NO744331L - - Google Patents

Info

Publication number
NO744331L
NO744331L NO744331A NO744331A NO744331L NO 744331 L NO744331 L NO 744331L NO 744331 A NO744331 A NO 744331A NO 744331 A NO744331 A NO 744331A NO 744331 L NO744331 L NO 744331L
Authority
NO
Norway
Prior art keywords
elastomeric material
shock
rubber
arms
force
Prior art date
Application number
NO744331A
Other languages
Norwegian (no)
Inventor
F K L Utne
A Jakobsen
Original Assignee
Viking Mjondalen As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viking Mjondalen As filed Critical Viking Mjondalen As
Priority to NO744331A priority Critical patent/NO744331L/no
Priority to NL7513977A priority patent/NL7513977A/en
Priority to SE7513507A priority patent/SE7513507L/en
Priority to DE19752553905 priority patent/DE2553905A1/en
Priority to FR7536781A priority patent/FR2293631A1/en
Publication of NO744331L publication Critical patent/NO744331L/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/08Torsion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)
  • Vehicle Body Suspensions (AREA)

Description

Stotdempningsanordning Shock absorption device

Foreliggende oppfinnelse vedrorer en stotdempningsanordning hvor gummi eller et annet elastomert materiale brukes til å oppta stotenergien. The present invention relates to a shock absorption device where rubber or another elastomeric material is used to absorb the shock energy.

Til dempning av stot brukes en lang rekke forskjellige støt-dempere, buffere og fendere. Felles for dem alle er at de gir etter for det stot som skal dempes under utovelse av en viss motkraft slik at de derved opptar stotenergien. Den ideelle stotdemper utover en konstant motkraft lik den maksimale re-tardasjonskraft som kan tolereres, og derved oppnås at stotet avbremses over den minst mulige veistrekning. Karakteristikken av en slik ideell demper er vist på figurene 1 og 2. Figur 1 viser sammentrykningskraften som en funksjon av sammentryknings-lengden eller -veien, og figur 2 viser den opptatte energi som funksjon av samme veilengde. En slik karakteristikk kan f.eks. oppnås ved hjelp av en hydrauslisk sylinder som står i forbin-delse med et mottrykkreservoar med konstant trykk. Den kan også oppnås ved en vanlig hydraulisk stottemper av det slag som brukes for biler så lenge sammentrykningshastigheten er konstant. Nå er imidlertid hensikten med de fleste stotdempére å bremse en stot-hastighet, og for en vanlig hydraulisk stotdemper medforer synr-kende sammentrykningshastighet at motkraften avtar ganske sterkt. Dette medforer i sin tur at den nodvendige bremselengde forlenges. En ytterligere ulempe med disse stotdempére er at de er forholdsvis dyre i fremstilling og at de trenger en hjelpef jaer e.l. for å gå tilbake til utgangsstilling etter stotet.. A wide range of different shock absorbers, buffers and fenders are used to dampen shock. What they all have in common is that they yield to the shock that must be dampened under the exertion of a certain counterforce so that they thereby absorb the shock energy. The ideal dampens the shock beyond a constant counterforce equal to the maximum retardation force that can be tolerated, thereby achieving that the shock is slowed down over the smallest possible stretch of road. The characteristics of such an ideal damper are shown in figures 1 and 2. Figure 1 shows the compression force as a function of the compression length or path, and figure 2 shows the absorbed energy as a function of the same path length. Such a characteristic can e.g. is achieved by means of a hydraulic cylinder which is connected to a back pressure reservoir with constant pressure. It can also be achieved by a normal hydraulic shock absorber of the kind used for cars as long as the compression speed is constant. Now, however, the purpose of most shock absorbers is to slow down a shock speed, and for a normal hydraulic shock absorber, the decreasing compression speed means that the counterforce decreases quite strongly. This in turn means that the necessary braking distance is extended. A further disadvantage of these shock absorbers is that they are relatively expensive to manufacture and that they need an auxiliary spring or the like. to return to the starting position after the shock..

Gummi har lenge vært anvendt for stotdempére, da gjerne i form av mer eller mindre massive blokker som komprimeres av stotet. Slike stotdempére har den fordel at de er relativt billig i fremstilling og går tilbake til sin utgangsstilling etter stotet. D"e~h~a"r~imi-d—■ lertid den ulempe at bremsekraften oker sterkt med okende sammen-trykning av gummien. ' Foren viss maksimalt tillatt bremsekraft vil derfor en gummistotdemper måtte gjore bruk av mye lengre stot-bremsestrekning enn en tilsvarende ideell demper. Dette fremgår av figurene 3 og 4 som viser at en gummistotdemper med samme maksimale bremsekraft og samme bremselengde vil oppta under halv-parten av den energi som ville kunne opptas av en tilsvarende ideell demper. En slik demper vil også kreve mye gummi i forhold til den energi som opptas. Rubber has long been used for shock absorbers, usually in the form of more or less massive blocks that are compressed by the impact. Such shock absorbers have the advantage that they are relatively cheap to manufacture and return to their initial position after the shock. However, the disadvantage is that the braking force increases strongly with increasing compression of the rubber. Given a certain maximum permitted braking force, a rubber shock absorber will therefore have to use a much longer shock braking distance than a corresponding ideal shock absorber. This is evident from Figures 3 and 4, which show that a rubber shock absorber with the same maximum braking force and the same braking distance will absorb less than half of the energy that could be absorbed by a corresponding ideal damper. Such a damper will also require a lot of rubber in relation to the energy absorbed.

Det er oppfinnelsens hensikt å tilveiebringe en stotdempningsanordning av den innledningsvis nevnte type som har tilnærmet ideell dempningskarakteristikk, som er enkel og billig i fremstilling og som ikke er beheftet med noen av de foran nevnte mangler. Dette oppnås ifolge oppfinnelsen ved hjelp av en anordning som angitt i de påfolgende patentkrav. It is the purpose of the invention to provide a shock dampening device of the type mentioned at the outset which has almost ideal damping characteristics, which is simple and inexpensive to manufacture and which is not affected by any of the aforementioned defects. This is achieved according to the invention by means of a device as stated in the following patent claims.

For å lette forståelsen av oppfinnelsen skal den i det folgende ^ beskrives under henvisning til de utforelseseksempler som er vist på tegningen. Figurene 5 og 6 viser karakteristikken av en stotdempningsanordning ifolge oppfinnelsen. Figur 7 viser en stotdempningsanordning ifolge oppfinnelsen sett forfra. In order to facilitate the understanding of the invention, it will be described below with reference to the exemplary embodiments shown in the drawing. Figures 5 and 6 show the characteristics of a shock dampening device according to the invention. Figure 7 shows a shock absorption device according to the invention seen from the front.

Figur 8 viser anordningen på figur 7 sett fra siden.Figure 8 shows the device in Figure 7 seen from the side.

Figur 9 viser anordningen på figurene 7 og 8 i delvis sammen-trykket tilstand. Figurene 10, 11 og 12 viser forskjellige variasjoner av anordningen ifolge oppfinnelsen. Figure 9 shows the device in Figures 7 and 8 in a partially compressed state. Figures 10, 11 and 12 show different variations of the device according to the invention.

Den anordning som. er vist på figurene 7, 8 og 9 består av to sylindriske gummilegemer 1 som er fastvulkanisert til armer 2 The device which. is shown in figures 7, 8 and 9 consists of two cylindrical rubber bodies 1 which are fixed vulcanized into arms 2

og 3., Armene 2 og 3 rager i stort sett motsatt regning i u-belastet tilstand. Vinkelen mellom armene bor dog være litt forskjellig fra 180° for å gi gummisylinderens omdreinings-sentrum en viss eksentrisitet i forhold til stotkraftens an-grepslinje. and 3rd, the arms 2 and 3 project in a largely opposite manner in the unloaded condition. However, the angle between the arms must be slightly different from 180° to give the rubber cylinder's center of rotation a certain eccentricity in relation to the thrust force's line of attack.

Figur 9 viser anordningen fra figur 8 med den ytre ende av armen 2 dreibart lagret i et fast punkt. Den ytre ende av armene 3 angripes av en stotkraft F som holdes i likevekt av det vridning smoment M som gummisylinderen 1 utover. Momentet M er lik kraften F multiplisert med avstanden a mellom kraftens angreps-linje og sentrum av gummisylinderen 1. -Ettersom armene 2 og 3 dreies mot hverandre vil momentet M oke, f.eks. noe i retning av det som er vist på figur 3. Samtidig vil imidlertid armen a oke i omtrent samme forhold, og siden kraften F = M dividert på a, vil kraften F forbli noenlunde-konstant under hele dreiningen, og man får derfor en karakteristikk som vist på figurene 5 og 6. Gummisylinderen 1 vil herunder utsettes for meget store spenninger uten at bremsekraften blir for stor, og man oppnår - derfor en mye bedre utnyttelse av gummiens energiopptagende evne enn ved rene kompresjonsstotdempere av gummi. Figure 9 shows the device from Figure 8 with the outer end of the arm 2 rotatably stored in a fixed point. The outer end of the arms 3 is attacked by a shock force F which is held in equilibrium by the twisting moment M as the rubber cylinder 1 outwards. The moment M is equal to the force F multiplied by the distance a between the line of attack of the force and the center of the rubber cylinder 1. - As the arms 2 and 3 are turned towards each other, the moment M increases, e.g. somewhat in the direction of what is shown in figure 3. At the same time, however, the arm a will move in approximately the same ratio, and since the force F = M divided by a, the force F will remain more or less constant throughout the rotation, and you therefore get a characteristic as shown in figures 5 and 6. The rubber cylinder 1 will therefore be exposed to very large stresses without the braking force being too great, and one therefore achieves - a much better utilization of the rubber's energy-absorbing ability than with pure rubber compression shock absorbers.

Selv om anordningen på figurene 7 til 9 representerer en stor forbedring med hensyn til utnyttelse av gummiens energiopptagende evne, kan denne ytterligere forbedres innen oppfinnelsens ramme. Under vridning av sylinderen 1 vil dennes indre parti deformeres i mindre grad enn dens ytre parti. Gummivolumets energiopptagende evne er således ikke maksimalt utnyttet. Although the device in figures 7 to 9 represents a great improvement with regard to the utilization of the rubber's energy-absorbing ability, this can be further improved within the framework of the invention. During twisting of the cylinder 1, its inner part will be deformed to a lesser extent than its outer part. The energy-absorbing capacity of the rubber volume is thus not fully utilised.

For å få en enda bedre utnyttelse av gummiens energiopptagende egenskap kan man ifolge oppfinnelsen tenke seg utforelsesformer som de som er vist på figurene 10, 11 og 12. In order to make even better use of the rubber's energy-absorbing property, according to the invention, embodiments such as those shown in Figures 10, 11 and 12 can be imagined.

I den utforelse som er vist på figur 10 har gummistykket 4 form av en hul sylinder som på utsiden og innsiden er festet til me-tallhylser merket henholdsvis 5 og 6. Til metallhylsene er det festet armer, henholdsvis 7 og 8. Dersom tykkelsen av gummisylinderen 4 er forholdsvis liten i forhold, til sylinderens dia-meter vil man umiddelbart innse at gummien blir forholdsvis jevnt belastet når armene 7 og 8 vris i forhold til hverandre, og derfor vil man kunne få en meget god utnyttelse av gummiens energiopptagende egenskaper. Gummisylinderen 4 kan være festet til hylsene 5 og 6 på forskjellig vis. Den kan f.eks. være vulkani-sert eller klemt fast, og særlig for den ytre hylse 5 kan det være hensiktsmessig å utfore denne i todelt form slik at den kan klem-mes til om gummisylinderen 4 ved hjelp av skruer, slangeklemmer eller lignende. In the embodiment shown in Figure 10, the rubber piece 4 has the shape of a hollow cylinder which is attached on the outside and inside to metal sleeves marked 5 and 6 respectively. Arms, 7 and 8 respectively, are attached to the metal sleeves. If the thickness of the rubber cylinder 4 is relatively small compared to the diameter of the cylinder, you will immediately realize that the rubber is relatively evenly loaded when the arms 7 and 8 are twisted in relation to each other, and therefore you will be able to make very good use of the rubber's energy-absorbing properties. The rubber cylinder 4 can be attached to the sleeves 5 and 6 in different ways. It can e.g. be vulcanized or clamped, and especially for the outer sleeve 5, it may be appropriate to design this in two parts so that it can be clamped to the rubber cylinder 4 by means of screws, hose clamps or the like.

Figurene 11 og 12 viser modifikasjoner av utforelsen på figur 10 som gir en noe annen demperkarakteristikk. På figur 11 har gum-milegemet 9 stort sett form av .en kule hvis ytterflate er festet til et kuleskall 10 som igjen er festet til armen 7. Utforelses-formen på figur 12 skiller seg i alt vesentlig fra utfdrelsesfor-men på figur 10 ved at gummisylinderen 4 i endene er forlenget med avkortede kjeglepartier 11. Figures 11 and 12 show modifications of the embodiment in Figure 10 which gives a somewhat different damper characteristic. In Figure 11, the rubber-mile body 9 is largely in the shape of a ball whose outer surface is attached to a ball shell 10 which is in turn attached to the arm 7. The embodiment in Figure 12 differs essentially from the embodiment in Figure 10 by that the rubber cylinder 4 is extended at the ends with truncated cone sections 11.

For en fagmann vil det ikke være forbundet med særlig stor van- skelighet å finne et stort antall måter å variere oppfinnelsen på innen rammen av de påfolgende krav. Således kan man godt tenke seg en utforelse som den som er vist på figur 7, men hvor den ene gummisylinder 1 og arm 3 er fjernet. Likeledes kan man tenke seg et eksempel hvor armene 2 og 3 er forlenget i den ende som er festet til gummisylinderen 1 slik at armene blir sylindriske om denne og innbyrdes danner en X. Med en slik X-formet stotdemper kan man så forbinde to legemer slik at de ved innbyrdes sammentykning samtidig parallellstyres.. Dette kan tenkes gjort ved at man fester f.eks. de hoyre benender av Xen dreibart til hver sin del og lar de venstre benender være glid-bart lagret i de samme deler. Selv om alle de viste utforelseseksempler belaster det elastomere materiale i torsjon kan man godt tenke seg en stotdemperanordning ifolge oppfinnelsen hvor materialet belastes på annen måte, f.eks. i kompresjon. Man kan således tenke seg at armene som dreies i forhold til hverandre ved stotdempningen er hengslet til hverandre og at de i hengsel-enden gis en forlengelse som kan minne om kjeven av en tang. Mellom disse kjever innsettes et gummistykke som ved stotbelast-ning av armenes andre ender vil komprimeres og oppta energi. For a person skilled in the art, it will not be particularly difficult to find a large number of ways to vary the invention within the framework of the following claims. Thus, one can well imagine an embodiment like the one shown in figure 7, but where the one rubber cylinder 1 and arm 3 have been removed. Likewise, one can imagine an example where the arms 2 and 3 are extended at the end which is attached to the rubber cylinder 1 so that the arms become cylindrical around this and mutually form an X. With such an X-shaped shock absorber you can then connect two bodies as that they are at the same time controlled in parallel by mutual thickening.. This can be thought of as being done by attaching e.g. the right leg ends of Xen rotatably to their respective parts and leave the left leg ends to be slidably stored in the same parts. Although all the examples of embodiment shown stress the elastomeric material in torsion, one can well imagine a shock absorber device according to the invention where the material is stressed in another way, e.g. in compression. One can thus imagine that the arms which are rotated in relation to each other during the shock absorption are hinged to each other and that they are given an extension at the hinge end which can resemble the jaws of a pair of pliers. A piece of rubber is inserted between these jaws, which will compress and absorb energy when the other ends of the arms are subjected to a shock load.

Claims (5)

1. Stotdempningsanordning med et elastomert materiale som energiopptagende medium, karakterisert ved at et antall armer (2, 85 3, 7) er festet til det elastomere materiale (1, 4, 9, 11) og gruppevis (2, 85 3, 7) rager i stort sett motsatt retning ut fra dette (1, 4, 9, 11) i anordningens ubelastede tilstand, og at vinkelen mellom armgruppene minker ved okende be-lastning av materialet (1, 4, 9, 11).1. Shock absorbing device with an elastomeric material as energy absorbing medium, characterized in that a number of arms (2, 85 3, 7) are attached to the elastomeric material (1, 4, 9, 11) and in groups (2, 85 3, 7) protrudes in largely the opposite direction from this (1, 4, 9, 11) in the device's unloaded state, and that the angle between the arm groups decreases with increasing loading of the material (1, 4, 9, 11). 2. Anordning ifolge krav 1, karakterisert ved . at den momentarm (a) som belastningskraften (F) virker over oker noenlunde i samme forhold som belastningen av det elastomere rna- teriale (1, 4, 9, 11), hvorved kraften (F) forblir noenlunde konstant ved minkende vinkel mellom armgruppene (2, 8; 3, 7).2. Device according to claim 1, characterized by . that the moment arm (a) over which the load force (F) acts increases roughly in the same ratio as the load on the elastomeric material (1, 4, 9, 11), whereby the force (F) remains roughly constant at a decreasing angle between the arm groups ( 2, 8; 3, 7). 3. Anordning ifolge krav 1 eller 2, karakterisert ved at det elastomere materiale er utformet som et omdrei-ningslegeme (4,, 9, 11) med et hulrom omkring omdreiningsaksen idet en stor del av legemets (4, 9, 11) overflate er forbundet med tilsvarende utformede deler (5, 6, 10) som igjen er forbundet med armene (7, 8).3. Device according to claim 1 or 2, characterized in that the elastomeric material is designed as a body of rotation (4, 9, 11) with a cavity around the axis of rotation, a large part of the body's (4, 9, 11) surface being connected with correspondingly designed parts (5, 6, 10) which in turn are connected to the arms (7, 8). 4. Anordning ifolge et foregående krav, karakterisert ved at det elastomere materiale (1, 4, 9, 11) ho-vedsakelig belastes ved vridning.4. Device according to a preceding claim, characterized in that the elastomeric material (1, 4, 9, 11) is mainly loaded by twisting. 5. Anordning ifolge krav 1 eller 2, karakterisert ved at.det elastomere materiale belastes ved vridning, trykk, strekk eller skjærkraft, eller en kombinasjon av noen av disse.5. Device according to claim 1 or 2, characterized in that the elastomeric material is loaded by twisting, pressure, tension or shear, or a combination of any of these.
NO744331A 1974-12-02 1974-12-02 NO744331L (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NO744331A NO744331L (en) 1974-12-02 1974-12-02
NL7513977A NL7513977A (en) 1974-12-02 1975-12-01 SHOCK ABSORBER.
SE7513507A SE7513507L (en) 1974-12-02 1975-12-01 SHOCK ABSORBER DEVICE
DE19752553905 DE2553905A1 (en) 1974-12-02 1975-12-01 SHOCK ABSORBER DEVICE
FR7536781A FR2293631A1 (en) 1974-12-02 1975-12-02 Shock absorber with elastomer element - has torsional element secured to torsion arms pointing in approximately opposite directions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO744331A NO744331L (en) 1974-12-02 1974-12-02

Publications (1)

Publication Number Publication Date
NO744331L true NO744331L (en) 1976-06-03

Family

ID=19881964

Family Applications (1)

Application Number Title Priority Date Filing Date
NO744331A NO744331L (en) 1974-12-02 1974-12-02

Country Status (5)

Country Link
DE (1) DE2553905A1 (en)
FR (1) FR2293631A1 (en)
NL (1) NL7513977A (en)
NO (1) NO744331L (en)
SE (1) SE7513507L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01012871A (en) * 2001-12-13 2003-06-23 Tapia Espriu Roberto Pretensioned rubber suspension/dumper, for vehicles axles in general.

Also Published As

Publication number Publication date
FR2293631A1 (en) 1976-07-02
NL7513977A (en) 1976-06-04
DE2553905A1 (en) 1976-08-12
SE7513507L (en) 1976-06-03

Similar Documents

Publication Publication Date Title
RU2013152380A (en) JOINT VEHICLE WITH JOINT BETWEEN PARTS OF THE VEHICLE
US4033566A (en) Pneumatic linear spring device
US3008746A (en) Pivotally mounted hydraulic bumper assembly for vehicles
NO744331L (en)
US3774950A (en) Energy absorbing bumper assembly
NO740800L (en)
CN111422020A (en) Horizontal arrangement type hydraulic cylinder dynamic adjustment suspension
US1099073A (en) Shock-absorber for vehicles.
CN207228064U (en) A kind of traction damper of harbour
CN107387647A (en) Automobile absorber with adjustable springs
US2222683A (en) Aircraft construction
US1151595A (en) Expansible chamber.
US3771778A (en) Pressurized rubber for absorbing impact energy
SE515415C2 (en) Motor vehicles with wheels mounted on swing arms, especially combat vehicles
NO761091L (en) SHOCK DAMPING DEVICE.
US3337208A (en) Spring suspension device
US2906525A (en) Deformable hydrostatic system
CN206186957U (en) Single gas formula hydraulic pressure car bumper
US2825552A (en) Independent wheel suspension
SU140331A1 (en) Device for protecting friction presses from accidental overload
US2953367A (en) Hydraulic piston and cylinder apparatus
CN216201158U (en) Fire control pipe fitting for building with shock-absorbing function
US3623760A (en) Automotive safety device
CN219342820U (en) Bridge damping device
US2819893A (en) Apparatus for controlling the unloading of a spring