NO754330L - - Google Patents
Info
- Publication number
- NO754330L NO754330L NO754330A NO754330A NO754330L NO 754330 L NO754330 L NO 754330L NO 754330 A NO754330 A NO 754330A NO 754330 A NO754330 A NO 754330A NO 754330 L NO754330 L NO 754330L
- Authority
- NO
- Norway
- Prior art keywords
- waste water
- wastewater
- thiobazillus
- oxygen
- value
- Prior art date
Links
- 239000002351 wastewater Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 14
- 150000003464 sulfur compounds Chemical class 0.000 claims description 11
- 238000005188 flotation Methods 0.000 claims description 10
- 238000005273 aeration Methods 0.000 claims description 6
- 230000001580 bacterial effect Effects 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000000243 solution Substances 0.000 description 9
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920001021 polysulfide Polymers 0.000 description 4
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 4
- 229910052683 pyrite Inorganic materials 0.000 description 4
- 239000011028 pyrite Substances 0.000 description 4
- 239000002352 surface water Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 150000004764 thiosulfuric acid derivatives Chemical class 0.000 description 3
- 239000004133 Sodium thiosulphate Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1231—Treatments of toxic sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Biodiversity & Conservation Biology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
Oppfinnelsen vedrører en fremgangsmåte til minsk-ning resp. fjerning av oksygenforbrukende egenskaper av avvann som inneholder lavverdige svovelforbindelser. The invention relates to a method for reducing or removal of oxygen-consuming properties of wastewater containing low-grade sulfur compounds.
Fjerning av lavverdige svovelforbindelser i avvann er av økologiske grunner et viktig krav, da slike avvann har oksygenfortærende egenskaper og ved innledning i overflatevann forstyrrer den biologiske likevekt. Lavverdige svovelforbindelser som kan opptre i avvann er eksempelvis sulfider som polysulfider, tiosulfater, sulfiter eller også findelt resp. kolloidal elemen-tærsvovel. Slike forbindelser opptrer eksempelvis i avvann som fremkommer ved fremstilling av akselleratorer, fungicider eller fIotasjonshjelpemidler på basis tiokarbamat. Også i cellulose-industrien fremkommer store mengder sulfitholdig avvann, hvis oppberedelse krever betraktelige anstrengelser. Videre er det å'nevne som bærere for lavverdige svovelforbindelser de svoveldiok-sydholdige vaskevann fra svoveldioksyd emitterende anlegg som anlegg til fremstilling av svovelsyre eller kraftverk. Endelig fremkommer også ved flotasjon av sulfidiske, spesielt finut-vaskede komplekse malmer avvann som inneholder lavverdige svovelforbindelser. Avvannene fra slike anlegg befris vanligvis i klaringsdanner for faste- og svevestoffer og utslippes deretter som i det vesentlige optisk klare avsrann i overflatevann. Alt etter betingelsene for fIotasjonsprosessen kan det i avvannene være inneholdt oppløselige tiosulfater 'og polysulfider som oksy-genf ortærere. Disse forbindelser kan dannes ved oksydasjon av det sulfidiske malmmaterial under male- og/eller fIotasjonsprosessen, videre ved spaltning av fIotasjonsreagensene. Nærvær av tiosulfat og polysulfider er som nevnt forsåvidt uheldig, da avvannene har oksygenfortærende egenskaper. Dette oksygenbehov er imidlertid uønsket økologisk, da slike avvann ved innføring i Removal of low-grade sulfur compounds in waste water is an important requirement for ecological reasons, as such waste water has oxygen-consuming properties and, when introduced into surface water, disturbs the biological equilibrium. Low-grade sulfur compounds that can appear in waste water are, for example, sulfides such as polysulfides, thiosulfates, sulfites or also finely divided resp. colloidal elemental sulfur. Such compounds occur, for example, in waste water produced by the production of accelerators, fungicides or flotation aids based on thiocarbamate. The cellulose industry also produces large quantities of sulphite-containing wastewater, the preparation of which requires considerable effort. Furthermore, it is to be mentioned as carriers for low-grade sulfur compounds the sulfur dioxide-containing washing water from sulfur dioxide-emitting facilities such as facilities for the production of sulfuric acid or power plants. Finally, the flotation of sulphidic, especially finely washed complex ores also produces waste water containing low-grade sulfur compounds. The waste water from such facilities is usually freed in clarifiers for solids and suspended matter and then discharged as essentially optically clear runoff into surface water. Depending on the conditions for the flotation process, the wastewater may contain soluble thiosulphates and polysulphides as oxygen carriers. These compounds can be formed by oxidation of the sulphidic ore material during the grinding and/or flotation process, further by splitting the flotation reagents. As mentioned, the presence of thiosulphate and polysulphides is certainly unfortunate, as the waste water has oxygen-consuming properties. This oxygen demand is, however, undesirable ecologically, as such waste water when introduced into
overflatevann forstyrrer den biologiske likevekt.surface water disturbs the biological equilibrium.
Til grunn for oppfinnelsen ligger den oppgave å fjerne eller å minske de surstoff-forbrukende egenskaper av lavverdig svovelforbindelsesholdig avvann. Oppgaven løses ifølge oppfinnelsen ved at avvannet innstilles på en pH-verdi mindre enn 5 og blandes med bakteriekulturer fra gruppen Thiobazillus thiooxidans og/eller Thiobazillus ferrooxidans. The invention is based on the task of removing or reducing the oxygen-consuming properties of waste water containing low-grade sulfur compounds. The task is solved according to the invention by setting the waste water to a pH value of less than 5 and mixing it with bacterial cultures from the group Thiobazillus thiooxidans and/or Thiobazillus ferrooxidans.
En intens luftberøring resp. en luftning av avvannet virkerAn intense air touch or aeration of the waste water works
da meget gunstig til aksellerering av fremgangsmåten.then very beneficial for accelerating the procedure.
Ved fremgangsmåten ifølge oppfinnelsen overføresIn the method according to the invention is transferred
de lavverdige svovelforbindelser, som de oppløselige tiosulfater og polysulfider i de tilsvarende sulfater resp. svovelsyre og avvannets oksygenforbrukende karakter fjernes eller minskes sterkt. Mens eksempelvis vanligvis klaret avvann fra flota-sjonsanlegg av sulfidiske malmer som finutvaskende malmer av sinkblende, blyglans og pyrit har et oksygenbehov på inntil 100 mg pr. liter, bringes denne verdi ved fremgangsmåten ifølge oppfinnelsen til null eller praktisk talt null. the low-value sulfur compounds, such as the soluble thiosulphates and polysulphides in the corresponding sulphates or sulfuric acid and the oxygen-consuming nature of the water are removed or greatly reduced. While, for example, usually clarified waste water from flotation plants of sulphidic ores such as fine leaching ores of zinc blende, lead luster and pyrite has an oxygen demand of up to 100 mg per litres, this value is brought to zero or practically zero by the method according to the invention.
Por gjennomføring av fremgangsmåten ifølge oppfinnelsen bringes avvannet som skal behandles til en temperatur på 15 til 40°C. En spesiell gunstig behandlingstemperatur ligger ved 25 til 35°C. I dette temperaturområde, spesielt i området fra 25 til 35°j slik det ble funnet, ligger et spesielt gunstig fysiologisk aktivitets- resp. eksistensområde for bakteriene av gruppen Thiobaziullus thiooxidans eller ferrooxidans. Dette temperaturaktivitetsområde er bundet til nærvær av et surt miljø, spesielt av pH-verdieunder 5-Optimale levebetingelser finner de nevnte bakterier i pH-området fra ca. 1,5 til 4. pH-verdien innstilles vanligvis ved tilsetning av en mineralsyre, hensiktsmessig svovelsyre til avvannet. Etter innstilling av av.&annets aktivitet til en pH-verdi på mindre enn 5 og regulering av temperaturen til 15 til 40°C foregår tilsetningen av bakterier i en i den biologiske avvannoppberedning i og for seg vanlige form og mengde. When carrying out the method according to the invention, the waste water to be treated is brought to a temperature of 15 to 40°C. A particularly favorable treatment temperature is 25 to 35°C. In this temperature range, especially in the range from 25 to 35°j as it was found, lies a particularly favorable physiological activity resp. area of existence for the bacteria of the group Thiobaziullus thiooxidans or ferrooxidans. This temperature activity range is tied to the presence of an acidic environment, especially of the pH value under 5-Optimal living conditions, the aforementioned bacteria are found in the pH range from approx. 1.5 to 4. The pH value is usually adjusted by adding a mineral acid, preferably sulfuric acid, to the waste water. After setting the av.&annet's activity to a pH value of less than 5 and regulating the temperature to 15 to 40°C, the addition of bacteria takes place in a biological wastewater treatment in and of itself usual form and quantity.
Det sure og med bakterier kontaminerte avvann ut-settes deretter hensiktsmessig for en.luftning med luftoksygen. Denne luftning foretas i 30 minutter til 6 timer. Egnede inn-retninger som risletårn forkorter oksydasjonstiden av de lavverdige svovelforbindelser. Valg av innretningene, eksempelvis risletårn og luftningsbekken, tilpasses derfor til de lokale om- stendigheter og mengden av dannet avvann. I mange tilfeller kan det være hensiktsmessig å utstyre fyllegemene av risle-tårnet helfeller delvis av stykkformet, sulfidisk, fortrinnsvis pyritisk material. Slikt material tjener som naturlig næringsgrunnlag for mikroorganismen ved fremgangsmåten ifølge oppe finn-lsen. Selvsagt kan dette material også innbringes som næringsgrunnlag i luftebekken. The acidic and bacteria-contaminated waste water is then appropriately exposed to aeration with atmospheric oxygen. This aeration is carried out for 30 minutes to 6 hours. Suitable facilities such as trickling towers shorten the oxidation time of the low-value sulfur compounds. The choice of the facilities, for example trickle towers and aeration streams, is therefore adapted to the local circumstances and the amount of waste water generated. In many cases, it may be appropriate to equip the fill cores of the trickle tower entirely or partly with lumpy, sulphidic, preferably pyritic material. Such material serves as a natural nutritional basis for the microorganism in the method according to the invention. Of course, this material can also be introduced as a nutrient base into the aeration stream.
Fordelene ved fremgangsmåten ifølge oppfinnelsen er å se"deri at på teknisk enkel måte fjernes de lavverdige svovelforbindelser i eksempelvis avvann fra anlegg til flotasjon av sulfidisk malm praktisk talt fullstendig og overføres i uskadelige sulfater. Med fjerningen av de lavverdige svovelforbindelser bortfaller det ved disse forbindelser forårsakede høye oksygenbehov av avwann fra f.eks. anlegg til flotasjon av sulfidiske malmer, således at avvannene etter innstilling til pH-verdi på ca. 7 under omgivelsesvennlige betingelser kan inn-føres i overflatevann. The advantages of the method according to the invention are that, in a technically simple way, the low-grade sulfur compounds in, for example, wastewater from plants for the flotation of sulphidic ore are practically completely removed and transferred into harmless sulfates. With the removal of the low-grade sulfur compounds, the effects caused by these compounds disappear high oxygen demand of waste water from, for example, facilities for the flotation of sulphidic ores, so that the waste water can be introduced into surface water after adjustment to a pH value of approx. 7 under environmentally friendly conditions.
Oppfinnelsen skal forklares nærmere ved hjelp av noen eksempler. The invention will be explained in more detail with the help of some examples.
Eksempel 1.Example 1.
a) I et 5 liters kar utrystet med et røreverk anvendes en vandig oppløsning av natriumtiosulfat med et oksygenbehov på 100 mg 0£a) In a 5 liter vessel equipped with a stirrer, an aqueous solution of sodium thiosulphate is used with an oxygen demand of 100 mg 0£
pr. liter. Oppløsningens pH-verdi innstilles med svovelsyre til b og oppløsningen luftes med luft ved hjelp av en fritte. Temperaturen utgjør ca. 20°C. Endringen av tiosulfatinnholdet i avhengighet av tiden følges ved titrering. Etter tre dager er uten tilsetning av bakterier, bare foregått en nedgang av tiosulfatinnholdet til 9^% av begynnelsesverdien (sterilt blindforsøk). per litres. The pH value of the solution is adjusted with sulfuric acid to b and the solution is aerated with air using a frit. The temperature is approx. 20°C. The change in the thiosulphate content as a function of time is followed by titration. After three days, without the addition of bacteria, only a decrease in the thiosulphate content has taken place to 9% of the initial value (sterile blank test).
b) I samme forsøksoppbygning podes nå en tilsvarende vandig oppløsning av natriumtiosulfat (oksygenbehov 100 mg 02pr. liter) b) In the same experimental set-up, a corresponding aqueous solution of sodium thiosulphate is now inoculated (oxygen demand 100 mg 02 per litre)
med en bakteriekultur av Thiobazillus, Thiooxidens og Ferrooxi-dens. Tabellen viser den tidsmessige gang av oksydasjonen av tiosulfatet ved aktiviteten av bakteriene. with a bacterial culture of Thiobazillus, Thiooxidens and Ferrooxidens. The table shows the time course of the oxidation of the thiosulphate by the activity of the bacteria.
Eksempel 2. Example 2.
I forsøksoppbygningen som angitt under eksempel 1 anvendes et avvann fra et anlegg til fIotasjon av pyrit med et oksygenbehov på 96 mg C^/liter og podes med en bakteriekultur av Thiobazillus thiooxidans eller ferrooxidans. Avbyg-ningen av oksygenbehovet følges som i eksempel 1 ved titrering av tiosulfatinnholdet. In the experimental set-up as stated under example 1, waste water from a plant for flotation of pyrite is used with an oxygen demand of 96 mg C^/litre and inoculated with a bacterial culture of Thiobazillus thiooxidans or ferrooxidans. The breakdown of the oxygen demand is followed as in example 1 by titrating the thiosulphate content.
Eksempel 3» Example 3»
I en forsøksoppbygning som angitt i krav 1 anvendes en oppløsning av SC>2 i vann. Oppløsningens oksygenbehov utgjør 100 mg O2pr. liter. Bunnen av karet er belagt med val-nøttstore pyritstykker. Temperaturen holdes konstant på 32°C. Den podes med en blanding av Thiobazillus thiooxidans og ferrooxidans og oppløsningen luftes over et tidsrom på ca. In an experimental set-up as stated in claim 1, a solution of SC>2 in water is used. The solution's oxygen demand amounts to 100 mg O2pr. litres. The bottom of the vessel is coated with walnut-sized pieces of pyrite. The temperature is kept constant at 32°C. It is inoculated with a mixture of Thiobazillus thiooxidans and ferrooxidans and the solution is aerated over a period of approx.
3 timer.3 hours.
Eksempel 4. Example 4.
Et kolonnerør av 1,5 meters lengde og 75 mm inn-vendig vidde fylles med keramiske Raschigringer. Ved hjelp av en sirkulasjonspumpe pumpes den vandige oppløsning av tiosulfat i kretsløptgjennom kolonnen.'Oppløsningen podes med Thiobazillus thiooxidans og ferrooxidans og overlates til seg selv 24 timer ved værelsestemperatur. I løpet av denne tid formerer bakteriene seg og avbygger tiosulfatinnholdet til verdien 0. Nå doseres ved hjelp av en doseringspumpe i tillegg en tiosulfatoppløsning med et oksygenbehov på 100 mg 02pr. liter i kolonnekretsløpet og sørger for at den samme vannmengde tilføres til systemet, også igjen utsluses'. Etter ca. 6 timers driftstid innstiller det seg en likevekt av resttiosulfatinnholdet i avhengighet av den doserte oppløsning: A column tube of 1.5 meters length and 75 mm internal width is filled with ceramic Raschi rings. With the help of a circulation pump, the aqueous solution of thiosulphate is pumped in a circuit through the column. The solution is inoculated with Thiobazillus thiooxidans and ferrooxidans and left to itself for 24 hours at room temperature. During this time, the bacteria multiply and reduce the thiosulphate content to the value 0. Now, with the help of a dosing pump, a thiosulphate solution with an oxygen demand of 100 mg 02pr is additionally dosed. liters in the column circuit and ensures that the same amount of water is supplied to the system, also discharged again'. After approx. After 6 hours of operation, an equilibrium of the residual thiosulphate content is established, depending on the dosed solution:
Eksempel 5. Example 5.
Kolonnerøret av forsøksoppbygningen som omtaltThe column tube of the experimental set-up as discussed
i eksempel 4 fylles istedenfor de keramiske Raschigringer med stykkformet pyrit. Det pumpes under samme forsøksbetingelser som i eksempel 4 en oppløsning av SC>2 i vann med et oksygenbehov på 100 mg/liter over kolonnen. in example 4, the ceramic Raschi rings are instead filled with piece-shaped pyrite. Under the same test conditions as in example 4, a solution of SC>2 in water with an oxygen demand of 100 mg/litre is pumped over the column.
Ved en doseringshastighet på 500 ml/time synker innholdet av rést-S02 i avløpet etter innstilling av likevekten til 035. At a dosing rate of 500 ml/hour, the content of residual SO2 in the effluent drops after setting the equilibrium to 035.
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19752507111 DE2507111A1 (en) | 1975-02-19 | 1975-02-19 | Purifying waste waters contg low-valent sulphur cpds - by acidifying and treating with cultures of thiobacillus thiooxidans and or ferrooxidans |
Publications (1)
Publication Number | Publication Date |
---|---|
NO754330L true NO754330L (en) | 1976-08-20 |
Family
ID=5939273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO754330A NO754330L (en) | 1975-02-19 | 1975-12-19 |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS51106344A (en) |
AU (1) | AU1032776A (en) |
DE (1) | DE2507111A1 (en) |
ES (1) | ES443657A1 (en) |
FI (1) | FI753453A (en) |
IT (1) | IT1055204B (en) |
NO (1) | NO754330L (en) |
SE (1) | SE7601999L (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55162394A (en) * | 1979-06-05 | 1980-12-17 | Sumitomo Chem Co Ltd | Treatment of reducible inorg. sulfur containing waste water |
JPS58193688A (en) * | 1982-05-10 | 1983-11-11 | Sugai Kagaku Kogyo Kk | Mutant of thiobacillus thiooxidans and its use |
US6410305B1 (en) | 1997-08-04 | 2002-06-25 | Biosun Systems Corporation | Treatment of animal waste |
CA2212304A1 (en) * | 1997-08-04 | 1999-02-04 | Guy W. Miller | Treatment of animal waste |
CN104478160B (en) * | 2014-11-21 | 2016-04-20 | 中南大学 | Selecting and purchasing ore deposit contains the method for organism and the process of heavy metal wastewater thereby synergistic oxidation |
-
1975
- 1975-02-19 DE DE19752507111 patent/DE2507111A1/en not_active Withdrawn
- 1975-12-08 FI FI753453A patent/FI753453A/fi not_active Application Discontinuation
- 1975-12-18 ES ES443657A patent/ES443657A1/en not_active Expired
- 1975-12-19 NO NO754330A patent/NO754330L/no unknown
-
1976
- 1976-01-15 AU AU10327/76A patent/AU1032776A/en not_active Expired
- 1976-02-11 IT IT2007276A patent/IT1055204B/en active
- 1976-02-16 JP JP1573276A patent/JPS51106344A/ja active Pending
- 1976-02-19 SE SE7601999A patent/SE7601999L/en unknown
Also Published As
Publication number | Publication date |
---|---|
IT1055204B (en) | 1981-12-21 |
ES443657A1 (en) | 1977-05-01 |
FI753453A (en) | 1976-08-20 |
SE7601999L (en) | 1976-08-20 |
JPS51106344A (en) | 1976-09-21 |
AU1032776A (en) | 1977-07-21 |
DE2507111A1 (en) | 1976-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0192879B1 (en) | Methane fermentation process for treating evaporator condensate from pulp making system | |
CN104478093B (en) | Wastewater treatment | |
US3725258A (en) | Activated sludge sewage treatment process and system | |
US4200523A (en) | Process for removing sulfate ions from aqueous streams | |
GB1527731A (en) | Sewage treatment-flotation apparatus | |
EP0267159A3 (en) | Process for the genetic modification of monocotyledonous plants | |
IE38034B1 (en) | A method of biological purification of sewage and plant for carrying out the method | |
US3433629A (en) | Process of recovering manganese from manganese ores | |
EP0272049B1 (en) | Improved corn steep liquor | |
NO754330L (en) | ||
US3933590A (en) | Method of continuously culturing yeast | |
CN105776466B (en) | A kind of purification method of sodium sulfate wastewater | |
GB1491502A (en) | Anaerobic digestion of water-polluting waste material | |
EP0710626A2 (en) | Process for reducing nitrogen content in waste waters | |
US3627676A (en) | Method for oxidizing the thiosulfate ions in a thiosulfate | |
Lane | Removal of peel oil from citrus peel press liquors before anaerobic digestion | |
Burgess et al. | Pilot‐plant studies in production of sulphur from sulphate‐enriched sewage sludge | |
CN106277310B (en) | growth method of anaerobic granular sludge for protein wastewater treatment | |
DK287887D0 (en) | PROCEDURE AND CONTAINER FOR THE PREPARATION OF POLYSACCARIDES, NAME XANTHAN | |
GB847640A (en) | Improvements relating to the treatment of industrial effluents | |
CN108211672B (en) | Biological washing desulfurization device and method based on acidophilic biological desulfurization bacteria | |
US3310477A (en) | Method of isolating a desulfovibrio for use in removing sulfates from brine | |
KR960004384B1 (en) | Apparatus and method of eliminating iron using bacteria | |
SU1438607A3 (en) | Method of purifying phosphoric acid | |
Fair et al. | The Effect of Age of Sewage Solids upon Their Digestibility |