NO824396L - PROCEDURE FOR HYDROGENOLYSE OF CARBOXYLIC ACID ESTES. - Google Patents

PROCEDURE FOR HYDROGENOLYSE OF CARBOXYLIC ACID ESTES.

Info

Publication number
NO824396L
NO824396L NO824396A NO824396A NO824396L NO 824396 L NO824396 L NO 824396L NO 824396 A NO824396 A NO 824396A NO 824396 A NO824396 A NO 824396A NO 824396 L NO824396 L NO 824396L
Authority
NO
Norway
Prior art keywords
approx
kpa
absolute
mixture
range
Prior art date
Application number
NO824396A
Other languages
Norwegian (no)
Inventor
Michael William Bradley
Normann Harris
Keith Turner
Original Assignee
Davy Mckee Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Davy Mckee Ltd filed Critical Davy Mckee Ltd
Publication of NO824396L publication Critical patent/NO824396L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B31/00Reduction in general
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/177Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds with simultaneous reduction of a carboxy group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Denne oppfinnelse angår hydrogenolyse av karboksylsyreestere. This invention relates to the hydrogenolysis of carboxylic acid esters.

Hydrogenolyse av karboksylsyreestere er beskrevet en rekke steder i litteraturen. Typisk for en slik reaksjon er at -G0-0-leddet i estergruppen spaltes slik at syredelen av estergruppen reduseres til en alkohol, mens alkoholdelen frigjøres som fri alkohol i.henhold til følgende ligning: Hydrogenolysis of carboxylic acid esters is described in a number of places in the literature. Typical of such a reaction is that the -G0-0 link in the ester group is split so that the acid part of the ester group is reduced to an alcohol, while the alcohol part is released as free alcohol according to the following equation:

hvor R, og hver for eksempel er alkylradikaler. where R, and each are, for example, alkyl radicals.

I henhold til side 129 og videre i boken "Catalytic Hydro-genation in Organic Synthesis" av M. Freifelden, utgitt av John According to page 129 onwards in the book "Catalytic Hydro-genation in Organic Synthesis" by M. Freifelden, published by John

■Wiley and Sons Inc; (1978), er den valgte katalysator for denne . reaksjon angitt å være barium-aktivert kobberkromitt. Typiske reaksjonsbetingelser omfatter anvendelse av temperaturer i området fra 250°C og trykk i området 225-250 atmosfærer (ca. 22,81 MPa til ca. 25,35 MPa). Selv om et godt utbytte av alkohol ofte oppnåes under, anvendelse av denne teknikk for ■Wiley and Sons Inc; (1978), is the chosen catalyst for this . reaction indicated to be barium-activated copper chromite. Typical reaction conditions include the use of temperatures in the range from 250°C and pressures in the range of 225-250 atmospheres (about 22.81 MPa to about 25.35 MPa). Although a good yield of alcohol is often obtained during, application of this technique for

hydrogenolyse av en ester, vil den temperatur som er nødvendig hydrogenolysis of an ester, the temperature required will

for omdannelse av esteren til alkohol, også kunne føre til bireaksjoner. For eksempel kan den resulterende alkohol gjennomgå videre hydrogenolyse til hydrokarbon eller kan reagere med utgangsmateriale for å danne en høymolekylær ester som er vanskeligere å hydrogenolysere. for conversion of the ester to alcohol, could also lead to side reactions. For example, the resulting alcohol may undergo further hydrogenolysis to hydrocarbon or may react with starting material to form a high molecular weight ester that is more difficult to hydrogenolyse.

Foruten disse bireaksjoner kar kobberkromitt-katalysatorer andre ulemper ved drift'i kommersiell målestokk. Spesielt er anvendelse åv kobberkromitt-katalysatorer miljømessig uheldig og nødvendiggjør anvendelse av spesielle og kostbare håndterings-metoder på grunn av giftigheten av krom. Videre er det vanskelig å fremstille.suksessive porsjoner av kobberkromitt'med reproduserbar katalysator-aktivitet. Besides these side reactions, copper-chromite catalysts suffer other disadvantages when operating on a commercial scale. In particular, the use of copper chromite catalysts is environmentally harmful and necessitates the use of special and expensive handling methods due to the toxicity of chromium. Furthermore, it is difficult to produce successive portions of copper chromite with reproducible catalyst activity.

US-patent 2079414 beskriver en fremgangsmåte for katalytisk hydrogenering av estere under anvendelse av slike katalysatorer som smeltet kobberoksyd, enten helt eller delvis redusert, som kan aktiveres med oksyd-aktivatorer så som manganoksyd, sinkoksyd,' magnesiumoksyd eller kromoksyd. Spesielt anbefalte katalysatorer er de som omfatter kobberoksyd aktivert med kromoksyd, f.eks. kobberkromitt. Ifølge side 3, høyre spalte fra linje 57: "Ved drift i dampfase foretrekkes det å anvende temperaturer i området fra 300°C til 400°C". Det er også angitt at: "De beste omdannelser til alkoholer oppnåes ved de høyeste trykk som kan oppnåes i det tilgjengelige utstyr og ved de- laveste temperaturer som kan forenes med at man oppnår en praktisk, reaksjonshastighet" (side 4, høyre spalte, fra linje 2). Eksemplene beskriver satsvise reaksjoner, og i alle tilfeller US patent 2079414 describes a method for the catalytic hydrogenation of esters using such catalysts as molten copper oxide, either fully or partially reduced, which can be activated with oxide activators such as manganese oxide, zinc oxide, magnesium oxide or chromium oxide. Particularly recommended catalysts are those comprising copper oxide activated with chromium oxide, e.g. copper chromite. According to page 3, right column from line 57: "When operating in the vapor phase, it is preferred to use temperatures in the range from 300°C to 400°C". It is also stated that: "The best conversions to alcohols are achieved at the highest pressures that can be achieved in the available equipment and at the lowest temperatures that can be reconciled with achieving a practical reaction rate" (page 4, right column, from line 2). The examples describe batch reactions, and in all cases

er trykket 2500 psia eller høyere (17250 kPa eller høyere), mens temperaturen i alle tilfeller er 250°C eller høyere; i de fleste : tilfeller overstiger den 300°C. En begrensning for fremgangsmåten er at me'tylestere ikke kan anvendes, fordi metanol, som ville være et hydrogeneringsprodukt fra en metylester, er gjen-stand for-gass-dekomponering (se side 5, høyre spalte, fra linje 5.8). -Lignende betraktninger synes også å.hindre anvendelse av fremgangsmåten på estere av maursyre,.eftersom maursyredelen the pressure is 2500 psia or higher (17250 kPa or higher), while the temperature is in all cases 250°C or higher; in most : cases it exceeds 300°C. A limitation of the method is that methyl esters cannot be used, because methanol, which would be a hydrogenation product from a methyl ester, is subject to gas decomposition (see page 5, right column, from line 5.8). -Similar considerations also seem to prevent the application of the method to esters of formic acid, since the formic acid part

også vil ha tendens til å danne.metanol.will also tend to form.methanol.

Videre beskrivelse av anvendelse av kromitter som katalysatorer for hydrogenering av estere kan finnes i US-patent 2109844 Further description of the use of chromites as catalysts for the hydrogenation of esters can be found in US patent 2109844

Eksempel 4 i US-patent 3197418 beskriver - fremstilling avExample 4 in US patent 3197418 describes - production of

en kobber-sink-katalysator som kan anvendes ved væskefase-hydrogenering av oljer og fett ved trykk over 120 kg/cm2 a copper-zinc catalyst that can be used in liquid-phase hydrogenation of oils and fats at pressures above 120 kg/cm2

(11776 kPa) og ved en temperatur på 320°C. (11776 kPa) and at a temperature of 320°C.

US-patent 2241417 beskriver fremstilling av høyere alifatiske. alkoholer ved væskefase-hydrogenering av glycerider' i. nærvær av kobberholdige katalysatorer ved en temperatur fra 200°C til 400°C og.trykk fra 60 til 500 atmosfærer (5884 til 49033 kPa). US patent 2241417 describes the preparation of higher aliphatics. alcohols by liquid phase hydrogenation of glycerides' in the presence of copper-containing catalysts at a temperature from 200°C to 400°C and pressure from 60 to 500 atmospheres (5884 to 49033 kPa).

Hydrogenolyse av estere til mettede hydrokarboner, under anvendelse av katalysatorer som som vesentlige bestanddeler har en indium- eller rhodium-komponent og en halogenkomponent, er beskrevet i US-patent 4067900. Hydrogenolysis of esters to saturated hydrocarbons, using catalysts which have as essential constituents an indium or rhodium component and a halogen component, is described in US patent 4067900.

Katalytisk hydrogenolyse av formiat-estere som er til stedeCatalytic hydrogenolysis of formate esters present

i okso-reaksjonsprodukter under.anvendelse av Ni-katalysatorer,in oxo reaction products using Ni catalysts,

er beskrevet i østtysk patent 92440 (se Chem. Abs.., 124069j , vol. 78 (1973), side 439). Andre referanser til hydrogenering is described in East German patent 92440 (see Chem. Abs.., 124069j , vol. 78 (1973), page 439). Other references to hydrogenation

av formiater omfatter en artikkel av E. Lederle, Anales Realof formate includes an article by E. Lederle, Anales Real

Soc. Espan. Fis. y Quim. (Madrid) 57B., side 473-5 (1961). Også vesttysk patent 902375 beskriver fremstilling av metanol ved hydrogenering av alkylformiater ved trykk fra 20 til 50 atmosfærer (1961 til. 4903 kPa) under anvendelse av kobberkromitt- katalysatorer; og det er en svak antydning av at sinkoksyd kan innarbeides i katalysatoren. Soc. Spain. Fart. y Quim. (Madrid) 57B., pp. 473-5 (1961). Also West German patent 902375 describes the production of methanol by hydrogenation of alkyl formates at pressures from 20 to 50 atmospheres (1961 to 4903 kPa) using copper chromite catalysts; and there is a faint suggestion that zinc oxide may be incorporated into the catalyst.

Katalytisk spaltning av maursyreestere er beskrevet i britisk patent 1277077. I henhold til dette forslag anvendes en hydrogeneringskatalysator inneholdende kobber og nikkel, men det angis at■formylradikalet dehydrogeneres i løpet av reaksjonen og viser seg som karbon-monoksyd." Catalytic cleavage of formic acid esters is described in British patent 1277077. According to this proposal, a hydrogenation catalyst containing copper and nickel is used, but it is stated that the formyl radical is dehydrogenated during the reaction and appears as carbon monoxide.

Fremstilling av etylenglykol ved hydrogenolyse foreslåes noen steder, innbefattet US-patent 4113662, som beskriver hydrogenering av estere til alkoholer ved temperaturer'fra 150°C til 450°C og trykk på 500-10.000 psig (3450-69000 kPa) under anvendelse av katalysatorer som omfatter kobolt, sink og kobber. Eksemplene IV, V og VIII beskriver sammenligningsforsøk under anvendelse av polyglykolid og metylglykolat med Cu-Zn-oksyder som katalysator ved 250°C og ved trykk på minst 2800 psig (19421 kPa), dvs. betingelser under hvilke esteren (polyglykolid eller metylglykolat) er i flytende tilstand. US-patent 2305104 The production of ethylene glycol by hydrogenolysis is proposed in some places, including US Patent 4113662, which describes the hydrogenation of esters to alcohols at temperatures from 150°C to 450°C and pressures of 500-10,000 psig (3450-69000 kPa) using catalysts which includes cobalt, zinc and copper. Examples IV, V and VIII describe comparative experiments using polyglycolide and methylglycolate with Cu-Zn oxides as catalyst at 250°C and at a pressure of at least 2800 psig (19421 kPa), i.e. conditions under which the ester (polyglycolide or methylglycolate) is in liquid state. US Patent 2305104

beskriver hydrogenering av alkylglykolater under anvendelse av katalysatorer inneholdende Zn, Cr og Cu, for å danne etylenglykol. Dampfase-hydrogenering av oksalatestere ved temperaturer fra 150°C til 300°C for fremstilling av etylenglykol er beskrevet i US-patent 4112145; og ved.denne fremgangsmåte anvendes én kobberkromitt eller kobber-sinkkromitt-katalysator, describes the hydrogenation of alkyl glycolates using catalysts containing Zn, Cr and Cu to form ethylene glycol. Vapor phase hydrogenation of oxalate esters at temperatures from 150°C to 300°C for the production of ethylene glycol is described in US patent 4112145; and in this method one copper chromite or copper-zinc chromite catalyst is used,

og det kreves at oksalatesteren har et svovelinnhold på mindre enn 0,4 ppm. and the oxalate ester is required to have a sulfur content of less than 0.4 ppm.

Det ville være ønskelig å finne frem til en fremgangsmåte for utførelse av hydrogenolyse av estere med uvesentlig dannelse av biprodukter eller av tyngre bestanddeler ("heavies"), som kan utføres under milde betingelser. It would be desirable to find a method for carrying out the hydrogenolysis of esters with insignificant formation of by-products or of heavier components ("heavies"), which can be carried out under mild conditions.

Det ville videre være ønskelig å tilveiebringe en fremgangsmåte for utførelse av hydrogenolyse av formiatestere og av metylestere uten vesentlig nedbrytning av metanolproduktet under reaksjonsforløpet. It would also be desirable to provide a method for carrying out the hydrogenolysis of formate esters and of methyl esters without significant degradation of the methanol product during the course of the reaction.

Det ville også være ønskelig å tilveiebringe en hydrogenolyse-prosess som anvender en enkel katalysator som kan fremstilles med reproduserbar kata.lysator-aktivitet. It would also be desirable to provide a hydrogenolysis process using a simple catalyst that can be produced with reproducible catalyst activity.

Foreliggende oppfinnelse tar således sikte på å tilveiebringe en forbedret fremgangsmåte for utførelse av hydrogenolyse av estere, som kan utføres under milde betingelser. ..Oppfinnelsen tar videre sikte på å tilveiebringe en fremgangsmåte for utførelse av hydrogenolyse av formiatestere, for The present invention thus aims to provide an improved method for carrying out the hydrogenolysis of esters, which can be carried out under mild conditions. ..The invention further aims to provide a method for carrying out the hydrogenolysis of formate esters, for

■ å gi høye utbytter av metanol ved høye omdannelser.■ to give high yields of methanol at high conversions.

Den tar også sikte på å tilveiebringe en fremgangsmåte, for It also aims to provide a method, for

•fremstilling av etanol ved hydrogenolyse av acetatestere med•production of ethanol by hydrogenolysis of acetate esters with

■høyt utbytte og ved høye omdannelser under milde betingelser. ■high yield and at high conversions under mild conditions.

Videre tar oppfinnelsen sikte på å tilveiebringe en forbedret fremgangsmåte for fremstilling av etylenglykol ved å Furthermore, the invention aims to provide an improved method for the production of ethylene glycol by

starte med oksalsyreestere eller fra glykolsyreestere under anvendelse av katalytisk hydrogenolyse under milde betingelser. starting with oxalic acid esters or from glycolic acid esters using catalytic hydrogenolysis under mild conditions.

Oppfinnelsen tar.også sikte på .å tilveiebringe nye hydrogenolyse-veier til dioler så som etylenglykol, 1,2-propandiol, 1,4-butandiol og 1,6 heksandiol, ved å starte fra diestere av dikarboksylsyrer eller monoestere av hydroksykarboksylsyrer. The invention also aims at providing new hydrogenolysis routes to diols such as ethylene glycol, 1,2-propanediol, 1,4-butanediol and 1,6-hexanediol, by starting from diesters of dicarboxylic acids or monoesters of hydroxycarboxylic acids.

Dessuten tar oppfinnelsen sikte på å tilveiebringe en fremgangsmåte for å frembringe hydrogenolyse av metylestere og av formiatestere under milde betingelser, slik at spaltning av Furthermore, the invention aims to provide a method for producing hydrogenolysis of methyl esters and of formate esters under mild conditions, so that cleavage of

vesentlige mengder av metanolprodukt i alt vesentlig unngåes under de anvendte reaksjonsbetingelser. significant amounts of methanol product are essentially avoided under the reaction conditions used.

Det er også et formål med oppfinnelsen å tilveiebringe en forbedret fremgangsmåte for fremstilling av 1,4-butandiol ved hydrogenolyse av butyrolakton. It is also an object of the invention to provide an improved process for the production of 1,4-butanediol by hydrogenolysis of butyrolactone.

I henhold til foreliggende oppfinnelse tilveiebringesAccording to the present invention is provided

en fremgangsmåte for frembringelse av hydrogenolyse av en a process for the production of hydrogenolysis of a

■karboksylsyreester, som omfatter at en dampformig blanding inneholdende esteren og hydrogen bringes i kontakt med en kataly- ■carboxylic acid ester, which comprises bringing a vaporous mixture containing the ester and hydrogen into contact with a catalyst

sator som omfatter en redusert blanding av kobberoksyd og sinkoksyd ved en temperatur i området fra ca. 75°C opp til ca. 3.00°C sator which comprises a reduced mixture of copper oxide and zinc oxide at a temperature in the range from approx. 75°C up to approx. 3.00°C

2 2

og ved et trykk i området fra.ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm absolutt (ca. 9813.kPa). and at a pressure in the range from.ca. 0.1 kg/cm absolute (approx. 9.8 kPa) up to approx. 100 kg/cm absolute (approx. 9813.kPa).

Esteren kan være tilnærmet enhver fordampbar ester. Blant estere som kan nevnes, er estrene av mono-, di- og poly-karboksylsyrer som kan være avledet fra mono-, di- eller polyoler. The ester can be virtually any volatile ester. Among esters which may be mentioned are the esters of mono-, di- and polycarboxylic acids which may be derived from mono-, di- or polyols.

Som eksempler på egnede estere kan nevnes de som har den generelle formel: ■ så vel som de som har den generelle formel: Examples of suitable esters include those having the general formula: ■ as well as those having the general formula:

I de ovenstående generelle forjnler betyr n og p hver et helt tall, fortrinnsvis et. helt tall fra 1 til ca. 5, f.eks. 1, 2 eller 3, og R, R', R" og R '"betyr hver et eventuelt substituert, mettet eller umettet, cyklisk eller acyklisk hydrokarbon-.radikal, hvor ett eller flere karbonatomer kan .være erstattet med heteroatomer så som nitrogen, oksygen eller fosfor.■ Eksempler på mulige substituenter på radikalene R, R1 , R" og R 1,1 omfatter oksygenatomer så vel som hydroksy- og alkoksygrupper. Fortrinnsvis inneholder R, R', R" og R1" hver fra 1 til ca. 12 karbonatomer. Typisk'velges R, R', R" og R fra alkyl-, alkeny'l-, alkoksyalkyl-, hydroksyalkyl-, aryl-, aralkyl-, alkyl-aryl-, alkoksyaryl-, hydroksyaryl-, cykloalkyl-, alkylcyklo-alkyl-, alkoksycykloalkyl-, hydroksycykloalkyl- og cykloalkyl-alkyl-radikaler. In the above general examples, n and p each mean a whole number, preferably one. whole number from 1 to approx. 5, e.g. 1, 2 or 3, and R, R', R" and R'" each mean an optionally substituted, saturated or unsaturated, cyclic or acyclic hydrocarbon radical, where one or more carbon atoms can be replaced by heteroatoms such as nitrogen , oxygen or phosphorus. ■ Examples of possible substituents on the radicals R, R1 , R" and R 1,1 include oxygen atoms as well as hydroxy and alkoxy groups. Preferably R, R', R" and R1" each contain from 1 to about . 12 carbon atoms. Typically, R, R', R" and R are selected from alkyl-, alkenyl-, alkoxyalkyl-, hydroxyalkyl-, aryl-, aralkyl-, alkyl-aryl-, alkoxyaryl-, hydroxyaryl-, cycloalkyl- , alkylcycloalkyl, alkoxycycloalkyl, hydroxycycloalkyl and cycloalkyl-alkyl radicals.

Slike estere kan være avledet fra de følgende syrer: Such esters may be derived from the following acids:

maursyre,formic acid,

eddiksyre,acetic acid,

propionsyre,propionic acid,

n- og iso-smørsyre,n- and iso-butyric acid,

n- og iso-valeriansyre,n- and iso-valeric acid,

kapronsyre,caproic acid,

kaprylsyre, kaprinsyre, 2-etylheksansyre, caprylic acid, capric acid, 2-ethylhexanoic acid,

glykolsyre,glycolic acid,

pyrodruesyre, cykloheksan-karboksyisyre, pyruvic acid, cyclohexane-carboxylic acid,

benzoesyre,benzoic acid,

o-, m- og p-toluensyre ,• o-, m- and p-toluene acid,•

o-, m- og p-metoksybenzo.esyre ,o-, m- and p-methoxybenzoic acid,

naft-2-oesyre,naphtho-2-oic acid,

kanelsyre,cinnamic acid,

oksalsyre, malonsyre, oxalic acid, malonic acid,

ravsyre,succinic acid,

glutarsyre,glutaric acid,

adipinsyre,adipic acid,

maleinsyremaleic acid

fumarsyre, åkrylsyre, fumaric acid, acrylic acid,

'metakrylsyre, a- eller 3~krotonsyre, acetylen-dikarboksylsyre, 'methacrylic acid, α- or 3-crotonic acid, acetylene dicarboxylic acid,

metoksyeddiksyre,methoxyacetic acid,

f eny le.ddiksyre,f eny acetic acid,

vanillinsyre, tereftalsyre, vanillic acid, terephthalic acid,

o-salicylsyre, o-salicylic acid,

melkesyre,lactic acid,

citronsyre, Y-hydroksysmørsyre, f urankarboksy.lsyre, og lignende. citric acid, Y-hydroxybutyric acid, furancarboxylic acid, and the like.

Fortrinnsvis inneholder syren fra 1 til ca. 12 karbon-• atomer. Preferably, the acid contains from 1 to approx. 12 carbon • atoms.

Egnede mono-, di- eller polydler kan velges fra: Suitable mono-, di- or poly parts can be selected from:

metanol,methanol,

etanol,ethanol,

n- eller iso-propanol,n- or iso-propanol,

n-, iso-, sek- eller t-butanol , n-, iso-, sec- or t-butanol,

pentan-1- eller -2-ol, pentan-1- or -2-ol,

.2-metyl-butan-2-, -3- eller -4- ol,.2-methyl-butan-2-, -3- or -4-ol,

heksarioler, heptanoler, hexariols, heptanols,

oktanoler (f.eks. 2-etyl-heksanol), cetylalkohol, laurylalkohol, furfurylalkohol, etylenglykol, 1,2- eller 1,3-propylenglykol, octanols (e.g. 2-ethylhexanol), cetyl alcohol, lauryl alcohol, furfuryl alcohol, ethylene glycol, 1,2- or 1,3-propylene glycol,

1,4-butandiol, • 1, 6-heksahdiol, glycerol, allylalkohol, 1,4-butanediol, • 1, 6-hexahdiol, glycerol, allyl alcohol,

vinylaIkohol,vinyl alcohol,

fenol,phenol,

o-, m- eller p- krésol, benzylalkohol, o-, m- or p- cresol, benzyl alcohol,

fenyletylalkohol,phenylethyl alcohol,

etylengiykol-monometyleter, ethylene glycol monomethyl ether,

etylenglykol-monoetyleter, cykloheksanol, ethylene glycol monoethyl ether, cyclohexanol,

mono-, di- og tri-etanolamin, og lignende. mono-, di- and tri-ethanolamine, and the like.

Fortrinnsvis inneholder mono-, di- eller polyolen ikke mer enn ca. 12 karbonatomer. Preferably, the mono-, di- or polyol does not contain more than approx. 12 carbon atoms.

Som eksempler på spesielle estere kan nevnes: alkylformiater (f.eks. metyl-, etyl-, n- og iso-propyl, n-, iso-, sek- og t-butylformiater); As examples of special esters can be mentioned: alkyl formates (eg methyl-, ethyl-, n- and iso-propyl, n-, iso-, sec- and t-butyl formates);

alkylacetater (f.eks. metyl-, etyl-, n- og iso-propyl-, og ri-, iso-, sek- og t-butyl-acetåter); alkyl acetates (eg methyl, ethyl, n- and iso-propyl, and ri-, iso-, sec- and t-butyl acetates);

cykloalkylacetater (f.eks. cykloheksylacetat); cycloalkyl acetates (eg cyclohexyl acetate);

alkylpropionater (f.eks. n-propylpropionat); alkyl propionates (eg n-propyl propionate);

alkyl-n-butyrater (f.eks. n-buty1-n-butyrat); alkyl-n-butyrates (eg, n-buty1-n-butyrate);

alkyl-isobutyrater (f.eks. iso-butyl-iso-butyrat); alkyl isobutyrates (eg, isobutyl isobutyrate);

alkyl-n-valerater (f.eks. n-amylvalerat); alkyl n-valerates (eg n-amyl valerate);

alky1-iso-valerater (f.eks. metyl-iso-valerat); alkyl iso-valerates (eg methyl iso-valerate);

alkylkaproater (f.eks. etylkaproat); alkylkaprylater (f.eks. metylkaprylat); alkyl caproates (eg ethyl caproate); alkyl caprylates (eg methyl caprylate);

alkylkaprater (f.eks. etylkaprat); alkyl caprates (eg ethyl caprate);

alkyl-2-etylheksanoater (f.eks. 2-etylhéksyl-2-etylheksanoat); alkyl 2-ethylhexanoates (eg 2-ethylhexyl-2-ethylhexanoate);

vinylacetat; vinyl acetate;

allylacetat jallyl acetate j

alkylalkoksyacetater (f.eks. metylmetoksyacetat); alkyl alkoxy acetates (eg methyl methoxy acetate);

alkylglykolater (f.eks. metyl- og etyl-glykolater); alkyl glycolates (eg methyl and ethyl glycolates);

dialkyloksalater (f.eks.'dimetyl-, dietyl- og. di-n-butyloksalater); dialkyl oxalates (eg, dimethyl, diethyl and di-n-butyl oxalates);

dialkylsuccinater (f.eks. dimetyl- og dietylsuccinat.er) ; dialkyl succinates (eg dimethyl and diethyl succinates);

dialkyladipater (f.eks. dimetyl- og dietyl-adipåter); dialkyl adipates (eg, dimethyl and diethyl adipates);

etylenglykol-mono- og di-karboksylater (f.eks. etylenglykol-diformiat,• etylenglykol-mono- og di-acetater, etylenglykol-di-n-butyrat, etylenoksalat, etylenglykol-glykolat); ethylene glycol mono- and di-carboxylates (eg ethylene glycol diformate, • ethylene glycol mono- and di-acetates, ethylene glycol di-n-butyrate, ethylene oxalate, ethylene glycol glycolate);

monokarboksylsyreestere av furfurylalkohol (f.eks. furfurylacetat); monocarboxylic acid esters of furfuryl alcohol (eg, furfuryl acetate);

alkylestere av aromatiske syrer (f.eks. metylbenzoat, alkyl esters of aromatic acids (e.g. methyl benzoate,

' etylbenzoat, metyl-o-toluat, metyl-naft-2-oat, metyl-fenylacetat, etyl-fenylacetat); ' ethyl benzoate, methyl o-toluate, methyl naphth-2-oate, methyl phenyl acetate, ethyl phenyl acetate);

fenylestere av monokarboksylsyrer (f.eks. fenylacetat); phenyl esters of monocarboxylic acids (eg, phenyl acetate);

benzylestere av monokarboksylsyrer (f.eks. benzylacetat); benzyl esters of monocarboxylic acids (eg benzyl acetate);

dialkylmaléater (f.eks. dimetylmaleat, dietylmaleat); dialkyl maleates (eg, dimethyl maleate, diethyl maleate);

dialkylfumarater (f,eks. dimetylfumarat, dietyl-fumarat); dialkylestere av acetylen-dikarboksylsyre (f.eks. dimetyl-acetylen-dikarboksylat); dialkyl fumarates (eg, dimethyl fumarate, diethyl fumarate); dialkyl esters of acetylene dicarboxylic acid (eg, dimethyl acetylene dicarboxylate);

dialkylmalonater (f.eks. dietylmalonat); . alkylglykolater' (f.eks. metylglykolat, etylglykolat); dialkyl malonates (eg diethyl malonate); . alkyl glycolates' (eg methyl glycolate, ethyl glycolate);

alkyllaktater (f.eks. etyllaktat); alkyl lactates (eg, ethyl lactate);

alkylpyruvater (f.eks. etylpyruvat); alkylpyruvates (eg, ethylpyruvate);

alkyl-cykloheksankarboksylater (f.eks. metyl-cykloheksankarboksylat) ; alkyl cyclohexane carboxylates (eg methyl cyclohexane carboxylate);

laktoner (f..eks. Y_butyrolakton) ; og- lignende.lactones (eg Y_butyrolactone); and such.

Den dampformige blanding som ved fremgangsmåten ifølge oppfinnelsen skal bringes i kontakt med katalysatoren, inneholder, i tillegg til esteren, hydrogen enten alene eller blandet med andre gasser (fortrinnsvis gasser som er inerte overfor esteren og- katalysatoren) . De' gassformige blandinger inneholdende hydrogen omfatter inerte gasser så som nitrogen, eller karbon^-monoksyd. The vaporous mixture which is to be brought into contact with the catalyst in the method according to the invention contains, in addition to the ester, hydrogen either alone or mixed with other gases (preferably gases which are inert to the ester and the catalyst). The gaseous mixtures containing hydrogen include inert gases such as nitrogen or carbon monoxide.

Betegnelsen "hydrogenholdig gass" som her anvendt omfatter både tilnærmet ren hydrogengass og gassformige blandinger inneholdende hydrogen. The term "hydrogen-containing gas" as used here includes both approximately pure hydrogen gas and gaseous mixtures containing hydrogen.

Hydrogenolyseprosessen ifølge foreliggende oppfinnelse utføres ved eh temperatur mellom ca. 75°C og ca. 300°C, selv om den foretrukne temperatur i mange tilfeller kan ligge i området fra ca. 150 C til ca. 200 C, f.eks. med alkylformiater, og i de fleste tilfeller er det.typisk mellom ca. 180°C og ca. 240°C. I noen tilfeller kan et lavere område foretrekkes; for eksempel med t-butylformiat er det foretrukne temperaturområde fra ca. 130°C til ca. 190°C. Det totale, trykk er mellom ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) og ca. 100 kg/cm absolutt (ca. 9813 kPa), fortrinnsvis ikke mer enn ca. 50 kg/cm 2absolutt (ca. 4906 kPa), The hydrogenolysis process according to the present invention is carried out at eh temperature between approx. 75°C and approx. 300°C, although in many cases the preferred temperature can lie in the range from approx. 150 C to approx. 200 C, e.g. with alkyl formates, and in most cases it is typically between approx. 180°C and approx. 240°C. In some cases, a lower range may be preferred; for example with t-butyl formate, the preferred temperature range is from approx. 130°C to approx. 190°C. The total pressure is between approx. 0.1 kg/cm absolute (approx. 9.8 kPa) and approx. 100 kg/cm absolute (approx. 9813 kPa), preferably no more than approx. 50 kg/cm 2absolute (approx. 4906 kPa),

2 2

og enda mer foretrukket mellom ca. 5 kg/cm absolutt and even more preferably between approx. 5 kg/cm absolute

(ca. 491 kPa) og ca. 25 kg/cm<2>absolutt (ca. 2453 kPa). (approx. 491 kPa) and approx. 25 kg/cm<2>absolute (approx. 2453 kPa).

Blandingen av CuO og ZnO, før reduksjon, inneholder fortrinnsvis fra ca. 5 til ca. 95 vekt%, typisk fra ca. 10 til ca. The mixture of CuO and ZnO, before reduction, preferably contains from approx. 5 to approx. 95% by weight, typically from approx. 10 to approx.

70 vekt%, CuO og fra ca. 95 til ca. 5 vekt%, typisk fra ca.70% by weight, CuO and from approx. 95 to approx. 5% by weight, typically from approx.

90 til ca. 30 vekt% ZnO. Blandingen kan således for eksempel inneholde fra ca. 20 til ca. 40 vekt% CuO og fra ca. 60 til ca. 80 vekt% ZnO-. En foretrukken blanding inneholder for eksempel fra ca. 30 tii ca. 36 vekt% CuO og fra ca. 62 til ca. 68 vekt% ZnO. Andre særlig foretrukne blandinger omfatter fra ca. 65 til ca. 85 vekt% CuO og fra ca. 35 til ca. 15 vekt% ZnO, for eksempel blandinger, inneholdende fra ca. 68 til ca.. 75 vekt% CuO og fra ca. 32 til ca. 25 vekt% ZnO. Hydrogenolyse-katalysatoren kan inneholde mindre mengder av andre materialer så som karbon, natrium, titan, zirkonium, mangan, silisiumdioksyd, diatomé- jord, kiselgur og aluminiumoksyd. Slike andre materialer omfatter vanligvis ikke mer enn ca. 20 vekt% beregnet (bortsett fra for karbon) som.oksyd. Når det gjelder natrium, er det best at det ikke overstiger ca.' 0,5 vekti, beregnet som oksyd. 90 to approx. 30 wt% ZnO. The mixture can thus, for example, contain from approx. 20 to approx. 40% by weight CuO and from approx. 60 to approx. 80% by weight ZnO-. A preferred mixture contains, for example, from approx. 30 tii approx. 36% by weight CuO and from approx. 62 to approx. 68 wt% ZnO. Other particularly preferred mixtures comprise from approx. 65 to approx. 85% by weight CuO and from approx. 35 to approx. 15% by weight ZnO, for example mixtures, containing from approx. 68 to approx. 75% by weight CuO and from approx. 32 to approx. 25 wt% ZnO. The hydrogenolysis catalyst may contain smaller amounts of other materials such as carbon, sodium, titanium, zirconium, manganese, silicon dioxide, diatomaceous soil, diatomaceous earth and aluminum oxide. Such other materials usually do not comprise more than approx. 20% by weight calculated (except for carbon) as oxide. As for sodium, it's the best that it does not exceed approx.' 0.5 by weight, calculated as oxide.

Andre fpretrukne katalysatorer omfatter således blandinger inneholdende fra ca. 40 til ca. 50 vekt% av hver av CuO og ZnO og fra 0 til ca. 20 vekt% aluminiumoksyd. Katalysatoren er imidlertid fortrinnsvis tilnærmet'fri for andre metaller, særlig for metaller av gruppe VIII i det periodiske system' så som Fe, Cd., Ni, Ru, Rh, Pd, Os, Ir og Pt, så vel som metaller fra gruppe VIB så som Cr, Mo og W,, metallene Tc, Ag, Re, Au og Cd, og også'elementer med atomnummer 80 og høyere, f.eks. Hg og Pb. Med betegnelsen "tilnærmet fri" skal forståes at katalysatoren ikke inneholder mer enn ca. 0,1 vekt% (dvs. ikke mer enn ca..1000 ppm), og fortrinnsvis ikke mer enn ca. 250 ppm, av det aktuelle element. Katalysatoren kan fremstilles ved en hvilken som helst av de metoder som er kjent innen teknikken for å fremstille.et sammensatt legeme av kobberoksyd og sinkoksyd. Katalysatoren kan fremstilles ved fiksering av de separate oksyder, ved sam-utfelling av oksalatene, nitratene, karbonatene eller acetatene, fulgt av kalsinering. Samutfelningsmetoden foretrekkes. Generelt reduseres blandingen av CuO og ZnO med hydrogen eller karbon-monoksyd ved en temperatur i området mellom ca. 160°C Other preferred catalysts thus include mixtures containing from approx. 40 to approx. 50% by weight of each of CuO and ZnO and from 0 to approx. 20% by weight aluminum oxide. However, the catalyst is preferably substantially free of other metals, in particular of metals of group VIII in the periodic table such as Fe, Cd., Ni, Ru, Rh, Pd, Os, Ir and Pt, as well as metals from group VIB such as Cr, Mo and W,, the metals Tc, Ag, Re, Au and Cd, and also'elements with atomic number 80 and higher, e.g. Hg and Pb. The term "almost free" is to be understood as meaning that the catalyst does not contain more than approx. 0.1% by weight (ie no more than approx. 1000 ppm), and preferably no more than approx. 250 ppm, of the element in question. The catalyst can be prepared by any of the methods known in the art for preparing a composite body of copper oxide and zinc oxide. The catalyst can be prepared by fixing the separate oxides, by co-precipitation of the oxalates, nitrates, carbonates or acetates, followed by calcination. The coprecipitation method is preferred. In general, the mixture of CuO and ZnO is reduced with hydrogen or carbon monoxide at a temperature in the range between approx. 160°C

og ca.: 250°C i flere timer, fortrinnsvis i 8 til 24 timer, før den bringes i kontakt med den dampformige blanding inneholdende and approx.: 250°C for several hours, preferably for 8 to 24 hours, before bringing it into contact with the vaporous mixture containing

ester og hydrogen." Hvis katalysatoren anvendes i en forhånds-redusert form, kan den tid som er. nødvendig for reduksjon, reduseres tilsvarende. ester and hydrogen." If the catalyst is used in a pre-reduced form, the time required for reduction can be reduced accordingly.

Blandingen av CuO og ZnO reduseres før den anvendes som katalysator ved hydrogenolysetrinnet. Hydrogen eller CO, eller blandinger derav, blandes generelt med en fortynnende gass så som vanndamp, nitrogen eller forbrenningsgass, for å opprett-holde temperaturen i katalysatorlaget og å føre vekk reduksjons-varme. The mixture of CuO and ZnO is reduced before it is used as a catalyst in the hydrogenolysis step. Hydrogen or CO, or mixtures thereof, are generally mixed with a diluting gas such as steam, nitrogen or combustion gas, to maintain the temperature in the catalyst layer and to remove heat of reduction.

Reduksjon av blandingen av CuO og ZnO er fullstendig når ikke mer hydrogen eller karbon-monoksyd reagerer, slik som vist ved analyse av innløps- og utløps^gassen. Når hydrogen anvendes, er blandingen fullstendig redusert når den totale mengde av dannet vann ved reduksjonen er lik den'støkiometriske mengde vann som skulle dannes når en gitt mengde kobberoksyd reduseres til kobber. Denne verdi er ca. 0,079 kg vann pr. kg katalysator for en blanding inneholdende 35 vekti CuO. Reduction of the mixture of CuO and ZnO is complete when no more hydrogen or carbon monoxide reacts, as shown by analysis of the inlet and outlet gas. When hydrogen is used, the mixture is completely reduced when the total amount of water formed during the reduction is equal to the stoichiometric amount of water that would be formed when a given amount of copper oxide is reduced to copper. This value is approx. 0.079 kg of water per kg of catalyst for a mixture containing 35% by weight of CuO.

Et inert bæremateria.le kan'innarbeides i katalysator-blandingen for hydrogenolyse. Katalysatoren formes generelt til pellets, tabletter eller til enhver annen egnet form før bruk ved vanlige metoder.. An inert support material can be incorporated into the catalyst mixture for hydrogenolysis. The catalyst is generally formed into pellets, tablets or any other suitable form before use by conventional methods.

Det er hensiktsmessig at blandingene av CuO og ZnO har etIt is appropriate that the mixtures of CuO and ZnO have a

2 indre, overflate-areal på fra ca. 25- til ca. 50 m pr. gram. Det indre overflate-areal kan bestemmes ved den velkjente BET-metode. 2 internal, surface area of from approx. 25- to approx. 50 m per gram. The internal surface area can be determined by the well-known BET method.

Fremgangsmåten ifølge oppfinnelsen utføres mest hensiktsmessig på kontinuerlig måte, selv om halv-kontinuerlig eller satsvis drift også kan anvendes. I den foretrukne metode med kontinuerlig.drift kan en ester eller en blanding av estere, en hydrogenholdig gass og eventuelt en b.æregass så som nitrogen, bringes sammen og under det ønskede trykk bringes i kontakt i . dampfase med katalysatoren. Reaksjonssonen er hensiktsmessig en langstrakt, rørformet reaktor hvor katalysatoren er anbrakt. The method according to the invention is most conveniently carried out in a continuous manner, although semi-continuous or batch operation can also be used. In the preferred method of continuous operation, an ester or a mixture of esters, a hydrogen-containing gas and possibly a carrier gas such as nitrogen can be brought together and brought into contact under the desired pressure in . vapor phase with the catalyst. The reaction zone is suitably an elongated, tubular reactor where the catalyst is placed.

Ved hydrogenolyseprosessen ifølge oppfinnelsen er den primære reaksjon som iakttaés med mange estere, den som er'angitt i ligning (I) ovenfor. En monokarboksylsyreester gir så-, ledes "i dette tilfelle en blanding av alkoholer, en avledet fra karboksylsyredelen og en avledet fra alkoholdelen. Estere av dikarboksylsyrer og de som er avledet fra polyoler, gir tilsvar ende di-, og polyoler. Således gir for eksempel dialkyl-oksalater ..etylenglykol og den tilsvarende alkylalkohol. I noen tilfeller omfatter imidlertid produktene hydrokarboner som er avledet enten fra karboksylsyredélen eller fra alkoholdelen eller fra begge. Sannsynligvis dannes'først alkoholene, men de hydro-generes derefter raskt til det tilsvarende hydrokarbon, under de anvendte reaksj<p>nsbetingelser. Under normale driftsbetingelser er alkoholer hovedproduktene når alkylestere av alifatiske syrer anvendes som utgangsmateriale. Når det imidlertid anvendes estere av aromatiske syrer, så som benzoesyre, eller av aromatiske alkoholer,, så som benzylalkohol, er . hovedproduktet avledet fra den aromatiske syredel, eller fra den aromatiske alkohol-del, efter hva som passer, vanligvis det tilsvarende hydrokarbon. In the hydrogenolysis process according to the invention, the primary reaction observed with many esters is that indicated in equation (I) above. A monocarboxylic acid ester gives then-, in this case, a mixture of alcohols, one derived from the carboxylic acid part and one derived from the alcohol part. Esters of dicarboxylic acids and those derived from polyols give di- and polyols, respectively. Thus, for example, dialkyl oxalates ..ethylene glycol and the corresponding alkyl alcohol. However, in some cases the products include hydrocarbons derived either from the carboxylic acid moiety or from the alcohol moiety or from both. Probably the alcohols are formed first, but they are then rapidly hydrogenated to the corresponding hydrocarbon, under the reaction conditions used. Under normal operating conditions, alcohols are the main products when alkyl esters of aliphatic acids are used as starting materials. However, when esters of aromatic acids, such as benzoic acid, or of aromatic alcohols, such as benzyl alcohol, are used, the main product derived is from the aromatic acid part, or from the aromatic alcohol part, as the case may be fits, usually the corresponding hydrocarbon.

En alkohol som dannes som primært.produkt, kan i noen til-efeller gjennomgå videre reaksjon. For eksempel kan hydrogenolyse. av dietylmaleat eller av dietylsuccinat gi ikke 1,4-butandiol som man kanskje ville vente som primært produkt, men tetrahydrofuran. Ved hydrogenolyse av..t-butylacetat inneholder de iakttatte produkter, ikke bare t-butylalkohol, men også isobuten, sannsynligvis dannet ved .dehydratisering av t-butanol under de anvendte reaksjonsbetingelser. An alcohol that is formed as a primary product can in some cases undergo further reaction. For example, hydrogenolysis can. of diethyl maleate or of diethyl succinate do not give 1,4-butanediol as one might expect as the primary product, but tetrahydrofuran. In hydrogenolysis of t-butyl acetate, the observed products contain not only t-butyl alcohol, but also isobutene, probably formed by dehydration of t-butanol under the reaction conditions used.

Alkohol- og/eller hydrokarbonproduktet eller -produktene (hvis de kan gjøres flytende) fra hydrogenolysereaksjonen kan skilles fra hydrogenet ved kondensasjon, og overskudd av hydrogen kan komprimeres og føres 'tilbake til reaksjonssonen. Det rå alkohol- eller hydrokarbonprodukt kan anvendes i denne form. eller kan renses videre på vanlig måte så som ved fraksjonert destillasjon. Eventuelt kan en hvilken som helst uomdannet porsjon av esteren eller esterblandingén skilles fra reaksjons-produktet'og føres tilbake til reaksjonssonen og fortrinnsvis bli blandet.med friske fødegasser før innføring i reaksjonssonen. The alcohol and/or hydrocarbon product or products (if they can be liquefied) from the hydrogenolysis reaction can be separated from the hydrogen by condensation, and excess hydrogen can be compressed and returned to the reaction zone. The crude alcohol or hydrocarbon product can be used in this form. or can be further purified in the usual way such as by fractional distillation. Optionally, any unconverted portion of the ester or ester mixture can be separated from the reaction product and returned to the reaction zone and preferably mixed with fresh feed gases before introduction into the reaction zone.

Ved utførelse av fremgangsmåten ifølge oppfinnelsen kan esterens partialtrykk variere innenfor vide grenser, f.eks. fra ca. 0,05 kg/cm 2 (4,9 kPa) éller mindre opp til ca. 10 kg/cm<2>(981 kPa) eller mer. Man' må imidlertid- være omhyggelig med at temperaturen i den dampformlge blanding i kontakt med katalysatoren til enhver tid er over esterens duggpunkt under de råd- • ende trykkbetingelser. When carrying out the method according to the invention, the partial pressure of the ester can vary within wide limits, e.g. from approx. 0.05 kg/cm 2 (4.9 kPa) or less up to approx. 10 kg/cm<2>(981 kPa) or more. Care must be taken, however, that the temperature of the vapor mixture in contact with the catalyst is at all times above the dew point of the ester under the prevailing pressure conditions.

Den dampformige blanding inneholder fortrinnsvis minst en mengde hydrogen svarende til den støkiometriske mengde av'hydrogen som er nødvendig for hydrogenolyse. Vanlig vil et overskudd av hydrogen i forhold til den støkiometriske mengde være til- stede. I dette tilfelle kan overskudd av hydrogen som er tilbake efter gjenvinning av produktet, resirkuleres til den katalytiske reaksjonssone. Som det vil fremgå av ligning (I) ovenfor, er det nødvendig med 2 mol hydrogen for hydrogenolyse av hver karbpksylsyreester-gruppe som.er til stede i ester-molekylet. Hvis esteren inneholder ikke-aromatisk umettethet (f.eks. karbon-karbon-dobbelt- eller -trippelbindinger), kan slike umettede ledd også .gjennomgå hydrogenering under de anvendte hydrogenolysebetingelser. Den støkiometriske mengde' av hydrogen som er nødvendig for reduksjon av 1 mol av en umettet mono-éster, kan således svare til 3, 4 eller flere mol hydrogen. The vaporous mixture preferably contains at least an amount of hydrogen corresponding to the stoichiometric amount of hydrogen required for hydrogenolysis. Usually, an excess of hydrogen in relation to the stoichiometric quantity will be present. In this case, excess hydrogen that remains after recycling the product can be recycled to the catalytic reaction zone. As will be apparent from equation (I) above, 2 moles of hydrogen are required for hydrogenolysis of each carboxylic acid ester group present in the ester molecule. If the ester contains non-aromatic unsaturation (e.g. carbon-carbon double or triple bonds), such unsaturated bonds may also undergo hydrogenation under the hydrogenolysis conditions used. The stoichiometric quantity of hydrogen which is necessary for the reduction of 1 mol of an unsaturated mono-ester can thus correspond to 3, 4 or more mols of hydrogen.

Diestere krever 4 mol hydrogen pr. mol diester, hvis den ér -mettet, for hydrogenolyse; ikke-aromatiske, umettede diestere kan kreve 5 eller flere mol hydrogen for hydrogenolyse av 1 mol diester. Triestere og høyere polyestere vil kreve 6 eller flere mol hydrogen., avhengig av antall estergrupper og ikke-aromatiske umettede bindinger, pr. mol for hydrogenolyse. Diesters require 4 moles of hydrogen per mole diester, if it is -saturated, for hydrogenolysis; non-aromatic, unsaturated diesters may require 5 or more moles of hydrogen for the hydrogenolysis of 1 mole of diester. Triesters and higher polyesters will require 6 or more moles of hydrogen, depending on the number of ester groups and non-aromatic unsaturated bonds, per moles for hydrogenolysis.

Molforholdet hydrogen:ester i den dampformige blanding kan variere innenfor vide grenser, f.eks. fra ca. 2:1 til ca. 100:1'eller mer for en monoester eller fra ca. 4:1 til ca. 100:,1 eller mer for en diester. Dette forhold vil i det minste i en viss utstrekning være avhengig av flyktigheten, av den anvendte ester så vel som av antall estergrupper i estermaterialet som skal reduseres. Typisk er hydrogen:ester-molforholdet minst ca. 25:1. -. The molar ratio hydrogen:ester in the vaporous mixture can vary within wide limits, e.g. from approx. 2:1 to approx. 100:1' or more for a monoester or from approx. 4:1 to approx. 100:1 or more for a diester. This ratio will depend, at least to a certain extent, on the volatility, on the ester used as well as on the number of ester groups in the ester material to be reduced. Typically, the hydrogen:ester molar ratio is at least approx. 25:1. -.

Selv om fremgangsmåten ifølge oppfinnelsen kan anvendes på karboksylsyreestere i sin alminnelighet, oppnåes de beste "resul-tater med estere som koker ved temperaturer- på ikke mer enn ca. 300°C ved atmosfærisk trykk. Selv om det er mulig å anvende estere som har enda høyere kokepunkt, vil anvendelse åv høyere-'kokende, materialer begrense partialtrykket av esteren som kan anvendes i den dampformige blanding og således begrense hydrogenolyse-hastigheten. Hvis meget høyt-kokende estere anvendes, Although the method according to the invention can be applied to carboxylic acid esters in general, the best results are obtained with esters which boil at temperatures of no more than about 300°C at atmospheric pressure. Although it is possible to use esters which have even higher boiling point, the use of higher-boiling materials will limit the partial pressure of the ester that can be used in the vaporous mixture and thus limit the rate of hydrogenolysis. If very high-boiling esters are used,

•vil reaksjonens- utstrekning reduseres' tilsvarende.• the extent of the reaction will be reduced accordingly.

Visse estere kan gjennomgå termisk spaltning ved temperaturer opp mot 300°C og muligens ved temperaturer under sitt koke punkt ved atmosfærisk trykk. Når slike estere anvendes, bør temperaturen, under hydrogenolysen ikke være så høy at noen vesentlig, termisk spaltning av esteren finner sted. Certain esters can undergo thermal decomposition at temperatures up to 300°C and possibly at temperatures below their boiling point at atmospheric pressure. When such esters are used, the temperature during the hydrogenolysis should not be so high that any significant thermal decomposition of the ester takes place.

Generelt foretrekkes det å anvende monokarboksylsyreestere, fortrinnsvis alifatiske monokarboksylsyreestere av alifatiske alkoholer, inneholdende fra 2 til ca. 20 karbonatomer, eller dikarboksylsyre-diestere, fortrinnsvis alifatiske dikarboksylsyre-diestere, inneholdende, fra 4 til ca. 16 karbonatomer.. In general, it is preferred to use monocarboxylic acid esters, preferably aliphatic monocarboxylic acid esters of aliphatic alcohols, containing from 2 to approx. 20 carbon atoms, or dicarboxylic acid diesters, preferably aliphatic dicarboxylic acid diesters, containing from 4 to approx. 16 carbon atoms..

I henhold til en særlig foretrukket utførelsesform av oppfinnelsen tilveiebringes en fremgangsmåte for fremstilling av-etylenglykol, som omfatter at man foretar hydrogenolyse av en oksalsyreester ved at qn dampformig blanding inneholdende esteren og hydrogen bringes i kontakt med en katalysator omfattende en redusert blanding av kobberoksyd og sinkoksyd.ved en temperatur i området fra ca.'75°C opp til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm 2 absolutt (ca. 9,8 kPa) opp According to a particularly preferred embodiment of the invention, a method for the production of ethylene glycol is provided, which comprises hydrogenolysis of an oxalic acid ester by bringing a vaporous mixture containing the ester and hydrogen into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide .at a temperature in the range from approx.'75°C up to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm 2 absolute (approx. 9.8 kPa) up

2 2

til ca. 100 kg/cm absolutt (ca. 9813 kPa), og det resulterende etylenglykol utvinnes. Ved hydrogenolysen av oksalsyreestere foretrekkes det å anvende temperaturer fra ca. 180°C til ca.'240°C; og foretrukne arbeidstrykk varierer fra ca. 5 kg/cm2 absolutt (ca. 491 kPa) opptil ca. 35 kg/cm<2>absolutt (ca. 3435 kPa) . to approx. 100 kg/cm absolute (about 9813 kPa), and the resulting ethylene glycol is recovered. In the hydrogenolysis of oxalic acid esters, it is preferred to use temperatures from approx. 180°C to about 240°C; and preferred working pressure varies from approx. 5 kg/cm2 absolute (approx. 491 kPa) up to approx. 35 kg/cm<2>absolute (about 3435 kPa) .

I henhold til en annen foretrukket utførelsesform av oppfinnelsen tilveiebringes en fremgangsmåte for fremstilling av metanol, som omfatter at man foretar hydrogenolyse av en maursyre-ester ved at en dampformig blanding inneholdende esteren og hydrogen bringes i kontakt med én katalysator som omfatter en redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm 2 absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm<2>absolutt (ca. 9813 kPa), og den resulterende metanol utvinnes. According to another preferred embodiment of the invention, a method for the production of methanol is provided, which comprises hydrogenolysis of a formic acid ester by bringing a vaporous mixture containing the ester and hydrogen into contact with one catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm 2 absolute (approx. 9.8 kPa) up to approx. 100 kg/cm<2>absolute (about 9813 kPa), and the resulting methanol is recovered.

Ved hydrogenolysen av maursyréestere. for fremstilling av metanol In the hydrogenolysis of formic acid esters. for the production of methanol

■varierer temperaturen fortrinnsvis fra ca. 130°C til ca. 220°C, f.eks. fra ca. 150°C til ca. 190°C, og trykket varierer fortrinnsvis fra' ca. 5 kg/cm<2>absolutt (ca. 491 kPa) til ca. 35 kg/ ■the temperature preferably varies from approx. 130°C to approx. 220°C, e.g. from approx. 150°C to approx. 190°C, and the pressure preferably varies from approx. 5 kg/cm<2>absolute (approx. 491 kPa) to approx. 35 kg/

2 2

cm absolutt (ca. 3435 kPa). ■ cm absolute (approx. 3435 kPa). ■

I henhold til en ytterligere utførelsesform av foreliggende oppfinnelse tilveiebringes en fremgangsmåte for fremstilling av' etanol,: som-omfatter at man foretar hydrogenolyse av en eddiksyre- . ester ved at en dampformig blanding inneholdende esteren og hydrogen bringes i kontakt med en'katalysator"omfattende en redusert blanding av kobberoksyd og sinkoksyd ved en temperatur i området fra ca. 75°C opp til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm 2absolutt (ca. 9,8 kPa) opp til ca. According to a further embodiment of the present invention, a method for the production of ethanol is provided, which comprises hydrogenolysis of an acetic acid. ester in that a vaporous mixture containing the ester and hydrogen is brought into contact with a 'catalyst' comprising a reduced mixture of copper oxide and zinc oxide at a temperature in the range from about 75°C up to about 300°C and at a pressure in the range from approx. 0.1 kg/cm2absolute (approx. 9.8 kPa) up to approx.

100 kg/cm 2 absolutt (ca. 9813 kPa), og den resulterende etanol utvinnes. Ved hydrogenolysen av eddiksyreestere for fremstilling av etanol varierer temperaturen frå ca. 180°C til ca. 240°C 100 kg/cm 2 absolute (about 9813 kPa), and the resulting ethanol is recovered. In the hydrogenolysis of acetic acid esters for the production of ethanol, the temperature varies from approx. 180°C to approx. 240°C

2 2

og trykket fra ca. 5 kg/cm absolutt (ca. 491 kPa) til ca.and the pressure from approx. 5 kg/cm absolute (approx. 491 kPa) to approx.

2 2

35 kg/cm absolutt (ca. 34 3 5 kPa) .35 kg/cm absolute (approx. 34 3 5 kPa) .

Oppfinnelsen tilveiebringer videre en fremgangsmåte for fremstilling av 1,4-butandiol og/eller tetrahydrofuran, som omfatter at man foretar hydrogenolyse av en ester av en syre valgt fra maleinsyre, fumarsyre, acetylen-dikarboksylsyre, og ravsyre, ved at en dampformig blanding inneholdende esteren og hydrogen bringes i kontakt med en katalysator omfattende en redusert blanding av kobberoksyd og sinkoksyd ved en temperatur i området •fra ca. 75°'C til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm2 - absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm 2absolutt (ca. 9813 kPa), og den resulterende 1,4-butandiol og/eller tetrahydrofuran utvinnes. Ved fremstilling av 1,4-butandiol og/eller tetrahydrofuran ved en slik fremgangsmåte foretrekkes det at temperaturen er mellom ca. 180°C og ca. 240°C, mens det foretrukne trykkområde er fra ca. 5 kg/cm 2 absolutt (ca. 491 kPa) opp til ca. 35 kg/cm 2absolutt (ca. 3435 kPa). The invention further provides a method for the production of 1,4-butanediol and/or tetrahydrofuran, which comprises carrying out hydrogenolysis of an ester of an acid selected from maleic acid, fumaric acid, acetylene dicarboxylic acid and succinic acid, in that a vaporous mixture containing the ester and hydrogen is brought into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide at a temperature in the range from approx. 75°C to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm2 - absolute (approx. 9.8 kPa) up to approx. 100 kg/cm 2 absolute (about 9813 kPa), and the resulting 1,4-butanediol and/or tetrahydrofuran is recovered. When producing 1,4-butanediol and/or tetrahydrofuran by such a method, it is preferred that the temperature is between approx. 180°C and approx. 240°C, while the preferred pressure range is from approx. 5 kg/cm 2 absolute (approx. 491 kPa) up to approx. 35 kg/cm 2absolute (approx. 3435 kPa).

I henhold til oppfinnelsen tilveiebringes også en fremgangsmåte for fremstilling av etylenglykol, som omfatter at man foretar hydrogenolyse av en glykolsyreester ved at en dampformig blanding inneholdende esteren og hydrogen bringes i kontakt med en katalysator omfattende en redusert blanding av kobberoksyd og sinkoksyd ved en temperatur i -området fra ca. 75°C opp til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm 2 absolutt (ca.. 9813 kPa), og den resulterende etylenglykol utvinnes. Ved hydrogenolysen av glykolsyreestere for fremstilling av etylenglykol foretrekkes det å arbeide ved fra ca. 180°C til ca. 240°C og å anvende trykk fra ca. 5 kg/cm<2>absol' utt (ca. 491 kPa) opp til ca. 35 kg/cm<2>absolutt (ca. 3435 kPa). Videre tilveiebringes én fremgangsmåte for fremstilling av .1,4-butandiol, som omfatter at man foretar hydrogenolyse av butyrolakton ved at en dampformig blanding inneholdende butyrolakton og hydrogen bringes.i kontakt med en katalysator som omfatter en redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C opp til ca.. 300°C og ved et According to the invention, a method for the production of ethylene glycol is also provided, which comprises carrying out hydrogenolysis of a glycol acid ester by bringing a vaporous mixture containing the ester and hydrogen into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide at a temperature in - the area from approx. 75°C up to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm absolute (approx. 9.8 kPa) up to approx. 100 kg/cm 2 absolute (approx. 9813 kPa), and the resulting ethylene glycol is recovered. In the hydrogenolysis of glycolic acid esters for the production of ethylene glycol, it is preferred to work with from approx. 180°C to approx. 240°C and applying pressure from approx. 5 kg/cm<2>absol' utt (approx. 491 kPa) up to approx. 35 kg/cm<2>absolute (approx. 3435 kPa). Furthermore, one method for the production of 1,4-butanediol is provided, which comprises hydrogenolysis of butyrolactone by bringing a vaporous mixture containing butyrolactone and hydrogen into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300°C and at

2 2

trykk i.området fra ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) opppressure in the area from approx. 0.1 kg/cm absolute (approx. 9.8 kPa) up

2 2

til ca. 100 kg/cm absolutt (ca. 9813 kPa), og den resulterende 1,4-butandiol utvinnes. Ved hydrogenolysen av butyrolakton foretrekkes det å anvende en temperatur i området fra ca. 180°C til ca. 240°C og et trykk i området fra ca. 5 kg/cm- absolutt (ca. 491 kPa) opp til ca. 45'kg/cm 2 absolutt (ca. 4416 kPa). to approx. 100 kg/cm absolute (about 9813 kPa), and the resulting 1,4-butanediol is recovered. In the hydrogenolysis of butyrolactone, it is preferred to use a temperature in the range from approx. 180°C to approx. 240°C and a pressure in the range from approx. 5 kg/cm- absolute (approx. 491 kPa) up to approx. 45'kg/cm 2 absolute (about 4416 kPa).

De beste utbytter av 1,4-butandiol oppnåes generelt mot den høyere del av trykk-området, for eksempel når trykket er i om-radet fra ca. 25 kg/cm 2 absolutt (ca. 2453 kPa) opp til ca. The best yields of 1,4-butanediol are generally obtained towards the higher part of the pressure range, for example when the pressure is in the range from approx. 25 kg/cm 2 absolute (approx. 2453 kPa) up to approx.

2 2

45 kg/cm absolutt (ca. 4416 kPa).45 kg/cm absolute (approx. 4416 kPa).

I hvert tilfelle kan utvinning av hydrogenolyseproduktene foretas på vanlig måte, f.eks. ved kondensasjon, eventuelt fulgt av fraksjonert destillasjon under normalt, redusert eller for-høyet trykk. In each case, recovery of the hydrogenolysis products can be carried out in the usual way, e.g. by condensation, possibly followed by fractional distillation under normal, reduced or elevated pressure.

Oppfinnelsen skal illustreres ytterligere i de følgende . eksempler.• The invention will be further illustrated in the following. examples.•

Eksempel. 1 Example. 1

n-butylbutyrat ble pumpet i en mengde på 3,8 ml/time tiln-Butyl butyrate was pumped at a rate of 3.8 ml/hour more

en elektrisk oppvarmet gass/væske-blandingsanordning til hvilken også hydrogen ble tilført ved regulert hastighet og trykk. Den an electrically heated gas/liquid mixing device to which hydrogen was also supplied at a controlled rate and pressure. It

resulterende dampformige blanding ble ført gjennom en isolert, elektrisk oppvarmet ledning til en forhånds-oppvarmet coil før den ble ført gjennom en rørformet reaktor pakket med 146 ml av en pulverformig katalysator; • Både den rørformige reaktor og for-oppvarmnings coilen ble nédsenket i et smeltet saltbad som ble oppvarmet til 174°C. Den dampformige blanding som kom ut av reaktoren, ble ført gjennom en vann-avkjølt kjøler, og det resulterende kondensat ble oppsamlet i en vann-avkjølt opp-samlingsanordning. Utløpsgasstrykket ble regulert til resulting vaporous mixture was passed through an insulated, electrically heated line to a preheated coil before being passed through a tubular reactor packed with 146 ml of a powdered catalyst; • Both the tubular reactor and pre-heating coil were immersed in a molten salt bath heated to 174°C. The vaporous mixture exiting the reactor was passed through a water-cooled cooler, and the resulting condensate was collected in a water-cooled collection device. The outlet gas pressure was regulated to

10,55 kg/cm 2absolutt (1035 kPa). De ikke-kdndenserte gasser ble derefter ført gjennom en nedadrettet ventil, idet gass-strøm-hastigheten ble.overvåket nedstrøm fra denne ventil i et våtgassmeter.. En gass-strømhastighet på 46,4 liter/time (målt ved atmosfærisk trykk) ble opprettholdt under forsøket. 10.55 kg/cm 2absolute (1035 kPa). The non-condensable gases were then passed through a downward valve, the gas flow rate being monitored downstream from this valve in a wet gas meter. A gas flow rate of 46.4 liters/hour (measured at atmospheric pressure) was maintained. during the experiment.

Det flytende kondensat ble analysert ved gass-kromatografi under anvendelse av en 2 méter rustfri stålkolonne (6 mm utvendig diameter) pakket med polyetylenglykol (nominell molekyl-vekt 20.000) på "Chromosorb PAW", en heliumgass-strømnings-hastighet på 30 ml/minutt og en flammeionisasjonsdetektor. Instrumentet var utstyrt med.en diagram-skriver med en topp-integrator og ble kalibrert under anvendelse av en blanding av n-butanol og n-butylbutyrat med kjent sammensetning. Kondensatet ble vist å inneholde en blanding av 99,62 vekt% butanol og 0,28 vekt% n-butylbutyrat, svarende til en 99,7% omdannelse med tilnærmet-100% selektivitet. The liquid condensate was analyzed by gas chromatography using a 2 meter stainless steel column (6 mm outer diameter) packed with polyethylene glycol (nominal molecular weight 20,000) on "Chromosorb PAW", a helium gas flow rate of 30 ml/minute and a flame ionization detector. The instrument was equipped with a chart recorder with a peak integrator and was calibrated using a mixture of n-butanol and n-butyl butyrate of known composition. The condensate was shown to contain a mixture of 99.62 wt% butanol and 0.28 wt% n-butyl butyrate, corresponding to a 99.7% conversion with near-100% selectivity.

Katalysatoren som ble anvendt i dette eksempel, ble innført i reaktoren som en sam-utfelt blanding av CuO og ZnO inneholdende 33+3% CuO og 65±3% ZnO med en partikkelstørrelse i området 1,2 mm til 2,4 mm'og et indre overflateareal på ca. 45 m<2>The catalyst used in this example was introduced into the reactor as a co-precipitated mixture of CuO and ZnO containing 33+3% CuO and 65±3% ZnO with a particle size in the range 1.2 mm to 2.4 mm and an internal surface area of approx. 45 m<2>

pr. gram. Den ble forhånds-redusert i reaktoren under anvendelse av en 5 voluml H2i N2 gassblanding ved 200°C i 17 timer fulgt av rent hydrogen ved 200°C i 8 timer, idet gass-strømmens hastighet i hvert tilfelle var ca. 20 liter/time (målt ved atmosfærisk trykk under anvendelse av våtgassmetret), og gass- per gram. It was pre-reduced in the reactor using a 5 volume l H 2 in N 2 gas mixture at 200°C for 17 hours followed by pure hydrogen at 200°C for 8 hours, the gas flow rate in each case being approx. 20 litres/hour (measured at atmospheric pressure using the wet gas meter), and gas-

trykket var 10,55 kg/cm absolutt (1035 kPa). Efter denne forhånds-reduksjon ble katalysatoren til enhver tid holdt i en hydrogenholdig atmosfære. the pressure was 10.55 kg/cm absolute (1035 kPa). After this preliminary reduction, the catalyst was kept in a hydrogen-containing atmosphere at all times.

Eksempel. 2Example. 2

Fremgangsmåten i eksempel 1 ble gjentatt under anvendelseThe procedure in Example 1 was repeated during use

av etylacetat istedenfor n-butylbutyrat, ved en tilførsels-hastighet på 7,4 ml/time og en hydrogenstrøm-hastighet på of ethyl acetate instead of n-butyl butyrate, at a feed rate of 7.4 ml/hour and a hydrogen flow rate of

41,9 liter/time (målt ved atmosfærisk trykk ved hjelp, av våtgassmetret) . Ved .dette forsøk var saltbad-temperaturen 185°C, og 41.9 litres/hour (measured at atmospheric pressure using the wet gas meter) . In this experiment, the salt bath temperature was 185°C, and

2 utløpsgasstrykke^t var 10,55 kg/cm absolutt (1035 kPa) . Det flytende kondensat ble vist å inneholde en mindre mengde etylacetat, en hovedmengde etanol og spor av n-butanol. Den iakttatte omdannelse av etanol var 97,1%, og selektiviteten til 2 outlet gas pressure was 10.55 kg/cm absolute (1035 kPa). The liquid condensate was shown to contain a minor amount of ethyl acetate, a major amount of ethanol and traces of n-butanol. The observed conversion of ethanol was 97.1%, and the selectivity of

etanol var ca. 95%. ethanol was approx. 95%.

Eksempel 3Example 3

Da fremgangsmåten ifølge eksempel 2 ble gjentatt ved en saltbad-temperatur på 203°C, med en gass-strøm-hastighet på When the method according to example 2 was repeated at a salt bath temperature of 203°C, with a gas flow rate of

160,4 liter/time og en strømningshastighet.for tilført væske 160.4 litres/hour and a flow rate for supplied liquid

(etylacetat) på 34,8 ral/time,, med både etylacetat og etanol identifisert i det flytende kondensat, men det ble i alt vesentlig, ikke dannet noe n-butanol. Omdannelsen av esteren var (ethyl acetate) of 34.8 ral/hour, with both ethyl acetate and ethanol identified in the liquid condensate, but essentially no n-butanol was formed. The conversion of the ester was

.82,6%, og selektiviteten til etanol var ca. 100%..82.6%, and the selectivity to ethanol was approx. 100%

Eksempel 4 Example 4

Fremgangsmåten ifølge eksempel 1 ble gjentatt under anvendelse av isopropylformiat, som ble tilført ved en hastighet på 23,4 ml/time, og. en gass-strømhastighet på 35,1 liter/time (som målt ved atmosfærisk trykk med våtgassmetret) . Saltbad-^temperaturen var 185GC, og utløpsgasstrykket var 10,55 kg/cm<2>absolutt (1035 kPa). Det flytende kondensat ble analysert og. vist å inneholde som hovedkomponenter, foruten mindre spor-mengder av aceton og butanol, metanol og isopropylalkohol. Omdannelsen av ester-utgangsmaterialet var tilnærmet 100%, og selektiviteten til metanol var ca. 99%. The procedure of Example 1 was repeated using isopropyl formate, which was fed at a rate of 23.4 ml/hour, and. a gas flow rate of 35.1 liters/hour (as measured at atmospheric pressure with the wet gas meter). The salt bath temperature was 185°C, and the outlet gas pressure was 10.55 kg/cm<2>absolute (1035 kPa). The liquid condensate was analyzed and. shown to contain as main components, besides smaller trace amounts of acetone and butanol, methanol and isopropyl alcohol. The conversion of the ester starting material was approximately 100%, and the selectivity to methanol was approx. 99%.

Eksempel 5Example 5

Fremgangsmåten ifølge eksempel 1 ble gjentatt under anvendelse av metylacetat istedenfor n-butylbutyrat ved en strømnings-hastighet på 75 ml/time og en hydrogen-strømningshastighet på 115,2 liter/time (målt ved atmosfærisk trykk). Ved.dette for-søk var saltbad-temperaturen 194°C, og utløpsgasstrykket var The procedure of Example 1 was repeated using methyl acetate instead of n-butyl butyrate at a flow rate of 75 ml/hour and a hydrogen flow rate of 115.2 liters/hour (measured at atmospheric pressure). In this experiment, the salt bath temperature was 194°C, and the outlet gas pressure was

2 .9,49 kg/cm absolutt (935 kPa). Det flytende kondensat ble vist å inneholde 55,7 vekt% metylacetat, 10,02 vekt% etylacetat, 15,24 vekt% etanol og 18,95 vekt% metanol. Den iakttatté omdannelse til etanol var 52,4 mol%. 2 .9.49 kg/cm absolute (935 kPa). The liquid condensate was shown to contain 55.7 wt% methyl acetate, 10.02 wt% ethyl acetate, 15.24 wt% ethanol and 18.95 wt% methanol. The observed conversion to ethanol was 52.4 mol%.

E ksempel 6Example 6

Fremgangsmåten ifølge eksempel 5 ble gjentatt ved en sålt-bad-temperatur på 217 C og med et utløpsgasstrykk på 8,86 kg/cm<2>åbsolutt (868 kPa), med en gass-strømningshastighet på The procedure of Example 5 was repeated at a salt-bath temperature of 217 C and with an outlet gas pressure of 8.86 kg/cm<2>absolute (868 kPa), with a gas flow rate of

225 liter/time, og med en strømningshas.tighet for. tilført væske (metylacetat) på 75 ml/time.. Det flytende kondensat'ble funnet å inneholde 19,31 vekt% metylacetat, .11,19 vekt% etylacetat, 35,64.vekt% etanol og 31,96 vekt% metanol. Den iakttatté omdannelse til etanol var 72,40 mol%. 225 litres/hour, and with a flow rate of supplied liquid (methyl acetate) at 75 ml/hour. The liquid condensate was found to contain 19.31 wt% methyl acetate, 11.19 wt% ethyl acetate, 35.64 wt% ethanol and 31.96 wt% methanol. The observed conversion to ethanol was 72.40 mol%.

Eksempel 7-Example 7-

Fremgangsmåten ifølge eksempel 1 ble gjentatt under anvend else. av sek-butylacetat istedenfor n-butylbutyrat ved en til-førselshastighet på 118 ral/time og en hydrogenstrømhastighet på 143,9 liter/time (målt ved atmosfærisk trykk). Ved dette forsøk var saltbadtemperaturen 203°C, og utløpsgasstrykket var 10,55 kg/cm absolutt (1035 kPa). Det flytende kondensat ble vist å inneholde 6,0 vekt% etylacetat, '20,6 vekt% etanol, The procedure according to example 1 was repeated during use. of sec-butyl acetate instead of n-butyl butyrate at a feed rate of 118 ral/hour and a hydrogen flow rate of 143.9 liters/hour (measured at atmospheric pressure). In this experiment, the salt bath temperature was 203°C, and the outlet gas pressure was 10.55 kg/cm absolute (1035 kPa). The liquid condensate was shown to contain 6.0% by weight ethyl acetate, 20.6% by weight ethanol,

40,1 vekt% sek-butylacetat og 33,3 vekt% sek-butanol. Den iakttatté omdannelse, til etanol var 59,9 mol%, og selektiviteten til etanol og sek-butanol var tilnærmet 100%. 40.1% by weight sec-butyl acetate and 33.3% by weight sec-butanol. The observed conversion to ethanol was 59.9 mol%, and the selectivity to ethanol and sec-butanol was approximately 100%.

Eksempel 8 Example 8

Di-n-butyloksalat ble pumpet med en hastighet på 15,4 ml/ time til' en elektrisk oppvarmet gass/væske blandingsahordning til hvilken hydrogen også ble tilført med regulert hastighet og trykk via en elektrisk oppvarmet ledning. Den resulterende, dampformige blanding ble ført gjennom en isolert, elektrisk oppvarmet ledning til en fofhånds-oppvarmnings-coil før den ble ført gjennom en rørformet reaktorav rustfritt stål pakket med 15 ml av en knust katalysator. Både den rørformede reaktor og for-oppvarmningscoilen var nedsenket i et smeltet saltbad. Saltbadets temperatur ble regulert inntil temperaturen av den dampformige blanding, som påvist ved hjelp av et termoelement anbrakt, umiddelbart oppstrøm fra katalysatorlaget, var 2 4.0°C. Den dampformige blanding som kom fra reaktoren, ble ført gjennom en vann-avkjølt kjøler og derefter gjennom.en .avkjølt kjøler nummer 2 gjennom hvilken kjølemidlet ble ført ved -15°C. Det resulterendé kondensat ble oppsamlet i en nedkjølt opp-samlingsanordning som også ble holdt ved -15°C. Utløpsgass-trykket ble regulert til 15,5 kg/cm 2absolutt (1518 kPa). De ikke-kondenserte gasser ble derefter ført gjennom en nedadrettet ventil, idet gass-strømhastigheten ble overvåket nedstrøm fra denne ventil i.et våtgassmeter. En gass-strømhastighet på 156,6 liter/time (målt ved atmosfærisk trykk) ble opprettholdt under forsøket. Væskevolumhastigheten for di-n-butyloksalatet var 1,03 time ^. Di-n-butyl oxalate was pumped at a rate of 15.4 ml/hour into an electrically heated gas/liquid mixture assembly to which hydrogen was also supplied at a controlled rate and pressure via an electrically heated line. The resulting vaporous mixture was passed through an insulated, electrically heated line to a hand-held heating coil before being passed through a stainless steel tubular reactor packed with 15 ml of a crushed catalyst. Both the tubular reactor and the pre-heating coil were immersed in a molten salt bath. The temperature of the salt bath was regulated until the temperature of the vaporous mixture, as detected by means of a thermocouple placed immediately upstream of the catalyst layer, was 24.0°C. The vaporous mixture coming from the reactor was passed through a water-cooled cooler and then through a number 2 cooled cooler through which the coolant was passed at -15°C. The resulting condensate was collected in a refrigerated collection device which was also kept at -15°C. The outlet gas pressure was regulated to 15.5 kg/cm 2 absolute (1518 kPa). The non-condensed gases were then passed through a downward-directed valve, the gas flow rate being monitored downstream from this valve in a wet gas meter. A gas flow rate of 156.6 liters/hour (measured at atmospheric pressure) was maintained during the experiment. The liquid volume rate for the di-n-butyl oxalate was 1.03 hour^.

'Det flytende kondensat ble analysert ved gass-kromatografi under .anvendelse av en 2 meter kolonne av rustfritt stål (6 mm utvendig diameter) pakket med polyetylenglykol (nominell mplekyl-vekt 20.000) på "Chromosorb PAW", en heliumgass-strømnings^ hastighet på' 30 ml/minutt og en varmeledningsevne-detektor. The liquid condensate was analyzed by gas chromatography using a 2 meter stainless steel column (6 mm outside diameter) packed with polyethylene glycol (nominal molecular weight 20,000) on Chromosorb PAW, a helium gas flow rate of ' 30 ml/minute and a thermal conductivity detector.

Instrumentet vår utstyrt med en diagramskriver med en topp-integrator og ble kalibrert under anvendelse av en blanding av etanol, n-butahol, etylglykolat, n-butylglykolat, etylenglykol Our instrument equipped with a chart recorder with a peak integrator and was calibrated using a mixture of ethanol, n-butahol, ethyl glycolate, n-butyl glycolate, ethylene glycol

og di-n-butyloksalat med kjent sammensetning. Kondensatet ble vist å inneholde en blanding av 0,60 vekt% etanol, 31,37 vekt% n-butanol, 0,1 vekt% etylglykolat, 0,7 vekt% n-;buty lglykolat, 15,88 vekt% etylenglykol og 70,15 vekt% n-butyloksalat, svarende til en 27,5% omdannelse méd 93,0% selektivitet til etylenglykolv and di-n-butyl oxalate of known composition. The condensate was shown to contain a mixture of 0.60 wt% ethanol, 31.37 wt% n-butanol, 0.1 wt% ethyl glycolate, 0.7 wt% n-butyl glycolate, 15.88 wt% ethylene glycol and 70 .15% by weight of n-butyl oxalate, corresponding to a 27.5% conversion with 93.0% selectivity to ethylene glycol

Katalysatoren som ble anvendt i dette eksempel, ble innførtThe catalyst used in this example was introduced

i reaktoren som. en sam-utfelt blanding av GuO og ZnO inneholdende 33^3% CuO dg 65±.3% ZnO med en partikkelstørrelse i området fra 1,2 mm til 2,4 mm og et indre overflateareal på ca. in the reactor which. a co-precipitated mixture of GuO and ZnO containing 33^3% CuO dg 65±.3% ZnO with a particle size in the range from 1.2 mm to 2.4 mm and an internal surface area of approx.

45. m 2 pr. gram. Denne ble forhånds-redusert i reaktor<->en under 45. m 2 per gram. This was pre-reduced in the reactor below

anvendelse av en 5 volum% -i N2gassblanding ved 200°C iusing a 5% by volume N2 gas mixture at 200°C i

16 timer fulgt av ren hydrogen ved 200°C i 16 timer, idet gass-strømningshastigheten i hvert tilfelle var ca. 20 liter/time (målt ved atmosfærisk trykk) og gasstrykket var 15,5 kg/cm<2>absolutt (1518 kPa). Efter dette for-reduksjonstrinn ble katalysatoren til enhver tid holdt i en hydrogenholdig atmosfære. E ksempel - 9 Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av di-n-butyloksalat ved tilførselshastighet på 30,6 ml/ time og en hydrogenstrømhastighet på 284 liter/time (målt ved atmosfærisk trykk). Det flytende kondensat ble vist å inneholde .0,25 vekt% etanol,' 1-4,62 vekt% n-butanol, 0,50 vekt% n-butylglykolat,. 10,19 vekt%'etylenglykol og 75,73 vekt% di-n-butyloksalat. Den iakttatté omdannelse til etylenglykol var 21,5%, 16 hours followed by pure hydrogen at 200°C for 16 hours, the gas flow rate in each case being approx. 20 litres/hour (measured at atmospheric pressure) and the gas pressure was 15.5 kg/cm<2>absolute (1518 kPa). After this pre-reduction step, the catalyst was kept in a hydrogen-containing atmosphere at all times. E xample - 9 The procedure according to example 8 was repeated using di-n-butyl oxalate at a feed rate of 30.6 ml/hour and a hydrogen flow rate of 284 liters/hour (measured at atmospheric pressure). The liquid condensate was shown to contain 0.25% by weight ethanol, 1-4.62% by weight n-butanol, 0.50% by weight n-butyl glycolate. 10.19% by weight ethylene glycol and 75.73% by weight di-n-butyl oxalate. The observed conversion to ethylene glycol was 21.5%,

og selektiviteten til etylenglykol var 94,7%.and the selectivity to ethylene glycol was 94.7%.

E ksempel 10 Example 10

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av dietylsuccinat ved en tilførselshastighet på 15,4 ral/ The procedure of Example 8 was repeated using diethyl succinate at a feed rate of 15.4 ral/

2 2

time. Reaktortrykket var 15,5 kg/cm absolutt (1518 kPa) og innløpstemperaturen var 242°C. Gass-strømhastigheten var 157,8 liter/time (målt ved atmosfærisk trykk). Væskevolum-hastigheten var 1,03 pr. time. hour. The reactor pressure was 15.5 kg/cm absolute (1518 kPa) and the inlet temperature was 242°C. The gas flow rate was 157.8 liters/hour (measured at atmospheric pressure). The liquid volume rate was 1.03 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 32,2% omdannelse av dietylsuccinat This corresponds to a 32.2% conversion of diethyl succinate

/med en selektivitet på 85,0% til tetrahydrofuran og 14,0% til n-butanol. / with a selectivity of 85.0% to tetrahydrofuran and 14.0% to n-butanol.

Eksempel 11,Example 11,

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av dietylmaleat ved en tilførselshastighet på The procedure according to Example 8 was repeated using diethyl maleate at a feed rate of

16,9 ml/time. •Reaktortrykket. var 15,1 kg/cm 2 absolutt (1484 kPa), og innløpstemperaturen var 222°C. Gass-strøm-hastigheten- var 156,6 liter/time (målt ved atmosfærisk trykk). Væskevolumhastigheten var 1,13 pr. time. 16.9 ml/hour. •The reactor pressure. was 15.1 kg/cm 2 absolute (1484 kPa), and the inlet temperature was 222°C. The gas flow rate was 156.6 liters/hour (measured at atmospheric pressure). The fluid volume rate was 1.13 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 22,2% omdannelse av dietylmaleat til tetrahydrofuran og n-butanol med en selektivitet på 87,0% til tetrahydrofuran og 12,7% til n-butanol og en 15,6% omdannelse til. dietylsuccinat. This corresponds to a 22.2% conversion of diethyl maleate to tetrahydrofuran and n-butanol with a selectivity of 87.0% to tetrahydrofuran and 12.7% to n-butanol and a 15.6% conversion to. diethyl succinate.

Eksempel 12 Example 12

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av cykloheksylacetat ved en tilførselshastighet på The procedure according to example 8 was repeated using cyclohexyl acetate at a feed rate of

2 17,3 ml/time.Reaktortrykket var 15,5 kg/cm absolutt (1518 kPa), og innløpstemperaturen var 229°C. Gass-strømhastigheten var 157,2 liter/time (målt ved atmosfærisk, trykk) . Væskevolum-hastigheten var 1,15 pr. time. 2 17.3 ml/hour. The reactor pressure was 15.5 kg/cm absolute (1518 kPa), and the inlet temperature was 229°C. The gas flow rate was 157.2 liters/hour (measured at atmospheric pressure). The liquid volume rate was 1.15 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 92,8% omdannelse av cykloheksylacetat. This corresponds to a 92.8% conversion of cyclohexyl acetate.

Eksempel 13Example 13

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av benzylacetat ved en tilførselshastighet på The procedure according to Example 8 was repeated using benzyl acetate at a feed rate of

2 47,8 ml/time. Reaktortrykket var 16,9 kg/cm absolutt (1656 kPa), og innløps temperaturen var 235°C'. Gass-strømhastigheten var 466,2 liter/time (målt ved atmosfærisk trykk). Væskévolum-hastigheten var 3,19 pr. time. 2 47.8 ml/hour. The reactor pressure was 16.9 kg/cm absolute (1656 kPa), and the inlet temperature was 235°C'. The gas flow rate was 466.2 liters/hour (measured at atmospheric pressure). The liquid volume rate was 3.19 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 58,7% omdannelse av bénzylacetat med en selektivitet på 9 8,5% til toluen. This corresponds to a 58.7% conversion of benzyl acetate with a selectivity of 98.5% to toluene.

Eksempel, 14Example, 14

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av metylbenzoat ved en tilførselshastighet på The procedure according to Example 8 was repeated using methyl benzoate at a feed rate of

2 2

15,4 ml/time. Reaktortrykket var 15,5 kg/cm absolutt (1518 kPa), og innløpstemperaturen var 220°C. Gass-strøm^hastigheten var 156,6 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var 1,03 pr. time. 15.4 ml/hour. The reactor pressure was 15.5 kg/cm absolute (1518 kPa), and the inlet temperature was 220°C. The gas flow rate was 156.6 liters/hour (measured at atmospheric pressure). The liquid volume rate was 1.03 per hour.

Kondensatet separerte seg i to lag, og det ble ikke gjort noe forsøk på nøyaktig analyse. Gass-kromatografi viste imidlertid at hovedproduktene var toluen og metanol. Det ble anslått' at ca'. 40% omdannelse av metylbenzoat hadde funnet sted, med bare ca. 1% selektivitet til benzylalkohol. The condensate separated into two layers, and no accurate analysis was attempted. However, gas chromatography showed that the main products were toluene and methanol. It was estimated that approx. 40% conversion of methyl benzoate had taken place, with only approx. 1% selectivity to benzyl alcohol.

Eksempel 15 Example 15

Fremgangsmåten ifølge eksempel 8' ble gjentatt under anvendelse av etylfenylacetat ved en tilførselshastighet på The procedure according to example 8' was repeated using ethyl phenyl acetate at a feed rate of

16,7 ml/time. Reaktortrykket var 15,5 kg/cm 2' absolutt (1518 kPa), og innløpstemperaturen var 215°C.i Gass-strøm-hastigheten var 157,8 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var.1,11 pr. time. 16.7 ml/hour. The reactor pressure was 15.5 kg/cm 2' absolute (1518 kPa), and the inlet temperature was 215°C. The gas flow rate was 157.8 liters/hour (measured at atmospheric pressure). The liquid volume rate was 1.11 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 46,7% omdannelse av etylfenylacetat med en selektivitet på ca. 100% til etanol, 27,0% til etyl-benzen og 72,9%.til fenyletanol. This corresponds to a 46.7% conversion of ethyl phenylacetate with a selectivity of approx. 100% to ethanol, 27.0% to ethylbenzene and 72.9% to phenylethanol.

Eksempel 16 Example 16

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av etylenglykol-diacetat ved en tilførselshastighet på 16,8 ml/timé. Reaktortrykket var 28,0 kg/cm 2 absolutt (2746 kPa), og■innløpstemperaturen var 197°C. Gass-strøm-hastigheten var 240 liter/time (målt ved atmosfærisk, trykk) . Væske-volumhastigheten var 1,12 pr. time. The procedure according to Example 8 was repeated using ethylene glycol diacetate at a feed rate of 16.8 ml/hour. The reactor pressure was 28.0 kg/cm 2 absolute (2746 kPa), and the inlet temperature was 197°C. The gas flow rate was 240 litres/hour (measured at atmospheric pressure). The liquid volume rate was 1.12 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 13,0% omdannelse av etylenglykol-diacetat, med én selektivitet på 87,7% til etanol, 12,2% til etylacetat og 100% til etylenglykol-monoacetat. This corresponds to a 13.0% conversion of ethylene glycol diacetate, with a selectivity of 87.7% to ethanol, 12.2% to ethyl acetate and 100% to ethylene glycol monoacetate.

Eksempel 17 Example 17

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av etyl-laktat med en tilførselshastighet på 15,9 ml/time. Reaktortrykket var 16,4 kg/cm 2 absolutt The procedure of Example 8 was repeated using ethyl lactate at a feed rate of 15.9 ml/hour. The reactor pressure was 16.4 kg/cm 2 absolute

(1608 kPa), og innløpstemperaturen var 234°C. Gass-strøm-hastigheten vår 156,6 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var 1,06 pr. time. (1608 kPa), and the inlet temperature was 234°C. Our gas flow rate 156.6 litres/hour (measured at atmospheric pressure). The liquid volume rate was 1.06 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til 34,7% omdannelse av etyllaktat med en selektivitet på 97,7% til 1,2-propandiol og 2,3% til n-propanol. This corresponds to 34.7% conversion of ethyl lactate with a selectivity of 97.7% to 1,2-propanediol and 2.3% to n-propanol.

Eksempel 1, 8Example 1, 8

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av dimetylådipat ved en tilførselshastighet på The procedure according to example 8 was repeated using dimethyl adipate at a feed rate of

2 2

16,7 ml/time. Reaktortrykket var 29,5 kg/cm absolutt (2898 kPa), og innløpstemperaturen var 233°C. Gåss-strøm-hastigheten var 240 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var 1,11 pr. time. 16.7 ml/hour. The reactor pressure was 29.5 kg/cm absolute (2898 kPa), and the inlet temperature was 233°C. The gas flow rate was 240 litres/hour (measured at atmospheric pressure). The liquid volume rate was 1.11 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Kondensatet inneholdt også noen andre uidentifiserte for-bindelser. The condensate also contained some other unidentified compounds.

Dette svarer til en 23,0% omdannelse av dimetylådipat med en selektivitet på ca. 100% til metanol og' ca. 95% til 1,6-heksandiol. This corresponds to a 23.0% conversion of dimethyl adipate with a selectivity of approx. 100% to methanol and' approx. 95% to 1,6-hexanediol.

Eksempel 19 Example 19

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av t-butylacetat ved en tilførselshastighet på The procedure according to Example 8 was repeated using t-butyl acetate at a feed rate of

.18,3 ml/time. Reaktortrykket var 26,7 kg/cm 2 absolutt.18.3 ml/hour. The reactor pressure was 26.7 kg/cm 2 absolute

(2622 kPa), og innløpstemperaturen var 200°C. Gass-strøm-hastigheten var 156,6 liter/time (målt ved atmosfærisk trykk). Væske-volum-hastigheten var 1,22 pr. time. (2622 kPa), and the inlet temperature was 200°C. The gas flow rate was 156.6 liters/hour (measured at atmospheric pressure). The liquid-volume rate was 1.22 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til 56,5% omdannelse av t-butylacetat... Selv om selektiviteten til etanol og t-butanol synes å være høy, var nøyaktig vurdering av.selektiviteten vanskelig fordi noe This corresponds to 56.5% conversion of t-butyl acetate... Although the selectivity to ethanol and t-butanol appears to be high, accurate assessment of the selectivity was difficult because some

t-butanol gjennomgikk dehydratisering til isobuten som ble påvist som produkt men ikke oppsamlet. t-butanol underwent dehydration to isobutene which was detected as product but not collected.

Eksempel 20Example 20

Fremgangsmåten ifølge eksempel 8 ble gjentatt under an vendelse av metyl-metoksyacetat ved en tilførselshastighet på 17,3 ml/time. Reaktortrykket var 29 kg/cm<2>absolutt (2850 kPa), og innløpstemperaturen var 217°C. Gass-strømhastigheten var 157,2 liter/time (målt ved atmosfærisk trykk). Væske-volum-hastigheten var 1.15 pr. time. The procedure according to Example 8 was repeated using methyl methoxyacetate at a feed rate of 17.3 ml/hour. The reactor pressure was 29 kg/cm<2>absolute (2850 kPa), and the inlet temperature was 217°C. The gas flow rate was 157.2 liters/hour (measured at atmospheric pressure). The liquid-volume rate was 1.15 per hour.

Gass-kromatografisk analyse viste åt kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 77,6% omdannelse av metyl-metoksyacetat med en selektivitet på 2,0% til etanol, 93,2% til metoksyetanol This corresponds to a 77.6% conversion of methyl methoxyacetate with a selectivity of 2.0% to ethanol, 93.2% to methoxyethanol

og 4,6% til metoksyetyl-metoksyacetat. and 4.6% to methoxyethyl methoxyacetate.

Eksempel 21 Example 21

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av metyl-cykloheksankarboksylat ved en tilførsels-hastighet på 16,0 ml/time. Reaktortrykket. var 14,8 kg/cm2 absolutt (1449 kPa), og innløpstemperaturen var 217°C. Gass-strømhastigheten var 156,0 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten vår 1,07 pr. time. The procedure of Example 8 was repeated using methyl cyclohexane carboxylate at a feed rate of 16.0 ml/hour. The reactor pressure. was 14.8 kg/cm2 absolute (1449 kPa), and the inlet temperature was 217°C. The gas flow rate was 156.0 liters/hour (measured at atmospheric pressure). Our fluid volume rate 1.07 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 57,8% omdannelse med en selektivitet på.ca. 100% til metanol og cykloheksanmetanol. This corresponds to a 57.8% conversion with a selectivity of approx. 100% to methanol and cyclohexanemethanol.

E ksempel 22Example 22

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse, av ybutyrolakton ved en tilfø-rselshastighet på The procedure of Example 8 was repeated using ybutyrolactone at a feed rate of

2 2

16,2 ml/time.. Reaktortrykket var 28,8 kg/cm absolutt (2829 kPa), og innløpstemperaturen vaf. 22 6°C. Gass-strøm-hastigheten var 156,0 liter/time (målt ved åtmosfærisk trykk). Væske-volumhastigheten var 1,08 pr. time. 16.2 ml/hour. The reactor pressure was 28.8 kg/cm absolute (2829 kPa), and the inlet temperature vaf. 22 6°C. The gas flow rate was 156.0 liters/hour (measured at atmospheric pressure). The liquid volume rate was 1.08 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 4 7,6% omdannelse av y-butyrolakton med en selektivitet på 53,2% til tetrahydrofuran, 41,8% til 1,4-butandiol og 5,0% til n-butanol. This corresponds to a 4 7.6% conversion of γ-butyrolactone with a selectivity of 53.2% to tetrahydrofuran, 41.8% to 1,4-butanediol and 5.0% to n-butanol.

Eksempel . 23 Example . 23

Fremgangsmåten ifølge éksempel 8 ble gjentatt under anvendelse av y-butyrolakton ved en tilførselshastighet på The procedure of Example 8 was repeated using γ-butyrolactone at a feed rate of

16,0 ml/time. Reaktortrykket var 15,5 kg/cm 2absolutt (1518 kPa), og innløpstemperaturen var 215°C. Gass-strømhastigheten var 450 liter/time (målt ved atmosfærisk trykk). Væske-volum-hastigheten var 1,07 pr. time. 16.0 ml/hour. The reactor pressure was 15.5 kg/cm 2 absolute (1518 kPa), and the inlet temperature was 215°C. The gas flow rate was 450 liters/hour (measured at atmospheric pressure). The liquid-volume rate was 1.07 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 9,4% omdannelse av Y-butyrolakton méd én selektivitet på 97,4% til 1,4-butandiol. This corresponds to a 9.4% conversion of Y-butyrolactone with a selectivity of 97.4% to 1,4-butanediol.

Eksempel 2 4Example 2 4

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av Y-butyrolakton ved en tilførselshastighet på The procedure of Example 8 was repeated using Y-butyrolactone at a feed rate of

2 2

15,4 ml/time. Reaktortrykket var 28,5. kg/cm absolutt (2794.kPa), og innløpstemperaturen var 217°C. Gass-strøm-hastigheten var 4 50 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var.1,03 pr. time. 15.4 ml/hour. The reactor pressure was 28.5. kg/cm absolute (2794.kPa), and the inlet temperature was 217°C. The gas flow rate was 450 liters/hour (measured at atmospheric pressure). The liquid volume rate was 1.03 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 16,1% omdannelse av y-butyrolakton med en selektivitet på 98,4% til 1,4-butandiol. This corresponds to a 16.1% conversion of γ-butyrolactone with a selectivity of 98.4% to 1,4-butanediol.

Eksempel 2 5Example 2 5

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av t-butylformiat ved en tilførselshastighet på The procedure according to example 8 was repeated using t-butyl formate at a feed rate of

64,1 ml/time. Reaktortrykket var 14,4 kg/cm 2. absolutt 64.1 ml/hour. The reactor pressure was 14.4 kg/cm 2. absolute

(1414 kPa), og innløpstemperaturen var 170°C. Gass-strøm-hastigheten var 155,4 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var 4,2 7 pr. time. (1414 kPa), and the inlet temperature was 170°C. The gas flow rate was 155.4 liters/hour (measured at atmospheric pressure). The liquid volume velocity was 4.27 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 99% omdannelse av t-butylformiat. Nøyaktig bestemmelse av selektiviteten ble ikke forsøkt. Isobuten ble også påvist som et produkt, og dette ble sannsynligvis dannet ved dehydratisering av t-butanol. This corresponds to a 99% conversion of t-butyl formate. Exact determination of the selectivity was not attempted. Isobutene was also detected as a product, and this was probably formed by dehydration of t-butanol.

Eksempel 2 6Example 2 6

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av fenylacetat ved en tilførselshastighet på The procedure according to Example 8 was repeated using phenyl acetate at a feed rate of

17,1 ml/time. Reaktortrykket vår 29,0 kg/cm 2absolutt (2850 kPa), og innløpstemperaturen var 222°C. Gass-strøm-hastigheten var 156,0 liter/time (målt ved atmosfærisk trykk). Væske-volumhastigheten var 1,14 pr. time. 17.1 ml/hour. Our reactor pressure was 29.0 kg/cm 2 absolute (2850 kPa), and the inlet temperature was 222°C. The gas flow rate was 156.0 liters/hour (measured at atmospheric pressure). The liquid volume velocity was 1.14 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 40,9% omdannelse av fenylacetat med en selektivitet på ca. 100% til fenol, 64,9% til etanol og 35,1%- This corresponds to a 40.9% conversion of phenylacetate with a selectivity of approx. 100% to phenol, 64.9% to ethanol and 35.1%-

til etylacetat.to ethyl acetate.

Eksempel 27Example 27

Fremgangsmåten ifølge eksempel. 8 ble gjentatt under anvendelse av metylformiat ved en tilførselshastighet på 60,0 ml/time. Reaktortrykket var 8,6 kg/cm<2>absolutt (842 kPa),. og innløpstemperaturen var 194°C. Gass-strømhastigheten var 540 liter/time (målt ved atmosfærisk trykk). Væske-volum- The procedure according to example. 8 was repeated using methyl formate at a feed rate of 60.0 ml/hr. The reactor pressure was 8.6 kg/cm<2>absolute (842 kPa). and the inlet temperature was 194°C. The gas flow rate was 540 liters/hour (measured at atmospheric pressure). liquid volume

hastigheten var 4,0 pr. time.the speed was 4.0 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 99,7% omdannelse av metylformiat med en selektivitet på 99,0% til metanol. This corresponds to a 99.7% conversion of methyl formate with a selectivity of 99.0% to methanol.

Eksempel 2 8 Example 2 8

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av .metylformiat ved en tilførselshastighet på The procedure according to example 8 was repeated using methyl formate at a feed rate of

2 2

180 ml/time. Reaktortrykket var 8,4 kg/cm absolutt (828 kPa), og innløpstemperaturen var 200°C. Gass-strømhastigheten var 540 liter/time (målt ved atmosfærisk trykk). Væske-volum-hastigheten var 12,0 pr. time. 180 ml/hour. The reactor pressure was 8.4 kg/cm absolute (828 kPa), and the inlet temperature was 200°C. The gas flow rate was 540 liters/hour (measured at atmospheric pressure). The liquid-volume rate was 12.0 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt: Gas chromatographic analysis showed that the condensate contained:

Dette svarer til en 76,9% omdannelse av metylformiat med en selektivitet på 99,2% til metanol. This corresponds to a 76.9% conversion of methyl formate with a selectivity of 99.2% to methanol.

Eksempel 2 9 Example 2 9

Fremgangsmåten ifølge eksempel 8 ble gjentatt under anvendelse av en blanding inneholdende 75 mol% metylglykolat og 25 mol% metanol ved en tilførselshastighet på 10,0 ml/time. The procedure of Example 8 was repeated using a mixture containing 75 mol% methyl glycolate and 25 mol% methanol at a feed rate of 10.0 ml/hour.

2 Reaktortrykket var 28,1 kg/cm absolutt (2760 kPa), og innløps-temperaturen var 210°C. Gass-strømhastigheten var 155,4 liter/ time (målt ved atmosfærisk trykk). Væske-volumhastigheten var 0,6 7 pr. time. 2 The reactor pressure was 28.1 kg/cm absolute (2760 kPa), and the inlet temperature was 210°C. The gas flow rate was 155.4 liters/hour (measured at atmospheric pressure). The liquid volume velocity was 0.67 per hour.

Gass-kromatografisk analyse viste at kondensatet inneholdt en blanding av metanol, metylglykolat og etylenglykol. Gas chromatographic analysis showed that the condensate contained a mixture of methanol, methyl glycolate and ethylene glycol.

Beregninger viste en. 13,7% omdannelse av metylglykolat med en selektivitet på ca. 98,0% til etylenglykol. Calculations showed a 13.7% conversion of methyl glycolate with a selectivity of approx. 98.0% to ethylene glycol.

Eksempel 30Example 30

Under anvendelse av en fremgangsmåte lik den som er be- , skrevet i eksempel 8, men med et katalysatorvolum på 50 ml, ble hydrogenolysen av etylacetat undersøkt under anvendelse av en knust katalysator omfattende en redusert blanding av 71,5% CuO og 18,5% ZnO. Med en væsketilførselshastighet på 21,7 ml/time, svarende til.en volumhastighet på 0,43 pr. time, og en 5 mol% Using a procedure similar to that described in Example 8, but with a catalyst volume of 50 ml, the hydrogenolysis of ethyl acetate was investigated using a crushed catalyst comprising a reduced mixture of 71.5% CuO and 18.5 % ZnO. With a liquid supply rate of 21.7 ml/hour, corresponding to a volume rate of 0.43 per hour, and a 5 mol%

2 etylacetat i hydrogen fødeblanding, ble det ved 11,6 kg/em absolutt (1138 kPa) og 150°C iakttatt en omdannelse på 65/1% med tilnærmet kvantitativ dannelse av etanol. Under de samme trykk- og strømningsbetingelser ved 200°C var den iakttatté omdannelse' 90,6%, også med tilnærmet kvantitativ dannelse av etanol. 2 ethyl acetate in hydrogen feed mixture, at 11.6 kg/em absolute (1138 kPa) and 150°C a conversion of 65/1% was observed with approximately quantitative formation of ethanol. Under the same pressure and flow conditions at 200°C, the observed conversion was 90.6%, also with approximately quantitative formation of ethanol.

E ksempel 31Example 31

Da eksempel 30 ble gjentatt under anvendelse av en katalysator omfattende en redusert blanding av 44,3% CuO, 46,3% ZnO og 9,4% Al203, var omdannelsen ved 150°C 48,9%, og ved 200°C var den 84,2%, i hvert tilfelle med tilnærmet kvantitativ dannelse av etanol. When Example 30 was repeated using a catalyst comprising a reduced mixture of 44.3% CuO, 46.3% ZnO and 9.4% Al 2 O 3 , the conversion at 150°C was 48.9%, and at 200°C was the 84.2%, in each case with approximately quantitative formation of ethanol.

Claims (77)

.1. Fremgangsmåte for å frembringe hydrogenolyse av en karboksylsyreester, som omfatter at en blanding inneholdende esteren og hydrogen bringes i kontakt med en hydrogenolyse-katalysator ved forhøyet temperatur, karakterisert ved at en dampformig blanding omfattende esteren og hydrogen bringes i kontakt med en katalysator som omfatter en redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C opp til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm 2 absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm <2> absolutt (ca. 9813 kPa)...1. Process for producing hydrogenolysis of a carboxylic acid ester, which comprises bringing a mixture containing the ester and hydrogen into contact with a hydrogenolysis catalyst at an elevated temperature, characterized in that a vaporous mixture comprising the ester and hydrogen is brought into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm 2 absolute (approx. 9.8 kPa) up to approx. 100 kg/cm <2> absolute (approx. 9813 kPa).. 2. Fremgangsmåte ifølge krav 1, karakterisert2. Method according to claim 1, characterized 2 ved at trykket er i området fra ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) til ca. 50 kg/cm <2> (ca, 4906 kPa).2 in that the pressure is in the range from approx. 0.1 kg/cm absolute (approx. 9.8 kPa) to approx. 50 kg/cm <2> (approx., 4906 kPa). 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at trykket er i området fra ca. 5 kg/cm <2> 2 absolutt (ca. 491 kPa) til ca. 25 kg/cm absolutt (ca. 2453 kPa).3. Method according to claim 1 or 2, characterized in that the pressure is in the range from approx. 5 kg/cm <2> 2 absolute (approx. 491 kPa) to approx. 25 kg/cm absolute (approx. 2453 kPa). 4. Fremgangsmåte ifølge et av kravene 1 til 3, karakterisert ved . at temperaturen er i området fra ca. 180°C til ca, 240°C.4. Method according to one of claims 1 to 3, characterized by . that the temperature is in the range from approx. 180°C to approx. 240°C. 5. Fremgangsmåte ifølge et av kravene 1 til 4, karakterisert ved at karboksylsyreesteren velges fra estere med den generelle formel:5. Method according to one of claims 1 to 4, characterized in that the carboxylic acid ester is selected from esters with the general formula: R (C00R1)R (C00R1) nn og (R' 1 'C00) R1 ' 1and (R' 1 'C00) R1 ' 1 P hvor n og p hver betyr et helt tall fra 1 til ca. 5, og R, R <1> ,P where n and p each mean a whole number from 1 to approx. 5, and R, R <1> , R <1> ' og R" <1> betyr hver et eventuelt substituert, mettet eller umettet, cyklisk eller acyklisk hydro.karbonradikal, hvor ett eller flere karbonatomer kan være erstattet med heteroatomer valgt fra nitrogen, oksygen og fosfor.R <1> ' and R" <1> each mean an optionally substituted, saturated or unsaturated, cyclic or acyclic hydrocarbon radical, where one or more carbon atoms may be replaced by heteroatoms selected from nitrogen, oxygen and phosphorus. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at hver av R, R', R <1> ' og R'' <1> inneholder fra 1 til ca.6. Method according to claim 5, characterized in that each of R, R', R <1> ' and R'' <1> contains from 1 to approx. 12 karbonatomer.12 carbon atoms. 7. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en ester av maursyre, og metanol er et hydrogenolyseprodukt.7. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of formic acid, and methanol is a hydrogenolysis product. 8. Fremgangsmåte ifølge krav 7, karakterisert ved at karboksylsyreesteren velges fra metylformiat, isopropylformiat og t-butylformiat.8. Method according to claim 7, characterized in that the carboxylic acid ester is selected from methyl formate, isopropyl formate and t-butyl formate. 9. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en ester av eddiksyre, og etanol er et hydrogenolyseprodukt.9. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of acetic acid, and ethanol is a hydrogenolysis product. 10. Fremgangsmåte ifølge krav 9, karakterisert ved at-karboksylsyreesteren velges fra metylacetat, etylacetat, sek-butylacetat, t-butylacetat, fenylacetat, cykloheksylacetat og benzylacetat.10. Method according to claim 9, characterized in that the at-carboxylic acid ester is selected from methyl acetate, ethyl acetate, sec-butyl acetate, t-butyl acetate, phenyl acetate, cyclohexyl acetate and benzyl acetate. .11. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en ester av smørsyre, og n-butanol er et hydrogenolyseprodukt,..11. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of butyric acid, and n-butanol is a hydrogenolysis product. 12. Fremgangsmåte' ifølge krav 11, karakterisert V e d at karboksylsyreesteren er n-butylbutyrat.12. Method according to claim 11, characterized in that the carboxylic acid ester is n-butyl butyrate. 13. Fremgangsmåte, ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en ester av.oksalsyre, og etylenglykol er et hydrogenolyseprodukt.13. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of oxalic acid, and ethylene glycol is a hydrogenolysis product. 14. Fremgangsmåte ifølge krav 13, karakterisert ved at karboksylsyreesteren er di-n-butyloksalat.14. Process according to claim 13, characterized in that the carboxylic acid ester is di-n-butyl oxalate. 15. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en. ester av en syre valgt fra maleinsyre, fumarsyre, acetylen-dikarboksylsyre og ravsyre, og hydrogenolysen gir 1,4-butandiolO g/eller tetrahydrofuran.15. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is a. ester of an acid selected from maleic acid, fumaric acid, acetylene dicarboxylic acid and succinic acid, and the hydrogenolysis gives 1,4-butanediolO g/or tetrahydrofuran. 16. Fremgangsmåte ifølge krav 15', karakterisert ve d at karboksylsyreesteren er dietylsuccinat eller dietylmaleat.16. Process according to claim 15', characterized in that the carboxylic acid ester is diethyl succinate or diethyl maleate. 17. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en17. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is a ester av fenyleddiksyre, og 2-fenyletanol er et hydrogenolyseprodukt.ester of phenylacetic acid, and 2-phenylethanol is a hydrogenolysis product. 18..Fremgangsmåte ifølge krav 17, karakterisert , ved at karboksylsyreesteren er etylfenylacetat.18.. Method according to claim 17, characterized in that the carboxylic acid ester is ethyl phenyl acetate. 19. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en ester av melkesyre, og 1,2-propandiol er et hydrogenolyseprodukt4 19. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of lactic acid, and 1,2-propanediol is a hydrogenolysis product4 20. Fremgangsmåte ifølge krav 19, karakterisert ved at karboksylsyreesteren er etyllaktat.20. Method according to claim 19, characterized in that the carboxylic acid ester is ethyl lactate. 21. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert , ved at karboksylsyreesteren er en ester av adipinsyre, og 1,6-heksandiol er et hydrogenolyseprodukt.21. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of adipic acid, and 1,6-hexanediol is a hydrogenolysis product. 22. Fremgangsmåte ifølge krav 21, karakterisert ved at karboksylsyreesteren er dimetylådipat.22. Method according to claim 21, characterized in that the carboxylic acid ester is dimethyl adipate. .23. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert vedat karboksylsyreesteren er et lakton, og en diol er et hydrogenolyseprodukt..23. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is a lactone, and a diol is a hydrogenolysis product. 24. Fremgangsmåte ifølge krav 23, karakterisert ved at karboksylsyreesteren er y-butyrolakton, og 1,4-butandiol er et hydrogenolyseprodukt.24. Method according to claim 23, characterized in that the carboxylic acid ester is γ-butyrolactone, and 1,4-butanediol is a hydrogenolysis product. 25. Fremgangsmåte ifølge et av kravene 1 til 6, karakterisert ved at karboksylsyreesteren er en ester av glykolsyre, og etylenglykol er et hydrogenolyseprodukt.25. Method according to one of claims 1 to 6, characterized in that the carboxylic acid ester is an ester of glycolic acid, and ethylene glycol is a hydrogenolysis product. 2 6, Fremgangsmåte ifølge krav 25, karakterisert ved at karboksylsyreesteren er metylglykolat.2 6, Process according to claim 25, characterized in that the carboxylic acid ester is methyl glycolate. 27. Fremgangsmåte ifølge et av kravene 1 til 26, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en., blanding som før reduksjon omfattet fra ca. 10 til ca. 70 vekt% CuO og ca. 90,til ca. 30 vekt% ZnO.27. Method according to one of claims 1 to 26, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a., mixture which before reduction comprised from approx. 10 to approx. 70% by weight CuO and approx. 90, to approx. 30 wt% ZnO. 28. Fremgangsmåte ifølge krav 27, karakterisert ved at blandingen omfatter fra ca. 20 til ca. 40 vekt% CuO og fra ca. 60 til 80 vékt% ZnO.28. Method according to claim 27, characterized in that the mixture comprises from approx. 20 to approx. 40% by weight CuO and from approx. 60 to 80% by weight ZnO. 29. Fremgangsmåte ifølge et av kravene 1 til 26,29. Method according to one of claims 1 to 26, karakterisert ved at katalysatoren omfatter encharacterized in that the catalyst comprises a redusert•blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfattet fra ca. 65 til ca. 85 vekt% CuO og ca. 15 til ca. 35 vekt% ZnO.reduced•mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprised from approx. 65 to approx. 85% by weight CuO and approx. 15 to approx. 35 wt% ZnO. 30. Fremgangsmåte for fremstilling av etylenglykol som omfatter hydrogenolyse av en oksalsyreester ved at en blanding innehold30. Process for the production of ethylene glycol comprising hydrogenolysis of an oxalic acid ester in that a mixture containing ende esteren og hydrogen bringes i kontakt med en hydrogenolyse-ka.talysator . ved forhøyet temperatur, karakterisert ved at en dampformig blanding omfattende esteren og hydrogen bringes i kontakt med en katalysator som omfatter en redusert blanding av kobberoksyd ,og sinkoksyd, ved en temperatur i omend the ester and hydrogen are brought into contact with a hydrogenolysis catalyst. at an elevated temperature, characterized in that a vaporous mixture comprising the ester and hydrogen is brought into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature of about rådet fra ca. 75°C opp til ca. 300°C og ved et trykk i området 2 fra ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm absolutt (ca. 9813 kPa) , og resulterende etylenglykol utvinnes.advised from approx. 75°C up to approx. 300°C and at a pressure in the range 2 from approx. 0.1 kg/cm absolute (approx. 9.8 kPa) up to approx. 100 kg/cm absolute (approx. 9813 kPa), and the resulting ethylene glycol is recovered. 31. Fremgangsmåte ifølge krav 30, karakterisert ved at ■ trykket er i området fra ca. 0,1 kg/cm <2> absolutt (ca.' 9,8 kPa) .til ca..50 kg/cm <2> absolutt (ca. 4906 kPa) .31. Method according to claim 30, characterized in that ■ the pressure is in the range from approx. 0.1 kg/cm <2> absolute (approx.' 9.8 kPa) .to approx..50 kg/cm <2> absolute (approx. 4906 kPa) . 32. Fremgangsmåte ifølge krav 30 eller '31, karakterisert ved at trykket er i området fra ca. 5 kg/cm 2 absolutt (ca. 491 kPa) til ca. 35 kg/cm 2absolutt (ca. 3435 kPa).32. Method according to claim 30 or '31, characterized in that the pressure is in the range from approx. 5 kg/cm 2 absolute (approx. 491 kPa) to approx. 35 kg/cm 2absolute (approx. 3435 kPa). 33. Fremgangsmåte ifølge et av kravene 30 til 32, karakterisert ved at temperaturen er i området fra ca. 180°C til ca. 240<Q> C,33. Method according to one of claims 30 to 32, characterized in that the temperature is in the range from approx. 180°C to approx. 240<Q>C, 34. Fremgangsmåte ifølge et av kravene 30 til 33, karakterisert ved at karboksylsyreesteren er di-n-butyloksalat.34. Method according to one of claims 30 to 33, characterized in that the carboxylic acid ester is di-n-butyl oxalate. 35. Fremgangsmåte ifølge et av kravene 30 til 34, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet, fra en blanding som før reduksjon omfatter fra ca. 10 til ca. 70 vekt% CuO og ca. 90. til ca. 30.vekt%.ZnO.35. Method according to one of claims 30 to 34, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 10 to approx. 70% by weight CuO and approx. 90. to approx. 30.wt%.ZnO. 36.. Fremgangsmåte ifølge krav 35,- karakterisert ved at blandingen omfatter fra ca. 20 til ca. 40 vékt% CuO og fra ca. 60 til 80 vekti ZnO.36.. Method according to claim 35, characterized in that the mixture comprises from approx. 20 to approx. 40 wt% CuO and from approx. 60 to 80 wt% ZnO. 37. Fremgangsmåte ifølge et av kravene 30 til 34, karakterisert ved at katalysatoren omfatter en37. Method according to one of claims 30 to 34, characterized in that the catalyst comprises a redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter ca. 65 til ca. 85 vekt% CuO og ca. 15 til ca. 35 vekt% ZnO.reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises approx. 65 to approx. 85% by weight CuO and approx. 15 to approx. 35 wt% ZnO. 38. Fremgangsmåte for fremstilling av'metanol, karakterisert ved at en dampformig blanding inneholdende en maursyreester og hydrogen bringes i kontakt med en katalysator som omfatter en redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C opp til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm 2 absolutt (ca. 9813 kPa) , og den resulterende metanol utvinnes.38. Process for the production of methanol, characterized in that a vaporous mixture containing a formic acid ester and hydrogen is brought into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm absolute (approx. 9.8 kPa) up to approx. 100 kg/cm 2 absolute (about 9813 kPa), and the resulting methanol is recovered. 39. Fremgangsmåte ifølge krav 38, karakterisert ved at trykket er i området fra ca. 0,1 kg/cm 2absolutt (ca. 9,8 kPa) til ca. 50 kg/cm <2> absolutt (ca, 4906 kPa).39. Method according to claim 38, characterized in that the pressure is in the range from approx. 0.1 kg/cm 2absolute (approx. 9.8 kPa) to approx. 50 kg/cm <2> absolute (approx. 4906 kPa). 40. Fremgangsmåte ifølge krav 38 eller 39, karakterisert ved at trykket er i området fra ca. 5 kg/cm <2> absolutt (ca,. 491 kPa). til ca.-35 kg/cm 2 absolutt (ca. 3435 kPa) .40. Method according to claim 38 or 39, characterized in that the pressure is in the range from approx. 5 kg/cm <2> absolute (approx. 491 kPa). to approx.-35 kg/cm 2 absolute (approx. 3435 kPa) . 41. Fremgangsmåte.ifø lge et av kravene 38 til 40, karakterisert ved at temperaturen er i området fra ca. 130°C til ca. 220°C.41. Method according to one of claims 38 to 40, characterized in that the temperature is in the range from approx. 130°C to approx. 220°C. 42., Fremgangsmåte ifølge et av kravene 38 til 41, karakterisert ved at maursyreesteren er valgt fra-metylformiat, isopropylformiat og t-butylformiat:42., Method according to one of claims 38 to 41, characterized in that the formic acid ester is selected from methyl formate, isopropyl formate and t-butyl formate: 43. •Fremgangsmåté ifølge et av kravene 38 til 42,43. •Procedure according to one of claims 38 to 42, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd. avledet .fra en blanding som før reduksjon omfatter fra ca. 10' til ca. 70 vekt% CuO og ca. 90 til ca. 30 vekt% ZnO.characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide. derived .from a mixture which before reduction comprises from approx. 10' to approx. 70% by weight CuO and approx. 90 to approx. 30 wt% ZnO. 44. Fremgangsmåte ifølge krav 43, karakterisert ved at blandingen omfatter fra ca. 20 til ca. 40. vekt% CuO og fra ca. 60 til 80 vekt% ZnO.44. Method according to claim 43, characterized in that the mixture comprises from approx. 20 to approx. 40% by weight CuO and from approx. 60 to 80 wt% ZnO. .45. Fremgangsmåte ifølge et av kravene 38 til 42, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 65 til ca. 85 vekt% CuO og ca. 15 til ca. 35 vekt% ZnO..45. Method according to one of claims 38 to 42, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 65 to approx. 85% by weight CuO and approx. 15 to approx. 35 wt% ZnO. 46. Fremgangsmåte for fremstilling av etanol, karakterisert ved at en dampformig blanding inneholdende en eddiksyreester og hydrogen bringes i kontakt med en katalysator som omfatter en redusert blanding av kobberoksyd og sink oksyd, ved en temperatur i området fra ca. 75°C opp til ca.46. Process for producing ethanol, characterized in that a vaporous mixture containing an acetic acid ester and hydrogen is brought into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300°C og ved et trykk i området fra ca. 0,1 kg/cm2 absolutt300°C and at a pressure in the range from approx. 0.1 kg/cm2 absolute ■ 2■ 2 (ca. 9,8 kPa) opp til ca.. 100 kg/cm absolutt (ca. 9813 kPa) ,(approx. 9.8 kPa) up to approx. 100 kg/cm absolute (approx. 9813 kPa), og resulterende etanol utvinnes.and resulting ethanol is recovered. 47. Fremgangsmåte ifølge, krav 46, karakterisert ved at'trykket er i området fra ca. • 0,1 kg/cm 2absolutt (ca. 9,8 kPa) til ca. 50 kg/cm2 absolutt (ca. 4906 kPa).47. Method according to claim 46, characterized in that the pressure is in the range from approx. • 0.1 kg/cm2absolute (approx. 9.8 kPa) to approx. 50 kg/cm2 absolute (approx. 4906 kPa). 48. Fremgangsmåte ifølge krav 46 eller 47, karakterisert ved at trykket er i området fra ca. 5 kg/cm2 absolutt (ca. 491 kPa) til cå. 35 kg/cm 2 absolutt (ca. 3435 kPa)'.48. Method according to claim 46 or 47, characterized in that the pressure is in the range from approx. 5 kg/cm2 absolute (approx. 491 kPa) to c. 35 kg/cm 2 absolute (approx. 3435 kPa)'. .49. Fremgangsmåte ifølge et av kravene 46 til 48, karakterisert ved at temperaturen er i området fra ca. 180°C til ca. 240°C..49. Method according to one of claims 46 to 48, characterized in that the temperature is in the range from approx. 180°C to approx. 240°C. 50. Fremgangsmåte ifølge et av kravene 4 6 til 49, karakterisert ved at eddiksyreesteren er valgt fra metylacetat, etylacetat, sek-butylacetat og t-butylacetat.50. Method according to one of claims 4 6 to 49, characterized in that the acetic acid ester is selected from methyl acetate, ethyl acetate, sec-butyl acetate and t-butyl acetate. 51. Fremgangsmåte ifølge et av kravene 46 til 50, karakterisert ved at katalysatoren omfatter en redusert blanding av.kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 10 til ca. 70 vekt% CuO og ca, 90 til ca. 30 vekt% ZnO.51. Method according to one of claims 46 to 50, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 10 to approx. 70% by weight CuO and approx. 90 to approx. 30 wt% ZnO. 52. Fremgangsmåte ifølge krav 51, karakterisert ved at blandingen omfatter fra ca. 20 til ca. 40 vekt% CuO bg fra ca. 60 til 80 vekt% ZnO..52. Method according to claim 51, characterized in that the mixture comprises from approx. 20 to approx. 40 wt% CuO bg from approx. 60 to 80% by weight ZnO.. 53. Fremgangsmåte ifølge et av kravene 4 6 til 50, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 65 til ca. 85 vekt% CuO og ca. 15 til ca. 35 vekt% ZnO.53. Method according to one of claims 4 6 to 50, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 65 to approx. 85% by weight CuO and approx. 15 to approx. 35 wt% ZnO. 54. Fremgangsmåte for fremstilling av 1,4-b.utandiol og/eller tetrahydrofuran, karakterisert ved at en dampformig blanding inneholdende en ester av en syre valgt fra maleinsyre, fumarsyre, acetylen-dikarboksyisyre og ravsyre og hydrogen bringes i kontakt med en katalysator som omfatter en54. Process for the production of 1,4-butanediol and/or tetrahydrofuran, characterized in that a vaporous mixture containing an ester of an acid selected from maleic acid, fumaric acid, acetylene dicarboxylic acid and succinic acid and hydrogen is brought into contact with a catalyst which includes a redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C opp til ca. 300°C og ved et trykk i området fra ca. 0,1 kg/cm <2> absolutt (ca.- 9,8 kPa) opp til ca.reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300°C and at a pressure in the range from approx. 0.1 kg/cm <2> absolute (approx. - 9.8 kPa) up to approx. 22 100 kg/cm absolutt (ca. 9813 kPa), og resulterende 1,4-butandiol og/eller tetrahydrofuran utvinnes.100 kg/cm absolute (about 9813 kPa), and the resulting 1,4-butanediol and/or tetrahydrofuran are recovered. 55. Fremgangsmåte ifølge krav 54, karakterisert55. Method according to claim 54, characterized 22 ved at trykket er i området fra ca. 0,1 kg/cm absolutt (ca. 9,8 kPa) til ca. 50 kg/cm <2> absolutt (ca. 4906 kPa) .in that the pressure is in the range from approx. 0.1 kg/cm absolute (approx. 9.8 kPa) to approx. 50 kg/cm <2> absolute (approx. 4906 kPa) . 56.. Fremgangsmåte ifølge krav 54 eller 55, karakter-.56.. Method according to claim 54 or 55, character-. isert ved at trykket er i området fra ca. 5 kg/cm2 absolutt (ca. 491 kPa) til ca. 35 kg/cm 2 absolutt (ca. 3435 kPa).in that the pressure is in the range from approx. 5 kg/cm2 absolute (approx. 491 kPa) to approx. 35 kg/cm 2 absolute (approx. 3435 kPa). 57. - Fremgangsmåte ifølge et av kravene 54 til 56, karakterisert ved at temperaturen er i området fra ca. 180°C til ca. 240°C.57. - Method according to one of claims 54 to 56, characterized in that the temperature is in the range from approx. 180°C to approx. 240°C. 58. Fremgangsmåte ifølge et av kravene 54 til 57, karakterisert ved at esteren er dietylmaleat.58. Method according to one of claims 54 to 57, characterized in that the ester is diethyl maleate. 59. Fremgangsmåte ifølge et av kravene 54 til 58, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 10 til ca. 70 vekt% CuO og ca. 90 til ca. 30 vekt% ZnO.59. Method according to one of claims 54 to 58, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 10 to approx. 70% by weight CuO and approx. 90 to approx. 30 wt% ZnO. 60. Fremgangsmåte ifølge krav 59, karakterisert ved at blandingen omfatter fra ca. 20 til ca. 40 vekt% CuO og fra ca. 60 til 80 vekt% ZnO.60. Method according to claim 59, characterized in that the mixture comprises from approx. 20 to approx. 40% by weight CuO and from approx. 60 to 80 wt% ZnO. 61. Fremgangsmåte ifølge et av kravene 54 til 58, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 65 til ca. 85 vekt% CuO og ca. 15" til ca. 35 vekt% ZnO.61. Method according to one of claims 54 to 58, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 65 to approx. 85% by weight CuO and approx. 15" to about 35 wt% ZnO. 62. Fremgangsmåte for fremstilling av etylenglykol, karakterisert ved at en dampformig blanding62. Process for producing ethylene glycol, characterized in that a vaporous mixture inneholdende en glykolsyreester og hydrogen bringes i kontakt med en katalysator som omfatter, en redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C opp til ca. 300 C og ved et trykk i området fra ca. 0,1 kg/cm <2>containing a glycolic acid ester and hydrogen is brought into contact with a catalyst comprising, a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300 C and at a pressure in the range from approx. 0.1 kg/cm <2> absolutt (ca. 9,8 kPa) opp til.ca. 100 kg/cm <2> absolutt (ca.absolute (approx. 9.8 kPa) up to approx. 100 kg/cm <2> absolute (approx. 9813 kPa), og resulterende etylenglykol utvinnes.9813 kPa), and the resulting ethylene glycol is recovered. 63. Fremgangsmåte ifølge krav 62, karakterisert v e d' at trykket er i området fra ca. 0,1 kg/cm 2absolutt (ca. 9,8 kPa) til ca. 50 kg/cm 2 absolutt (ca. 4906 kPa). '63. Method according to claim 62, characterized in that the pressure is in the range from approx. 0.1 kg/cm 2absolute (approx. 9.8 kPa) to approx. 50 kg/cm 2 absolute (approx. 4906 kPa). ' 64. Fremgangsmåte ifølge krav 62 eller 63, karakterisert ved at trykket er i området fra. ca. 5 kg/cm <2> absolutt (ca. 491 kPa) til ca. 35 kg/cm 2 absolutt (ca. 34'35 kPa).64. Method according to claim 62 or 63, characterized in that the pressure is in the range from. about. 5 kg/cm <2> absolute (approx. 491 kPa) to approx. 35 kg/cm 2 absolute (approx. 34'35 kPa). 65. Fremgangsmåte ifølge et av kravene 62 til 64, karakterisert ved at temperaturen er i området fra ca. 180°C til ca. 240°C.65. Method according to one of claims 62 to 64, characterized in that the temperature is in the range from approx. 180°C to approx. 240°C. 66. Fremgangsmåte ifølge et av kravene 62 til 65, karakterisert ved at glykolsyreesteren er metylglykolat.66. Method according to one of claims 62 to 65, characterized in that the glycolic acid ester is methyl glycolate. 67. Fremgangsmåte ifølge et av kravene .62 til 66, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 10 til ca, 70 vekt% CuO og- ca. 90 til ca. 30 vekt% ZnO.67. Method according to one of claims 62 to 66, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 10 to approx. 70% by weight CuO and approx. 90 to approx. 30 wt% ZnO. 68. Fremgangsmåte ifølge krav 67, karakterisert v e d at blandingen omfatter fra ca. 20 til ca. 40 vekt% CuO og fra ca. 60 til 80 vekt% ZnO.68. Method according to claim 67, characterized in that the mixture comprises from approx. 20 to approx. 40% by weight CuO and from approx. 60 to 80 wt% ZnO. 69. Fremgangsmåte ifølge et av kravene 62 til 66, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra >en blanding som før reduksjon omfatter fra ca. 65 til ca. 85 vekt% CuO og ca. 15 til ca. 35 vekt% ZnO.69. Method according to one of claims 62 to 66, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from > a mixture which before reduction comprises from approx. 65 to approx. 85% by weight CuO and approx. 15 to approx. 35 wt% ZnO. 70. Fremgangsmåte for fremstilling av .1,4-butandiol, karakterisert ved at en dampformig blanding inneholdende butyrolakton og hydrogen bringes i kontakt med en katalysator som omfatter en redusert blanding av kobberoksyd og sinkoksyd, ved en temperatur i området fra ca. 75°C opp til ca.70. Process for the production of .1,4-butanediol, characterized in that a vaporous mixture containing butyrolactone and hydrogen is brought into contact with a catalyst comprising a reduced mixture of copper oxide and zinc oxide, at a temperature in the range from approx. 75°C up to approx. 300 C og ved et trykk i området fra ca..0,1 kg/cm 2 absolutt (ca. 9,8 kPa) opp til ca. 100 kg/cm <2> absolutt (ca. 9813 kPa), og resulterende 1,4-butandiol utvinnes.300 C and at a pressure in the range from approx..0.1 kg/cm 2 absolute (approx. 9.8 kPa) up to approx. 100 kg/cm <2> absolute (about 9813 kPa), and the resulting 1,4-butanediol is recovered. 71. Fremgangsmåte ifølge krav 70, karakterisert ved åt trykket er i området fra ca. 0,1 kg/cm 2 absolutt 271. Method according to claim 70, characterized in that the pressure is in the range from approx. 0.1 kg/cm 2 absolute 2 (ca, 9,8 kPa) til ca..50 kg/cm absolutt (ca. 4906 kPa).(approx. 9.8 kPa) to approx. 50 kg/cm absolute (approx. 4906 kPa). . . 72. Fremgangsmåte ifølge krav 70 eller 71, karakt er-72. Method according to claim 70 or 71, character is isert ved at trykket.er i området fra ca. 5 kg/cm <2> absolutt (ca. 491 kPa) til ca. 45 kg/cm 2absolutt (ca. 4416 kPa).in that the pressure is in the range from approx. 5 kg/cm <2> absolute (approx. 491 kPa) to approx. 45 kg/cm 2absolute (approx. 4416 kPa). 73. Fremgangsmåte ifølge et av kravene 70 til 72,.73. Method according to one of claims 70 to 72. karakterisert ved at temperaturen er i området fra ca. 180°C til ca. 240°C.characterized by the temperature being in the range from approx. 180°C to approx. 240°C. 74. Fremgangsmåte ifølge et av kravene 70 til 73, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 10 til ca. 70 vekti74. Method according to one of claims 70 to 73, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 10 to approx. 70 weight CuO og ca. 90 til ca. 30 vekti ZnO.CuO and approx. 90 to approx. 30 wt in ZnO. 75. Fremgangsmåte ifølge krav 74, karakterisert ved. at blandingen omfatter fra ca. 20 til ca. 40-vekti CuO og fra ca. 60 til 80 vekti ZnO.75. Method according to claim 74, characterized by. that the mixture comprises from approx. 20 to approx. 40-weight CuO and from approx. 60 to 80 wt% ZnO. 76. Fremgangsmåte ifølge et av kravene 70 til 73, karakterisert ved at katalysatoren omfatter en redusert blanding av kobberoksyd og sinkoksyd avledet fra en blanding som før reduksjon omfatter fra ca. 65 til ca. 85 vekti CuO og ca. 15 til ca. 35 vekti ZnO.76. Method according to one of claims 70 to 73, characterized in that the catalyst comprises a reduced mixture of copper oxide and zinc oxide derived from a mixture which before reduction comprises from approx. 65 to approx. 85 wt in CuO and approx. 15 to approx. 35 wt in ZnO. 77. Produkt fra en fremgangsmåte ifølge et av kravene 1 til 76.77. Product from a method according to one of claims 1 to 76.
NO824396A 1981-04-29 1982-12-28 PROCEDURE FOR HYDROGENOLYSE OF CARBOXYLIC ACID ESTES. NO824396L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25873381A 1981-04-29 1981-04-29
GB8203701 1982-02-09

Publications (1)

Publication Number Publication Date
NO824396L true NO824396L (en) 1982-12-28

Family

ID=26281940

Family Applications (1)

Application Number Title Priority Date Filing Date
NO824396A NO824396L (en) 1981-04-29 1982-12-28 PROCEDURE FOR HYDROGENOLYSE OF CARBOXYLIC ACID ESTES.

Country Status (13)

Country Link
JP (1) JPS58500993A (en)
AU (1) AU560590B2 (en)
BR (1) BR8207962A (en)
CA (1) CA1229096A (en)
FI (1) FI831848L (en)
GB (1) GB2116552B (en)
IT (1) IT1190783B (en)
MX (1) MX156577A (en)
NL (1) NL191438C (en)
NO (1) NO824396L (en)
NZ (1) NZ200442A (en)
SE (1) SE452154B (en)
WO (1) WO1982003854A1 (en)

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3363702D1 (en) * 1982-03-26 1986-07-03 Davy Mckee London Process for the production of ethanol
US4588848A (en) * 1984-11-01 1986-05-13 Air Products And Chemicals, Inc. Synthesis of neoalkanols
US4593147A (en) * 1984-11-01 1986-06-03 Air Products And Chemicals, Inc. Synthesis of neoalkanes
DE3510883A1 (en) * 1985-03-26 1986-10-09 Kali-Chemie Ag, 3000 Hannover METHOD FOR PRODUCING 2.2.2.-TRIFLUORAETHANOL
US4652685A (en) * 1985-11-15 1987-03-24 General Electric Company Hydrogenation of lactones to glycols
US4837368A (en) * 1988-02-01 1989-06-06 Eastman Kodak Company Low pressure catalytic hydrogenation of carbonyl-containing compounds and supported catalysts therefor
US4837367A (en) * 1987-08-03 1989-06-06 Eastman Kodak Company Low pressure catalytic hydrogenation of carbonyl-containing compounds
US4810807A (en) * 1987-10-13 1989-03-07 The Standard Oil Company Hydrogenation of maleic anhydride to tetrahydrofuran
JP2772524B2 (en) * 1988-07-15 1998-07-02 東燃株式会社 Method for producing 1,4-butanediol
ES2064715T3 (en) * 1989-01-17 1995-02-01 Davy Mckee London PROCEDURE FOR OBTAINING FATTY ALCOHOLS.
GB8917862D0 (en) * 1989-08-04 1989-09-20 Davy Mckee London Process
DE3930288A1 (en) * 1989-09-11 1991-03-21 Henkel Kgaa COPPER SILICATE CATALYST, ITS MANUFACTURING METHOD AND ITS USE
CA2026275C (en) * 1989-10-17 2000-12-05 Deepak S. Thakur Hydrogenation catalyst, process for preparing and process of using said catalyst
JP2595358B2 (en) * 1989-12-07 1997-04-02 東燃株式会社 Method for producing 1,4-butanediol and tetrahydrofuran
GB9025708D0 (en) * 1990-11-27 1991-01-09 Unilever Plc Fatty ester hydrogenation
DE4141220A1 (en) * 1991-12-13 1993-06-17 Basf Ag PROCESS FOR THE PREPARATION OF PRIMARY ALCOHOLS
DE4142899A1 (en) * 1991-12-23 1993-06-24 Sued Chemie Ag METHOD FOR PRODUCING ALCOHOLS BY CATALYTIC HYDRATION OF CARBONIC ACID ALKYL ESTERS
DE4206750A1 (en) * 1992-03-04 1993-09-09 Hoechst Ag METHOD FOR PRODUCING ALCOHOLS OR AMINES
DE4233431A1 (en) * 1992-10-05 1994-04-07 Basf Ag Process for the hydrogenation of citric acid
US5334779A (en) * 1993-06-01 1994-08-02 Eastman Kodak Company Catalyst compositions and the use thereof in the hydrogenation of carboxylic acid esters
WO1995010497A1 (en) * 1993-10-08 1995-04-20 Ube Industries, Ltd. Process for producing diol compound
GB9324823D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324784D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324782D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324752D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324753D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324785D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324786D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
GB9324783D0 (en) * 1993-12-02 1994-01-19 Davy Mckee London Process
DE4431220A1 (en) * 1994-09-02 1996-03-07 Bayer Ag Process for the preparation of 1,4-butanediol from maleic anhydride
DE19500783A1 (en) * 1995-01-13 1996-07-18 Bayer Ag Process for the preparation of aliphatic alpha, omega diols
DE69608105T2 (en) * 1995-06-20 2000-11-09 Kao Corp., Tokio/Tokyo METHOD FOR PRODUCING AN ALCOHOL
DE19711404A1 (en) * 1997-03-19 1998-09-24 Hoechst Ag Process for the preparation of aromatic alcohols
DE19754788A1 (en) * 1997-12-10 1999-06-17 Bayer Ag Process for the preparation of aliphatic alpha, omega diols
US7074603B2 (en) 1999-03-11 2006-07-11 Zeachem, Inc. Process for producing ethanol from corn dry milling
ES2400285T3 (en) 1999-03-11 2013-04-08 Zeachem, Inc. Process to produce ethanol
DE10207443A1 (en) 2002-02-22 2003-09-04 Bayer Ag Process and catalyst for the production of alcohols
DE10225926A1 (en) 2002-06-11 2003-12-24 Basf Ag Process for the production of butanediol
DE10225927A1 (en) 2002-06-11 2003-12-24 Basf Ag Process for the production of butanediol by combined gas phase and liquid phase synthesis
MX306561B (en) 2004-01-29 2013-01-09 Zeachem Inc Recovery of organic acids.
CN105936887A (en) 2007-03-16 2016-09-14 基因组股份公司 Compositions and methods for the biosynthesis of 1,4-butanediol and its precursors
US7947483B2 (en) 2007-08-10 2011-05-24 Genomatica, Inc. Methods and organisms for the growth-coupled production of 1,4-butanediol
GB0719251D0 (en) 2007-10-03 2007-11-14 Davy Process Techn Ltd Process
EP2245137B1 (en) 2008-01-22 2017-08-16 Genomatica, Inc. Methods and organisms for utilizing synthesis gas or other gaseous carbon sources and methanol
EP2252697A4 (en) 2008-02-07 2012-05-30 Zeachem Inc Indirect production of butanol and hexanol
EP2262901B1 (en) 2008-03-05 2018-11-21 Genomatica, Inc. Primary alcohol producing organisms
BRPI0911759A2 (en) 2008-05-01 2019-09-24 Genomatica Inc microorganism for the production of methacrylic acid
MX302494B (en) 2008-05-07 2012-08-17 Zeachem Inc Recovery of organic acids.
JP5912529B2 (en) 2008-09-10 2016-04-27 ゲノマチカ, インク. Microorganisms for the production of 1,4-butanediol
CN102292310B (en) 2008-12-02 2014-03-26 得克萨斯A&M大学体系 Alternative paths to alcohols and hydrocarbons from biomass
GB0906031D0 (en) 2009-04-07 2009-05-20 Davy Process Techn Ltd Process
WO2010127303A1 (en) 2009-04-30 2010-11-04 Genomatica, Inc. Organisms for the production of isopropanol, n-butanol, and isobutanol
CN102625846B (en) 2009-04-30 2016-08-03 基因组股份公司 For producing the biology of 1,3 butylene glycol
CN102498215A (en) 2009-06-04 2012-06-13 基因组股份公司 Microorganisms for the production of 1,4-butanediol and related methods
US20110124911A1 (en) 2009-08-05 2011-05-26 Burk Mark J Semi-synthetic terephthalic acid via microorganisms that produce muconic acid
EE200900073A (en) 2009-09-22 2011-06-15 Nordbiochem O� Catalyst and Method for the Catalytic Hydrogenation of Carboxylic Acid Esters to Gl Schools
BR112012009332A2 (en) 2009-10-23 2015-09-15 Genomatica Inc microorganism for the production of aniline
US8530210B2 (en) 2009-11-25 2013-09-10 Genomatica, Inc. Microorganisms and methods for the coproduction 1,4-butanediol and gamma-butyrolactone
EP2529011A4 (en) 2010-01-29 2015-07-15 Genomatica Inc Microorganisms and methods for the biosynthesis of p-toluate and terephthalate
EP2357037A1 (en) 2010-02-17 2011-08-17 LANXESS Deutschland GmbH Method for producing mechanically stable shaped catalysts
US9023636B2 (en) 2010-04-30 2015-05-05 Genomatica, Inc. Microorganisms and methods for the biosynthesis of propylene
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8846986B2 (en) 2011-04-26 2014-09-30 Celanese International Corporation Water separation from crude alcohol product
US8901358B2 (en) 2010-07-09 2014-12-02 Celanese International Corporation Esterification of vapor crude product in the production of alcohols
US9150474B2 (en) 2010-07-09 2015-10-06 Celanese International Corporation Reduction of acid within column through esterification during the production of alcohols
US8859827B2 (en) 2011-11-18 2014-10-14 Celanese International Corporation Esterifying acetic acid to produce ester feed for hydrogenolysis
US8846988B2 (en) 2010-07-09 2014-09-30 Celanese International Corporation Liquid esterification for the production of alcohols
BR112013001635A2 (en) 2010-07-26 2016-05-24 Genomatica Inc microorganism and methods for the biosynthesis of aromatics, 2,4-pentadienoate and 1,3-butadiene
US9000233B2 (en) 2011-04-26 2015-04-07 Celanese International Corporation Process to recover alcohol with secondary reactors for hydrolysis of acetal
US8907141B2 (en) 2011-04-26 2014-12-09 Celanese International Corporation Process to recover alcohol with secondary reactors for esterification of acid
WO2012149137A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
GB201119871D0 (en) 2011-11-17 2011-12-28 Davy Process Techn Ltd Process
US8853468B2 (en) 2011-11-18 2014-10-07 Celanese International Corporation Vapor esterification method to produce ester feed for hydrogenolysis
US9024089B2 (en) 2011-11-18 2015-05-05 Celanese International Corporation Esterification process using extractive separation to produce feed for hydrogenolysis
EP2782890A1 (en) 2011-11-22 2014-10-01 Celanese International Corporation Esterifying an ethanol and acetic acid mixture to produce an ester feed for hydrogenolysis
WO2013076747A1 (en) 2011-11-25 2013-05-30 Conser Spa Process for producing 1,4- butanediol by hydrogenating dialkyl maleate in mixed liquid/vapor phase
US8697802B2 (en) 2011-11-28 2014-04-15 Celanese International Corporation Process for producing polyvinyl alcohol or a copolymer thereof
US9029614B2 (en) 2011-12-14 2015-05-12 Celanese International Corporation Phasing reactor product from hydrogenating acetic acid into ethyl acetate feed to produce ethanol
US9051235B2 (en) 2012-02-07 2015-06-09 Celanese International Corporation Process for producing ethanol using a molar excess of hydrogen
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
EP2855687B1 (en) 2012-06-04 2020-04-22 Genomatica, Inc. Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds
CN102766021B (en) * 2012-07-24 2014-04-09 唐山市冀东溶剂有限公司 Production system and production method for continuously producing ethanol by ethyl acetate through using hydrogenation
CN104755449B (en) 2012-08-31 2016-09-21 罗门哈斯公司 The method being prepared alcohol by organic acid
GB201218078D0 (en) 2012-10-09 2012-11-21 Davy Process Techn Ltd Process
US8853469B2 (en) 2012-11-20 2014-10-07 Celanese International Corporation Combined column for separating products of different hydrogenation reactors
WO2014099433A1 (en) * 2012-12-20 2014-06-26 Archer Daniels Midland Company Biofuels production from bio-derived carboxylic-acid esters
KR101989655B1 (en) 2012-12-20 2019-06-14 아처 다니엘 미드랜드 캄파니 Hydrogenation products from biologically-derived carboxylic-acid esters
US8975451B2 (en) 2013-03-15 2015-03-10 Celanese International Corporation Single phase ester feed for hydrogenolysis
WO2014176514A2 (en) 2013-04-26 2014-10-30 Genomatica, Inc. Microorganisms and methods for production of 4-hydroxybutyrate, 1,4-butanediol and related compounds
DE102013106382A1 (en) 2013-06-19 2014-12-24 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for the preparation of fatty alcohols from fatty acid methyl ester
US20180222831A1 (en) * 2015-08-05 2018-08-09 White Dog Labs, Inc. Method for the production of at least one derivate of a carboxylic acid
GB201617698D0 (en) 2016-10-19 2016-11-30 Johnson Matthey Davy Technologies Limited Process
US10435349B2 (en) 2017-08-02 2019-10-08 Eastman Chemical Company Iron-catalyzed cross-coupling of methanol with secondary or tertiary alcohols to produce formate esters
US10544077B2 (en) 2017-08-02 2020-01-28 Eastman Chemical Company Process for making formic acid utilizing higher-boiling formate esters
US10266466B2 (en) 2017-08-02 2019-04-23 Eastman Chemical Company Iron-catalyzed transfer hydrogenation of esters to alcohols
US10570081B2 (en) 2017-08-02 2020-02-25 Eastman Chemical Company Process for making formic acid utilizing lower-boiling formate esters
US10266467B2 (en) 2017-08-02 2019-04-23 Eastman Chemical Company Synthesis of glycols via transfer hydrogenation of alpha-functional esters with alcohols
KR20230156824A (en) 2021-03-12 2023-11-14 꼰세르 엣세.삐.아. Process for co-production of dialkyl succinate and 1,4-butanediol by hydrogenating dialkyl maleate in two stages
CN113713829A (en) * 2021-10-09 2021-11-30 凯瑞环保科技股份有限公司 Preparation method of sec-butyl acetate hydrogenation catalyst

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248465A (en) * 1936-12-19 1941-07-08 American Hyalsol Corp Process for the reduction of fatty acids to alcohols
US2285448A (en) * 1937-10-30 1942-06-09 Du Pont Preparation of polyhydric alcohols
DE1005497B (en) * 1954-03-19 1957-04-04 Dehydag Gmbh Process for the production of alcohols
BE548808A (en) * 1955-07-08 1900-01-01
GB932991A (en) * 1959-02-02 1963-07-31 Asahi Denka Kogyo Kk Method for producing a copper containing catalyst
FR1303231A (en) * 1961-09-01 1962-09-07 Hydrierwerk Rodleben Veb Process for preparing alcohols
BE622053A (en) * 1961-09-02 1900-01-01
NL292315A (en) * 1962-05-05
AT257556B (en) * 1962-11-16 1967-10-10 Celanese Corp Process for the production of alcohols
DE1768313B2 (en) * 1968-04-27 1977-05-18 Henkel & Cie GmbH, 4000 Düsseldorf PROCESS FOR MANUFACTURING HIGHERMOLECULAR VALUE-VALUE ALCOHOLS
DE2455617C3 (en) * 1974-11-23 1982-03-18 Basf Ag, 6700 Ludwigshafen Process for the production of butanediol and / or tetrahydrofuran via the intermediate stage of γ-butyrolactone
DE2613226B2 (en) * 1976-03-27 1978-12-14 Henkel Kgaa, 4000 Duesseldorf Process for the continuous production of fatty alcohols
US4112245A (en) * 1976-08-18 1978-09-05 Atlantic Richfield Company Process for the preparation of ethylene glycol
BE864567A (en) * 1977-04-25 1978-07-03 Chevron Res PROCESS FOR HYDROGENATION OF ESTERS INTO ACOOLS
US4199479A (en) * 1978-02-24 1980-04-22 Chevron Research Company Hydrogenation catalyst

Also Published As

Publication number Publication date
NL191438B (en) 1995-03-01
SE8303027L (en) 1983-05-30
CA1229096A (en) 1987-11-10
BR8207962A (en) 1983-10-04
JPH0457655B2 (en) 1992-09-14
SE452154B (en) 1987-11-16
AU8336582A (en) 1982-12-07
NL191438C (en) 1995-07-04
IT1190783B (en) 1988-02-24
WO1982003854A1 (en) 1982-11-11
IT8220820A0 (en) 1982-04-20
JPS58500993A (en) 1983-06-23
FI831848A0 (en) 1983-05-24
GB8306413D0 (en) 1983-04-13
NZ200442A (en) 1985-10-11
SE8303027D0 (en) 1983-05-30
FI831848L (en) 1983-05-24
GB2116552A (en) 1983-09-28
MX156577A (en) 1988-09-13
GB2116552B (en) 1985-09-25
NL8220121A (en) 1983-07-01
AU560590B2 (en) 1987-04-09

Similar Documents

Publication Publication Date Title
NO824396L (en) PROCEDURE FOR HYDROGENOLYSE OF CARBOXYLIC ACID ESTES.
US4985572A (en) Catalyzed hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
KR910008935B1 (en) Process for the production of butane 1,4-diol
US5004845A (en) Hydrogenation of aldehydes
EP0198682B1 (en) Alcohols production by hydrogenation of carboxylic acids
US5149680A (en) Platinum group metal alloy catalysts for hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
JP4889860B2 (en) Process for the production of ethyl acetate
JP4050337B2 (en) Method for producing hydroxyl compound
US4751334A (en) Process for the production of butane-1,4-diol
JP4889859B2 (en) Processes for the purification of alkyl alkanoates
US4973717A (en) Production of alcohols and ethers by the catalysed hydrogenation of esters
JP4741073B2 (en) Process for producing 1,6-hexanediol and 6-hydroxycaproic acid or ester thereof
US4677234A (en) Process for the preparation of ethylene glycol
EP0074193B1 (en) Catalytic hydrogenation
GB2150560A (en) Production of alcohols by hydrogenolysis of esters
US6982357B2 (en) Process for the preparation of propane-1,3-diol by vapor phase hydrogenation of 3-hydroxypropanal, beta-propiolactone, oligomers of beta-propiolactone, esters of 3-hydroxypropanoic acid or mixtures thereof
US2251983A (en) Process for making vinyl esters and other esters of unsaturated alcohols
EP0151886A1 (en) Process for the preparation of esters
BE892958A (en) MEDICINAL PRODUCT BASED ON 3-METHYL-1 2- (2-NAPHTYLOXY) -ETHYL -2- PYRAZOLINE-5-ONE FOR REDUCING METASTASE
FR2521131A1 (en) Hydrogenolysis of carboxylic acid ester to alcohol(s) - using reduced mixt. of copper oxide and zinc oxide as catalyst
CA1287642C (en) Process for preparing cyclohexanonecarboxylic acid compounds
CA1051036A (en) Process for the production of butanediol
MXPA00010272A (en) Method for producing mixtures of 1,4-butanediol, tetrahydrofuran and&amp;ggr;-butyrolactone
GB1561666A (en) Process for producing tetrahydrofuran
MXPA00001667A (en) Method for producing 1,6-hexanediol