NO771078L - FLAME RETAINING, SCREAD-RESISTANT POLYOLEFIN COMPOUND - Google Patents

FLAME RETAINING, SCREAD-RESISTANT POLYOLEFIN COMPOUND

Info

Publication number
NO771078L
NO771078L NO771078A NO771078A NO771078L NO 771078 L NO771078 L NO 771078L NO 771078 A NO771078 A NO 771078A NO 771078 A NO771078 A NO 771078A NO 771078 L NO771078 L NO 771078L
Authority
NO
Norway
Prior art keywords
polymer composition
composition according
polymer
vinyl acetate
composition
Prior art date
Application number
NO771078A
Other languages
Norwegian (no)
Inventor
Melvin Fredrick Maringer
James Wayne Biggs
Original Assignee
Nat Distillers Chem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Distillers Chem Corp filed Critical Nat Distillers Chem Corp
Publication of NO771078L publication Critical patent/NO771078L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

Flammeretarderendestrålningsherdbar Flame retardant radiation curable

polyolef inforbindelsepolyolefin in compound

Oppfinnelsen angår polyolefinsammensetninger som kan herdes ved bestråling og danne ikke-porøse masser egnet som tråd- og kabelisolasjon med bedrede flammeretarderende fysikalske og elektriske egenskaper, og en fremgangsmåte, for slike preparater. Mer spesielt angår oppfinnelsen flammeretarderende polymersammensetninger på basis av ethylen-vinylacetatcopolymer, en halogenholdig flammeretarderende forbindelse, en antimonforbindelse, fyllstoff i form av røkutfeldt siliciumoxyd, en syreakseptor, et antioxydasjonsmiddel og et tverrbindingsmiddel som kan blandes under høy skjærkraft, hvilke blandinger strålingsherdes til produkter uten porøsitet. The invention relates to polyolefin compositions which can be hardened by irradiation and form non-porous masses suitable as wire and cable insulation with improved flame-retardant physical and electrical properties, and a method for such preparations. More particularly, the invention relates to flame retardant polymer compositions based on ethylene-vinyl acetate copolymer, a halogen-containing flame retardant compound, an antimony compound, filler in the form of fume-precipitated silicon oxide, an acid acceptor, an antioxidant and a cross-linking agent which can be mixed under high shear, which mixtures are radiation cured to products without porosity .

Polyolefinsammensetninger som kan herdes termisk ved Thermally curable polyolefin compositions

hjelp av tilsatt peroxyd eller en blanding av peroxyd og en fler-funksjonen monomer reagens og inneholdende halogenerte flammeretarderende tilsetninger og antimonforbindelse er kjent på området, f.eks. fra US patent 3.860.676, 3.856.890 og 3.900.533. Under termisk herdning benyttes varme og trykk som gjør at man unngår dannelse av porøsitet eller hulrom under herdningen, og får en ikke-porøs isolasjon med fremragende flammeretarderende egenskaper, samt fysikalske og elektriske egenskaper. Strålingsherdning foretas under atmosfærisk trykk, og modifikasjon'av termisk herd-bare sammensetninger for strålingsherdning ved å fjerne peroxyd-tilsetningen gir en isolasjon med dårligere egenskaper. Porøse, uherdede sammensetninger blir mer porøse ved strålingsherdning, og gir aldri god balanse mellom deønskede egenskaper på grunn av porøsiteten. Derimot gir varme og trykk som benyttes under termisk herdning ikke-porøse produkter selvom en viss porøsitet finnes i de uherdede polymersammensetninger. by means of added peroxide or a mixture of peroxide and a multi-functional monomer reagent and containing halogenated flame retardant additives and antimony compound are known in the field, e.g. from US Patents 3,860,676, 3,856,890 and 3,900,533. During thermal curing, heat and pressure are used to avoid the formation of porosity or cavities during curing, resulting in a non-porous insulation with excellent flame retardant properties, as well as physical and electrical properties. Radiation curing is carried out under atmospheric pressure, and modification of thermally curable compositions for radiation curing by removing the peroxide addition produces an insulation with inferior properties. Porous, uncured compositions become more porous upon radiation curing, and never provide a good balance of the desired properties due to the porosity. In contrast, heat and pressure used during thermal curing produce non-porous products, even though a certain porosity is present in the uncured polymer compositions.

Forslag til regulering av porøsiteten i strålingsherdbare flammeretarderende polyolefinsammensetninger finnes ikke i litte- råturen. Porøsitet i isolasjonsprodukter er et alvorlig problem, og synes å dukke opp pånytt efterhvert som sammensetningene forbed-res med hensyn til andre egenskaper. Tysk patent 2.237.354 behand-ler regulering av porøsiteten, men bare i et peroxydherdbart sys-tem som inneholder hydratisert pigment. Proposals for regulating the porosity in radiation-curable flame-retardant polyolefin compositions are not found in the literature. Porosity in insulation products is a serious problem, and seems to reappear as the compositions are improved with respect to other properties. German patent 2,237,354 deals with regulation of the porosity, but only in a peroxide-curable system containing hydrated pigment.

Ifølge foreliggende oppfinnelse har man oppdaget at tverrbinding av flammeretarderende polymersammensetninger til i alt vesentlig uporøse masser ved strålingsherdning krever at polymersammensetningen inneholder praktisk ingen hulrom før strå-lingsbehandling, og videre inneholder bestanddeler som hindrer dannelsen av slike porer under bestrålingen. Fremstilling av en vesentlig uporøs polymersammensetning krever valg av riktige bestanddeler og bruk av høy mekanisk skjærkraft under blandingen. Foreliggende oppfinnelse tilveiebringer en slik kombinasjon av bestanddeler og blandeprosess for fremstilling av en uporøs sam-sammensetning som kan fremstilles og herdes ved stråling og opp-fylle de krav til flammeretardering eller brannsikkerhet, fysikalske, elektriske og temperaturaldringsegenskaper som er oppsatt av Insulatet Power Cable Engineers Association (IPCEA). According to the present invention, it has been discovered that cross-linking of flame-retardant polymer compositions into essentially non-porous masses by radiation curing requires that the polymer composition contains practically no voids before radiation treatment, and further contains components that prevent the formation of such pores during the irradiation. The production of a substantially non-porous polymer composition requires the selection of the correct ingredients and the use of high mechanical shear during mixing. The present invention provides such a combination of components and mixing process for the production of a non-porous composite which can be produced and hardened by radiation and meet the requirements for flame retardancy or fire safety, physical, electrical and temperature aging properties set by the Insulated Power Cable Engineers Association (IPCEA).

Ved utførelse av frmegangsmåten ifølge oppfinnelsen blir copolymerharpiksen av ethylen-vinylacetat,halogenholdig flammeretarderende middel, antimonforbindelsenrøkutféldt siliciumoxyd som fyllstoff, syreakseptpr, antioxydasjonsmiddel og polyfunksjo-nell monomer som tverrbindingsmiddel blandet omhyggelig, f.eks. i en Banbury blander, til en homogen dispersjon av alle tilsetninger i polymerbasen. Temperaturen i blanderen kontrolleres slik at man oppnår tilstrekkelig mekanisk skjærkraft til at dispersjonen av additiver er god, og i det minste en delvis fjerning av flyktige stoffer som absorberes i bestanddelene. When carrying out the process according to the invention, the copolymer resin of ethylene-vinyl acetate, halogenated flame retardant, antimony compound, fume-precipitated silicon oxide as filler, acid acceptor, antioxidant and polyfunctional monomer as cross-linking agent are carefully mixed, e.g. in a Banbury mixer, to a homogeneous dispersion of all additives in the polymer base. The temperature in the mixer is controlled in such a way that sufficient mechanical shearing force is achieved so that the dispersion of additives is good, and at least a partial removal of volatile substances that are absorbed in the components.

Den resulterende sammensetning mates derefter inn i en dobbeltvalsemølle eller ekstruder hvor kontroll av temperaturen og mekanisk skjærkraft resulterer i en viss tilleggsblanding og prinsipielt en agglomerering av flyktige bestanddeler i store hulrom som derpå brytes opp og åpnes slik at disse flyktige bestanddeler kan unnslippe fra den varme sammensetning. Massen blir derpå avkjølt og oppdelt eller pelletisert for lagring, transport og The resulting composition is then fed into a double roll mill or extruder where control of the temperature and mechanical shear results in some additional mixing and, in principle, an agglomeration of volatile constituents in large cavities which are then broken up and opened so that these volatile constituents can escape from the hot composition . The mass is then cooled and divided or pelletized for storage, transport and

-videre bearbeidelse til tråd- og kabelisolasjon.-further processing for wire and cable insulation.

Valget av bestanddeler og deres relative mengder gjør det enkelt å blande sammensetningen til en homogen masse som ikke er porøs. Dette er avgjørende for å oppnå uporøs, uherdet isolasjon for bestrålingsherdning. Den nye sammensetning ifølge oppfinnelsen hindrer videre utvikling av porøsitet når den utsettes for den strålingsdose som er nødvendig for å gi den beste balanse mellom fysikalske, elektriske, flammeretarderende og temperatural-drende egenskaper. Strålingsdosen vil vanligvis ligge mellom 10 og 40 megarad. The choice of ingredients and their relative amounts makes it easy to mix the composition into a homogeneous mass that is not porous. This is essential to achieve non-porous, uncured insulation for radiation curing. The new composition according to the invention prevents further development of porosity when it is exposed to the radiation dose necessary to give the best balance between physical, electrical, flame retardant and temperature aging properties. The radiation dose will usually be between 10 and 40 megarads.

Den spesielle mekanisme hvorved sammensetninger ifølge oppfinnelsen gir homogene blandinger uten porøsitet, og som kan tverrbindes ved bestråling til uporøse masser er ikke klarlagt. Man antar at ikke bare vil den spesielle sammensetning av bestanddeler gi en lav grad av absorberte flyktige stoffer, men også at kombinasjonen gir den nødvendige smelteviskositet ved forskjellige blandetrin til å befordre en sammenløpning av flyktige bestanddeler slik at de lett kan fjernes. Generelt vil alle pulveriserte bestanddeler inneholde absorberte gasser og fuktighet, og andre faste tilsetninger kan også inneholde absorberte, flyktige stoffer. I tillegg vil endel tilsetninger delvis spalte under blandingen eller den påfølgende bearbeidelse og herdning under dannelse av flyktige stoffer.. Man antar at ett eller flere.av de spesielle stoffer som finnes i sammensetningen tjener som kjerner-dannere for oppsamling av disse flyktige stoffer som derved løper sammen eller agglomereres til større hulrom ved innvirkning av én eller flere bestanddeler som mekanisk skjærkraft. De store aggld-mererte hulrom blir så brutt ned og åpnet, og flyktige stoffer unn-slipper når polymersammensetningen har den minste tykkelse ved de skjærkraftproduserende deler, dvs. nypet mellom valsene i møllen eller kantene i. ekstruderskruen. Dette resulterer i en homogen dispersjon av alle tilsetninger i polymerfasen som blir i det vesentlige ikke-porøs. The special mechanism by which compositions according to the invention give homogeneous mixtures without porosity, and which can be cross-linked by irradiation into non-porous masses, has not been clarified. It is assumed that not only will the particular composition of constituents provide a low degree of absorbed volatiles, but also that the combination provides the necessary melt viscosity at various mixing stages to promote a coalescence of volatile constituents so that they can be easily removed. In general, all powdered ingredients will contain absorbed gases and moisture, and other solid additives may also contain absorbed, volatile substances. In addition, certain additives will partially split during the mixing or the subsequent processing and curing, forming volatile substances. run together or agglomerate into larger cavities under the influence of one or more components such as mechanical shear. The large aggld-merged cavities are then broken down and opened, and volatile substances escape when the polymer composition has the smallest thickness at the shear-producing parts, i.e. the pinch between the rollers in the mill or the edges in the extruder screw. This results in a homogeneous dispersion of all additives in the polymer phase which becomes essentially non-porous.

Man forstår heller ikke klart hvorfor sammensetningene ifølge oppfinnelsen hindrer dannelsen av porøsitet under strålingsherdning. Det er mulig at hydrogen som dannes ved bestrålingen oppfanges eller bindes av én eller flere bestanddeler på fysikalsk eller kjemisk måte. Således blir gass som dannes ved strålingen 'av den polymere for å tverrbinde polymerkjedene hurtig fjernet og kan ikke utvides under dannelse av hulrom i isolasjonsmassen. It is also not clearly understood why the compositions according to the invention prevent the formation of porosity during radiation curing. It is possible that hydrogen formed during the irradiation is captured or bound by one or more components in a physical or chemical way. Thus, gas formed by the radiation of the polymer to cross-link the polymer chains is quickly removed and cannot expand to form voids in the insulating mass.

Den foretrukne polyolefinpolymer er en ethylen-vinylacetatcopolymer med fra 8 til 28 vekt% vinylacetat og en molvekt i henhold til smelteindeks på 0,5 - 10 g/10 minutter. Polyolefin-polyméren kan være en ethylen-vinylacetatcopolymer med 5-65 vekt% vinylacetat og smelteindeks 0,2 - 40 g/10 minutter. Man kan også bruke.LD-polyethylener som f.eks. fremstillet ved høytrykks-prosessen, med egenvekter på 0,910 - 0,940 g/cm 3 og smelteindeks på 0,2 - 10. Polymerbestanddelen kan være en kombinasjon av LD-polyethylen og ethylen-vinylacetatcopolymer. Man kan også benytte copolymerer av ethylen med andre vinylmonomerer (dvs. ethylacry-lat, methylacrylat, methylmethacrylat, etc.) som eneste eller en del av polymerbestanddelen i sammensetningen. The preferred polyolefin polymer is an ethylene-vinyl acetate copolymer having from 8 to 28% by weight of vinyl acetate and a melt index molecular weight of 0.5 - 10 g/10 minutes. The polyolefin polymer can be an ethylene-vinyl acetate copolymer with 5-65% by weight of vinyl acetate and a melt index of 0.2-40 g/10 minutes. You can also use LD polyethylenes such as produced by the high-pressure process, with specific weights of 0.910 - 0.940 g/cm 3 and melt index of 0.2 - 10. The polymer component can be a combination of LD polyethylene and ethylene-vinyl acetate copolymer. Copolymers of ethylene with other vinyl monomers (ie ethylacrylate, methylacrylate, methylmethacrylate, etc.) can also be used as the sole or part of the polymer component in the composition.

Den flammeretarderende tilsetning som brukes i polymersammensetninger ifølge oppfinnelsen forhandles under varemerket "Dechlorane 602" og har kjemisk struktur og navn som følger: The flame retardant additive used in polymer compositions according to the invention is marketed under the trademark "Dechlorane 602" and has the chemical structure and name as follows:

1,2,3,4,6,7,8,9,10,10,11,11-dodecakloro-l,4,4a,5a,6,9,9a,9b-octa-hydro-1,4,6,9-dimethanodibenzofuran. 1,2,3,4,6,7,8,9,10,10,11,11-dodecachloro-1,4,4a,5a,6,9,9a,9b-octa-hydro-1,4, 6,9-dimethanodibenzofuran.

Antimontrioxyd er den foretrukne antimonforbindelse, selvom mange andre antimonforbindelser kan brukes. Egnede uorga-niske antimonforbindelser er antimonsulfid, natriumantimonit, ka-liumantimonat og lignende. Mange organiske antimonforbindelser er også egnet,som antimonsalter av organiske syrer og deres femverdige derivater som beskrevet i US patent 2.996.528. Forbin-delser i denne klasse omfatter antimonbutyrat, antimonvalerat, an-timoncaproat, antimonheptylat, antimoncaprylat, antimonpelargonat, antimoncaprat, animonannamat, antimonanisat og deres femverdige derivater. Antimony trioxide is the preferred antimony compound, although many other antimony compounds can be used. Suitable inorganic antimony compounds are antimony sulphide, sodium antimonite, potassium antimonate and the like. Many organic antimony compounds are also suitable, such as antimony salts of organic acids and their pentavalent derivatives as described in US Patent 2,996,528. Compounds in this class include antimony butyrate, antimony valerate, antimony caproate, antimony heptylate, antimony caprylate, antimony pelargonate, antimony caprate, animonannamate, antimonanisate and their pentavalent derivatives.

De foretrukne antioxidasjonsmidler er polychinoliner, som polytrimethyldihydrochinolin som forhandles under varemerket "Agerite Resin D" og "Agerite MA" (høyere molvekt) av The preferred antioxidants are polyquinolines, such as polytrimethyldihydroquinoline sold under the trade names "Agerite Resin D" and "Agerite MA" (higher molecular weight) by

R.T. Vanderbilt Company, Inc. Andre vanlige antioxidasjonsmidler som tidligere har vært brukt for stabiliseirng av LD-polyethylen og ethylencopolymerer kan også brukes. RT Vanderbilt Company, Inc. Other common antioxidants previously used to stabilize LD polyethylene and ethylene copolymers may also be used.

Den foretrukne syreakseptor er tetrabasisk blyfumarat som forhandles under varemerket "Lectro 78" av N.L. Industries, Inc. Andre syreakseptorer som magnesiumoxyd, kalsiumcarbonat, blyoxyd og lngnende kan også brukes. The preferred acid acceptor is tetrabasic lead fumarate sold under the trademark "Lectro 78" by N.L. Industries, Inc. Other acid acceptors such as magnesium oxide, calcium carbonate, lead oxide and the like may also be used.

Et flerfunksjonelt, monomert tverrbindingsmiddel er av-gjørende i den angitte nye sammensetning for å oppnå effektiv tverrbinding under bestråling. Den foretrukne flerfunksjonene monomer er triallylisocyanurat og triallylcyanurat. Andre tverr-bindingsmidler som kan brukes er trivinylcyanurat, trivinylcitrat, triallylfosfat, trimethylolpropantriacrylat, diallylfumarat, pen-taerythritoltetraacrylat, trimethylolpropantrimethacrylat, 1,3-butylenglycoldimethacrylat, allylmethacrylat, tetraethylenglycol-dimethacrylat, ethylenglycoldimethacrylat, 1,3-butylenglycoldi-methacrylat, polyethylenglycoldimethacrylat og lignende. A multifunctional, monomeric cross-linking agent is crucial in the specified new composition to achieve effective cross-linking during irradiation. The preferred multifunctional monomer is triallyl isocyanurate and triallyl cyanurate. Other cross-linking agents that can be used are trivinyl cyanurate, trivinyl citrate, triallyl phosphate, trimethylolpropane triacrylate, diallyl fumarate, pentaerythritol tetraacrylate, trimethylolpropane trimethacrylate, 1,3-butylene glycol dimethacrylate, allyl methacrylate, tetraethylene glycol dimethacrylate, ethylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, polyethylene glycol dimethacrylate and the like.

De foretrukne røkutfeldte siliciumoxydfyllstoffer er kjemisk behandiet siliciumdioxyd forhandlet.under varemerket "Cab-O-Sil M-7" av Cabot Corporation. Denne har et overflateareal på 200 + 25 m 2/g og en nominell partikkelstørrelse på 0,012 mikron. Andre røkutfeldte siliciumoxyder med overflateareal fra 50 til 400 m 2/g er vel egnet for bruk i de nye sammensetninger. Andre siliciumoxydfyllstoffer kan brukes, mén bør være av den type som ikke absorberer vesentlige mengder fuktighet (1 - 6 % eller mer) fra atmosfæren. The preferred fumed silica fillers are chemically treated silica sold under the trade name "Cab-O-Sil M-7" by Cabot Corporation. This has a surface area of 200 + 25 m 2 /g and a nominal particle size of 0.012 microns. Other fume-precipitated silicon oxides with a surface area of 50 to 400 m 2 /g are well suited for use in the new compositions. Other silicon oxide fillers may be used, but should be of a type that does not absorb significant amounts of moisture (1 - 6% or more) from the atmosphere.

Den beskrevne nye sammensetning kan også inneholde min-dre mengder andre tilsetninger for å gi farve, forbedre- bearbei-delsesegenskapene eller forbedre lagrings- eller fraktegenskapene. Slike tilsetninger kan være pigmenter, farvestoffer, bearbeidel-seshjelpestoffer, risle-hjelpestoffer og lignende. The described new composition may also contain smaller amounts of other additives to give color, improve processing properties or improve storage or shipping properties. Such additives can be pigments, dyes, processing aids, trickling aids and the like.

Polyolefinpolymeren og dens konsentrasjon i sammensetningen vil henge sammen.med de egenskaper som man ønsker hos den fer-digherdede isolasjon. De andre bestanddeler vil variere tilsvar-ende i konsentrasjon for oppfylling av disse krav. Generelt vil den polymere utgjøre fra 40 til 75 vekt% av massens totalvekt. Det foretrukne område er fra 45 til 60 vekt%. The polyolefin polymer and its concentration in the composition will be related to the properties desired in the fully cured insulation. The other components will vary accordingly in concentration to meet these requirements. In general, the polymer will make up from 40 to 75% by weight of the total weight of the mass. The preferred range is from 45 to 60% by weight.

Den flammeretarderende tilsetning "Dechlorane 602" vil utgjøre fra 15 til 40 vekt% basert på blandingens totalvekt. Fortrinsvis vil mengden være fra 25 til 35 %. The flame retardant additive "Dechlorane 602" will constitute from 15 to 40% by weight based on the total weight of the mixture. Preferably, the amount will be from 25 to 35%.

Den foretrukne antimonforbindelse, antimontrioxyd, vil. utgjøre fra 5 til 30 vekt% av totalblandingen, fortrinsvis 7-20 %. Den kan brukes i el vektforhold på 1 del pr. 6 deler "Dechlorane 602" opp til et vektforhold på 3 deler pr. 2 deler "Dechlorane 602". Det foretrukne forhold mellom "Dechlorane 602" og antimontrioxyd vil være mellom 4:1 og 2:1. Konsentrasjonen av "Dechlorane 602" og antimontrioxyd og vektforholdet mellom disse vil avhenge av de flammeretarderende egenskaper som kreves i den herdede sammensetning og de andre fysikalske, elektriske og varmeåldrende egenskaper somønskes. The preferred antimony compound, antimony trioxide, will. make up from 5 to 30% by weight of the total mixture, preferably 7-20%. It can be used in a weight ratio of 1 part per 6 parts "Dechlorane 602" up to a weight ratio of 3 parts per 2 parts "Dechlorane 602". The preferred ratio of "Dechlorane 602" to antimony trioxide will be between 4:1 and 2:1. The concentration of "Dechlorane 602" and antimony trioxide and the weight ratio between these will depend on the flame retardant properties required in the cured composition and the other physical, electrical and heat aging properties desired.

Det røkutfeldte siliciumoxyd kan utgjøre fra 1,0 til 10 The smoke-precipitated silicon oxide can amount from 1.0 to 10

vekt% av totalblandingen, og fortrinsvis 2 til 5 %. % by weight of the total mixture, and preferably 2 to 5%.

Antioxydasjonsmidlet er tilsatt en mengde på fra 0,25The antioxidant is added in an amount of from 0.25

til 4,0 vekt% av totalblandingen.. Fortrinsvis brukes den i en mengde på 0,50 til 1,50 vekt%. to 4.0% by weight of the total mixture. Preferably it is used in an amount of 0.50 to 1.50% by weight.

Konsentrasjonen av syreakseptor vil være knyttet til sammensetningens totale polymerkonsentrasjon. Vektkonsentrasjonen er ca. 0,5 til 4 % av totalsammensetningen. Fortrinsvis utgjør mengden syreakseptor 0,8 - 1,5 % av totalsammensetningen eller 1,0 - The concentration of acid acceptor will be linked to the composition's total polymer concentration. The weight concentration is approx. 0.5 to 4% of the total composition. Preferably, the amount of acid acceptor is 0.8 - 1.5% of the total composition or 1.0 -

3 % av det totale polyolefinharpiksinnhold.3% of the total polyolefin resin content.

Mengden av flerfunksjonelt monomert tverrbintfingsmiddél vil være mellom 0,5 og 3,0 % av totalsammensetningen. Denne konsentrasjon er knyttet til den valgte polymerbestanddel og konsentrasjonen i totalsammensetningen. Med den foretrukne ethylen-vin-ylacetattype-copolymer vil innholdet av•foretrukket triallylisocyanurat eller triallylcyanurat være fra 1,0 til 2,0 %. The amount of multifunctional monomeric cross-linking agent will be between 0.5 and 3.0% of the total composition. This concentration is linked to the selected polymer component and the concentration in the overall composition. With the preferred ethylene-vinyl acetate type copolymer, the content of •preferably triallyl isocyanurate or triallyl cyanurate will be from 1.0 to 2.0%.

Den nye sammensetning av bestanddeler gir evnen til å herde under stråling og danne en isolasjon med forbedret flammeretardering, og fysikalske,elektriske samt varmeåldrende egenska-. per ved at porøsitet i sammensetningen forhindres. Et viktig trekk ved oppfinnelsen er evnen til å blande pg jevnt dispergere alle bestanddeler i den polymere og oppnå en sammensetning uten porøsitet. The new composition of components provides the ability to harden under radiation and form an insulation with improved flame retardancy, and physical, electrical and thermal aging properties. per in that porosity in the composition is prevented. An important feature of the invention is the ability to mix and evenly disperse all constituents in the polymer and achieve a composition without porosity.

Blandingen skjer i en hurtigblander, fortrinsvis av Banbury-type, som utøver et trykk på massen under skjærkraft fra blandebladet. Sammensetningens temperatur må reguleres, men dette vil.variere med sammensetningen og blanderens type og størrelse. Generelt vil dråpetemperaturen fra skjærkraftblanderen variere mellom 99 og 150°C, fortrinsvis mellom 110 og 145°C. The mixing takes place in a rapid mixer, preferably of the Banbury type, which exerts pressure on the mass under shear force from the mixing blade. The composition's temperature must be regulated, but this will vary with the composition and the type and size of the mixer. In general, the droplet temperature from the shear mixer will vary between 99 and 150°C, preferably between 110 and 145°C.

Satsen kan derefter bearbeides videre på en dobbeltvalse-mølle eller i en ekstruder. Dette er et viktig trin ved den totale blandeprosess for å sikre fremstillingen av en uporøs sammensetning. The batch can then be processed further on a double-roll mill or in an extruder. This is an important step in the overall mixing process to ensure the production of a non-porous composition.

Med en dobbeltvalsemølle holdes valsene på 60 - 77°C ved sirkulasjon av kjølevann og ved mottagelse av en sats fra en skjær-kraf tblander med temperatur på 99 - 120°C. Fortrinsvis holder valsene 66 - 71°C, og satstemperaturen fra kraftblanderen er 110 - 120°C. Valsene innstilles også med liten klaring på 1,3 - 3,8 mm, fortrinsvis 1,3 - 2,0 mm. Disse betingelser gir den skjærkraft-virkning som gjør at alle flyktige bestanddeler fjernes. Valse-platen trekkes kontinuerlig av møllen efter.blandingen og avkjøles gjennom vannbad og lufttørkere før den oppdelse for frakt. With a double-roll mill, the rolls are kept at 60 - 77°C by circulation of cooling water and by receiving a batch from a shear force mixer with a temperature of 99 - 120°C. The rollers preferably maintain 66 - 71°C, and the batch temperature from the power mixer is 110 - 120°C. The rollers are also set with a small clearance of 1.3 - 3.8 mm, preferably 1.3 - 2.0 mm. These conditions provide the shear force effect which means that all volatile constituents are removed. The roll plate is continuously pulled from the mill after mixing and cooled through water baths and air dryers before it is prepared for shipping.

Når der brukes.et ekstruderingsapparat, holdes ekstruder-sylinderen ved 138 - 160°C, fortrinsvis 144 - 155°C. Dråpetemperaturen fra kraftblanderen vil være 140 - 155°C, fortrinsvis 140 - 146°C. Ekstruderskruens hastighet kontrolleres for å oppnå den ønskede skjærvirkning for fjernelse av flyktige stoffer. Den nødven-dige skruhastighet vil variere med sammensetningen og skruetypen. Vanligvis er skruhastigheten 10 - 40 o/min, fortrinsvis 10 - 20 o/min. Fra ekstruderen kan sammensetningen pelletiseres under vann for ferdigfremstilling. When an extruder is used, the extruder barrel is maintained at 138-160°C, preferably 144-155°C. The drop temperature from the power mixer will be 140 - 155°C, preferably 140 - 146°C. The speed of the extruder screw is controlled to achieve the desired shearing effect for the removal of volatile substances. The necessary screw speed will vary with the composition and type of screw. Usually the screw speed is 10 - 40 rpm, preferably 10 - 20 rpm. From the extruder, the composition can be pelletized under water for finished production.

Oppfinnelsen vil forståes lettere i lys av de følgende eksempler. The invention will be understood more easily in the light of the following examples.

Eksempel 1Example 1

De bestanddeler som er oppført i tabell I, eksempel 1 ble påfyllt en Banbury-blander nr. 3A, og der ble påsatt et stem-pel som ga trykk på blandesatsen for å gi kraftig blanding. Efter ca. 2 minutter, da satstemperaturen hadde nådd 116°C, ble stemplet løftet for å skyve ned alt materiale som heftet langs veggene. Stemplet ble satt på flytende inntil en samlet blandetid på 2 3/4 minutt. Dråpetemperaturen var 118°C. Materialet ble overført til en dobbeltvalsemølle hvor valsen holdt 88°C, og holdt en normal klaring på 4,4 - 5,0 mm. Dette materiale ble kontinuerlig truk-ket av. møllen som et bånd efterhvert som mere materiale ble på-, fyllt omtrent hvert 3.- 5. minutt. Banen ble avkjølt i vannbad, lufttørket og utstanset i pelletform. The ingredients listed in Table I, Example 1 were charged to a Banbury No. 3A mixer, and a plunger was applied to pressurize the mixing batch to give vigorous mixing. After approx. 2 minutes, when the batch temperature had reached 116°C, the ram was lifted to push down any material adhering to the walls. The plunger was set to float until a total mixing time of 2 3/4 minutes. The drop temperature was 118°C. The material was transferred to a double roll mill where the roll held 88°C, and maintained a normal clearance of 4.4 - 5.0 mm. This material was continuously withdrawn. the mill as a belt gradually as more material was added, filled approximately every 3-5 minutes. The web was cooled in a water bath, air-dried and punched out in pellet form.

Som det fremgår av tabell I hadde disse pellets en volumvekt som tyder på nærvær av porer. Ekstrudering av den polymere på en AGW wire nr. 12 ga en isolasjon med den angitte volumvekt. Strålingsherdning av den isolerte tråd ga en isolasjon med en volumvekt som tydet på vesentlig grad av porøsitet, og der ble der-for ikke foretatt noen bedømmelse av egenskapene. As can be seen from Table I, these pellets had a specific gravity indicating the presence of pores. Extrusion of the polymer onto a No. 12 AGW wire produced an insulation of the specified bulk density. Radiation curing of the insulated wire gave an insulation with a volume weight that indicated a significant degree of porosity, and no assessment of the properties was therefore made.

Eksempel 2Example 2

Bestanddelene ble blandet som i eksempel 1 bortsett fra at satsen ved 119°C ble overført til en dobbeltvalsemølle med valsetemperatur på 65 - 71°C, og valseklaringen innstillet på om-kring 1,5 mm. Massen ble.bearbeidet som i eksempel 1. The components were mixed as in example 1, except that the batch at 119°C was transferred to a double-roll mill with a roll temperature of 65 - 71°C, and the roll clearance was set to approximately 1.5 mm. The mass was processed as in example 1.

De fremstillede pellets hadde en volumvekt som det fremgår av tabell I, og inneholdt altså porer. Ekstrudering av denne masse på en AWG tråd nr. 12 ga en isolasjon med porøsitet ifølge volumvekten. Strålingsherdning viste øket porøsitet med strålingsdoser som det fremgår av tabell III for porøs isolasjon. Må-ling av den isolerte tråd for å finne egenskapene viste at den ikke oppfyllte IPCEA-kravene som fremgår av tabell II. The produced pellets had a volume weight as shown in Table I, and thus contained pores. Extrusion of this mass onto a No. 12 AWG wire produced an insulation with porosity by volume. Radiation curing showed increased porosity with radiation doses as shown in Table III for porous insulation. Measurement of the insulated wire to determine the properties showed that it did not meet the IPCEA requirements as shown in Table II.

Langvarige forsøk på å fjerne porøsiteten fra polymermas-sen ved bearbeidelsesteknikk fallt ikke heldig ut og viste at den blandede homogene sammensetning måtte være fri for porer for å gi de ønskede isolasjonsdata. Prolonged attempts to remove the porosity from the polymer mass by processing techniques did not turn out to be successful and showed that the mixed homogeneous composition had to be free of pores to provide the desired insulation data.

Eksempel 3Example 3

Bestanddelene ifølge eksempel 3 som det fremgår av ta-. bell I ble blandet og bearbeidet til pellets som beskrevet i eksempel 2. Disse pellets hadde volumvekt som fremgår av tabell I med svak porøsitet. Isolasjon på AWG tråd nr. 12 fikk også en viss porøsitet som øket ytterligere ved strålingsherdning for å oppnå tverrbinding. The components according to example 3 as appears from ta-. bell I was mixed and processed into pellets as described in example 2. These pellets had a volume weight as shown in table I with low porosity. Insulation on AWG wire No. 12 also acquired a certain porosity which increased further by radiation curing to achieve cross-linking.

Eksempel 4 Example 4

Bestanddelene i eksempel 4 ble blandet i en Stewart-Bolling-kraftrører med kammerstørrelse som tok 75 kg masse. Man brukte på samme måte 2 2/3 minutt blandetid. Satsens utgangs-temperatur var 143°C, og ferdigblandet sats ble påfyllt omtrent hvert 3. til 5. minutt i en 30 cm ekstruder. De tre ekstruderso-ner ble innstillet på 150°C, og skruhastigheten på 12 o/min. Det varme materiale, ble findelt og avkjølt i et undervanns-pelletise-ringssystem forbundet med ekstruderen. The ingredients of Example 4 were mixed in a chamber-sized Stewart-Bolling power stirrer taking 75 kg mass. In the same way, 2 2/3 minutes of mixing time was used. The batch exit temperature was 143°C, and the premixed batch was fed approximately every 3 to 5 minutes into a 30 cm extruder. The three extrusion zones were set at 150°C, and the screw speed at 12 rpm. The hot material was comminuted and cooled in an underwater pelletizing system connected to the extruder.

Pellets, ekstrudert isolasjon og strålingsherdet isolasjon hadde volumvekter som angitt i tabell I. Virkningen av strålingsdosen på dette materiale er angitt i tabell III for uporøs isolasjon, og egenskapene for den herdede isolasjon fremgår av tabell II, ikke-porøs isolasjon. Pellets, extruded insulation and radiation-cured insulation had volumetric weights as indicated in Table I. The effect of the radiation dose on this material is indicated in Table III for non-porous insulation, and the properties of the cured insulation appear in Table II, non-porous insulation.

De forbedrede egenskaper for denne isolasjon fremgår klart, og materialet blir også mer effektivt herdet ved bestråling. Behovet for lav strålingsdose reduserte også muligheten for porøsitetsdannelse under herdning, som det fremgår av tabell III. The improved properties of this insulation are clearly evident, and the material is also more effectively hardened by irradiation. The need for a low radiation dose also reduced the possibility of porosity formation during curing, as can be seen in Table III.

Eksempel 5 Example 5

I eksempel 5 brukte man samme oppskrift som i eksempel 4 og blandeprosessen ifølge eksempel 2. Egenskapene for ikke-porøs isolasjon i tabeller II og III gjelder også denne blanding, og vier at to forskjellige bearbeidelsesmetoder kan brukes for fremstilling av foreliggende nye herdede polymersammensetning når be-tingelsene reguleres ifølge foreliggende oppfinnelse. In example 5, the same recipe was used as in example 4 and the mixing process according to example 2. The properties for non-porous insulation in Tables II and III also apply to this mixture, showing that two different processing methods can be used for the production of the present new cured polymer composition when be - the conditions are regulated according to the present invention.

Claims (12)

1. Flammeretarderende, strålingsherdbar polymersammensetning inneholdende følgende bestanddeler: 1. Flame retardant, radiation curable polymer composition containing the following ingredients: 2. Polymersammensetning ifølge krav 1, karakterisert ved at polymerbestanddelen er en blanding av LD-polyethylen og ethylen-vinylacetatcopolymer. 2. Polymer composition according to claim 1, characterized in that the polymer component is a mixture of LD polyethylene and ethylene-vinyl acetate copolymer. 3. ' Flammeretarderende polymersammensetning ifølge krav 1 eller 2, karakterisert ved at ethylen-vinylacetat-copolymeren har et innhold av vinylacetat på 5 - 65 vekt%.3. 'Flame retardant polymer composition according to claim 1 or 2, characterized in that the ethylene-vinyl acetate copolymer has a vinyl acetate content of 5 - 65% by weight. 4. Polymersammensetning ifølge krav 1.-3, karakterisert ved at antimonforbindelsen er antimonoxyd.4. Polymer composition according to claims 1.-3, characterized in that the antimony compound is antimony oxide. 5. Polymersammensetning ifølge krav 1-4, karakt e-r is er ved at syreakseptoren er tetrabasisk blyfumarat.5. Polymer composition according to claims 1-4, characterized in that the acid acceptor is tetrabasic lead fumarate. 6. Polymersammensetning ifølge krav 1-5, karakterisert ved at nevnte polyfunksjonelle monomere tverrbindingsmiddel er triallylisocyanurat.6. Polymer composition according to claims 1-5, characterized in that said polyfunctional monomeric cross-linking agent is triallyl isocyanurate. 7. Polymersammensetning ifølge krav 1 - 6, karakterisert ved at antioxydasjonsmidlet er et polychinolin.7. Polymer composition according to claims 1 - 6, characterized in that the antioxidant is a polyquinoline. 8. Polymersammensetning ifølge krav 7, karakteri-s e r, t ved at polychinolinet er polytriméthyldihydrochinolin.8. Polymer composition according to claim 7, characterized in that the polyquinoline is polytrimethyldihydroquinoline. 9. Polymersammensetning ifølge krav 1, inneholdende følgende bestanddeler: 9. Polymer composition according to claim 1, containing the following components: (( 10. Polymersammensetning ifølge krav 1 eller 9, karakterisert ved at den er en homogen blanding av nevnte bestanddeler og i alt vesentlig fri for hulrom.10. Polymer composition according to claim 1 or 9, characterized in that it is a homogeneous mixture of said components and essentially free of voids. 11. Fremgangsmåte for fremstilling av en uporøs, flammeretarderende polymersammensetning, karakterisert ved at man blander under høy skjærkraft en sammensetning av følgende bestanddeler: 11. Process for the production of a non-porous, flame-retardant polymer composition, characterized by mixing under high shear a composition of the following components: under dannelse av en vésentlig porefri, homogen blanding som derpå bestråles i strålingsdoser på 10 - 40 megarad for å frembringe tverrbinding.during the formation of an essentially pore-free, homogeneous mixture which is then irradiated in radiation doses of 10 - 40 megarads to produce cross-linking. 12. Fremgansgmåte ifølge krav 11, karakterisert , ved at sammensetningen gjennomgår minst to separate blandetrin under høy skjærkraft for å oppnå den nevnte vesentlig porefrie, homogene blanding.12. Process according to claim 11, characterized in that the composition undergoes at least two separate mixing steps under high shear to achieve the aforementioned essentially pore-free, homogeneous mixture.
NO771078A 1976-03-29 1977-03-28 FLAME RETAINING, SCREAD-RESISTANT POLYOLEFIN COMPOUND NO771078L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US67164676A 1976-03-29 1976-03-29

Publications (1)

Publication Number Publication Date
NO771078L true NO771078L (en) 1977-09-30

Family

ID=24695346

Family Applications (1)

Application Number Title Priority Date Filing Date
NO771078A NO771078L (en) 1976-03-29 1977-03-28 FLAME RETAINING, SCREAD-RESISTANT POLYOLEFIN COMPOUND

Country Status (11)

Country Link
JP (1) JPS52135347A (en)
BE (1) BE852991A (en)
BR (1) BR7701926A (en)
DE (1) DE2713859A1 (en)
DK (1) DK135877A (en)
FI (1) FI770978A (en)
FR (1) FR2346398A1 (en)
LU (1) LU77031A1 (en)
NL (1) NL7703391A (en)
NO (1) NO771078L (en)
SE (1) SE7703565L (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1115166B (en) * 1978-04-07 1986-02-03 Raychem Ltd POLYMER COMPOSITIONS
CA1161182A (en) * 1980-03-05 1984-01-24 Michael J. Keogh Compositions of alkylene-alkyl acrylate copolymers having improved flame retardant properties
JPS575736A (en) * 1980-06-16 1982-01-12 Fujikura Ltd Flame retardant composition
US4857257A (en) * 1983-06-13 1989-08-15 Allied-Signal Inc. Rotationally molding crosslinkable polyethylene composition
DE3581661D1 (en) * 1984-03-19 1991-03-14 Vulkor Inc POLYOLEFIN COMPOSITIONS WITH THERMAL STABILITY AND COVERED LADDERS.
JPH0753782B2 (en) * 1985-12-23 1995-06-07 株式会社ブリヂストン Transparent film and laminate having the film
AU633255B2 (en) * 1988-05-24 1993-01-28 Reef Industries, Inc. Flame retardant, antistatic thermoplastic

Also Published As

Publication number Publication date
NL7703391A (en) 1977-10-03
FR2346398A1 (en) 1977-10-28
FI770978A (en) 1977-09-30
JPS52135347A (en) 1977-11-12
DE2713859A1 (en) 1977-10-13
BR7701926A (en) 1977-11-08
SE7703565L (en) 1977-09-30
BE852991A (en) 1977-09-29
DK135877A (en) 1977-09-30
LU77031A1 (en) 1977-07-22

Similar Documents

Publication Publication Date Title
FI88930B (en) FOERFARANDE FOER FRAMSTAELLNING AV PROPYLENHOMOPOLYMER- ELLER -KOPOLYMERPELLETAR
CN106188815B (en) The crosslinked ethene-tetrafluoroethylene copolymer material of heat resistant
GB1580171A (en) Electrical insulation material and method of producing the same
CN101157785A (en) Radiation crosslinking polyethylene-insulated cable material for electric wire and cable and method for making same
TWI627197B (en) Process for modifying ethylene-based polymers and copolymers
CN101465185A (en) Positive temperature coefficient material and thermistor containing the material and preparation method therefore
NO771078L (en) FLAME RETAINING, SCREAD-RESISTANT POLYOLEFIN COMPOUND
CN101935418B (en) Positive temperature coefficient material and preparation method thereof, and material-containing thermosensitive resistor and preparation method thereof
JPH0221559A (en) Separator for battery and manufacture thereof
US3623940A (en) Insulated wire and manufacture thereof
US4035322A (en) Method of preparing curable pellets of polyethylene
TW201546152A (en) Crosslinkable polymeric compositions with amine-functionalized interpolymers, methods for making the same, and articles made therefrom
US4522957A (en) Process for preparing curable polyolefin polymers
CN111073123B (en) Polyethylene master batch, preparation method thereof and polyethylene composition
US3706699A (en) Manufacture of moulding material starting from polyethylene terephthalate
CN114516985B (en) Insulating coating material and application thereof
JPS627933B2 (en)
CN115572450A (en) Natural silane crosslinked polyethylene pipe material and preparation method thereof
WO1992008758A1 (en) Silicone surface-modified ammonium polyphosphate
CA1057888A (en) Grafting of silane on thermoplastics or elastomers for purposes of cross-linking
JP2004087380A (en) Electrolyte film for fuel cell, and its manufacturing method
FR2527217A1 (en) PROCESS FOR THE MANUFACTURE OF RETICULATED POLYPROPYLENE FOAMS
RU2713398C1 (en) Peroxide cross-linkable composition for production of cable insulation
CN116693973B (en) Semitransparent luminous sole and preparation method thereof
CN107501475A (en) Polyethylene green house film is modified the preparation method with grafting PE weatherability master batches