NO812175L - BLOCK HEATING POWER PLANTS. - Google Patents

BLOCK HEATING POWER PLANTS.

Info

Publication number
NO812175L
NO812175L NO812175A NO812175A NO812175L NO 812175 L NO812175 L NO 812175L NO 812175 A NO812175 A NO 812175A NO 812175 A NO812175 A NO 812175A NO 812175 L NO812175 L NO 812175L
Authority
NO
Norway
Prior art keywords
heat
power
machine
asynchronous machine
heat pump
Prior art date
Application number
NO812175A
Other languages
Norwegian (no)
Inventor
Robert Regner
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of NO812175L publication Critical patent/NO812175L/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Control Of Eletrric Generators (AREA)
  • Greenhouses (AREA)
  • Finger-Pressure Massage (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

B_l_o_k_k_v_a_r_m_e_k_r_a_f_t_v_e_r_kB_l_o_k_k_v_a_r_m_e_k_r_a_f_t_v_e_r_k

Oppfinnelsen angår et blokkvarmekraftverk bestående av en varmekraftmaskin hvis avvanne er ført via varmevekslere for varmeforsyning, samt en strømgenerator tilkoblet denne. The invention relates to a block thermal power plant consisting of a thermal power machine whose waste water is led via heat exchangers for heat supply, as well as a power generator connected to this.

Slike blokkvarmekraftverk er kjent. I tidsrom med lite varmebehov er de imidlertid dårlig utnyttet. Such block heating power plants are known. However, during periods of low heat demand, they are poorly utilized.

Til grunn for oppfinnelsen ligger den oppgave å utnytte primærenergi optimalt for varmeforsyning av varmeforbrukere og også å ta kraftverket til hjelp for å dekke belastningstopper. The invention is based on the task of optimally utilizing primary energy for heat supply of heat consumers and also of using the power plant to help cover load peaks.

Ifølge oppfinnelsen blir denne oppgave løst ved at strøm-generatoren, som er utført som asynkronmaskin med to akselender, er innrettet til efter valg å kobles til varmekraftmaskinen og/ eller til kompressoren hos en varmepumpe hvis kondensator ligger i serie med varmekraftmaskinens varmevekslere. Dermed fås mulig-het for i tidsrom med stort varmebehov å drive varmekraftmaskinen via den tomt medløpende asynkronmaskin i fellesskap med varmepumpen eller i tidsrom med lite varmebehov å stanse varme-kraf tmaskinen og drive varmepumpen ved hjelp av asynkronmaskinen med denne tilkoblet nettet som motor eller bare koble asynkronmaskinen som generator til varmekraftmaskinen for å dekke last-topper eller å levere nødstrøm. According to the invention, this task is solved by the fact that the power generator, which is designed as an asynchronous machine with two shaft ends, is designed to be optionally connected to the heat engine and/or to the compressor of a heat pump whose condenser is in series with the heat engine's heat exchangers. This makes it possible to operate the heat generator via the idle running asynchronous machine together with the heat pump in periods of high heat demand, or in periods of low heat demand to stop the heat generator and operate the heat pump using the asynchronous machine with this connected network as a motor or only connect the asynchronous machine as a generator to the thermal power machine to cover load peaks or to supply emergency power.

Oppfinnelsen vil bli belyst nærmere i det følgende ved et utførelseseksempel som er vist skjematisk på tegningen. The invention will be explained in more detail in the following by means of an embodiment which is shown schematically in the drawing.

For tilgodegjørelse av avvarmen er der til en varmekraftmaskin 1, f.eks. en forbrenningskraftmaskin eller gassturbin, koblet varmevekslere 2,. 3,. hvis sekundære kretsløp det varme-bærende medium for den eksterne varmeforsyning strømmer gjennom. Ved hjelp av en løsbar kobling 4 er en asynkronmaskin 5 som strøm-generator forbundet med varmekraftmaskinen. Med en ytterligere løsbar kobling 6 er en varmepumpes kompressor 7 koblet til asynkronmaskinen. Varmepumpens kondensator 8 ligger i serie med varmevekslerne 2, 3 i det eksterne varmekretsløp. To compensate for the waste heat, there is a heat power machine 1, e.g. an internal combustion engine or gas turbine, connected heat exchangers 2,. 3,. whose secondary circuits the heat-carrying medium for the external heat supply flows through. By means of a detachable coupling 4, an asynchronous machine 5 as current generator is connected to the thermal power machine. With a further detachable coupling 6, a heat pump's compressor 7 is connected to the asynchronous machine. The heat pump's condenser 8 is in series with the heat exchangers 2, 3 in the external heating circuit.

Med fordel kan man i tillegg tilføre varmepumpens fordamper 9 den varme som et kjølekretsløp opptar fra et rom som skal kjøles. I dette kjølekretsløp transporteres for eksempel vann fra en brønn 10. Brønnvannet transporteres til et basseng 11 og blir ved hjelp av matepumper 12 ledet gjennom forbruks-apparater 13 i rommet som skal kjøles/ og inn .i et tilbakekjølings- basseng 14 samt efter åpning av et ventilsett 15 for en dels vedkommende ført tilbake til bassenget 11 via fordamperen 9. Fra tilbakekjølingsbassenget 14 strømmer vannet tilbake i marken. Advantageously, the heat that a cooling circuit takes up from a room to be cooled can also be added to the heat pump's evaporator 9. In this cooling circuit, for example, water is transported from a well 10. The well water is transported to a pool 11 and is led by means of feed pumps 12 through consumer devices 13 in the room to be cooled/and into a cooling pool 14 and after opening of a valve set 15 is partly led back to the pool 11 via the evaporator 9. From the recooling pool 14, the water flows back into the field.

Med dette anlegg er det mulig å gjennomføre følgende drifts-former: 1. Til tider med øket varmebehov, f.eks. om vinteren og i over-gangstiden, blir den asynkrone maskin 5 sammenkoblet både med varmekraftmaskinen 1 og med varmepumpens kompressor 7. Asynkronmaskinen er skilt fra nettet og løper således med i tom-gang som rotasjonslegeme. Asynkronmaskinens friksjons- og virvelstrømtap utgjør i den forbindelse ca. 2% av akselef-fekten. Ventilsettet 15 i det ekstra kjølekretsløp er åpnet, sa en del av den varme som kjølekretsløpet opptar fra rommet som skal kjøles, via fordamperen blir overført til varmepumpe-kretsløpet. Det ustrømmende vann fra fordamperen mates tilbake til bassenget 11. 2. Til tider med lite varmebehov, f.eks. under utnyttelse av nattstrømtariff om natten, er asynkronmaskinen bare sammenkoblet med varmepumpens kompressor og driver denne som motor. Fordamperen får da likeledes tilført den varme som opptas av kjølekretsløpet. 3. For dekning av belastningstopper er bare asynkronmaskinen koblet til kraftmaskinen og mater som generator inn på nettet. Da varmepumpen er koblet fra, blir ventilsettet 15 i kjøle-kretsløpet lukket. 4. For nødstrømforsyning er asynkronmaskinen likeledes bare koblet til kraftmaskinen og arbeider som generator i paral-lelldrift til en nødstrøm-synkrongenerator. With this system, it is possible to carry out the following modes of operation: 1. At times of increased heat demand, e.g. in the winter and during the transitional period, the asynchronous machine 5 is connected both with the heat power machine 1 and with the heat pump's compressor 7. The asynchronous machine is separated from the grid and thus runs along at idle as a rotating body. In this connection, the asynchronous machine's friction and eddy current losses amount to approx. 2% of the axle effect. The valve set 15 in the additional cooling circuit is opened, so part of the heat that the cooling circuit absorbs from the room to be cooled is transferred via the evaporator to the heat pump circuit. The non-flowing water from the evaporator is fed back to the pool 11. 2. At times of low heat demand, e.g. during night electricity tariff utilization at night, the asynchronous machine is only connected to the heat pump's compressor and drives it as a motor. The evaporator is then also supplied with the heat absorbed by the cooling circuit. 3. To cover load peaks, only the asynchronous machine is connected to the power machine and feeds into the grid as a generator. When the heat pump is disconnected, the valve set 15 in the cooling circuit is closed. 4. For emergency power supply, the asynchronous machine is likewise only connected to the power machine and works as a generator in parallel operation to an emergency power synchronous generator.

Claims (2)

1. Blokkvarmekraftverk bestående av en varmekraftmaskin hvis avvarme er ført via varmevekslere for varmeforsyning, og en strøm-generator tilkoblet disse, karakterisert ved at den som asynkronmaskin med to akselender utførte strømgenerator (5) er innrettet til efter valg å kobles til varmekraftmaskinen (1) og/eller til kompressoren (7) hos en varmepumpe (7, 8, 9), hvis kondensator (8) ligger i serie med varmekraftmaskinens varmevekslere (2, 3) .1. Combined heat and power plant consisting of a thermal power machine whose heat is removed via heat exchangers for heat supply, and a power generator connected to these, characterized in that the power generator (5), designed as an asynchronous machine with two shaft ends, is designed to be connected to the thermal power machine (1) and/or to the compressor (7) of a heat pump (7, 8, 9), whose condenser (8) is in series with the heat exchangers (2, 3) of the heat power machine. 2. Blokkvarmekraftverk som angitt i krav 1,. karakterisert ved at varmepumpens (7, 8, 9) fordamper (9) er anordnet i et kjølekretsløp (10 - 15) hvorigjennom der strømmer et medium som sirkuleres for kjøling av et rom.2. Combined heat and power plant as stated in claim 1. characterized in that the heat pump's (7, 8, 9) evaporator (9) is arranged in a cooling circuit (10 - 15) through which flows a medium that is circulated for cooling a room.
NO812175A 1980-06-30 1981-06-25 BLOCK HEATING POWER PLANTS. NO812175L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803024673 DE3024673A1 (en) 1980-06-30 1980-06-30 Cogeneration plant

Publications (1)

Publication Number Publication Date
NO812175L true NO812175L (en) 1982-01-04

Family

ID=6105994

Family Applications (1)

Application Number Title Priority Date Filing Date
NO812175A NO812175L (en) 1980-06-30 1981-06-25 BLOCK HEATING POWER PLANTS.

Country Status (4)

Country Link
EP (1) EP0043067A3 (en)
DE (1) DE3024673A1 (en)
DK (1) DK286081A (en)
NO (1) NO812175L (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205059A1 (en) * 1982-02-12 1983-08-18 Karl Dipl.-Ing. 5138 Heinsberg Hoffmann Method and device for heating a heating medium in at least two consecutive heating stages of a single heating circuit by means of a heat pump
AT387813B (en) * 1987-04-08 1989-03-28 Enerag Energy Resources Ag PROCESS FOR HEATING AND / OR HOT WATER PREPARATION AND STORAGE HYDROPOWER PLANT FOR CARRYING OUT THE PROCESS
GB8715131D0 (en) * 1987-06-27 1987-08-05 Combined Power Systems Ltd Building heat & power system
AT407313B (en) * 1998-11-23 2001-02-26 Vaillant Gmbh CHP POWER PLANT
DE10321651B4 (en) * 2003-05-13 2005-08-04 Klaus Rasche Plant for the production of control energy
DE102004050644B4 (en) * 2004-10-18 2006-12-28 Siemens Ag System for the compression of gases
DE102010018318A1 (en) * 2010-04-27 2011-10-27 Robert Bosch Gmbh Coupling system for a hybrid energy system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1187340A (en) * 1957-11-29 1959-09-09 Etablissements Daubron Soc D Method and apparatus for heat treatment by accumulation of heat and cold and their applications
DE2530503C2 (en) * 1975-07-09 1986-06-19 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Heat pump system
DE2644322A1 (en) * 1976-10-01 1978-04-06 Maschf Augsburg Nuernberg Ag Refrigerator or heat pump - has stand-by drive with IC engine and electric motor coupled in series to compressor
DE2705869C2 (en) * 1977-02-11 1979-05-03 Motorheizung Gmbh, 3000 Hannover Heat pump heating system
DE2728273A1 (en) * 1977-06-23 1979-01-04 Ruhrgas Ag IC engine drive for heat pump - has engine driven flow brake to compensate for compressor decrease
DE2732132A1 (en) * 1977-07-15 1979-01-25 Linde Ag Heat producing system using water or air as source - permits all year use of heat pump, without additional heating
GB1559318A (en) * 1977-08-12 1980-01-16 Hammond J A Heat recovery
DE2830421A1 (en) * 1978-07-11 1980-01-24 Kueppersbusch Heat pump circuit with IC engine driven compressor - has electric starter motor which can act as generator feeding energy into circuit
DE2842893A1 (en) * 1978-10-02 1980-04-17 Kueppersbusch HEAT PUMP HEATING SYSTEM

Also Published As

Publication number Publication date
DK286081A (en) 1981-12-31
DE3024673A1 (en) 1982-01-28
EP0043067A2 (en) 1982-01-06
EP0043067A3 (en) 1982-01-27

Similar Documents

Publication Publication Date Title
RU2126491C1 (en) Device for cooling gas turbine cooler of gas-and-steam turbine plant
US20160177822A1 (en) Hybrid Power Generation System
CN206267896U (en) Combined cycle two-shipper condensing-back pressure formula is drawn gas cogeneration system
EP1016775A2 (en) Waste heat recovery in an organic energy converter using an intermediate liquid cycle
EP2218890B1 (en) Waste heat utilization for pre-heating fuel
US8667899B2 (en) Combined cycle powered railway locomotive
WO1999013276A1 (en) Coupled power-heat device for supplying energy
CA2340650C (en) Gas turbine and steam turbine installation
CN107905897A (en) Gas turbine cycle flue gas waste heat recovery and inlet gas cooling association system and method
WO2011030285A1 (en) Method and apparatus for electrical power production
NO812175L (en) BLOCK HEATING POWER PLANTS.
CN208040541U (en) Gas turbine cycle flue gas waste heat recovery and inlet gas cooling association system
CN110050109A (en) System and method for energy regenerating in industrial equipment
US20050121532A1 (en) System and method for district heating with intercooled gas turbine engine
KR20170138267A (en) System for recycling wasted heat of vessel
US4328674A (en) Power station
CN208816195U (en) A kind of double pressure ORC electricity generation systems
CN106460664A (en) Gas turbine efficiency and regulation speed improvements using supplementary air system
Campanari et al. The combination of SOFC and microturbine for civil and industrial cogeneration
DE19623874A1 (en) Procedure for using thermal energy contained in liquid or gaseous primary energy carrier, released by combustion
DE3002387A1 (en) Multipurpose hot water system with heat recovery unit - has heat pump and extra boiler using flue gas to increase ambient air temp. to evaporator
CN221277872U (en) System for be used for unmanned district natural gas station compressor energy supply
JPS5865917A (en) Power generating device of exhaust heat recovery in diesel engine
RU2049293C1 (en) Gas energy recovery plant on underground gas storage
CN208687830U (en) A kind of spring, autumn gas heating system