NO743223L - - Google Patents
Info
- Publication number
- NO743223L NO743223L NO743223A NO743223A NO743223L NO 743223 L NO743223 L NO 743223L NO 743223 A NO743223 A NO 743223A NO 743223 A NO743223 A NO 743223A NO 743223 L NO743223 L NO 743223L
- Authority
- NO
- Norway
- Prior art keywords
- pinacol
- cathode
- catholyte
- water
- acetone
- Prior art date
Links
- IVDFJHOHABJVEH-UHFFFAOYSA-N pinacol Chemical compound CC(C)(O)C(C)(C)O IVDFJHOHABJVEH-UHFFFAOYSA-N 0.000 claims description 52
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 18
- 238000005868 electrolysis reaction Methods 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 5
- 239000003245 coal Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 230000002101 lytic effect Effects 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 12
- 239000011133 lead Substances 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- -1 of alkylene glycol Chemical compound 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000012452 mother liquor Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 239000012259 ether extract Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- LEQNJUZEJVNIIP-UHFFFAOYSA-N 2,3-dimethylbutane-2,3-diol;hexahydrate Chemical compound O.O.O.O.O.O.CC(C)(O)C(C)(C)O LEQNJUZEJVNIIP-UHFFFAOYSA-N 0.000 description 1
- QKFFSWPNFCXGIQ-UHFFFAOYSA-M 4-methylbenzenesulfonate;tetraethylazanium Chemical compound CC[N+](CC)(CC)CC.CC1=CC=C(S([O-])(=O)=O)C=C1 QKFFSWPNFCXGIQ-UHFFFAOYSA-M 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005228 aryl sulfonate group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- CJSBUWDGPXGFGA-UHFFFAOYSA-N dimethyl-butadiene Natural products CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005370 electroosmosis Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- KIWBPDUYBMNFTB-UHFFFAOYSA-M ethyl sulfate Chemical compound CCOS([O-])(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-M 0.000 description 1
- HCWMUANODLPMEO-UHFFFAOYSA-M ethyl sulfate;tetraethylazanium Chemical compound CCOS([O-])(=O)=O.CC[N+](CC)(CC)CC HCWMUANODLPMEO-UHFFFAOYSA-M 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004761 hexafluorosilicates Chemical class 0.000 description 1
- 150000004687 hexahydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000029219 regulation of pH Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- TXBULBYASDPNNC-UHFFFAOYSA-L tetraethylazanium;sulfate Chemical compound [O-]S([O-])(=O)=O.CC[N+](CC)(CC)CC.CC[N+](CC)(CC)CC TXBULBYASDPNNC-UHFFFAOYSA-L 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/29—Coupling reactions
- C25B3/295—Coupling reactions hydrodimerisation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrolytic Production Of Metals (AREA)
Description
" Fremgangsmåte til elektrokjemisk fremstilling av pinakol'i "Procedure for the electrochemical preparation of pinacol'i
Foreliggende oppfinnelse angår en ny pg særlig fordelaktig fremgangsmåte til elektrokjemisk fremstilling av pinakol. The present invention relates to a new and particularly advantageous method for the electrochemical production of pinacol.
Organiske karbonylforbindelser, særlig aldehyder og ketoner kan, som kjent, dimeriseres hydrerende til såkalte pihakoler, dvs. Organic carbonyl compounds, in particular aldehydes and ketones, can, as is known, be dimerized by hydration to so-called pie-cols, i.e.
derivater av alkylenglykol. penne hydrodimerisering lykkes bare på elektrokjemisk vei .. • ved©n,katode med'ikke for liten hydrogen-overspenning, ©lier med et egnet reduksjonsmiddel, den lykkes imidlertid ikke under be-tingelsene ved katalytisk hydrering. Fotokjemisk syntese er lite tilfredsstillenda, særlig med henblikk på energiutbytte. Ved elektrokjemisk syntese av pinakol stilles hydrogen til disposisjon av derivatives of alkylene glycol. penne hydrodimerization only succeeds electrochemically .. • at a cathode with not too little hydrogen overvoltage, combined with a suitable reducing agent, it does not, however, succeed under the conditions of catalytic hydrogenation. Photochemical synthesis is not satisfactory, especially with regard to energy yield. During the electrochemical synthesis of pinacol, hydrogen is made available by
protoner av et oppløsningsmiddel, henh. av en tilsatt syres protons of a solvent, acc. of an added acid
Som likeledes kjent skjer pinakoldannélsén fra aromatiske eller aromatisk/alifatiske karbonylforbindelser med høye utbytter, mens man med rent alifatiske forbindelser bare kan vente moderate til dårlige pinakolutbytter. As is also known, the pinacoldane synthesis from aromatic or aromatic/aliphatic carbonyl compounds occurs with high yields, while with purely aliphatic compounds one can only expect moderate to poor pinacol yields.
Denne kjennsgjerning står i sammenheng med stabiliteten åv radikal-mellomprodukter. This fact is related to the stability of radical intermediates.
Ved å gå ut fra aceton erholdes den som "pinakol" kjente tetrametylglykol. Denne forbindelse overføres ved syrekatalysert avspaltnihg av ett henh. to vannmolekyler til pinakolen, henh. 2,3-dimetylbutadien, Starting from acetone, the tetramethylglycol known as "pinacol" is obtained. This compound is transferred by acid-catalyzed cleavage of a two water molecules to the pinacol, henh. 2,3-dimethylbutadiene,
Såvel disse direkte følgeprodukter av pinakol som pinakol selv er interessante mellomprodukter for syntese av polymerer, farmasøytiske produkter og pesticider. En omfattende anvendelse var imidlertid hittil hindret av at man bare disponerte over util-fredsstillende prosesser for fremstilling av pinakol. Both these direct by-products of pinacol and pinacol itself are interesting intermediates for the synthesis of polymers, pharmaceutical products and pesticides. However, an extensive application has so far been hindered by the fact that only unsatisfactory processes for the production of pinacol were available.
Én fremgangsmåte til fremstilling av pinakol består f.eks. One method for producing pinacol consists, for example, of
i at man omsetter aceton med amalgamer av aluminium, magnesium eller natrium. Ved denne fremgangsmåte fremstilles ennå idag pinakol i mindre målestokk. Herved oppstår som biprodukt en stor mengde isopropanol, og utnyttelsesgraden av metallet er forholdsvis lav, in that acetone is reacted with amalgams of aluminium, magnesium or sodium. Pinacol is still produced today on a smaller scale using this method. This results in a large amount of isopropanol as a by-product, and the degree of utilization of the metal is relatively low,
så at man får høye omkostninger. Dessuten virker de resulterende salter forstyrrende som ballast, sistnevnte ulempe unngås riktignok ved direkte elektroreduksjon på katoder av bly, blykobber-legering eller bly-tinnlegering i svovelsure eller alkaliske el-ektrolytter, dog kunne denne fremgangsmåte ikke gjennomføres teknisk på grunn av flere ulemper. Således kan man ikke unngå dannelsen av meget giftige blyorganyler ("blyoljer") som biprodukt ved katoden. so that you get high costs. In addition, the resulting salts have a disturbing effect as ballast, the latter disadvantage is admittedly avoided by direct electroreduction on cathodes of lead, lead-copper alloy or lead-tin alloy in sulfuric acid or alkaline electrolytes, however, this method could not be carried out technically due to several disadvantages. Thus, the formation of highly toxic lead organelles ("lead oils") as a by-product at the cathode cannot be avoided.
Man oppnår også bare små strømutbytter. Ennvidere, må elektrolyt-ten nøytraliseres før opparbeidelsen, for å hindre den syrekata-lyserte vannavspaltning til pinakolen henh. dimetylbutadien, hvor-ved man får store saltmengder. ufordelaktig er også at en del av acetonet reduseres til det verdiløse biprodukt isopropanol, og at Only small current yields are also achieved. Furthermore, the electrolyte must be neutralized before processing, in order to prevent the acid-catalysed water splitting to pinacol acc. dimethylbutadiene, whereby large amounts of salt are obtained. also disadvantageous is that part of the acetone is reduced to the worthless by-product isopropanol, and that
oppløsningene inneholder meget vann som tildels må fordampes under opparbeidelsen. the solutions contain a lot of water, which must partly evaporate during processing.
Foreliggende oppfinnelse har som formål å utvikle en direkte elektrokjemisk fremgangsmåte til fremstilling av pinakol fra aceton, som gjør det mulig å unngå de ovenfor nevnte ulemper. Opp-gaven er løst ved hjelp av fremgangsmåten ifølge oppfinnelsen.. The purpose of the present invention is to develop a direct electrochemical method for the production of pinacol from acetone, which makes it possible to avoid the above-mentioned disadvantages. The task is solved using the method according to the invention.
Ifølge fremgangsmåten fremstilles pinakol ved elektro-lytisk hydrodimerisering av aceton i en delt celle ved at man til elektrolyse anvender en katolytt som inneholder 10 til 90 vekt % aceton, 1 til 60 vekt % vann og 1 til 50 vekt % av et kvaternært ammoniumsalt. According to the method, pinacol is produced by electrolytic hydrodimerization of acetone in a split cell by using for electrolysis a catholyte containing 10 to 90% by weight of acetone, 1 to 60% by weight of water and 1 to 50% by weight of a quaternary ammonium salt.
Som celle anvendes en delt celle. Som skillevegg egner seg porøse diafragmaer, særlig kationutvekslingsmembraner av typen sulfonert, fornettet polystyren. As a cell, a split cell is used. Porous diaphragms, particularly cation exchange membranes of the sulphonated, cross-linked polystyrene type, are suitable as a partition wall.
Som anode brukes blydioksydbelagt bly, grafitt eller titan, særlig i forbindelse med 1 til I0%ig svovelsyre som anolytt. As anode, lead dioxide-coated lead, graphite or titanium is used, especially in connection with 1 to 10% sulfuric acid as anolyte.
Katolytten inneholder 10 til 90, fortrinnsvis 40 til 80 vekt % aceton, 1 til 60, fortrinnsvis 5 til 30 vekt % vann og 1 til 50, fortrinnsvis 5 til 20 vekt % av et kvaternært ammoniumsalt. The catholyte contains 10 to 90, preferably 40 to 80% by weight of acetone, 1 to 60, preferably 5 to 30% by weight of water and 1 to 50, preferably 5 to 20% by weight of a quaternary ammonium salt.
Som kvaternære ammoniumsalter egner seg f.eks. forbindelser med formelen As quaternary ammonium salts, e.g. compounds with the formula
i hvilken rester R er alkylrester, såsom alkylrester med 1 til 6 C-atomer, f.eks. metyl, etyl, n-propyl, i-propyl, n-butyl, aryl-rester,såsom fenylresten, og aralkylrester, såsom benzylrésten, og2fe er et anion, f.eks. en sulfat-, alkylsulfat-, fosfat-, karbonat-, arylsulfonat, såsom tosylat-, tétrafluorborat-,, heksafluorsilikat-, halogenid- og perklorat-anion. in which residues R are alkyl residues, such as alkyl residues with 1 to 6 C atoms, e.g. methyl, ethyl, n-propyl, i-propyl, n-butyl, aryl residues, such as the phenyl residue, and aralkyl residues, such as the benzyl residue, and 2fe is an anion, e.g. a sulfate, alkyl sulfate, phosphate, carbonate, aryl sulfonate such as tosylate, tetrafluoroborate, hexafluorosilicate, halide, and perchlorate anion.
Særlig godt egnet som slike ledesalter er tetraetylammonium-etylsulfat, tetraetylammonium-p-toluensulfonat, tetraetylammonium-sulfat og tetrabutylammoniumtetrafluorborat. Konsentrasjonen av disse salter, skal i det angitte område holdes lavest mulig for å oppnå en enkel isolering av pinakol og å hindre dens anodiske spaltning. Tetraethylammonium ethylsulfate, tetraethylammonium p-toluenesulfonate, tetraethylammonium sulfate and tetrabutylammonium tetrafluoroborate are particularly suitable as such conducting salts. The concentration of these salts must be kept as low as possible in the specified range in order to achieve a simple isolation of pinacol and to prevent its anodic decomposition.
Som katodematerialer kan i prinsippet brukes alle metaller med middel8 eller høy hydrogen-overspenning, altså Cu, Ag, Cd, Zn, Sn, Pb, Ti, Hg, såvel som rene metaller som i form av deres le-geringer, særlig fordelaktige katodematerialer er.imidlertid grafitt, kull eller grafittfylt kunststoff. Eksempelvis kan.her nevnes de i handelen tilgjengelige elektrodekull av LEK eller EXN-type As cathode materials, in principle, all metals with an average or high hydrogen overvoltage can be used, i.e. Cu, Ag, Cd, Zn, Sn, Pb, Ti, Hg, as well as pure metals which, in the form of their alloys, are particularly advantageous cathode materials .however, graphite, coal or graphite-filled plastic. For example, the commercially available electrode carbons of the LEK or EXN type can be mentioned here
av fa. conradty, Ntlrnberg, eller av DIABON N, BS 70 eller P 127-typen av fa. Sigri,Meitingen, henholdsvis av BASCODUR-typen av fa. Raschig, Ludwigshafen. Hensiktsmessig renser man kullkatodene omhyggelig før elektrolysen, f.eks. ved spyling med konsentrert saltsyre og/eller ved børsting med rent kvartspulver. Det er fordelaktig å oppbevare de vanligvis porøse kullelektroder i destillert Vann. En stigning i strømutbyttet av pinakol kan kun oppnås dersom bestemte metaller, såsom Hg, Pb, Cu, Ag, Au, før elektrolysen avsettes enkeltvis eller i blanding på katoden i et meget tynt sjikt, nemlig mellom 1 og 1000 atomlag, fortrinnsvis mellom 30 og 100 atomlag. Herfor nedsenker man elektrodene i den ferdig .monterte celle i en fortynnet, surgjort vandig oppløsning av tilsvarende metallsalter, såsom pbfNQ^^* Hg-JO^,CuSO^, AgBTC^, Aucl^, og man avsetter, under omveltning av oppløsningen, ved strøm-tettheter på n 0,1 til 1 amp/dm 2i løpet av den beregnede tid. Me-tallene er sannsynligvis fordelt som øyer på bestemte steder av overflaten og danner ikke et sammenhengende sjikt. ;Strømtettheten er ikke kritisk Ved fremgangsmåten ifølge oppfinnelsen, og den ligger f.eks. ved 0,1 til 100amp/dra<2>, fortrinnsvis ved 5 til 25 anp/dm 2. ;Temperaturen hold33 hensiktsmessig mellom 0 og 50°C<, Lave temperaturer øker riktignok strømutbyttet, men de krever tekniske hjelpemidler. Man foretrekker derfor temperaturer på 20 til 35°C. ;pH-verdien visto seg ved bruken av kullkatoder å ha liten betydning, og den kan innstilles til mellom 1 og 14. En pH-regu-lering i katolytten skjer ved tilsetning av fortynnet syre. ;Én god konveksjon av katolytten er fordelaktig. Den oppnås f.ekSo ved ompumping. StrØmningshastigheten parallelt til katoden innstilles herved fortrinnsvis på verdier mellom 0,1 og 50 cm/sek. ;Ved opparbeidelsen av katolytten anbefales følgende arbéids-måtes ;<p>ørst innstiller man pH-verdien av katolytten på ca. 7» Ikke omsatt aceton og det dannede isopropanol strippes sammen med en del av vannet under nedsatt trykk, ben resterende sump kjøles, ;eventuelt etter tilsetning av vann, til 0°C under omrøring. Herved utkrystalliserer pihakol-heksahydrat som'lett kan frafiltréres. eller sentrifugeres. Det vaskes med litt isvann. Moderluten eks- . traheres med eter eller metylenklorid for å fjerne vannoppløselige biprodukter, f.eks. den usymmetriske dimer 2-metylenpentandiol-(2,4). Den resterende ledesaltoppløsning kan returneres til elektrolysen. ;For kontinuerlig omsetning av katolytten fjernes den med pinakol anrikede katolytt kontinuerlig fra cellen og opparbeides som beskrevet ovenfor. Samtidig tilføres den acetonrike utgangs-oppløsning kontinuerlig til cellen. , ;Ifølge fremgangsmåten kan man oppnå strømutbytter av pinakol på over 65 Disse strømutbytter overskrider betydelig de hittil i 'lit tér a tur on for pinakol-syntose angitte verdier på 37 % ;(US-PS 2 485 258) henh. 44 % (US-*>S 2 422'468). of fa. conradty, Ntlrnberg, or of the DIABON N, BS 70 or P 127 type of fa. Sigri, Meitingen, respectively of the BASCODUR type from fa. Raschig, Ludwigshafen. It is expedient to clean the carbon cathodes carefully before the electrolysis, e.g. by flushing with concentrated hydrochloric acid and/or by brushing with pure quartz powder. It is advantageous to store the usually porous carbon electrodes in distilled water. An increase in the current yield of pinacol can only be achieved if certain metals, such as Hg, Pb, Cu, Ag, Au, before the electrolysis are deposited individually or in mixture on the cathode in a very thin layer, namely between 1 and 1000 atomic layers, preferably between 30 and 100 atomic layers. For this purpose, the electrodes in the fully assembled cell are immersed in a diluted, acidified aqueous solution of corresponding metal salts, such as pbfNQ^^* Hg-JO^,CuSO^, AgBTC^, Aucl^, and deposited, while stirring the solution, by current densities of n 0.1 to 1 amp/dm 2 during the calculated time. The metals are probably distributed as islands in certain places of the surface and do not form a continuous layer. ;The current density is not critical In the method according to the invention, and it lies e.g. at 0.1 to 100amp/dra<2>, preferably at 5 to 25 anp/dm 2. ;Keep the temperature appropriately between 0 and 50°C<, Low temperatures do increase the current yield, but they require technical aids. Temperatures of 20 to 35°C are therefore preferred. With the use of carbon cathodes, the pH value turned out to be of little importance, and it can be set to between 1 and 14. A pH regulation in the catholyte takes place by adding dilute acid. ;One good convection of the catholyte is beneficial. It is achieved, for example, by re-pumping. The flow speed parallel to the cathode is hereby preferably set to values between 0.1 and 50 cm/sec. ;When working up the catholyte, the following arbéids method is recommended ;<p>first you set the pH value of the catholyte to approx. 7» Unreacted acetone and the formed isopropanol are stripped together with part of the water under reduced pressure, the remaining sump is cooled, possibly after the addition of water, to 0°C with stirring. This crystallizes pitacol hexahydrate which can easily be filtered off. or centrifuged. It is washed with a little ice water. The mother liquor ex- . triturate with ether or methylene chloride to remove water-soluble by-products, e.g. the unsymmetrical dimer 2-methylenepentanediol-(2,4). The remaining lead salt solution can be returned to the electrolysis. ;For continuous turnover of the catholyte, the catholyte enriched with pinacol is continuously removed from the cell and processed as described above. At the same time, the acetone-rich starting solution is continuously supplied to the cell. , ;According to the method, current yields of pinacol of over 65% can be obtained. These current yields significantly exceed the values of 37% stated so far in 'lit tér a tur on for pinacol synthesis; (US-PS 2 485 258) acc. 44% (US-*>S 2,422,468).
Fremgangsmåten ifølge oppfinnelsen kan,gjennomføres såvel diskontinuerlig som kontinuerlig. Ved den kontinuerlige arbeids-måte pumpes reaksjonsblandingen kontinuerlig i krets gjennom cellen (og hensiktsmessig en varmeveksler), eller man leder reaksjons-.blandingen gjennom en cellekaskade. The method according to the invention can be carried out both discontinuously and continuously. In the continuous mode of operation, the reaction mixture is continuously pumped in a circuit through the cell (and suitably a heat exchanger), or the reaction mixture is led through a cell cascade.
Ved siden'av det høye strømutbytte har fremgangsmåten ifølge oppfinnelsen også andre fordeler sammenlignet, med kjente fremgangsmåter. Således får man ikke den utfelling av salter som. uunngåelig,fås ved nøytralisering av syrene, Da oppløsningen inneholder bare 'forholdsvis lite vann, trenger man bare lite energi for oppkonsentrering av elektrolyseprodukter. In addition to the high current yield, the method according to the invention also has other advantages compared to known methods. Thus, you do not get the precipitation of salts that. inevitable, obtained by neutralizing the acids. As the solution only contains relatively little water, only little energy is needed for the concentration of electrolysis products.
Bksempol 1 Bksempol 1
En rektangulær plate- og rammecelle består ay en katode-plate, en kationutveksiingsraembran, en blydipksyd-bslagt anode-sluttplate av bly, de to ©lektrolyttrom-rammer av polypropylen (katoderom^rammen bærer ved den øvre og nedre smalside tilslutning-er for innføring og bortføring av katolytt) og.tetninger av PERBUWAH. Cellekomponentene monteres sammen etter mønster av en filterpresse. Katolytten pumpes i krets over en.varmeveksler. Bort-sett fra katodéoverflaten, skal katolytten ikke på noe sted komme i berøring med metaller, da spor av fremmedene tal ler, såsom Fe, Cu, Hi, Cr virker.skadelig på produktutbyttet. Anolytten kjøles i anoderommet ved hjelp av en kjølespiral. Katolytten er forbundet med utsiden ved hjelp av en lakekjølt avgassledning. Den frie katodeover- flate er ved foreliggende celle 2,5 dm , og avstanden mellom ka-todeoverflaten og membranoverflaten er 0,6 cm. A rectangular plate and frame cell consists of a cathode plate, a cation exchange frame, a lead dip-oxide-coated anode end plate of lead, the two electrolyte frames made of polypropylene (the cathode frame carries at the upper and lower narrow sides connections for insertion and abduction of catholyte) and.seals of PERBUWAH. The cell components are assembled according to the pattern of a filter press. The catholyte is pumped in a circuit over a heat exchanger. Apart from the cathode surface, the catholyte must not come into contact with metals anywhere, as traces of foreign substances, such as Fe, Cu, Hi, Cr, are detrimental to the product yield. The anolyte is cooled in the anode compartment by means of a cooling coil. The catholyte is connected to the outside by means of a lake-cooled exhaust line. The free cathode surface in the present cell is 2.5 dm, and the distance between the cathode surface and the membrane surface is 0.6 cm.
Ved begynnelsen av elektrolysen fylles anoderommet med 5%-ig svovelsyre. I katolytt-kretsløpet innføres 1 kg av en blanding av 80 vekt % teknisk aceton, 13 % destillert vann og 7 % tetra-etylamraonium-etylsulfat (NEt^EtSO^). Katolytten pumpes om med en glass-sentrlfugepumpe, tilsvarende en hastighet ved katoden på 8 cm/sek. Joulsk varme som oppstår under elektrolysen føres bort ved hjelp av en vannkjølt kjøler, slik at temperaturen holdes ved 25°C. Elektrolysen gjennomføres ved en strømstyrke av 25 A svåren-de til en strømtetthet av lo A/dm . At the start of the electrolysis, the anode compartment is filled with 5% sulfuric acid. In the catholyte circuit, 1 kg of a mixture of 80% by weight technical acetone, 13% distilled water and 7% tetraethylamraonium ethylsulphate (NEt^EtSO^) is introduced. The catholyte is re-pumped with a glass centrifugal pump, corresponding to a speed at the cathode of 8 cm/sec. Joule heat that occurs during the electrolysis is carried away by means of a water-cooled cooler, so that the temperature is kept at 25°C. The electrolysis is carried out at a current of 25 A resulting in a current density of lo A/dm.
Cellespenningen stiger under elektrolysen fra 19 til 24 volt. Katolytten holdes svakt aur ved tilsetning av litt fortynnet svovelsyre. I anoderommet innføres porsjonsvis destillert vann for å kompensere vanntap ved elektroosmose. Etter passasjen av 129,5 amperetimer, svarende til en elektrolysetid på 5,18 timer og en teoretisk strømomsetning på 35 %, avbrytes elektrolysen. The cell voltage rises during electrolysis from 19 to 24 volts. The catholyte is kept slightly auric by the addition of slightly diluted sulfuric acid. Portion-by-portion distilled water is introduced into the anode compartment to compensate for water loss by electroosmosis. After the passage of 129.5 ampere-hours, corresponding to an electrolysis time of 5.18 hours and a theoretical current conversion of 35%, the electrolysis is interrupted.
Etter stripping av de lavtkokende komponenter i rotasjons-fordamperen ved romtemperatur og vannstrålevakuum behandles residuet med 100 g vann og kjøles til 0°C under røring. Krystallisatet vaskes med litt vann og veies som "råkrystallisat". Ved vann- henh. pinakol-analyse ved Karl-Pischer-titrering eller ved gasskroma-tografi bestemmer man pinakol. Sammensetningen av krystallisatet svarer omtrent til et pinakol-heksahydrat (teoretisk 52,3 % pinakol). En N/S-analyse viser at råkrystallisatet bestandig inneholder mindre enn 1 % av det anvendte ledesalt. After stripping the low-boiling components in the rotary evaporator at room temperature and water jet vacuum, the residue is treated with 100 g of water and cooled to 0°C with stirring. The crystallisate is washed with a little water and weighed as "raw crystallisate". In the case of water supply Pinacol analysis Pinacol is determined by Karl-Pischer titration or by gas chromatography. The composition of the crystallisate corresponds approximately to a pinacol hexahydrate (theoretically 52.3% pinacol). An N/S analysis shows that the crude crystallisate always contains less than 1% of the lead salt used.
Moderluten ekstraheres i en kontinuerlig ekstraktor med eter. The mother liquor is extracted in a continuous extractor with ether.
Eter-ekstrakten (gjennomsnittlig 5 til 30g) inneholder ved siden av pinakol (gjennomsnittlig lo til 20 %) særlig 2-metylpentandiol-(2,4) (gjennomsnittlig 20 til 70 %), derimot intet pinakolon. Pinakol tas i betraktning ved beregningen av strømutbytter.En N/S-analyse viser at mindre enn 0,5 % av det brukté ledesalt går over i eter-ekstrakten.N/S-analyse av den ekstraherte moderlut viser at mer enn 90% av det brukte ledesalt gjenfinnes der. Det dannede isopropanol bestemmes i katolytten dirékte ved gass-kromatografi. The ether extract (average 5 to 30g) contains besides pinacol (average 10 to 20%) especially 2-methylpentanediol-(2,4) (average 20 to 70%), but no pinacolon. Pinacol is taken into account when calculating current yields. An N/S analysis shows that less than 0.5% of the used lead salt passes into the ether extract. N/S analysis of the extracted mother liquor shows that more than 90% of the used conductive salt is found there. The isopropanol formed is determined directly in the catholyte by gas chromatography.
I tabell z er de erholdte strømutbytter sammenstilt i avhengighet av katodematerialet. In table z, the obtained current yields are compiled in dependence on the cathode material.
Resultatene viser at man erholder pinakol ved fremgangsmåten ifølge oppfinnelsen med strømutbytter på 70 til 80 %. På overraskende måte danner en polert kobberplate en gunstig katode, derimot ikke en forkobret grafittplate. De to for sammenligningens skyld angitte forsøk med svovelsur elektrolytt ( 7% H2S04isteden-for 7% NEt4EtS04) viser at under disse kjente reaksjonsbetingelser synker strømutbyttet meget sterkt. The results show that pinacol is obtained by the method according to the invention with current yields of 70 to 80%. Surprisingly, a polished copper plate forms a favorable cathode, whereas a pre-coppered graphite plate does not. The two tests given for the sake of comparison with sulfuric acid electrolyte (7% H2S04 instead of 7% NEt4EtS04) show that under these known reaction conditions the current yield drops very strongly.
Eksempel 2 Example 2
I den i eksempel 1 beskrevne plate- og rammecelle omsettes den der beskrevne katolytt med 7%NEt^Etso^i 1,5 kg charger under de der beskrevne betingelser ved enDIABON-N-katode. Løpetiden pr. charge utgjør ved 35 % teoretisk strømomsetning 7 timer og 47 minutter. Katoden blir ikke renset mellom de enkelte charger, katoderommet er fylt med destillert vann i de ca. 16 timer varende pauser mellom elektrolyseprosessene. In the plate and frame cell described in example 1, the catholyte described there is reacted with 7% NEt^Etso^ in 1.5 kg charger under the conditions described there at a DIABON-N cathode. The duration per charge amounts to 7 hours and 47 minutes at 35% theoretical power turnover. The cathode is not cleaned between the individual charges, the cathode compartment is filled with distilled water in the approx. 16-hour breaks between electrolysis processes.
I tabell II er resultatene for de enkelte charger angitt i kronologisk rekkefølge. In Table II, the results for the individual chargers are listed in chronological order.
Aktiviteten av katoden synker altså bare lite med tiden. En analog forsøksrekke med en forblyet kobberkatode (se tabell I) viste på analog måte bare en liten tids-avhengighet av resultatene. Her stod katoderommet under aceton mellom forsøkene for å hindre korrosjon av blyet. Derimot synker aktiviteten av den samme katode i svovelsur elektrolytt allerede innenfor 24 timer betydelig, jfr. US-PS 2 422 468, 2 485 258 og 0;C.Slotterbeck,< Trans,©lectrochem. Soc. 92, 377 (1947). The activity of the cathode therefore decreases only slightly with time. An analogous series of experiments with a leaded copper cathode (see Table I) similarly showed only a slight time dependence of the results. Here, the cathode compartment was under acetone between experiments to prevent corrosion of the lead. In contrast, the activity of the same cathode in sulfuric acid electrolyte drops significantly already within 24 hours, cf. US-PS 2,422,468, 2,485,258 and 0;C.Slotterbeck,< Trans,©lectrochem. Soc. 92, 377 (1947).
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19732345461 DE2345461C3 (en) | 1973-09-08 | Process for the production of pinacol by the electrolytic hydrodimerization of acetone |
Publications (1)
Publication Number | Publication Date |
---|---|
NO743223L true NO743223L (en) | 1975-03-11 |
Family
ID=5892089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO743223A NO743223L (en) | 1973-09-08 | 1974-09-06 |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS5053311A (en) |
AT (1) | ATA720674A (en) |
BE (1) | BE819671A (en) |
CH (1) | CH594744A5 (en) |
FR (1) | FR2243276A1 (en) |
NL (1) | NL7411584A (en) |
NO (1) | NO743223L (en) |
SE (1) | SE7411198L (en) |
-
1974
- 1974-08-30 NL NL7411584A patent/NL7411584A/en unknown
- 1974-09-04 SE SE7411198A patent/SE7411198L/ not_active Application Discontinuation
- 1974-09-04 CH CH1198674D patent/CH594744A5/xx not_active IP Right Cessation
- 1974-09-06 NO NO743223A patent/NO743223L/no unknown
- 1974-09-06 FR FR7430256A patent/FR2243276A1/en active Granted
- 1974-09-06 AT AT720674A patent/ATA720674A/en not_active Application Discontinuation
- 1974-09-09 BE BE148316A patent/BE819671A/en unknown
- 1974-09-09 JP JP49103074A patent/JPS5053311A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
BE819671A (en) | 1975-03-10 |
NL7411584A (en) | 1975-03-11 |
DE2345461A1 (en) | 1975-03-27 |
FR2243276A1 (en) | 1975-04-04 |
FR2243276B3 (en) | 1977-06-17 |
SE7411198L (en) | 1975-03-10 |
JPS5053311A (en) | 1975-05-12 |
ATA720674A (en) | 1976-07-15 |
DE2345461B2 (en) | 1976-07-15 |
CH594744A5 (en) | 1978-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3899401A (en) | Electrochemical production of pinacols | |
US4714530A (en) | Method for producing high purity quaternary ammonium hydroxides | |
EP0032427B1 (en) | Preparation of hydroxy compounds by electrochemical reduction | |
US2867569A (en) | Electrolysis process | |
JPS57155390A (en) | Manufacture of organic ammonium hydroxide using ion exchange membrane | |
US3984294A (en) | Electrochemical manufacture of pinacol | |
JPS6249358B2 (en) | ||
JPS6342713B2 (en) | ||
NO743223L (en) | ||
US3879271A (en) | Production of diesters of dicarboxylic acids by electrochemical condensation of monoesters of dicarboxylic acids | |
KR890002864B1 (en) | Process for the preparation of m-hydroxy benzyl alcohol | |
JPS6342712B2 (en) | ||
JPS6240432B2 (en) | ||
JPS6330992B2 (en) | ||
US3969200A (en) | Manufacture of propiolic acid | |
US2916426A (en) | Electrolytic production of unsymmetrical dimethylhydrazine | |
US3684668A (en) | Manufacture of cyclohexadiene-dioic acids | |
JPH03107490A (en) | Preparation of aminobenzyl alcohol | |
EP0095206B1 (en) | Process for the synthesis of 2,4,6-trimethyl-4-hydroxycyclohexa-2,5-dien-1-one | |
US3783112A (en) | Manufacture of sebacic acid diesters | |
JPS63317686A (en) | Manufacture of fluorinated vinyl ether | |
JP2778978B2 (en) | Electrochemical synthesis of 2-arylhydroquinones | |
DE2345461C3 (en) | Process for the production of pinacol by the electrolytic hydrodimerization of acetone | |
JPS6050190A (en) | Production of 2,5-dimethylhexanedinitrile | |
JPS6160893A (en) | Manufacture of octacosanic ester |