NO770867L - PROCEDURES FOR THE PREPARATION OF WATER, SPECIAL WATER FROM PLANTS FOR THE MANUFACTURE OF ALLOY COMPONENTS FOR ST} L - Google Patents

PROCEDURES FOR THE PREPARATION OF WATER, SPECIAL WATER FROM PLANTS FOR THE MANUFACTURE OF ALLOY COMPONENTS FOR ST} L

Info

Publication number
NO770867L
NO770867L NO770867A NO770867A NO770867L NO 770867 L NO770867 L NO 770867L NO 770867 A NO770867 A NO 770867A NO 770867 A NO770867 A NO 770867A NO 770867 L NO770867 L NO 770867L
Authority
NO
Norway
Prior art keywords
chromium
iron
vanadium
tungstate
molybdate
Prior art date
Application number
NO770867A
Other languages
Norwegian (no)
Inventor
Bernd Eiselein
Heinrich Bender
Original Assignee
Didier Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Didier Werke Ag filed Critical Didier Werke Ag
Publication of NO770867L publication Critical patent/NO770867L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fertilizers (AREA)

Description

Fremgangsmåte ved opparbeidelse av avvann, spesielt avvann fra anlegg for fremstilling av legeringsbestanddeler for stål. Procedure for processing waste water, especially waste water from facilities for the production of alloy components for steel.

Oppfinnelsen angår en fremgangsmåte ved opparbeidelse av vandium-, wolfram- og/eller molybdenholdig avvann, spesielt avvann fra utvinning av vanadium, wolfram eller molybden. The invention relates to a method for processing vanadium-, tungsten- and/or molybdenum-containing waste water, in particular waste water from the extraction of vanadium, tungsten or molybdenum.

Ved fremgangsmåtene for fremstilling av legeringsbestanddeler for stål dannes avvann som alt efter de anvendte malmers sammensetning inneholder mer eller mindre krom, mangan, aluminium og andre ledsagende metaller og dessuten en viss mengde nøytrale salter, f.eks. natriumsulfat, som skriver seg fra prosessforløpet, og videre en vanadium-, wolfram- og/eller molybdenkonsentrasjon som er mer eller mindre høy, men i det vesentlige konstant, og som er betinget av utførelsen av fremstillingsprosessen. In the processes for the production of alloy components for steel, waste water is formed which, depending on the composition of the ores used, contains more or less chromium, manganese, aluminum and other accompanying metals and also a certain amount of neutral salts, e.g. sodium sulphate, which emerges from the course of the process, and further a vanadium, tungsten and/or molybdenum concentration which is more or less high, but essentially constant, and which is conditioned by the execution of the manufacturing process.

Opparbeidelsen av slikt avvann kan utføres ved en full-stendig inndampning og separering av de inneholdte materialer i de tilsvarende konsentrasjonsfaser og dessuten ved avgifting av disse, ved ionebytteprosesser, adsorpsjon eller reduksjon av anionblandingen med sterke reduksjonsmidler (f.eks. hydrazin) og utfelling av den dannede blanding av de tilsvarende hydroxyder hhv. oxyder. Disse fremgangsmåter, med unntagelse av den førstnevnte, byr på ingen mulighet for uten en vesentlig økning av saltfrak-trehe- å opparbe"ide" prosessoppløsningen med avgifting av oxyderende bestanddeler og eliminering av molybden, vanadium hhv. wolfram,til en form som er unyttbar ved produksjonsprosessen. Dessuten er alle fremgangsmåter forbundet med uforholdsmessig høye driftsomkostninger. The processing of such waste water can be carried out by complete evaporation and separation of the contained materials in the corresponding concentration phases and also by detoxification of these, by ion exchange processes, adsorption or reduction of the anion mixture with strong reducing agents (e.g. hydrazine) and precipitation of the resulting mixture of the corresponding hydroxides or oxides. These methods, with the exception of the former, offer no possibility for, without a significant increase in salt transport, to "process" the process solution with detoxification of oxidizing components and elimination of molybdenum, vanadium or tungsten, into a form that is unusable in the production process. Moreover, all methods are associated with disproportionately high operating costs.

Det tas derfor ved oppfinnelsen sikte på å tilveiebringe en framgangsmåte hvor de prosessvæsker som dannes ved fremstilling av legeringsbestanddeler for stål, med lavest mulig innsats kan behandles slik at de verdifulle inneholdte materialer vil overføres til en form som gjør det mulig uten videre opparbeidelse igjen å tilføre disse til produksjonsprosessen. Den foreliggende fremgangs måte skal være omkostningsmessig gunstig og miljøvennlig ved at de opparbeidede avvann enten bare fremdeles inneholder nøytrale salter eller ved at det er mulig ved hjelp av egnede forholds- The invention is therefore aimed at providing a method in which the process fluids that are formed during the production of alloy components for steel can be processed with the lowest possible effort so that the valuable contained materials will be transferred to a form that makes it possible to add again without further processing these to the production process. The present procedure must be cost-effective and environmentally friendly in that the processed wastewater either still only contains neutral salts or in that it is possible with the help of suitable conditions

regler å sirkulere driftsvannet.rules to circulate the operating water.

Denne oppgave løses ved den foreliggende fremgangsmåte somThis task is solved by the present method which

er særpreget ved at vanadium, wolfram og/eller molybden som inne-holdes, i avvann, utfelles i form av jernvanadat, -wolframat og/ is characterized by the fact that the vanadium, tungsten and/or molybdenum contained in waste water is precipitated in the form of iron vanadate, tungstate and/

eller -molybdat ved tilsetning av jernforbindelser. For dette formål er jern(III)-forbindelser egnede. or -molybdate by adding iron compounds. For this purpose, iron(III) compounds are suitable.

Den foreliggende fremgangsmåte muliggjør en nesten 100% gjenvinning av de verdifulle materialer. Ved utførelsen av den foreliggende fremgangsmåte kan i motsetning til de ellers vanlige metoder for opparbeidelse av avvann dette kontinuerlig opparbeides innenfor konsentrasjonsområder som vanligvis må utsettes for en chargeavgiftning. Likevel tilfredsstilles de vanlige krav hva gjelder restmetallinnholdet. Den foreliggende fremgangsmåte muliggjør dessuten en direkte beskikning av filtreringsinnretninger uten å måtte foreta en forhåndsdekantering av de utfelte, uopp-løselige jernforbindelser. De opparbeidede avvann inneholder efter utførelsen av den foreliggende fremgangsmåte bare nøytrale salter og kan derfor vrakes eller opparbeides videre ved hjelp av omvendt osmose til et konsentrat, som kan inndampes til en betydelig gunstigere pris og slik at det ved den samlede prosess dannes rent vann som igjen kan anvendes. The present method enables an almost 100% recovery of the valuable materials. When carrying out the present method, in contrast to the otherwise common methods for processing wastewater, this can be continuously processed within concentration ranges that usually have to be subjected to a batch detoxification. Nevertheless, the usual requirements regarding the residual metal content are satisfied. The present method also enables a direct coating of filtration devices without having to carry out a preliminary decantation of the precipitated, insoluble iron compounds. After carrying out the present method, the processed waste water contains only neutral salts and can therefore be scrapped or processed further by means of reverse osmosis into a concentrate, which can be evaporated at a significantly more favorable price and so that clean water is formed in the overall process which again can be used.

Når avvannnet som skal opparbeides også inneholder oxydasjonsmidler, f.eks. at avvannet er kromholdig, kan ifølge en ytterligere utførelsesform av den foreliggende- fremgangsmåte de metallfor-bindelser som fremdeles er oppløst efter utfelling med jérnfor-bindelser og som skal gjenvinnes, medutfelles i form av kromvanadat, -wolframat og/eller -molybdat efter reduksjon og nøytral iser-1-ing for utfelling av kromhydroxydet, og dette medfører en ytterligere nedsettelse av vanadium-, wolfram- og/eller molybdenkonsentrasjonen i avvannet. Den foreliggende fremgangsmåte kan dessuten varieres When the wastewater to be treated also contains oxidizing agents, e.g. that the waste water contains chromium, according to a further embodiment of the present method, the metal compounds which are still dissolved after precipitation with iron compounds and which are to be recovered, can be co-precipitated in the form of chromium vanadate, tungstate and/or molybdate after reduction and neutral iser-1-ing for precipitation of the chromium hydroxide, and this entails a further reduction of the vanadium, tungsten and/or molybdenum concentration in the waste water. The present method can also be varied

ved at det krom(III) som dannes efter reduksjon av det krom(IV)in that the chromium(III) that is formed after the reduction of the chromium(IV)

som foreligger i et overskudd, anvendes for dannelse av kromvanadat, -molybdat og/eller -wolframat som fraskilles før den påfølgende utfelling av kromhydroxyd utføres. Derved utnyttes den omstendighet at krom og dessuten mangan, aluminium, bly, which is present in excess, is used to form chromium vanadate, molybdate and/or tungstate, which is separated before the subsequent precipitation of chromium hydroxide is carried out. Thereby, the fact that chromium and also manganese, aluminium, lead,

kobber, og jordalkalimetaller danner tungt oppløselige vanadater, wolframater og molybdater i et nøytralt hhv. svakt surt medium, copper, and alkaline earth metals form poorly soluble vanadates, tungstates and molybdates in a neutral or weakly acidic medium,

på lignende måte som jern(III)- og jern(II)-ioner som danner for-bindelser som imidlertid er mindre oppløselige enn de ovennevnte. Ved at krom utfelles blir derfor også de andre verdifulle ledsagende metallioner utfelt. in a similar way to iron (III) and iron (II) ions which form compounds which are, however, less soluble than those mentioned above. As chromium is precipitated, the other valuable accompanying metal ions are therefore also precipitated.

Kromet kan reduseres med svoveldioxyd hhv. ™ed salter The chromium can be reduced with sulfur dioxide or ™ed salts

derav.hence.

Det er imidlertid spesielt fordelaktig å utføre reduksjonen av kromet med jern(II)-forbindelser og å foreta utfellingen av vanadiumet, wolframet og/eller molybdenet ved anvendelse av de derved dannede jern(III)-forbindelser. Ved anvendelse av jern(II)-forbindelser er det ikke lenger nødvendig å foreta en påfølgende reduksjon av oxyderende bestanddeler i avvannet som skal opparbeides.. Ved denne utførelsesform kan f.eks. svovelsure, jernholdige brukte beiseoppløsninger tilføres for å dekke jernbehovet, og dette er spesielt økonomisk gunstig og miljøvennlig. Anvendelsen av jern• However, it is particularly advantageous to carry out the reduction of the chromium with iron (II) compounds and to carry out the precipitation of the vanadium, tungsten and/or molybdenum using the thereby formed iron (III) compounds. When using iron(II) compounds, it is no longer necessary to carry out a subsequent reduction of oxidizing components in the wastewater to be processed. In this embodiment, e.g. sulfuric acid, iron-containing used pickling solutions are supplied to cover the iron requirement, and this is particularly economically beneficial and environmentally friendly. The application of iron•

(II)-forbindelser som reduksjonsmiddel byr også på den fordel at det dannede krom(III) automatisk sammen med jernvanadat,-wolframat og/eller -molybdat vil utfelles som kromvanadat,-wolframat og/eller -molybdat, og dette medfører en ytterligere nedsettelse av vanadium-, wolfram- og/eller molybdeninnholdet i avvannet. (II) compounds as reducing agents also offer the advantage that the formed chromium(III) will automatically precipitate together with iron vanadate, tungstate and/or molybdate as chromium vanadate, tungstate and/or molybdate, and this entails a further reduction of the vanadium, tungsten and/or molybdenum content in the wastewater.

Jern(III)- hhv. jern(II)-forbindelsene tilføres fortrinnsvisIron(III) - respectively the iron (II) compounds are added preferentially

i støkiometrisk forhold eller i et støkiometrisk overskudd i forhold til tilstedeværende vanadium, wolfram og/eller molybden og/ eller krom og andre oxydasjonsmidler. in a stoichiometric ratio or in a stoichiometric excess in relation to the vanadium, tungsten and/or molybdenum and/or chromium and other oxidizing agents present.

Jernvanadatet, -wolframatet og/eller -molybdatet utfelles The iron vanadate, tungstate and/or molybdate are precipitated

fortrinnsvis innen pH-området 2-8, helst 2-4,5.preferably within the pH range 2-8, preferably 2-4.5.

Kromet reduseres fortrinnsvis innen pH-området 1-2.The chromium is preferably reduced within the pH range 1-2.

For å nedsette oppløseligheten av jernvanadatet, -wolframatet og/eller -molybdatet kan Ca-ioner tilføres til avvannet som skal opparbeides, fortrinnsvis i en mengde inntil oppløselighetsgrensen. In order to reduce the solubility of the iron vanadate, tungstate and/or molybdate, Ca ions can be added to the waste water to be processed, preferably in an amount up to the solubility limit.

Jernvanadatet, -wolframatet og/eller -molybdatet utfelles The iron vanadate, tungstate and/or molybdate are precipitated

fortrinnsvis innen temperaturområdet 2 0-4 0°C.preferably within the temperature range 20-40°C.

Kromvanadatet, -wolframatet og/eller -molybdatet utfelles The chromium vanadate, tungstate and/or molybdate are precipitated

fortrinnsvis innen pH-området 3-5.preferably within the pH range 3-5.

Jernvanadatet, -wolframatet og/eller -molybdatet og/eller kromvanadat, -wolframat og/eller -molybdat kan, fortrinnsvis uten sedimentering og ved hjelp av direkte filtrering, fraskilles og igjen tilføres til utvinningsprosessen for vanadium, wolfram og/eller molybden. The iron vanadate, tungstate and/or molybdate and/or chromium vanadate, tungstate and/or molybdate can, preferably without sedimentation and by means of direct filtration, be separated and fed back into the extraction process for vanadium, tungsten and/or molybdenum.

Efter at jernvanadatet, -wolframatet og/eller -molybdatet og/eller kromvanadat, -wolframat og/eller -molybdat er blitt fraskilt kan kromhydroxydet utfelles ved en pH av 8. After the iron vanadate, tungstate and/or molybdate and/or chromium vanadate, tungstate and/or molybdate have been separated, the chromium hydroxide can be precipitated at a pH of 8.

Den samlede fremgangsmåte utføres fortrinnsvis kontinuerlig The overall method is preferably carried out continuously

uten henstandstid.without grace period.

Nedenfor er som eksempel to foretrukne metoder for gjenvinning av vanadium beskrevet. Below, as an example, two preferred methods for the recovery of vanadium are described.

Metode 1Method 1

Til prosessoppløsningen som skal opparbeides, tilsettes jern(III)-ioner ved en pH av 2 - 8, fortrinnsvis 2 - 4,5, hvorved vanadiumet utfelles. Jern (III).-ionene tilsettes i støkiometrisk forhold hhv. i et støkiometrisk overskudd. Efter at jernvanadatet' og overskuddet av jernhydroxyd er blitt fraskilt, surgjøres avvannet på ny til en pH av 2,5, og det tilstedeværende oxydasjonsmiddel reduseres med reduksjonsmidler, f.eks. sulfittforbindelser. Ved den påfølgende nøytralisering til en pH på over 8 kan det tilstedeværende krom(III) danne kromvanadat som utfelles sammen med kromhydroxydet, slik at restinnholdet av vanadium i det klarede avvann synker til en minimal tallverdi. To the process solution to be worked up, iron (III) ions are added at a pH of 2 - 8, preferably 2 - 4.5, whereby the vanadium is precipitated. The iron (III) ions are added in a stoichiometric ratio or in a stoichiometric excess. After the iron vanadate and the excess iron hydroxide have been separated, the dewater is acidified again to a pH of 2.5, and the oxidizing agent present is reduced with reducing agents, e.g. sulfite compounds. During the subsequent neutralization to a pH above 8, the chromium(III) present can form chromium vanadate which is precipitated together with the chromium hydroxide, so that the residual content of vanadium in the clarified wastewater drops to a minimal numerical value.

Metode 2Method 2

Jern(II) i et støkiometrisk overskudd i forhold til tilstedeværende oxydasjonsmiddel og vanadium tilsettes innen pH-området 1-2. Vanadiumet utfelles ved en pH av 2-8, fortrinnsvis 2-4,5, på grunn av det ved reduksjonen av oxydasjonsmidlet dannede jern(III). Uomsatt toverdig jern bevirker likeledes en utfelling av vanadium, men med en lavere virkningsgrad enn treverdig jern. Prosessforløpet kan styres slik at et tilstrekkelig stort overskudd av jern(II) hhv. jern(III) er tilstede både for avgiftning av oxydasjonsmidlet og for utfellingen av vanadiumet. Samtidig Iron(II) in a stoichiometric excess in relation to the oxidizing agent present and vanadium is added within the pH range 1-2. The vanadium is precipitated at a pH of 2-8, preferably 2-4.5, due to the iron(III) formed by the reduction of the oxidizing agent. Unreacted divalent iron also causes a precipitation of vanadium, but with a lower efficiency than trivalent iron. The process can be controlled so that a sufficiently large excess of iron (II) or iron(III) is present both for the detoxification of the oxidizing agent and for the precipitation of the vanadium. Simultaneous

dannet kromvanadat blir likeledes medutfelt, slik at nesten 100% av den samlede tilstedeværende vanadiummengde utfelles i det første trinn. Efter at det utfelte vanadium er blitt fraskilt chromium vanadate formed is also co-precipitated, so that almost 100% of the total amount of vanadium present is precipitated in the first step. After the precipitated vanadium has been separated

. økes restvæskens pH til ca. 8, og det tilstedeværende kromhydroxyd . the residual liquid's pH is increased to approx. 8, and the chromium hydroxide present

utfelles og fraskilles.is precipitated and separated.

Virkningen av den foreliggende fremgangsmåte er nærmere beskrevet i de nedenstående eksempler. The effect of the present method is described in more detail in the examples below.

I alle eksempler utføres utfellingene innen pH-området 2,5-4,5. In all examples, the precipitations are carried out within the pH range 2.5-4.5.

Eksempel 1.Example 1.

Jern(III) i støkiometrisk forhold tilsettes til en opp-løsning av 560 mg vanadium (V) pr. liter. I nærvær av 2000 mg Ca pr. liter fås en restoppløselighet for vanadiumet (V) av Iron(III) in a stoichiometric ratio is added to a solution of 560 mg vanadium (V) per litres. In the presence of 2000 mg Ca per liter, a residual solubility for the vanadium (V) is obtained

100 mg/l, og i fravær av Ca fås en restoppløselighet for vanadiumet (V) av 200 mg/l. 100 mg/l, and in the absence of Ca a residual solubility for the vanadium (V) of 200 mg/l is obtained.

Eksempel 2Example 2

Jern(III) i et.50%-ig støkiometrisk overskudd tilsettes til en oppløsning som inneholder 560 mg vanadium (V) pr. liter. I nærvær av 200 mg Ca pr. liter fås en restoppløselighet for vanadiumet (V) av 20-80 mg/l, og i fravær av Ca fås en restoppløselighet for vanadiumet (V) av 15 0 mg/l. Iron(III) in a 50% stoichiometric excess is added to a solution containing 560 mg of vanadium (V) per litres. In the presence of 200 mg Ca per liter, a residual solubility for the vanadium (V) of 20-80 mg/l is obtained, and in the absence of Ca, a residual solubility for the vanadium (V) of 150 mg/l is obtained.

Eksempel 3Example 3

100 mg Cr (III) pr. liter tilsettes til en oppløsning av100 mg Cr (III) per liter is added to a solution of

560 mg vanadium (V) pr. liter. Oppløsningen som til å begynne med er sur, reguleres til en pH av 7 ved tilsetning av lut. Det fås en restoppløselighet for vanadiumet (V) av 165-275 mg/l. 560 mg vanadium (V) per litres. The solution, which is initially acidic, is adjusted to a pH of 7 by adding lye. A residual solubility for the vanadium (V) of 165-275 mg/l is obtained.

Eksempel 4Example 4

7,2 g krystallisert jerrisulfat (dvs. 400% av den teoretisk støkiometriske mengde i forhoTd til vanadium (V)) tilsettes til en oppløsning som inneholder 1650 mg vanadium (V) pr. liter og 1840 mg krom (VI) pr. liter og som i ca. 1 minutt holdes ved en pH av 1. Derefter reguleres pH trinnvis til 2,5 og derefter langsomt til 4. Det fås en restoppløselighet for vanadiumet (V) 7.2 g of crystallized jerrisulphate (i.e. 400% of the theoretical stoichiometric amount in relation to vanadium (V)) is added to a solution containing 1650 mg of vanadium (V) per liter and 1840 mg chromium (VI) per liters and as in approx. 1 minute is maintained at a pH of 1. Then the pH is adjusted step by step to 2.5 and then slowly to 4. A residual solubility for the vanadium (V) is obtained

av under 5 mg pr. liter og en restoppløselighet for kromet (VI)of less than 5 mg per liters and a residual solubility for the chromium (VI)

på under 1 mg/l efter regulering av pH til 8,5.of less than 1 mg/l after adjusting the pH to 8.5.

Eksempel 5Example 5

Krystallisert FeSO^i en mengde av ca. 300% av den teoretisk støkiometriske mengde i forhold til vanadium (V) tilsettes til en oppløsning som inneholder 1650 mg vanadium (V) pr. liter og 1840 mg krom (VI) pr. liter, og oppløsningen behandles som be skrevet i eksempel 4. Det fås en restoppløselighet for vanadiumet (V) av ca. 7,6 mg/l og en restoppløselighet for kromet (VI) av under 1 mg/l. Crystallized FeSO^i in an amount of approx. 300% of the theoretical stoichiometric amount in relation to vanadium (V) is added to a solution containing 1650 mg of vanadium (V) per liter and 1840 mg chromium (VI) per litres, and the solution is treated as described in example 4. A residual solubility for the vanadium (V) of approx. 7.6 mg/l and a residual solubility for the chromium (VI) of less than 1 mg/l.

Eksempel 6Example 6

Jern (III) tilsettes til en oppløsning som inneholder 1000 mg molybden (VI) pr. liter. Det fås en.restoppløselighet for molybdenet (VI) av 80 mg/l ved et overskudd på 50% og en restopp-løselighet for molybdenet (VI) av 10 mg/l ved et overskudd på 100%. Iron (III) is added to a solution containing 1000 mg molybdenum (VI) per litres. A residual solubility for the molybdenum (VI) of 80 mg/l is obtained at an excess of 50% and a residual solubility for the molybdenum (VI) of 10 mg/l at an excess of 100%.

Eksempel 7Example 7

Jern (III) tilsettes til en oppløsning som inneholder 1000 mg wolfram (VI) pr. liter. Det fås en restoppløselighet for wolframet (VI) av 400 mg/l ved et 100% overskudd av jern (III) . Iron (III) is added to a solution containing 1000 mg of tungsten (VI) per litres. A residual solubility for the tungsten (VI) of 400 mg/l is obtained with a 100% excess of iron (III).

Claims (13)

1. Fremgangsmåte ved opparbeidelse av vanadium-, wolfram-og/eller molybdenholdig avvann, spesielt avvann fra utvinning av vanadium, wolfram eller molybden, karakterisert ved at vanadium, wolfram og/eller molybden utfelles i form av jernvanadat, -wolframat og/ellér -molybdat ved anvendelse av jernforbindelser,1. Procedure for processing vanadium-, tungsten- and/or molybdenum-containing waste water, in particular waste water from the extraction of vanadium, tungsten or molybdenum, characterized in that vanadium, tungsten and/or molybdenum is precipitated in the form of iron vanadate, tungstate and/or - molybdate when using iron compounds, 2. Fremgangsmåte ifølge krav 1 ved opparbeidelse av kromholdig avvann, karakterisert ved at kromet utfelles som kromvanadat, -wolframat og/eller molybdat og kromhydroxyd ved reduksjon og nøytralisering.2. Method according to claim 1 for processing chromium-containing wastewater, characterized in that the chromium is precipitated as chromium vanadate, tungstate and/or molybdate and chromium hydroxide by reduction and neutralization. 3. Fremgangsmåte ifølge krav 2, k, arakterisert v ed at reduksjonen av kromet utføres ved anvendelse av svoveldioxyd hhv. salter derav.3. Method according to claim 2, k, characterized in that the reduction of the chromium is carried out using sulfur dioxide or salts thereof. 4. Fremgangsmåte ifølge krav 2, karakterisert v e d at kromet reduseres med jern (II)-forbindelser og ved at utfellingen av vanadiumet, wolframet og/eller molybdenet utføres under anvendelse av de derved dannede jern (III)-forbindelser.4. Method according to claim 2, characterized in that the chromium is reduced with iron (II) compounds and in that the precipitation of the vanadium, tungsten and/or molybdenum is carried out using the thereby formed iron (III) compounds. 5. Fremgangsmåte ifølge krav 1-4, karakterisert ved at jern (III)- hhv. jern (II)-forbindelsene tilføres i støkiometrisk forhold eller i et støkiometrisk overskudd i forhold til tilstedeværende vanadium, wolfram og/eller molybden og/ eller krom og andre oxydasjonsmidler.5. Method according to claims 1-4, characterized in that iron (III)- or the iron (II) compounds are supplied in a stoichiometric ratio or in a stoichiometric excess in relation to the vanadium, tungsten and/or molybdenum and/or chromium and other oxidizing agents present. 6. Fremgangsmåte ifølge krav 1-5, karakterisert ved at utfellingen av jernvanadatet, -wolframatet og/eller -molybdatet utføres innen pH-området 2-8, fortrinnsvis 2-4,5.6. Method according to claims 1-5, characterized in that the precipitation of the iron vanadate, the tungstate and/or -molybdate is carried out within the pH range 2-8, preferably 2-4.5. 7. Fremgangsmåte ifølge krav 2-6, karakterisert , ved at kromet reduseres innen pH-området 1-2.7. Method according to claims 2-6, characterized in that the chromium is reduced within the pH range 1-2. 8. Fremgangsmåte ifølge krav 1-7, karakterisert ved at Ca-ioner tilsettes til avvannet som skal opparbeides, fortrinnsvis inntil oppløselighetsgrensen.8. Method according to claims 1-7, characterized in that Ca ions are added to the wastewater to be processed, preferably up to the solubility limit. 9. Fremgangsmåte ifølge krav 1-8, karakterisert ved at jernvanadatet, -wolframatet og/eller -molybdatet utfelles ved en temperatur av 20-40°C.9. Process according to claims 1-8, characterized in that the iron vanadate, tungstate and/or molybdate is precipitated at a temperature of 20-40°C. 10. Fremgangsmåte ifølge krav 2-9, karakterisert ved at kromvanadatet, -wolframatet og/eller -molybdatet ut felles ved pH av 3-5.10. Method according to claims 2-9, characterized in that the chromium vanadate, the tungstate and/or the molybdate precipitate out at a pH of 3-5. 11. Fremgangsmåte ifølge krav 1-10, karakterisert ved. at jernvanadatet, -wolframatet og/eller -molybdatet og/eller kromvanadat, -wolframat og/eller -molybdat fraskilles, fortrinnsvis ved direkte filtreringsog uten sedimentering, og igjen til-føres til utvinningsprosessen. for vanadium, wolfram og/eller molybden.11. Method according to claims 1-10, characterized by. that the iron vanadate, tungstate and/or molybdate and/or chromium vanadate, tungstate and/or molybdate are separated, preferably by direct filtration and without sedimentation, and added again to the extraction process. for vanadium, tungsten and/or molybdenum. 12. Fremgangsmåte ifølge krav 2-11, karakterisert ved at kromhydroxydet utfelles ved en pH av ca. 8 efter at jernvanadatet, -wolframatet og/eller -molybdatet og/eller kromvanadat, -wolframat og/eller -molybdat er blitt fraskilt.12. Method according to claims 2-11, characterized in that the chromium hydroxide is precipitated at a pH of approx. 8 after the iron vanadate, tungstate and/or molybdate and/or chromium vanadate, tungstate and/or molybdate have been separated. 13. - Fremgangsmåte ifølge krav 1-11, karakterisert ved at den utføres kontinuerlig og uten henstandstider.13. - Method according to claims 1-11, characterized in that it is carried out continuously and without grace periods.
NO770867A 1976-03-13 1977-03-11 PROCEDURES FOR THE PREPARATION OF WATER, SPECIAL WATER FROM PLANTS FOR THE MANUFACTURE OF ALLOY COMPONENTS FOR ST} L NO770867L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2610637A DE2610637B2 (en) 1976-03-13 1976-03-13 Process for the treatment of waste water

Publications (1)

Publication Number Publication Date
NO770867L true NO770867L (en) 1977-09-14

Family

ID=5972376

Family Applications (1)

Application Number Title Priority Date Filing Date
NO770867A NO770867L (en) 1976-03-13 1977-03-11 PROCEDURES FOR THE PREPARATION OF WATER, SPECIAL WATER FROM PLANTS FOR THE MANUFACTURE OF ALLOY COMPONENTS FOR ST} L

Country Status (7)

Country Link
AT (1) AT348453B (en)
BE (1) BE852383A (en)
DE (1) DE2610637B2 (en)
FI (1) FI770773A (en)
NL (1) NL7702744A (en)
NO (1) NO770867L (en)
ZA (1) ZA771489B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1199472B (en) * 1984-06-13 1988-12-30 Va Ni M S R L PROCEDURE FOR THE PRODUCTION OF VANADIUM PENTOXIDE FROM DUST AND MUDS CONTAINING VANADIUM COMPOUNDS
US8815184B2 (en) * 2010-08-16 2014-08-26 Chevron U.S.A. Inc. Process for separating and recovering metals
CN111003701B (en) * 2019-12-20 2022-06-24 大连博融新材料有限公司 Method for producing vanadium-doped lithium iron phosphate from vanadium industrial wastewater and vanadium-doped lithium iron phosphate
CN111644178A (en) * 2020-05-28 2020-09-11 中交四航工程研究院有限公司 Composite catalyst for degrading dye wastewater through electro-Fenton, and preparation method and application thereof

Also Published As

Publication number Publication date
AT348453B (en) 1979-02-26
ATA88577A (en) 1978-06-15
DE2610637A1 (en) 1977-09-15
NL7702744A (en) 1977-09-15
FI770773A (en) 1977-09-14
DE2610637B2 (en) 1979-10-25
ZA771489B (en) 1978-01-25
BE852383A (en) 1977-07-01

Similar Documents

Publication Publication Date Title
FI127664B (en) Process for recovering components from pickling acid residue
US4260491A (en) Chrome removal waste treatment process
CA1148748A (en) Recovery of precious metals from difficult ores
CN104787928B (en) A kind of iron content, chromium, the recovery and treatment method of nickel and stainless steel pickle liquor
NO141417B (en) PROCEDURES FOR EXCLUDING OXYDIC, MAGNESIUM AND NICKEL COBBOL-CONTAINING ORE
NO134415B (en)
US3960723A (en) Magnetization of iron chromium system
JP2002526256A (en) Treatment method for metal contaminated water
NO770867L (en) PROCEDURES FOR THE PREPARATION OF WATER, SPECIAL WATER FROM PLANTS FOR THE MANUFACTURE OF ALLOY COMPONENTS FOR ST} L
SU1447273A3 (en) Method of producing manganese sulfate solution
US2754174A (en) Treatment of salt solutions to
KR100481760B1 (en) Process for removing selenium from a selenium-containing liquid
JP2680285B2 (en) Fertilizer manufacturing method
JPS5825050B2 (en) Method for producing composite copper-arsenic compound
JP4154052B2 (en) Method for producing ferric sulfate solution
NO774209L (en) PROCEDURE FOR DISSOLVING NON-IRON METALS IN OXYGENATED COMPOUNDS
KR102362942B1 (en) Recovery method of vanadium from aqueous solution containing vanadium
JPS5846355B2 (en) Treatment method for fluorine-containing ammonia waste liquid
US4394356A (en) Recuperation of cyanides from rinsing solutions of cyanidric processes for eletrodeposition of metals
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
JPS59199097A (en) Disposal of waste cement slurry
JPS6225434B2 (en)
NO155960B (en) PROCEDURE FOR MANUFACTURING IRON-FREE CROOH.
JPH05105451A (en) Production of high purity chromium (vi) oxide solution from composition containing trivalent chromium and/or hexavalent chromium
RU2208067C2 (en) Process of rejuvenation of chromium electrolytes ( variants )