NO813177L - PROCEDURE FOR THE MANUFACTURE OF BURNER TREATMENT LIQUIDS - Google Patents

PROCEDURE FOR THE MANUFACTURE OF BURNER TREATMENT LIQUIDS

Info

Publication number
NO813177L
NO813177L NO813177A NO813177A NO813177L NO 813177 L NO813177 L NO 813177L NO 813177 A NO813177 A NO 813177A NO 813177 A NO813177 A NO 813177A NO 813177 L NO813177 L NO 813177L
Authority
NO
Norway
Prior art keywords
salt
polymer
water
stated
ethers
Prior art date
Application number
NO813177A
Other languages
Norwegian (no)
Inventor
Roy Francis House
Lonnie Daniel Hoover
Original Assignee
Nl Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nl Industries Inc filed Critical Nl Industries Inc
Publication of NO813177L publication Critical patent/NO813177L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/08Clay-free compositions containing natural organic compounds, e.g. polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/08Clay-free compositions containing natural organic compounds, e.g. polysaccharides, or derivatives thereof
    • C09K8/10Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/18Bridging agents, i.e. particles for temporarily filling the pores of a formation; Graded salts

Description

Foreliggende oppfinnelse vedrorer fremstilling av polymerholdige saltopplosninger, som er hensiktsmessige for forskjelli-ge anvendelser hvor det oppnåes okt viskositet, filtratsty-ring eller andre funksjonelle egenskaper som folge av polymer komposisjonen. The present invention relates to the production of polymer-containing salt solutions, which are suitable for various applications where increased viscosity, filtrate control or other functional properties are achieved as a result of the polymer composition.

Polymerholdige saltopplosninger er hensiktsmessige som bronnservicevæsker, f.eks. borevæsker, revisjonsvæsker, fullfo-ringsvæsker, tetningsvæsker, behandlingsvæsker for bronner og underjordiske formasjoner, for avstandsholdelse og bronnopp-givelse samt til andre anvendelser hvor det er behov for tyknede, vandige medier. Det er kjent å bruke hydrofile polymerer, som hydroksyetyl-cellulose (HEC), som tykningsmidler for vandige medier, f. eks. de som brukes i bronnservicevæsker. Men slike polymerer lar seg ikke lett hydratisere, solvatere eller dispergere i vandige opplosninger som inneholder ett eller flere vannloslige salter av flerverdige kationer som de sterke oljefelt-saltopplosninger med en storre tetthet enn 1,39 g/cm , som foretrekkes for fremstilling av bronnser-vicevæskene. Det kreves forhoyede temperaturer og/eller blanding med hoy skjærkraft i lengre tid for effektiv tykning av slike saltopplosninger med hydrofile polymermaterialer for at en homogen blanding skal oppnåes. I mange tilfelle, f. eks. i revisjonsoperasjoner, er det tilgjengelige utstyr for fremstilling av bronnbehandlingsvæskene egentlig ikke egnet for slike forhold. Folgelig er det vanligvis nodvendig å tilbe-rede slike tyknede saltopplosninger på et annet sted enn sel - ve bronnområdet eller å sirkulere væsken i det varme bore-hullet, hvis det er onskelig å benytte slike tyknede saltopplosninger. Polymer-containing salt solutions are suitable as well service fluids, e.g. drilling fluids, revision fluids, completion fluids, sealing fluids, treatment fluids for wells and underground formations, for distance maintenance and well abandonment as well as for other applications where there is a need for thickened, aqueous media. It is known to use hydrophilic polymers, such as hydroxyethyl cellulose (HEC), as thickeners for aqueous media, e.g. those used in well service fluids. But such polymers do not readily hydrate, solvate, or disperse in aqueous solutions containing one or more water-soluble salts of polyvalent cations such as the strong oilfield salt solutions with a density greater than 1.39 g/cm , which are preferred for the production of bronze- the vice fluids. Elevated temperatures and/or mixing with high shear force for a longer time are required for effective thickening of such salt solutions with hydrophilic polymer materials in order for a homogeneous mixture to be achieved. In many cases, e.g. in revision operations, the available equipment for producing the well treatment fluids is not really suitable for such conditions. Consequently, it is usually necessary to prepare such thickened salt solutions in a place other than the well area itself or to circulate the liquid in the hot borehole, if it is desirable to use such thickened salt solutions.

Foreliggende oppfinnelse går derfor ut på å tilveiebringe en fremgangsmåte for fremstilling av tyknede, polymerholdige saltopplosninger, særlig sterke saltopplosninger med storre tetthet enn 1,39 g/cm ved blanding med lav skjærkraft og uten varmetilforsel. The present invention therefore aims to provide a method for the production of thickened, polymer-containing salt solutions, particularly strong salt solutions with a density greater than 1.39 g/cm when mixed with low shear and without heat input.

Andre formål og fordeler ved oppfinnelsen vil fremgå av nedenstående beskrivelse, sammenholdt med de etterfSigende krav. Ifolge oppfinnelsen dannes en suspensjon av en hydrofil polymer og vann ved generell jevn dispersjon"av polymeren i vannet. Et uorganisk salt med positiv opplbsningsvarme settes deretter til suspensjonen uten ytre oppvarming, da den tilsatte saltmengde er tilstrekkelig til å forhoye dispersjonens temperatur til over 71,1°C som folge av saltets opplosningsvarme. Denne suspensjon kan benyttes direkte som bronnbehandlingsvæske, avhengig av den onskede tetthet. Other purposes and advantages of the invention will be apparent from the following description, together with the following claims. According to the invention, a suspension of a hydrophilic polymer and water is formed by general uniform dispersion of the polymer in the water. An inorganic salt with a positive heat of dissolution is then added to the suspension without external heating, as the added amount of salt is sufficient to raise the temperature of the dispersion to above 71, 1°C due to the salt's heat of solution.This suspension can be used directly as a well treatment fluid, depending on the desired density.

I et annet utforelseseksempel av oppfinnelsen blir det tilsatt tilstrekkelig sterk, vandig saltopplosning til den flytende suspensjon av polymeren for fremstilling av en bronnbehandlingsvæske med onsket tetthet. In another embodiment of the invention, a sufficiently strong, aqueous salt solution is added to the liquid suspension of the polymer to produce a well treatment fluid of the desired density.

De hydrofile polymerer som er hensiktsmessige for gjennomfo-ring av oppfinnelsen er findelte organiske polymerer, som generelt er vannopploselige eller dispergerbare i vann og som etter opplosning eller dispersjon i et vandig medium oker systemets viskositet, men ikke lett lar seg hydratisere, so-lubilisere eller dispergere etter tilsetning til sterke saltopplosninger som har storre tetthet enn 1,39 g/crn^ og inne-, holder opploselige salter av flerverdige kationer. Slike polymerer velges fra den gruppe som består av cellulosederivater, vanndispergerbare stivelsederivater, polysakkaridgummi og blandinger derav. Eksempler på cellulosederivater er karboksyalkyl-celluloseeterne, som karboksymetyl-cellulose og karboksyetyl-cellulosep hydroksyalkyl-celluloseetere, som hydroksyetyl-cellulose og hydroksypropyl-cellulose? og blandede celluloseetere, som karboksyalkyl-hydroksyalkyl-cellulose, dvs karboksymetyl-hydroksyetyl-cellulose? alkyl-hydroksyalkyl-cellulose? dvs metyl-hydroksyetyl-cellulose, metyl-hydroksypropyl-cellulosej alkyl-karboksyalkyl-cellulose, dvs etyl-karboksymetyl-cellulose, jfr US-PS 4 110 230. Eksempler på stivelsederivater er karboksyalkyl-stivelse-etere, som karboksymetyl-stivelse og karboksyetyl-stivelse; hydroksyalkyl-stivelse-etere, som hydroksyetyl-stivelse og hydroksypropyl-stivelse? og blandede stivelseetere, som karboksyalkyl-hydroksyalkyl-stivelse, dvs karboksymetyl-hydroksyetyl-stivelse? alkyl-hydroksyalkyl-stivelse, dvs metyl-hydroksyetyl-stivelse? alkyl-karboksyalkyl-stivelse, dvs etylkarboksy- metyl-stivelse. Eksempler på polysakkaridgummi omfatter: bio-polymerene, som Xanthomonas (xantan) gummi? galaktomannan-gummi, som guargummi, johannesbrodgummi, taragummi, glukoman-nangummi og derivater derav, især hydroksyalkylderivatene, jfr US-PS 4 021 355 og 4 105 461. Andre polymerer som kan brukes omfatter pre-gelatinert stivelsespulver og stabilisert, delvis dekstrinert polysakkaridpulver, som er toksisk ikke-ionisk. The hydrophilic polymers that are suitable for carrying out the invention are finely divided organic polymers, which are generally water-soluble or dispersible in water and which, after dissolution or dispersion in an aqueous medium, increase the viscosity of the system, but do not easily allow themselves to be hydrated, solubilized or disperse after addition to strong salt solutions which have a density greater than 1.39 g/crn^ and contain soluble salts of polyvalent cations. Such polymers are selected from the group consisting of cellulose derivatives, water-dispersible starch derivatives, polysaccharide gums and mixtures thereof. Examples of cellulose derivatives are the carboxyalkyl cellulose ethers, such as carboxymethyl cellulose and carboxyethyl cellulosep hydroxyalkyl cellulose ethers, such as hydroxyethyl cellulose and hydroxypropyl cellulose? and mixed cellulose ethers, such as carboxyalkyl-hydroxyalkyl-cellulose, ie carboxymethyl-hydroxyethyl-cellulose? alkyl-hydroxyalkyl-cellulose? i.e. methyl-hydroxyethyl-cellulose, methyl-hydroxypropyl-cellulosej alkyl-carboxyalkyl-cellulose, i.e. ethyl-carboxymethyl-cellulose, cf. US-PS 4 110 230. Examples of starch derivatives are carboxyalkyl-starch ethers, such as carboxymethyl-starch and carboxyethyl- starch; hydroxyalkyl starch ethers, such as hydroxyethyl starch and hydroxypropyl starch? and mixed starch ethers, such as carboxyalkyl-hydroxyalkyl starch, ie carboxymethyl-hydroxyethyl starch? alkyl-hydroxyalkyl-starch, i.e. methyl-hydroxyethyl-starch? alkyl-carboxyalkyl-starch, i.e. ethylcarboxy-methyl-starch. Examples of polysaccharide gums include: the bio-polymers, such as Xanthomonas (xanthan) gum? galactomannan gum, such as guar gum, locust bean gum, tara gum, glucomannan gum and derivatives thereof, especially the hydroxyalkyl derivatives, cf. US-PS 4,021,355 and 4,105,461. Other polymers that can be used include pre-gelatinized starch powder and stabilized, partially dextrinized polysaccharide powder, which is toxic non-ionic.

Spesielt foretrukket er HEC polymerene som generelt oppnåes med hoyt utbytte, er vannloselige og ikke-ioniske materialer, fremstilt ved behandling av cellulose med natriumhydroksyd etterfulgt av reaksjon med etylenoksyd. Hver anhydro-glykose-enhet i cellulosemolekylet har tre reaktive hydroksygrupper. Middel-tallet av mol av etylenoksyd som knyttes til hver an-hydro-glykoseenhet i cellulosen kalles mol av bundet substi-tuent. Generelt kan det sies at jo storre substitusjonsgrad, desto storre vannloselighet. I alminnelighet foretrekkes bruk av HEC polymerer med hoyest mulig mol-substitusjon. Particularly preferred are the HEC polymers which are generally obtained in high yield, are water-soluble and non-ionic materials, prepared by treating cellulose with sodium hydroxide followed by reaction with ethylene oxide. Each anhydro-glucose unit in the cellulose molecule has three reactive hydroxy groups. The average number of moles of ethylene oxide that is linked to each anhydroglycose unit in the cellulose is called moles of bound substituent. In general, it can be said that the greater the degree of substitution, the greater the water solubility. In general, the use of HEC polymers with the highest possible molar substitution is preferred.

Ved tilsetning av en av de torre, findelte hydrofile polymerer som er omtalt ovenfor til vandige medier, som saltopplosninger, gjennomgår polymerpartiklene vanligvis en overflatehy-dratisering som hindrer det indre av partikkelen fra å hydratiseres, solvateres eller på annen måte dispergeres lett i det vandige medium. Folgelig må det brukes hoy skjærkraft, lange blandeperioder og/eller forhoyede temperaturer for at et homogent system skal oppnåes. Ved hjelp av foreliggende oppfinnelse vil de hydrofile polymerer lett hydratiseres, opploses eller dispergeres i den vandige saltopplosning ved for-holdsvis lave skjærkrefter og omgivelsestemperaturer. Upon addition of one of the dry, finely divided hydrophilic polymers discussed above to aqueous media, such as salt solutions, the polymer particles typically undergo a surface hydration that prevents the interior of the particle from being hydrated, solvated, or otherwise readily dispersed in the aqueous medium . Consequently, a high shear force, long mixing periods and/or elevated temperatures must be used for a homogeneous system to be achieved. By means of the present invention, the hydrophilic polymers will be easily hydrated, dissolved or dispersed in the aqueous salt solution at relatively low shear forces and ambient temperatures.

I fremgangsmåtens innledningstrinn blir den hydrofile polymer og vann, f.eks. ferskvann, destillert vann etc. blandet under forhold som gir en jevn dispersjon av polymeren i vannet. Be-tegnelsen "jevn dispersjon" betyr i denne forbindelse en til-stand hvor polymer og vann danner et generelt homogent system, det være seg en opplosning eller en blanding, hvor de enkelte polymerpartiklene generelt er jevnt fordelt i hele suspensjo nen av polymer og vann. Polymeren og vannet kan blandes sammen ved konvensjonelle blandeteknikker og uten spesielle betingel-ser når det gjelder temperatur, blandetider eller andre para-metre. Det er tilstrekkelig at polymeren og vannet blandes tilstrekkelig til å gi en jevn dispersjon av polymersuspensjon i vannet. In the initial step of the method, the hydrophilic polymer and water, e.g. fresh water, distilled water etc. mixed under conditions that give a uniform dispersion of the polymer in the water. The term "uniform dispersion" in this context means a state where polymer and water form a generally homogeneous system, be it a solution or a mixture, where the individual polymer particles are generally evenly distributed throughout the suspension of polymer and water . The polymer and the water can be mixed together by conventional mixing techniques and without special conditions in terms of temperature, mixing times or other parameters. It is sufficient that the polymer and the water are mixed sufficiently to give a uniform dispersion of the polymer suspension in the water.

I neste trinn av fremgangsmåten tilsettes ett eller flere uorganiske salter i torr form til suspensjonen av polymer og vann. Saltet er av en type som har en positiv opplosningsvarme og hvor saltopplosning i vann genererer varme. Mengden av uorganisk salt som tilsettes til polymersuspensjonen vil være slik at det oppnåes en temperatur på mer enn ca. 71,1°C som folge av saltets opplosningsvarme og uten tillegg av utvendig oppvarming. Opplosning av saltet i polymersuspensjonen kan gjennomfdres med vanlige blandeteknikker. In the next step of the method, one or more inorganic salts are added in dry form to the suspension of polymer and water. The salt is of a type that has a positive heat of solution and where salt dissolution in water generates heat. The amount of inorganic salt added to the polymer suspension will be such that a temperature of more than approx. 71.1°C as a result of the heat of dissolution of the salt and without the addition of external heating. Dissolution of the salt in the polymer suspension can be carried out using usual mixing techniques.

Det eller de uorganiske salter som kan brukes i fremgangsmåtens annet trinn er vannloselige salter som genererer varme ved opplosning i vann og som fortrinnsvis danner saltopplosninger som er hensiktsmessige i hydrokarbon-utvinningsopera-sjoner. Foretrukne salter er de som velges fra gruppen som består av kalsiumklorid, kalsiumbromid, sinkklorid, sinkbromid og blandinger derav. Som nevnt bor den tilsatte saltmengde fortrinnsvis være slik at polymer/vannsuspensjonens temperatur heves over ca. 71,1°C. Det foretrekkes imidlertid at den tilsatte saltmengde er slik at temperaturen heves til minst 82,2°C og helst minst 93,3°C. Det vil være innlysende at for-skjellige salter har forskjellig positiv opplosningsvarme. Derfor vil den tilsatte saltmengde avhenge av det eller de spesielle valgte salter. The inorganic salt(s) that can be used in the second step of the method are water-insoluble salts that generate heat when dissolved in water and that preferably form salt solutions that are appropriate in hydrocarbon extraction operations. Preferred salts are those selected from the group consisting of calcium chloride, calcium bromide, zinc chloride, zinc bromide and mixtures thereof. As mentioned, the added amount of salt should preferably be such that the temperature of the polymer/water suspension is raised above approx. 71.1°C. However, it is preferred that the added amount of salt is such that the temperature is raised to at least 82.2°C and preferably at least 93.3°C. It will be obvious that different salts have different positive heats of solution. Therefore, the added amount of salt will depend on the particular salt(s) chosen.

Polymer/vannsuspensjonene som er fremstilt som angitt ovenfor kan i seg selv brukes som bronnservicevæsker, såfremt mengden av tilsatte uorganiske salter er tilstrekkelig til oppnåelse av den onskede tetthet. I et tilfelle kan mengden av polymer, vann og iblandet uorganisk salt f. eks. være tilstrekkelig for at det skal dannes en tyknet saltopplosning med den onskede tetthet. Men som oftest vil det til polymer/vannsuspen- sjonen som inneholder det opploselige salt tilsettes en vandig saltopplosning med en gitt tetthet» Den vandige saltopplosning tilsettes i en slik mengde at det oppnåes en bronnbehandlingsvæske med fastsatt tetthet. Ved dette sistnevnte utforelseseksempel av fremgangsmåten ifolge foreliggende oppfinnelse, blir polymeren, vannet og det uorganiske salt blandet som nevnt ovenfor for hydratisering av polymeren og dannelse av polymer/vannsuspensjonen. Etter dette blir den vandige saltopplosning iblandet i polymer/vannsuspensjonen som inneholder det uorganiske salt og bronnbehandlingsvæsken er således tilberedt. De vandige saltopplosninger som kan blandes i polymer/vannsuspensjoner■ inneholder generelt opploselige salter, som et opploselig salt av et alkalimetall, et alkalisk jordmetall, et metall av gruppe Ib, et metall av gruppe Ilb, likesom vannloselige salter av ammoniakk og andre kationer. Generelt sett, inneholder slike vandige saltopplosninger opploselige salter av flerverdige kationer, f.eks. Zn og Ca. Vandige saltopplosninger som omfatter et salt som er valgt fra gruppen som består av kalsiumklorid, kalsiumbromid, sinkklorid, sinkbromid og blandinger derav er således spesielt foretrukket. De vandige saltopplosninger vil gene-reit ha en tetthet som varierer fra ca. 1,39 g/cm til ca. 2,30 g/cm<3>. The polymer/water suspensions produced as stated above can in themselves be used as well service fluids, provided the amount of added inorganic salts is sufficient to achieve the desired density. In one case, the amount of polymer, water and mixed inorganic salt can e.g. be sufficient for a thickened salt solution with the desired density to be formed. But most often, an aqueous salt solution with a given density will be added to the polymer/water suspension containing the soluble salt" The aqueous salt solution is added in such a quantity that a well treatment liquid with a fixed density is obtained. In this latter embodiment of the method according to the present invention, the polymer, the water and the inorganic salt are mixed as mentioned above to hydrate the polymer and form the polymer/water suspension. After this, the aqueous salt solution is mixed into the polymer/water suspension containing the inorganic salt and the well treatment fluid is thus prepared. The aqueous salt solutions that can be mixed in polymer/water suspensions generally contain soluble salts, such as a soluble salt of an alkali metal, an alkaline earth metal, a group Ib metal, a group IIb metal, as well as water-insoluble salts of ammonia and other cations. Generally speaking, such aqueous salt solutions contain soluble salts of polyvalent cations, e.g. Zn and Ca. Aqueous salt solutions comprising a salt selected from the group consisting of calcium chloride, calcium bromide, zinc chloride, zinc bromide and mixtures thereof are thus particularly preferred. The aqueous salt solutions will generally have a density that varies from approx. 1.39 g/cm to approx. 2.30 g/cm<3>.

Den mengde hydrofil polymer som brukes ved fremgangsmåten ifolge foreliggende oppfinnelse vil være slik at den gir en endelig konsentrasjon fra ca. 0,29 til ca. 28,5 g/l, uansett om den endelige bronnbehandlingsvæske omfatter (a) den polymer/vannsuspens jon som dannes ved blanding av vann, polymeren og det uorganiske saltet eller (b) polymer, vann, uorganisk salt og en mengde vandig saltopplosning. The amount of hydrophilic polymer used in the method according to the present invention will be such that it gives a final concentration from approx. 0.29 to approx. 28.5 g/l, regardless of whether the final well treatment fluid comprises (a) the polymer/water suspension formed by mixing water, the polymer and the inorganic salt or (b) polymer, water, inorganic salt and an amount of aqueous salt solution.

Skjont mekanismen av fremgangsmåten ifolge oppfinnelsen ikke er forstått fullt ut, har det vist seg at saltopplosninger som fremstilles ved fremgangsmåten har bedrede reologiske og filtreringsegenskaper, sammenlignet med saltopplosninger som er fremstilt ved enkel dispersjon av den hydrofile polymer i torr form i en saltopplosning og deretter oppvarming av blandingen for solvatering av polymeren. Tilforsel av kunstig varme til blandingen av en hydrofil polymer og en saltopplosning, bedrer riktignok resultatet, men gir ikke de bemerkel-sesverdige resultater som oppnåes dersom polymeren forst dispergeres i vann og suspensjonen deretter gis forhoyet temperatur ved hjelp av den naturlige opplosningsvarme fra uorganisk salt som opploses i polymer/vannsuspensjonen. For å gi en mer utforlig illustrasjon av oppfinnelsen, fremlegges de folgende,eksempler som dog ikke er ment som en begrensning. Når ikke annet er angitt, ble alle målinger av fysiske egenskaper gjennomfort i overensstemmelse med testprosedyrer som angitt i Standard Procedure for Testing Drilling Fluid, API RP 13B, 7. oppi. april 1978. I nedenstående eksempler ble folgende hydrofile polymerer brukts Although the mechanism of the method according to the invention is not fully understood, it has been shown that salt solutions produced by the method have improved rheological and filtration properties, compared to salt solutions produced by simple dispersion of the hydrophilic polymer in dry form in a salt solution and then heating of the mixture to solvate the polymer. The addition of artificial heat to the mixture of a hydrophilic polymer and a salt solution does indeed improve the result, but does not give the remarkable results that are obtained if the polymer is first dispersed in water and the suspension is then given an elevated temperature by means of the natural heat of dissolution from inorganic salt which dissolves in the polymer/water suspension. In order to provide a more detailed illustration of the invention, the following examples are presented, which are not intended as a limitation. Unless otherwise stated, all measurements of physical properties were carried out in accordance with test procedures as specified in Standard Procedure for Testing Drilling Fluid, API RP 13B, 7th oppi. April 1978. In the examples below, the following hydrophilic polymers were used

Karboksymetyl-cellulose (Hi Vis CELLEX)Carboxymethyl cellulose (Hi Vis CELLEX)

ftantangummi (BARAZAN)phtane gum (BARAZAN)

Hydroksyetyl-cellulose (NATRASOL 250 HHR)Hydroxyethyl cellulose (NATRASOL 250 HHR)

Polyanionisk cellulosepulver (DRISPAC)Polyanionic cellulose powder (DRISPAC)

Tverrbunet hydroksyetyl-stivelse (BOHRAMYL)Cross-linked hydroxyethyl starch (BOHRAMYL)

Pregelatinert: : stivelsespulver (IMPERMEX)Pregelatinized: : starch powder (IMPERMEX)

Stabilisert delvisdekstrinert polysakkaridpulver, toksisk ikke-ionisk (DEXTRID) Stabilized partially dextrinized polysaccharide powder, toxic non-ionic (DEXTRID)

Eksempel 1Example 1

Det ble brukt flere hydrofile polymerer for fremstilling av tyknede, vandige saltopplosninger som beskrevet nedenfor. Ca. Several hydrophilic polymers were used to prepare thickened aqueous salt solutions as described below. About.

2 g av polymeren ble blandet i 204,4 g vann ved hjelp av en Multimixer i ca. 10 minutter. Deretter ble det til den prehydratiserte polymer tilsatt 114,0 g CaCl2- pellets (94-97%) og 280,5 g CaBr2(91%), etterfulgt av 16,8 ml av en 2,30 g/cm<3>CaB^/ZnB^ saltopplosning for at den resulterende saltopp-losningens tetthet skulle bli 1,82 g/cm<3>. Cpplosningsvarmen av de tilsatte salter forte til koking (100°C) av hver prove. De resulterende, tyknede blandinger ble hensatt natten over ved omgivelsestemperatur og deretter ble de reologiske og filtreringsegenskapene av hver blanding bestemt. De reologiske egenskaper ble målt ved bruk av et Fann Model 35A Viscone-ter og et Brookfield RVT Viscometer. Filtreringsegenskapene ble målt på en API filtreringspresse. De oppgitte egenskaper 2 g of the polymer was mixed in 204.4 g of water using a Multimixer for approx. 10 minutes. Next, 114.0 g of CaCl2 pellets (94-97%) and 280.5 g of CaBr2 (91%) were added to the prehydrated polymer, followed by 16.8 ml of a 2.30 g/cm<3>CaB ^/ZnB^ brine so that the density of the resulting brine would be 1.82 g/cm<3>. The heat of solution of the added salts was brought to boiling (100°C) of each sample. The resulting thickened mixtures were left overnight at ambient temperature and then the rheological and filtration properties of each mixture were determined. The rheological properties were measured using a Fann Model 35A Visconer and a Brookfield RVT Viscometer. The filtration properties were measured on an API filter press. The stated properties

er plastisk viskositet (PV) cp, flytegrense (YP) kg/m 2, tilsynelatende viskositet (AV) cp, 10-sek. gelstyrke (GEL 10 s) kg/m og API filtrat (API-FIL) ml. Alle filtreringstester ble gjennomfort etter at 28,5 g/l CaCo^var blitt tilsatt som foreneliggjorende middel ("bridging agent"). Resultatene av de gjennomforte målinger er angitt i tabell 1. Tabell 2. gir samme informasjon for identiske prover etter at disse var blitt rullet i 16 timer ved 65,6°C. is plastic viscosity (PV) cp, yield strength (YP) kg/m 2 , apparent viscosity (AV) cp, 10-sec. gel strength (GEL 10 s) kg/m and API filtrate (API-FIL) ml. All filtration tests were carried out after 28.5 g/l CaCo^ had been added as bridging agent. The results of the measurements carried out are shown in table 1. Table 2 gives the same information for identical samples after they had been rolled for 16 hours at 65.6°C.

Eksempel 2 Example 2

Det ble tilberedt kontrolltyknede vandige saltopplosninger ved tilsetning av 2 g av hver av de torre polymerer som var brukt i eksempel 1 til en f or håndslaget 1,82 g/cm3 sal/topp-^ losning, fremstilt ved blanding av 214,2 g H90, 119,5 g CaCl2, 294,0 g CaBr2og 16,2 ml av en 2,30 g/cm CaBr2/ZnBr2saltopplosning. Data for de reologiske og filtreringsegenskapene av kontrollprovene etter hensettelse natten over er angitt i tabell 3 nedenfor. Tilsvarende data for identiske prover som var blitt rullet i 16 timer ved 65,6°C er angitt i tabell 4. Sammenlignet med de data som er angitt i tabel-lene 1 og 2, viser de data som er angitt i tabell 3 og 4 at saltopplosninger som er fremstilt ifolge oppfinnelsen (Eksempel 1), hvor<*>polymeren forst hydratiseres og torre salter tilsettes,_har overlegen viskositet og gir lavere fil-trater i hvert enkelt tilfelle for rulling og i stort sett alle tilfelle etter rulling ved forhoyet temperatur. Control thickened aqueous salt solutions were prepared by adding 2 g of each of the dry polymers used in Example 1 to a hand-beaten 1.82 g/cm3 salt/peak solution prepared by mixing 214.2 g of H90 , 119.5 g CaCl 2 , 294.0 g CaBr 2 and 16.2 ml of a 2.30 g/cm CaBr 2 /ZnBr 2 salt solution. Data for the rheological and filtration properties of the control samples after overnight standing are given in Table 3 below. Corresponding data for identical samples which had been rolled for 16 hours at 65.6°C are given in Table 4. Compared with the data given in Tables 1 and 2, the data given in Tables 3 and 4 show that salt solutions produced according to the invention (Example 1), where<*>the polymer is first hydrated and dry salts are added, have superior viscosity and give lower filtrates in each individual case for rolling and in almost all cases after rolling at an elevated temperature .

Eksempel 3 Example 3

Ved bruk av den fremgangsmåte som er angitt i Eksempel 1, ble polymerholdige, vandige saltopplosninger med forskjellig tetthet fremstilt. Fem gram karboksymetyl-cellulose (Hi Vis Cellex) ble prehydratisert i vann ved blanding i 10 minutter. Torre CaCl2pellets ble tilsatt til den prehydratiserte polymer og blandet for oppnåelse av et karboksymetyl-cellu-losekonsentrat med 1,39 g/cm tetthet, 140 ml av konsentratet ble tilsatt 210 ml av en vandig saltopplosning med 1,39 g/cm 3 tetthet for oppnåo else av en polymerkonsentrasjon påo 5/7 g/l. På samme måte ble det fremstilt vandige saltopplosninger på o 1,70 g/cm 3 og 2,04 g/cm 3,Sammensetningen av hver vandige saltopplosning er angitt i tabell 5 nedenfor. Using the method indicated in Example 1, polymer-containing, aqueous salt solutions with different densities were prepared. Five grams of carboxymethyl cellulose (Hi Vis Cellex) was prehydrated in water by mixing for 10 minutes. Torre CaCl 2 pellets were added to the prehydrated polymer and mixed to obtain a carboxymethyl cellulose concentrate with a density of 1.39 g/cm 3 , 140 ml of the concentrate was added to 210 ml of an aqueous salt solution with a density of 1.39 g/cm 3 to achieving a polymer concentration of 5/7 g/l. In the same way, aqueous salt solutions of o 1.70 g/cm 3 and 2.04 g/cm 3 were prepared. The composition of each aqueous salt solution is given in table 5 below.

Kbntrollprover av tyknede, vandige saltopplosninger ble fremstilt ved blanding av 2 g av den torre karboksymetyl- cellulosen (Hi Vis Cellex) med ferdiglagede saltopplosninger med en tetthet på 1,39, 1,70 hhv. 2,04 g/cm . Reologiske og filtreringsmålinger av provene som ble fremstilt med fremgangsmåten ifolge eksempel 1 og kontrollprovene ble gjennom-ført som angitt i de foregående eksempler. Resultatene er angitt i tabell 6. I tabell 7 sees de oppnådde data for alle prover etter rulling ved 65,6°C i 16 timer. Av disse data fremgår at de tilsynelatende viskositeter av saltopplosninger fremstilt ifolge oppfinnelsen har dobbelt så hoye og hoyere verdier enn de som er oppnådd for kontrollprovene. De overlegne filtreringsegenskaper av provene som er fremstilt ifolge oppfinnelsen vil også være iøynefallende ved en sam-menligning av data. Control samples of thickened, aqueous salt solutions were prepared by mixing 2 g of the dry carboxymethyl cellulose (Hi Vis Cellex) with ready-made salt solutions with a density of 1.39, 1.70 respectively. 2.04 g/cm . Rheological and filtration measurements of the sample which was prepared with the method according to example 1 and the control samples were carried out as indicated in the preceding examples. The results are shown in table 6. Table 7 shows the data obtained for all samples after rolling at 65.6°C for 16 hours. From these data it appears that the apparent viscosities of salt solutions produced according to the invention have twice as high and higher values than those obtained for the control samples. The superior filtering properties of the samples produced according to the invention will also be conspicuous in a comparison of data.

Eksempel 4 Example 4

Saltopplosninger med en tetthet på o 1,85 g/cm 3 og med et innhold av 2,85 g/l karboksvmetyl-cellulose, enten i form av Hi Vis CELLEX (med hoy viskositet) eller polyanionisk cellulosepulver (DRISPAC), ble fremstilt ved at polymeren ble tilsatt og blandet ut i 176 ml vann for opplosning av polymeren. Deretter ble det under blanding tilsatt 114 g CaC^ Salt solutions with a density of o 1.85 g/cm 3 and with a content of 2.85 g/l carboxymethyl cellulose, either in the form of Hi Vis CELLEX (with high viscosity) or polyanionic cellulose powder (DRISPAC), were prepared by that the polymer was added and mixed into 176 ml of water to dissolve the polymer. Then, 114 g of CaC3 were added while mixing

(95%) og 180 g CaBr2(91%). Disse salters opplosningsvarme okte temperaturen til 100°C. API reologien og væsketapet ble bestemt for disse viskose opplosninger etter avkjoling til romtemperatur. De oppnådde data er angitt i tabell 8. (95%) and 180 g CaBr2 (91%). The heat of dissolution of these salts raised the temperature to 100°C. The API rheology and liquid loss were determined for these viscous solutions after cooling to room temperature. The data obtained are shown in table 8.

Eksempel 5 Example 5

Det ble fremstilt saltopplosninger med forskjellig tetthet og et innhold av 4,28 g/l hydroksyetyl-cellulose (NATROSOL 250 HHR) ved at polymeren ble blandet med den vannmengde som er angitt i tabell 9, Etter hvert som polymeren hydra-tiserte i vannet, okte viskositeten. Deretter ble den angitte mengde CaCl2(95% aktiv) tilsatt under blanding. Opp-losningsvarmen fra CaCl2okte temperaturen ti 1 ca- 82,2°C og oppløsningen ble mer viskos. Den angitte mengde av en l,70g /cm CaBr9 opplosning ble langsomt tilsatt, etterfulgt av den angitte mengde av en 2,30 g/cm ZnBr2/CaBr2opplosning. Etter avkjoling til romtemperatur i en time, ble API reologien og væsketapet bestemt. Oppløsningene ble deretter rullet ved 65,6°C i 16 timer, avkjolt til romtemperatur og API reologien og væsketapet ble bestemt. De oppnådde data er angitt i tabell 9. Salt solutions with different densities and a content of 4.28 g/l hydroxyethyl cellulose (NATROSOL 250 HHR) were prepared by mixing the polymer with the amount of water indicated in table 9. As the polymer hydrated in the water, increase the viscosity. Then, the specified amount of CaCl2 (95% active) was added while mixing. The heat of solution from CaCl2 raised the temperature to about 82.2°C and the solution became more viscous. The indicated amount of a 1.70 g/cm CaBr 9 solution was slowly added, followed by the indicated amount of a 2.30 g/cm ZnBr 2 /CaBr 2 solution. After cooling to room temperature for one hour, the API rheology and liquid loss were determined. The solutions were then rolled at 65.6°C for 16 hours, cooled to room temperature and the API rheology and liquid loss determined. The obtained data are shown in table 9.

Eksempel 6 Example 6

Tre karboksymetyl-cellulose (Hi Vis Cellex) polymerkonsentra-ter ble fremstilt ved dispersjon av 2 g polymer i 3,89 ml vann. Et konsentrat (kontrollprove) ble fortynnet med 155,5 ml H20 etterfulgt av tilsetning av 114,0 g CaCl2, 280,5 g CaBr2 og 16,8 ml 2,30 g/l CaBr2/ZnBr2saltopplosning. Temperaturen av denne prove nådde 100°C. Three carboxymethyl cellulose (Hi Vis Cellex) polymer concentrates were prepared by dispersing 2 g of polymer in 3.89 ml of water. A concentrate (control sample) was diluted with 155.5 ml H 2 O followed by the addition of 114.0 g CaCl 2 , 280.5 g CaBr 2 and 16.8 ml 2.30 g/l CaBr 2 /ZnBr 2 salt solution. The temperature of this sample reached 100°C.

Et annet konsentrat (prove A) ble tilsatt en saltopplosning ved romtemperatur. Saltopplosningen var fremstilt med 155,5 ml H20, 114,0 g CaCl2, 280,5 g CaBr2og 16,8 ml av en 2,30 g/ ZnBr2saltopplosning. Iblanding av konsentratet forårsaket varmeutvikling, slik at proven fikk en temperatur på 45,6°C. Det ble observert at det umiddelbart dannet seg uopploselige klumper av karboksymetyl-cellulose. Da proven ble avkjolt natten over, dannet det seg en stor mengde suspenderte tråder som til slutt flot på overflaten. Det virket ikke som om noe av polymerkonsentratet inngikk i saltopplosningen. Another concentrate (sample A) was added to a salt solution at room temperature. The salt solution was prepared with 155.5 ml H 2 O, 114.0 g CaCl 2 , 280.5 g CaBr 2 and 16.8 ml of a 2.30 g/ZnBr 2 salt solution. Mixing in the concentrate caused heat generation, so that the sample reached a temperature of 45.6°C. It was observed that insoluble clumps of carboxymethyl cellulose immediately formed. When the sample was cooled overnight, a large amount of suspended threads formed which eventually floated on the surface. It did not appear that any of the polymer concentrate was included in the salt solution.

Et tredje konsentrat (prove B) ble fremstilt som prove A, og det ble igjen varmeutvikling, da konsentratet ble iblandet, slik at temperaturen steg til 43,9°C. Prove B ble deretter rullet ved 100°C i 3 timer i en eldingscelle. Provens temperatur ble målt til 71,1°C etter elding. Skjont det dannet seg en del suspenderte polymertråder som flot på overflaten, sy-nes det meste av polymerkonsentratet å ha blitt dispergert. A third concentrate (sample B) was prepared as sample A, and heat was again generated when the concentrate was mixed in, so that the temperature rose to 43.9°C. Sample B was then rolled at 100°C for 3 hours in an aging cell. The temperature of the sample was measured at 71.1°C after aging. Although some suspended polymer threads formed as floats on the surface, most of the polymer concentrate appears to have been dispersed.

De tre ovennevnte prover ble deretter rullet i 64 timer ved 65,6°C. Etter avkjoling ble de testet på et Brookfield Viscometer ved 50 omdreininger/minutt. Kontrollproven bibeholdt en avlesningsverdi på 1590 cp og viste en jevn konsistens, som for rulling. The above three samples were then rolled for 64 hours at 65.6°C. After cooling, they were tested on a Brookfield Viscometer at 50 rpm. The control sample maintained a reading of 1590 cp and showed a smooth consistency, as for rolling.

Det meste av de uopploselige klumpene og alle suspenderte tråder loste seg opp i prove A. Brookfieldavlesningen viste ikke desto mindre bare 180 cp. Most of the insoluble clumps and all suspended threads dissolved in sample A. However, the Brookfield reading showed only 180 cp.

Prove B, som virker homogen, resulterte i en Brookfieldavles-ning på 250 cp. Sample B, which appears homogeneous, resulted in a Brookfield reading of 250 cp.

Av de nevnte resultater^ fremgår at enkel prehydratiseringFrom the aforementioned results^ it appears that simple prehydration

av polymeren i vann alene (prove A) ikke er samme mekanisme som saltaktiveringsmetoden ifolge foreliggende oppfinnelse. Det er med andre ord nodvendig at tort salt med positiv opplosningsvarme tilsettes polymerkonsentratene etter at polymeren er dispergert i vann. Skjont tilforsel av ytre varme (rulling ved 100°C) forer til en viss respons (250 cp Brook-fieldavlesning ved prove B, sammenlignet med 180 cp Brook-fieldavlesning ved prove A), er virkningen fortsatt langt fra den 1590 cp Brookfield-avlesning som ble oppnådd for kontrollproven som var fremstilt ifolge oppfinnelsen. of the polymer in water alone (sample A) is not the same mechanism as the salt activation method according to the present invention. In other words, it is necessary that dry salt with a positive heat of solution is added to the polymer concentrates after the polymer has been dispersed in water. Although the application of external heat (rolling at 100°C) leads to some response (250 cp Brookfield reading for sample B, compared to 180 cp Brookfield reading for sample A), the effect is still far from the 1590 cp Brookfield reading which was obtained for the control sample prepared according to the invention.

Oppfinnelsen kan gjennomføres i andre spesielle utforelses-eksempler uten avvikelse fra oppfinnelsens ramme. De omtalte eksemplene skal derfor betraktes som illustrerende, men ikke begrensende, i alle henseende. Oppfinnelsens ramme er angitt i de etterfølgende krav, snarere enn i ovenstående beskrivelse, og alle endringer som faller innenfor kravenes mening og ramme er å betraktes som dekket av oppfinnelsen. The invention can be carried out in other special embodiments without deviating from the scope of the invention. The mentioned examples are therefore to be regarded as illustrative, but not limiting, in all respects. The scope of the invention is indicated in the following claims, rather than in the above description, and all changes that fall within the meaning and scope of the claims are to be considered covered by the invention.

Claims (10)

1. Fremgangsmåte for fremstilling av en flytende suspensjon av en hydrofil polymer i en vandig saltopplosning, karakterisert ved at en hydrofil polymer og vann blandes under forhold som gir en generelt jevn dispersjon av polymeren i vannet, at det i nevnte dispersjon opploses et uorganisk salt med positiv opplosningsvarme, hvor saltet tilsettes i en slik mengde at det i dispersjonen som-folge av saltets opplosningsvarme oppnåes en temperatur over 71,1°C, fortrinnsvis over 82,2°C og helst en temperatur over 93,3°C.1. Process for producing a liquid suspension of a hydrophilic polymer in an aqueous salt solution, characterized in that a hydrophilic polymer and water are mixed under conditions that give a generally uniform dispersion of the polymer in the water, that an inorganic salt with positive heat of dissolution, where the salt is added in such an amount that a temperature above 71.1°C, preferably above 82.2°C and most preferably above 93.3°C is achieved in the dispersion as a result of the salt's heat of dissolution. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at den hydrofile polymer er valgt fra en gruppe som består av karboksyalkyl-cellulose-etere, hydroksyalkyl-cellulose-etere, blandede cellulose-etere, karboksyalkyl-stivelse-etere, hydroksyalkyl-stivelse-etere, blandede stivelse-etere, polysakkaridgummi, pregelatinert stivelsespulver, stabilisert, delvis dekstrinert polysakkaridpulver, toksisk-og ikkeionisk, og blandinger derav, og fortrinnsvis er hydroksyetyll-cellulose.2. Method as stated in claim 1, characterized in that the hydrophilic polymer is selected from a group consisting of carboxyalkyl cellulose ethers, hydroxyalkyl cellulose ethers, mixed cellulose ethers, carboxyalkyl starch ethers, hydroxyalkyl starch ethers, mixed starch ethers, polysaccharide gum, pregelatinized starch powder, stabilized partially dextrinized polysaccharide powder, toxic and nonionic, and mixtures thereof, and preferably is hydroxyethyl cellulose. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert ved at det uorganiske salt er valgt fra den gruppe som består av kalsiumklorid, kalsiumbromid, sinkklorid, zinkbromid og blandinger derav.3. Method as stated in claim 1 or 2, characterized in that the inorganic salt is selected from the group consisting of calcium chloride, calcium bromide, zinc chloride, zinc bromide and mixtures thereof. 4. Fremgangsmåte som angitt i krav 1-3, karakterisert ved at den hydrofile polymer foreligger i en mengde på 0,29-28,5 g/l i suspensjonen.4. Method as stated in claims 1-3, characterized in that the hydrophilic polymer is present in an amount of 0.29-28.5 g/l in the suspension. 5. Fremgangsmåte for fremstilling av en vandig saltopplosning, som er hensiktsmessig som bronnbehandlingsvæske, karakterisert ved at en hydrofil polymer og vann blandes under forhold som gir en generelt jevn dispersjon av polymeren i vannet, at det i dispersjonen opploses et uorganisk salt med en positiv opplosningsvarme, hvor saltet tilsettes i en slik mengde at det i dispersjonen som folge av saltets opplosningsvarme oppnåes en temperatur over 71,1°C, - fortrinnsvis over 82,2°C og helst over 93,3°C, og at det til nevnte dispersjon tilsettes en vandig saltopplosning med en gitt tetthet i tilstrekkelig mengde for fremstilling av en bronnbehandlingsvæske med fastsatt tetthet.5. Process for the production of an aqueous salt solution, which is suitable as a well treatment liquid, characterized in that a hydrophilic polymer and water are mixed under conditions that give a generally uniform dispersion of the polymer in the water, that an inorganic salt with a positive heat of dissolution is dissolved in the dispersion , where the salt is added in such an amount that a temperature above 71.1°C is achieved in the dispersion as a result of the heat of dissolution of the salt, - preferably above 82.2°C and preferably above 93.3°C, and that to said dispersion an aqueous salt solution with a given density is added in sufficient quantity to produce a well treatment fluid with a fixed density. 6. Fremgangsmåte som angitt i krav 5, karakterisert ved at den hydrofile polymer velges fra den ,:j . gruppe som består av karboksyalkyl-celluloseetere, hydroksyalkyl-celluloseetere, blandede celluloseetere, karboksyalkyl-stivelseetere, hydroksyalkyl-stivelseetere, blandede stivelseetere, polysakkaridgummi, pregelatinert stivelsespulver, stabilisert, delvis dekstrinert polysakkaridpulver, toksisk, ikke-ionisk, og blandinger derav, fortrinnsvis hydroksyetyl-cellulose.6. Method as stated in claim 5, characterized in that the hydrophilic polymer is selected from the ,:j . group consisting of carboxyalkyl cellulose ethers, hydroxyalkyl cellulose ethers, mixed cellulose ethers, carboxyalkyl starch ethers, hydroxyalkyl starch ethers, mixed starch ethers, polysaccharide gum, pregelatinized starch powder, stabilized partially dextrinized polysaccharide powder, toxic, nonionic, and mixtures thereof, preferably hydroxyethyl- cellulose. 7. Fremgangsmåte som angitt i krav 5 eller 6, karakterisert ved at det uorganiske salt velges fra den gruppe som består av kalsiumklorid, kalsiumbromid, sinkbromid og blandinger derav.7. Method as stated in claim 5 or 6, characterized in that the inorganic salt is selected from the group consisting of calcium chloride, calcium bromide, zinc bromide and mixtures thereof. 8. Fremgangsmåte som angitt i krav 5-7, karakterisert ved at den vandige saltopplosning inneholder minst et salt som er valgt fra den type som består av vannloselige salter av alkalimetaller, alkaliske jordmetaller, metaller av gruppe Ib, metaller av gruppe Ilb og blandinger derav, fortrinnsvis et vannloselig salt som er valgt fra den gruppe som består av kalsiumklorid, kalsiumbromid, sinkklorid, sinkbromid og blandinger derav.8. Method as stated in claims 5-7, characterized in that the aqueous salt solution contains at least one salt selected from the type consisting of water-soluble salts of alkali metals, alkaline earth metals, metals of group Ib, metals of group Ilb and mixtures thereof , preferably a water-insoluble salt selected from the group consisting of calcium chloride, calcium bromide, zinc chloride, zinc bromide and mixtures thereof. 9. Fremgangsmåte som angitt i krav 5-8, karakterisert ved at polymeren foreligger i en mengde fra 0,29 til 28,5 g/l.9. Method as stated in claims 5-8, characterized in that the polymer is present in an amount from 0.29 to 28.5 g/l. 10. Fremgangsmåte som angitt i krav 5-9, karakterisert ved at bronnbehandlingsvæsken har en tetthet fra 1,39 til 2,30 g/cm <3> .10. Method as stated in claims 5-9, characterized in that the well treatment liquid has a density of 1.39 to 2.30 g/cm <3> .
NO813177A 1980-09-23 1981-09-18 PROCEDURE FOR THE MANUFACTURE OF BURNER TREATMENT LIQUIDS NO813177L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19008880A 1980-09-23 1980-09-23

Publications (1)

Publication Number Publication Date
NO813177L true NO813177L (en) 1982-03-24

Family

ID=22699973

Family Applications (1)

Application Number Title Priority Date Filing Date
NO813177A NO813177L (en) 1980-09-23 1981-09-18 PROCEDURE FOR THE MANUFACTURE OF BURNER TREATMENT LIQUIDS

Country Status (9)

Country Link
JP (1) JPS5785883A (en)
AU (1) AU546041B2 (en)
CA (1) CA1168850A (en)
DE (1) DE3137689A1 (en)
FR (1) FR2490657B1 (en)
GB (1) GB2084586B (en)
IT (1) IT1195046B (en)
NL (1) NL8103669A (en)
NO (1) NO813177L (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1187691A (en) * 1981-11-16 1985-05-28 Roy F. House Aqueous well servicing fluids
CA1188878A (en) * 1981-11-16 1985-06-18 Michael J. Nevins Aqueous well drilling fluids
AU553329B2 (en) * 1982-03-11 1986-07-10 Baroid Technology, Inc. Brines containing hydroxyethyl cellulose
US4525522A (en) * 1982-09-13 1985-06-25 Exxon Research And Engineering Co. Drilling fluids based on sulfonated thermoplastic polymers having improved low temperature rheological properties
US5955401A (en) * 1996-05-17 1999-09-21 Baroid Technology, Inc. Clay-free biodegradable wellbore fluid and method for using same fluid
US6933262B1 (en) * 1997-03-18 2005-08-23 Baker Hughes Incorporated Controlled hydration of starch in high density brine dispersion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378070A (en) * 1965-09-03 1968-04-16 Halliburton Co Hydroxyethyl cellulose complex and method of plugging underground formations therewith

Also Published As

Publication number Publication date
FR2490657A1 (en) 1982-03-26
NL8103669A (en) 1982-04-16
FR2490657B1 (en) 1986-02-07
GB2084586A (en) 1982-04-15
CA1168850A (en) 1984-06-12
DE3137689A1 (en) 1982-05-06
IT1195046B (en) 1988-09-28
AU7239081A (en) 1982-04-01
AU546041B2 (en) 1985-08-15
GB2084586B (en) 1984-07-25
IT8123052A0 (en) 1981-07-21
JPS5785883A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
US5728652A (en) Brine fluids having improved rheological charactersitics
NO812926L (en) DISPERSIBLE HYDROPHILE POLYMER COMPOSITIONS
AU723115B2 (en) Stabilized fluids containing soluble zinc
US5629271A (en) Methods of reducing fluid loss and polymer concentration of well drilling and servicing fluids
NO810352L (en) DISPERSIBLE HYDROPHILE POLYMER COMPOSITIONS.
US3953336A (en) Drilling fluid
CA2178766C (en) Control of the fluid loss of well drilling and servicing fluids
NO318429B1 (en) Fluid for use in oil and gas well operations, as well as additives therefor
NO329919B1 (en) Process for increasing the viscosity at low shear rate and the shear thinning index of aqueous fluids and fluids thus formed
US4566976A (en) Viscous heavy brines
US4439333A (en) Heavy brine viscosifiers
US4420406A (en) Thickened heavy brines
EP0289529B1 (en) Viscosifiers for brines utilizing hydrophilic polymer-mineral oil systems
US20160185879A1 (en) Modified starch
NO813177L (en) PROCEDURE FOR THE MANUFACTURE OF BURNER TREATMENT LIQUIDS
NO812494L (en) PROCEDURE FOR THE PREPARATION OF A HOMOGENE, VISCED BROWN TREATMENT LIQUID IN A DRILL, AND COMPOSITIONS OF BROWN TREATMENT LIQUID
US4758357A (en) Dispersible hydrophilic polymer compositions for use in viscosifying heavy brines
US5009798A (en) Low fluid loss heavy brines containing hydroxyethyl cellulose
NO157541B (en) VISCOE, HEAVY SALT SOLVENT FOR USE IN OIL DRILLING, AND PROCEDURE FOR INCREASING ITS VISCOSITY AND HYDRATIZATION SPEED.
CA1202477A (en) Low fluid loss heavy brines containing hydroxyethyl cellulose
CA1196775A (en) Viscous heavy brines and method for their manufacture
GB2121092A (en) Thickened heavy brines
GB2110699A (en) Aqueous well servicing fluids
CA1189302A (en) Activation of hydroxyethyl cellulose for use in heavy brines
CA1156551A (en) Well completion and workover method