NO791169L - BIOMASS ENRICHMENT PROCEDURES - Google Patents
BIOMASS ENRICHMENT PROCEDURESInfo
- Publication number
- NO791169L NO791169L NO791169A NO791169A NO791169L NO 791169 L NO791169 L NO 791169L NO 791169 A NO791169 A NO 791169A NO 791169 A NO791169 A NO 791169A NO 791169 L NO791169 L NO 791169L
- Authority
- NO
- Norway
- Prior art keywords
- suspension
- biomass
- cell
- electrodes
- fermentation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 239000002028 Biomass Substances 0.000 title claims description 11
- 239000000725 suspension Substances 0.000 claims description 28
- 230000004151 fermentation Effects 0.000 claims description 11
- 238000000855 fermentation Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 238000005345 coagulation Methods 0.000 claims description 3
- 230000015271 coagulation Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 11
- 239000007789 gas Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005189 flocculation Methods 0.000 description 6
- 230000016615 flocculation Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 244000005700 microbiome Species 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 241000228150 Penicillium chrysogenum Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 241000235015 Yarrowia lipolytica Species 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000005056 cell body Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000589344 Methylomonas Species 0.000 description 1
- 241000589341 Methylomonas clara Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010564 aerobic fermentation Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009297 electrocoagulation Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 108010027322 single cell proteins Proteins 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/02—Separating microorganisms from the culture medium; Concentration of biomass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/02—Separating microorganisms from their culture media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Development (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
Fremgangsmåte til anrikning av biomasse.Process for the enrichment of biomass.
Aerobe fermenteringsprosesser anvendes i bkende grad i industrien for å omdanne råstoffer som slikker- og stivelsesholdige medier, n-paraffiner, metanol og etanol i hoyverdige biologiske produkter som enzymer, metabolitter eller i encelleproteiner (sammenlign f.eks. DOS 1.442.051, 2.423.766, 2.407.740, USSR patent 498.940, japansk patent 50-6778). Aerobic fermentation processes are increasingly used in industry to convert raw materials such as sugar and starch-containing media, n-paraffins, methanol and ethanol into high-value biological products such as enzymes, metabolites or single-cell proteins (compare e.g. DOS 1.442.051, 2.423. 766, 2,407,740, USSR patent 498,940, Japanese patent 50-6778).
Felles for disse mikrobiologiske prosesser er at som "fermenteringsprodukter fremkommer forst en vandig suspensjon med et biomasseinnhold på inntil 5% faststoff. ''Produk-sjonen av biomassen foregår i gassbehandlede fermenterings-beholdere hvori det i chargedrift eller kontinuerlig kan innstilles den for vekst av mikroorganismer gunstigste betingelser som temperatur, pH-verdi,<1>ionestyrke, substrat-konsentrasjon, oksygenpartialtrykk og turbulens. What these microbiological processes have in common is that as "fermentation products" an aqueous suspension with a biomass content of up to 5% solids is produced. "The production of the biomass takes place in gas-treated fermentation containers in which it can be set in batch mode or continuously for the growth of microorganisms most favorable conditions such as temperature, pH value,<1>ionic strength, substrate concentration, oxygen partial pressure and turbulence.
For opparbeidelse av fermentasjonsmassen og ut-vinning av de onskede produkter er det som forste skritt hyppig nbdvendig med en atskillelse av de faste stoffer fra vandig fermenteringsmedium. Man anvender avsetningsfrem-gangsmåte eller separatorer som filtre, klarslamsentrifuger etc. Disse apparater arbeider bare funksjonsriktig når det faste stoff som skal atskilles har en tilstrekkelig tetthets-forskjell til opplosningen. For processing the fermentation mass and extracting the desired products, it is often necessary as a first step to separate the solids from the aqueous fermentation medium. Deposition methods or separators such as filters, clarified sludge centrifuges, etc. are used. These devices only work properly when the solid substance to be separated has a sufficient density difference for the solution.
Ved biologiske cellesuspensjoner er imidlertid denne tetthetsdifferanse ofte meget liten. Sedimentasjonsforholdet In the case of biological cell suspensions, however, this density difference is often very small. The sedimentation ratio
bestemmes da fremfor alt av de suspenderte partiklers storrel-se og form. Ved atskillelse av f.eks. bakterier med partikkel-storrelse på 1^u og mindre kan anvendelsen av mekanisk energi og kapitalomkostninger for atskillelsesapparaturen reduseres is determined above all by the size and shape of the suspended particles. When separating e.g. bacteria with a particle size of 1^u and smaller, the use of mechanical energy and capital costs for the separation equipment can be reduced
når man bringer enkeltpartiklene til aggregasjon og dermed sterkt oker partikkelstbrrelsen. when you bring the individual particles to aggregation and thereby greatly increase the particle size.
Forskjellige mikroorganismer tenderer spontant til fnokning som dermed blir til rasetrekk. I andre tilfeller kan etter avslutningen av fermenteringen og «for begynnelsen av den mekaniske oppkonsentrering ved ekstra forholdsregler til-veiebringes en fnokning som eksempelvis ved pH-endring,ved tilsetning av elektrolytt (sammenlign J. Weigl, Elektrokinetische GrenzflSchenvorgange, Verlag Chemie, Weinheim 1977, side 88 ff., F. Reiff et al., Hrsg., Die Hefen, bind I, forlag Hans Carl, Niirnberg 1960, side 238), ved tilsetning av polymerer (sammenlign B. Alkinson og J.S. Daoud i Adv. Biolog. Eng., bind III, Springer Verlag, 1974, side 48) eller vannopplbselige opplos-ningsmidler. Dessuten anvendes også en temperaturøkning til 50 - 200°C(DOs 23 10 041). Various microorganisms spontaneously tend to flake off, which thus becomes a racial trait. In other cases, after the end of the fermentation and "for the beginning of the mechanical concentration, a flocculation can be provided by extra precautions, for example by pH change, by the addition of electrolyte (compare J. Weigl, Elektrokinetische GrenzflSchenvorgange, Verlag Chemie, Weinheim 1977, page 88 ff., F. Reiff et al., Eds., Die Hefen, volume I, publisher Hans Carl, Niirnberg 1960, page 238), by adding polymers (compare B. Alkinson and J.S. Daoud in Adv. Biolog. Eng ., volume III, Springer Verlag, 1974, page 48) or water-soluble solvents. In addition, a temperature increase to 50 - 200°C is also used (DOs 23 10 041).
Unntatt den bare betinget brukbare temperaturfrem-gangsmåte er det felles for alle kjente fremgangsmåter til fnokning som forutsetning for en sedimentasjon eller separering tilsetningen av fremmede stoffer, som i opparbeidelsens fbl-gende trinn for det meste er unonsket og derfor må fjernes i en videre forarbeidelse med stort arbeide. With the exception of the only conditionally usable temperature method, common to all known methods for fluffing as a prerequisite for a sedimentation or separation is the addition of foreign substances, which in the following stages of processing are mostly unwanted and therefore must be removed in further processing with great work.
Spesielt er det også kjent fremgangsmåter hvor ved innvirkning av elektrisk "strbm fjerningen av smusstoffer fra vandige oppløsninger bevirkes. Således kan avvann som inne-, holder organiske smusstoffer renses ved oksydasjon med ano- In particular, methods are also known in which the removal of impurities from aqueous solutions is effected by the effect of electric current. Thus, waste water containing organic impurities can be purified by oxidation with ano-
disk dannet oksygen på storflatede elektroder. Derved endres smusstoffene kjemisk (fransk patent 2.316.196). disk formed oxygen on large-surface electrodes. Thereby, the contaminants are changed chemically (French patent 2,316,196).
Dessuten er.det kjent forskjellige fremgangsmåte-varianter hvor ved hjelp av elektrolyse dannede små fine gassbobler etter en fakultativ forfnokning av de suspenderte partikler ved pH-verdiendring, tilsetning av flerverdi-kationer, mono- eller polymere fnokningsmidler forbinder seg med disse partikler og flotterer disse. Ved elektrolysen er det imidlertid for frembringelse av gassboblene nbdvendig med et tilsvarende hbyt energibruk (J 5.111.528-0, DOs 25 00 455, 25 45 875, 25 45 909, Food Technology, februar 1974, side~18). Herved bevirkes i ethvert tilfelle en flotasjon som forer til stor-volumt, dårlig under trykk transporterbare''skum. In addition, various method variants are known where, by means of electrolysis, small fine gas bubbles formed after a facultative flocculation of the suspended particles by changing the pH value, addition of multivalent cations, mono- or polymeric flocculation agents connect with these particles and float them . In the case of electrolysis, however, to produce the gas bubbles, a correspondingly high energy consumption is necessary (J 5.111.528-0, DOs 25 00 455, 25 45 875, 25 45 909, Food Technology, February 1974, page~18). In any case, this causes flotation which leads to large-volume, poorly transportable foam under pressure.
Videre lar hbyfortynnede partikkelsuspens joner seg klare idet man forer dem gjennom et elektrisk felt med en like-spenning på 100 - 500 volt og energiserer enkeltpartiklene til vandring i dette felt. Fremgangsmåten er bare virkningsfull ved vandige opplbsninger med meget små faststoffinnhold (50 mg/l) Furthermore, highly diluted particle suspensions can be cleared by passing them through an electric field with a DC voltage of 100 - 500 volts and energizing the individual particles to travel in this field. The method is only effective for aqueous solutions with very low solids content (50 mg/l)
(se pat. SU 573-713).(see pat. SU 573-713).
Til awannrensning fra næringsmiddelavvann er det under betegnelsen "elektrokoagulasjon" kjent fnokning og flpta-sjon på grunn av gassutvikling og kationdannelse ved innvirkning av elektrisk strbm på awannet (se Food Technology, februar 1974, side 18). Denne prosess krever imidlertid det samme tids-forbruk som en prosessfbring med kjemiske fnokningsmidler og er således ingen spesiell fordel. For dewatering from food waste, the term "electrocoagulation" refers to flocculation and flocculation due to gas evolution and cation formation when electric current is applied to the dewater (see Food Technology, February 1974, page 18). However, this process requires the same time consumption as a process production with chemical fluffing agents and is thus no particular advantage.
Til grunn for oppfinnelsen ligger således den opp-gave å tilveiebringe en fremgangsmåte som muliggjbr, å anrike biomasser i suspensjoner hvis tetthet bare er uvesentlig mindre enn biomassens uten tilsetning av fnokningsmidler eller andre fremmedstoffer, uten medvirkning av gassbobler og under unngåelse av termiske beskadigelser. The invention is thus based on the task of providing a method which makes it possible to enrich biomasses in suspensions whose density is only insignificantly less than the biomass without the addition of flocculating agents or other foreign substances, without the involvement of gas bubbles and while avoiding thermal damage.
Oppgaven loses ved hjelp av en fremgangsmåte til anrikning av biomasse ved koagulasjon av det faste stoff av en fermenteringssuspensjon under innvirkning av elektrisk strbm, idet fremgangsmåten erkarakterisert vedat man utsetter suspensjonen ved 20 - 100°C for virkning av elektrisk strbm inntil strømtettheter på 10 mA/cm 2 og en frekvens på 0 - 2000 Hz, fortrinnsvis fra 0 - 50 Hz. The task is solved using a method for the enrichment of biomass by coagulation of the solid substance of a fermentation suspension under the influence of electric current, the method being characterized by exposing the suspension at 20 - 100°C to the effect of electric current up to current densities of 10 mA/ cm 2 and a frequency of 0 - 2000 Hz, preferably from 0 - 50 Hz.
Ved angivelsen 0 - 2000 Hz skal det bringes til ut-trykk at likestrbm og vekselstrbm egner seg i samme grad ved gjennomføring av fremgangsmåten. When specifying 0 - 2000 Hz, it must be made clear that direct current and alternating current are equally suitable when carrying out the procedure.
Til grunn for denne prosess ligger til forskjell fra de allerede tidligere kjente fremgangsmåter den prosess at enkeltpartiklene som skal koagulere uavhengig av en elektro-lytisk gassutvikling ved elektrodene og spesielt i et strbm-/ spenningsområde hvor denne gassutviklingen ennu ikke opptrer The basis for this process, in contrast to the already previously known methods, is the process that the individual particles that are to coagulate independently of an electrolytic gas development at the electrodes and especially in a stress/voltage range where this gas development does not yet occur
allerede reagerer med hverandre ved anlegg av en tilsvarende innstilt strbm. already react with each other when installing a correspondingly set strbm.
Gjennomfbringen av "fremgangsmåten foregår vanligvis således at man bringer suspensjonen i et egnet reaksjonsappara tur, innstiller den bnskede temperatur og deretter gjennomfører den bnskede strbm. Den for en koagulasjon nbdvendige strbm-mengde er avhengig av type og konsentrasjon av den eventuelle fermenteringssuspensjon. Det er mulig å gjennomføres anrik-ningen ifblge oppfinnelsen såvel kontinuerlig som også diskontinuerlig. En for den diskontinuerlige gjennomfbring egnet reaksjonsapparatur danner eksempelvis en traucelle (sammenlign fig. 1). Ved denne er den egentlige cellebeholder 1 utstyrt med tettsluttende lokk 2 hvorigjennom strømtilførselen for elektrodene 3 og 4 fores og hvori befinner seg åpninger 5 for tillbp av suspensjon, 6 for bortfbring av gasser og 11 for et termomenter 9. Åpningen for bortføring av gasser kan være utstyrt med en tilbakelbpskjoler som'ikke er vist, hvori for-dampede deler av suspensjonen kan kondenseres. Traucellen er ommantlet og.kan tilsluttes ved hjelp av inngangs- (7) og ut-gangsstusser 8 til et varme- eller kjbrevæskekretslbp. Suspensjonens temperatur overvåkes over et termometer 9 eller en termofbler. De to elektroder (3 = anode) og (4 = katode) The implementation of the "method usually takes place in such a way that the suspension is brought into a suitable reaction apparatus, the desired temperature is set and then the required sterbm is carried out. The amount of sterbm required for coagulation depends on the type and concentration of the possible fermentation suspension. It is possible to carry out the enrichment according to the invention both continuously and discontinuously. A reaction apparatus suitable for the discontinuous implementation forms, for example, a trough cell (compare Fig. 1). In this case, the actual cell container 1 is equipped with a tight-fitting lid 2 through which the power supply for the electrodes 3 and 4 is lined and in which there are openings 5 for the addition of suspension, 6 for the removal of gases and 11 for a thermometer 9. The opening for the removal of gases can be equipped with a return valve which is not shown, in which vaporized parts of the suspension can be condensed The traucelle is sheathed and can be connected by hj elp of input (7) and output connectors 8 to a heating or coolant circuit lbp. The temperature of the suspension is monitored using a thermometer 9 or a thermocouple. The two electrodes (3 = anode) and (4 = cathode)
er anordnet i en avstand til hverandre på 0,5 - 50 mm, fortrinnsvis 1 - 15 mm. are arranged at a distance from each other of 0.5 - 50 mm, preferably 1 - 15 mm.
Som elektrodemateriale anvendes eksempelvis nett eller blikk av palladium eller platina samt edelmetallbelagte metallelektroder, fortrinnsvis titanelektroder, blandingsoksyd-belagte metallelektroder (som anoder), fortrinnsvis titananoder, eller også slissede og uslissede plater av grafitt. Den ver-tikale anordning av elektrodene kan også erstattes ved en hori-sontal. Likeledes er det mulig anordning av flere elektrode-par slik det fremfor alt har vist seg egnet i blokklignende kombinasjon av viklede og ikke-viklede kapillarspalteelektrod-er med og uten vibrasjon av elektrodene. Under strbmgjennom-fbringen kan .suspensjonen gjennomblandes, fortrinnsvis ved hjelp av en rbrer, f;eks. magnetrbrer 10, eller ved ompumpning, fremfor.alt ved den blokklignende kombinasjonen. Drives fremgangsmåten kontinuerlig, sa er det i lokket 2 av elektrolysekaret 1 ytterligere en åpning til kontinuerlig ompumpning av suspensjonen.. As electrode material, for example, mesh or tin of palladium or platinum as well as precious metal coated metal electrodes, preferably titanium electrodes, mixed oxide coated metal electrodes (as anodes), preferably titanium anodes, or also slotted and unslotted plates of graphite are used. The vertical arrangement of the electrodes can also be replaced by a horizontal one. Likewise, the arrangement of several electrode pairs is possible, as it has above all been shown to be suitable in a block-like combination of wound and non-wound capillary gap electrodes with and without vibration of the electrodes. During the flow-through, the suspension can be mixed through, preferably with the help of a mixer, e.g. magnetrbrer 10, or by repumping, above all by the block-like combination. If the process is operated continuously, there is an additional opening in the lid 2 of the electrolysis vessel 1 for continuous pumping of the suspension.
Fra suspensjonen som ompumpes i kretslbp atskilles'hver gang en del av suspensjonen til videreforarbeidelse og From the suspension that is repumped in circuit lbp, a part of the suspension is separated each time for further processing and
hver gang tilsettes tilsvarende frisk suspensjon.each time a corresponding amount of fresh suspension is added.
En annen, spesielt for kontinuerlig fremgangsmåte egnet, reaksjonsapparatur viser gjennomstrbmscellen. Spesielt egnet er platinaceller (sammenlign fig. 2). I et cellelegeme av kunststoff eller stål med et firkantet tverrsnitt 1 befinner det seg i dén enkleste utforelse to plateformede elektroder, anoden 3 og katoden 4 i avstand fra 1 - 60 mm. Suspensjonen tempereres tilsvarende og innfores gjennom innlbp 5 og uttas ved utlbp 12. Derved er det ved siden av engangs-gjennomforing av suspensjonen også mulig flere gangers gjen-tatt gjennomfbring. Another, especially suitable for continuous process, reaction apparatus shows the flow cell. Particularly suitable are platinum cells (compare Fig. 2). In a cell body made of plastic or steel with a square cross-section 1, in the simplest embodiment there are two plate-shaped electrodes, the anode 3 and the cathode 4 at a distance of 1 - 60 mm. The suspension is tempered accordingly and introduced through inlet 5 and withdrawn at outlet 12. Thereby, in addition to a one-time introduction of the suspension, repeated introduction several times is also possible.
En annen egnet gjennomstrbmscelle er rbrcellen (sammenlign fig. 3). I et cellelegeme av kunststoff eller stål 1 befinner det seg to konsentriske elektroder, anoden 3 og katoden 4, som har en avstand fra hverandre fra 1 - 60 mm. Suspensjonen tempereres tilsvarende, tilfores gjennom innlbp 5 og uttas ved utlbp 12. Derved er det ved siden av engangs-gjennomfbring også mulig flere gangers gjennomfbring av suspensjonen. Another suitable flow cell is the tube cell (compare Fig. 3). In a plastic or steel cell body 1 there are two concentric electrodes, the anode 3 and the cathode 4, which have a distance from each other of 1 - 60 mm. The suspension is tempered accordingly, supplied through inlet 5 and withdrawn at outlet 12. Thereby, in addition to a one-time application, it is also possible to carry out the suspension several times.
Fremgangsmåten gjennomfbres normalt ved normalt trykk. Den kan også "dtfives ved forhbyet trykk. The procedure is normally carried out at normal pressure. It can also be "dtfived by prehbyet pressure.
Med biomasse er å forstå den masse av mikroorganismer som ved fermenteringsprosesser er inneholdt som-av enkelt-partikler bestående faststoff i en fermenteringsopplbsning. Vanligvis anvendes som mikroorganismer bakterier, gjær og sopp. Eksempler på slike mikroorganismer er metanol utnyttende bakterier av slekten Methylomonas, f.eks.Metyhlomonas clara ATCC 31.226, gjær som Candida lipolytica ATCC 20.383, som fås ved dyrkning på n-paraffiner i nærvær av et vandig næringsmedium eller sopp, slik den anvendes ved den kjente fremstil-ling av antibiotika som f.eks. Penicillium chrysogenum. By biomass is meant the mass of microorganisms which, during fermentation processes, are contained as a solid substance consisting of single particles in a fermentation solution. Bacteria, yeast and fungi are usually used as microorganisms. Examples of such microorganisms are methanol-utilizing bacteria of the genus Methylomonas, e.g. Methyllomonas clara ATCC 31.226, yeasts such as Candida lipolytica ATCC 20.383, which are obtained by cultivation on n-paraffins in the presence of an aqueous nutrient medium or fungus, as used in the known preparation of antibiotics such as e.g. Penicillium chrysogenum.
Oppfinnelsen skal forklares nærmere ved hjelp av noen eksempler. The invention will be explained in more detail with the help of some examples.
Eksempel 1Example 1
Methylomonas clara ATCC 31.266 ble dyrket i en næringsopplbsning inneholdende metanol som karbonkilde,.ammoniakk som nitrogenkilde, fosfat som jern-, magnesiumsalter og andre vanlige sporelementer under aerobe betingelser. 500.ml av en således frembragt bakteriesuspensjon med et faststoffinnhold på 1,1 vekt-% ble fylt i en traucelle (seffig. 1). I denne suspensjon dypper to konsentrisk anordnede platinånettsylindre med 225 maskiner/cm med 24 og 36 mm diameter og 95 mm hoyde. Den ytre elektrode tjener som anode. Temperaturen holdes under elektrolysen på 35°C. Etter innkopling av likestrøm-men utgjor i forsbk 1 strbmstyrken 0,1 ampere. Det betyr en midlere strømtetthet referert på anodeflåtene på 0,93 mA/cm . Methylomonas clara ATCC 31.266 was grown in a nutrient solution containing methanol as carbon source, ammonia as nitrogen source, phosphate as iron, magnesium salts and other common trace elements under aerobic conditions. 500 ml of a thus produced bacterial suspension with a solids content of 1.1% by weight was filled into a trough cell (see Fig. 1). Two concentrically arranged platinum mesh cylinders with 225 machines/cm with 24 and 36 mm diameter and 95 mm height dip into this suspension. The outer electrode serves as the anode. During the electrolysis, the temperature is kept at 35°C. After switching on the direct current, in test 1 the current strength is 0.1 ampere. That means an average current density referred to the anode floats of 0.93 mA/cm.
Etter 15 minutter utkoples strommen. Den beregnede midlere cellespenning utgjor 1,1 volt. Celleinnholdet fylles deretter i et sedimentasjonskar. After 15 minutes, the power is switched off. The calculated average cell voltage is 1.1 volts. The cell contents are then filled into a sedimentation vessel.
Deri] klare overstanden dekanteres og sedimentet tilfores til ytterligere .forarbeidelse. På samme måte som i for-søk 1 gjennomføres forsbk 2-5. Forsbkene 3-5 anvender imidlertid istedenfor likestrøm, vekselstrøm med frekvenser There] the clear supernatant is decanted and the sediment is added for further processing. In the same way as in experiment 1, experiments 2-5 are carried out. Experiments 3-5, however, use alternating current with frequencies instead of direct current
på 20-Hz (forsok 3), 200 Hz (forsbk 4) og 2000 Hz (forsbk 5). De tilsvarende strbm- og spenningsverdier er angivelser av effektivverdien. I' tabell, 1 er .forsøksresultatene stilt over-for et tilsvarende blindforsbk. Ved forsbkene 3 - 5 er angitt strømmens effektivitetsverdi og spenningen. at 20-Hz (experiment 3), 200 Hz (experiment 4) and 2000 Hz (experiment 5). The corresponding strbm and voltage values are indications of the effective value. In table 1, the test results are compared for a corresponding blind test. For experiments 3 - 5, the current's efficiency value and the voltage are indicated.
a) frekvens.20 Hz b) effektiv verdi c) frekvens 200 Hz d) fre-vens 2000 Hz. a) frequency.20 Hz b) effective value c) frequency 200 Hz d) frequency 2000 Hz.
Man ser tydelig den gode til meget gode sedimentasjon av de elektrisk behandlede prover sammenlignet til ikke-behandlede prover. You can clearly see the good to very good sedimentation of the electrically treated samples compared to non-treated samples.
Eksempel 2Example 2
En kullhydrat-utnyttende stamme av gjæren Candida lipolytica ATCC 20.383 ble kultivert på n-paraffiner i nærvær av et vandig næringsmedium og en oksygenholdig gass. 500 ml av denne suspensjon (faststoffinnhold 2 vekt-%) ble fylt i en traucelle (se fig. 1) og behandlet som angitt i eksempel 1. A carbohydrate-utilizing strain of the yeast Candida lipolytica ATCC 20,383 was cultured on n-paraffins in the presence of an aqueous nutrient medium and an oxygen-containing gas. 500 ml of this suspension (solids content 2% by weight) was filled in a trough cell (see fig. 1) and treated as indicated in example 1.
Det overstående ble dekantert, sedimentet tbrket og veid. Torrvekten av den fremstilte biomasse referert til den i suspensjonen inneholdte cellemasse er et mål for den gode flokkulering. The supernatant was decanted, the sediment dried and weighed. The dry weight of the produced biomass referred to the cell mass contained in the suspension is a measure of the good flocculation.
Tabell 2 viser mengden av fremstilt biomasse for 5 forsbk avhengig av strbmstyrke, spenning, strømtetthet og tid. Table 2 shows the amount of produced biomass for 5 trials depending on the strength, voltage, current density and time.
Man ser den tydelig bkede del av fremstilt biomasse av elektrisk behandlede prover sammenlignet til ikke behandlede prover. One can see the clearly bent part of produced biomass of electrically treated samples compared to untreated samples.
Eksempel 3Example 3
Penicillium chrysogenum ATCC 10.238 ble dyrket aerobt i en næringsopplbsning inneholdende laktose, flytende korn-stbp, fosfat, karbonat og magnesiumsulfat etter vanlige metoder. Under anvendelse av de i eksempel 1, forsbk 1, omtalte elektroder anlegges likestrbm over en bestemt tid og suspensjonens filtrerbarhet måles ved måling av filtratvolum/tid. Penicillium chrysogenum ATCC 10.238 was grown aerobically in a nutrient solution containing lactose, liquid cornstarch, phosphate, carbonate and magnesium sulfate according to usual methods. Using the electrodes mentioned in example 1, experiment 1, direct current is applied over a specific time and the filterability of the suspension is measured by measuring the filtrate volume/time.
Forsbk 1Forsbk 1
500 ml av en mycelsuspensjon med 10 vekt-% faststoff 'elektrolyseres 15 minutter med 0,005 A ved 20°C. Deretter filtrerer man suspensjonen over et sugefilter (diameter 11 cm, papir, vakuum 15 torr) og måler volumet av filtratet etter 1 minutt. 500 ml of a mycelial suspension with 10% by weight of solids is electrolysed for 15 minutes with 0.005 A at 20°C. The suspension is then filtered over a suction filter (diameter 11 cm, paper, vacuum 15 torr) and the volume of the filtrate is measured after 1 minute.
Resultatene av forsbkene 1-5 fra eksempel 3 er oppstilt i tabell 3 og sammenlignet med et tilsvarende blindforsbk. The results of trials 1-5 from example 3 are listed in table 3 and compared with a corresponding blank trial.
Man ser tydelig det stbrre filtratvolum av de elektrisk behandlede prover sammenlignet med ikke-behandlede prover. One can clearly see the greater filtrate volume of the electrically treated samples compared to non-treated samples.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19782815030 DE2815030A1 (en) | 1978-04-07 | 1978-04-07 | PROCESS FOR ENRICHMENT OF BIOMASS |
Publications (1)
Publication Number | Publication Date |
---|---|
NO791169L true NO791169L (en) | 1979-10-09 |
Family
ID=6036377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO791169A NO791169L (en) | 1978-04-07 | 1979-04-06 | BIOMASS ENRICHMENT PROCEDURES |
Country Status (12)
Country | Link |
---|---|
JP (1) | JPS54138186A (en) |
AT (1) | AT374494B (en) |
BE (1) | BE875432A (en) |
BR (1) | BR7902147A (en) |
CA (1) | CA1128462A (en) |
DD (1) | DD142719A5 (en) |
DE (1) | DE2815030A1 (en) |
FR (1) | FR2421942A1 (en) |
GB (1) | GB2018287B (en) |
NL (1) | NL7902724A (en) |
NO (1) | NO791169L (en) |
SU (1) | SU902673A3 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2513087A1 (en) * | 1981-09-18 | 1983-03-25 | Int Marketing Conseil | Sterilising fluids esp. edible liq. such as fruit juice, milk etc. - by passage between electrodes connected to low voltage pulsed supply |
FR2516503B1 (en) * | 1981-11-16 | 1988-03-18 | Wehrlen Roland | BACTERIAL ACTIVATION PROCESS IN ORGANIC MATERIAL |
EP0216874B1 (en) * | 1985-04-09 | 1989-11-08 | VOEST-ALPINE Aktiengesellschaft | Process for the simultaneous production of alcohol and protein-rich fodder |
AU5344094A (en) * | 1992-10-15 | 1994-05-09 | Richter Gedeon Vegyeszeti Gyar Rt. | Process for intensification of fermentations |
JPH0994288A (en) * | 1995-09-28 | 1997-04-08 | Rimoderingu Touentei One:Kk | Method for inactivating and destructing microbes |
CN1298501C (en) | 2001-05-30 | 2007-02-07 | 新日本制铁株式会社 | Rail producing method and producing equipment |
-
1978
- 1978-04-07 DE DE19782815030 patent/DE2815030A1/en not_active Withdrawn
-
1979
- 1979-04-04 DD DD79212004A patent/DD142719A5/en unknown
- 1979-04-05 AT AT0252879A patent/AT374494B/en not_active IP Right Cessation
- 1979-04-06 CA CA325,092A patent/CA1128462A/en not_active Expired
- 1979-04-06 JP JP4118179A patent/JPS54138186A/en active Pending
- 1979-04-06 GB GB7912196A patent/GB2018287B/en not_active Expired
- 1979-04-06 SU SU792746103A patent/SU902673A3/en active
- 1979-04-06 BR BR7902147A patent/BR7902147A/en unknown
- 1979-04-06 NL NL7902724A patent/NL7902724A/en not_active Application Discontinuation
- 1979-04-06 NO NO791169A patent/NO791169L/en unknown
- 1979-04-09 FR FR7908902A patent/FR2421942A1/en not_active Withdrawn
- 1979-04-09 BE BE0/194487A patent/BE875432A/en unknown
Also Published As
Publication number | Publication date |
---|---|
GB2018287A (en) | 1979-10-17 |
JPS54138186A (en) | 1979-10-26 |
SU902673A3 (en) | 1982-01-30 |
DE2815030A1 (en) | 1979-10-18 |
NL7902724A (en) | 1979-10-09 |
AT374494B (en) | 1984-04-25 |
BE875432A (en) | 1979-10-09 |
GB2018287B (en) | 1982-07-28 |
ATA252879A (en) | 1983-09-15 |
CA1128462A (en) | 1982-07-27 |
BR7902147A (en) | 1979-12-04 |
FR2421942A1 (en) | 1979-11-02 |
DD142719A5 (en) | 1980-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3767046A (en) | Liquid purification method | |
Tenney et al. | Chemical flocculation of microorganisms in biological waste treatment | |
US4331525A (en) | Electrolytic-ultrafiltration apparatus and process for recovering solids from a liquid medium | |
NO169794B (en) | OPTIMIZING DEVICE FOR BUCKET AND SEAL GASES IN GAS TURBINERS COMPRESSORS. | |
Rao et al. | Influence of magnetic field on the performance of bubble columns and airlift bioreactor with submersed microorganisms | |
US2997430A (en) | Method of purifying sewage-water | |
EP0192879A1 (en) | Methane fermentation process for treating evaporator condensate from pulp making system | |
US4161435A (en) | Process and apparatus for reducing the level of contaminants in aqueous electrolytes containing the same | |
Yetis et al. | Effect of nickel (II) on activated sludge | |
NO791169L (en) | BIOMASS ENRICHMENT PROCEDURES | |
Ratusznei et al. | Effect of feeding strategy on a stirred anaerobic sequencing fed-batch reactor containing immobilized biomass | |
Fiechter | Physical and chemical parameters of microbial growth | |
Ghahremani et al. | Treatment of dairy industry wastewater using an electrocoagulation process | |
CN107354181A (en) | A kind of method for regulating and controlling debirs cooperative fermentation L lactic acid using cathodic reduction | |
Gökçay et al. | Effect of nickel (II) on the biomass yield of the activated sludge | |
US3679565A (en) | Process for electrolytic treatment of liquors using pressure cell with porous electrode means | |
Lal et al. | Improvement in electrically induced biomass harvesting of Chlorella sp. MJ 11/11 for bulk biomass production | |
Honeycutt | A technique for harvesting unicellular algae using colloidal gas aphrons | |
CN110240283A (en) | A kind of device and method using Deep-Sea Microorganisms processing salt-containing organic wastewater | |
CN110438020A (en) | One plant of efficient dephosphorization saccharomycete and its application in sanitary sewage disposal | |
US2807577A (en) | Electrolytic after treatment of carbon black | |
Sandbank et al. | Harvesting of algae from high-rate ponds by flocculation-flotation | |
CN107384977A (en) | A kind of method for strengthening sludge fermentation debirs lactic acid producing efficiency using positive voltage | |
US4971675A (en) | Electrolyzer for purification of fluids | |
JPH0833494A (en) | Method for circulating continuous production and separation of bacterial cellulose |