NO761442L - - Google Patents

Info

Publication number
NO761442L
NO761442L NO761442A NO761442A NO761442L NO 761442 L NO761442 L NO 761442L NO 761442 A NO761442 A NO 761442A NO 761442 A NO761442 A NO 761442A NO 761442 L NO761442 L NO 761442L
Authority
NO
Norway
Prior art keywords
furnace
electric resistance
furnaces
rectifier
supplied
Prior art date
Application number
NO761442A
Other languages
Norwegian (no)
Inventor
G Ferrazzini
G Nizzola
S Lanini
O Troendle
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Publication of NO761442L publication Critical patent/NO761442L/no

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • H05B3/0023Circuit arrangements for heating by passing the current directly across the material to be heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)
  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Description

Det er kjent å fremstille silisiumkarbid i teknisk målestokk ved hjelp av elektriske motstandsovner ved den fremgangsmåte som ble utviklet av Acheson i slutten av det 19.århundre. It is known to produce silicon carbide on a technical scale using electric resistance furnaces by the method developed by Acheson at the end of the 19th century.

En ovn av denne art består av to innbyrdes motstående stasjonære ildfaste murer, hvorigjennom elektroder som tilfores vekselstrom, rager inn i ovnen. De ildfaste sidevegger er beregnet på å A furnace of this type consists of two opposite stationary refractory walls, through which electrodes that are supplied with alternating current project into the furnace. The refractory side walls are designed to

rives ned etter avslutning av brenningsprosessen for uttak av ovnsinnholdet. torn down after completion of the firing process for removal of the kiln contents.

Resultantligningen for fremstilling av silisiumkarbid har fSigende sammensetning: The resulting equation for the production of silicon carbide has the following composition:

Den anvendte råblanding består av kornet kvarts og koks, fortrinnsvis blandet med sagspon og kokesalt. Andelene av hovedkomponentene i råblandingen tilsvarer det stokiometriske forhold med et lite overskudd av koks. The raw mixture used consists of granular quartz and coke, preferably mixed with sawdust and common salt. The proportions of the main components in the raw mixture correspond to the stoichiometric ratio with a small excess of coke.

Ovnen fylles så til nivå med elektrodene med den angitte råblanding. Deretter forbindes elektrodeblokkene med en varme-leder (nerve) bestående av en koks/grafit-blanding, og resten av råblandingen innfores i ovnen. Omsetningsprosessen er avsluttet etter 25 til 36 timer. Deretter tillates en avkjolingstid på flere dager. Ovnens sidevegger demonteres så og den dannede sylinderformede skorpe adskilles fra den ikke omsatte del av råblandingen. The furnace is then filled to the level of the electrodes with the specified raw mixture. The electrode blocks are then connected with a heat conductor (nerve) consisting of a coke/graphite mixture, and the rest of the raw mixture is fed into the furnace. The turnover process is completed after 25 to 36 hours. A cooling-off period of several days is then allowed. The side walls of the oven are then dismantled and the formed cylindrical crust is separated from the unreacted part of the raw mixture.

Under denne fremgangsmåte oppstår fint utformede SiC-krystallerDuring this process, finely shaped SiC crystals are formed

i temperaturområdet fra ca. 2000°C til ca. 2300°C. Over ca.2300°C spaltes SiC, og det silisium som frembringes ved spaltingen, slår seg ned i ovnens koldeste soner, mens det gjenværende forholdsvis rene grafit forurenser det fremstilte silisiumkarbid. in the temperature range from approx. 2000°C to approx. 2300°C. Above about 2300°C, SiC splits, and the silicon produced by the splitting settles in the coldest zones of the furnace, while the remaining relatively pure graphite contaminates the silicon carbide produced.

Ved direkte motstandsoppvarming påtrykkes elektrisk spenning direkte på varmelederen. Vanligvis er denne spenning meget lav og den frembragte strSm meget hSy. Hvis det imidlertid onskes jevnt fordelt oppvarming, og dette tilstrebes alltid, så må varmegodsets motstand være jevnt fordelt over hele strSmbanens tverrsnitt. Det må således ikke forekomme uregelmessigheter hverken i sammenfSyninger eller i tverrsnitt, og begge disse forutsetninger er vanskelige å oppfylle. Kontaktsporsmålet utgjSr?;en ytterligere betraktelig vanskelighet. Det forlanges således ikke bare en meget god elektrisk kontakt med minst In direct resistance heating, electrical voltage is applied directly to the heating conductor. Usually this voltage is very low and the produced strSm very hSy. If, however, evenly distributed heating is desired, and this is always strived for, then the resistance of the heating material must be evenly distributed over the entire cross-section of the conductor. Thus, there must be no irregularities either in joints or in cross-sections, and both of these conditions are difficult to fulfill. The contact trace goal represents a further considerable difficulty. It is therefore not only a very good electrical contact with at least that is required

mulig overgangsmotstand, men også en jevnt fordelt strSmovergang. Ved de hSye foreliggende stromstyrker på noen tusen amper forer en overgangsmotstand på bare brSkdeler av en ohm .til betraktelig varmeutvikling, som må bortfores ved hjelp av særlig kjSling av kontaktstedet og inngår som et tap i energibalansen. Ved anvendelse av vekselstrSm, og bare denne strSmart kommer på tale i praksis, da den alene på enkel måte tillater uttak av de nSdvendige store strSmstyrker fra nettet, må det også tas hensyn til virkningen av de frembragte sterke magnetfelt,(Ullmann 1951, bind 1, side 191) . possible transition resistance, but also an evenly distributed current transition. At the high present current strengths of a few thousand amperes, a transition resistance of only fractions of an ohm leads to considerable heat development, which must be removed by means of special heating of the contact point and is included as a loss in the energy balance. When using alternating current, and only this current comes into question in practice, as it alone allows the withdrawal of the necessary large currents from the network in a simple way, the effect of the strong magnetic fields produced must also be taken into account (Ullmann 1951, volume 1 , page 191) .

Oppnåelse av god varmeutnyttelse og dermed hSyt energiutbytte forutsetter minst mulig blind-effekt (Cosi/*) . Denne, forutsetning er imidlertid bare i meget utilstrekkelig grad oppfylt i de kjente SiC-mostandsovner. For å holde; . nevnte blind-effekt så lav som mulig, innkobles på«:kjent måte kondensatorer. Men også ved forkoblede kondensatorer vil det for sådanne ovner foreligge grenser med hensyn til tverrsnitt og lengdeutstrekning, da blind-effekten Sker raskt med stigende tverrsnitt og lengde. ;For det meste kobles tre sådanne ovner i parallell for å oppnå symmetrisk belastning av generatorer og nett. ;Det er imidlertid nå funnet at det kan oppnås likeartet ovnsdrift og forhoyet energiutbytte (liten blind-effekt) også ved ovner med store dimensjoner, når ovnene drives med likestrom. ;På denne bakgrunn går foreliggende oppfinnelse ut på fremstilling av silisiumkarbid ved omsetning av kvarts-sand med koks, fortrinnsvis i nærvær av kokesalt og sagspon i elektriske motstandsovner, idet oppfinnelsens særtrekk består i at nevnte omsetning utfores i en. elektrisk motstandsovn hvis varmekjerne tilfores likestrom. ;Hensiktsmessig utfores dette i praksis på den måte at det;mellom nett og ovn innkobles en likeretterenhet og transformator, fortrinnsvis en forflyttbar sammenstilling av Si-likerettede og en transformator. Ved hjelp av en sådan anordning kan strom fra alle tre faser i et trefasenett likerettes. Ved at likeretter/ transformator-enheten er forflyttbar, kan denne enhet bringes helt frem til vedkommende ovner. Tap på grunn av lange tilledninger bortfaller, og ensidig belastning av nettet forekommer ikke. ;En ytterligere fordel består i at en anordning a* denne art er lett å regulere og så-ledes bare små energitap forekommer. Achieving good heat utilization and thus high energy yield requires the least possible blind effect (Cosi/*) . However, this condition is only met to a very insufficient extent in the known SiC resistance furnaces. To hold; . mentioned blind effect as low as possible, capacitors are connected in the known manner. But also with pre-connected condensers, there will be limits for such ovens with regard to cross-section and length extension, as the blind effect occurs quickly with increasing cross-section and length. For the most part, three such furnaces are connected in parallel to achieve symmetrical loading of generators and grids. However, it has now been found that similar furnace operation and increased energy yield (small blind effect) can also be achieved with furnaces with large dimensions, when the furnaces are operated with direct current. Against this background, the present invention is concerned with the production of silicon carbide by reacting quartz sand with coke, preferably in the presence of common salt and sawdust in electric resistance furnaces, the distinctive feature of the invention being that said reaction is carried out in a. electric resistance furnace whose heating core is supplied with direct current. Appropriately, this is carried out in practice in such a way that a rectifier unit and transformer, preferably a movable assembly of Si rectifiers and a transformer, are connected between the mains and the oven. With the help of such a device, current from all three phases in a three-phase network can be rectified. As the rectifier/transformer unit is movable, this unit can be brought all the way to the respective ovens. Losses due to long connections are eliminated, and one-sided loading of the network does not occur. A further advantage consists in the fact that a device of this type is easy to regulate and thus only small energy losses occur.

Den omtalte likeretter/tranformator-enhet utfores hensiktsmessig programmerbar for åu styres av et forut oppstilt program som tilsvarer ovnens vanlige energiopptak. The mentioned rectifier/transformer unit is suitably designed to be programmable in order to be controlled by a prearranged program that corresponds to the oven's usual energy consumption.

Ved et utforelseseksempel i henhold til foreliggende oppfinnelse ble det i motstandovner drevet med ca. 80 KA oppnådd en ydelse på 350 til 400 kW per meter.~ovnslengde. Produktutbyttet belop In an exemplary embodiment according to the present invention, resistance furnaces were operated with approx. 80 KA achieved a performance of 350 to 400 kW per meter.~furnace length. Product yield amount

seg herunder til ca. 40 kg fint krystallisert SiC per time og meter ovnslengde. themselves below to approx. 40 kg of finely crystallized SiC per hour and meter of furnace length.

Claims (3)

1. Fremgangsmåte for fremstilling av silisiumkarbid ved omsetning av kvarts-sand med koks, fortrinnsvis i nærvær av kokesalt og sagspon, i elektriske motstandsovner, karakterisert ved at nevnte omsetning utfores i en elektrisk motstandsovn hvis varmekjerne tilfores likestrom.1. Process for the production of silicon carbide by reaction of quartz sand with coke, preferably in the presence of common salt and sawdust, in electric resistance furnaces, characterized in that said reaction is carried out in an electric resistance furnace whose heating core is supplied with direct current. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at nevnte likestrom tilfores varmekjernen fra en forflyttbar likeretter/transformator-enhet.2. Method as stated in claim 1, characterized in that said direct current is supplied to the heating core from a movable rectifier/transformer unit. 3. Fremgangsmåte som angitt i krav 1 eller 2, karakterisert vee d at det anvendes en programmerbar likeretter/transformator-enhet.3. Method as stated in claim 1 or 2, characterized in that a programmable rectifier/transformer unit is used.
NO761442A 1975-04-29 1976-04-27 NO761442L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH552575A CH595283A5 (en) 1975-04-29 1975-04-29

Publications (1)

Publication Number Publication Date
NO761442L true NO761442L (en) 1976-11-01

Family

ID=4295077

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761442A NO761442L (en) 1975-04-29 1976-04-27

Country Status (11)

Country Link
BE (1) BE841291A (en)
CA (1) CA1082422A (en)
CH (1) CH595283A5 (en)
DE (1) DE2617647A1 (en)
ES (1) ES447420A1 (en)
FR (1) FR2309469A1 (en)
GB (1) GB1476916A (en)
IT (1) IT1058237B (en)
NL (1) NL182394C (en)
NO (1) NO761442L (en)
ZA (1) ZA762478B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171858A3 (en) * 1984-08-14 1989-06-14 AGIP S.p.A. Method of making silicon carbide and coatings of silicon carbide on carbonaceous substrates
DE4226867C1 (en) * 1992-08-13 1993-11-25 Kempten Elektroschmelz Gmbh Resistance heated open furnace for silicon carbide prodn. - has multi-limb resistive core connected to poly phase supply

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR327189A (en) * 1902-12-09 1903-06-16 Acheson Edward Goodrich Improved method and apparatus for reduction of compounds by electric heating
GB383540A (en) * 1931-05-11 1932-11-17 Aurele Louis Mingard A process for manufacturing hard objects of carbon silicide or like substances
US2005956A (en) * 1931-12-02 1935-06-25 Norton Co Method of making abrasive metal carbides and an apparatus therefor
FR887377A (en) * 1941-11-26 1943-11-11 Deutsche Edelstahlwerke Ag Method and device for obtaining reactions between metal oxides or oxidic ores and coal

Also Published As

Publication number Publication date
GB1476916A (en) 1977-06-16
ES447420A1 (en) 1977-07-01
CH595283A5 (en) 1978-02-15
DE2617647A1 (en) 1976-11-11
BE841291A (en) 1976-10-29
ZA762478B (en) 1977-04-27
IT1058237B (en) 1982-04-10
NL7604277A (en) 1976-11-02
CA1082422A (en) 1980-07-29
FR2309469A1 (en) 1976-11-26
NL182394C (en) 1988-03-01
FR2309469B1 (en) 1981-09-25
NL182394B (en) 1987-10-01

Similar Documents

Publication Publication Date Title
CA1094329A (en) Method of carbothermically producing aluminum-silicon alloys
LU83442A1 (en) METHOD FOR PRODUCING A PRE-PRODUCT FOR THE PRODUCTION OF SILICON AND / OR SILICON CARBIDE
NO761442L (en)
US1979729A (en) Production of sponge iron
NO168310B (en) PROCEDURE FOR THE PREPARATION OF HOEYREN COOK FROM BLACK COAL
NO141141B (en) PROCEDURE FOR MEASUREMENT OF METALLURGIC OPERATING CONDITIONS IN METALLURGIC PROCESSES IN ELECTRIC ELECTRODE STOVES
SE7704688L (en) BY DIRECT ELECTRIC HEATING ACCORDING TO THE RESISTANCE PRINCIPLE OPERATED OVEN FACILITY, IN PARTICULAR FOR THE MANUFACTURE OF SILICONE CARBID
US733389A (en) Process of removing silica from coke.
NO811223L (en) PROCEDURE FOR THE PREPARATION OF CALCIUM CARBID.
US690319A (en) Process of producing carbids.
SU737387A1 (en) Charge for producing refractory articles
SU1694476A1 (en) Method of melting silicon in arc furnace
US1433403A (en) Process of making ferro-uranium
SU52383A1 (en) Electrothermal method of producing aluminum
SU1574664A1 (en) Briquette for obtaining silicon- and manganese-base complex alloys
US737123A (en) Process of producing chlorids of carbon.
SU429101A1 (en) METHOD OF GETTING SILICON ALLOYS
JPH02142889A (en) Production of coal-derived needle coke
SU719968A1 (en) Carbon-containing composition for graphitized electric brushes
JPH0114273B2 (en)
US698739A (en) Method of extracting metals from their oxid ores.
DE2244899A1 (en) BRIQUETTES FOR THE PRODUCTION OF SILICONE ALUMINUM
Banning et al. Experimental Production of Al-Si Alloys in a Three-Phase Furnace
SI20121A1 (en) Enhancements of anodes and the procedure for extracting and manufacturing alumin
US1315496A (en) Extraction ob stti