NO812490L - PROCEDURE FOR IMPROVING DENSITY IN LONG-TOWED TELECOMMUNICATION CABLES - Google Patents

PROCEDURE FOR IMPROVING DENSITY IN LONG-TOWED TELECOMMUNICATION CABLES

Info

Publication number
NO812490L
NO812490L NO812490A NO812490A NO812490L NO 812490 L NO812490 L NO 812490L NO 812490 A NO812490 A NO 812490A NO 812490 A NO812490 A NO 812490A NO 812490 L NO812490 L NO 812490L
Authority
NO
Norway
Prior art keywords
water
powder
towed
procedure
long
Prior art date
Application number
NO812490A
Other languages
Norwegian (no)
Inventor
Marcel Pellier
Original Assignee
Pirelli Treficable
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pirelli Treficable filed Critical Pirelli Treficable
Publication of NO812490L publication Critical patent/NO812490L/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • H01B7/285Preventing penetration of fluid, e.g. water or humidity, into conductor or cable by completely or partially filling interstices in the cable
    • H01B7/288Preventing penetration of fluid, e.g. water or humidity, into conductor or cable by completely or partially filling interstices in the cable using hygroscopic material or material swelling in the presence of liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Ropes Or Cables (AREA)

Description

Foreliggende oppfinnelse angår en fremgangsmåte for forbedring av lengderetningenstettheten i telekommunikasjons-kabler. The present invention relates to a method for improving the longitudinal density in telecommunications cables.

Brukere av elektriske kabler og spesielt av telekommuni-kas jonskabler ment til nedgraving krever tetthet i disse kabler i lengderetning slik at hvis vann skulle trenge inn i et skadet punkt i den beskyttende hylse under nedleggingen eller under arbeid som utføres i den sone der kabelen er nedgravet vil vandring av fuktighet på hver side av skadepunktet begrenses til en sone som er så liten som mulig. Users of electrical cables and especially of telecommunications cables intended for burial require tightness in these cables in the longitudinal direction so that if water were to penetrate a damaged point in the protective sleeve during laying or during work carried out in the zone where the cable is buried migration of moisture on either side of the damage point will be limited to a zone that is as small as possible.

Det er kjent å oppnå lengdetetthet i kabler ved å be-nytte hydrofobe blandinger av beklignende konsistens inneholdende blant andre ting linolje, polyisobutylener, forskjellige mineral-ladninger eller videre pastaer, belegg eller lignende, som også er hydrofobe, forskjellige typer naturlige eller syntetiske oljer, eller geleer slik som "petroleumgelé" anbrakt inne i gruppen av ledere. It is known to achieve longitudinal density in cables by using hydrophobic mixtures of a pitch-like consistency containing, among other things, linseed oil, polyisobutylenes, various mineral charges or further pastes, coatings or the like, which are also hydrophobic, various types of natural or synthetic oils, or gels such as "petroleum jelly" placed inside the group of conductors.

Det samme materiale kan benyttes mellom båndet som om-gir gruppen av ledere og det metalliske hylster, men under av-kjøling av kabelen etter at dette materiale er brakt på plass under ekstrudering tillater sammentrekning og virkningen av irregulariteter i diameteren ikke en tilstrekkelig tetthet til en hver tid. The same material may be used between the band surrounding the group of conductors and the metallic sleeve, but during cooling of the cable after this material has been brought into place during extrusion, contraction and the effect of irregularities in the diameter do not allow a sufficient tightness to a every time.

Oppfinnelsen angår en fremgangsmåte for å forbedre lengderetningstettheten og denne omfatter å fylle rommet mellom båndet og hylsteret med et fyllstoff i stand til svelling i nærvær av vann. Dette materiale avsettes fortrinnsvis på båndet og består av et pulver som sveller i vann slik som CMC, karboksymetylcellulose, eller slike derivater som HEC, hydroksyetyl-cellulose;' HECMC, hydroksyetylkarboksyetylcellulose; HPMC, hydroksypropylmetylcellulose; MC, metylcellulose; EC, etylcellu-lose; EHEC, etylhydroksyetylcellulose; HPC, hydroksypropylcellu-lose, benyttet alene eller i blanding, idet denne oppramsing ikke er begrensende, hvorved pulveret bæres av et viskøst middel som ikke eliminerer evnen til å svelle i nærvær av vann. Figur 1 viser et tverrsnitt av en telefonkabel. De relative proporsjoner av de forskjellige elementer er ikke overholdt for å gjøre tegningen lettere forståelig. The invention relates to a method for improving the longitudinal density and this comprises filling the space between the band and the casing with a filler capable of swelling in the presence of water. This material is preferably deposited on the belt and consists of a powder that swells in water such as CMC, carboxymethyl cellulose, or such derivatives as HEC, hydroxyethyl cellulose; HECMC, hydroxyethylcarboxyethyl cellulose; HPMC, hydroxypropylmethylcellulose; MC, methyl cellulose; EC, ethyl cellulose; EHEC, ethyl hydroxyethyl cellulose; HPC, hydroxypropyl cellulose, used alone or in admixture, this formulation not being limiting, whereby the powder is carried by a viscous agent which does not eliminate the ability to swell in the presence of water. Figure 1 shows a cross-section of a telephone cable. The relative proportions of the different elements have not been respected in order to make the drawing easier to understand.

Fra kjernen mot periferien finner man: en gruppe kabler 1, 2, 3, 4 som kombinerer et visst antall "telefonpar", belagt med et konvensjonelt fyllstoff 5, deretter et bånd 6 be-stående av papir, et papirbasert kompleks eller et ikke-vevet bånd, et aluminiumhylster 7 viklet rundt kabelen med et dekke 8, og en ytre hylse 9 hvortil det adherer en duk 7. From the core towards the periphery one finds: a group of cables 1, 2, 3, 4 which combine a certain number of "telephone pairs", coated with a conventional filler 5, then a band 6 consisting of paper, a paper-based complex or a non- woven tape, an aluminum sleeve 7 wrapped around the cable with a cover 8, and an outer sleeve 9 to which a cloth 7 adheres.

Pulveret som sveller i vann utgjør et mellomsjikt 10 mellom hylsteret 7 og båndet 6 på hvilket det fortrinnsvis er avsatt før eller under fremstilling av kabelen. The powder which swells in water constitutes an intermediate layer 10 between the casing 7 and the band 6 on which it is preferably deposited before or during the production of the cable.

Egnede viskøse midler hvoriGellulosederivatet kan dispergeres uten at det mister sin evne til å svelle i nærvær av vann omfatter spesielt polybuten, glycerih og vannoppløse-.\ lige vokser. Suitable viscous agents in which the cellulose derivative can be dispersed without losing its ability to swell in the presence of water include in particular polybutene, glycerih and water-soluble waxes.

På denne måte vil selv om krymping inntrer under av-kjøling av kabelen når denne forlater ekstruderen enhver -etterfølgende inntrengning av vann i sonen 10 forårsake svelling av det tette produkt og dette vil motsette seg vandring av fuktigheten langs kabelen. In this way, although shrinkage occurs during cooling of the cable as it leaves the extruder, any subsequent ingress of water into zone 10 will cause swelling of the dense product and this will oppose migration of the moisture along the cable.

Som et eksempel gir et preparat inneholdende: flytende polybuten med lav molekylvekt: 6 0 vektdeler CMC-pulver: 40 vektdeler utmerkede resultater. As an example, a formulation containing: liquid low molecular weight polybutene: 60 parts by weight CMC powder: 40 parts by weight gives excellent results.

Prøver på lengdegjennomtrengning av vann i henhold til standarden L 123/124 for post og telekommunikasjonsverket under den franske regjering har vist en defekt rate på 1% på 295 prøver av telefonkabler omfattende 112 par og forseglet i henhold til oppfinnelsen. Longitudinal water penetration tests according to the standard L 123/124 of the Postal and Telecommunications Agency of the French Government have shown a defect rate of 1% on 295 samples of telephone cables comprising 112 pairs and sealed according to the invention.

Den samme kabel av konvensjonell' konstruksjon førte til en defekt rate i størrelsesorden 5%. The same cable of conventional' construction led to a defect rate of the order of 5%.

Videre fører de i lengderetning tette kabler ifølge oppfinnelsen til vesentlig mindre grad av fremstillingsvrak. Furthermore, the longitudinally dense cables according to the invention lead to a significantly lower degree of manufacturing waste.

Claims (3)

1. Fremgangsmåte for forbedring av lengderetningstettheten i en telekommunikasjonskabel som fra kjernen til periferien inneholder minst en gruppe kabler belagt med et hydrofobt fyllstoff, et dekkbånd, et metallisk hylster og en ytre hylse, karakterisert ved at et pulver som sveller i vann er anbrakt mellom dekkbåndet og det metalliske hylster, dispergert i et viskøst middel som ikke forringer svellekapasiteten.1. Method for improving the longitudinal density in a telecommunications cable which from the core to the periphery contains at least one group of cables coated with a hydrophobic filler, a covering tape, a metallic sleeve and an outer sleeve, characterized in that a powder which swells in water is placed between the covering tape and the metallic casing, dispersed in a viscous agent which does not impair swelling capacity. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at pulveret som sveller i vann inneholder minst et cellulosederivat valgt blant karboksymetylcellulose CMC, hydrok-syetylcellulose HEC, hydroksyetylkarboksymetylcellulose HECMC, hydroksypropylmetylcellulose HPMC, metylcellulose MC, etyl-cellulose EC, etylhydroksyetylcellulose EHEC og hydroksypro-pylcellulose HPC.2. Method according to claim 1, characterized in that the powder which swells in water contains at least one cellulose derivative selected from carboxymethylcellulose CMC, hydroxyethylcellulose HEC, hydroxyethylcarboxymethylcellulose HECMC, hydroxypropylmethylcellulose HPMC, methylcellulose MC, ethylcellulose EC, ethylhydroxyethylcellulose EHEC and hydroxypropylcellulose HPC . 3. Fremgangsmåte ifølge krav 1, karakterisert ved at det viskøse middel er valgt blant polybuten, gly-cerin og vannoppløselige vokser.3. Method according to claim 1, characterized in that the viscous agent is selected from among polybutene, glycerin and water-soluble waxes.
NO812490A 1980-07-21 1981-07-20 PROCEDURE FOR IMPROVING DENSITY IN LONG-TOWED TELECOMMUNICATION CABLES NO812490L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8016299A FR2487107A1 (en) 1980-07-21 1980-07-21 METHOD FOR IMPROVING THE LONGITUDINAL SEALING OF TELECOMMUNICATION CABLES

Publications (1)

Publication Number Publication Date
NO812490L true NO812490L (en) 1982-01-22

Family

ID=9244468

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812490A NO812490L (en) 1980-07-21 1981-07-20 PROCEDURE FOR IMPROVING DENSITY IN LONG-TOWED TELECOMMUNICATION CABLES

Country Status (11)

Country Link
AR (1) AR226901A1 (en)
AU (1) AU7273581A (en)
BR (1) BR8104681A (en)
DE (1) DE3128779A1 (en)
ES (1) ES503522A0 (en)
FR (1) FR2487107A1 (en)
GB (1) GB2080998A (en)
IT (1) IT1136683B (en)
NO (1) NO812490L (en)
PT (1) PT74381B (en)
SE (1) SE8104460L (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566955A1 (en) * 1984-06-29 1986-01-03 Cables De Lyon Geoffroy Delore Composite sealing material for an electrical cable and process for its manufacture
GB8422458D0 (en) * 1984-09-05 1984-10-10 Telephone Cables Ltd Cables
GB8425378D0 (en) * 1984-10-08 1984-11-14 Ass Elect Ind Electrical cables
FR2575110B1 (en) * 1984-12-21 1987-10-16 Intissel Sa WATERPROOFING COMPOSITE MATERIAL, ITS PREPARATION AND COMPOSITION FOR USE THEREOF, AS WELL AS ITS USES
US5256705A (en) * 1986-03-26 1993-10-26 Waterguard Industries, Inc. Composition with tackifier for protecting communication wires
US5218011A (en) * 1986-03-26 1993-06-08 Waterguard Industries, Inc. Composition for protecting the contents of an enclosed space from damage by invasive water
US5461195A (en) * 1986-03-26 1995-10-24 Waterguard Industries, Inc. Filled telecommunications cable having temperature stable mutual capacitance
US4963695A (en) * 1986-05-16 1990-10-16 Pirelli Cable Corporation Power cable with metallic shielding tape and water swellable powder
GB8704938D0 (en) * 1987-03-03 1987-04-08 Bp Chem Int Ltd Cables
BR8807482A (en) * 1987-05-01 1990-03-27 Clarence S Freeman COMPOSITION TO PROTECT TELECOMMUNICATIONS WIRES AND COMPOSITION TO PROTECT CABLES THAT CARRY CONTINUED CHAIN AGAINST WATER DAMAGE
US5010209A (en) * 1988-12-20 1991-04-23 Pirelli Cable Corp. Power cable with water swellable agents and elongated metal elements outside cable insulation
NL9001960A (en) * 1989-09-07 1991-04-02 Felten & Guilleaume Energie Removing traces of moisture from cable - by applying electrochemical mixt. of metal powders in or on material which swells up in water, seals cable, and decomposes water
EP1243004B1 (en) * 1999-12-20 2006-11-08 Prysmian Cavi e Sistemi Energia S.r.l. Electric cable resistant to water penetration
ATE470940T1 (en) * 2004-03-10 2010-06-15 Nexans MULTI-CORE STRANDING BRACKET

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE795126A (en) * 1972-04-01 1973-05-29 Kerpenwerk G M B H & Co MATERIAL FOR SEALING, IN PARTICULAR ELECTRICAL CABLES, LONGITUDINALLY
ES202111Y (en) * 1974-04-06 1976-11-01 Standard Electrica, S. A. IMPROVEMENTS IN ELECTRIC CABLES PROTECTED AGAINST PENETRATION OF WATER.
ZA786576B (en) * 1978-11-22 1980-02-27 South African Inventions Waterproofing or insulated electric cables

Also Published As

Publication number Publication date
AU7273581A (en) 1982-09-16
ES8205075A1 (en) 1982-06-01
GB2080998A (en) 1982-02-10
SE8104460L (en) 1982-01-22
ES503522A0 (en) 1982-06-01
IT1136683B (en) 1986-09-03
BR8104681A (en) 1982-04-06
IT8122434A0 (en) 1981-06-19
AR226901A1 (en) 1982-08-31
PT74381A (en) 1982-03-01
DE3128779A1 (en) 1982-04-29
FR2487107A1 (en) 1982-01-22
PT74381B (en) 1983-09-27

Similar Documents

Publication Publication Date Title
NO812490L (en) PROCEDURE FOR IMPROVING DENSITY IN LONG-TOWED TELECOMMUNICATION CABLES
US3347974A (en) Moisture protection in communication cables whose cores are composed of conductors insulated with synthetic plastic, and method of producing such moisture protection
US3538235A (en) Method of making telecommunications cables
NO790608L (en) MOISTURE PROTECTED, PLASTIC INSULATED ELECTRIC ENERGY CABLE.
CN104094364A (en) Cable comprising an element indicating water infiltration and method using said element
DE1960252B2 (en) REMOTE COMMUNICATION CABLES AND METHOD OF MANUFACTURING THEREOF
DE2007163B2 (en) Longitudinally watertight electrical cable
GB2222597A (en) Electrical cables with stranded conductors
EP0013477A1 (en) Electric cable including a plurality of separately insulated conductors and an adjuvant to be incorporated in the cable
DE3416367A1 (en) CABLE FOR TOWING AIR OR WATER PROTECTION
DE2216139A1 (en) Electrical cable seal - consisting of mixture of bentonite and petroleum jelly
US4551569A (en) Telecommunication cable filling composition
US4356342A (en) Fully-filled telecommunication cables
CN107742858A (en) The method for improving engineering cable wire stripping efficiency
Robinson The breakdown mechanism of impregnated paper cables
CA1108255A (en) Moisture barrier for underground cables
US4123593A (en) Paper for serving cable cores
GB995582A (en) Improvements in or relating to telecommunication cables
GB625512A (en) Improvements in electric cables
CN220627444U (en) Crosslinked polyethylene halogen-free sheath cable
DE2020741A1 (en) Telecommunication cable with corrugated sheath
DE2413996A1 (en) Cable for detecting oil leaks - with conductor insulation soluble in oil
CN205542112U (en) Water blocking cable
JPS5634738A (en) Polyolefin composition and electric cable using the same
DE913188C (en) Multi-pair portable telecommunications cable for increased operational safety