the value of x and each R and R' is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and said cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenyl aluminum or a mixture thereof in any combination. 21. Fremgangsmåte som angitt i krav 20, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blanding derav i enhver kombinasjon.21. Method as stated in claim 20, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol, or mixture thereof in any combination. 22. Fremgangsmåte som angitt i krav 21, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol eller blanding derav i enhver kombinasjon.22. Method as stated in claim 21, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol or a mixture thereof in any combination. 23. Fremgangsmåte som angitt i krav 17, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.23. Method as stated in claim 17, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 24. Fremgangsmåte som angitt i krav 23, karakterisert ved at komponent (A-2) er ammoniakk eller et amin.24. Method as stated in claim 23, characterized in that component (A-2) is ammonia or an amine. 25. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene Al(R <3> )3 _a Xa ,B (R<3> )3 _aXa , MgR3 2 iM gR<3>X , ZnR32 hvor hver R3 er uavhengig hydrogen eller en hydrokarbyl-gruppe som har fra 1 til ca. 20 karbonatomer, og x er halogen; karakterisert ved at det som den overgangsmetallholdige katalysator anvendes den hydrokarbon-uløselige katalysator fremstilt ved en fremgangsmåte som omfatter: (I) å omsette i et inert fortynningsmiddel (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav representert ved formelen MgR_-xMeR' , hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R' er uavhengig hydrogen, en hydrokarbyl- eller hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi av fra null til ca. 10, og x <1> har en verdi lik valensen til Me; med (2) en overgangsmetallfri oksygenholdig forbindelse, en overgangsmetallfri nitrogen-holdig forbindelse eller blanding av slike forbindelser i en mengde som er tilstrekkelig til å nedsette mengden av hydrokarbyl-grupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCli» ved en temperatur på 2 5°C; (B) en passende reduserende halogenidkilde represen tert ved formelen Al(R3)- X hvor hver X uav- j —a a hengig er et halogenatom; R <3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; og a har en verdi av fra 1 til mindre enn 3; idet halogenidet anvendes i en slik mengde atR<3> :Tm-forholdet er fra ca. 1:1 til ca. 50:1, og for å tilveiebringe en tilstrekkelig mengde av halogenatomer til å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til en halogenidgruppe; og (C) en overgangsmetallforbindelse representert ved formel TmY n X z-n hvor Tm er et metall valg3t fra gruppene IV-B, V-B og VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; X er halogen; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; n har en verdi fra null til 5, idet z-n er fra 1 og opp til en verdi lik valensen til overgangsmetallet i en slik mengde at det tilveiebringes et Mg:Tm-atomforhold på fra ca. 0,05:1 til ca. 50:1; og (II) å utvinne og vaske, med friskt, inert fortynningsmiddel, den resulterende faste, hydrokarbon-uløseli-ge katalysator.25. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas Al(R <3> )3 _a Xa ,B (R<3> )3 _aXa , MgR3 2 iM gR<3>X , ZnR32 where each R3 is independently hydrogen or a hydrocarbyl group having from 1 to approx. 20 carbon atoms, and x is halogen; characterized in that the hydrocarbon-insoluble catalyst produced by a method comprising: (I) reacting in an inert diluent (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof represented by the formula MgR_-xMeR' , where each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value of from zero to approx. 10, and x <1> has a value equal to the valence of Me; with (2) a transition-metal-free oxygen-containing compound, a transition-metal-free nitrogen-containing compound or mixture of such compounds in an amount sufficient to reduce the amount of hydrocarbyl groups present in component (A-I) so that the resulting product does not in significantly reduces TiCli» at a temperature of 2 5°C; (B) a suitable reducing halide source represen tert by the formula Al(R3)- X where each X un- j —a a hangig is a halogen atom; R<3> independently is hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; and a has a value of from 1 to less than 3; the halide being used in such an amount that the R<3> :Tm ratio is from approx. 1:1 to approx. 50:1, and to provide a sufficient amount of halogen atoms to convert substantially all the groups attached to a magnesium atom in component (A) to a halide group; and (C) a transition metal compound represented by formula TmY n X z-n where Tm is a metal selected from groups IV-B, V-B and VI-B of the periodic table; Y is oxygen, OR" or NR"2; X is halogen; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; n has a value from zero to 5, z-n being from 1 up to a value equal to the valence of the transition metal in such an amount as to provide a Mg:Tm atomic ratio of from approx. 0.05:1 to approx. 50:1; and (II) recovering and washing, with fresh, inert diluent, the resulting solid, hydrocarbon-insoluble catalyst. 26. Fremgangsmåte som angitt i krav 25, karakterisert ved at i komponent (A-I) er hver gruppe R og R' uavhengig et alifatisk hydrokarbon som har fra 1 til ca. 10 karbonatomer, Me er Al og x' har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater, glykoler, alkoholer, aldehyder, ketoner, karboksylsyrer eller blanding derav i enhver kombinasjon; i komponent (C) er Y lik OR"; Mg:Tm-atomforholdet er fra ca. 0,1:1 til ca. 5:1; og det reduserende halogenid er til stede i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 10:1.26. Method as stated in claim 25, characterized in that in component (A-I) each group R and R' is independently an aliphatic hydrocarbon having from 1 to approx. 10 carbon atoms, Me is Al and x' has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates, glycols, alcohols, aldehydes, ketones, carboxylic acids or mixture thereof in any combination; in component (C), Y equals OR"; the Mg:Tm atomic ratio is from about 0.1:1 to about 5:1; and the reducing halide is present in such an amount as to provide an R <3 >:Tm ratio of from about 1:1 to about 10:1. 27. Fremgangsmåte som angitt i krav 26, karakterisert ved at R og R <1> og verdien av x er slik at organo-magnesiumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon; i formelen for komponent (C ) er hver X lik klor, Tm er titan, hver R" er en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer og n har en verdi fra null til 2; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og reduksjonshalogenidet anvendes i en mengde som tilveiebringer et R <3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.27. Method as stated in claim 26, characterized in that R and R <1> and the value of x is such that the organo-magnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones and carboxylic acids or mixture thereof in any combination; in the formula for component (C ), each X is chlorine, Tm is titanium, each R" is an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms and n has a value from zero to 2; the atomic ratio Mg:Ti is from about . 0.2:1 to approx. 1:1, and the reducing halide is used in an amount which provides an R<3> :Ti ratio of from approx. 1:1 to approx. 3:1. 28. Fremgangsmåte som angitt i krav 27, karakterisert ved at verdien av x og hver R og R' er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og nevnte kokatalysator inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i enhver kombinasjon.28. Method as stated in claim 27, characterized in that the value of x and each R and R' is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and said cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 29. Fremgangsmåte som angitt i krav 28, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blanding derav i enhver kombinasjon. Cm29. Method as stated in claim 28, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol, or mixture thereof in any combination. Cm 30. Fremgangsmåte som angitt i krav 29, karakterisert ved at alkoholen er valgt blant metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol eller blanding derav i enhver kombinasjon.30. Method as stated in claim 29, characterized in that the alcohol is selected from methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol or a mixture thereof in any combination. 31. Fremgangsmåte som angitt i krav 25, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.31. Method as stated in claim 25, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 32. Fremgangsmåte som angitt i krav 31, karakterisert ved at komponent (A-2) er ammoniakk eller et amin.32. Method as stated in claim 31, characterized in that component (A-2) is ammonia or an amine. 33. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene Al(R3)j_ —a X a , B(R3)j_ —a x a , MgR3 z, MgR <3> X,Z nR <3>2 hvor hver R <3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer og X er halogen; karakterisert ved å anvende som den overgangsmetallholdige katalysator det med inert fortynningsmiddel vaskede hydrokarbon-ulø selige produkt som resulterende fra blanding av: (I) reaksjonsproduktet av (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav, idet slike komponenter er representert ved formel MgR2'X MeR'x , , hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R <1> uavhengig er hydrogen, en hydrokarbyl- eller hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi fra null til 10 og x' en verdi lik valensen til Me; og (2) en overgangsmetallfri oksygenholdig forbindelse, en overgangsmetallfri nitrogen- holdig forbindelse eller blanding av slike forbindelser i en mengde som er tilstrekkelig til å senke mengden av hydrokarbyl-grupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer Tidi» ved en temperatur på ca. 25°C; en eller flere over-gangsmetallf orbindelser representert ved formel Tm'Y X hvorT m' er et overgangsmetall valgt fra gruppene I-B, IV-B , V-B, VI-B ) VII-B eller VIII i det periodiske system, og ikke er det samme element som det som er representert ved Tm i komponent (II); Y er oksygen, OR" eller NR"; hver R" er uav-2 hengig hydrogen eller en hydrokarbylgruppe som har 1 til ca. 20 karbonatomer; X er et halogenatom; z har en verdi som tilsvarer valensen til overgangsmetallet Tm'; n har en verdi fra null til 5; verdien av z-n er fra null og opp til valensen til overgangsmetallet Tm'; og hvor overgangsmetallforbindelsen er til stede i en slik mengde at atomforholdet Tm':Tm, fra komponent II, er fra 0,01:1 til ca. 0,5:1; og (B) en passende halogenidkilde eller blanding derav representert ved formlene AlR3 _a X& , SiR^^ ^, SnR4 _b Xb , P0X3 , PX3 ,P X5 ,S 02 X2 , GeX4 , R <4> (C O)X, TmYn xz _n og R <4> X hvor hver R uavhengig er hydrogen, en hydrokarbyl- eller hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer; hver R <1*> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; hver X er et halogenatom; a har en verdi av 1 til 3; b har en verdi av 1 til 4, Tm er et metall valgt fra gruppene IV-B, V-B og VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, z har en verdi lik valensen til overgangs metallet, n har en verdi av null til 5 hvor verdien av z-n er fra minst 1 og opp til en verdi lik valensen til overgangsmetallet; idet den nevnte halogenidkilde er til stede i en tilstrekkelig mengde til å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til en halogenidgruppe; (II) en overgangsmetallforbindelse representert ved formel TmY X hvor Tm, Y, X, z og n er som definert oven- n z-n iii ^ for; z-n har en verdi fra null og opp til valensen til Tm i en slik mengde at det tilveiebringes et Mg:Tm-atomforhold på fra ca. 0,05:1 til ca. 50:1; og (III) et passende reduksjonsmiddel eller en blanding av reduks jonsmidler representert ved formlene B(R3)_ X , J c 3-m m Al(R3)-, X , ZnR <3> X, ZnR3 , MgR<3>X eller MgR <3>- hvor hver X uavhengig er halogen, en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer eller en NR <3>2 -gruppe; hver R <3> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer hver; m har en verdi fra null til 2; idet reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes etR<3>:T m-forhold på fra ca. 1:1 til ca. 50:1; under den forutsetning at når komponent (I-B), halogenidkilden, inneholder en tilstrekkelig mengde av overgangsmetall til å tilfredsstille Mg:Tm-forholdet, så kan komponent (II) utelates.33. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas Al(R3)j_ —a X a , B(R3)j_ —a x a , MgR3 z, MgR <3> X,Z nR <3>2 where each R <3> independently is hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms and X is halogen; characterized by using as the transition metal-containing catalyst the hydrocarbon-insoluble product washed with an inert diluent resulting from a mixture of: (I) the reaction product of (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof, such components being represented by the formula MgR2'X MeR'x , , where each R independently is a hydrocarbyl group having from 1 to about 20 carbon atoms, each R<1> independently is hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value from zero to 10 and x' a value equal to the valence of Me; and (2) a transition-metal-free oxygen-containing compound, a transition-metal-free nitrogen-containing compound or mixture of such compounds in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not substantially degree reduces Tidi" at a temperature of approx. 25°C; one or more transition metal compounds represented by formula Tm'Y X where Tm' is a transition metal selected from groups I-B, IV-B , V-B, VI-B ) VII-B or VIII of the periodic table, and is not the same element such as that represented by Tm in component (II); Y is oxygen, OR" or NR"; each R" is unsubstituted hydrogen or a hydrocarbyl group having 1 to about 20 carbon atoms; X is a halogen atom; z has a value corresponding to the valence of the transition metal Tm'; n has a value from zero to 5; the value of z-n is from zero up to the valence of the transition metal Tm'; and wherein the transition metal compound is present in such an amount that the atomic ratio Tm':Tm, from component II, is from 0.01:1 to about 0.5:1; and (B) a suitable halide source or mixture thereof represented by the formulas AlR3 _a X& , SiR^^ ^, SnR4 _b Xb , P0X3 , PX3 ,P X5 ,S 02 X2 , GeX4 , R <4> (C O)X, TmYn xz _n and R<4> X wherein each R is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20 carbon atoms; each R<1*> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; each X is a halogen atom; a has a value of 1 to 3; b has a value of 1 to 4, Tm is a metal selected from groups IV-B, V-B and VI-B of the periodic table; Y is oxygen, OR" or NR"2; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms, z has a value equal to the valence of transition the metal, n has a value of zero to 5 where the value of z-n is from at least 1 and up to a value equal to the valence of the transition metal; said halide source being present in a sufficient amount to convert substantially all of the groups attached to a magnesium atom in component (A) into a halide group; (II) a transition metal compound represented by formula TmY X where Tm, Y, X, z and n are as defined above n z-n iii ^ for; z-n has a value from zero up to the valence of Tm in such an amount that a Mg:Tm atomic ratio of from approx. 0.05:1 to approx. 50:1; and (III) a suitable reducing agent or mixture of reducing agents represented by the formulas B(R3)_X , J c 3-m m Al(R3)-, X , ZnR <3> X, ZnR3 , MgR<3>X or MgR <3>- where each X independently is halogen, a hydrocarbyloxy group having from 1 to about 20 carbon atoms or an NR<3>2 group; each R<3> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms each; m has a value from zero to 2; with the reducing agent being used in such an amount that a R<3>:T m ratio of from approx. 1:1 to approx. 50:1; provided that when component (I-B), the halide source, contains a sufficient amount of transition metal to satisfy the Mg:Tm ratio, then component (II) may be omitted. 34. Fremgangsmåte som angitt i krav 33, karakterisert ved at i komponent (A-I) er hver gruppe R og R <1> uavhengig en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer; Me er Al og x' har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater, glykoler, alkoholer, aldehyder, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon, i komponent (A-2) er Tm <1> lik Co, Cr, Fe, Mo, Ni, V, W eller Zr; R" har fra 1 til ca. 10 karbonatomer; X er klor eller brom, og atom forholdet Tm':Tm er fra ca. 0,02:1 til ca. 0,2:1; halogenid-kilden er rep c resentert ved formlene A1R30 -a X a eller TmY n X z-n; i komponent (II) er Y lik OR"; reduksjonsmidlet er representert ved formel AIR3 3-m X m; Mg:Tm-atomforholdet er fra ca. 0,1:1 til ca. 5:1; og reduksjonsmidlet er til stede i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 10:1; og hvor kokatalysatoren inneholder aluminium.34. Method as stated in claim 33, characterized in that in component (A-I) each group R and R<1> is independently an aliphatic hydrocarbon group having from 1 to approx. 10 carbon atoms; Me is Al and x' has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates, glycols, alcohols, aldehydes, ketones and carboxylic acids or mixture thereof in any combination, in component (A-2) is Tm <1> equal to Co, Cr, Fe, Mo, Ni, V, W or Zr; R" has from 1 to about 10 carbon atoms; X is chlorine or bromine, and the atomic ratio Tm':Tm is from about 0.02:1 to about 0.2:1; the halide source is represented by the formulas A1R30 -a X a or TmY n X z-n; in component (II), Y is equal to OR"; the reducing agent is represented by the formula AIR3 3-m X m; the Mg:Tm atomic ratio is from about 0.1:1 to about 5:1; and the reducing agent is present in such an amount as to provide an R<3> :Tm ratio of from about 1:1 to about 10:1; and wherein the cocatalyst contains aluminum. 35. Fremgangsmåte som angitt i krav 34, karakterisert ved at R og R' og verdien av x er slik at organo-magnesiumkomponenten er hydrokarbonlø selig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon; nevnte overgangsmetallforbindelse representert ved formel Tm <1> Y X er NiCl- , NiCl«6Ho 0, FeCl_, n z-n 2' 2 3 FeCl3 -6H2 0, CrCl3 , CrCl2 , CrCl3 -6H2 0, MoCl5 , WClg, ZrCl4, Zr(0-iC3 H7 )4 , V0C13 eller blanding derav i enhver kombinasjon; halogenidkilden er TiCl4 ; komponent (II) er utelatt; i formelen for reduksjonsmidlet er hver R <3> uavhengig en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer, hver X er klor, m har en verdi av null eller 1; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes etR<3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.35. Method as stated in claim 34, characterized in that R and R' and the value of x are such that the organo-magnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, ketones and carboxylic acids or mixtures thereof in any combination; said transition metal compound represented by formula Tm <1> Y X is NiCl- , NiCl«6Ho 0, FeCl_, n z-n 2' 2 3 FeCl3 -6H2 0, CrCl3 , CrCl2 , CrCl3 -6H2 0, MoCl5 , WClg, ZrCl4, Zr(0-iC3 H7 )4 , V0C13 or mixture thereof in any combination; the halide source is TiCl4; component (II) is omitted; in the formula for the reducing agent, each R<3> is independently an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms, each X is chlorine, m has a value of zero or 1; the atomic ratio Mg:Ti is from approx. 0.2:1 to approx. 1:1, and the reducing agent is used in such an amount that an R<3>:Ti ratio of from approx. 1:1 to approx. 3:1. 36. Fremgangsmåte som angitt i krav 35, karakterisert ved at verdien av x og hver R og R' er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og kokatalysatoren inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i enhver kombinasjon.36. Method as stated in claim 35, characterized in that the value of x and each R and R' is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and the cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 37. Fremgangsmåte som angitt i krav 36, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blanding derav i enhver kombinasjon.37. Method as stated in claim 36, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol, or mixture thereof in any combination. 38. Fremgangsmåte som angitt i krav 37, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol eller n-butylalkohol.38. Method as stated in claim 37, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol or n-butyl alcohol. 39. Fremgangsmåte som angitt i krav 33, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.39. Method as stated in claim 33, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 40. Fremgangsmåte som angitt i krav 39, karakterisert ved at komponent (A-2) er ammoniakk eller et amin.40. Method as stated in claim 39, characterized in that component (A-2) is ammonia or an amine. 41. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene Al (R3)-. X , B ( <R> 3)^ X , MgR3 0 , a aM gR<3>X ,Z nR <3>2 eHer blandinger derav hvor hver R <3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer og X er halogen; karakterisert ved å anvende, som den overgangsmetallholdige katalysator, det med inert fortynningsmiddel vaskede hydrokarbon-uløselige reaksjonsprodukt av: (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav representert ved formelenM gR2 -xMeR'x , hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R' er uavhengig hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi fra null til 10, x' har en verdi lik valensen til Me; og (2) en overgangsmetallfri oksygenholdig og/eller en overgangsmetallfri nitrogenholdig forbindelse i tilstrekkelig mengde til å senke mengden av hydrokarbylgrupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCli , ved en temperatur av ca. 25°C; en eller flere overgangsmetallforbindelser representert ved formelen Tm'Y Xz-n n z-n hvor Tm <1> er et overgangsmetall valgt fra gruppene I-B, IV-B,V-B, VI-B^II-B eller VIII i det periodisle system og ikke er det samme element som som er representert ved Tm i komponent (C); Y er oksygen, OR" eller NR"; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; X er et halogenatom; z har en verdi som tilsvarer valensen av overgangsmetallet Tm'; n har en verdi fra 0 til 5; verdien av z-n er fra null og opp til valensen av overgangsmetallet Tm'; og hvor over-gangsmetallf orbindelsen er til stede i en slik mengde at atomforholdet Tm':Tm, fra komponent (C), er fra 0,01:1 til ca. 0,5:1; (B) en passende reduserende halogenidkilde representert ved formlene Al (R3)-j , —a X a; hvorR<3> uavhengig er hydrogen eller har samme definisjon som R ovenfor, X er som definert ovenfor og a har en verdi fra 1 til mindre enn 3; nevnte halogenid anvendes i en tilstrekkelig mengde til å omdanne i det vesentlige alle de grupper som er tilknyttet et magnesiumatom i komponent (A) til et halogenidatom og slik at forholdetR<3> :Tm er fra ca. 1:1 til ca. 50:1; og (C) en overgangsmetallforbindelse representert ved formel TmY n X z-n hvor Tm er et metall som er valg^t fra gruppene IV-B, V-B eller VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; X er halogen; hver R" er uavhengig hydrogen eller en hydrokarbyl-gruppe som har fra 1 til ca. 20 karbonatomer; n har en verdi på fra null til 5, idet z-n er fra 1 og opp til en verdi lik valensen til overgangsmetallet i en slik mengde at det tilveiebringes et atomforhold Mg:Tm på fra ca. 0,05:1 til ca. 50:1.41. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas Al (R3)-. X , B ( <R> 3)^ X , MgR3 0 , a aM gR<3>X ,Z nR <3>2 eHere mixtures thereof where each R <3> independently is hydrogen or a hydrocarbyl group having from 1 to approx. 20 carbon atoms and X is halogen; characterized by using, as the transition metal-containing catalyst, the inert diluent-washed hydrocarbon-insoluble reaction product of: (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof represented by the formula M gR2 -xMeR'x , where each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or a hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value from zero to 10, x' has a value equal to the valence of Me; and (2) a transition-metal-free oxygen-containing and/or a transition-metal-free nitrogen-containing compound in sufficient amount to lower the amount of hydrocarbyl groups present in component (A-I) so that the resulting product does not substantially reduce TiCl , at a temperature of about 25°C; one or more transition metal compounds represented by the formula Tm'Y Xz-n n z-n where Tm <1> is a transition metal selected from groups I-B, IV-B,V-B, VI-B^II-B or VIII in the periodic table and is not the same element as that represented by Tm in component (C ); Y is oxygen, OR" or NR"; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; X is a halogen atom; z has a value corresponding to the valence of the transition metal Tm'; n has a value from 0 to 5; the value of z-n is from zero and up to the valence of the transition metal Tm'; and wherein the transition metal compound is present in such an amount that the atomic ratio Tm':Tm, from component (C), is from 0.01:1 to about 0.5: 1; (B) a suitable reducing halide source represented by the formulas Al (R 3 )-j , —a X a ; wherein R<3> is independently hydrogen or has the same definition as R above, X is as defined above and a has a value from 1 to less than 3; said halide is used in a sufficient amount to convert essentially all the groups associated with a magnesium atom in component (A) into a halide atom and so that the ratio R<3> :Tm is from approx. 1:1 to approx. 50:1; and (C) a transition metal compound represented by formula TmY n X z-n where Tm is a metal selected from groups IV-B, V-B or VI-B of the periodic table; Y is oxygen, OR" or NR"2; X is halogen; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; n has a value of from zero to 5, z-n being from 1 up to a value equal to the valence of the transition metal in such an amount that a Mg:Tm atomic ratio of from about 0.05:1 to about 50:1 is provided. 42. Fremgangsmåte som angitt i krav 41, karakterisert ved at i komponent (A-I) er hver gruppe R og R' uavhengig et alifatisk hydrokarbon som har fra 1 til ca. 10 karbonatomer, Me er Al og x' har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater og glykoler, alkoholer, aldehyder, ketoner, karboksylsyrer, eller blanding derav i enhver kombinasjon; i komponent (A-2) er Tm <1> lik Co, Cr, Fe, Mo, Ni, V, W eller Zr; R" har fra 1 til ca. 10 karbonatomer; X er klor eller brom, og atomforholdet Tm':Tm er fra ca. 0,02:1 til ca. 0,2:1; i komponent (C) er Y lik OR"; atomforholdetM g:Tm er fra ca. 0,1:1 til ca. 5:1; og det reduserende halogenid er til stede i en slik mengde at det tilveiebringes et forhold R <3> :Tm på fra ca. 1:1 til ca. 10:1; og hvor kokatalysatoren inneholder aluminium.42. Method as stated in claim 41, characterized in that in component (A-I) each group R and R' is independently an aliphatic hydrocarbon having from 1 to approx. 10 carbon atoms, Me is Al and x' has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates and glycols, alcohols, aldehydes, ketones, carboxylic acids , or mixture thereof in any combination; in component (A-2), Tm <1> is equal to Co, Cr, Fe, Mo, Ni, V, W or Zr; R" has from 1 to approx. 10 carbon atoms; X is chlorine or bromine, and the atomic ratio Tm':Tm is from approx. 0.02:1 to approx. 0.2:1; in component (C), Y equals OR"; the atomic ratio M g:Tm is from about 0.1:1 to about 5:1; and the reducing halide is present in such an amount as to provide a ratio R <3 > :Tm of from about 1:1 to about 10:1; and wherein the cocatalyst contains aluminum. 43. Fremgangsmåte som angitt i krav 42, karakterisert ved at R og verdien av x er slik at organomagne-siumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner, karboksylsyrer eller blanding derav i enhver kombinasjon; idet overgangsmetallforbindelsen representert ved formelen Tm'Y X er NiCl^ , NiCl *6H„0, r n z-n 2 2 2 FeCl3 , FeCl3' 6H2 0, CrCl3 , CrCl2 , CrCl3' 6H2 0, MoCl5 , WClg, ZrCl4 , Zr(0-iC3 H7 )4 , V0C13 eller blanding derav i enhver kombinasjon; halogenidkilden er dietylaluminiumklorid eller etylaluminiumdiklorid; i formelen for komponent (C) er hver X klor, Tm er titan, hver R" er en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer,og n har en verdi fra 0 til 2; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og det reduserende halogenid anvendes i en slik mengde at det tilveiebringes et forhold R <3> :Ti på fra ca. 1:1 til ca. 3:1.43. Method as stated in claim 42, characterized in that R and the value of x are such that the organomagnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones, carboxylic acids or mixtures thereof in any combination; whereas the transition metal compound represented by the formula Tm'Y X is NiCl^ , NiCl *6H„0, r n z-n 2 2 2 FeCl3 , FeCl3' 6H2 0, CrCl3 , CrCl2 , CrCl3' 6H2 0, MoCl5 , WClg, ZrCl4 , Zr(0-iC3 H7 )4 , VOCl3 or mixture thereof in any combination; the halide source is diethylaluminum chloride or ethylaluminum dichloride; in the formula for component (C), each X is chlorine, Tm is titanium, each R" is an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms, and n has a value from 0 to 2; the atomic ratio Mg:Ti is from about .0.2:1 to about 1:1, and the reducing halide is used in such an amount as to provide a ratio R<3>:Ti of from about 1:1 to about 3:1. 44. Fremgangsmåte som angitt i krav 43, karakterisert ved at verdien av x og hver R og R' er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer med fra 1 til ca. 20 karbonatomer; og kokatalysatoren inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i hvilken som helst kombinasjon.44. Method as stated in claim 43, characterized in that the value of x and each R and R' is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols with from 1 to approx. 20 carbon atoms; and the cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 45. Fremgangsmåte som angitt i krav 44, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blandinger derav.45. Method as stated in claim 44, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol, or mixtures thereof. 46. Fremgangsmåte som angitt i krav 45, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol eller n-butylalkohol.46. Method as stated in claim 45, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol or n-butyl alcohol. 47. Fremgangsmåte som angitt i krav 41, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.47. Method as stated in claim 41, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 48. Fremgangsmåte som angitt i krav 47, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et isocyanat eller blanding derav i enhver kombinasjon.48. Method as stated in claim 47, characterized in that component (A-2) is ammonia, an amine, an isocyanate or mixture thereof in any combination. 49. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utfø res i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene Al (R3)j-, —a X a , B(R3)j_ —a X a , MgR3 A,M gR<3>X ,Z nR <3>2 hvor hver R <3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer og X er halogen; karakterisert ved at det som overgangsmetallholdig katalysator anvendes den hydrokarbonuløselige katalysator fremstilt ved en fremgangsmåte som omfatter: (i) å omsette i et inert fortynningsmiddel (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav representert ved formelen MgR2' xMeR'x , hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R <1> er uavhengig hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi fra null til ca. 10; og x <1> har en verdi lik valensen av Me; og (2) en overgangsmetallfri oksygenholdig forbindelse, en overgangsmetallfri nitrogen-holdig forbindelse eller blanding av slike forbindelser i en mengde som er tilstrekkelig til å senke mengden av hydrokarbylgrupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCli+ ved en temperatur på ca. 25°C; en eller flere overgangsmetall-forbindelser representert ved formel Tm'Y X hvor Tm1 er et overgangsmetall n z-n 3 13 valgt fra gruppene I-B, IV-By V-B, VI-B/ VII-B eller VIII i periodiske system og ikke er det samme element som det som er representert ved Tm i komponent (C); Y er oksygen, OR" eller NR"2 ; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; X er et halogenatom; z har en verdi som tilsvarer valensen av overgangsmetallet Tm'; n har en verdi fra null til 5; verdien av z-n er fra null opp til valensen av overgangsmetallet Tm'; og hvor overgangsmetallforbindelsen er til stede i en slik mengde at atomforholdet Tm':Tm, fra komponent (C), er fra 0,01:1 til ca. 0,5:1; og (B) en passende halogenidkilde eller blanding derav representert ved formlene AIR^^ X^ , SiR^^ ^, SnR4 _b Xb , P0X3 , PX3 , PX5 , S02 X2 , GeX4 , R <4> (C0)X, TmYn Xz _n og R <**> X hvor hver R uavhengig er hydrogen, en hydrokarbyl- eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer; R <1*> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbon atomer; hver X er et halogenatom, a har en verdi fra 1 til 3; b har en verdi fra 1 til 4; Tm er. et metall valgt fra gruppene IV-B, V-B og VI-B i det periodiske system; Y er oksygen, OR" eller NR"2 ; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca» 20 karbonatomer; z har en verdi lik valensen til nevnte overgangsmetall, n har en verdi fra null til 5 idet verdien av z-n er fra minst 1 og opp til en verdi lik valensen til overgangsmetallet; idet nevnte halogenidkilde er til stede i en mengde som er tilstrekkelig til å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til en halogenid-gruppe; (II) å omdanne det resulterende hydrokarbon-uløselige produkt, vaske produktet med friskt, inert fortynningsmiddel; og (III) å blande, i friskt, inert fortynningsmiddel, produktet fra (II) med (C) en overgangsmetallforbindelse representert ved formel TmY n X hvor Tm, Y, X, z og ^ n z-n rir i n er som definert ovenfor; z-n har en verdi fra null og opp til valensen til Tm; i en slik mengde at det tilveiebringes et atomforhold Mg:Tm på fra ca. 0,05:1 til ca. 50:1; (IV) å omsette produktet fra (III) med (D) et passende reduksjonsmiddel eller blanding av reduksjonsmidler valgt fra forbindelser representert ved formlene B(R <3> )3 _m Xm , Al(R <3> )3 _m Xm , ZnR <3> X, ZnR <3>2 , MgR3 X eller MgR <3>2 hvor hver X er halogen eller en hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer eller enN R <3>2~ gruppe; hver R <3> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; m har en verdi fra null til 2; idet reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 50:1; (V) å utvinne og vaske, med friskt, inert fortynningsmiddel den resulterende faste hydrokarbon-uløselige katalysator produsert i trinn IV.49. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas Al (R3)j-, —a X a , B(R3)j_ —a X a , MgR3 A,M gR<3>X ,Z nR <3>2 where each R <3> independently is hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms and X is halogen; characterized in that the hydrocarbon-insoluble catalyst produced by a method comprising: (i) reacting in an inert diluent (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof represented by the formula MgR2' xMeR'x , where each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms, each R<1> is independently hydrogen, a hydrocarbyl or a hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value from zero to approx. 10; and x <1> has a value equal to the valence of Me; and (2) a transition-metal-free oxygen-containing compound, a transition-metal-free nitrogen-containing compound or mixture of such compounds in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not substantially reduces TiCli+ at a temperature of approx. 25°C; one or more transition metal compounds represented by formula Tm'Y X where Tm1 is a transition metal n z-n 3 13 selected from groups I-B, IV-By V-B, VI-B/ VII-B or VIII of the periodic table and is not the same element as that represented by Tm in component (C); Y is oxygen, OR" or NR"2; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; X is a halogen atom; z has a value corresponding to the valence of the transition metal Tm'; n has a value from zero to 5; the value of z-n is from zero up to the valence of the transition metal Tm'; and wherein the transition metal compound is present in such an amount that the atomic ratio Tm':Tm, from component (C), is from 0.01:1 to about 0.5:1; and (B) a suitable halide source or mixture thereof represented by the formulas AIR^^ X^ , SiR^^ ^, SnR4 _b Xb , P0X3 , PX3 , PX5 , S02 X2 , GeX4 , R <4> (C0)X, TmYn Xz _n and R <**> X where each R is independently hydrogen, a hydrocarbyl or a hydrocarbyloxy group having from 1 to about 20 carbon atoms; R<1*> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; each X is a halogen atom, a has a value from 1 to 3; b has a value from 1 to 4; Tm is. a metal selected from groups IV-B, V-B and VI-B of the periodic table; Y is oxygen, OR" or NR"2; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; z has a value equal to the valence of said transition metal, n has a value from zero to 5, the value of z-n being from at least 1 and up to a value equal to the valence of the transition metal, said halide source being present in an amount sufficient to convert substantially all of the groups attached to a magnesium atom in component (A) into a halide group; (II) converting the resulting hydrocarbon-insoluble product, washing the product with fresh, inert diluent; and (III) mixing, in fresh, inert diluent, the product of (II) with (C) a transition metal compound represented by formula TmY n X where Tm, Y, X, z and ^ n z-n rir i n is as defined above; z-n has a value from zero up to the valence of Tm; in such an amount that an atomic ratio Mg:Tm of from approx. 0.05:1 to approx. 50:1; (IV) reacting the product of (III) with (D) a suitable reducing agent or mixture of reducing agents selected from compounds represented by the formulas B(R <3> )3 _m Xm , Al(R <3> )3 _m Xm , ZnR <3> X, ZnR <3>2 , MgR3 X or MgR <3>2 where each X is halogen or a hydrocarbyloxy group having from 1 to about 20 carbon atoms or a N R <3>2~ group; each R<3> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; m has a value from zero to 2; with the reducing agent being used in such an amount that a R<3> :Tm ratio of from approx. 1:1 to approx. 50:1; (V) recovering and washing, with fresh, inert diluent, the resulting solid hydrocarbon-insoluble catalyst produced in step IV. 50. Fremgangsmåte som angitt i krav 49, karakterisert ved at i komponent (A-I) er hver gruppe R og R' uavhengig et alifatisk hydrokarbon som har fra 1 til ca. 10 karbonatomer, Me er Al og x <1> har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater, glykoler, alkoholer, aldehyder, ketoner, karboksylsyrer eller blanding derav i enhver kombinasjon; i komponent (A-2) er Tm' lik Co, Cr, Fe, Mo, Ni, V, W eller Zr; R" har fra 1 til ca. 10 karbonatomer; X er klor eller brom og atomforholdet Tm':Tm er fra ca. 0,02:1 til ca. 0,2:1; halogenidkilden er representert ved formlene AlR3-, -a X a eller TmY n X z-n; i komp^onent (C) er Y lik OR"; reduksjJ onsmidlet er rep^ resentert ved formelen AIR3 3-m X m; atomforholdet Mg:Tm er fra ca. 0,1:1 til ca. 5:1; og reduksjonsmidlet er til stede i en slik mengde at det tilveiebringes et R <3> :Tm-forhold på fra ca. 1:1 til ca. 10:1; og hvor nevnte kokatalysator inneholder aluminium.50. Method as stated in claim 49, characterized in that in component (A-I) each group R and R' is independently an aliphatic hydrocarbon having from 1 to approx. 10 carbon atoms, Me is Al and x <1> has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates, glycols, alcohols, aldehydes, ketones, carboxylic acids or mixtures thereof in any combination; in component (A-2), Tm' is equal to Co, Cr, Fe, Mo, Ni, V, W or Zr; R" has from 1 to about 10 carbon atoms; X is chlorine or bromine and the atomic ratio Tm':Tm is from about 0.02:1 to about 0.2:1; the halide source is represented by the formulas AlR3-, -a X a or TmY n X z-n; in component (C) Y equals OR"; the reducing agent is represented by the formula AIR3 3-m X m; the atomic ratio Mg:Tm is from approx. 0.1:1 to approx. 5:1; and the reducing agent is present in such an amount as to provide an R<3> :Tm ratio of from about 1:1 to approx. 10:1; and wherein said cocatalyst contains aluminium. 51. Fremgangsmåte som angitt i krav 50, karakterisert ved at R, R' og verdien av x er slik at organo-magnesiumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner og karboksylsyrer eller blanding derav i enhver kombinasjon; overgangsmetallforbindelsen representert ved formel Tm'Y X er NiCl~ , NiCl -6H„0, c n z-n 2 2 2F eCl3 , FeCl3' 6H2 0, CrCl3 , CrCl2 , CrCl3' 6H2 0, MoCl5 , WClg, ZrCl^ , Zr(0-iC3 H7 )^ , V0C13 eller blanding derav i enhver kombinasjon; halogenidkilden er representert ved formel TiCl^ ; komponent (C) er TiCl4 ; i formelen for reduksjonsmidlet er hverR<3> uavhengig en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer, hver X er klor, m har en verdi av null eller 1; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og reduksjonsmidlet anvendes i en slik mengde at det tilveiebringes et R <3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.51. Method as stated in claim 50, characterized in that R, R' and the value of x are such that the organo-magnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones and carboxylic acids or mixture thereof in any combination; the transition metal compound represented by formula Tm'Y X is NiCl~ , NiCl -6H„0, c n z-n 2 2 2F eCl3 , FeCl3' 6H2 0, CrCl3 , CrCl2 , CrCl3' 6H2 0, MoCl5 , WClg, ZrCl^ , Zr(0-iC3 H7 )^ , V0C13 or mixture thereof in any combination; the halide source is represented by the formula TiCl^ ; component (C) is TiCl4 ; in the formula for the reducing agent, each R<3> is independently an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms, each X is chlorine, m has a value of zero or 1; the atomic ratio Mg:Ti is from approx. 0.2:1 to approx. 1:1, and the reducing agent is used in such an amount that a R<3>:Ti ratio of from approx. 1:1 to approx. 3:1. 52. Fremgangsmåte som angitt i krav 51, karakterisert ved at verdien av x og hver R og R' er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og nevnte kokatalysator inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i enhver kombinasjon.52. Method as stated in claim 51, characterized in that the value of x and each R and R' is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and said cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 53. Fremgangsmåte som angitt i krav 52, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol eller blanding derav i enhver kombinasjon .53. Method as stated in claim 52, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol or mixture thereof in any combination. 54. Fremgangsmåte som angitt i krav 53, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol eller blanding derav i enhver kombinasjon.54. Method as stated in claim 53, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol or a mixture thereof in any combination. 55. Fremgangsmåte som angitt i krav 49, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.55. Method as stated in claim 49, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 56. Fremgangsmåte som angitt i krav 55, karakterisert ved at komponent (A-2) er ammoniakk eller et amin.56. Method as stated in claim 55, characterized in that component (A-2) is ammonia or an amine. 57. Fremgangsmåte for polymerisering av en eller flere polymeriserbare etylenisk umettede monomerer som inneholder et eller flere polymeriserbare a-olefiner under Ziegler-polymerisasjonsbetingelser hvor polymerisasjonen utføres i nærvær av en overgangsmetallholdig katalysator og minst én kokatalysator representert ved formlene A1(R3)j_ —a X a , B(R3)3_ —a X a,M gR<3>2/M gR<3> X, ZnR <3>2 hvor hver R <3> er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, og X er halogen; karakterisert ved å anvende, som den overgangsmetallholdige katalysator, den hydrokarbon-uløselige katalysator fremstilt ved en fremgangsmåte som omfatter: (I) å omsette i et inert fortynningsmiddel (A) reaksjonsproduktet av (1) en organomagnesiumkomponent eller en blanding eller et kompleks derav representert ved formel MgR„-xMeR' , hvor hver R uavhengig er en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer, hver R' er uavhengig hydrogen, en hydrokarbyl- eller hydrokarbyloksygruppe som har fra 1 til ca. 20 karbonatomer, Me er Al, Zn eller B, x har en verdi fra null til ca. 10 og x * har en verdi lik valensen av Me; med (2) en overgangsmetallfri oksygenholdig forbindelse, en overgangsmetallfri nitrogen-holdig forbindelse eller blanding av slike forbindelser i en mengde som er tilstrekkelig til å senke mengden av hydrokarbylgrupper som er til stede i komponent (A-I) slik at det resulterende produkt ikke i vesentlig grad reduserer TiCl^ ved en temperatur på 25°C; en eller flere overgangs-metallf orbindelser representert ved formel Tm'Yn Xz _n hvor Tm' er et overgangsmetall valgt fra gruppene I-B, IV-B, V-B, VI-B, VII-B eller VIII i det periodiske system og ikke er det samme element som det som er representert ved Tm i komponent (C); Y er oksygen, OR" eller NR'^ ; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; X er et halogenatom; z har en verdi som tilsvarer valensen av overgangsmetallet Tm'; n har en verdi fra null til 5; verdien av z-n er fra null og opp til valensen av overgangsmetallet Tm'; og hvor overgangsmetallforbindelsen er til stede i en slik mengde at atomforholdet Tm':Tm, fra komponent (C), er fra 0,01:1 til ca. 0,5:1; (B) en egnet reduserende halogen-kilde representert ved formlene Al (R3)' X hvor hver X er uav- j -' Sl a hengig et halogenatom; R <3> uavhengig er hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; og a har en verdi av fra 1 til mindre enn 3; idet halogenidet anvendes i en slik mengde at forholdet R <3> :Tm er fra ca. 1:1 til ca. 50:1, og for å tilveiebringe en tilstrekkelig mengde av halogenatomer å omdanne i det vesentlige alle de grupper som er knyttet til et magnesiumatom i komponent (A) til en halogenidgruppe; og (C) en overgangsmetallforbindelse representert ved formel TmY n X z-n hvor Tm er et metall valg^t fra gruppene IV-B, V-B og VI-B i det periodiske system; Y er oksygen, OR" eller NR'^ ; X er et halogen; hver R" er uavhengig hydrogen eller en hydrokarbylgruppe som har fra 1 til ca. 20 karbonatomer; n har en verdi fra null til 5 hvor z-n er fra 1 og opp til en verdi lik valensen til overgangsmetallet i en slik mengde at det tilveiebringes et atomforhold Mg:Tm på fra ca. 0,05:1 til ca. 50:1; og (II) å utvinne og vaske, med friskt, inert fortynningsmiddel , den resulterende faste, hydrokarbon-uløseli-ge katalysator.57. Process for the polymerization of one or more polymerizable ethylenically unsaturated monomers containing one or more polymerizable α-olefins under Ziegler polymerization conditions where the polymerization is carried out in the presence of a transition metal-containing catalyst and at least one cocatalyst represented by the formulas A1(R3)j_ —a X a , B(R3)3_ —a X a,M gR<3>2/M gR<3> X, ZnR <3>2 where each R <3> is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms, and X is halogen; characterized by using, as the transition metal-containing catalyst, the hydrocarbon-insoluble catalyst prepared by a method comprising: (I) reacting in an inert diluent (A) the reaction product of (1) an organomagnesium component or a mixture or complex thereof represented by the formula MgR„-xMeR', where each R independently is a hydrocarbyl group having from 1 to about 20 carbon atoms, each R' is independently hydrogen, a hydrocarbyl or hydrocarbyloxy group having from 1 to about 20 carbon atoms, Me is Al, Zn or B, x has a value from zero to approx. 10 and x * have a value equal to the valence of Me; with (2) a transition-metal-free oxygen-containing compound, a transition-metal-free nitrogen-containing compound or mixture of such compounds in an amount sufficient to lower the amount of hydrocarbyl groups present in component (A-I) such that the resulting product does not substantially reduce TiCl^ at a temperature of 25°C; one or more transition metal compounds represented by formula Tm'Yn Xz _n where Tm' is a transition metal selected from groups I-B, IV-B, V-B, VI-B, VII-B or VIII of the periodic table and is not the same element such as that represented by Tm in component (C); Y is oxygen, OR" or NR'^; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; X is a halogen atom; z has a value corresponding to the valence of the transition metal Tm'; n has a value from zero to 5; the value of z-n is from zero up to the valence of the transition metal Tm'; and wherein the transition metal compound is present in such an amount that the atomic ratio Tm':Tm, from component (C), is from 0.01:1 to about. 0.5:1; (B) a suitable reducing halogen source represented by the formulas Al (R 3 )' X where each X is unsubstituted j -' Sl a pendant a halogen atom; R<3> independently is hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; and a has a value of from 1 to less than 3; the halide being used in such an amount that the ratio R<3>:Tm is from approx. 1:1 to approx. 50:1, and to provide a sufficient amount of halogen atoms to convert substantially all of the groups attached to a magnesium atom in component (A) to a halide group; and (C) a transition metal compound represented by formula TmY n X z-n where Tm is a metal selected from groups IV-B, V-B and VI-B of the periodic table; Y is oxygen, OR" or NR'^ ; X is a halogen; each R" is independently hydrogen or a hydrocarbyl group having from 1 to about 20 carbon atoms; n has a value from zero to 5 where z-n is from 1 and up to a value equal to the valence of the transition metal in such an amount that an atomic ratio Mg:Tm of from approx. 0.05:1 to approx. 50:1; and (II) recovering and washing, with fresh, inert diluent, the resulting solid, hydrocarbon-insoluble catalyst. 58. Fremgangsmåte som angitt i krav 57, karakterisert ved at i komponent (A-I) er hver gruppe R og R <1> uavhengig et alifatisk hydrokarbon som har fra 1 til ca. 10 karbonatomer, Me er Al og x' har en verdi av 3; komponent (A-2) er vann, karbonmonoksyd, karbondioksyd, svoveldioksyd, en organisk oksygenholdig forbindelse valgt blant acetaler, ketaler, estere av karboksylsyrer, ortoestere av karboksylsyrer, halogenider av karboksylsyrer, karboksylsyreanhydrider, karbonater, glykoler, alkoholer, aldehyder, ketoner, karboksylsyrer eller blanding derav i enhver kombinasjon; i komponent (A-2) er Tm <1> lik Co, Cr, Fe, Mo, Ni, V, W eller Zr; R" har fra 1 til ca. 10 karbonatomer; X er klor eller brom, og atomforholdet Tm <1> :Tm er fra ca. 0,02:1 til ca- 0,2:1; i komponent (C) er Y lik OR", atomforholdet Mg:Tm er fra ca. 0,1:1 til ca. 5:1; og det reduserende halogenid er til stede i en mengde som gjør at det tilveiebringes et forhold ,R <3> .:Tm på fra ca. 1:1 til ca. 10:1.58. Method as stated in claim 57, characterized in that in component (A-I) each group R and R<1> is independently an aliphatic hydrocarbon having from 1 to approx. 10 carbon atoms, Me is Al and x' has a value of 3; component (A-2) is water, carbon monoxide, carbon dioxide, sulfur dioxide, an organic oxygen-containing compound selected from acetals, ketals, esters of carboxylic acids, orthoesters of carboxylic acids, halides of carboxylic acids, carboxylic anhydrides, carbonates, glycols, alcohols, aldehydes, ketones, carboxylic acids or mixtures thereof in any combination; in component (A-2), Tm <1> is equal to Co, Cr, Fe, Mo, Ni, V, W or Zr; R" has from 1 to about 10 carbon atoms; X is chlorine or bromine, and the atomic ratio Tm <1> :Tm is from about 0.02:1 to about 0.2:1; in component (C) Y is equal to OR", the atomic ratio Mg:Tm is from approx. 0.1:1 to approx. 5:1; and the reducing halide is present in an amount such that a ratio ,R <3> .:Tm of from approx. 1:1 to approx. 10:1. 59. Fremgangsmåte som angitt i krav 58, karakterisert ved at R og R' og verdien av x er slik at organo-magnesiumkomponenten er hydrokarbonløselig; komponent (A-2) er karbondioksyd, en organisk oksygenholdig forbindelse valgt blant alkoholer, aldehyder, ketoner, og karboksylsyrer eller blanding derav i enhver kombinasjon; nevnte overgangsmetallforbindelse representert ved formelen Tm'Y X _ er NiCl„, NiCl„•6H-0, c n z-n 2' 2 2' FeCl3 , FeCl3» 6H20 , CrCl3 , CrCl2 , CrCl3' 6H2 0, MoCl5 , WClg, ZrCl4 , Zr(0-iC3 H7 )4, V0C13 eller blanding derav i enhver kombinasjon; i formelen for komponent (C) er hver X klor, Tm er titan, hver R" er en alifatisk hydrokarbongruppe som har fra 1 til ca. 10 karbonatomer og n har en verdi av fra null til 2; atomforholdet Mg:Ti er fra ca. 0,2:1 til ca. 1:1, og det reduserende halogenid anvendes i en slik mengde at det tilveiebringes et R <3> :Ti-forhold på fra ca. 1:1 til ca. 3:1.59. Method as stated in claim 58, characterized in that R and R' and the value of x are such that the organo-magnesium component is hydrocarbon soluble; component (A-2) is carbon dioxide, an organic oxygen-containing compound selected from alcohols, aldehydes, ketones, and carboxylic acids or mixture thereof in any combination; said transition metal compound represented by the formula Tm'Y X _ is NiCl„, NiCl„•6H-0, c n z-n 2' 2 2' FeCl3 , FeCl3» 6H20 , CrCl3 , CrCl2 , CrCl3' 6H2 0, MoCl5 , WClg, ZrCl4 , Zr(0-iC3 H7 )4 , VOCl3 or mixture thereof in any combination; in the formula for component (C), each X is chlorine, Tm is titanium, each R" is an aliphatic hydrocarbon group having from 1 to about 10 carbon atoms and n has a value of from zero to 2; the atomic ratio Mg:Ti is from about .0.2:1 to about 1:1, and the reducing halide is used in such an amount as to provide an R<3> :Ti ratio of from about 1:1 to about 3:1. 60. Fremgangsmåte som angitt i krav 59, karakterisert ved at verdien av x og hver R og R <1> er slik at reaksjonsproduktet (A) er hydrokarbonløselig; komponent (A-2) er en alkohol eller blanding av alkoholer som har fra 1 til ca. 20 karbonatomer; og nevnte kokatalysator inneholder triisobutylaluminium, trietylaluminium, trimetylaluminium, isoprenylaluminium eller en blanding derav i enhver kombinasjon.60. Method as stated in claim 59, characterized in that the value of x and each R and R <1> is such that the reaction product (A) is hydrocarbon soluble; component (A-2) is an alcohol or mixture of alcohols having from 1 to approx. 20 carbon atoms; and said cocatalyst contains triisobutylaluminum, triethylaluminum, trimethylaluminum, isoprenylaluminum or a mixture thereof in any combination. 61. Fremgangsmåte som angitt i krav 60, karakterisert ved at alkoholen er metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol, sek-butylalkohol, tert-butylalkohol, oktadecylalkohol, fenol, 2,6-di-tert-butyl-4-metylfenol, eller blanding derav i enhver kombinasjon .61. Method as stated in claim 60, characterized in that the alcohol is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, octadecyl alcohol, phenol, 2,6-di-tert-butyl- 4-methylphenol, or mixture thereof in any combination. 62. Fremgangsmåte som angitt i krav 61, karakterisert ved at alkoholen er valgt blant metylalkohol, etylalkohol, n-propylalkohol, isopropylalkohol, n-butylalkohol eller blanding derav i enhver kombinasjon.62. Method as stated in claim 61, characterized in that the alcohol is selected from methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol or a mixture thereof in any combination. 63. Fremgangsmåte som angitt i krav 57, karakterisert ved at komponent (A-2) er ammoniakk, et amin, et nitril, et amid, et oksim, et imid, et isocyanat eller en blanding derav i enhver kombinasjon.63. Method as stated in claim 57, characterized in that component (A-2) is ammonia, an amine, a nitrile, an amide, an oxime, an imide, an isocyanate or a mixture thereof in any combination. 64. Fremgangsmåte som angitt i krav 63, karakterisert ved at komponent (A-2) er ammoniakk eller et amin.64. Method as stated in claim 63, characterized in that component (A-2) is ammonia or an amine. 65. Fremgangsmåte som angitt i krav 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 eller 64, karakterisert ved at etylen eller en blanding av etylen og et eller flere a-olefiner som har fra 3 til ca. 10 karbonatomer polymeriseres under oppslemmingspolymerisasjonsbetingelser.65. Method as specified in claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 , 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 , 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 or 64, characterized in that ethylene or a mixture of ethylene and one or more a- olefins having from 3 to approx. 10 carbon atoms are polymerized under slurry polymerization conditions. 66. Fremgangsmåte som angitt i krav 65, karakterisert ved at det polymeriseres en Jolanding av etylen og en eller flere av buten-1, hexen-1 eller okten-1.66. Method as set forth in claim 65, characterized in that a Jolanding of ethylene and one or more of butene-1, hexene-1 or octene-1 is polymerized. 67. Fremgangsmåte som angitt i krav 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63. eller 64, karakterisert ved at etylen eller en blanding av etylen og et eller flere a-olefiner som har fra 3 til ca, 10 karbonatomer polymeriseres under lø sningspolymerisasjonsbetingelser.67. Method as specified in claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 , 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 , 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63. or 64, characterized in that ethylene or a mixture of ethylene and one or more a -olefins having from 3 to about 10 carbon atoms are polymerized under solution polymerization conditions. 68. Fremgangsmåte som angitt i krav 67, karakterisert ved at en blanding av etylen og en eller flere av buten-1, heksen-1 eller okten-1 polymeriseres.68. Method as stated in claim 67, characterized in that a mixture of ethylene and one or more of butene-1, hexene-1 or octene-1 is polymerised.
NO850439A 1983-06-06 1985-02-06 PROCEDURE FOR POLYMERIZATION OF OLEFINES USING A CATALYST NO850439L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1983/000875 WO1984004925A1 (en) 1983-06-06 1983-06-06 Process for polymerizing olefins employing a catalyst prepared from organomagnesium compound; oxygen- or nitrogen- containing compound; halide source; transition metal compound and reducing agent

Publications (1)

Publication Number Publication Date
NO850439L true NO850439L (en) 1985-02-06

Family

ID=22175232

Family Applications (1)

Application Number Title Priority Date Filing Date
NO850439A NO850439L (en) 1983-06-06 1985-02-06 PROCEDURE FOR POLYMERIZATION OF OLEFINES USING A CATALYST

Country Status (4)

Country Link
EP (1) EP0146544A4 (en)
JP (1) JPS60500959A (en)
NO (1) NO850439L (en)
WO (1) WO1984004925A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417475A1 (en) * 1994-05-19 1995-11-23 Hoechst Ag Process for the preparation of a catalyst component for the polymerization of ethylene and 1-olefins to form ultra-high molecular weight ethylene polymers
US6174971B1 (en) * 1997-01-28 2001-01-16 Fina Technology, Inc. Ziegler-natta catalysts for olefin polymerization
US6734134B1 (en) * 1997-01-28 2004-05-11 Fina Technology, Inc. Ziegler-natta catalyst for tuning MWD of polyolefin, method of making, method of using, and polyolefins made therewith

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812888B2 (en) * 1976-08-27 1983-03-10 三井化学株式会社 Method for manufacturing polyolefin
US4243785A (en) * 1978-09-05 1981-01-06 The Dow Chemical Company High efficiency catalyst for polymerizing olefins
CA1141093A (en) * 1979-05-17 1983-02-08 Brian L. Goodall Olefin polymerization catalyst compositions and a process for the polymerization of olefins employing such compositions
JPS56811A (en) * 1979-06-18 1981-01-07 Mitsui Petrochem Ind Ltd Preparation of olefin polymer or copolymer
US4244838A (en) * 1979-06-25 1981-01-13 The Dow Chemical Company High efficiency catalyst for polymerizing olefins
US4363902A (en) * 1980-03-17 1982-12-14 Wacker-Chemie Gmbh Process and heavy metal catalyst for the polymerization of α-olefins, particularly polyethylene
JPS57135805A (en) * 1981-02-16 1982-08-21 Asahi Chem Ind Co Ltd Catalyst for olefin polymerization

Also Published As

Publication number Publication date
EP0146544A4 (en) 1985-12-11
JPS60500959A (en) 1985-06-27
EP0146544A1 (en) 1985-07-03
WO1984004925A1 (en) 1984-12-20

Similar Documents

Publication Publication Date Title
US4496660A (en) Catalyst prepared from organo-magnesium compound; oxygen- or nitrogen-containing compound; halide source; transition metal compound and reducing agent
US4352915A (en) Process for the polymerization of ethylene
US4451574A (en) Polymerization catalyst
EP0197166B1 (en) Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and transition metal compound and a process for alpha-olefin polymerization using such catalyst
JPS5920681B2 (en) polymerization catalyst
JPH0725818B2 (en) Method for polymerizing α-olefin
US4426316A (en) Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and transition metal compound
US4434282A (en) Process for polymerizing olefins
US4387200A (en) Process for polymerizing olefins employing a catalyst prepared from organomagnesium compound; oxygen- or nitrogen- containing compound; halide source; transition metal compound and reducing agent
US6677267B2 (en) Polymerization catalysts
US4199476A (en) Olefin polymerization catalyst
US4210559A (en) Catalyst for the preparation of polyalpha-olefins having broad molecular weight distributions
US4544647A (en) Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and transition metal compound
US4910272A (en) Polymerization of olefins in the presence of a catalyst prepared from an inorganic oxide which has not been heat or chemically treated, organomagnesium compound, organic hydroxyl-containing compound, reducing halide and transition metal compound
US4456547A (en) Catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and complex formed from admixture of a transition metal compound and an organozinc compound
US4284748A (en) Olefin polymerization
RU2100076C1 (en) Solid component of catalyst for (co)polymerization of ethylene and olefins, catalyst for this process, and process of (co)polymerization of ethylene and olefins
US4783512A (en) Process for polymerizing olefins in the presence of a catalyst prepared from organomagnesium compound, organic hydroxyl-containing compound, reducing halide source and transition metal compound
US4380508A (en) Ultra high efficiency catalyst for polymerizing olefins
US5114897A (en) Catalyst and process for polymerizing olefins
NO850439L (en) PROCEDURE FOR POLYMERIZATION OF OLEFINES USING A CATALYST
US5045612A (en) Catalyst and process for polymerizing olefins
US4873300A (en) Process for polymerizing olefins
US4451626A (en) Process for polymerizing alpha-olefins
US4235746A (en) Polymerization of olefins