NO811848L - APPLICATION OF MIXTURES OF BETAINES OR AMINOXIDES AND POLYOXYTHYLETE ESTERS OF NITPHONIC ACIDS DURING OIL OIL TRANSPORT - Google Patents
APPLICATION OF MIXTURES OF BETAINES OR AMINOXIDES AND POLYOXYTHYLETE ESTERS OF NITPHONIC ACIDS DURING OIL OIL TRANSPORTInfo
- Publication number
- NO811848L NO811848L NO811848A NO811848A NO811848L NO 811848 L NO811848 L NO 811848L NO 811848 A NO811848 A NO 811848A NO 811848 A NO811848 A NO 811848A NO 811848 L NO811848 L NO 811848L
- Authority
- NO
- Norway
- Prior art keywords
- residue
- radical
- oil
- esters
- water
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 14
- 239000002253 acid Substances 0.000 title description 6
- 150000007513 acids Chemical class 0.000 title description 2
- 239000004094 surface-active agent Substances 0.000 claims abstract description 30
- 125000005608 naphthenic acid group Chemical group 0.000 claims abstract description 19
- -1 alkylene radical Chemical class 0.000 claims abstract description 17
- 150000003839 salts Chemical class 0.000 claims abstract description 14
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims abstract description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 11
- 150000002148 esters Chemical class 0.000 claims abstract description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 6
- 125000001453 quaternary ammonium group Chemical group 0.000 claims abstract description 4
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 239000003208 petroleum Substances 0.000 claims description 3
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 2
- 150000001413 amino acids Chemical class 0.000 claims 1
- 150000001412 amines Chemical class 0.000 abstract description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 abstract description 3
- 150000003254 radicals Chemical class 0.000 abstract 4
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical compound C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 abstract 1
- 238000011084 recovery Methods 0.000 abstract 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical group OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 238000003860 storage Methods 0.000 description 23
- 239000010779 crude oil Substances 0.000 description 15
- 238000000926 separation method Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 239000002736 nonionic surfactant Substances 0.000 description 8
- 239000013543 active substance Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- 239000011435 rock Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 229920001522 polyglycol ester Polymers 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- CFSHPRCRVHAPQD-UHFFFAOYSA-N cyclohexanecarboxylic acid cyclopentane Chemical class C1CCCC1.OC(=O)C1CCCCC1 CFSHPRCRVHAPQD-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- SBOJXQVPLKSXOG-UHFFFAOYSA-N o-amino-hydroxylamine Chemical class NON SBOJXQVPLKSXOG-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/584—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/017—Mixtures of compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/03—Specific additives for general use in well-drilling compositions
- C09K8/035—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/06—Clay-free compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Detergent Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Fats And Perfumes (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Description
Ved jordoljetransport, spesielt den sekundære og tertiære jordoljetransport, spiller grenseflateaktive stoffer en vesentlig rolle. De herved i første rekke anvendte petroleumsulfonater har den fordel med lav pris, imidlertid ulempen med deres følsomhet overfor spesielt flerverdige kationer. Således er kalsium- og magnesiumsaltene av disse forbindelser ikke mere vannoppløselige og oppløser seg fortrinnsvis i oljefasen. Da imidlertid jordolje- og saltlager-steder hyppig er å treffe sammen og vannet som befinner seg In crude oil transport, especially the secondary and tertiary crude oil transport, surfactants play a significant role. The petroleum sulphonates used here primarily have the advantage of low price, but the disadvantage of their sensitivity to polyvalent cations in particular. Thus, the calcium and magnesium salts of these compounds are no longer water-soluble and dissolve preferentially in the oil phase. As, however, oil and salt storage sites are often found together and the water that is located
på lagerstedet har et høyt elektrolyttinnhold, er ovennevnte billige sulfonater bare anvendbare innen disse deres opp-løselighet satte grenser. at the storage site has a high electrolyte content, the above-mentioned cheap sulphonates are only usable within these limits set by their solubility.
Man har også allrede anvendt kationaktive grense-overflateaktive stoffer som f.eks. kvaternære ammoniumsalter, derivater av fettaminer, polyaminer. Disse forbindelser har imidlertid igjen den ulempe med substantivitet på spesielt silikatisk sten. De taper ved absorbsjonen deres virkning. One has also already used cation-active border surfactants such as e.g. quaternary ammonium salts, derivatives of fatty amines, polyamines. However, these compounds again have the disadvantage of substantivity on particularly silicate rock. They lose their effect upon absorption.
De kjente ikke-ionogene grenseflateaktive stoffer har riktignok den fordel med relativ ufølsomhet overfor elektrolytter ennskjønt ved hjelp av elektrolytter nedsettes deres oppløselighet i vann likeledes og viser ikke den ut-pregede substantivitet av kationaktive forbindelser. Denne forbindelsesklasse, spesielt tilleiringsproduktene av etylen-oksyd til forbindelser med aktivt hydrogen, er imidlertid relativt dyre, har begrenset virksomhet og påvirker dessuten dismulgeringen av den transportere olje/vannemulsjon. The known non-ionic surfactants certainly have the advantage of relative insensitivity to electrolytes, although with the help of electrolytes their solubility in water is likewise reduced and do not show the pronounced substantivity of cation-active compounds. However, this class of compounds, especially the addition products of ethylene oxide to compounds with active hydrogen, are relatively expensive, have limited activity and also affect the disemulsification of the transporting oil/water emulsion.
Utførlig litteratur over de hittil anvendte vik-tigste grenseflateaktive stoffer kan ses i "Enzyklopadie der technischen Chemie" av Ullmann, 6. bind, side 468 ff. Detailed literature on the most important surfactants used to date can be seen in "Enzyklopadie der technischen Chemie" by Ullmann, 6th volume, page 468 ff.
Til ikke-ionogene tensiders karakteristiske egen-skaper hører dannelsen av såkalte separerings- eller uklarhetspunkter (cloud points) som kan anses som temperaturom-rådene av en faseskilling som er synlig med det blotte øye (separering til fnokking). Denne foreteelse har bl.a. sin grunn i dannelsen av kjempemiceller og oppnåelse av tempe-raturavhengige oppløselighetsgrenser. Da oppløseligheten av ikke-ionogene tensider ifølge den generelle oppfatning i første rekke bestemmes av etoksygruppenes hydratasjon, fører temperaturøkning til partiell dehydratasjon som endelig ender i faseskilling. The characteristic properties of non-ionic surfactants include the formation of so-called separation or cloud points (cloud points) which can be regarded as the temperature ranges of a phase separation that is visible to the naked eye (separation to flocculation). This phenomenon has, among other things, its basis in the formation of giant micelles and the achievement of temperature-dependent solubility limits. As the solubility of non-ionic surfactants is, according to the general opinion, primarily determined by the hydration of the ethoxy groups, an increase in temperature leads to partial dehydration which finally ends in phase separation.
Stillingen av uklarhetspunkter av ikke-ionogene tensider er bare lite avhengig av den virksomme stoffkon-sentrasjon, påvirkes imidlertid f.eks. sterkt av elektrolytter, nemlig nedsettes. The position of cloud points of non-ionic surfactants is only slightly dependent on the effective substance concentration, but is affected by e.g. strongly of electrolytes, namely is reduced.
Da ved de fleste oljelagringssteder felttemperaturen ligger langt over uklarhetspunktet av ikke-ionogene tensider og dessuten anvendelsen av relativt høymolekylære HLB-rettede produkter begrenses sterkt pga. oppløselighets-grensene, kan rent ikke-ionogene tensider bare anvendes be-tinget for ved temperaturen av uklarhetspunktet (separeringstemperaturen) skiller tensidoppløsningen seg i ustøkiome-trisk sammensatte tensidrike resp. tensidfattige blandings-faser. Derved går imidlertid den for en riktig HLB-innstilling nødvendige stoffoppdeling mellom vann- og oljefase tapt. Dessuten består den mulighet at egensolubilisering av ten-sidene i fasene ikke mere er tilstrekkelig og som et resul-tat opptrer fnokking. Den gjenblivende resttensidmengde er da ikke mere tilstrekkelig for grenseflatespenningssenkning. Since at most oil storage sites the field temperature is far above the cloud point of non-ionic surfactants and, moreover, the use of relatively high-molecular HLB-directed products is severely limited due to the solubility limits, purely non-ionic surfactants can only be used conditionally because at the temperature of the cloud point (separation temperature) the surfactant solution separates into unstoichiometrically composed surfactant-rich resp. surfactant-poor mixed phases. Thereby, however, the division of substances between the water and oil phase, which is necessary for a correct HLB setting, is lost. There is also the possibility that self-solubilization of the tensides in the phases is no longer sufficient and, as a result, flocculation occurs. The remaining amount of residual surfactant is then no longer sufficient for interfacial tension lowering.
Solubiliserte hydrokarboner kan i avhengighet av den kjemiske struktur såvel øke som også senke uklarhets-punktene. Depending on the chemical structure, solubilized hydrocarbons can both increase and decrease the cloud points.
Det er kjent at en blanding av to ikke-ionogene tensider har et uklarhetspunkt som omtrent tilsvarer middelver-dien av utgangstensidenes uklarhetspunkter. It is known that a mixture of two non-ionic surfactants has a cloud point which roughly corresponds to the mean value of the cloud points of the starting surfactants.
Ved kombinasjonen av ikke-ionogene med ionogene tensider heves generelt stillingen av uklarhetspunktet. Begge omtalte effekter beror på dannelse av blandingsmiceller. The combination of non-ionic and ionic surfactants generally raises the position of the cloud point. Both mentioned effects are due to the formation of mixed micelles.
Fra tysk patent 25 32 469 er det kjent anvendelse av grenseflateaktive betainer ved.jordoljefremstilling som som hydrofil rest har minst en kvaternaer ammoniumgruppe som intramolekylært ér istand til indre saltdannelse med en syre-gruppe, fortrinnsvis med en karboksylgruppe, og som oleofil rest minst har én fra naftensyrer avledet rest. From German patent 25 32 469, it is known the use of surface-active betaines in crude oil production which, as a hydrophilic residue, have at least one quaternary ammonium group which intramolecularly is capable of internal salt formation with an acid group, preferably with a carboxyl group, and which as an oleophilic residue has at least one from naphthenic acids derived residue.
Blant naftensyrer er det derved å forstå de i rå- oljer ved ekstraher ing med lut og etterfølgende surgjøring dannede naturlige syrer. Det dreier seg derved om blandinger hvori det overveier alkylerte cyklopentan- og cykloheksan-kar boksylsyrer ("Erdollexikon", Dr. Alfred Hiithig,Verlag Heidelberg, side 192). Among naphthenic acids is thereby understood the natural acids formed in crude oils by extraction with lye and subsequent acidification. These are mixtures in which alkylated cyclopentane- and cyclohexane-carboxylic acids predominate ("Erdollexikon", Dr. Alfred Hiithig, Verlag Heidelberg, page 192).
Eksempler for slike anvendbare betainer lar seg vise med formel I: Examples of such usable betaines can be shown by formula I:
1 2 hvori R er den fra naftensyrene avledede syrerest, R er 3 4 1 2 in which R is the acid residue derived from the naphthenic acids, R is 3 4
en alkylenrest med 2-6 C-atomer, R og R er like eller forskjellige og betyr fortrinnsvis en lavere alkylrest, spesielt en rettlinjet alkylrest med 1-4 C-atomer og R 5 er en alkylenrest med fortrinnsvis 1-3 C-atomer. an alkylene radical with 2-6 C atoms, R and R are the same or different and preferably means a lower alkyl radical, especially a linear alkyl radical with 1-4 C atoms and R 5 is an alkylene radical with preferably 1-3 C atoms.
Et ytterligere eksempel tilsvarer følgende struktur: A further example corresponds to the following structure:
Herved er de to nitrogenatomer bestanddeler av en hetero-cyklisk ring, f.eks. av piperazin. R tilsvarer i sin be-3 4 15 tydning resten R eller R i formel I. Restene R og R har ovennevnte betydning. Det er for fagfolk klart at til det tertiære nitrogenatom kan det innføres under kvaterner-ingsbetingelser en ytterligere karboksylgruppe, eventuelt atskilt fra nitrogenet med en alkylengruppe. Hereby, the two nitrogen atoms are constituents of a heterocyclic ring, e.g. of piperazine. R corresponds in its meaning to the residue R or R in formula I. The residues R and R have the above meaning. It is clear to those skilled in the art that an additional carboxyl group, possibly separated from the nitrogen by an alkylene group, can be introduced to the tertiary nitrogen atom under quaternization conditions.
Som ennu virksommere enn de ovennevnte karboksybetainer har det vist seg tilsvarende sulfobetainer. Fremgangsmåte til fremstilling av slike sulfobetainer er omtalt i DE-OS 27 36 408. Sulfobetainene tilsvarer derved den generelle formel: Corresponding sulfobetaines have been shown to be even more effective than the above-mentioned carboxybetaines. The method for producing such sulfobetaines is described in DE-OS 27 36 408. The sulfobetaines thereby correspond to the general formula:
hvori in which
R"*" betyr nafenoylresten,R"*" means the naphenoyl residue,
R 2 betyr en alkylenrest med 2-6 karbonatomer,R 2 means an alkylene residue with 2-6 carbon atoms,
R3 ogR3 and
R 4 er like eller forskjellige og betyr rettlinjede alkyl-rester med 1-4 karbonatomer, R 4 are the same or different and mean linear alkyl residues with 1-4 carbon atoms,
R<5>betyr en alkylenrest med 1-4 karbonatomer,R<5>means an alkylene residue with 1-4 carbon atoms,
x har verdien 1 eller 0, idet når x betyr 0, er det kvaternære nitrogenatom over en ytterligere gruppe R 2 under ringdannelse forbundet med første nitrogenatom og i dette tilfelle er R 2en alkylengruppe med 2 karbonatomer. I. løpet av den videre undersøkelse av naftensyre-derivater for formål tertiære jordoljebefordring har det vist seg at også tilsvarende aminoksyder som inneholder en naftenoylrest er overordentlig virksomme forbindelser. De senker allerede i meget små konsentrasjoner grenseflate-spenningen mellom jordolje og vann. x has the value 1 or 0, since when x means 0, the quaternary nitrogen atom is over a further group R 2 during ring formation connected to the first nitrogen atom and in this case R 2 is an alkylene group with 2 carbon atoms. In the course of the further investigation of naphthenic acid derivatives for the purpose of tertiary crude oil transport, it has been shown that also corresponding amine oxides containing a naphthenoyl residue are extremely effective compounds. Already in very small concentrations, they lower the interfacial tension between crude oil and water.
I en fremgangsmåte som ennu ikke hører til tek-nikkens stand er det omtalt fremstillingen av aminoksyder med den generelle formel: In a method which does not yet belong to the state of the art, the preparation of amine oxides with the general formula is described:
idet while
R"<1>"betyr naftenoylresten,R"<1>"means the naphthenoyl residue,
R betyr en alkylenrest med 2-5 karbonatomer,R means an alkylene residue with 2-5 carbon atoms,
R 7 , R 8 er like eller forskjellige og betyr en metyl- eller etylrest R 7 , R 8 are the same or different and mean a methyl or ethyl residue
samt deres anvendelse for den tertiære jordoljetransport. as well as their application for the tertiary petroleum transport.
Det er for fagfolk kjent at påvirkningen av grense-flaten olje/vann oppnår sitt maksimum når affiniteten av den grenseflateaktive forbindelse foreligger i et utveiet forhold til den oljeaktige og til den vandige fase. Er forbind-elsen for hydrofil, anriker den seg spesielt i den vandige fase, og er den for hydrofob, oppløser den seg spesielc i oljefasen. Denne hydrofob/hydrofil- resp. hydrofil/lipofil-balanse kan uttrykkes ved den kjente HLB-verdi. It is known to those skilled in the art that the influence of the oil/water interface reaches its maximum when the affinity of the surface-active compound exists in a balanced ratio to the oily and to the aqueous phase. If the compound is too hydrophilic, it concentrates particularly in the aqueous phase, and if it is too hydrophobic, it dissolves particularly in the oil phase. This hydrophobic/hydrophilic resp. hydrophilic/lipophilic balance can be expressed by the known HLB value.
Ved de ovennevnte karboksy- eller sulfobetainerIn the case of the above-mentioned carboxy or sulfobetaines
og aminoksyder på naftensyrebasis har fagfolk for styring av graden av hydrofobi den mulighet å anvende naftensyrer av forskjellig molekylvekt idet man kan gå ut fra at naftensyrer med høyere molekylvekt og lavere syretall er mere hy-drofobe enn naftensyrer med lav molekylvekt og større syretall. Påvirkningen av hydrofobien resp. oleofilien over naftenoylresten i ovennevnte forbindelse er bare mulig.innen disse grenser. and amine oxides on a naphthenic acid basis, for controlling the degree of hydrophobicity, professionals have the opportunity to use naphthenic acids of different molecular weight, since it can be assumed that naphthenic acids with a higher molecular weight and lower acid number are more hydrophobic than naphthenic acids with a low molecular weight and higher acid number. The influence of the hydrophobicity resp. the oleophilicity over the naphthenoyl residue in the above compound is only possible within these limits.
Til grunn for oppfinnelsen ligger nu den oppgaveThe invention is now based on that task
å tilveiebringe tensider resp. tensidkombinasjoner på naftensyrebasis hvis hydrofil/hydrofob-likevekt kan innstilles bedre på den på lagringsstedet befinnende jordolje under hen-syntagen til lagringsstedvannet. to provide surfactants or Surfactant combinations based on naphthenic acid whose hydrophilic/hydrophobic balance can be adjusted better on the soil oil present at the storage site during the synthesis of the storage site water.
Ifølge oppfinnelsen lykkes ved anvendelse av en blanding av According to the invention, success is achieved by using a mixture of
a) grenseflateaktive betainer som som hydrofil rest minst har én kvaternær ammoniumgruppe som intramolekylært er a) surface-active betaines which, as a hydrophilic residue, have at least one quaternary ammonium group which is intramolecular
istand til saltdannelse med en karboksylgruppe eller sulfosyregruppe, og som oleofil rest har minst én fra naftensyrene avledet rest eller fra aminoksyder med den generelle formel capable of salt formation with a carboxyl group or sulfonic acid group, and as an oleophilic residue has at least one residue derived from the naphthenic acids or from amine oxides with the general formula
idet while
R"1" betyr nafenoylresten,R"1" means the naphenoyl residue,
R g betyr en alkylenrest med 2-5 karbonatomer,R g means an alkylene residue with 2-5 carbon atoms,
R 7 , R 8 er like eller forskjellige og betyr en metyl-eller etylrest, R 7 , R 8 are the same or different and mean a methyl or ethyl residue,
og and
b) polyoksyetylenestere av naftensyrer med en molekylvekt av esteren på 500 - 3000 i vektsforhold a) : b) =10 : 90 til 90 : 10 som tensider for den tertiære jordoljebefordring. b) polyoxyethylene esters of naphthenic acids with a molecular weight of the ester of 500 - 3000 in a weight ratio a) : b) = 10 : 90 to 90 : 10 as surfactants for the tertiary crude oil transport.
Ved kombinasjonen av ikke-ionogene naftensyrepolyglykolestere med amfotensider eller amioksyder på naftensyrebasis forskyves uklarhetspunktet meget sterkt i retning av høyere temperaturer ved samtidig vesentlig forbedret uføl-somhet av tensidoppløsningene i forhold til høye saltkonsentrasjoner. In the combination of non-ionic naphthenic acid polyglycol esters with amphotensides or naphthenic acid-based amioxides, the cloud point is shifted very strongly in the direction of higher temperatures, with at the same time significantly improved insensitivity of the surfactant solutions in relation to high salt concentrations.
Dette er betydningsfullt for anvendelsen av slike produkter innen rammen tertiære forholdsregler til råolje-befordring, spesielt for fremgangsmåten med råoljemobilisering ved innstilling av ekstremt lave grenseflatespenninger (low tension flooding). This is significant for the use of such products within the framework of tertiary precautions for crude oil transport, especially for the method of crude oil mobilization by setting extremely low interface tensions (low tension flooding).
De på forhånd gitte hyppig varierende lagringssted-forhold (temperatur, trykk, salinitet av lagringsstedvannet, råoljesammensetning, porøsitet og kapillaritet av stenforma-sjonen, mineralogisk beskaffenhet av lagerstedstenen og mange andre faktorer) gjør det i praksis nødvendig å kunne styre tensidegenskapene. The previously given frequently varying storage location conditions (temperature, pressure, salinity of the storage location water, crude oil composition, porosity and capillarity of the rock formation, mineralogical nature of the storage location rock and many other factors) make it necessary in practice to be able to control the surfactant properties.
Ekstremt lave grenseflatespenninger mellom råolje/ lagerstedvann oppnås bare hår det anvendte tensid kan til-passes HLB-forstillingen tilsvarende systemet. Derved tilsvarer en bestemt HLB-innstilling et fastlagt forhold av tensidets oppløselighet i den vandige og i oljefasen. Dette forutsetter til en viss grad konstante forhold av tensidopp-løseligheten i avhengighet av temperaturen og lagerstedvann-ets saltinnhold. Extremely low interfacial tensions between crude oil/storage water are only achieved if the surfactant used can be adapted to the HLB configuration corresponding to the system. Thereby, a specific HLB setting corresponds to a fixed ratio of the solubility of the surfactant in the aqueous and in the oil phase. This presupposes, to a certain extent, constant conditions of the tensiop solubility depending on the temperature and the salinity of the storage water.
Det er således en spesiell fordel ved oppfinnelsens gjenstand at det er mulig å innstille likevekten med hensyn til komponentenes hydrofobi og hydrofoli på flere måter. Således kan man på den ene side anvende estere av naftensyrer hvis polyoksyetylenrest er forskjellig stor. Med økende innhold av oksyetylengrupper øker vannoppløseligheten og uklarhetspunktet av blandingene i saltoppløsningene. På den annen side kan man variere forholdet mellom betainer resp. : aminoksyder og ikke-ionogene forbindelser innen vide grenser. Herved er det mulig å oppnå blandinger.av grenseflateaktive forbindelser på naftensyrebasis hvis uklarhetspunkt i det eventuelle lagringsstedvann ligger over den i lagringsstedet herskende temperatur. Dette muliggjør innstilling av HLB-området hvori det er å vente optimale grenseflateaktive egen-skaper. It is thus a particular advantage of the object of the invention that it is possible to set the equilibrium with regard to the hydrophobicity and hydrofoil of the components in several ways. Thus, on the one hand, you can use esters of naphthenic acids whose polyoxyethylene residue is of different size. With increasing content of oxyethylene groups, the water solubility and the cloud point of the mixtures in the salt solutions increase. On the other hand, you can vary the ratio between betaine or : amine oxides and non-ionic compounds within wide limits. In this way, it is possible to obtain mixtures of surface-active compounds based on naphthenic acid whose cloud point in the possible storage site water is above the prevailing temperature in the storage site. This makes it possible to set the HLB range in which optimal interfacial active properties are to be expected.
Polyoksyetylenestere av naftensyrer har ifølge oppfinnelsen en molekylvekt på 500 - 3000. Forbindelsene med en molekylvekt inntil ca. 1000 solubiliseres ved hjelp av de medanvendte betainer resp. aminoksyder i lagringsstedvannet således at de oppløses i det konsentrerte saltvann. I avhengighet av lagringsstedenes temperatur velger man oksyetyleringsgraden idet det gjelder den regel at med økende lagringsstedtemperatur må oksyetyleringsgraden oke for å According to the invention, polyoxyethylene esters of naphthenic acids have a molecular weight of 500 - 3000. The compounds with a molecular weight of up to approx. 1000 is solubilized with the aid of the co-used betaine resp. amine oxides in the storage water so that they dissolve in the concentrated salt water. Depending on the temperature of the storage location, the degree of oxyethylation is chosen, as the rule applies that with increasing temperature of the storage location, the degree of oxyethylation must increase in order to
oppnå det ønskede uklarhetspunkt. Da forholdene er for-' skjellige fra lagringssted til lagringssted, er det uunngåe-lig fra det eventuelle lagringssted å utta en prøve av lagringsstedvannet og måle uklarhetspunktet av forskjellige blandinger innen området ifølge oppfinnelsen for å finne blandingen som har et helt optimait uklarhetspunkt, dvs. vanligvis et uklarhetspunkt ikke over lagringsstedets temperatur. En slik orienterende måling kan foregå etter spinning-drop-metoden. Derved iakttas deformer ingen resp. emulgeringen eller solubiliseringen av en roterende olje-dråpe i saltvann. achieve the desired point of blur. As the conditions are different from storage location to storage location, it is inevitable from the possible storage location to take a sample of the storage location water and measure the cloudiness point of different mixtures within the area according to the invention in order to find the mixture that has a completely optimal cloudiness point, i.e. usually a cloud point not above the storage temperature. Such an indicative measurement can take place according to the spinning-drop method. Thereby no deformities are observed or the emulsification or solubilization of a rotating oil droplet in salt water.
Naftensyrenes polyoksyetylenestere kan ha et lite innhold av oksypropylengrupper. Da dette imidlertid senker polyoksyalkylenrestens hydrofili, skal innholdet være lite, spesielt under 10 mol-%. The polyoxyethylene esters of the naphthenic acids may have a small content of oxypropylene groups. As this, however, lowers the hydrophilicity of the polyoxyalkylene residue, the content must be low, especially below 10 mol%.
RåoljeCrude oil
For forsøkene anvendes en råolje med følgende data: A crude oil with the following data is used for the experiments:
Lagr ingsstedsvann Storage site water
Forsøkene ble gjennomført med forskjellige saltvann. Vann 1 er et syntetisk lagringsstedvann tilsvarende DIN 50 900: The experiments were carried out with different salt water. Water 1 is a synthetic storage site water corresponding to DIN 50 900:
Vann 2 er et syntetisk lagrinsstedvann med føl-gende data: Water 2 is a synthetic reservoir water with the following data:
Tensider på naftensyrebasis Surfactants based on naphthenic acid
Som tensider på naftensyrebasis anvendes følgende forbindelser: The following compounds are used as naphthenic acid-based surfactants:
PolyoksyetylennaftensyreesterPolyoxyethylene naphthenic acid ester
Karboksybetainer Carboxybetaines
A^Naftensyrens molvekt 268 A^The molecular weight of naphthenic acid is 268
A2Naftensyrens molvekt 425 A2The molecular weight of naphthenic acid is 425
Sulfobetainer Sulfobetaines
Naftensyrens molvekt 368 Aminooksyder Molar weight of naphthenic acid 368 Amino oxides
Naftensyrens molvekt 268 The molecular weight of naphthenic acid is 268
Uklarhetspunkt (separeringspunkt) i polyoksyetylennaftensyreestere i destillert vann og forskjellige saltvann, virksomt stoffinnhold 1000 ppm. Cloud point (separation point) in polyoxyethylene naphthenic acid esters in distilled water and various salt waters, active substance content 1000 ppm.
Uklarhetspunktet (separeringspunktet) av naften-syrekarboksybetainer og polyoksyetylennaftensyreestere i destillert vann og forskjellige saltvann, virksomt stoffinnhold 1000 ppm. The cloud point (separation point) of naphthenic acid carboxybetaines and polyoxyethylene naphthenic acid esters in distilled water and various salt waters, active substance content 1000 ppm.
Uklarhetspunktet (separeringspunktet) av naften-syrekarboksybetainer og polyoksyetylennaftensyreestere i forskjellige saltvann, virksomt stoffinnhold 1000 ppm The cloud point (separation point) of naphthenic acid carboxybetaines and polyoxyethylene naphthenic acid esters in various salt waters, active substance content 1000 ppm
Uklarhetspunktet (separeringspunktet) av naften-syresulfobetainer og polyoksyetylennaftensyreestere i saltvann ifølge DIN 50 900 (vann 1). Virksomt stoffinnhold 1000 ppm. The cloud point (separation point) of naphthenic acid sulfobetaines and polyoxyethylene naphthenic acid esters in salt water according to DIN 50 900 (water 1). Active substance content 1000 ppm.
Uklarhetspunktet (separeringspunktet) av naften-syreamidaminoksyd og polyoksyetylennaftensyreester i forskjellige saltvann. Virksomt stoffinnhold 1000 ppm. The cloud point (separation point) of naphthenic acid amide amine oxide and polyoxyethylene naphthenic acid ester in various salt waters. Active substance content 1000 ppm.
Grenseflatespenningsverdier i mN 2 som funksjon av temperaturen (målt med spinning-drop-metoden) Interfacial tension values in mN 2 as a function of temperature (measured with the spinning-drop method)
Grenseflate: Råolje/vann 1. Interface: Crude oil/water 1.
Tensidkonsentrasjon: 1000 ppm Surfactant concentration: 1000 ppm
Måleresultatene viser at slik det var å vente forskyves separeringstemperaturen av de vandige oppløsninger av naftensyrepolyglykolestere ved tilsetning av naftensyrekar-boksy- eller naftensyresulfobentainer samt naftensyreamino-oksyder ikke lineært i retning av høyere temperaturer. Forbundet dermed er i alle tilfeller en vesentlig økning av tensidoppløsningenes stabilitet overfor fnokking. Begge effekter er viktige forutsetninger for praksis. The measurement results show that, as expected, the separation temperature of the aqueous solutions of naphthenic acid polyglycol esters when adding naphthenic acid carboxy- or naphthenic acid sulphobentains and naphthenic acid amino oxides is not shifted linearly in the direction of higher temperatures. Associated with this is, in all cases, a significant increase in the stability of the surfactant solutions against pilling. Both effects are important prerequisites for practice.
Eksemplene tydeliggjør ved hjelp av spinning-drop-måleresultatene viktigheten av optimal HLB-innstilling ved oppnåelse av estreme grenseflatespenningsverdier. For lang-tidig tensidvirkning innen området av spesielle systemegenskaper er blant annet en konstans av den stofflige fordeling av de virksomme stoffer mellom olje- og vannfase et grunnlag. The examples clarify with the help of the spinning-drop measurement results the importance of optimal HLB setting when achieving extreme interfacial tension values. For long-term surfactant action in the area of special system properties, a constancy of the material distribution of the active substances between oil and water phase is a basis.
Derfor nyter under de mange muligheter av formu-leringen av tensidsammensetningen de fordelen hvis separer-ingstemperatur ligger i eller like over felttemperaturen (arbeidstemperaturen). Therefore, under the many possibilities of the formulation of the surfactant composition, they enjoy the advantage if the separation temperature is at or just above the field temperature (working temperature).
Om det ved et system råolje/lagerstedvann pluss tensid gis ett eller flere områder for ekstrem grenseflate-spenning,.avhenger ikke bare av de generelle systemegenskaper, men også av tensidvirkstoffenes struktur, deres absolutte konsentrasjon, HLB-innstillingen og endelig den stofflige faseoppdeling. Whether a system of crude oil/storage water plus surfactant gives one or more areas of extreme interfacial tension depends not only on the general system properties, but also on the structure of the surfactant active ingredients, their absolute concentration, the HLB setting and finally the material phase distribution.
Således viser eksempelet med tensidkombinasjonen A^/IV at spinning-drop-verdiene for blandingsforholdet 0/100 og 10/90 først kommer ved temperatur 60°C, altså over separeringstemperaturen i området 10 — 2 10 —3 mN<2>En iakt-tagelse av systemet har vist at det her kommer til dannelse av nye faser som undertiden kan anses som væskekrystaller. Thus, the example with the surfactant combination A^/IV shows that the spinning-drop values for the mixing ratio 0/100 and 10/90 first occur at a temperature of 60°C, i.e. above the separation temperature in the range 10 — 2 10 —3 mN<2>An iact- examination of the system has shown that there is the formation of new phases which can sometimes be regarded as liquid crystals.
Om spinning-drop-metoden her ennu er istand til å gi absolutte grenseflatespenningsverdier må stå uavgjort. Whether the spinning-drop method here is still able to give absolute interfacial tension values must remain unsettled.
Den samme tensidkombinasjon A^/IV, nu i blandings-forhold 25/75 og 27/73 gir imidlertid også grensef la tespen-r ningsminima ved <60°C som ligger under separeringstemperaturen. However, the same surfactant combination A^/IV, now in a mixture ratio of 25/75 and 27/73, also gives interfacial tension minima at <60°C, which is below the separation temperature.
Lignende foreteelser skjer i eksemplene med ten-sidkombinas jonene B/IV og C/V. I begge tilfeller eksisterer to minimalområder, én gang under én gang over separeringstemperaturen av den angjeldende tensidoppløsning. Tydelig synlig ved målingen er forskjellen i faseforhold. Similar phenomena occur in the examples with the surfactant combinations B/IV and C/V. In both cases, two minimum regions exist, one time below and one time above the separation temperature of the respective surfactant solution. Clearly visible during the measurement is the difference in phase relationships.
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3025383A DE3025383C2 (en) | 1980-07-04 | 1980-07-04 | Use of mixtures of betaines or amine oxides and polyoxyethylene esters of naphthenic acids in oil production |
Publications (1)
Publication Number | Publication Date |
---|---|
NO811848L true NO811848L (en) | 1982-01-05 |
Family
ID=6106429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO811848A NO811848L (en) | 1980-07-04 | 1981-06-01 | APPLICATION OF MIXTURES OF BETAINES OR AMINOXIDES AND POLYOXYTHYLETE ESTERS OF NITPHONIC ACIDS DURING OIL OIL TRANSPORT |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0043495B1 (en) |
AT (1) | ATE2802T1 (en) |
DE (2) | DE3025383C2 (en) |
NO (1) | NO811848L (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104277806B (en) * | 2013-07-09 | 2017-07-14 | 中国石油化工股份有限公司 | Displacement composition, its preparation method and its application |
CN104399405B (en) * | 2014-12-05 | 2016-06-08 | 中国石油天然气股份有限公司 | Aryl alkyl polyoxyethylene ether sulfobetaine surfactant, preparation method and application thereof |
CN111215000B (en) * | 2020-01-15 | 2022-02-18 | 曜昂环境技术(江苏)有限公司 | Surfactants for non-aqueous phase contaminant treatment in soil and groundwater |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL286810A (en) * | 1961-12-26 | |||
GB1431006A (en) * | 1974-03-14 | 1976-04-07 | Texaco Development Corp | Surfactant oil recovery process for use in formations containing high concentrations of polyvalent ions |
US4008165A (en) * | 1975-03-14 | 1977-02-15 | Texaco Inc. | Surfactant oil recovery process usable in high temperature formations having high concentrations of polyvalent ions |
DE2532469C3 (en) * | 1975-07-19 | 1978-10-12 | Institut Fuer Erdoelforschung, 3000 Hannover | Use of betaines in oil production |
DE2600778C2 (en) * | 1976-01-10 | 1985-01-03 | Henkel KGaA, 4000 Düsseldorf | Use of betaines in oil production |
FR2396866B1 (en) * | 1977-07-08 | 1982-10-08 | Elf Aquitaine | |
US4216097A (en) * | 1977-07-15 | 1980-08-05 | Mobil Oil Corporation | Waterflooding employing amphoteric surfactants |
DE2736408C3 (en) * | 1977-08-12 | 1982-03-11 | Th. Goldschmidt Ag, 4300 Essen | Process for the preparation of N-acylated aminosulfobetaines derived from naphthenic acids |
-
1980
- 1980-07-04 DE DE3025383A patent/DE3025383C2/en not_active Expired
-
1981
- 1981-06-01 NO NO811848A patent/NO811848L/en unknown
- 1981-06-23 DE DE8181104855T patent/DE3160115D1/en not_active Expired
- 1981-06-23 EP EP81104855A patent/EP0043495B1/en not_active Expired
- 1981-06-23 AT AT81104855T patent/ATE2802T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP0043495A1 (en) | 1982-01-13 |
DE3160115D1 (en) | 1983-04-21 |
DE3025383A1 (en) | 1982-02-04 |
EP0043495B1 (en) | 1983-03-16 |
DE3025383C2 (en) | 1982-05-13 |
ATE2802T1 (en) | 1983-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yaghmur et al. | Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols | |
KR0130907B1 (en) | Microemulsions containing perfluoropolyethers | |
US9862877B2 (en) | Alkyl hydrophobe surfactants | |
Baran et al. | Microemulsion formation with chlorinated hydrocarbons of differing polarity | |
RU2577267C2 (en) | Raw oil and water extraction and separation from emulsions | |
Kutschmann et al. | Interfacial tension of alkylglucosides in different APG/oil/water systems | |
DE2829617C2 (en) | Petroleum Extraction Microemulsions and Processes for Their Manufacture | |
Puerto et al. | Effects of hardness and cosurfactant on phase behavior of alcohol-free alkyl propoxylated sulfate systems | |
Salager et al. | How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: A review. Part 4: Robustness of the optimum formulation zone through the insensibility to some variables and the occurrence of complex artifacts | |
US7160843B2 (en) | Oil-based demulsifying agent and its use in the treatment of drains bored in oil-based mud | |
Wormuth et al. | Microemulsifying polar oils | |
US20130035266A1 (en) | Coalescence of emulsions | |
NO811848L (en) | APPLICATION OF MIXTURES OF BETAINES OR AMINOXIDES AND POLYOXYTHYLETE ESTERS OF NITPHONIC ACIDS DURING OIL OIL TRANSPORT | |
Zheng et al. | Interactions between a sulfobetaine-type zwitterionic Gemini surfactant and fatty acid alkanolamide in aqueous micellar solution | |
KR970006706B1 (en) | Electrically conductive microemulsions based on perfluoropolyethers | |
Oetter et al. | Correlation between interfacial tensions and micellar structures | |
Gautier et al. | Waterless microemulsions: V. Phase behavior of ionic and nonionic formamide microemulsions | |
Lohateeraparp et al. | Study of alcohol-free microemulsion systems containing fatty acids as cosurfactants | |
Funasaki et al. | Existence of critical demicellization concentration | |
Baviere | Phase diagram optimization in micellar systems | |
CA1063018A (en) | Preparation of "bis trichloromethylsulfone emulsions and process for making" | |
Antón et al. | SURFACTANT-OIL-WATER SYSTEMS NEAR THE AFFINITY INVERSION. PART X: EMULSIONS MADE WITH ANIONIC-NONIONIC SURFACTANT MIXTURES. | |
Setiati et al. | Influence of middle phase emulsion and surfactant concentration to oil recovery using SLS surfactant synthesized from bagasse | |
Marcus et al. | Formulation and stability of a soap microemulsion and the apparent pKA herein | |
Chen et al. | Phase behavior and solubilization of microemulsions containing C16mimBr with different oil-water ratios |