NO752379L - - Google Patents

Info

Publication number
NO752379L
NO752379L NO752379A NO752379A NO752379L NO 752379 L NO752379 L NO 752379L NO 752379 A NO752379 A NO 752379A NO 752379 A NO752379 A NO 752379A NO 752379 L NO752379 L NO 752379L
Authority
NO
Norway
Prior art keywords
metal compound
group vib
extrudate
group
group viii
Prior art date
Application number
NO752379A
Other languages
Norwegian (no)
Inventor
J E Conway
Original Assignee
Universal Oil Prod Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/484,519 external-priority patent/US3935127A/en
Application filed by Universal Oil Prod Co filed Critical Universal Oil Prod Co
Publication of NO752379L publication Critical patent/NO752379L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Description

Foreliggende oppfinnelse angår hydroavsvovling av petro-leumhydrocarbonfraksjoner slik som restoljer, og en fremgangsmåte ved fremstilling av et katalytisk materiale spesielt egnet hertil. The present invention relates to the hydrodesulphurisation of petroleum hydrocarbon fractions such as residual oils, and a method for the production of a catalytic material particularly suitable for this.

Avsvovlingsteknologien er for tiden konsentrert om hydrobehandling og utvikling av katalysatorer som er mer selektive og/ eller virker ved mindre strenge betingelser for å forhindre hydro-cracking av restoljen. Hydrobehandling eller hydroavsvovling utfores generelt ved hydrogentrykk på fra 7 til 200 ata. Normalt tilfores hydrogenet sammen med resirkulert hydrogen for å tilveiebringe ca. 150 - 1000 volumer H2ved 15°C, 1 ata pr. volum olje ved 15°C. Hydroavsvovlingstemperaturer er vanligvis 100 - 450°C, fortrinsvis 315 - 425°C. Væskeromshastigheten er vanligvis ca. 0,5 - 20 volumer olje ved 15°C pr. volumkatalysator. Hydroav-svovlingskatalysatorer omfatter fortrinsvis et metall fra gruppe VIB, vanligvis molybden, og et metall fra gruppe VIII, vanligvis nikkel eller cobolt, på et tungtsmeltelig uorganisk oxydbærerma-teriale, vanligvis aluminiumoxyd. Desulphurization technology is currently concentrated on hydrotreating and the development of catalysts that are more selective and/or operate under less stringent conditions to prevent hydro-cracking of the residual oil. Hydrotreatment or hydrodesulphurisation is generally carried out at a hydrogen pressure of from 7 to 200 ata. Normally, the hydrogen is fed together with recycled hydrogen to provide approx. 150 - 1000 volumes H2 at 15°C, 1 ata per volume of oil at 15°C. Hydrodesulfurization temperatures are usually 100 - 450°C, preferably 315 - 425°C. The fluid space velocity is usually approx. 0.5 - 20 volumes of oil at 15°C per volume catalyst. Hydrodesulfurization catalysts preferably comprise a metal from group VIB, usually molybdenum, and a metal from group VIII, usually nickel or cobalt, on a refractory inorganic oxide support material, usually aluminum oxide.

Disse konvensjonelle katalysatorer virker bra, men forskningsarbeider fortsetter for å finne frem til en katalysator som vil være mer aktiv enn konvensjonelle katalysatorer. These conventional catalysts work well, but research work continues to find a catalyst that will be more active than conventional catalysts.

Foreliggende oppfinnelse tilveiebringer en fremgangsmåte for fremstilling av en katalysator som omfatter blanding og peptisering under dannelse av en ekstruderbar deig av en findelt metallforbindelse av gruppe VIB>en metallforbindelse av gruppe VIII og et tungtsmeltelig uorganisk oxyd, hvilke forbindelser tilveiebringer ca. 60 - 90 % av gruppe VIB og VIII komponentene i den ferdige katalysator, hvorefter deigen ekstruderes og torkes og ekstrudatet kalsineres, hvorefter det kalsinerte ekstrudat impregneres med en metallforbindelse fra gruppe VIB og en metallforbindelse fra gruppe VIII for å gi en ferdig katalysator inne holdende på elementbasis 4 - 30 vekt% gruppe VIB metall, og 1 - 10 vekt% gruppe VIII metall, hvorefter det impregnerte ekstrudat torkes og kalsineres i en oxyderende atmosfære. The present invention provides a method for the production of a catalyst which comprises mixing and peptizing to form an extrudable dough of a finely divided metal compound of group VIB > a metal compound of group VIII and a poorly melting inorganic oxide, which compounds provide approx. 60 - 90% of the group VIB and VIII components in the finished catalyst, after which the dough is extruded and dried and the extrudate is calcined, after which the calcined extrudate is impregnated with a metal compound from group VIB and a metal compound from group VIII to give a finished catalyst containing element base 4 - 30% by weight group VIB metal, and 1 - 10% by weight group VIII metal, after which the impregnated extrudate is dried and calcined in an oxidizing atmosphere.

Oppfinnelsen angår ennvidere en hydrobehandlingsprosess omfattende behandling av en svovelholdig brenselolje ved et hydrogentrykk på 7 - 200 ata, et hydrogen til hydrocarbonforhold på 150 - 10.000 volumer H2ved 15°C, 1 ata pr. volum olje ved 15°C, en temperatur på lOO - 450°C, og en væskeromhastighet på 0,5 - The invention further relates to a hydrotreatment process comprising treatment of a sulfur-containing fuel oil at a hydrogen pressure of 7 - 200 ata, a hydrogen to hydrocarbon ratio of 150 - 10,000 volumes H2 at 15°C, 1 ata per volume of oil at 15°C, a temperature of lOO - 450°C, and a liquid space velocity of 0.5 -

20, hvilken prosess er kjennetegnet ved at der anvendes en katalysator fremstillet efter fremgangsmåten ifolge oppfinnelsen. 20, which process is characterized by the use of a catalyst produced according to the method according to the invention.

Ifolge foreliggende fremgangsmåte bl°andes en findelt metallf orbindelse fra gruppe VIB, en metallforbindelse fra gruppe VIII og et tungtsmeltelig uorganisk oxyd og peptiseres under dannelse av en ekstruderbar deig. Hensiktsmessig kan alle bestanddeler torkes for et peptiserende middel tilsettes. Det er også mulig å torrblande flere av bestanddelene, tilsette peptiseringsmidlet og derefter tilsette de gjenværende torre bestanddeler. According to the present method, a finely divided metal compound from group VIB, a metal compound from group VIII and a difficult-to-melt inorganic oxide are mixed and peptized to form an extrudable dough. Appropriately, all components can be dried before a peptizing agent is added. It is also possible to dry mix several of the ingredients, add the peptizing agent and then add the remaining dry ingredients.

Uttrykket "findelt" angir partikler med en midlere dia-meter mindre enn 150 mikron, eksempelvis partikler som' passerer gjennom en 105 mikrons mikrosikt. Det tungtsmeltelige uorganiske oxyd kan være aluminiumoxyd, siliciumoxyd, zirconiumoxyd, thoriumoxyd, boroxyd, kr omoxyd, magnesiumoxyd, titandioxyd og lignende, eller sammensetninger derav slik s.om aluminiumoxyd-siliciumoxyd, aluminiumoxyd-zirconiumoxyd, og lignende. Aluminiumoxyd foretrekkes, spesielt alfa-aluminiumoxydmonohydrat av boehmite struktur. Torrblandingsoperasj onen forbedres under an-vendelse av et alfa-aluminiumoxydmonohydrat som erkarakterisertThe term "finely divided" denotes particles with an average diameter of less than 150 microns, for example particles which pass through a 105 micron microsieve. The difficult-to-melt inorganic oxide can be aluminum oxide, silicon oxide, zirconium oxide, thorium oxide, boron oxide, chromium oxide, magnesium oxide, titanium dioxide and the like, or compositions thereof such as aluminum oxide-silicon oxide, aluminum oxide-zirconium oxide, and the like. Alumina is preferred, especially alpha-alumina monohydrate of boehmite structure. The dry mixing operation is improved using an alpha-aluminum oxide monohydrate which is characterized

ved et vekttap ved antennelse ved 900°C på 20 - 30 vekt%. Alfa-aluminiumoxydmonohydratet forbedrer ekst rusjonsegenskapene til by a weight loss on ignition at 900°C of 20 - 30% by weight. The alpha aluminum oxide monohydrate improves the extrusion properties of

blandingen slik at blandingen lett ekstruderes gjennom en 0,8 - 3,2 mm's åpning ved et trykk på mindre enn ca. 35 ata. the mixture so that the mixture is easily extruded through a 0.8 - 3.2 mm opening at a pressure of less than approx. 35 ata.

Molybdentrioxyd er en spesielt egnet metallforbindelse av gruppe VIB, og coboltcarbonat er en spesielt egnet metallforbindelse fra gruppe VIII for torrblanding med det alfa-aluminiumoxydmonohydrat som her er tatt i betraktning. Andre egnede metallf orbindelser fra gruppe VIB innbefatter molybdensyre, ammoni-ummolybdat, ammoniumkrornat, kromdiklorid, kromnitrat, wolframsyre og lignende forbindelser.. Andre meta llf orbindelser fra gruppe VIII som kan anvendes, innbefatter nikkelnitrat, nikkelsulfat, nikkelklorid, nikkelacetat, coboltsulfat, jernnitrat, jerrisulfat, platinaklorid, palladiumklorid og lignende. I hvert tilfelle peptiseres den resulterende blanding ved tilsetning av en syre. En svak syre slik som maursyre, eddiksyre eller propionsyre kan anvendes, selvom sterkere syrer slik som svovelsyre, saltsyre<p>g i særdeleshet salpetersyre foretrekkes. Tilstrekkelig peptiser-ihgsmiddel blandes eller males med blandingen under dannelse av en ekstruderbar deig eller smidig plastisk masse. Molybdenum trioxide is a particularly suitable metal compound of group VIB, and cobalt carbonate is a particularly suitable metal compound of group VIII for dry mixing with the alpha aluminum oxide monohydrate considered here. Other suitable metal compounds from group VIB include molybdic acid, ammonium molybdate, ammonium chlornate, chromium dichloride, chromium nitrate, tungstic acid and similar compounds. Other metal compounds from group VIII that can be used include nickel nitrate, nickel sulfate, nickel chloride, nickel acetate, cobalt sulfate, iron nitrate, jerry sulfate, platinum chloride, palladium chloride and the like. In each case, the resulting mixture is peptized by the addition of an acid. A weak acid such as formic acid, acetic acid or propionic acid can be used, although stronger acids such as sulfuric acid, hydrochloric acid<p>g and in particular nitric acid are preferred. Sufficient peptizing agent is mixed or ground with the mixture to form an extrudable dough or pliable plastic mass.

Ekstruderingsoperasjonen er konvensjonell. Eksempelvis presses deigen gjennom en perforert plate ved hjelp av en roterende skrue. Ekstrudatet kan kuttes i partikler med den onskede lengde for torking og kalsinering ved hjelp av en roterende kniv eftersom ekstrudatet strommer ut av den perforerte plate. Alter-nativt kan ekstrudatet brytes i partikler med vilkårlig lengde under torking- og kalsineringsprosessen. I hvert tilfelle torkes ekstrudatet og kalsineres; torkingen vanligvis ved opp til 120°C i lopet av 1 - 24 timer, og kalsineringen i oxyderende atmosfære slik som luft ved 300 - 650°C i 2 - 4 timer. The extrusion operation is conventional. For example, the dough is pressed through a perforated plate using a rotating screw. The extrudate can be cut into particles of the desired length for drying and calcination by means of a rotary knife since the extrudate flows out of the perforated plate. Alternatively, the extrudate can be broken into particles of arbitrary length during the drying and calcining process. In each case, the extrudate is dried and calcined; the drying usually at up to 120°C over the course of 1 - 24 hours, and the calcination in an oxidizing atmosphere such as air at 300 - 650°C for 2 - 4 hours.

Katalysatoren vil inneholde ca. 4 - 30 vekt% av gruppe VIB metall og 1 - 10 vekt% av gruppe VIII. Ekstruderingstrinnet tilveiebringer bare 60 - 90 % av hver me tallbestanddel. Resten av det onskede totale metallinnhold tilsettes ved impregnering av det kalsinerte ekstrudat med en metallforbindelse av gruppe VIB og en metallforbindeise av gruppe VIII. The catalyst will contain approx. 4 - 30% by weight of group VIB metal and 1 - 10% by weight of group VIII. The extrusion step provides only 60 - 90% of each metal component. The remainder of the desired total metal content is added by impregnating the calcined extrudate with a metal compound of group VIB and a metal compound of group VIII.

Konvensjonelle impregneringsmetoder kan anvendes for å impregnere ekstrudatet. Vanligvis impregneres en opploselig forbindelse av den onskede metallbestanddel på bærermaterialet fra en vandig opplosning. Den opploselige forbindelse tjener som en forloper for den metalliske bestanddel, slik at ved efterfblgen-de oppvarmning av det impregnerte bærermateriale ved en temperatur som bevirker spaltning av forbindelsen, dannes den onskede metallbestanddel på bæreren. Den vandige impregneringsopplosning vil således omfatte en opploselig forloperforbindelse av et gruppe VIB metall. Egnede forbindelser innbefatter ammoniumarolybdat, ammoniumparamolybdat, molybdensyre, ammoniumkrornat, ammoniumper-oxykromat, krom-III acetat, krom-II klorid, krom-III nitrat, am-monium-metawolframat, wolframsyre og lignende forbindelser. Eg nede opploselige forbindelser fra gruppe VIII innbefatter nikkelnitrat, nikkelsulfat, nikkelklorid, nikkelbromid, nikkelfluorid, nikkeljodid, nikkelacetat, nikkelformiat, cobolt-II nitrat, cobolt-II sulfat, cobolt-II fluorid, jern-III fluorid, jern-III-bromid, jern-III nitrat, jern-III sulfat, jern-III formiat, jern-III acetat, platinaklorid, klorplatinasyre, klorpa lladiurnsyre, palladiumklorid og lignende forbindelser. Conventional impregnation methods can be used to impregnate the extrudate. Typically, a soluble compound of the desired metal component is impregnated onto the support material from an aqueous solution. The soluble compound serves as a precursor for the metallic component, so that upon subsequent heating of the impregnated carrier material at a temperature which causes cleavage of the compound, the desired metal component is formed on the carrier. The aqueous impregnation solution will thus comprise a soluble precursor compound of a group VIB metal. Suitable compounds include ammonium arolybdate, ammonium paramolybdate, molybdic acid, ammonium chloronate, ammonium peroxychromate, chromium-III acetate, chromium-II chloride, chromium-III nitrate, ammonium metatungstate, tungstic acid and similar compounds. Low soluble compounds from Group VIII include nickel nitrate, nickel sulfate, nickel chloride, nickel bromide, nickel fluoride, nickel iodide, nickel acetate, nickel formate, cobalt-II nitrate, cobalt-II sulfate, cobalt-II fluoride, iron-III fluoride, iron-III bromide, iron-III nitrate, iron-III sulfate, iron-III formate, iron-III acetate, platinum chloride, chloroplatinic acid, chloropalladiuric acid, palladium chloride and similar compounds.

Impregneringen kan utfores ved kjente metoder hvorved ekstrudatpartiklene blotes, dyppes, suspenderes eller på annen måte senkes i impregneringsopplosningen for å absorbere en opploselig forbindelse omfattende den onskede katalytiske bestanddel. Impregnering av gruppe VIB og gruppe VIII metallkomponentene skjer fortrinsvis fra en vanlig vandig ammoniakalsk opplosning av opploselige forbindelser derav, f.eks. en ammoniakalsk 'opplosning av molybdensyre og coboltnitrat. Videre utfores fortrinsvis impregneringen med et minimalt volum impregneringsopplosning som samsvarer med en jevn fordeling av de katalytiske bestanddeler på de kalsinerte ekstrudatpartikler. The impregnation can be carried out by known methods whereby the extrudate particles are exposed, dipped, suspended or otherwise immersed in the impregnation solution to absorb a soluble compound comprising the desired catalytic component. Impregnation of the group VIB and group VIII metal components takes place preferably from an ordinary aqueous ammoniacal solution of soluble compounds thereof, e.g. an ammoniacal 'solution of molybdic acid and cobalt nitrate. Furthermore, the impregnation is preferably carried out with a minimal volume of impregnation solution which corresponds to an even distribution of the catalytic components on the calcined extrudate particles.

En foretrukken metode innbefatter bruk av en rotasjons-torker forsynt med dampmantel. Ekstrudatpartiklene senkes i impregneringsopplosningen og virvles rundt der på grunn av torke-rens rotasjonsbevegelse. Der bor være ca. 0,7 - 1 volum'ekstrudat pr. volum impregneringsopplosning. Fordampning av impregneringsopplosningen utfores ved tilforsel av vanndamp tjul torkeman-telen og ved kontinuerlig spyling av torkeren med torr gass, hensiktsmessig luft eller nitrogen. De således torrede impregnerte partikler kalsineres derefter i en oxygenholdig atmosfære ved A preferred method involves the use of a rotary dryer provided with a steam jacket. The extrudate particles are immersed in the impregnation solution and swirled around there due to the rotational movement of the dryer. There should be approx. 0.7 - 1 volume of extrudate per volume impregnation solution. Evaporation of the impregnation solution is carried out by supplying water vapor to the dryer jacket and by continuously flushing the dryer with dry gas, suitable air or nitrogen. The thus dried impregnated particles are then calcined in an oxygen-containing atmosphere by

300 - 650°C i 1 - 8 timer.eller mer.300 - 650°C for 1 - 8 hours.or more.

Eksempel IExample I

450 g kommersielt pulverformig alfa-aluminiumoxydmonohydrat (Catapal S) ble grundig torrblandet med 95,6 g fint pulverformig molybdenoxyd fri for flyktige bestanddeler og 19,9 g pulverformig coboltcarbonat. Ca. 245 g 13 %'s salpetersyre ble derefter tilsatt til den pulverformige blanding i en molle, og blandingen ble der omdannet til en deig. Blandingen ble malt ca. 1 time og derefter ekstrudert gjennom en plate med 0,8 mm'S perforeringer. Ekstrudatet ble torket og kalsinert i luft i 1 time ved 400°C, og i ytterligere 1 time ved 590°C. De ekstru- 450 g of commercial powdered alpha aluminum oxide monohydrate (Catapal S) was thoroughly dry mixed with 95.6 g of finely powdered molybdenum oxide free of volatile constituents and 19.9 g of powdered cobalt carbonate. About. 245 g of 13% nitric acid was then added to the powdery mixture in a mold, and the mixture was then converted into a dough. The mixture was ground approx. 1 hour and then extruded through a plate with 0.8 mm'S perforations. The extrudate was dried and calcined in air for 1 hour at 400°C, and for a further 1 hour at 590°C. The extruded

derte partikler oppkuttet til en midlere lengde på ca. 3,2 mm inneholdt 2,8 vekt% Co og 8,7 vekt% Mo. those particles cut to an average length of approx. 3.2 mm contained 2.8 wt% Co and 8.7 wt% Mo.

Eksempel IIExample II

Ekstrudatpartiklene fra eksempel I ble impregnert ifolge foreliggende oppfinnelse. Ca. 100 g av ekstrudatet ble impregnert med en vanlig ammoniakalsk opplosning av molybdensyre og coboltnitrat fremstillet ved sammenblanding av en vandig opplosning av 2,7 g 85 %'s molybdensyre og 2,2 ml ammoniumhydroxyd med en vandig opplosning av 1,2 g coboltnitrathexahydrat og 1,2 ml am-moniumhydr oxyd , hvorefter den resulterende opplosning derefter ble fortynnet til 170 ml med vann. Ekstrudatpartiklene ble senket i impregneringsopplosningen som derefter ble fordampet til torrhet. De impregnerte partikler ble derefter kalsinert i luft i 1 time ved 400°C og i ytterligere 1 time ved 590°C. Ekstrudatpartiklene inneholdt 3,5 vekt% Co og 10,3 vekt% Mo. The extrudate particles from example I were impregnated according to the present invention. About. 100 g of the extrudate was impregnated with an ordinary ammoniacal solution of molybdic acid and cobalt nitrate prepared by mixing an aqueous solution of 2.7 g of 85% molybdic acid and 2.2 ml of ammonium hydroxide with an aqueous solution of 1.2 g of cobalt nitrate hexahydrate and 1 .2 ml of ammonium hydroxide, after which the resulting solution was then diluted to 170 ml with water. The extrudate particles were immersed in the impregnation solution which was then evaporated to dryness. The impregnated particles were then calcined in air for 1 hour at 400°C and for a further 1 hour at 590°C. The extrudate particles contained 3.5 wt% Co and 10.3 wt% Mo.

Eksempel IIIExample III

I dette eksempel ble cobolt og molybdenbestanddelene innarbeidet i katalysatoren bare ved impregnering. Ca. 100 g pulverformig alfa-aluminiumoxydmonohydrat ble malt med'55 g 13 vekt%'s salpetersyre under dannelse av en deig. Deigen ble derefter ekstrudert, torket og kalsinert i luft i 1 time ved 400°C og derefter i ytterligere 1 time ved 590°C. De kalsinerte partikler ble senket i en vanlig ammoniakalsk opplosning av molybdensyre og coboltnitrathexahydrat fremstillet ved behandling av en vandig opplosning av 20,7 g 85 %'s molybdensyre og 12 ml ammoniumhydroxyd med en vandig opplosning av 16 g coboltnitrathexahydrat og 12 ml ammoniumhydroxyd. Ca. 87 g av ekstrudatpartiklene ble senket i impregneringsopplosningen som derefter ble fordampet til torrhet. De impregnerte partikler ble derefter kalsinert som tidligere beskrevet. De impregnerte ekstrudatpartikler inneholdt 3,25 vekt% Co og 9,4 vekt% Mo. In this example, the cobalt and molybdenum components were incorporated into the catalyst only by impregnation. About. 100 g of powdered alpha aluminum oxide monohydrate was ground with 55 g of 13% by weight nitric acid to form a dough. The dough was then extruded, dried and calcined in air for 1 hour at 400°C and then for a further 1 hour at 590°C. The calcined particles were immersed in an ordinary ammoniacal solution of molybdic acid and cobalt nitrate hexahydrate prepared by treating an aqueous solution of 20.7 g of 85% molybdic acid and 12 ml of ammonium hydroxide with an aqueous solution of 16 g of cobalt nitrate hexahydrate and 12 ml of ammonium hydroxide. About. 87 g of the extrudate particles were immersed in the impregnation solution which was then evaporated to dryness. The impregnated particles were then calcined as previously described. The impregnated extrudate particles contained 3.25 wt% Co and 9.4 wt% Mo.

En oppsummering av katalysatoregenskapene og aktivitets-testresultater er oppfort i det efterfolgende. A summary of the catalyst properties and activity test results is given below.

De ovenfor beskrevne katalysatorer ble vurdert med hensyn til avsvovling av en vakuumgassolje som koker i området 315-565°C og som inneholde 2,6 vekt% svovel. Katalysatoren ble anbragt som et stasjonært skikt i en vertikal rorformet reaktor holdt ved 45 ata og 399°C. Vakuumgassoljen ble tilfort over katalysatoren med en væskeromshastighet på 3,0 i blanding med 320 volumer H ved 15°C, 1 ata pr. volum tilfort utgangsmateriale ved 15°C. Reaktor-avlppet ble separert i en væskefast og en gassfase i en hoytrykks-separator ved 121°C, og væskefasen ble behandlet i en avdrivnings-kolonne for å fjerne lette fraksjoner. Bunnproduktetene fra væs-keavdriveren ble oppsamlet over en 8 timers periode og analysert med hensyn til svovelinnhold. The catalysts described above were assessed with regard to the desulphurisation of a vacuum gas oil which boils in the range 315-565°C and which contains 2.6% by weight of sulphur. The catalyst was placed as a stationary bed in a vertical tube-shaped reactor maintained at 45 ata and 399°C. The vacuum gas oil was fed over the catalyst at a liquid space velocity of 3.0 in mixture with 320 volumes of H at 15°C, 1 ata per volume added starting material at 15°C. The reactor effluent was separated into a liquid solid and a gas phase in a high pressure separator at 121°C, and the liquid phase was treated in a stripping column to remove light fractions. The bottom products from the liquid separator were collected over an 8-hour period and analyzed with regard to sulfur content.

Katalysatoren ifolge eksempel II hvori cobolt- og molybdenbestanddelene var innarbeidet i katalysatoren ved ekstrudering fulgt av impregnering ifolge foreliggende fremgangsmåte, var 55 % mere aktiv enn katalysatoren ifolge eksempel III hvori cobolt og molybdenbestanddelene var innarbeidet bare ved impregnering, og 95 % mere aktiv enn katalysatoren ifolge eksempel I hvori cobolt-og molybdenbestanddelene var innarbeidet bare ved ekstrudering med aluminiumoxyd. The catalyst according to example II in which the cobalt and molybdenum components were incorporated into the catalyst by extrusion followed by impregnation according to the present method, was 55% more active than the catalyst according to example III in which the cobalt and molybdenum components were incorporated only by impregnation, and 95% more active than the catalyst according to example I in which the cobalt and molybdenum components were incorporated only by extrusion with aluminum oxide.

Claims (10)

1. Fremgangsmåte ved fremstilling av en katalysator, karakterisert ved at (a) en findelt metallf orbindelse fra gruppe VIB, en meta llf orbindelse fra gruppe VIII og et tungtsmeltelig uorganisk oxyd blandes og peptiseres under dannelse av en ekstruderbar deig, i hvilken forbindelsene tilveiebringer 60 - 90 % av gruppe VIB og VIII bestanddelene av den ferdige katalysator, (b) deigen ekstruderes og torkes, og ekstrudatet kalsineres, (c) det kalsinerte ekstrudat impregneres med en metallforbindelse fra gruppe VIB og en metallforbindelse fra gruppe VIII for å tilveiebringe en ferdig katalysator inneholdende på elementbasis 4-30 vekt% gruppe VIB metall og 1 - 10 vekt% gruppe VIII metall, og (d) det impregnerte ekstrudat torkes og kalsineres i en oxyderende atmosfære.1. Method for the production of a catalyst, characterized in that (a) a finely divided Group VIB metal compound, a Group VIII metal compound and a poorly fusible inorganic oxide are mixed and peptized to form an extrudable dough, in which the compounds provide 60-90% of the Group VIB and VIII constituents of the finished product catalyst, (b) the dough is extruded and dried, and the extrudate is calcined, (c) the calcined extrudate is impregnated with a Group VIB metal compound and a Group VIII metal compound to provide a finished catalyst containing, on an elemental basis, 4-30% by weight Group VIB metal and 1-10% by weight Group VIII metal, and (d) the impregnated extrudate is dried and calcined in an oxidizing atmosphere. 2. Fremgangsmåte ifolge krav 1, karakterisert ved at det tungtsmeltelige uorganiske oxyd er aluminiumoxyd.2. Method according to claim 1, characterized in that the poorly fusible inorganic oxide is aluminum oxide. 3. Fremgangsmåte ifolge krav 1, karakterisert ved at det tungtsmeltelige uorganiske oxyd er alfa-aluminiumoxydmonohydrat.3. Method according to claim 1, characterized in that the difficult-to-melt inorganic oxide is alpha aluminum oxide monohydrate. 4. Fremgangsmåte ifolge hvilket som helst av krav 1-3, karakterisert ved at peptiseringsmidlet er salpetersyre.4. Method according to any one of claims 1-3, characterized in that the peptizing agent is nitric acid. 5. Fremgangsmåte ifolge hvilket som helst av krav 1-4, karakterisert ved at metallforbindelsen fra gruppe VIB er en molybdenf or bin deise .5. Method according to any one of claims 1-4, characterized in that the metal compound from group VIB is a molybdenum bond. 6. Fremgangsmåte ifolge hvilket som helst av krav 1-5, karakterissert ved at metallforbindelsen fra gruppe VIB er molybdensyreanhydrid (molybdentrioxyd).6. Method according to any one of claims 1-5, characterized in that the metal compound from group VIB is molybdenum anhydride (molybdenum trioxide). 7. Fremgangsmåte ifolge hvilket som helst av krav 1-6, karakterisert ved at metallforbindelsen fra gruppe VIII er en coboltforbindelse.7. Method according to any one of claims 1-6, characterized in that the metal compound from group VIII is a cobalt compound. 8. Fremgangsmåte ifolge hvilket som helst av krav 1-7, karakterisert ved at metallforbindelsen fra gruppe VIII er coboltcarbonat.8. Method according to any one of claims 1-7, characterized in that the metal compound from group VIII is cobalt carbonate. 9. Fremgangsmåte ifolge hvilket som helst av krav 1-8, karakterisert ved at kalsineringen finner sted i en oxyderende atmosfære ved 300 - 650°C.9. Method according to any one of claims 1-8, characterized in that the calcination takes place in an oxidizing atmosphere at 300 - 650°C. 10. Hydrobehandlingsprosess omfattende behandling av en svovelholdig brenselsolje ved et hydrogentrykk på 7 - 200 ata, et hydrogen til hydrocarbonforhold på 150 til lO.OOO volumer H o ved 15°C, 1 ata pr. volum olje ved 15°C, en temperatur på l00p450°C og en væskeromshastighet på 0,5 - 20, karakterisert ved at der anvendes en katalysator fremstillet ved: (a) blanding og peptisering for dannelse av en ekstruderbar deig, av en findelt metallforbindelse fra gruppe VIB, en metallforbindelse fra gruppe VIII og et tungtsmeltelig uorganisk oxyd, hvilke forbindelser tilveiebringer 60 - 90 % av gruppe VIB og VIII bestanddelene av den ferdige katalysator, (b) ekstrudering av deigen og torking og kalsinering'av ekstrudatet, (c) impregnering av det kalsinerte ekstrudat med en metallforbindelse fra gruppe VIB og en metallforbindelse fra gruppe VIII under dannelse av en ferdig katalysator inneholdende på elementbasis 4-30 vekt% gruppe VIB metall og 1 - 10 vekt% gruppe VIII metall, og (d) torking og kalsinering av det impregnerte ekstrudat i en oxyderende atmosfære.10. Hydrotreating process comprising treatment of a sulphurous fuel oil at a hydrogen pressure of 7 - 200 ata, a hydrogen to hydrocarbon ratio of 150 to lO.OOO volumes H o at 15°C, 1 ata per volume of oil at 15°C, a temperature of 100p450°C and a liquid space velocity of 0.5 - 20, characterized in that a catalyst produced by: (a) mixing and peptizing to form an extrudable dough, of a finely divided group VIB metal compound, a group VIII metal compound and a refractory inorganic oxide, which compounds provide 60-90% of the group VIB and VIII components of the finished catalyst, (b) extruding the dough and drying and calcining the extrudate, (c) impregnating the calcined extrudate with a group VIB metal compound and a group VIII metal compound to form a finished catalyst containing, on an elemental basis, 4-30% by weight group VIB metal and 1-10% by weight group VIII metal, and (d) drying and calcining the impregnated extrudate in an oxidizing atmosphere.
NO752379A 1974-07-01 1975-06-30 NO752379L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/484,519 US3935127A (en) 1974-07-01 1974-07-01 Method of catalyst manufacture

Publications (1)

Publication Number Publication Date
NO752379L true NO752379L (en) 1976-01-05

Family

ID=23924482

Family Applications (1)

Application Number Title Priority Date Filing Date
NO752379A NO752379L (en) 1974-07-01 1975-06-30

Country Status (23)

Country Link
JP (1) JPS536113B2 (en)
AR (1) AR230200A1 (en)
AT (1) AT343609B (en)
BR (1) BR7504093A (en)
CA (1) CA1054130A (en)
CS (1) CS193516B2 (en)
DK (1) DK296375A (en)
EG (1) EG11809A (en)
ES (1) ES438979A1 (en)
FI (1) FI61413C (en)
GB (1) GB1502915A (en)
IE (1) IE41780B1 (en)
IL (1) IL47524A (en)
IN (1) IN143296B (en)
IT (1) IT1041769B (en)
NO (1) NO752379L (en)
PL (1) PL102107B1 (en)
RO (1) RO69555A (en)
SE (1) SE7507459L (en)
SU (1) SU640641A3 (en)
TR (1) TR18782A (en)
YU (1) YU167275A (en)
ZA (1) ZA753963B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138537A (en) * 1984-12-11 1986-06-26 Nikki Universal Co Ltd Production of hydrogenated desulfurizing catalyst
JPH03281595A (en) * 1990-03-28 1991-12-12 Cosmo Sogo Kenkyusho:Kk Hydrodesulfurization catalyst composition for hydrocarbon oil, its production and hydrodesulfurization process using the catalyst
JP3272384B2 (en) * 1991-10-24 2002-04-08 財団法人石油産業活性化センター Catalyst composition, method for producing the same, and method for hydrodesulfurizing sulfur-containing hydrocarbons using the catalyst composition
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US20190233741A1 (en) 2017-02-12 2019-08-01 Mag&#275;m&#257; Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil

Also Published As

Publication number Publication date
FI751887A (en) 1976-01-02
IE41780B1 (en) 1980-03-26
PL102107B1 (en) 1979-03-31
ES438979A1 (en) 1977-05-16
ATA473175A (en) 1977-10-15
BR7504093A (en) 1976-06-29
FI61413B (en) 1982-04-30
SE7507459L (en) 1976-01-02
YU167275A (en) 1982-02-28
CA1054130A (en) 1979-05-08
JPS536113B2 (en) 1978-03-04
IL47524A (en) 1978-06-15
IL47524A0 (en) 1975-08-31
AR230200A1 (en) 1984-03-01
FI61413C (en) 1982-08-10
RO69555A (en) 1980-06-15
AT343609B (en) 1978-06-12
ZA753963B (en) 1976-05-26
DK296375A (en) 1976-01-02
EG11809A (en) 1977-11-30
GB1502915A (en) 1978-03-08
JPS5124593A (en) 1976-02-27
TR18782A (en) 1977-08-24
IE41780L (en) 1976-01-01
IN143296B (en) 1977-10-29
IT1041769B (en) 1980-01-10
CS193516B2 (en) 1979-10-31
SU640641A3 (en) 1978-12-30

Similar Documents

Publication Publication Date Title
US3935127A (en) Method of catalyst manufacture
KR100418161B1 (en) Supported Palladium Catalysts for Selective Contact Hydrogenation of Acetylene in Hydrocarbon Streams
US4001144A (en) Process for modifying the pore volume distribution of alumina base catalyst supports
JP5036542B2 (en) Highly active hydrodesulfurization catalyst, process for producing said catalyst, and process for producing ultra-low sulfur middle distillate fuel
US2739132A (en) Manufacture of supported catalysts
JPWO2004085584A1 (en) Process for producing ester by transesterification using solid acid catalyst
JP2001017860A (en) Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
US2753310A (en) Manufacture of molybdenum-containing catalysts
KR101115296B1 (en) Catalyst for synthesizing alkanethiol and method for the production thereof
KR20120061853A (en) Concentrated solutions comprising group vi metal, group viii metal, and phosphorus
US3948763A (en) Sulfiding process for desulfurization catalysts
NO752379L (en)
JPS61138537A (en) Production of hydrogenated desulfurizing catalyst
US3965041A (en) Process for metal sulfide catalyst preparation
CA3018210C (en) High metals content hydrolysis catalyst for catalytic reduction of sulfur in a gas stream
BRPI0601404B1 (en) preparation process of molded mixed carbides, nitrides and sulfides and their application as catalysts in hydrotreating processes
Klicpera et al. High surface area MoO 3/MgO: preparation by the new slurry impregnation method and activity in sulphided state in hydrodesulphurization of benzothiophene
NL8403724A (en) METHOD FOR THE HYDROGEN TREATMENT OF HYDROCARBONS.
US5262373A (en) Process for the synthesis of metal oxides of high specific surface area and high porosity, oxides obtained and catalysts containing the said oxides
US4034060A (en) Exhaust gas purifying catalyst and process of making and using same
US2800429A (en) Desulphurisation with a cobalt molybdate catalyst containing fluorine, and under equilibrium pressure
KR20030080247A (en) Solid acid catalyst containing platinum group metal component and method for preparation thereof
US4100109A (en) Catalyst and a process for their preparation
US3207703A (en) Supported vanadium oxide catalysts and process for preparing same
US3789025A (en) Catalyst impregnation technique