NO810949L - CROSS-BONDED FUEL. - Google Patents

CROSS-BONDED FUEL.

Info

Publication number
NO810949L
NO810949L NO810949A NO810949A NO810949L NO 810949 L NO810949 L NO 810949L NO 810949 A NO810949 A NO 810949A NO 810949 A NO810949 A NO 810949A NO 810949 L NO810949 L NO 810949L
Authority
NO
Norway
Prior art keywords
polyisocyanate
biuret
cross
isocyanate
bonded
Prior art date
Application number
NO810949A
Other languages
Norwegian (no)
Inventor
Robert J Baczuk
Original Assignee
Hercules Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hercules Inc filed Critical Hercules Inc
Publication of NO810949L publication Critical patent/NO810949L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7831Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Foreliggende oppfinnelse angår forbedrede kryssbundne enkeltbasis dr-ivmiddel sammensetninger slik som nitratester-polyeter (NEPE) og kryssbundne dobbeltbasis (XLDB) drivmiddelsammensetninger som viser forbedrede mekaniske egenskaper som et resultat, av anvendelsen av et biuretbundet polyisocyanat kryssbindingsmiddel med høy funksjonalitet. The present invention relates to improved cross-linked single base propellant compositions such as nitrate ester-polyether (NEPE) and cross-linked double base (XLDB) propellant compositions which show improved mechanical properties as a result of the use of a biuret-linked polyisocyanate cross-linking agent with high functionality.

Generelt blir XLDB- og NEPE-drivmidler formulert medIn general, XLDB and NEPE propellants are formulated with

et kryssbundet polyuretanbindemiddelsystem. For optimale mekaniske egenskaper inneholder bindemiddelsystemet to kryss-bindingssystemer.XLDB-drivmidlene består generelt av en polyesterdiol og en nitrocellulose som har en hydroksyfunk-sjonalitet på mer enn tre hydroksylgrupper pr., molekyl. NEPE-drivmidlene består av en polyeterdiol slik som f.eks. poly-etylenoksyd, polytetrahydrofuran eller en polymer av en polyeterdiol og enten nitrocellulose eller celluloseacetatbutyrat, også inneholdende mer enn tre hydroksylgrupper pr. molekyl. Bindemidlene myknes med nitroglyserin eller andre nitratestere slik som f.eks. trietylenglykoldinitrat (TEGDN) eller butan-trioltrinitrat (BTTN) og er fylt med partikkelformig fast brennstoff og oksydasjonsmidler. De hydroksylterminerte diol- og polyolfunksjonelle grupper kryssbindes deretter til et meget strekkbart og seigt elastomert bindemiddel ved bruk av et polyisocyanat kryssbindingsmiddel. a cross-linked polyurethane binder system. For optimal mechanical properties, the binder system contains two cross-linking systems. The XLDB propellants generally consist of a polyester diol and a nitrocellulose that has a hydroxy functionality of more than three hydroxyl groups per molecule. The NEPE propellants consist of a polyetherdiol such as e.g. polyethylene oxide, polytetrahydrofuran or a polymer of a polyetherdiol and either nitrocellulose or cellulose acetate butyrate, also containing more than three hydroxyl groups per molecule. The binders are softened with nitroglycerin or other nitrate esters such as e.g. triethylene glycol dinitrate (TEGDN) or butane triol trinitrate (BTTN) and is filled with particulate solid fuel and oxidizing agents. The hydroxyl-terminated diol and polyol functional groups are then crosslinked into a highly stretchable and tough elastomeric binder using a polyisocyanate crosslinker.

En brukbar klasse polyisocyanat kryssbindingsmidlerA useful class of polyisocyanate cross-linking agents

er de biuretbundne polyisocyanater. Biuretbundne polyisocyanat ter fremstilles ved å omsette tre mol av et di- eller polyisocyanat slik som f.eks. heksametylendiisocyanat, og et mol vann, og eliminere et mol CC>2i prosessen. Et problem ved denne reaksjon er at når vann benyttes per se i reaksjonsblandingen kan det dannes et vannuoppløselig urinstoffmellomprodukt som forhindrer at reaksjonen går til fullførelse. Mens noen biuretbundne polyisocyanater er fremstilt via direkte addisjon av vann (se f.eks. US-PS 4.062.833), er en mere generell teknikk å tilsette vannet indirekte via vanndonorer slik som en tertiær alkohol, f.eks. t-butanol, maursyre, eller forbindelser som inneholder krystallvann eller i statunascendi (se US-PS 3.358.010 og 3.124.605). På samme måte kan reaksjonen gjennom-føres, ved å benytte vann i et egnet hjelpeoppløsningsmiddel, are the biuret-bonded polyisocyanates. Biuret-bonded polyisocyanates are prepared by reacting three moles of a di- or polyisocyanate such as e.g. hexamethylene diisocyanate, and one mole of water, and eliminate one mole of CC>2 in the process. A problem with this reaction is that when water is used per se in the reaction mixture, a water-insoluble urea intermediate can be formed which prevents the reaction from going to completion. While some biuret-linked polyisocyanates are prepared via direct addition of water (see eg US-PS 4,062,833), a more general technique is to add the water indirectly via water donors such as a tertiary alcohol, e.g. t-butanol, formic acid, or compounds containing crystal water or in statunascendi (see US-PS 3,358,010 and 3,124,605). In the same way, the reaction can be carried out by using water in a suitable auxiliary solvent,

se f.eks. US-PS 4.072.702.see e.g. US-PS 4,072,702.

Ifølge oppfinnelsen tilveiebringes det et biuretbundet polyisocyanat kryssbindingsmiddel som kan benyttes som kryssbindingsmiddel i polyuretanbindemiddelsystemer og som gir vesentlige forbedringer i de mekaniske egenskaper for drivmidler som inneholder systemet, idet polyisocyanat kryss-bindingsmidlet fremstilles ved å omsette et polyisocyanat med formelen: According to the invention, a biuret-bonded polyisocyanate cross-linking agent is provided which can be used as a cross-linking agent in polyurethane binder systems and which provides significant improvements in the mechanical properties of propellants that contain the system, the polyisocyanate cross-linking agent being produced by reacting a polyisocyanate with the formula:

(heretter kallt polyisocyanat (I)) med vann i et molforhold mellom polyisocyanat (I) og vann på ca. 1:0,04 til ca. 1:0,4. Fortrinnsvis har det biuretbundne polyisocyanat kryssbindingsmiddel en gjennomsnitlig funksjonalitet på fra 3,5 til 6,2. (hereinafter called polyisocyanate (I)) with water in a molar ratio between polyisocyanate (I) and water of approx. 1:0.04 to approx. 1:0.4. Preferably, the biuret-bonded polyisocyanate cross-linking agent has an average functionality of from 3.5 to 6.2.

De biuretbundne polyisocyanater ifølge oppfinnelsen The biuret-bonded polyisocyanates according to the invention

fremstilles ved å blande polyisocyanat (I) og vann i en egnet beholder og å oppvarme den resulterende reaksjonsblanding ved atmosfærisk trykk. Oppvarming av reaksjonsblandingen bør ikke være så hard at vann fordampes derfra før reaksjonen med polyisocyanat (I). Generelt vil reaksjonstemperaturen være ca. 80°C. En mild skumming av reaksjonsblandingen skjer på grunn av utvikling av C02. Etter at hoveddelen av gassutviklingen er ferdig kan temperaturen i reaksjonsblandingen økes, f.eks. til 100°C, for å fremme dannelse av det biuretbundne polyisocyanat i rimelig tid. Heftig omrøring av reaksjonsblandingen bør opprettholdes under hele reaksjonen for å sikre fullsten-dig reaksjon. is prepared by mixing polyisocyanate (I) and water in a suitable container and heating the resulting reaction mixture at atmospheric pressure. Heating of the reaction mixture should not be so severe that water evaporates from it before the reaction with polyisocyanate (I). In general, the reaction temperature will be approx. 80°C. A mild foaming of the reaction mixture occurs due to the evolution of C02. After the main part of the gas evolution is finished, the temperature in the reaction mixture can be increased, e.g. to 100°C, to promote formation of the biuret-bound polyisocyanate in a reasonable time. Violent stirring of the reaction mixture should be maintained throughout the reaction to ensure complete reaction.

Forholdsregler bør tas for å forhindre at utvendig fuktighet kommer inn i reaksjonsblandingen, f.eks. ved å spyle reaksjonsblandingen med en strøm av tørr nitrogen. Under største delen av reaksjonen understøtter den utviklede C02 dette. Precautions should be taken to prevent external moisture from entering the reaction mixture, e.g. by flushing the reaction mixture with a stream of dry nitrogen. During most of the reaction, the developed C02 supports this.

I foreliggende beskrivelse blir isocyanatkonsentrasjonen uttrykt i milliekvivalente isocyanat pr. gram biuretbundne polyisocyanat (meq NCO/g), for å karakterisere de biuretbundne polyisocyanater. Isocyanatkonsentrasjonen bestemmes ved å omsette det biuretbundne polyisocyanat,og et overskudd av di-N-butylamin og så titrere tilbake med standard HCl ved bruk av bromkresolgrønt som indikator. In the present description, the isocyanate concentration is expressed in milliequivalents of isocyanate per grams of biuret-bonded polyisocyanates (meq NCO/g), to characterize the biuret-bonded polyisocyanates. The isocyanate concentration is determined by reacting the biuret-bound polyisocyanate and an excess of di-N-butylamine and then titrating back with standard HCl using bromocresol green as an indicator.

Den midlere funksjonalitet av biuretbundne polyisocyanater er også antydet. Som heri brukt betyr utrykket "midlere funksjonalitet" det gjennomsnittlige antall isocyanatgrupper pr. molekyl og uttrykket som isocyanatgrupper pr. molekyl (NCO-grupper/molekyl). Midlere funksjonalitet måles ved en teknikk som baseres på iboende geldannelse og som omfatter å omsette prøver av biuretbundet polyisocyanat med forksjellige mengder av en hydroksyterminert polyester (fremstilt fra di-etylenglykol og adipinsyr) ved ca. 50°C i nærværet av en ure-tankatalysator. Etter at reaksjonen er ferdig blir de lukkede reaksjonsbeholdere snudd og de reaksjonsblandinger inneholdende gel identifisert. Av de reaksjonsblandinger som danner gel bestemmes den den laveste konsentrasjonsforhold mellom isocyanat og hydroksyl. Prøven gjentas deretter ved bruk av forhold mellom isocyanat og hydroksy i et smalere konsentrasjons-område rundt den tidligere isolerte konsentrasjon. Denne andre prøve forbedrer presisjonen ved målingen. The intermediate functionality of biuret-linked polyisocyanates is also suggested. As used herein, the term "average functionality" means the average number of isocyanate groups per molecule and the expression as isocyanate groups per molecule (NCO groups/molecule). Medium functionality is measured by a technique that is based on intrinsic gel formation and which involves reacting samples of biuret-bound polyisocyanate with varying amounts of a hydroxy-terminated polyester (made from diethylene glycol and adipic acid) at approx. 50°C in the presence of a urethane catalyst. After the reaction is finished, the closed reaction containers are turned over and the reaction mixtures containing gel are identified. Of the reaction mixtures that form a gel, the lowest concentration ratio between isocyanate and hydroxyl is determined. The test is then repeated using a ratio between isocyanate and hydroxy in a narrower concentration range around the previously isolated concentration. This second sample improves the precision of the measurement.

Den midlere funksjonalitet for polyisocyanatet kalkule-res deretter som følger: The average functionality for the polyisocyanate is then calculated as follows:

der: fN£q = midlere funksjonalitet for det biuretbundnde polyisocyanat where: fN£q = average functionality for the biuret-bonded polyisocyanate

f0H= midlere funksjonalitet for den hydroksyterminerté f0H= average functionality for the hydroxy-terminated tea

polyester, dvs. 2polyester, i.e. 2

eqOH = ekvivalenter hydroksyl i gelen dannet ved det eqOH = equivalents of hydroxyl in the gel formed by it

laveste forhold mellom isocyanat og hydroksyl lowest ratio between isocyanate and hydroxyl

eqNCO = ekvivalenter isocyanat i gelen dannet ved det laveste forhold isocyanat til hydroksyl. eqNCO = equivalent isocyanate in the gel formed at the lowest isocyanate to hydroxyl ratio.

Hvis således 3,05 ekvivalenter hydroksyl reagerer og danner en gel med 1,9 5 ekvivalenter isocyanat mens et forhold mellom hydroksyl og isocyanat på,3,1 til. 1,9 ikke gjør det så er den midlere funksjonalitet: If thus 3.05 equivalents of hydroxyl react and form a gel with 1.95 equivalents of isocyanate while a ratio between hydroxyl and isocyanate of .3.1 to. 1.9 doesn't do it then the average functionality:

Den midlere funksjonalitet for biuretbundne polyisocyanater kan justeres fra ca. 3,0 (den midlere funksjonalitet for polyisocyanat (I)) opptil ca. 6,2, det punktet der de bi-uretkryssbundne polyisocyanater viser tegn på indre kryssbinding, geldannelse og uoppløselighet. Dette skjer ved å just-ere molforholdet mellom polyisocyanat (I) og vann fra ca. 1:0,04 til ca. 1:0,4. Således vil den midlere funksjonalitet for de biuretbundne polyisocyanater øke når molforholdet mellom polyisocyanat (I) og vann synker, dvs. ved å bruke mere vann ved et fast polyisocyanat (I) nivå. The average functionality for biuret-bonded polyisocyanates can be adjusted from approx. 3.0 (the average functionality for polyisocyanate (I)) up to approx. 6.2, the point at which the bi-uret cross-linked polyisocyanates show signs of internal cross-linking, gelation and insolubility. This happens by adjusting the molar ratio between polyisocyanate (I) and water from approx. 1:0.04 to approx. 1:0.4. Thus, the average functionality for the biuret-bonded polyisocyanates will increase when the molar ratio between polyisocyanate (I) and water decreases, i.e. by using more water at a fixed polyisocyanate (I) level.

De følgende eksempler viser fremstilling av biuretbundne polyisocyanater som kan brukes ifølge oppfinnelsen. The following examples show the production of biuret-bonded polyisocyanates which can be used according to the invention.

I eksemplene og i beskrivelsen er alle deler og prosentandeler på vektbasis hvis ikke annet er sagt. In the examples and in the description, all parts and percentages are by weight unless otherwise stated.

Eksempel AExample A

Dette eksempel viser fremstilling av et biuretbundet polyisocyanat fra "desmodur N-100", et polyfunksjonelt/.isocyanat prinsipielt omfattende trifunksjonelt isocyanat til-svarende formel I ovenfor og med en isocyanatkonsentrasjon This example shows the production of a biuret-bound polyisocyanate from "desmodur N-100", a polyfunctional/isocyanate principally comprising a trifunctional isocyanate corresponding to formula I above and with an isocyanate concentration

på 5,149 milliekvivalent NCO/g og en midlere funksjonalitet på 3,5 NCO grupper/molekyl. of 5.149 milliequivalent NCO/g and an average functionality of 3.5 NCO groups/molecule.

1000 g "desmodur N-100" tilsettes til en 2-liters 3-halsrundkolbe utstyrt med mekanisk rørverk, termometer og tilsetningsåpning. Flasken spyles med tørr N2og oppvarmes til 80°C. Under heftig omrøring tilsettes 6,00 g destillert vann til kolben og temperaturen holdes ved 8 0°C i 3 timer. 1000 g "desmodur N-100" is added to a 2-liter 3-necked round flask equipped with mechanical piping, thermometer and addition opening. The bottle is flushed with dry N2 and heated to 80°C. With vigorous stirring, 6.00 g of distilled water is added to the flask and the temperature is maintained at 80°C for 3 hours.

I denne periode er eliminering av C02åpenbar. Temperaturen økes til 100°C og holdes ved dette nivå i 5 timer. Det resulterende biuretbundne polyisocyanat har en midlere funksjonalitet på 6,1 NCO grupper/molekyl målt ved den tidligere angitte teknikk og en isocyanatkonsentrasjon på 4,222 milliekvivalent NCO/g. During this period, elimination of C02 is evident. The temperature is increased to 100°C and held at this level for 5 hours. The resulting biuret-bonded polyisocyanate has an average functionality of 6.1 NCO groups/molecule measured by the previously stated technique and an isocyanate concentration of 4.222 milliequivalent NCO/g.

Eksempel BExample B

Ved å benytte den samme prosedyre som i eksempel .A By using the same procedure as in example .A

omsettes 1000 g "desmodur N-100" med 4,29 g destillert vann.react 1000 g of "desmodur N-100" with 4.29 g of distilled water.

Det resulterende biuretbundne polyisocyanatprodukt analyseres og finnes å en isocyanatkonsentrasjon på 4,417 milliekvivalenter NCO/g og en midlere funksjonalitet på 5,3 NCO grupper/molekyl. The resulting biuret-bonded polyisocyanate product is analyzed and found to have an isocyanate concentration of 4.417 milliequivalents of NCO/g and an average functionality of 5.3 NCO groups/molecule.

Eksempel CExample C

Ved å benytte samme prosedyre som i eksempel A omsettes 273 4 g "desmodur N-100" med 5,4 5 g vann. Det resulterende biuretbundne polyisocyanatprodukt har en isocyanatkonsentrasjon på 4,778 milliekvivalenter NCO/g og en midlere funksjonalitet på 3,9 NCO grupper/molekyl. By using the same procedure as in example A, 273 4 g of "desmodur N-100" are reacted with 5.4 5 g of water. The resulting biuret-bonded polyisocyanate product has an isocyanate concentration of 4.778 milliequivalents of NCO/g and an average functionality of 3.9 NCO groups/molecule.

De biuretbundne polyisocyanater benyttes i drivmidlene ifølge oppfinnelsen slik at forholdet mellom ekvivalenter isocyanat og hydroksyl i drivmidlet ligger innen området 0,8:1 The biuret-bonded polyisocyanates are used in the propellants according to the invention so that the ratio between isocyanate and hydroxyl equivalents in the propellant is within the range of 0.8:1

til ca. 1,5:1.to approx. 1.5:1.

Fremstillingen av drivmidlene ifølge oppfinnelsen med-fører generelt fremstilling av en bindepolymer for blanding omfattende bindepolymeren, en nitroseringsstabilisator og even- J.. tuelt en energetisk mykner. Denne forblanding tilsettes til drivmiddelblandingen, oppvarmes til en egnet blandetemperatur og deretter tilsettes de faste bestanddeler. Til slutt tilsettes det biuretbundne polyisocyanatkryssbindingsmiddel med en kryssbindingskatalysator slik som f .eks. dibutyltinndiac.e-tat eller trifenylbismut og drivmidlet blandes for å disper-_:;. gere bestanddelene gjevnt. Dette drivmiddel herdes deretter ved ca. 49°C. The production of the propellants according to the invention generally entails the production of a binder polymer for mixing comprising the binder polymer, a nitrosation stabilizer and possibly an energetic plasticizer. This premix is added to the propellant mixture, heated to a suitable mixing temperature and then the solid components are added. Finally, the biuret-bound polyisocyanate cross-linking agent is added with a cross-linking catalyst such as e.g. dibutyl tin diac.e-tate or triphenyl bismuth and the propellant are mixed to disper-_:;. mix the ingredients evenly. This propellant is then hardened at approx. 49°C.

Eksempel 1Example 1

Forskjellige biuretbundne polyisocyanater fremstilles ved bruk av fremgangsmåten ifølge eksempel A med de midlere funksjonaliteter som vises i første kolonne i tabell I nedenfor. Disse biuretbundne polyisocyanater benyttes som kryssbindingsmidler i forskjellige SLDB-drivmiddelsammensetninger Various biuret-bonded polyisocyanates are prepared using the method according to Example A with the average functionalities shown in the first column of Table I below. These biuret-bonded polyisocyanates are used as cross-linking agents in various SLDB propellant compositions

med følgende formulering:with the following wording:

Disse drivmidler støpes hver i en "JANAF"-prøveform og prøver herdes ved 49°C i 7 dager..6,35 m "JANAF"-prøve-stykker skjeres fra de herdede drivmidler. Disse prøver testes på 5,08 cm/minutt 0 tid uniaksielle strekkmålinger. These propellants are each cast in a "JANAF" test mold and samples are cured at 49°C for 7 days..6.35 m "JANAF" test pieces are cut from the cured propellants. These samples are tested at 5.08 cm/minute 0 time uniaxial tensile measurements.

Tabell I nedenfor antyder drivmidlenes oppførsel ved denne prøve. Den andre kolonne i tabell I angir forholdet mellom ekvivalenter isocyanat og ekvivalenter hydroksyl (NCO/OH) i drivmiddelblandingene. Fordi en del av nitrocel-lulosestabilisatoren sammen med noen spor vann forbruker en del av isocyanatet via sidereaksjoner benyttes noe mer isocyanat enn det som ville være nødvendig kun for reaksjon med hydroksylfunksjonene. Således betyr et NCO/OH-forhold på 1,2 at det for hver ekvivalent hydroksyl er benyttet 1,2 ekviva- : lenter isocyanat. Table I below indicates the behavior of the propellants in this test. The second column in Table I indicates the ratio between equivalents of isocyanate and equivalents of hydroxyl (NCO/OH) in the propellant mixtures. Because part of the nitrocellulose stabilizer together with some traces of water consumes part of the isocyanate via side reactions, somewhat more isocyanate is used than would be necessary only for reaction with the hydroxyl functions. Thus, an NCO/OH ratio of 1.2 means that 1.2 equivalents of isocyanate have been used for each equivalent hydroxyl.

For ytterligere å vise virkningen på drivmidlenes mekaniske egenskaper ble det satt opp et diagram for gjennom-snittlig funksjonalitet for det biuretbundne polyisocyanat mot drivmiddelmodulen som angitt i figuren, det hele på basis av de i tabell I gitte data. Slik det fremgår forårsaker midlere funksjonaliteter under 3,4 NCO-grupper/molekyl at drivmiddelmoduli synker markert. Modulen er meget følsom overfor lette fluktueringer i den effektive funksjonaliteten i dette området. Avvik i graden av kryssbindinger vil derved influere sterkt på denne parameters reproduserbarhet. Reduk-sjon i kryssbinding kan stamme fra øket mengde kjede termine- ring i polyesterdiolen og variasjoner i kryssbindingskatalysa-toraktiviteten. Disse forandringer påvirker mengden.av nitroseringsstabilisator eller fuktighet som kunne bli kjedetermi-nert. Fra et reproduserbarhetsstandpunkt ville høyere moduli som resultat fra midlere f unks jonalite.ter i biuretbundne polyisocyanater over 3,4 NCO-grupper/molekyl være ønskelig. To further show the effect on the mechanical properties of the propellants, a diagram was set up for the average functionality of the biuret-bonded polyisocyanate against the propellant module as indicated in the figure, all on the basis of the data given in Table I. As can be seen, medium functionalities below 3.4 NCO groups/molecule cause propellant moduli to drop markedly. The module is very sensitive to slight fluctuations in the effective functionality in this area. Deviations in the degree of cross-linking will therefore strongly influence the reproducibility of this parameter. Reduction in cross-linking can stem from an increased amount of chain termination in the polyester diol and variations in the cross-linking catalyst activity. These changes affect the amount of nitrosation stabilizer or moisture that could be chain terminated. From a reproducibility point of view, higher moduli as a result of intermediate functionalities in biuret-bonded polyisocyanates above 3.4 NCO groups/molecule would be desirable.

Claims (2)

1. Kryssbundne drivmiddelsammensetning med et polyuretanbindemiddel som er fremstilt ved bruk av et polyisocyanat kryssbindingsmiddel, karakterisert ved at det biuretbundne polyisocyanat kryssbindingsmiddel fremstilles ved å omsette et polyisocyanat med formelen: 1. Cross-linked propellant composition with a polyurethane binder which is prepared using a polyisocyanate cross-linker, characterized in that the biuret-bound polyisocyanate cross-linker is prepared by reacting a polyisocyanate with the formula: med vann i et molforhold mellom polyisocyanat og vann på fra ca. 1:0,04 til ca. 1:0,4.with water in a molar ratio between polyisocyanate and water of from approx. 1:0.04 to approx. 1:0.4. 2. Drivmiddel ifølge krav 1, karakterisert ved at det biuretbundne polyisocyanat kryssbindingsmiddel har en midlere funksjonalitet fra ca. 3,5 til ca. 6,2.2. Propellant according to claim 1, characterized in that the biuret-bound polyisocyanate cross-linking agent has an average functionality of approx. 3.5 to approx. 6.2.
NO810949A 1980-03-20 1981-03-19 CROSS-BONDED FUEL. NO810949L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13195180A 1980-03-20 1980-03-20

Publications (1)

Publication Number Publication Date
NO810949L true NO810949L (en) 1981-09-21

Family

ID=22451747

Family Applications (1)

Application Number Title Priority Date Filing Date
NO810949A NO810949L (en) 1980-03-20 1981-03-19 CROSS-BONDED FUEL.

Country Status (6)

Country Link
JP (1) JPS56160395A (en)
DE (1) DE3110795A1 (en)
FR (1) FR2478623A1 (en)
GB (1) GB2073764A (en)
IT (1) IT1146449B (en)
NO (1) NO810949L (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543540B1 (en) * 1983-03-28 1985-06-28 France Etat Armement COMPRESSED PROPULSIVE LOADING FOR AMMUNITION AND PREPARATION METHOD
FR2577919B1 (en) * 1985-02-27 1987-02-20 Poudres & Explosifs Ste Nale PROCESS FOR THE MANUFACTURE WITHOUT SOLVENT OF COMPOSITE PYROTECHNIC PRODUCTS WITH THERMOSETTING BINDER AND PRODUCTS THUS OBTAINED, IN PARTICULAR COMPOSITE PROPULSIVE POWDERS
JP2005504137A (en) * 2001-09-21 2005-02-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Preparation and use of biuret-containing polyisocyanates as crosslinking agents for coatings
AU2002327003B2 (en) * 2001-09-21 2007-08-16 Bayer Aktiengesellschaft Preparation and use of biuret-containing polyisocyanates as cross-linking agents for coatings
FR3013706B1 (en) 2013-11-22 2015-12-25 Herakles COMPOSITE PYROTECHNIC PRODUCT WITH RETICULATED BINDER AND PROCESS FOR PREPARING THE SAME
FR3013705B1 (en) 2013-11-22 2016-07-01 Herakles NON-RETICULATED BINDER COMPOSITE PYROTECHNIC PRODUCT AND PROCESS FOR PREPARING THE SAME

Also Published As

Publication number Publication date
IT1146449B (en) 1986-11-12
GB2073764A (en) 1981-10-21
JPS56160395A (en) 1981-12-10
IT8120595A0 (en) 1981-03-19
DE3110795A1 (en) 1982-01-07
FR2478623A1 (en) 1981-09-25

Similar Documents

Publication Publication Date Title
JPS603330B2 (en) curable composition
DE69607711T2 (en) Aminopropyl bis (aminoethyl) ether compositions for the production of polyurethanes
US4670068A (en) Polyfunctional isocyanate crosslinking agents for propellant binders
US4234364A (en) Crosslinked double base propellant binders
NO810949L (en) CROSS-BONDED FUEL.
US4038115A (en) Composite modified double-base propellant with filler bonding agent
JP3169286B2 (en) Liquid light-colored polyisocyanate mixture and process for producing the same
US20110060119A1 (en) Curing method for polyether
US2877192A (en) Polyurethane polymer containing a metallic dicyanamide
US6508894B1 (en) Insensitive propellant formulations containing energetic thermoplastic elastomers
US3948825A (en) Curing agent for use in making cellular polyurethane compositions
KR850000410B1 (en) Crosslinked single or double base propellant bindess
US6479614B1 (en) Energetic copolyurethane thermoplastic elastomers
JPH0759694B2 (en) Propellant composition containing binder / filling adhesive
US3919011A (en) Solid propellant composition with a polyurethane binder
Bowley et al. The effect of amines on the dehydrochlorination of poly (vinyl chloride)
JPS63248791A (en) High energy binder type composite solid propellant
US4050969A (en) Catalytic system and polyurethane propellants
US7714078B2 (en) One pot procedure for poly (glycidyl nitrate) end modification
JP3367192B2 (en) Propellant composition
US4115301A (en) Cross-linker for flexible and semi-flexible polyurethane foams
DE10115004A1 (en) Control of moisture induced curing of polyurethane foam with a pH indicator, useful for curing foamed assembly materials, adhesives, and jointing compounds ensures adequate curing by following the color change with increase in pH
CA2218935C (en) A propellant composition containing energetic copolyurethane thermoplastic elastomer
US5834685A (en) Gas generator composition with azidomethyl group and iron compound modifier
JP2799740B2 (en) Double base propellant composition and method for producing the composition