NO844800L - PROCEDURE AND APPARATUS FOR PARTIAL COMBUSTION AND GASGING OF A CARBON-CONTAINING MATERIAL. - Google Patents

PROCEDURE AND APPARATUS FOR PARTIAL COMBUSTION AND GASGING OF A CARBON-CONTAINING MATERIAL.

Info

Publication number
NO844800L
NO844800L NO844800A NO844800A NO844800L NO 844800 L NO844800 L NO 844800L NO 844800 A NO844800 A NO 844800A NO 844800 A NO844800 A NO 844800A NO 844800 L NO844800 L NO 844800L
Authority
NO
Norway
Prior art keywords
plasma generator
carbonaceous material
outer tube
oxidizing agent
annular gap
Prior art date
Application number
NO844800A
Other languages
Norwegian (no)
Inventor
Bjoern Hammarskog
Sven Santen
Original Assignee
Skf Steel Eng Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skf Steel Eng Ab filed Critical Skf Steel Eng Ab
Publication of NO844800L publication Critical patent/NO844800L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • C10J3/487Swirling or cyclonic gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing Of Solid Wastes (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for partiell forbrenning og forgassing av finfordelt karbonholdig materiale ved innførsel av et oksydasjonsmiddel og nevnte karbonholdige materiale i et reaksjonskammer under samtidig tilførsel av energi ved hjelp av en plasmagenerator samt en plasmagenerator til dette formål. The present invention relates to a method for the partial combustion and gasification of finely divided carbonaceous material by introducing an oxidizing agent and said carbonaceous material into a reaction chamber during the simultaneous supply of energy by means of a plasma generator and a plasma generator for this purpose.

Det er kjent å utnytte oksygengassbrennere for forgasning av karbonholdig materiale, hvilke arbeider inn mot sentrum av et kammer med sentralt gass- og slaggutløp. Imidlertid oppkommer visse problemer herved betinget av brennerkonstruksjonen. Oksygengassens innblåsningshas-tighet bestemmer flammefrontens beliggenhet og for å for-hindre baktenning må en viss minste avstand foreligge mellom brennermunnstykket og flammefront. Dette begren-ser regulerområdet vesentlig. For å beskytte kammerveg-gene innblåses iblant rundt oksygengassinnmatingen en vegg av vanndamp, som gjør at strømningen blir relativt uforstyrret. Karbonpulver blåses inn i oksygengass-strøm-men ved hjelp av lanser og blandes i brenneren. På grunn av den uforstyrrede strømningen og den høye strømnings-hastigheten erholdes en meget dårlig omblanding og for at i karbonpartiklene inngående vann skal forgasses og partiklene i seg opphetes tilstrekkelig erfordres en lang blandingsstrekning. It is known to use oxygen gas burners for gasification of carbonaceous material, which work towards the center of a chamber with a central gas and slag outlet. However, certain problems arise due to the burner design. The speed at which the oxygen gas is blown in determines the location of the flame front, and to prevent back-ignition there must be a certain minimum distance between the burner nozzle and the flame front. This limits the regulatory area significantly. To protect the chamber walls, a wall of water vapor is sometimes blown in around the oxygen gas feed, which means that the flow is relatively undisturbed. Carbon powder is blown into the oxygen gas stream using lances and mixed in the burner. Due to the undisturbed flow and the high flow speed, a very poor mixing is obtained and in order for the water contained in the carbon particles to be gasified and the particles themselves to be sufficiently heated, a long mixing section is required.

Videre oppnås en relativ lav reaksjonshastighet ved hit-til kjente fremgangsmåter gjennom opphetning av oksydasjonsmiddel og brensel til den temperatur der reaksjon-ene begynner, hovedsakelig bevirket gjennom resirkuler-ing av hete reaksjonsprodukter. Furthermore, a relatively low reaction rate is achieved by hitherto known methods by heating the oxidizer and fuel to the temperature at which the reactions begin, mainly effected through the recycling of hot reaction products.

Det er i og for seg kjent å utnytte plasmageneratorerIt is known per se to utilize plasma generators

for tilførsel av varmeenergi ved forbrenning og forgassing av karbonholdig brensel. Herved injiseres finfordelt karbon i en ved hjelp av en plasmagenerator opp-hetet bærergass. Oksygengass, og/eller vanndamp for supplying heat energy by burning and gasifying carbon-containing fuel. In this way, finely divided carbon is injected into a carrier gas heated by means of a plasma generator. Oxygen gas, and/or water vapour

utnyttes som oksydasjonsmiddel og injiseres enten i den hete bærergass eller utnyttes helt eller delvis som bærergass. is used as an oxidizing agent and is either injected into the hot carrier gas or used in whole or in part as a carrier gas.

Hensikten med foreliggende oppfinnelse er å bevirke en fremgangsmåte for partiell forbrenning og forgasning av karbonholdig materiale, som tillater rask og effektiv omblanding av oksydasjonsmiddel og karbonbærere, som gir en kort blandingsstrekning og et stort reguleringsområde uavhengig av flammefrontens stilling samt bevir-ker en betraktelig høyere reaksjonshastighet gjennom di-rekte tilsetning av varmeenergi til inngående oks<y>dasjons-middel og brensel. The purpose of the present invention is to effect a method for partial combustion and gasification of carbonaceous material, which allows rapid and effective mixing of oxidizing agent and carbon carriers, which provides a short mixing distance and a large control area independent of the position of the flame front and causes a considerably higher reaction rate through the direct addition of heat energy to the incoming oxidizing agent and fuel.

En annen hensikt med oppfinnelsen er å bevirke en kombi-nert brenner for gjennomførsel av prosessen i henhold til oppfinnelsen. Another purpose of the invention is to provide a combined burner for carrying out the process according to the invention.

Det ovenfor—stående oppnås ved den innledningsvis beskrev-ne måte i henhold til oppfinnelsen ved at en het gass-strøm genereres i en plasmagenerator og innføres i nevnte reaksjonsrom og at det pulverformige karbonbærende materiale innføres konsentrisk rundt nevnte hete gass-strøm ved hjelp av en transportgass. Transportgassen kan utgjøres av for eksempel oksydasjonsmiddel, forbrenningsprodukter (O2- CO2, H20) eller resirkulert gass. The above is achieved by the initially described method according to the invention in that a hot gas stream is generated in a plasma generator and introduced into said reaction space and that the powdered carbon-bearing material is introduced concentrically around said hot gas stream by means of a transport gas. The transport gas can consist of, for example, oxidizing agent, combustion products (O2-CO2, H20) or recycled gas.

Plasmagassen bibringes en roterende bevegelse i plasmageneratoren, hvorved når denne trår ut av plasmageneratoren oppnås en kraftig turbulens i det konsentrisk utstrømmen-de karbonbærende materiale samtidig som den sentrale hete gass-strømmen momentant oppheter materialblandingen til reaks jonstemperatur. The plasma gas is given a rotating motion in the plasma generator, whereby when it exits the plasma generator, a strong turbulence is achieved in the concentrically flowing carbon-bearing material at the same time as the central hot gas stream momentarily heats the material mixture to reaction temperature.

Oksydasjonsmiddelet utgjøres fortrinnsvis av 02, C02, vanndamp, luft eller en blanding derav, hvorved karbonbæreren utgjøres fortrinnsvis av kullpulver, kokspulver, trekullpulver, torv og/eller flis. The oxidizing agent is preferably made up of 02, C02, water vapour, air or a mixture thereof, whereby the carbon carrier is preferably made up of coal powder, coke powder, charcoal powder, peat and/or chips.

Plasmageneratoren for gjennomførsel av prosessen i henhold til oppfinnelsen kjennetegnes av at den inneholder sylindriske elektroder mellom hvilke dannes en elektrisk lysbue, en tilførselsledning for innførsel av bærergass i plasmageneratoren, organ for å bibringe en tangensiell hastighetskomponent til den i plasmageneratoren genererte hete gass-strømmen, et rundt plasmageneratoren anordnet ytre rør til dannelse av en ringspalte mellom plasmageneratorens utside og nevnte ytre rør i det minste ved plasmageneratorens utløpsende samt organ for tilførsel av karbonbærende materiale til nevnte ringspalte. The plasma generator for carrying out the process according to the invention is characterized by the fact that it contains cylindrical electrodes between which an electric arc is formed, a supply line for introducing carrier gas into the plasma generator, means for imparting a tangential velocity component to the hot gas flow generated in the plasma generator, a arranged around the plasma generator an outer tube to form an annular gap between the outside of the plasma generator and said outer tube at least at the outlet end of the plasma generator as well as means for supplying carbon-bearing material to said annular gap.

I tilslutning til ytterrørets innløpsdel kan fortrinnsvis være anordnet et trykk-kammer i hvilken lanser for tilførsel av karbonbærere er anordnet for å bibringe karbonbæreren en tangensiell hastighetskomponent for å bevirke jevn fordeling av materialet i ringspalten. In connection with the inlet part of the outer tube, a pressure chamber can preferably be arranged in which a lance for the supply of carbon carriers is arranged to give the carbon carrier a tangential velocity component to effect even distribution of the material in the annular gap.

Alternativt kan et indre beskyttelsesrør utstyrt med ytre styrninger i form av for eksempel skovler for å oppnå en rotasjon passende i motsatt retning mot plasmagassens rotasjon være anordnet, hvorved ringspalten for innførsel av pulverformig materiale dannes av nevnte ytterrør og nevnte indre beskyttelsesrør. Dessuten oppnås herigjennom, foruten raskere omblanding, minsket sitasje av plasmageneratoren . Alternatively, an inner protective tube equipped with outer guides in the form of, for example, vanes to achieve a suitable rotation in the opposite direction to the rotation of the plasma gas can be arranged, whereby the annular gap for the introduction of powdery material is formed by said outer tube and said inner protective tube. Furthermore, in addition to faster remixing, reduced siting of the plasma generator is achieved through this.

Ytterligere fordeler og kjennetegn av oppfinnelsen kom-mer til å fremgå av nedenforstående, detaljerte beskriv-else i tilslutning til vedlagte tegninger på hvilke Further advantages and characteristics of the invention will be apparent from the detailed description below in conjunction with the attached drawings on which

fig. 1 viser plasmageneratoren i henhold til oppfinnelsen , fig. 1 shows the plasma generator according to the invention,

fig. 2 viser en alternativ utførsel av plasmageneratoren i likhet med fig. 1 og fig. 2 shows an alternative version of the plasma generator similar to fig. 1 and

fig. 3 viser en noe modifisert utførsel av plasmagenera- fig. 3 shows a somewhat modified version of the plasma genera-

toren i henhold til fig. 2.tor according to fig. 2.

På fig. 1 vises således en brenner i henhold til oppfinnelsen med en plasmagenerator som generelt betegnes med 1. Plasmageneratoren er av konvensjonelt slag med sylindriske elektroder, mellom hvilke det genereres en lysbue. Bærergass injiseres gjennom en tilførselsledning 2 og oppvarmes ved passasjen gjennom lysbuen. I plasmageneratoren bibringes bærergassen foruten en aksiell hastighetskomponent en tangensiell sådan, hvilket medfører at plasmagassen roterer kraftig når den trår ut av plasmageneratoren. In fig. 1 thus shows a burner according to the invention with a plasma generator which is generally denoted by 1. The plasma generator is of a conventional type with cylindrical electrodes, between which an arc is generated. Carrier gas is injected through a supply line 2 and is heated by the passage through the arc. In the plasma generator, in addition to an axial velocity component, the carrier gas is given a tangential one, which means that the plasma gas rotates strongly when it exits the plasma generator.

Rundt plasmageneratorens fremre del er anordnet et ytter-rør 4 som er tettende tilsluttet til plasmageneratoren ved 5. I den viste utførelsesform er ytterrøret utstyrt med en flens 6 for montering til et brenne- eller forgas-ningskammer. Dette antyder at ytterrøret kan være fast montert i veggen, noe som betraktelig letter demontering av plasmageneratoren. Herved er fortrinnsvis ytterrøret anordnet vannavkjølt og ved å anordne det slik at det stik-ker ut et stykke forbi kammerveggen, kan ytterrøret også fungere som omhylning. Around the front part of the plasma generator is arranged an outer tube 4 which is sealingly connected to the plasma generator at 5. In the embodiment shown, the outer tube is equipped with a flange 6 for mounting to a combustion or gasification chamber. This suggests that the outer tube can be firmly mounted in the wall, which considerably facilitates dismantling of the plasma generator. In this way, the outer tube is preferably arranged water-cooled and by arranging it so that it protrudes a bit past the chamber wall, the outer tube can also function as a casing.

Tørt pulverformig brensel innføres gjennom en ledning 7Dry, powdered fuel is introduced through a line 7

i den ringspalte 8 som dannes mellom plasmageneratoren og ytterrøret, I henhold til den viste utførelsesform er ved ringspaltens innløpsside anordnet et trykk-kammer 9 i hvilket tilførselsledninger 7 munner. Herigjennom oppnås en jevnere fordeling av materialet i ringspalten. in the annular gap 8 which is formed between the plasma generator and the outer tube. According to the embodiment shown, a pressure chamber 9 is arranged at the inlet side of the annular gap into which supply lines 7 open. This achieves a more even distribution of the material in the annular gap.

På fig. 2 vises en alternativ utførselsform av plasmageneratoren i henhold til fig. 1. Rundt om plasmageneratorens av det ytre røret omgitte fremre ende 3 er anordnet et indre beskyttelsesrør 10. På det indre beskyttel-sesrørs 10 utside er anordnet skovler 11-14, beregnet til å bibringe det innførte pulverformige materialet en rotasjon motsatt rotasjonen hos den genererte plasmagassen. Herigjennom oppnås til dels en bedre og raskere omblanding, dels beskyttes plasmageneratoren mot slitasje. In fig. 2 shows an alternative embodiment of the plasma generator according to fig. 1. An inner protective tube 10 is arranged around the front end 3 of the plasma generator, which is surrounded by the outer tube. On the outside of the inner protective tube 10, vanes 11-14 are arranged, intended to impart to the introduced powdery material a rotation opposite to the rotation of the generated the plasma gas. Through this, a better and faster mixing is partly achieved, and partly the plasma generator is protected against wear.

På fig. 3 vises en ytterligere alternativ utførselsformIn fig. 3 shows a further alternative embodiment

av plasmageneratoren i henhold til fig. 2. Det ytre røret som her betegnes med 15, er anordnet vannkjølt, hvorved kjølevannet tilføres ved 16 til spalten 17. I den viste utføre1-sesform er det ytre vannavkjølte røret dannet som en ut-trukket omhylning 18, forutsett til å erstatte en konven-sjonell omhylning. of the plasma generator according to fig. 2. The outer tube, denoted here by 15, is arranged water-cooled, whereby the cooling water is supplied at 16 to the gap 17. In the embodiment shown, the outer water-cooled tube is formed as an extended casing 18, intended to replace a conventional -tional envelopment.

Nedenfor beskrives fremgangsmåten av anordningens funk-sjon nærmere. Below, the method of the device's function is described in more detail.

Bærergass, som fortrinnsvis utgjør en del av det anvendte oksydasjonsmiddelet opphetes slik i plasmageneratoren og forlater plasmageneratoren som en het kjerne av roterende plasmagass, hvilken tenner og skaper kraftig turbulens i det gjennom ringspalten 8, fortrinnsvis ved hjelp av oksy-das jonsmiddel såsom vanndamp, oksygengass, luft eller en blanding derav, innførte pulverformige karbonbærende materialet. I motsetning til for eksempel en oljebrenner, der tenningen skjer ved hjelp av den egne flammes flammefront, hvis stilling bestemmes av strømningsforhold, for-sikrer den høye temperaturen i plasmagassen en stabil tenn-ing uavhengig av andre betingelser. Dette gir et meget stort reguleringsområde for plasmageneratoren samt en betydelig raskere starting av tenningen og dermed høyere to-tal reaksjonshastighet. Carrier gas, which preferably forms part of the oxidizing agent used, is thus heated in the plasma generator and leaves the plasma generator as a hot core of rotating plasma gas, which ignites and creates strong turbulence in it through the annular gap 8, preferably with the help of an oxidizing agent such as water vapor, oxygen gas , air or a mixture thereof, introduced the powdered carbon-bearing material. In contrast to, for example, an oil burner, where the ignition takes place with the help of the flame front of its own flame, whose position is determined by flow conditions, the high temperature in the plasma gas ensures a stable ignition regardless of other conditions. This gives a very large regulation range for the plasma generator as well as a significantly faster start of the ignition and thus a higher double-digit reaction speed.

Den hete plasmagassen minsker videre behovet for oksygen-overskudd for å oppnå nærmest fullstendig forbrenning/ forgasning. Dessuten erholdes en meget høy flammetempe-ratur, vesentlig høyere enn ved konvensjonelle brennere, noe som fører til vesentlig minsket innhold av ikke øns-ede bestanddeler i gassen etter forbrenningen/forgasningen så som uforbrent/uforgasset kull, alkoholer, fenoler, metan, tjære, tyngre hydrogenkarboner etc. The hot plasma gas further reduces the need for excess oxygen to achieve almost complete combustion/gasification. In addition, a very high flame temperature is obtained, significantly higher than with conventional burners, which leads to a significantly reduced content of unwanted components in the gas after combustion/gasification such as unburnt/ungasified coal, alcohols, phenols, methane, tar, heavier hydrocarbons etc.

En ytterligere avgjørende fordel består i at et fra for- brenningen frittstående varmeenergitilskudd tilføres ved hjelp av plasmageneratoren. Dette gir betydelig større mu-lighet til å styre sammensetningen på reaksjonsproduktene samtidig som sotdannelsesrisikoen minskes. A further decisive advantage consists in the fact that a heat energy supplement independent of the combustion is supplied by means of the plasma generator. This gives a significantly greater opportunity to control the composition of the reaction products while reducing the risk of soot formation.

Claims (11)

1. Fremgangsmåte for partielt å forbrenne og forgasse finfordelt karbonholdig materiale ved innføring av oksydasjonsmiddel og nevnte karbonholdig materiale i et reaksjonsrom under samtidig tilførsel av varmeenergi ved hjelp av en plasmagenerator, karakterisert ved at en het gass-strøm som inneholder oksydasjonsmidler genereres i en plasmagenerator og innføres i nevnte reaksjonsrom og at det pulverformige karbonholdige materialet innføres konsentrisk rundt nevnte hete gass-strøm ved hjelp av en transportgass.1. Method for partially incinerating and gasifying finely divided carbonaceous material by introducing an oxidizing agent and said carbonaceous material into a reaction space during the simultaneous supply of heat energy by means of a plasma generator, characterized in that a hot gas stream containing oxidizing agents is generated in a plasma generator and is introduced into said reaction space and that the powdery carbonaceous material is introduced concentrically around said hot gas flow by means of a transport gas. 2. Fremgangsmåte i henhold til krav 1, karakterisert ved at man som oksydasjonsmiddel anvender 02 , CO2 1 (g) / luft eller blanding av en eller flere av nev nte komponenter.2. Method according to claim 1, characterized in that 02 , CO2 1 (g) / air or a mixture of one or more of nth components. 3. Fremgangsmåte i henhold til krav 1-2, karakterisert ved at oksydasjonsmidlet utnyttes som transportgass for det karbonholdige materialet.3. Method according to claims 1-2, characterized in that the oxidizing agent is used as transport gas for the carbonaceous material. 4. Fremgangsmåte i henhold til krav 1-3, karakterisert ved at oksydasjonsmiddelet helt eller delvis opphetes i plasmageneratoren for generering av nevnte hete gass-strøm.4. Method according to claims 1-3, characterized in that the oxidizing agent is fully or partially heated in the plasma generator to generate said hot gas stream. 5. Fremgangsmåte i henhold til krav 1-4, karakterisert ved at man som karbonholdig materiale anvender kullpulver, kokspulver, trekullpulver, torv eller flis.5. Method according to claims 1-4, characterized in that coal powder, coke powder, charcoal powder, peat or chips are used as carbonaceous material. 6. Anordning beregnet for partiell forbrenning og forgasning av finfordelt karbonholdig materiale ved innførsel av oksydasjonsmiddel og nevnte karbonholdig materiale i et reaksjonsrom under samtidig tilførsel av varmeenergi ved hjelp av en plasmagenerator for gjennomførsel av fremgangsmåten i henhold til krav 1, karakterisert ved at plasmageneratoren (1) inneholder sylindriske elektroder mellom hvilke det dannes en elektrisk lysbue, en tilførselsledning (2) for innførsel av bærergass i plasmageneratoren, organ for å bibringe en tangensiell hastighetskomponent til den i plasmageneratoren genererte hete gass-strømmen, et rundt plasmageneratoren anordnet ytre rør (4) for dannelse av en ringspalte (8) mellom plasmageneratorens utside og nevnte ytre rør minst inne ved plasmageneratorens utløpsende (3) samt organ (7) for tilførsel av karbonbærende materiale til nevnte ringspalte (8).6. Device intended for the partial combustion and gasification of finely divided carbonaceous material by introducing an oxidizing agent and said carbonaceous material into a reaction chamber during the simultaneous supply of heat energy by means of a plasma generator for carrying out the method according to claim 1, characterized in that the plasma generator (1 ) contains cylindrical electrodes between which an electric arc is formed, a supply line (2) for introducing carrier gas into the plasma generator, means for imparting a tangential velocity component to the hot gas flow generated in the plasma generator, an outer tube arranged around the plasma generator (4) for forming an annular gap (8) between the outside of the plasma generator and said outer tube at least inside the outlet end (3) of the plasma generator as well as an organ (7) for supplying carbon-bearing material to said annular gap (8). 7. Anordning i henhold til krav 6, karakterisert ved et i anslutning til ringspaltens inn-løpsdel anordnet trykk-kammer (9) for å bevirke en jevn fordeling av det tilførte karbonholdige materialet.7. Device according to claim 6, characterized by a pressure chamber (9) arranged adjacent to the inlet part of the annular gap to effect an even distribution of the supplied carbonaceous material. 8. Anordning i henhold til krav 7, karakterisert ved at tilførselsledningen (7) for det karbonholdige materialet er anordnet for å munne tangen-sielt i nevnte trykk-kammer (9).8. Device according to claim 7, characterized in that the supply line (7) for the carbonaceous material is arranged to open tangentially into said pressure chamber (9). 9. Anordning i henhold til krav 6, karakterisert ved et indre beskyttelsesrør (10) som opp-viser skråstilte skovler (11-14) anordnet for å gi rotasjon samt for å beskytte plasmageneratoren for slitasje .9. Device according to claim 6, characterized by an inner protective tube (10) which has inclined vanes (11-14) arranged to provide rotation and to protect the plasma generator from wear. 10. Anordning i henhold til krav 6-9, karakterisert ved at det ytre røret (15) er vannavkjølt.10. Device according to claims 6-9, characterized in that the outer tube (15) is water-cooled. 11. Anordning i henhold til krav 10, karakterisert ved at det vannavkjølte ytre rør er ut-formet som en uttrukken omhylning (18).11. Device according to claim 10, characterized in that the water-cooled outer tube is designed as an extended casing (18).
NO844800A 1984-06-14 1984-11-30 PROCEDURE AND APPARATUS FOR PARTIAL COMBUSTION AND GASGING OF A CARBON-CONTAINING MATERIAL. NO844800L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8403191A SE453751B (en) 1984-06-14 1984-06-14 SET AND DEVICE FOR PARTIAL COMBUSTION AND GASING OF CARBON FUEL

Publications (1)

Publication Number Publication Date
NO844800L true NO844800L (en) 1985-12-16

Family

ID=20356229

Family Applications (1)

Application Number Title Priority Date Filing Date
NO844800A NO844800L (en) 1984-06-14 1984-11-30 PROCEDURE AND APPARATUS FOR PARTIAL COMBUSTION AND GASGING OF A CARBON-CONTAINING MATERIAL.

Country Status (18)

Country Link
JP (1) JPS614789A (en)
KR (1) KR860000355A (en)
CN (1) CN85101700A (en)
AT (1) AT390074B (en)
AU (1) AU568693B2 (en)
BE (1) BE901159A (en)
BR (1) BR8406069A (en)
CA (1) CA1233431A (en)
DE (1) DE3441358C2 (en)
ES (1) ES8607374A1 (en)
FR (1) FR2565992A1 (en)
GB (1) GB2160218B (en)
IN (1) IN162320B (en)
IT (1) IT1177080B (en)
NO (1) NO844800L (en)
NZ (1) NZ210168A (en)
SE (1) SE453751B (en)
ZA (1) ZA848218B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529893A1 (en) * 1985-08-21 1987-02-26 Till Keesmann DEVICE FOR PROMOTING COMBUSTION IN COMBUSTION PLANTS
FI85910C (en) * 1989-01-16 1992-06-10 Imatran Voima Oy FOERFARANDE OCH ANORDNING FOER ATT STARTA PANNAN I ETT KRAFTVERK SOM UTNYTTJAR FAST BRAENSLE SAMT FOER ATT SAEKERSTAELLA FOERBRAENNINGEN AV BRAENSLET.
JP4507468B2 (en) * 2001-07-09 2010-07-21 富士電機システムズ株式会社 Powder plasma processing method and processing apparatus therefor
MX2007008317A (en) 2007-07-06 2009-02-26 Aba Res Sa De Cv Microwave gasification device.
FR2922406A1 (en) * 2007-10-12 2009-04-17 Commissariat Energie Atomique LIQUID CHARGE INJECTION DEVICE FOR MIXING / CONVERTING WITHIN A DARD PLASMA OR A GASEOUS FLOW
CN102125818B (en) * 2010-12-31 2013-12-11 武汉凯迪工程技术研究总院有限公司 Method and device for preparing high-temperature active particle-rich water vapor by plasma
AT510686B1 (en) * 2011-02-23 2012-06-15 Sgl Carbon Se PROCESS FOR WORKING ON CONSUMED CARBOHYDRATED CATALOG MATERIAL
CN102269424B (en) * 2011-04-26 2014-01-22 向卫 Oxygen enrichment plasma oil-free ignition and stable combustion method
EP2728254A1 (en) 2012-11-02 2014-05-07 Hans-Bernd Rombrecht Ignition and stabilisation burner for particulate fuels

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD114395A1 (en) * 1974-07-08 1975-08-05
CA1059065A (en) * 1975-12-12 1979-07-24 Terence E. Dancy Arc reforming of hydrocarbons
GB2010901B (en) * 1977-08-19 1982-07-14 Boc Ltd Gaseous atmospheres
SE434676B (en) * 1981-10-22 1984-08-06 Skf Steel Eng Ab SET AND DEVICE FOR HEATING OF INDUSTRIAL ENDAL PROCESS AIR
SU878775A1 (en) * 1980-01-22 1981-11-07 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Method of thermal processing of solid fuel
HU184389B (en) * 1981-02-27 1984-08-28 Villamos Ipari Kutato Intezet Method and apparatus for destroying wastes by using of plasmatechnic
SE434272B (en) * 1982-06-08 1984-07-16 Asea Ab LIGHT BAG OVEN FOR REDUCING GAS GENERATION
AT384007B (en) * 1984-04-02 1987-09-25 Voest Alpine Ag METHOD FOR PRODUCING SYNTHESIS GAS AND DEVICE FOR IMPLEMENTING THE METHOD

Also Published As

Publication number Publication date
CA1233431A (en) 1988-03-01
IT8423373A0 (en) 1984-10-30
SE8403191D0 (en) 1984-06-14
JPS614789A (en) 1986-01-10
ES8607374A1 (en) 1986-06-01
SE8403191L (en) 1985-12-15
ES538144A0 (en) 1986-06-01
DE3441358C2 (en) 1987-01-15
AU3525684A (en) 1985-12-19
BE901159A (en) 1985-03-15
KR860000355A (en) 1986-01-28
NZ210168A (en) 1987-04-30
DE3441358A1 (en) 1985-12-19
CN85101700A (en) 1987-01-31
AU568693B2 (en) 1988-01-07
SE453751B (en) 1988-02-29
BR8406069A (en) 1986-06-17
ZA848218B (en) 1986-06-25
GB8427964D0 (en) 1984-12-12
IT1177080B (en) 1987-08-26
GB2160218A (en) 1985-12-18
AT390074B (en) 1990-03-12
IT8423373A1 (en) 1986-04-30
GB2160218B (en) 1988-05-05
FR2565992A1 (en) 1985-12-20
IN162320B (en) 1988-04-30

Similar Documents

Publication Publication Date Title
RU2219247C2 (en) Method and multifunctional lance for production of melted metal (options)
US4153426A (en) Synthetic gas production
TWI454641B (en) Method for gasification and a gasifier
TW518363B (en) Process and apparatus for generating fuel-, synthesis-, and reduction gas from renewable and fossil fuels, biomass, refuse or sludges
KR920000520B1 (en) Method for the melt reduction of iron ores
US20120210645A1 (en) Multi-ring Plasma Pyrolysis Chamber
RU2001108366A (en) METHOD FOR PRODUCING METAL MELT AND MULTIFUNCTIONAL LONG FOR PRODUCING METAL MELT (OPTIONS)
CN104718018B (en) Plasma igniting feed nozzle
JPH0613718B2 (en) Reactor for producing generator gas
CA2400234A1 (en) Reactor and process for gasifying and/or melting materials
JP6356347B2 (en) Method for blowing a displacement reducing agent into a blast furnace
KR20100015559A (en) Gasifier
US9574770B2 (en) Start-up torch
NO844800L (en) PROCEDURE AND APPARATUS FOR PARTIAL COMBUSTION AND GASGING OF A CARBON-CONTAINING MATERIAL.
ES2691698T3 (en) Method and disposition to burn lime mud
US4745869A (en) Method and apparatus for calcining limestone using coal combustion for heating
NZ210165A (en) Gasification of pulverulent carbonaceous starting material
US6422160B1 (en) Apparatus for the combustion of vanadium-containing fuels
US5960722A (en) Method of operating a high-temperature reactor for treatment of waste material
JPS6017612A (en) Method and burner for gasifying solid fuel
JP3664951B2 (en) Solid fuel combustion equipment
JP5974950B2 (en) Mixed gas blowing device, waste gasification and melting furnace having the same, mixed gas blowing method, and waste gasification and melting method using the same
JPS58193004A (en) Combustion apparatus for mhd generation using coal
JP2014190597A (en) Mixture gas blowing device, waste gasification melting furnace with the same, mixture gas blowing method, and waste gasification melting method using the same
KR790001008B1 (en) Process for preventing solidification in refuse converter taphole