NO742505L - - Google Patents
Info
- Publication number
- NO742505L NO742505L NO742505A NO742505A NO742505L NO 742505 L NO742505 L NO 742505L NO 742505 A NO742505 A NO 742505A NO 742505 A NO742505 A NO 742505A NO 742505 L NO742505 L NO 742505L
- Authority
- NO
- Norway
- Prior art keywords
- nitrogen
- air
- liquid
- rectification column
- condenser
- Prior art date
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 112
- 229910052757 nitrogen Inorganic materials 0.000 claims description 56
- 239000007788 liquid Substances 0.000 claims description 41
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 26
- 229910052760 oxygen Inorganic materials 0.000 claims description 26
- 239000001301 oxygen Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 238000010992 reflux Methods 0.000 claims description 3
- 238000007710 freezing Methods 0.000 claims 2
- 230000008014 freezing Effects 0.000 claims 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 239000002360 explosive Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04339—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04818—Start-up of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/42—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
Fremgangsmåte samt apparat for separering av luft til fremstillingMethod and apparatus for separating air for production
av flytende nitrogen.of liquid nitrogen.
Oppfinnelsen vedrører en fremgangsmåte samt et apparat, for separering av luft for. fremstilling av et forråd av flytende nitrogen som f. eks. deretter-kan benyttes til formål som reduksjon av brenn-barheten til en gassblanding i slike rom som lasterom, mellomrom eller andre deler på skip, særlig oljetanker eller naturgasstanker, og installasjoner på land, såsom oljetanker. The invention relates to a method and an apparatus for separating air from production of a supply of liquid nitrogen such as can then be used for purposes such as reducing the flammability of a gas mixture in such spaces as cargo spaces, intermediate spaces or other parts on ships, especially oil tanks or natural gas tanks, and installations on land, such as oil tanks.
Hydrokarbondamper' i tankskip og lagringstanker, har en ten-dens til å blande seg med oksygen i luften og gi eksplosive blandin-ger. Den vanlige metode for å forhindre en slik eksplosjon er å sik-re at de eksplosive konsentrasjoner ikke .oppnås."En fremgangsmåte har vært å opprettholde en inert atmosfære i tanken ved frembringelse av en inert gass og innføring av denne i tanken hvis en oppbygging av en eksplosiv blanding enten er ventet eller vist av en registrerings-innretning. Hydrocarbon vapors in tankers and storage tanks have a tendency to mix with oxygen in the air and produce explosive mixtures. The usual method of preventing such an explosion is to ensure that the explosive concentrations are not reached."One method has been to maintain an inert atmosphere in the tank by producing an inert gas and introducing this into the tank if a build-up of an explosive mixture is either expected or indicated by a recording device.
I et kjent system blir inert gass fremstilt i store meng- ' der fra forbrenningsproduktene til skipets motor eller fra spesielt utformede brennere.. Inert gass, fra slike kilder inneholder en høy andel av karb.ondioksyd som kan reagere med visse laster og kan inne-holde korrosive oksyder, f. eks. svovel eller vanadium. Et annet potensielt problem er at en kontinuerlig krets eksisterer mellom for-brenningssonen, og den del av beholderen hvor man vil hindre en eksplosjon. In a known system, inert gas is produced in large quantities from the combustion products of the ship's engine or from specially designed burners. Inert gas from such sources contains a high proportion of carbon dioxide which can react with certain loads and can contain keep corrosive oxides, e.g. sulfur or vanadium. Another potential problem is that a continuous circuit exists between the combustion zone and the part of the container where an explosion is to be prevented.
Det er derfor ønskelig å benytte i det vesentlige rent nitrogen i opprettholdelsen av den inerte atmosfære. • It is therefore desirable to use essentially pure nitrogen in maintaining the inert atmosphere. •
Oppfinnelsen har således til hensikt å tilveiebringe en fremgangsmåte og et apparat for dannelse av i det vesentlige rent . flytende nitrogen som hvis ønsket, kan benyttes, til dannelsen av en inert atmosfære. The invention thus aims to provide a method and an apparatus for the formation of essentially pure . liquid nitrogen which, if desired, can be used to create an inert atmosphere.
Ifølge oppfinnelsen er det. tilveiebragt en fremgangsmåte for separering av luft til fremstilling av flytende nitrogen, ved hvilken den innkommende luft komprimeres, kjøles i en varmeveksler og føres inn i en rektifikasjonskolonne i hvilken den innkommende luft separeres til nitrogendamp og en oksygenanriket væske, at ihvert fall en del av den oksygenanrikede væske ekspanderes og varmeutveksles med en del av nitrogendampen for å frembringe en tilbakestrømning som inn-føres i rektifikasjonskolonnen, at en annen del av nitrogendampen inn-føres i en kondensator i hvilken den komprimeres., og en del av den According to the invention it is. provided a method for separating air for the production of liquid nitrogen, in which the incoming air is compressed, cooled in a heat exchanger and fed into a rectification column in which the incoming air is separated into nitrogen vapor and an oxygen-enriched liquid, that at least part of it oxygen-enriched liquid is expanded and heat exchanged with part of the nitrogen vapor to produce a return flow which is introduced into the rectification column, that another part of the nitrogen vapor is introduced into a condenser in which it is compressed, and part of it
væske som fremstilles i kondensatoren innføres, i rektifikasjonskolonnen for å tilveiebringe en kjøling i denne. v liquid produced in the condenser is introduced into the rectification column to provide cooling therein. v
Oppfinnelsen vedrører også et luftsepareringsapparat for fremstilling av flytende nitrogen, som omfatter en luftkompressor, en varmeveksler, for kjøling av den komprimerte luft, en rektifikasjonskolonne som kan drives til å separere den komprimerte luft til nitrogendamp og en oksygenanriket væske, en ekspansjonsventil for ekspan-dering av den oksygenanrikede væske, en varmeveksler for utøvelse av en indirekte kontakt mellom den ekspanderte oksygenanrikede væske og en. del av nitrogendampen for å frembringe en tilbakestrømning av nitrogen, hvilken strøm gjeninnføres i rektifikasjonskolonnen, og en kondensator i hvilken ved bruk en annen del av nitrogendampen komprimeres og fra hvilken en del av den. frembragte væske innføres i rektifikasjonskolonnen. The invention also relates to an air separation apparatus for the production of liquid nitrogen, which comprises an air compressor, a heat exchanger, for cooling the compressed air, a rectification column which can be operated to separate the compressed air into nitrogen vapor and an oxygen-enriched liquid, an expansion valve for expanding of the oxygen-enriched liquid, a heat exchanger for effecting an indirect contact between the expanded oxygen-enriched liquid and a. part of the nitrogen vapor to produce a reflux of nitrogen, which stream is reintroduced into the rectification column, and a condenser in which, in use, another part of the nitrogen vapor is compressed and from which part of it. produced liquid is introduced into the rectification column.
Rektifikasjonskolonnen drives fortrinnsvis ved i det vesentlige det samme trykk som den innkommende luft komprimeres til. Den innkommende luft blir fortrinnsvis komprimert til et lavt trykk The rectification column is preferably operated at essentially the same pressure to which the incoming air is compressed. The incoming air is preferably compressed to a low pressure
i størrelses.området 2-4 'bar, og fortrinnsvis i området. 3-4 bar. in the size range 2-4' bar, and preferably in the range. 3-4 bars.
Det kan benyttes en eller flere varmevekslere- til å kjøle den komprimerte luft. Hovedvarmeveksleren for kjøling av den komprimerte, luft er vanligvis kjølt såvel av en strøm'som tas fra den oksygenanrikede væske og en strøm som består av en del av nitrogendampen som skal innføres, i kondensatoren. Den oksygenanrikede strøm består fortrinnsvis av minst en del oksygenanriket væske fremstilt i rektifikasjonskolonnen og er. tatt etter at den oksygenanrikede væske er blitt benyttet til å kjøle den del av nitrogendampen som tas fra tilbake strømmen . One or more heat exchangers can be used to cool the compressed air. The main heat exchanger for cooling the compressed air is usually cooled both by a stream taken from the oxygen-enriched liquid and a stream consisting of part of the nitrogen vapor to be introduced into the condenser. The oxygen-enriched stream preferably consists of at least part of the oxygen-enriched liquid produced in the rectification column and is. taken after the oxygen-enriched liquid has been used to cool the part of the nitrogen vapor taken from the return flow.
For andre formål enn små flytende nitrogenfremstillingsan-legg er det. foretrukket å benytte en reverserende varmeveksler som hovedvarmeveksler.. I små anlegg, slik som de som benyttes, ombord på sjøgående skip, kan fordelaktig en ikke-reverserende varmeveksler, benyttes. Den komprimerte luft er. fortrinnsvis ført gjennom en adsorber eller absorber som fjerner karbondioksyd og vanndamp før luften innføres i den ikke-reverserende varmeveksler. En egnet adsorber omfatter ett eller flere lag av et egnet molekylart siktmateriale. Alternativt kan karbondioksyd og vanndamp ekstraheres, fra den innkommende luft oppstrøms for kompressoren. For purposes other than small liquid nitrogen production plants it is. preferred to use a reversing heat exchanger as the main heat exchanger. In small installations, such as those used on board seagoing ships, a non-reversing heat exchanger can advantageously be used. The compressed air is. preferably passed through an adsorber or absorber which removes carbon dioxide and water vapor before the air is introduced into the non-reversing heat exchanger. A suitable adsorber comprises one or more layers of a suitable molecular sieve material. Alternatively, carbon dioxide and water vapor can be extracted from the incoming air upstream of the compressor.
I noen tilfeller er. det nødvendig å varme en eller begge de oksygenanrikede strømmer og nitrogendampstrømmen før de går inn i hovedvarmeveksleren for å forhindre en flytendegjørelse av den innkommende luft. • Oppvarmingen kan utføres ved.en varmeveksler i hvilken oksygenanriket strøm og nitrogendamp bringes, i indirekte kontakt med relativt varm luft som tas fra den komprimerte strøm som går inn i rektifikasjonskolonnen. Den således kjølte luft blir så ført tilbake til rektifikasjonskolonnen ved et nivå nær det hvor den gjenblivende komprimerte .strøm innføres. In some cases it is. it is necessary to heat one or both of the oxygen-enriched streams and the nitrogen vapor stream before entering the main heat exchanger to prevent liquefaction of the incoming air. • The heating can be carried out by a heat exchanger in which oxygen-enriched stream and nitrogen vapor are brought into indirect contact with relatively hot air taken from the compressed stream entering the rectification column. The thus cooled air is then returned to the rectification column at a level close to where the remaining compressed stream is introduced.
Den kjølte luft som forlater hovedvarmeveksleren føres fortrinnsvis direkte til rektifikasjonskolonnen uten å gjennomgå noe ekspansjonstrinn. The cooled air leaving the main heat exchanger is preferably fed directly to the rectification column without undergoing any expansion step.
Rektifikasjonskolonnen har fortrinnsvis skåler isteden for å være pakket for å bevirke separering av den komprimerte luft. Bare , for meget små installasjoner, kan det væf<»>e hensiktsmessig å benytte en pakket kolonne. The rectification column preferably has bowls instead of being packed to effect separation of the compressed air. Only for very small installations, it may be appropriate to use a packed column.
Selv om det kan benyttes en dobbelt rektifikasjonskolonne, er en enkel kolonne fullstendig tilstrekkelig for de fleste formål, da vanligvis oksygenanriket. væske bare må konsentreres til et oksy-geninnhold i området 35 - 40. volumprosent. En enkelt kolonne kan lett drives til å gi en meget ren\,nitrogendamp, vanligvis inneholden-de mer. enn 99,5 volumprosent nitrogen. Although a double rectification column can be used, a single column is completely sufficient for most purposes, then usually oxygen enriched. liquid only needs to be concentrated to an oxygen content in the range of 35 - 40 percent by volume. A single column can easily be operated to give a very pure nitrogen vapor, usually containing more. than 99.5 volume percent nitrogen.
Kondensatoren kan være en kjølemaskin beregnet, på å utføre en egnet termodynamisk syklus, f. eks. en "Sterling"-syklus, for å gjøre nitrogendampen flytende. En slik maskin omfatter vanligvis en eller flere frem- og tilbakegående stempler eller fortrengere som bet; virker, såvel kompresjon som ekspansjon av nitrogendampen, innretnin-ger .såsom en termisk regenerator, for overføring av varme mellom.den komprimerte og den ekspanderte damp, og et forråd for oppsamling av væske som dannes i maskinen. En særlig egnet kondensator er en "Philips-kryogenerator". The condenser can be a cooling machine designed to carry out a suitable thermodynamic cycle, e.g. a "Sterling" cycle, to liquefy the nitrogen vapor. Such a machine usually comprises one or more reciprocating pistons or displacers which bite; works, both compression and expansion of the nitrogen vapour, facilities such as a thermal regenerator, for the transfer of heat between the compressed and the expanded vapour, and a reservoir for collecting liquid that is formed in the machine. A particularly suitable condenser is a "Philips cryogenerator".
Alternativt kan kondensatoren omfatte en kompressor og en ekspandéringsinnretning som er adskilt fra hverandre. F. eks. kan nitrogendampen gjøres, flytende ved først å komprimere den og så kjøle den i to eller flere varmevekslere, og en del av nitrogendampstrømmen som tas ut fra et område av kondensatoren mellom to varmevekslere,, ekspanderes i en ekspansjonsturbin som benyttes til å kjøle varme-vekslerne til kondensatoren og returneres til kondensatorens kompressor. Alternatively, the condenser may comprise a compressor and an expansion device which are separated from each other. For example the nitrogen vapor can be liquefied by first compressing it and then cooling it in two or more heat exchangers, and part of the nitrogen vapor stream which is withdrawn from an area of the condenser between two heat exchangers, is expanded in an expansion turbine which is used to cool the heat exchangers to the condenser and returned to the condenser's compressor.
Ved faste driftsbetingelser blir mellom 5 og 15 % av det nitrogen som dannes pr. tidsenhet i kondensatoren fortrinnsvis ført tilbake til kolonnen. Det nøyaktige forhold som således blir- retur-nert kan regulers, slik at det. er sikret fordelaktige betingelser i kolonnen.. Nitrogen som føres tilbake til kolonnen kompenserer for kjøletap fra den varme ende av hovedvarmeveksleren og gjennom isolap sjonen som omgir apparatet, ifølge oppfinnelsen. ■ Resten av 'den flytende nitrogen som dannes i kondensatoren kan føres inn i en forrådsbe-holder.eller til et anlegg eller utstyr som krever en tilførsel av flytende nitrogen. Under fixed operating conditions, between 5 and 15% of the nitrogen formed per time unit in the condenser preferably returned to the column. The exact ratio that is thus returned can be regulated, so that. favorable conditions are ensured in the column. Nitrogen which is returned to the column compensates for cooling losses from the hot end of the main heat exchanger and through the insulation surrounding the apparatus, according to the invention. ■ The rest of the liquid nitrogen formed in the condenser can be fed into a storage container or to a plant or equipment that requires a supply of liquid nitrogen.
Fremgangsmåten og apparatet: Ifølge oppfinnelsen/ kan drives for å forsyne lagringsbeholdere, fra hvilke flytende nitrogen føres til rektifikasjonskolonnen for luftsepareringsmetoden og apparatet ifølge, søkerens tilsvarende søknad nr. 18.042/73. The method and the apparatus: According to the invention/ can be operated to supply storage containers, from which liquid nitrogen is fed to the rectification column for the air separation method and the apparatus according to the applicant's corresponding application no. 18.042/73.
Det er foretrukket å ta ut nitrogen fra. fremgangsmåten og apparatet, ifølge oppfinnelsen bare i form av et. flytende produkt. • It is preferred to remove nitrogen from the method and the apparatus, according to the invention only in the form of a. liquid product. •
Systemet ifølge oppfinnelsen gir flere fordeler for bruk ombord på skip og på land. Det benytter et lavere lufttrykk enn en vanlig innretning for. fremstilling av. flytende nitrogen fra luft og er betydelig enklere og- således' mer pålitelig enn de vanlige luftsepareringsanlegg. Videre er. effektiviteten til systemet sammenlignbar med andre typer, luftsepareringsanlegg. I tillegg kan rektifikasjonskolonnen ved start av apparatet hurtig kjøles til de ønskede lave temperaturer, ved å benytte kondensatoren til å tilføre' flytende luft til denne.. The system according to the invention offers several advantages for use on board ships and on land. It uses a lower air pressure than a normal device for. manufacture of. liquid nitrogen from air and is significantly simpler and therefore more reliable than the usual air separation systems. Further is. efficiency of the system comparable to other types of air separation systems. In addition, when starting the apparatus, the rectification column can be rapidly cooled to the desired low temperatures, by using the condenser to supply liquid air to it.
Oppfinnelsen skal i det. følgende nærmere forklares ved hjelp av et utførelses.eksempel som er beskrevet under henvisning til tegningen som viser et skjematisk strømningsdiagram for et. apparat. Luft komprimeres til et trykk på ca. 3 bar i en luftkompressor 1 og føres gjennom en adsorber 2, som fjerner, vanndamp og karbondioksyd fra luften, og denne kjøles i en varmeveksler 3- Den kjølte luft går inn i en enkelt rektifikasjonskolonne 4 .i hvilken den separeres til nitrogendamp og en oksygenanriket væske med et ok-sygeninnhold i området. 35 - 40 volumprosent oksygen. Oksygenanriket væske trekkes ut. fra bunnen av kolonnen og ekspanderes i en ekspansjonsventil. 5 og benyttes i en varmevekslerenhet 6 til å kondensere en del av nitrogendampproduktet. som trekkes ut. fra toppen av kolonnen. Det kondenserte nitrogen føres tilbake til toppen av kolonnen for å virke .som en tilbakestrømning. Såvel den gjenblivende nitrogen som den-oksygenanrikede luft som forlater varmevekslerenheten 6 blir ført gjennom en varmevekslerenhet 7. Denne enhet er sveiset til en-heten 6 og varmer nitrogen og oksygenanrikede strømmer ved indirekte kontakt med en luftstrøm som trekkes ut. fra den. kjølte luftstrøm før hovedluftinnløpet. til kolonnen 4. Den således kjølte luft blir ført tilbake til kolonnnen 4 ved et nivå nær nivået for hovedluftinnløpet. Nitrogenstrømmen og den oksygenanrikede strøm fra varmeveksleren 6 blir så ført gjennom varmeveksleren 3 for å kjøle den.innkommende luft til en temperatur nær metningstemperaturen. The invention must be in it. the following is explained in more detail by means of an embodiment example which is described with reference to the drawing showing a schematic flow diagram for a. device. Air is compressed to a pressure of approx. 3 bar in an air compressor 1 and is passed through an adsorber 2, which removes water vapor and carbon dioxide from the air, and this is cooled in a heat exchanger 3- The cooled air enters a single rectification column 4 in which it is separated into nitrogen vapor and an oxygen-enriched liquid with an ok oxygen content in the area. 35 - 40 volume percent oxygen. Oxygenated liquid is extracted. from the bottom of the column and is expanded in an expansion valve. 5 and is used in a heat exchanger unit 6 to condense part of the nitrogen vapor product. which is extracted. from the top of the column. The condensed nitrogen is returned to the top of the column to act as a reflux. Both the remaining nitrogen and the oxygen-enriched air leaving the heat exchanger unit 6 are passed through a heat exchanger unit 7. This unit is welded to the unit 6 and heats nitrogen and oxygen-enriched streams by indirect contact with an air stream that is withdrawn. from it. cooled airflow before the main air inlet. to the column 4. The thus cooled air is returned to the column 4 at a level close to the level of the main air inlet. The nitrogen stream and the oxygen-enriched stream from the heat exchanger 6 are then passed through the heat exchanger 3 to cool the incoming air to a temperature close to the saturation temperature.
Den oksygenanrikede luftstrøm blir så ført ut fra proses-sen (som vist på tegningen med pilen 12), og nitrogenstrømmen føres til en kondensator 9. Flytende nitrogen som dannes i kondensatoren 9 blir ført bort, fra denne med en pumpe .10. Fra 5 - 15 %. av det. flytende nitrogen som passerer pr. tidsenhet gjennom pumpen .10, inn-føres under et trykk på ca. 3,5 bar i toppen av kolonnen (som angitt på tegningen med pilen 8). Resten av det. flytende nitrogen er (som angitt på tegningen med pilen 11) ført til en lagringstank (ikke vist). The oxygen-enriched air flow is then led out of the process (as shown in the drawing with arrow 12), and the nitrogen flow is led to a condenser 9. Liquid nitrogen formed in the condenser 9 is led away from this with a pump 10. From 5 - 15%. of it. liquid nitrogen that passes per time unit through the pump .10, is introduced under a pressure of approx. 3.5 bar at the top of the column (as indicated in the drawing with arrow 8). The rest of it. liquid nitrogen is (as indicated in the drawing with arrow 11) led to a storage tank (not shown).
For å starte anlegget blir det. frembragt flytende luft i kondensatoren 9 og overført ved hjelp av pumpen 10 til kolonnen 4.. Dette kjøler kolonnen med det resultat at dampen som tas fra kolonnen 4 og føres til kondensatoren 9 blir stadig rikere på nitrogen. Når den er tilstrekkelig ren, kan overføringen av, fl<y>tende nitrogen fra kondensatoren 9 til lagringstanken begynne. To start the plant it will be. produced liquid air in the condenser 9 and transferred by means of the pump 10 to the column 4. This cools the column with the result that the steam taken from the column 4 and led to the condenser 9 becomes increasingly rich in nitrogen. When it is sufficiently clean, the transfer of liquid nitrogen from the condenser 9 to the storage tank can begin.
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB3411373A GB1472402A (en) | 1973-07-18 | 1973-07-18 | Air separation |
Publications (1)
Publication Number | Publication Date |
---|---|
NO742505L true NO742505L (en) | 1975-02-17 |
Family
ID=10361531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO742505A NO742505L (en) | 1973-07-18 | 1974-07-09 |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS50131864A (en) |
DE (1) | DE2433922A1 (en) |
FR (1) | FR2238132B3 (en) |
GB (1) | GB1472402A (en) |
IN (1) | IN142725B (en) |
NO (1) | NO742505L (en) |
SE (1) | SE7409424L (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1034544B (en) * | 1975-03-26 | 1979-10-10 | Siad | PROCEDURE AND PLANT FOR AIR FRACTION WITH A SIMPLE GRINDING COLUMN |
US4715873A (en) * | 1986-04-24 | 1987-12-29 | Air Products And Chemicals, Inc. | Liquefied gases using an air recycle liquefier |
US4705548A (en) * | 1986-04-25 | 1987-11-10 | Air Products And Chemicals, Inc. | Liquid products using an air and a nitrogen recycle liquefier |
US5678425A (en) * | 1996-06-07 | 1997-10-21 | Air Products And Chemicals, Inc. | Method and apparatus for producing liquid products from air in various proportions |
EP1037004B1 (en) * | 1999-03-17 | 2003-08-06 | Linde Aktiengesellschaft | Apparatus and process for gas mixture separation at low temperature |
DE50003157D1 (en) | 1999-03-17 | 2003-09-11 | Linde Ag | Device and method for decomposing a gas mixture at low temperature |
FR2895069B1 (en) * | 2005-12-20 | 2014-01-31 | Air Liquide | APPARATUS FOR AIR SEPARATION BY CRYOGENIC DISTILLATION |
WO2009063146A1 (en) * | 2008-03-28 | 2009-05-22 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger and cryogenic-distillation-based air separation device including one such exchanger |
-
1973
- 1973-07-18 GB GB3411373A patent/GB1472402A/en not_active Expired
-
1974
- 1974-07-09 NO NO742505A patent/NO742505L/no unknown
- 1974-07-12 IN IN1561/CAL/74A patent/IN142725B/en unknown
- 1974-07-15 DE DE2433922A patent/DE2433922A1/en not_active Withdrawn
- 1974-07-17 FR FR7424875A patent/FR2238132B3/fr not_active Expired
- 1974-07-18 JP JP49082696A patent/JPS50131864A/ja active Pending
- 1974-07-18 SE SE7409424A patent/SE7409424L/xx not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
IN142725B (en) | 1977-08-20 |
DE2433922A1 (en) | 1975-05-28 |
FR2238132A1 (en) | 1975-02-14 |
SE7409424L (en) | 1975-01-20 |
FR2238132B3 (en) | 1977-05-20 |
JPS50131864A (en) | 1975-10-18 |
GB1472402A (en) | 1977-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101231131B (en) | Purification of carbon dioxide | |
NO137565B (en) | PROCEDURE AND AIR SEPARATION APPLIANCE | |
US3413817A (en) | Liquefaction of natural gas at supercritical pressure employing a single refrigeration cycle | |
US3393527A (en) | Method of fractionating natural gas to remove heavy hydrocarbons therefrom | |
KR100430925B1 (en) | Method and apparatus for producing carbon dioxide | |
CA1253818A (en) | Purification of carbon dioxide for use in brewing | |
US5176002A (en) | Method of controlling vapor loss from containers of volatile chemicals | |
US4734115A (en) | Low pressure process for C3+ liquids recovery from process product gas | |
RU2272228C1 (en) | Universal gas separation and liquefaction method (variants) and device | |
EP0503910A1 (en) | Carbon dioxide and acid gas removal and recovery process for fossil fuel fired power plants | |
FR2675890B1 (en) | METHOD FOR TRANSFERRING REFRIGERATION OF LIQUEFIED NATURAL GAS TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT. | |
US3479832A (en) | Process for vaporizing liquefied natural gas | |
US20040255616A1 (en) | Method for liquefying methane-rich gas | |
NO314960B1 (en) | Process for condensing a multicomponent natural gas stream containing at least one freeze component | |
US4322225A (en) | Natural gas processing | |
KR860006681A (en) | High Purity Nitrogen and Oxygen Gas Production Equipment | |
US10744447B2 (en) | Method of processing a feed natural gas to obtain a processed natural gas and a cut of C5+ hydrocarbons, and associated installation | |
US2475957A (en) | Treatment of natural gas | |
NO174071B (en) | PROCEDURE FOR SEPARATION OF CARBON DIOXIDE AND OTHER ACID GASES FROM METHAN, AND PROCESS UNIT FOR CARRYING OUT THE PROCEDURE | |
NO312857B1 (en) | A method of separating a multicomponent gas stream containing at least one freeze component | |
NO312167B1 (en) | Process of condensing a methane-rich gas stream | |
EA009649B1 (en) | Lng vapor handling configurations and method therefor | |
NO312263B1 (en) | Method of liquefying a pressurized methane-rich gas stream | |
US5907924A (en) | Method and device for treating natural gas containing water and condensible hydrocarbons | |
DK162655B (en) | METHOD OF REMOVING NITROGEN FROM NATURAL GAS |