NO751664L - - Google Patents

Info

Publication number
NO751664L
NO751664L NO751664A NO751664A NO751664L NO 751664 L NO751664 L NO 751664L NO 751664 A NO751664 A NO 751664A NO 751664 A NO751664 A NO 751664A NO 751664 L NO751664 L NO 751664L
Authority
NO
Norway
Prior art keywords
gas
accordance
indicator device
indicator
substance
Prior art date
Application number
NO751664A
Other languages
Norwegian (no)
Inventor
R P Larsson
C R Hof
S-M Fang
Original Assignee
Bio Medical Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/469,851 external-priority patent/US3946611A/en
Priority claimed from US05/515,165 external-priority patent/US3932134A/en
Application filed by Bio Medical Sciences Inc filed Critical Bio Medical Sciences Inc
Publication of NO751664L publication Critical patent/NO751664L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/229Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating time/temperature history
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • A61L2/28Devices for testing the effectiveness or completeness of sterilisation, e.g. indicators which change colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/02Thermometers giving results other than momentary value of temperature giving means values; giving integrated values
    • G01K3/04Thermometers giving results other than momentary value of temperature giving means values; giving integrated values in respect of time

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Catching Or Destruction (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

Den foreliggende oppfinnelse vedrører en indikatoranordning som angir visuelt tid-temperaturintegralet et produkt har vært utsatt for. The present invention relates to an indicator device which visually indicates the time-temperature integral a product has been exposed to.

Ønskeligheten av å påvise om et frosset produkt har vært tint har lenge vært erkjent, og tallrike registreringsanord-ninger er beskrevet i litteraturen. En klasse av disse er basert på stoff som er frosset, men som smelter ved en forutvalgt temperatur slik at en aktivator aktiveres A irreversibelt, enten kjemisk eller fysikalsk. Typiske slike anordninger er beskrevet i US-patentskrifter 1.917.048, 2.216.127, 2.277.278, 2.340.337, 2.553-369, 2.617-734, 2.662.018, 2.753.270, The desirability of detecting whether a frozen product has been thawed has long been recognized, and numerous recording devices are described in the literature. One class of these is based on substance that is frozen, but which melts at a preselected temperature so that an activator is activated A irreversibly, either chemically or physically. Typical such devices are described in US Patents 1,917,048, 2,216,127, 2,277,278, 2,340,337, 2,553-369, 2,617-734, 2,662,018, 2,753,270,

2.762.711, 2.788.282, 2.823-131, 2.850.393, 2.852.394, 2,762,711, 2,788,282, 2,823-131, 2,850,393, 2,852,394,

2.951-405, 2.955-942, 3.047-405, 3-055-759, 3-065.083, 2.951-405, 2.955-942, 3.047-405, 3-055-759, 3-065.083,

3.194.669, 3-362.834, 3-437-010. 3,194,669, 3-362,834, 3-437-010.

Alle disse anordninger angir bare tining uten å forsøkeAll these devices just indicate defrosting without trying

å måle tidsrommet hvor produktet tines eller temperaturen produktet har etter tining. to measure the time during which the product is thawed or the temperature the product has after thawing.

En annen klasse kjente indikatoranordninger benytter en væskes diffusjon eller kappilarvirkning i en veke eller en tilsvarende permeabel innretning. Selv om de ofte er tungvinte gir disse anordninger en viss gradering. Eksempler på slike anordninger er kjent fra US-patentskrifter 2.560.537, Another class of known indicator devices uses the diffusion or capillary action of a liquid in a wick or a similar permeable device. Although they are often cumbersome, these devices provide a certain degree of gradation. Examples of such devices are known from US patent documents 2,560,537,

2.716.065, 2.951.764, 3-1 18-774, 3-243-303, 3-4U-425, og 3-479-877. 2,716,065, 2,951,764, 3-1 18-774, 3-243-303, 3-4U-425, and 3-479-877.

De fleste kjente anordninger beskjeftiger seg primærtMost known devices deal primarily with

med tining og den tilhørende skade som opptrer. Det erkjennes nå at ulike naturlige og syntetiske stoffer forringes med tiden selv om det tas forsiktighetsregler for lagring under tilfreds-stillende kjøling. Dette er tilfelle også med sådanne ytterligere eller alternative forholdsregler som pakking i en inert atmosfære, sterilisering eller tilsetning av forringelseshem- with thawing and the associated damage that occurs. It is now recognized that various natural and synthetic substances deteriorate over time even if precautions are taken for storage under satisfactory refrigeration. This is also the case with such additional or alternative precautions as packaging in an inert atmosphere, sterilization or the addition of anti-deterioration

mende stoffer. Således kan f.eks. mat, filmer, farmasøytika, biologiske preparater o.l. nedbrytes med tiden selvom de ster-iliseres eller holdes ved tilstrekkelig lav temperatur til å utelukke mikrobiologisk forringelse. Slik forringelse fremkommer av ulike årsaker, som inkluderer rent kjemiske prosesser, såsom oksydasjon, og ensymatiske prosesser. mending substances. Thus, e.g. food, films, pharmaceuticals, biological preparations etc. degrade over time even if they are sterilized or kept at a sufficiently low temperature to exclude microbiological deterioration. Such deterioration occurs for various reasons, which include purely chemical processes, such as oxidation, and enzymatic processes.

Frosset mat og iskrem forringes selv når de holdes i frosset tilstand. En anordning som ville kunne overvåke slik nedbrytning eller forringelse ville være meget verdifull. Frozen food and ice cream deteriorate even when kept frozen. A device that would be able to monitor such degradation or deterioration would be very valuable.

Forringelseskinetikken som er involvert i slike prosesser er imidlertid ytterst kompleks. "Por eksempel kan også hastigheten for forringelsen variere med temperaturen selv om det er klart at forringelsen er en funksjon av temperaturen. En forringelseshastighet vil foreligge ved en første temperatur mens en annen hastighet foreligger ved en annen temperatur. Den totale forringelse vil avhenge av tiden produktet holdes ved hver temperatur, dv.s. av integralet av tid og temperatur. However, the degradation kinetics involved in such processes are extremely complex. "For example, the rate of deterioration can also vary with temperature, although it is clear that the deterioration is a function of temperature. A rate of deterioration will exist at a first temperature while another rate will exist at another temperature. The total deterioration will depend on the time the product is held at each temperature, i.e. by the integral of time and temperature.

Kvotienten.mellom a) hastighetsforandringen ved én temperatur for en gjenstands egenskap hvis forringelse over-våkes og b) hastighetsforandringen ved en lavere temperatur uttrykkes ofte for sprang på ti-grader og angis med symbolet "Q-lo" i Selsiusskalaen og med,,(1-]q<m>i Fahrenheitsskalaen. Denne kvotient er stort sett konstant i avgrensete tempera-turområder. The quotient between a) the rate change at one temperature for an object's property whose deterioration is monitored and b) the rate change at a lower temperature is often expressed in steps of ten degrees and is indicated with the symbol "Q-lo" in the Celsius scale and with,,( 1-]q<m>in the Fahrenheit scale This quotient is mostly constant in limited temperature ranges.

Den praktiske virkning av det ovennevnte fremgår f.eks. : av to sammenliknbare prøver av frosset mat som bearbeides, og pakkes samtidig. Dersom under distribusjon eller lagring en paknings temperatur får stige 10 eller 20°C, selv uten tining, vil dens levetid bli nedsatt sammenliknet med den annen pakning som ble holdt på en lavere temperatur i hele lagrings-tiden, idet forringelseshastigheten for innholdet i den første pakning akselereres under lagring ved den høyere temperatur. En konsument som skal kjøpe disse pakninger har ingen mulighet til å forvisse seg om denne forskjell i temperaturforløp. The practical effect of the above can be seen e.g. : of two comparable samples of frozen food that are processed and packaged at the same time. If, during distribution or storage, the temperature of a package is allowed to rise by 10 or 20°C, even without thawing, its service life will be reduced compared to the other package that was kept at a lower temperature throughout the storage period, as the rate of deterioration of the contents of the first packing is accelerated during storage at the higher temperature. A consumer who is going to buy these gaskets has no opportunity to make sure of this difference in temperature progression.

Det er foreslått anordninger for å påvise temperaturfor-løpet i et produkt. Således anvendes det ifølge US-patentskrift 2.671.028 et enzym såsom pepsin i indikatoranordninger, mens det i US-patentskrift 3-751.382 beskrives en enzymatisk indikator hvor urease spalter urea hvorved reaksjonsproduktene bevirker en forandring av systemets pH. Enzymets aktivitet, og derved forringelseshastigheten, avhenger av temperaturen slik at forandringen i pH som fremkommer ved denne nedbrytning kan påvises ved hjelp av vanlige syre-baseindikatorer. Denne type system, som mer synes å være rettet mot det spesifikke problem mikrobiologisk forråtnelse enn det større problem å kunne påvise temperaturforløp, lider under den iboende begrensning som enhver enzymatisk reaksjon gjør. Mens således enzymatisk aktivitet er en funksjon av.temperaturen.er den og-så følsom overfor tiden som måles, idet enzymatisk aktivitet generelt avtar med tiden. Enzymatisk aktivitet er også føl-som overfor pH-forandring, og sådan forandring er den virk-somme faktor ved f.eks. anordningen ifølge US-patentskrift 3.751.382. Et mer avansert system er beskrevet i US-patentskrift 3.768.976 hvor tid-temperaturintegrering'oppnås ved å påvise strømning av oksygen fra atmosfæren gjennom en film, idet det anvendes et redoks-fargestoff•for å frembringe visuell avlesning. Dette system er imidlertid avhengig av nærvær av atmosfærisk oksygen og er litt tungvint i form og dim-ensjoner. Devices have been proposed to detect the temperature course in a product. Thus, according to US patent 2,671,028, an enzyme such as pepsin is used in indicator devices, while US patent 3-751,382 describes an enzymatic indicator where urease splits urea whereby the reaction products cause a change in the system's pH. The enzyme's activity, and thereby the rate of deterioration, depends on the temperature so that the change in pH that occurs during this breakdown can be detected using common acid-base indicators. This type of system, which seems to be aimed more at the specific problem of microbiological decay than the larger problem of being able to detect temperature progression, suffers from the inherent limitation that any enzymatic reaction does. Thus, while enzymatic activity is a function of temperature, it is also sensitive to the time being measured, as enzymatic activity generally decreases with time. Enzymatic activity is also sensitive to pH changes, and such changes are the active factor in e.g. the device according to US patent 3,751,382. A more advanced system is described in US Patent 3,768,976 where time-temperature integration is achieved by detecting the flow of oxygen from the atmosphere through a film, using a redox dye to produce a visual readout. However, this system is dependent on the presence of atmospheric oxygen and is somewhat cumbersome in shape and dimensions.

Et ytterligere problem er at forandringen i" hastighetA further problem is that the change in speed

av kvalitetstap pr. tidsenhet er forskjellig for forskjellige produkter. Forandringen i forringelseshastighet pr. enhet temperaturforandring for visse frukter og bær avviker således sterkt fra hastighétsforandringen for magert kjøtt. Verdiene for meieriprodukter avviker fra begge. For eksempel har rått, fett kjøtt i temperaturområdet 0 - 20°C en Q^q på ca. 3, mens rått og kokt magert kjøtt har en Q^q på mellom 5 og 6. Grønnsaker har generelt Q^q på mellom 7 og 8, mens frukt og bær har en Q^q på ca. 13. Følgelig er et system som er avhengig av en eneste enzymatisk reaksjon eller en gitt films permeabilitet bare egnet som indikator for de stoffer som har liknende forløp.for deres forhold mellom forandring i ned-'brytningshastighet og temperatur. Selv om det i US-patentskrift 3-751.382 beskrives en fremgangsmåte for modifisering av tiden hvor indikatorens fargeforandring foregår, modifiseres enzymsystemets aktiveringsenergi bare litt, og forholdet mellom forandringen i reaksjonstid pr. temperaturenhet forblir stort sett den samme. Det samme er tilfelle for anordningen som er beskrevet i US-patentskrift 3.768.976 som er avhengig uteluk-kende av gasspermeabilitet. of quality loss per unit of time is different for different products. The change in rate of deterioration per unit temperature change for certain fruits and berries thus deviates strongly from the rate change for lean meat. The values for dairy products differ from both. For example, raw, fatty meat in the temperature range 0 - 20°C has a Q^q of approx. 3, while raw and cooked lean meat has a Q^q of between 5 and 6. Vegetables generally have a Q^q of between 7 and 8, while fruit and berries have a Q^q of approx. 13. Consequently, a system that depends on a single enzymatic reaction or the permeability of a given film is only suitable as an indicator for those substances that have similar processes, for their relationship between change in decomposition rate and temperature. Although US patent 3-751,382 describes a method for modifying the time during which the indicator's color change takes place, the enzyme system's activation energy is modified only slightly, and the ratio between the change in reaction time per temperature unit remains largely the same. The same is the case for the device described in US patent 3,768,976 which depends exclusively on gas permeability.

Den foreliggende oppfinnelse vedrører en indikatoranordning som eliminerer de ovenfor anførte problemer, men som likevel er meget enkel og pålitelig i konstruksjon og drift. Dessuten er anordningen velegnet og fjernobservasjon, dvs. påvisning av tid-temperaturintegraler i det indre av en emballasje mens det frembringes en umiddelbar avlesning av integralet på utsiden av emballasjen. The present invention relates to an indicator device which eliminates the problems mentioned above, but which is nevertheless very simple and reliable in construction and operation. The device is also suitable for remote observation, i.e. detection of time-temperature integrals in the interior of a packaging while producing an immediate reading of the integral on the outside of the packaging.

Anordningen ifølge oppfinnelsen er. ikke begrenset til anvendelse for påvisning av lange lagringsperioder ved lave temperaturer. Samme betraktninger gjelder for korte tidsrom og høye temperaturer. Anordningen ifølge oppfinnelsen kan f.eks-, også anvendes for å forsikre seg om at produkter er blitt fullgodt varmestefilisert. Indikatoranordningen er således ypperlig egnet for å forsikre seg om at hermetikk som er autoklavbehandlet er blitt utsatt for riktige tid-temperaturlntegraler til å The device according to the invention is. not limited to use for the detection of long storage periods at low temperatures. The same considerations apply to short periods of time and high temperatures. The device according to the invention can, for example, also be used to make sure that products have been properly heat-sterilised. The indicator device is thus perfectly suitable for making sure that cans that have been autoclaved have been exposed to the correct time-temperature integrals to

oppnå en nødvendig grad av mikroorganismedreping. I dette tilfelle frembringer anordningen visuell informasjon om de nød-vendige parametre med hensyn til temperatur og tid er nådd eller overskredet. Tilsvarende kan den foreliggende indikatoranordning anvendes for å forsikre seg om at kirurgiske instru-menter har vært utsatt for riktige steriliseringsbetingelser, achieve a necessary degree of microorganism killing. In this case, the device produces visual information about whether the necessary parameters with regard to temperature and time have been reached or exceeded. Similarly, the present indicator device can be used to make sure that surgical instruments have been exposed to correct sterilization conditions,

at farmasøytika ikke har vært lagret i lengre tidsrom enn de som er tillatt, at meieriprodukter er pasteurisert riktig o.l. Forskjellige andre anvendelser hvor det er ønskelig å kjenne temperaturforløpet for et produkt vil fremgå umiddelbart. that pharmaceuticals have not been stored for longer periods of time than those allowed, that dairy products have been pasteurized correctly, etc. Various other applications where it is desirable to know the temperature course of a product will appear immediately.

Oppfinnelsen vil bli nærmere forklart under henvis-The invention will be explained in more detail under reference

ning til de medfølgende tegninger, hvori:ning to the accompanying drawings, in which:

Fig. 1 viser et planriss av en temperatur-tid-integrerende indikatoranordning ifølge oppfinnelsen, hvor deler av den • øvre vegg og ampulleanbringelsesstrimmelen er fjernet for at konstruksjonsmessige detaljer skal fremtre klarere. Fig. 2 viser et langsgående, vertikalt riss langs linjen II-II i fig. 1. •Fig. 3 viser et tverrsnitt i forstørret målestokk langs linjen III-III i fig. 2. Fig. 4 viser et delplanriss av indikatoren hvor det vises en annen måte for hvordan sammenføyning av hylsterets vegger kan utføres. Fig. 5 viser et sideriss av ampullen hvor det gassdannende stoff holdes innelukket, hvor ampullen er innelukket i en elastisk hylse, Fig. 1 shows a plan view of a temperature-time-integrating indicator device according to the invention, where parts of the • upper wall and ampoule attachment strip have been removed so that constructional details can appear more clearly. Fig. 2 shows a longitudinal, vertical view along the line II-II in fig. 1. •Fig. 3 shows a cross-section on an enlarged scale along the line III-III in fig. 2. Fig. 4 shows a partial plan view of the indicator showing another way of how joining the walls of the casing can be carried out. Fig. 5 shows a side view of the ampoule where the gas-forming substance is kept enclosed, where the ampoule is enclosed in an elastic sleeve,

T fig. 1-3 viser det en temperatur-tid-indikatoranordning som omfatter et hylster 10 som består av langstrakte, generelt sammenfallende øvre og nedre vegger 12 og 14 av gassupermeabelt materiale. Selv om veggene 12 og 14 er tegnet som énlagskom-ponenter av transparent materiale, kan de bestå av flere lag og være laminert og omfatte et metallfolielag og være delvis opak. Det viktige er-åt sideveggene er gassupermeable. Veggene 12 og 14 er sammenføyet til "dannelse av hylsteret ved å feste dem sammen i en kontinuerlig bane som løper langs omkretsen av hver av dem, f.eks. ved varmeforsegling, idet veggmaterialet selv-følgelig er egnet for dette formål, og denne omkretsforsegling er generelt vist ved 16 i fig. 2. Anordningen omfatter også en veke 18 som er anbrakt på langs i hylsteret 10, i en del av dette som danner en indikatorseksjon og er behandlet med et indikatorstoff. T fig. 1-3 shows a temperature-time indicator device comprising a casing 10 which consists of elongate, generally coincident upper and lower walls 12 and 14 of gas-permeable material. Although the walls 12 and 14 are designed as single-layer components of transparent material, they can consist of several layers and be laminated and include a metal foil layer and be partially opaque. The important thing is that the side walls are gas impermeable. The walls 12 and 14 are joined to form the casing by fastening them together in a continuous path running along the circumference of each of them, for example by heat sealing, the wall material itself being suitable for this purpose, and this circumferential sealing is generally shown at 16 in Fig. 2. The device also comprises a wick 18 which is placed lengthwise in the casing 10, in a part of which forms an indicator section and is treated with an indicator substance.

Anordningen omfatter også en ampulle 22 som er anbrakt i en annen langsgående del av hylsteret og som danner en gassdan-delseseksjon.28 hvor det er anbrakt et gassdannende stoff. Ampullen er anbrakt mellom de øvre og nedre vegger 12 og 14 og er fast anbrakt mellom disse f.eks. ved å forbinde en over-liggende gasspermeabel film 24 med ehav veggene mens vekens 18 ene ende 19 befinner seg i gassdannelseseksjonen 28 og den andre ende vender bort fra gassdannelseseksjonen. The device also comprises an ampoule 22 which is placed in another longitudinal part of the casing and which forms a gas-forming section 28 where a gas-forming substance is placed. The ampoule is placed between the upper and lower walls 12 and 14 and is firmly placed between these, e.g. by connecting an overlying gas-permeable film 24 to the walls while one end 19 of the wick 18 is in the gas-forming section 28 and the other end faces away from the gas-forming section.

Ifølge oppfinnelsen er det anordnet en gassbarriere 40According to the invention, a gas barrier 40 is arranged

iin

ved hver langsgående side av veken 18, og gassbarrieren løper mellom veggene 12 og 14, og-når veggene 12 og 14' utsettes for varmeforsegling frembringes den ved å anordne en varmeforseglet forbindelse av veggene i det mønster som er best vist i fig. 1. Varmeforseglingen er anbrakt umiddelbart opptil vekens lengdekanter. Med "umiddelbart opptil" menes at varmeforseglingen anordnes så nært veken sem.praktisk produksjon vil tillate uten at smeltet veggmateriale -kleber til veken. Et eventuelt mellomrom 51 mellom vekens sider ved barrieren har ubetydelig betydning når det gjelder muligheten for gasstrans-port langs mellomrommet uten å komme i berøring med veken 1.8 ve'd eller meget nær enden 19- På. denne måte hindres transport av tilfeldige gassmolekyler gjennom mellomrommet og inn i en første berøring med veken i motsatt ende av enden 19. at each longitudinal side of the wick 18, and the gas barrier runs between the walls 12 and 14, and-when the walls 12 and 14' are subjected to heat sealing it is produced by arranging a heat-sealed connection of the walls in the pattern best shown in fig. 1. The heat seal is placed immediately up to the longitudinal edges of the wick. By "immediately up to" is meant that the heat seal is arranged as close to the wick as practical production will allow without molten wall material sticking to the wick. A possible space 51 between the sides of the wick at the barrier is of negligible importance when it comes to the possibility of gas transport along the space without coming into contact with the wick 1.8 ve'd or very close to the end 19- On. in this way, the transport of random gas molecules through the space and into a first contact with the wick at the opposite end of the end 19 is prevented.

Et viktig krav ved konstruksjonen av anordningen er at den langsgående gassbarriere løper umiddelbart opptil vekens side-kanter stort sett langs hele veken. Men dersom det er ønskelig kan den forseglete forbindelse av hylsterveggene forlenges utover fra vekesidene i det mønster som vises i fig. 4. An important requirement in the construction of the device is that the longitudinal gas barrier runs immediately up to the side edges of the wick largely along the entire length of the wick. But if it is desired, the sealed connection of the casing walls can be extended outwards from the wick sides in the pattern shown in fig. 4.

Ifølge oppfinnelsen er den gassdannende bestanddel anbrakt i ampullen 22 som er fast festet til innerveggen av hylsterets øvre eller nedre vegg. I den viste utførelsesform er ampullen 22 fast anbrakt ved å feste den til den nedre veggs 14 inner-flate med den gasspermeable film 24 som er varmeforseglet til den nedre vegg i et generelt ovalt forseglingsmønster 57 ifølge fig. 1. Ampullen 22 hvori det gassdannende' stoff er anbrakt er fortrinnsvis en langstrakt komponent som er lukket i endene og som er fremstilt av knuselig materiale, fortrinnsvis glass. According to the invention, the gas-forming component is placed in the ampoule 22 which is firmly attached to the inner wall of the casing's upper or lower wall. In the embodiment shown, the ampoule 22 is firmly placed by attaching it to the inner surface of the lower wall 14 with the gas permeable film 24 which is heat-sealed to the lower wall in a generally oval sealing pattern 57 according to fig. 1. The ampoule 22 in which the gas-forming substance is placed is preferably an elongated component which is closed at the ends and which is made of breakable material, preferably glass.

Når det således er ønskelig å aktivere anordningen behøver brukeren bare å utøve en bøyekraft på hylsteret i området hvor ampullen er anbrakt, generelt mellom ampullens ender, for å knuse denne og gjøre det mulig for gassen å slippe inn i den første seksjon 26 i hylsteret hvorfra den kan strømme til veken som er anbrakt i den andre seksjon 28. Por å sikre at når ampullen 22 brister ikke ... resulterer i at skarpe partikler fra den vil rive opp eller skade hylsteret, kan ampullen inne-sluttes i en elastisk hylse 60 som vist i fig. 5, idet den el-astiske hylse f.eks. er en flettet glassfiberdel. Thus, when it is desired to activate the device, the user only needs to exert a bending force on the casing in the area where the ampoule is placed, generally between the ends of the ampoule, in order to crush this and make it possible for the gas to enter the first section 26 in the casing from which it can flow to the wick provided in the second section 28. In order to ensure that when the ampoule 22 bursts it does not ... result in sharp particles from it tearing open or damaging the casing, the ampoule can be enclosed in an elastic sleeve 60 as shown in fig. 5, as the elastic sleeve e.g. is a braided fiberglass part.

Det vil være klart for en fagmann på området at det gassdannende stoff ikke nødvendigvis behøver å forsegles i en ampulle. Det eneste krav er at det kan anbringes og isoleres fra veken før aktivering. Dessuten kan ampullen eller den annen anordning for isolering av det gassdannende stoff være helt innelukket i en pose av den gasspermeable film 24. Posen må derved ha en gasstett forsegling langs dens omkrets. Posen selv behøver ikke varmeforsegles til gassbarrierens vegger. It will be clear to a person skilled in the art that the gas-forming substance does not necessarily need to be sealed in an ampoule. The only requirement is that it can be placed and isolated from the wick before activation. Moreover, the ampoule or other device for isolating the gas-forming substance can be completely enclosed in a bag of the gas-permeable film 24. The bag must therefore have a gas-tight seal along its circumference. The bag itself does not need to be heat sealed to the walls of the gas barrier.

Når ampullen 22 brister og etter en innledende innførings -periode hvor gassens partialtrykk øker i kammeret som er dannet av den gasspermeable film 24, strømmer gassen tvers over filmen 24 til veken 18. Gassen absorberes deretter i veken 18. Gassdannelseshastigheten for det gassdannende stoff er funksjon av temperaturen, og gassmengden som således passerer gjen--nom den permeable film 24 er på sin side en funksjon av temperaturen. Dersom veken 18 er konstruert med stort sett konstant tverrsnitt, vil strekningen gassen beveger seg fremover langs veken 18 således være en direkte funksjon av tid-temperaturintegralet som anordningen har vært utsatt for. When the ampoule 22 ruptures and after an initial introduction period where the partial pressure of the gas increases in the chamber formed by the gas-permeable film 24, the gas flows across the film 24 to the wick 18. The gas is then absorbed in the wick 18. The gas formation rate of the gas-forming substance is a function of the temperature, and the amount of gas which thus passes through the permeable film 24 is in turn a function of the temperature. If the wick 18 is constructed with a largely constant cross-section, the distance the gas moves forward along the wick 18 will thus be a direct function of the time-temperature integral to which the device has been exposed.

På veken 18 er det avsatt en indikatorsubstans som frembringer en fargeforandring i nærvær av gassen som dannes av det gassdannende stoff. Denne indikatorsubstans kan variere sterkt , men velges slik at den reagerer på den spesielle gass som dannes av det gassdannende materiale. Idet denne indikatorsubstans frembringer en fargeforandring i nærvær av gassen, vil det iakttas en front som beveger seg fremover på veken i indikator-seks jonen 26. Lengden av fremoverbevegelsen svarer til tid-temperaturintegralet som anordningen har vært utsatt for og kan avleses ved å anbringe en gradert skala og hensiktsTmessige kjennetegn på veken. An indicator substance has been deposited on the wick 18 which produces a color change in the presence of the gas formed by the gas-forming substance. This indicator substance can vary greatly, but is chosen so that it reacts to the particular gas formed by the gas-forming material. As this indicator substance produces a color change in the presence of the gas, a front will be observed that moves forward on the wick in the indicator-six ion 26. The length of the forward movement corresponds to the time-temperature integral to which the device has been exposed and can be read by placing a graduated scale and appropriate characteristics of the wick.

Indikatorsubstansen kan være et pH-følsom fargestoff. The indicator substance can be a pH-sensitive dye.

Alternativt kan den være en substans som danner kompleks med den.dannete gass slik at det oppstår en fargeforandring. Alternatively, it can be a substance that forms a complex with the gas formed so that a color change occurs.

Illustrerende, ikkebegrensende eksempler på pH-følsomme fargestoffer som er brukbare som indikatorsubstanser ved ut-øvelse av oppfinnelsen er f enolf talin, xylenolblått, nilblåttA,^m-kresolpurpur," bromkresolgrønt, p-kresolgrønt, cyanidin-klorid, bromkresolpurpur, alizarin, tymolblått,-bromfenolrødt, metylrødt, sur fuksin, brilliantgul, blåtreekstrakt, bromty-molblått, fenolrødt, fenolftalekson etc. Illustrative, non-limiting examples of pH-sensitive dyes which are usable as indicator substances in the practice of the invention are phenolphthalein, xylenol blue, Nile blue, A, m-cresol purple, bromocresol green, p-cresol green, cyanidin chloride, bromocresol purple, alizarin, thymol blue ,-bromophenol red, methyl red, acid fuchsin, brilliant yellow, bluewood extract, bromothymol blue, phenol red, phenolphthalexone, etc.

Ulike forbindelser som kobber- eller kobolthalogenider som kan danne komplekser (f.eks. med ammoniakk) som gir en Various compounds such as copper or cobalt halides which can form complexes (e.g. with ammonia) which give a

fargeforandring ved kompleksdannelsen kan anvendes som indikator. color change during complex formation can be used as an indicator.

En ytterligere forbindelse som fortrinnsvis er innleiret i veken, er et mengdebestemmende stoff (quantifier) hvis funksjon er å fastslå tidsintervallet hvor tid-temperaturindikator-anordningen er i bruk. Mens temperatur- og derved Q^Q-følsom-heten for tid^temperaturindikatoren bestemmes av temperatur-koeffisientene for både gassens damptrykk og permeabiliteten til den hastighetsregulerende film 24 (RCP), bestemmes indikatorens tidsreaksjon på den annen side av mengden, mengdebestemmende stoff som er impregnert i veken og av tykkelsen og det effektive arealet av filmen. A further compound which is preferably embedded in the wick is a quantity-determining substance (quantifier) whose function is to determine the time interval during which the time-temperature indicator device is in use. While the temperature and thereby the Q^Q sensitivity of the time^temperature indicator is determined by the temperature coefficients for both the vapor pressure of the gas and the permeability of the rate-regulating film 24 (RCP), the time response of the indicator is determined on the other hand by the quantity, quantity-determining substance which is impregnated in the wick and by the thickness and effective area of the film.

Variasjoner i mengden mengdebestemmende stoff oppnås best ved å regulere dets konsentrasjon i en impregnerings-løsning. Når f.eks. det mengdebestemmende stoff er vinsyre, fremstilles det en løsning av 0,2 N vinsyre i etanol og glyse-rol, idet glyserolet utgjør 20 volumsprosent av løsningen, og 0,2 io f enolrødt beregnet av den totale løsning. Veken ned-dykkes i løsningen, og overskudd av materialet presses ut ved å føre veken gjennom spalten mellom valser og la veken luft- Variations in the amount of amount-determining substance are best achieved by regulating its concentration in an impregnation solution. When e.g. the amount-determining substance is tartaric acid, a solution of 0.2 N tartaric acid in ethanol and glycerol is prepared, the glycerol making up 20% by volume of the solution, and 0.2% of phenol red calculated from the total solution. The wick is immersed in the solution, and excess material is pressed out by passing the wick through the gap between rollers and letting the wick air

tørke.drought.

Når filmen 24 er propylen med et areal på ca. 525 mm og det gassdannende stoff er (NH^^CO^°g indikatoren er basert på en veke som er framstilt slik som beskrevet ovenfor, har (NH^gCOj en-tidsskala ved 32°C på ca. 600 dager for en veke på 59 x 102 mm av 150 mikron Whatman nr. 114 filterpapir. Denne tidsskala kan forkortes ved å senke konsentrasjonen av mengdebestemmende stoff i impregneringsløsningen. When the film 24 is propylene with an area of approx. 525 mm and the gas-forming substance is (NH^^CO^°g the indicator is based on a wick prepared as described above, has (NH^gCOj a time scale at 32°C of approx. 600 days for a wick of 59 x 102 mm of 150 micron Whatman No. 114 filter paper This time scale can be shortened by lowering the concentration of quantifier in the impregnation solution.

Det mengdebestemmende stoff kan være et ikkeflyktig stoff som reagerer slik at den dannete gass nøytraliseres. Derfor., er de mengdebestemmende stoffer sure eller basiske stoffer som kan løses for anbringelse på veken. Illustrerende eksempler på slike mengdebestemmende stoffer er vinsyre, kaliumshydrogen-fosfat, kanelsyre, kinin, guanidin, natriumhydroksyd, natriumkarbonat etc. De mengdebestemmende stoffer anvendes fortrinnsvis sammen med spesielle pH-følsomme fargestoffer ifølge følg-ende tabell: The amount-determining substance can be a non-volatile substance that reacts so that the gas formed is neutralized. Therefore, the amount-determining substances are acidic or basic substances that can be dissolved for application to the wick. Illustrative examples of such quantity-determining substances are tartaric acid, potassium hydrogen phosphate, cinnamic acid, quinine, guanidine, sodium hydroxide, sodium carbonate etc. The quantity-determining substances are preferably used together with special pH-sensitive dyes according to the following table:

Istedenfor en mekanisk barriere, såsom en ampulle, kan det gassdannende-stoff isoleres fra veken 18 før bruk ved inn-kapsling, idet detaljene ved en slik løsning er kjent på området og behøver ikke forklares her. Ved knusing av det be-skyttende belegg om de enkelte partikler av det innkapslete stoff, hvor knusingen kan foretas mekanisk eller når partikl-ene utsettes for lave temperaturer, begynner gassdannelsen." Gassen strømmer gjennom den permeable film 24 og deretter til veken 18. Instead of a mechanical barrier, such as an ampoule, the gas-forming substance can be isolated from the wick 18 before use by encapsulation, the details of such a solution being known in the field and need not be explained here. When the protective coating is crushed around the individual particles of the encapsulated substance, where the crushing can be done mechanically or when the particles are exposed to low temperatures, gas formation begins." The gas flows through the permeable film 24 and then to the wick 18.

Et alternativ til den langsgående forsegling som er beskrevet ovenfor er en forsegling på tvers av og vinkelrett-på veken 19, i eller nær enden av veken 18 nær gassdannelseseksjonen. Denne tverrgående forsegling deler anordningen inn i dens to seksjoner 26 og 28. Funksjonen for den tverrgående eller den ovenfor beskrevne langsgående forsegling er å hindre adgang av den dannete gass til veken 18 med unntagelse av kapi- larvirkning langs veken 18, med begynnelse i enden 19 som rager innad i gassdannelseseksjonen 28. Uten disse forseglinger ville gassen fritt kunne diffundere mot vekens bortre ende 21 og derved gi feile avlesninger. An alternative to the longitudinal seal described above is a seal across and perpendicular to the wick 19, at or near the end of the wick 18 near the gas forming section. This transverse seal divides the device into its two sections 26 and 28. The function of the transverse or the above-described longitudinal seal is to prevent access of the formed gas to the wick 18 with the exception of capillary action along the wick 18, beginning at the end 19 which protrudes into the gas formation section 28. Without these seals, the gas would be able to diffuse freely towards the far end of the wick 21 and thereby give incorrect readings.

Gassdannelseseksjonen kan benytte forskjellige fysi-kalske og kjemiske prosesser. Ifølge den enkleste utførelses-form kan gassdannelsen omfatte enkel sublimasjon eller for-dampning, og man kan således anvende enhver substans som har et høyt damptrykk, f.eks. vann (eller is), jod, alifatiske' og aromatiske alkoholer såsom tymol, hydrogenperoksyd, lavere alkan-syrer, og" aromatiske syrer, såsom eddiksyre., syreanhydrider såsom malieinsyreanhydrid, syrehalogenider, ketoner, aldehyder o.l. Alternativt kan det gassdannende stoff være et salt som spaltes til dannelse av gass, f..eks. ammoniumkarbonat, nat-riumbikarbonat, ammoniumacetat, ammoniumoksalat, ammonium-formiat o.l. The gasification section can use different physical and chemical processes. According to the simplest embodiment, the gas formation can include simple sublimation or evaporation, and you can thus use any substance that has a high vapor pressure, e.g. water (or ice), iodine, aliphatic and aromatic alcohols such as thymol, hydrogen peroxide, lower alkanoic acids, and aromatic acids such as acetic acid, acid anhydrides such as maleic anhydride, acid halides, ketones, aldehydes, etc. Alternatively, the gas-forming substance can be a salt which decompose to form gas, e.g. ammonium carbonate, sodium bicarbonate, ammonium acetate, ammonium oxalate, ammonium formate etc.

I de tilfeller hvor gassdannelseshastigheten tilsvarer hastigheten som påvises er det unødvendig å benytte barriere-formen, og hylsterets gassdannelseseksjon 28 kan ha ett kammer. Men selv ved slike utførelsesformer er det ofte ønskelig å anbringe en høypermeabel fysisk barriere som atskiller det gassdannende stoff fra veken. Permeabiliteten til disse barrierer bør være stort sett uavhengig av temperaturen, idet det hast-ighetsbestemmende trinn er gassdannelsen. Typiske slike materialer er mikroporøs polypropylen ("Celgard") og mikro-porøs akrylpolyvinylklorid på vevet nylonduk ("Acropor"). Når det ikke anvendes noen film er sublimasjonshastigheten delvis avhengig av. det tilgjengelige overflateareal for det gassdannende stoff. I slike tilfeller er det ofte ønskelig å impreg-nere stoffet i en bærer slik at det oppnås en jevn overflate. In those cases where the gas formation rate corresponds to the rate that is detected, it is unnecessary to use the barrier form, and the casing's gas formation section 28 can have one chamber. But even with such embodiments, it is often desirable to place a highly permeable physical barrier that separates the gas-forming substance from the wick. The permeability of these barriers should be largely independent of temperature, as the rate-determining step is gas formation. Typical such materials are microporous polypropylene ("Celgard") and microporous acrylic polyvinyl chloride on woven nylon cloth ("Acropor"). When no film is used, the sublimation rate is partly dependent on the available surface area for the gas-forming substance. In such cases, it is often desirable to impregnate the substance in a carrier so that a smooth surface is achieved.

Alternativt kan filmen 24 dele gassdannelseseksjonen 28Alternatively, the film 24 may divide the gas forming section 28

i et første og et andre kammer som vist i fig. II. Pilmen kan ha en mer begrenset gasspermeabilitet og en som er temperatur-avhengig. ' Typiske slike temperaturavhengige, hastihetsreg-ulerende filmer (RCP) er polytylen, polypropylen, nylon, cellulosefilmer o.l. Det kan vises matematisk at gassdannelsens og gasstransportens bidrag til systemets Q^q er kumulativ slik'at ved fornuftig valg av de to systemer er det mulig å oppnå in a first and a second chamber as shown in fig. II. The pill can have a more limited gas permeability and one that is temperature-dependent. Typical such temperature-dependent, rate-regulating films (RCP) are polyethylene, polypropylene, nylon, cellulose films and the like. It can be shown mathematically that the contribution of gas formation and gas transport to the system's Q^q is cumulative so that by judicious choice of the two systems it is possible to achieve

en total effekt,, hvor forandringen i gasstilg jengelighet ved veken med forandringer løper parallelt med Q^q for produktet som skal kontrolleres. Men når det anvendes en film med be- a total effect,, in which the change in gas stillability at the wick with changes runs parallel to Q^q for the product to be controlled. But when a film with be-

grenset permeabilitet elimineres overflatearealets effekt på det gassdannende stoff idet gasstransporten tvers over filmen er det hastighetsregulerende trinn. limit permeability, the effect of the surface area on the gas-forming substance is eliminated, as the gas transport across the film is the rate-regulating step.

Gassdannelsen og eventuelt også permeabiliteten gjennom filmen velges således slik at forandringen i gasstilgjenge-lighet ved veken pr. enhet forandring i temperaturen blir om-trent lik.Q^Q for produktet som skal kontrolleres.. Aktiver-ingsenergiverdien.e for de operative bestanddeler er nyttige i dette valg idet forholdet mellom Q^q og aktiveringsenergien er følgende: _ 1QE /T T r The gas formation and possibly also the permeability through the film are thus chosen so that the change in gas availability at the wick per unit change in temperature becomes approximately equal to Q^Q for the product to be controlled. The activation energy value.e for the operative constituents is useful in this choice, as the relationship between Q^q and the activation energy is as follows: _ 1QE /T T r

■ 10 — ■ 10 —

hvor where

E a = aktiveringsenergienE a = the activation energy

T.]= en første temperatur i grader (absolutt)T.]= a first temperature in degrees (absolute)

Tg = en andre temperatur ti grader lavere enn T^, og R = gasskonstanten Tg = a second temperature ten degrees lower than T^, and R = the gas constant

F.eks. i .området -10 til -20°C, et viktig område for frosne matvarer, fremkommer følgende verdier: E.g. in the -10 to -20°C range, an important area for frozen foods, the following values appear:

Det ,er således mulig å velge gassdannende stoffer og filmer hvor gassdannelseshastigheten og permeabiliteten løper parallelt med spaltningshastighetene for ulike stoffer, selv ved temperaturfluktas jon i et tidsrom. It is thus possible to choose gas-forming substances and films where the gas formation rate and permeability run parallel to the decomposition rates for different substances, even with temperature fluctuations over a period of time.

Veken kan velges blant mange kjente stoffer. Disse kan The wick can be chosen from many known substances. These can

.være enkle celluloseprodukter såsom papir eller fibrer, ulike syntetiske polymere stoffer, såsom polypropylen, polyestre eller polyamider, glassfiberpapir, aluminiumoksyd, silikagel o.l. Hvilken type veken er, er relativt uviktig, forutsatt at den har tilstrekkelig affinitet til gassen og indikatorsub- .be simple cellulose products such as paper or fibres, various synthetic polymeric substances, such as polypropylene, polyesters or polyamides, glass fiber paper, aluminum oxide, silica gel etc. The type of wick is relatively unimportant, provided it has sufficient affinity for the gas and indicator sub-

stansen og er stort sett inert overfor begge. the punch and is largely inert to both.

Indikatorsubstansen som er avsatt på veken og som resulterer i en fargeforandring i nærvær av gassen kan være en enkel bestanddel eller en blanding av bestanddeler som sam-virker. Den spesielle indikator-substans må velges for den spesielle gass som dannes. Når f.eks. den dannete gass er ammoniakk, kan indikatorsubstansen ganske enkelt omfatte et vandig medium og et pH-følsomt fargestoff, såsom metylrødt eller tymolblått, og en sur substans med liten flyktighet, såsom trikloreddiksyre, benzoesyre, oksalsyre e.l. Før absorb-sjon av ammoniakk i det hele tatt, vil fargestoffet innta dets første farge som forandres når ammoniakk absorberes. Tilsvarende systemer anvendes med sure gasser. The indicator substance which is deposited on the wick and which results in a color change in the presence of the gas can be a single component or a mixture of components which interact. The particular indicator substance must be chosen for the particular gas that is formed. When e.g. the gas formed is ammonia, the indicator substance can simply comprise an aqueous medium and a pH-sensitive dye, such as methyl red or thymol blue, and an acidic substance with low volatility, such as trichloroacetic acid, benzoic acid, oxalic acid, etc. Before absorption of ammonia at all, the dye will assume its first color which changes when ammonia is absorbed. Similar systems are used with acid gases.

Indikatorsubstansen kan alternativt anvende et redokssystem for å frembringe den nødvendige fargeforandring. F.eks. kan veken impregneres med en kaliumpermanganatløsning. I- dette tilfelle er gassen eller dampen som dannes.utsatt for oksydasjon f.eks. tymol eller en annen oksyderbar alkohol. The indicator substance can alternatively use a redox system to produce the required color change. For example the wick can be impregnated with a potassium permanganate solution. In this case, the gas or steam that is formed is subject to oxidation, e.g. thymol or another oxidizable alcohol.

■ Når tymolen absorberes i veken og beveger seg fremover' denne^ oksyderes den av permanganaten som -på sin side mister sin karak-teristiske røde farge. ■ When the thymol is absorbed into the wick and moves forward, it is oxidized by the permanganate, which in turn loses its characteristic red colour.

Det er også mulig å anvende en indikatorsubstans som selv om den ikke reagerer direkte på gassen omdanner den til et stoff som kan påvises. F.eks. med maleinsyre kan veken således impregneres med en vandig base med en alkohol som solvolysemiddel. Når anhydridet absorberes i veken hydro-lyseres det av vanne.t eller alkoholen hvorved det dannes maleinsyre. Denne syre kan påvises ved innleiring av et pH-følsomt fargestoff i substansen. It is also possible to use an indicator substance which, although it does not react directly to the gas, converts it into a substance that can be detected. E.g. with maleic acid, the wick can thus be impregnated with an aqueous base with an alcohol as solvolytic agent. When the anhydride is absorbed in the wick, it is hydrolysed by water or the alcohol, whereby maleic acid is formed. This acid can be detected by embedding a pH-sensitive dye in the substance.

Indikatorsubstansen kan.også danne kompleks med gassen, The indicator substance can also form a complex with the gas,

slik som-kaliumjod og stivelse for jodgass.such as-potassium iodine and starch for iodine gas.

De etterfølgende eksempler vil angi andre typer systemer og former, men må ikke betraktes som en begrensning av oppfinnelsen idet denne er avgrenset med kravene. The following examples will indicate other types of systems and forms, but must not be considered as a limitation of the invention as it is delimited by the claims.

Eksempel 1Example 1

En tid-temperatur-integrerende indikatoranordning ble fremstilt med tilsvarende form som det som er vist i fig. 1 og 2. Den øvre vegg var et laminat av 50 mikron polyetylen og 25 A time-temperature integrating indicator device was produced with a similar shape to that shown in fig. 1 and 2. The upper wall was a laminate of 50 micron polyethylene and 25

mikron trifluorklorpolyetylen, mens bunnveggen var en 25 mikron aluminiumfolie laminert til 25 mikron .polytylen. Den gass- micron trifluorochloropolyethylene, while the bottom wall was a 25 micron aluminum foil laminated to 25 micron .polyethylene. The gas

permeable film var 50 mikron polylylen med et tilgjengelig areale på 6,45 cm 2. Det gassdannende stoff var ammoniumkarbonat. Veken var et Whatman nr. 1 filterpapir med en bredde på 1,27 cm. Indikatorsubstansen var 0,05 molar vandig trikloreddiksyre, 20 volumprosent glycerol og 0,1 % metylrødt. permeable film was 50 micron polylylene with an available area of 6.45 cm 2 . The gas forming agent was ammonium carbonate. The wick was a Whatman No. 1 filter paper with a width of 1.27 cm. The indicator substance was 0.05 molar aqueous trichloroacetic acid, 20 volume percent glycerol and 0.1% methyl red.

Ved aktivering og likevektsinnstilling migrerte ammoni-akken som ble dannet av ammoniumkarbonatet gjennom polyetylen-filmen og frembrakte en fargeforandring i veken. Ved - 18°C beveget fronten seg fremover med en hastighet på o,017 mm/time. Dersom føleren ble holdt på -1°C beveget fronten seg fremover med en hastighet på 0,015 mm/time. Hastighetsforandringen ved sprang på 10°C tilsvarte en Q1Qpå 3,7. Upon activation and equilibration, the ammonium precipitate formed by the ammonium carbonate migrated through the polyethylene film and produced a color change in the wick. At - 18°C the front was moving forward at a rate of o.017 mm/hr. If the sensor was kept at -1°C, the front moved forward at a speed of 0.015 mm/hour. The change in speed at a jump of 10°C corresponded to a Q1Q of 3.7.

Eksempel 2.Example 2.

Det ble fremstilt en indikatoranordning slik som ovenfor under anvendelse av jod som gassdannende stoff. Indikatorsubstansen inneholdt/ 10 % kaliumjodid og 0,1% stivelse. Ved An indicator device was produced as above using iodine as a gas-forming substance. The indicator substance contained/ 10% potassium iodide and 0.1% starch. By

-1°C beveget fronten seg fremover 0,33 mm/time, mens fronten'ved 22°C beveget seg fremover 0,15 mm/time, noe som tilsvarte en Q1Qpå fra 2,5 til 3,0.'At -1°C the front moved forward 0.33 mm/hour, while at 22°C the front moved forward 0.15 mm/hour, corresponding to a Q1Q of 2.5 to 3.0.'

Eksempel 3Example 3

Det ble fremstilt en indikatoranordning med en form som tilsvarte den som er vist i fig. 3 og 4, men den gasspermeable film 24 ble utelatt. Paraformaldehyd ble anvendt som gassdannende stoff. Indikatorsubstansen inneholdt 1,1 molar hydrosylaminhydroklorid, •0,8 molar natriumacetat og 0,1 % bromfenolblått samt tymolblått. Ved -18°C beveget fronten seg fremover med en hastighet av 0,065 mm/time, mens den ved 10°C beveget seg fremover' med 0,12 mm/time, noe som tilsvarte en Q1Qpå 1,5. An indicator device with a shape corresponding to that shown in fig. 3 and 4, but the gas permeable film 24 was omitted. Paraformaldehyde was used as a gas-forming substance. The indicator substance contained 1.1 molar hydrosylamine hydrochloride, 0.8 molar sodium acetate and 0.1% bromophenol blue and thymol blue. At -18°C the front advanced at a rate of 0.065 mm/hr, while at 10°C it advanced at 0.12 mm/hr, corresponding to a Q1Q of 1.5.

Eksempel 4Example 4

Det ble fremstilt en indikatoranordning som tilsvarte den som er vist i fig. 3 og 4, men den gasspermeable film ble utelatt.Tymolblått ble anvendt som gassdannende stoff. Veken var glassfiberpapir som var impregnert med 0,01 molar kalium-permanganat. En brungul front beveget seg langs den opp-rinnelig røde strimmel med en hastighet av 0,06 mm/time ved 21°C og 0,0002 mm/time ved -1°C, noe som tilsvarte en Q^q på ca. 5 • An indicator device corresponding to that shown in fig. 3 and 4, but the gas-permeable film was omitted. Thymol blue was used as a gas-forming substance. The wick was fiberglass paper impregnated with 0.01 molar potassium permanganate. A brownish-yellow front moved along the ascending red strip at a rate of 0.06 mm/hr at 21°C and 0.0002 mm/hr at -1°C, corresponding to a Q^q of about 5 •

Eksempel 5Example 5

Det ble fremstilt en indikatoranordning slik som i eksempel 3- Maleinsyreanhydrid ble anvendt som gassdannende stoff hvorved det ble oppnådd en Q1Qpå ca. 4. Indikatorsubstansen inneholdt 0,1 M oktadekanol som hydrolyserte anhydridet, og en pH-indikator som virket over et vidt område, såsom lakmoid. An indicator device was produced as in example 3 - Maleic anhydride was used as a gas-forming substance whereby a Q1Q of approx. 4. The indicator substance contained 0.1 M octadecanol which hydrolyzed the anhydride, and a pH indicator which worked over a wide range, such as lachmoid.

Eksempel 6Example 6

- Det ble fremstilt en indikatoranordning slik som i eksempel 1 under anvendelse av iseddik som det gassdannende stoff. Denne ble forseglet under en 50 mikron film av polytylen som den gasspermeable film 24. Indikatorsubstansen inneholdt 0,1 molar natriumhydroksyd sammen med 0,1 % tymolblått. Den opp-rinnelig blå strimmel oppviste en skarp gul front som beveget seg fremover med en hastighet på 0,02 mm/time ved -18°Cog 0,25 mm/time ved 4,5°C, noe som tilsvarte en Q^q på 3,1. - An indicator device was produced as in example 1 using glacial acetic acid as the gas-forming substance. This was sealed under a 50 micron film of polyethylene as the gas permeable film 24. The indicator substance contained 0.1 molar sodium hydroxide together with 0.1% thymol blue. The rising blue strip exhibited a sharp yellow front moving forward at a rate of 0.02 mm/hr at -18°C and 0.25 mm/hr at 4.5°C, corresponding to a Q^q of 3.1.

Claims (18)

1. Temperatur-tid-integrerende indikatoranordning, karakterisert ved1. Temperature-time-integrating indicator device, characterized by et forseglet hylster .som er utstyrt med øvre og nedre vegger av gassupermeabelt materiale og som er forseglet langs deres omkrets, idet en forseglingsinnretning deler hylsteret i en første, indikatorseksjon og en andre, gassdannelseseksjon, et gassdannende stoff i den andre seksjon, en veke som løper fra den første seksjon til den andre seksjon og som utgjør den eneste gasskommunikasjon mellom seksjonene, samt en indikatorsubstans som er anbrakt på veken og som frembringer en fargeforandring i nærvær av gassen som dannes av det gassdannende stoff. a sealed casing provided with upper and lower walls of gas-permeable material and sealed along their circumference, a sealing device dividing the casing into a first, indicator section and a second, gas-forming section, a gas-forming substance in the second section, a wick which runs from the first section to the second section and which constitutes the only gas communication between the sections, as well as an indicator substance which is placed on the wick and which produces a color change in the presence of the gas which is formed by the gas-forming substance. 2. Indikatoranordning i samsvar med krav 1, karakterisert ved at hylsterets andre seksjon er inndelt i et første og et andre kammer ved hjelp av en gasspermeabel film som er anbrakt mellom den "øvre og den nedre vegg, at det gassdannende stoff befinner seg i den andre seksjons første kammer, samt at veken løper fra den andre seksjons andre kammer til den første seksjon. 2. Indicator device in accordance with claim 1, characterized by that the second section of the casing is divided into a first and a second chamber by means of a gas-permeable film placed between the "upper and lower walls, that the gas-forming substance is located in the second section's first chamber, as well as that the wick runs from the second chamber of the second section to the first section. 3 i Indikatoranordning i-samsvar med krav 2, karakterisert ved at filmens gasspermeabilitet er stort sett temperaturuavhengig. 3 i Indicator device i-compliance with claim 2, characterized in that the gas permeability of the film is largely independent of temperature. 4. Indikatoranordning i samsvar med krav 2, karakterisert ved at filmens gasspermeabilitet er temp-eraturavhengig. 4. Indicator device in accordance with claim 2, characterized in that the gas permeability of the film is temperature dependent. 5. Indikatoranordning i samsvar med krav ^ karakterisert ved at den omfatter en knuselig skjerm-anordning som er innrettet til å isolere det gassdannende stoff fra veken før bruk. 5. Indicator device in accordance with claim ^ characterized in that it comprises a breakable screen device which is designed to isolate the gas-forming substance from the wick before use. 6. Indikatoranordning i samsvar med krav ^ karakterisert ved at det gassdannende stoff danner en sur eller basisk gass. 6. Indicator device in accordance with claim ^ characterized in that the gas-forming substance forms an acidic or basic gas. 7. Indikatoranordning i samsvar med krav 6, karakterisert ved at den dannete gass er ammoniakk. 7. Indicator device in accordance with claim 6, characterized in that the gas formed is ammonia. 8. Indikatoranordning i samsvar med krav ^ karakterisert ved at indikatorsubstansen danner kompleks med den dannete gass. 8. Indicator device in accordance with claim ^ characterized in that the indicator substance forms a complex with the gas formed. 9. Indikatoranordning i samsvar med krav 1, k a r a k terisert ved at gassen er følsom overfor kjemisk reduksjon eller oksydasjon og at indikatorsubstansen er et redokssystem som er innrettet til å redusere eller oksydere gassen. 9. Indicator device in accordance with claim 1, characterized in that the gas is sensitive to chemical reduction or oxidation and that the indicator substance is a redox system designed to reduce or oxidize the gas. 10. Indikatoranordning i samsvar med krav 1, karakterisert ved at gassen er følsom overfor solvolyse hvorved det dannes et surt eller et basisk stoff og at indikatorsubstansen omfatter et solvolysemiddel som er innrettet til å bevirke solvolyse av gassen. 10. Indicator device in accordance with claim 1, characterized in that the gas is sensitive to solvolysis whereby an acidic or basic substance is formed and that the indicator substance comprises a solvolytic agent which is designed to cause solvolysis of the gas. 11. Indikatoranordning i samsvar med krav 10, karakterisert ved at gassen er et sublimerbart syre-anhydrid og at solvolysemidlet er vann eller en alkohol. 11. Indicator device in accordance with claim 10, characterized in that the gas is a sublimable acid anhydride and that the solvolytic agent is water or an alcohol. 12. Indikatoranordning i samsvar med krav ^ karakterisert ved at hylsteret er oppdelt i en første og en andre seksjon ved hjelp av en tverrgående forsegling. 12. Indicator device in accordance with claim ^ characterized in that the casing is divided into a first and a second section by means of a transverse seal. 13. Indikatoranordning i samsvar med krav 1, karakterisert ved at hylsteret er oppdelt i en første' og en andre seksjon ved hjelp av en langsgående forsegling om veken. 13. Indicator device in accordance with claim 1, characterized in that the casing is divided into a first and a second section by means of a longitudinal seal around the wick. 14. Indikatoranordning i samsvar med krav 1, karakterisert ved at det i veken er avleiret et mengdebestemmende stoff. 14. Indicator device in accordance with claim 1, characterized in that a quantity-determining substance is deposited in the wick. 15. Indikatoranordning i samsvar med krav 14,- karakterisert ved at det gassdannende stoff danner en basisk gass og at det mengdebestemmende stoff er vinsyre, kaliumhydrogenfosfat eller kanelsyre. 15. Indicator device in accordance with claim 14, characterized in that the gas-forming substance forms a basic gas and that the amount-determining substance is tartaric acid, potassium hydrogen phosphate or cinnamic acid. 16. Indikatoranordning i samsvar med krav 14, karakterisert ved at det gassdannende stoff danner en sur gass og at det mengdebestemmende stoff er natriumhydroksyd, kinin, eller natriumkarbonat. 16. Indicator device in accordance with claim 14, characterized in that the gas-forming substance forms an acidic gas and that the amount-determining substance is sodium hydroxide, quinine or sodium carbonate. 17. Indikatoranordning i samsvar med krav 15, karakterisert ved at den basiske gass er ammoniakk. 17. Indicator device in accordance with claim 15, characterized in that the basic gas is ammonia. 18. Indikatoranordning i samsvar med krav 16, karakterisert ved at den sure gass er eddiksyre.18. Indicator device in accordance with claim 16, characterized in that the acidic gas is acetic acid.
NO751664A 1974-05-14 1975-05-12 NO751664L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/469,851 US3946611A (en) 1974-05-14 1974-05-14 Time-temperature integrating indicator
US05/515,165 US3932134A (en) 1974-10-16 1974-10-16 Time-temperature integrating indicator device

Publications (1)

Publication Number Publication Date
NO751664L true NO751664L (en) 1975-11-17

Family

ID=27042871

Family Applications (1)

Application Number Title Priority Date Filing Date
NO751664A NO751664L (en) 1974-05-14 1975-05-12

Country Status (17)

Country Link
JP (1) JPS50156980A (en)
AR (1) AR203236A1 (en)
BR (1) BR7502968A (en)
CA (1) CA1049288A (en)
CH (1) CH578171A5 (en)
DD (1) DD118177A5 (en)
DE (1) DE2521239C3 (en)
DK (1) DK209375A (en)
ES (1) ES437632A1 (en)
FR (1) FR2271552B1 (en)
GB (1) GB1506401A (en)
IE (1) IE41240B1 (en)
IL (1) IL47275A0 (en)
IT (1) IT1035706B (en)
NL (1) NL7505596A (en)
NO (1) NO751664L (en)
SE (1) SE7505488L (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054831A1 (en) * 1980-12-22 1982-06-30 Olympia Werke Ag Device to monitor the condition of a consumable piece of goods
JPS57151854A (en) * 1981-03-17 1982-09-20 Ekika Tansan Kk Indicator for detecting residual ethylene oxide gas
DE3210907C2 (en) * 1982-03-25 1984-07-19 Schwan-Stabilo Schwanhäußer GmbH & Co, 8500 Nürnberg Indicator for the display of a time / temperature load
NL8402181A (en) * 1983-12-23 1985-07-16 Draegerwerk Ag TEST TUBE WITH FRAGILE AMPOUL AS A TEMPERATURE LOAD INDICATOR.
GB8614839D0 (en) * 1986-06-18 1986-07-23 Gen Electric Co Plc Indicating changes in temperatures
FR2603777B1 (en) * 1986-09-11 1990-06-01 Baele Gangloff Ste Nouvelle DEVICE FOR MEASURING PASTEURIZATION UNITS AND PASTEURIZATION INSTALLATION USING THE SAME
US4786773A (en) * 1986-12-18 1988-11-22 Alcan International Limited Systems and methods for determining doneness of microwave-heated bodies
DE10226716A1 (en) * 2002-06-14 2004-01-08 Henkel Kgaa Indicator system for use in thermolabels for monitoring e.g. foods, vaccines or blood products contains a pH-sensitive indicator which is solid below the threshold temperature to be detected
FR2865134B1 (en) * 2004-01-20 2007-10-12 Arjo Wiggins STERILIZING AND AUTHENTICATION INDICATOR INTEGRATED WITH STERILIZING MATERIAL, PACKAGE SHEET AND PACKAGE CONTAINING SAME, STERILIZING METHOD USING THE SAME
GB2423360A (en) * 2005-02-22 2006-08-23 Sun Chemical Ltd Time/Temperature Indicator, Preparation and Use
JP2009243965A (en) * 2008-03-28 2009-10-22 Sumitomo Bakelite Co Ltd Flow path device, flow path device with exterior case, method for using flow path device
JP5712744B2 (en) * 2011-04-05 2015-05-07 三菱電機株式会社 Air conditioner
US11162840B1 (en) 2021-04-20 2021-11-02 Giftedness And Creativity Company Method and kit for detecting technetium-99m radioisotopes

Also Published As

Publication number Publication date
FR2271552B1 (en) 1978-02-03
IT1035706B (en) 1979-10-20
NL7505596A (en) 1975-11-18
ES437632A1 (en) 1977-05-16
FR2271552A1 (en) 1975-12-12
DD118177A5 (en) 1976-02-12
GB1506401A (en) 1978-04-05
IL47275A0 (en) 1976-10-31
CH578171A5 (en) 1976-07-30
DE2521239A1 (en) 1975-11-27
DE2521239B2 (en) 1980-03-06
BR7502968A (en) 1976-03-23
IE41240L (en) 1975-11-14
SE7505488L (en) 1975-11-17
DE2521239C3 (en) 1980-11-06
DK209375A (en) 1975-11-15
AU8108775A (en) 1976-11-18
AR203236A1 (en) 1975-08-22
CA1049288A (en) 1979-02-27
IE41240B1 (en) 1979-11-21
JPS50156980A (en) 1975-12-18

Similar Documents

Publication Publication Date Title
US4042336A (en) Time temperature integrating indicator
US3946611A (en) Time-temperature integrating indicator
JP2005538740A (en) Foodborne pathogen and spoilage detection apparatus and method
Barska et al. Innovations in the Food Packaging Market--Intelligent Packaging--a Review.
NO751664L (en)
Han et al. Intelligent packaging
US3996007A (en) Time-temperature integrating indicator
US5085802A (en) Time temperature indicator with distinct end point
CA2691757A1 (en) Indicator system for determining analyte concentration
US4163427A (en) Freeze-thaw indicator apparatus
EP2697617B1 (en) Time-temperature indicator system i
Lloyd et al. Active and intelligent packaging
CN101490556A (en) Indicator system for determining analyte concentration
CA2559708A1 (en) Food borne pathogen sensor and method
AU2007338949A1 (en) Sensor device
US20060121165A1 (en) Food freshness sensor
Mills et al. Novel time-temperature and ‘consume-within’indicator based on gas-diffusion
WO1998021120A1 (en) Package for decayable foodstuffs
WO1998020337A1 (en) Methods and devices for detecting spoilage in food products
GB1604649A (en) Temperature indicator device for providing visual indication as to whether a predetermined temperature has been exceeded for a predetermined time
Kuswandi Real-time quality assessment of fruits and vegetables: sensing approaches
TWI463118B (en) Heat-sensitive indicator
KR101813093B1 (en) Measurement labels for product freshness
Kuswandi INTELLIGENT PACKAGING APPLICATIONS FOR FRUITS AND VEGETABLES
Panja et al. Current status of active and intelligent packaging in food technologies