NO343167B1 - A method of manufacturing a bi-metallic mechanically lined pipe - Google Patents

A method of manufacturing a bi-metallic mechanically lined pipe Download PDF

Info

Publication number
NO343167B1
NO343167B1 NO20170106A NO20170106A NO343167B1 NO 343167 B1 NO343167 B1 NO 343167B1 NO 20170106 A NO20170106 A NO 20170106A NO 20170106 A NO20170106 A NO 20170106A NO 343167 B1 NO343167 B1 NO 343167B1
Authority
NO
Norway
Prior art keywords
pipe
outer pipe
welding
inner liner
liner
Prior art date
Application number
NO20170106A
Other languages
Norwegian (no)
Other versions
NO20170106A1 (en
Inventor
Sylvain Denniel
John Hamilton
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Publication of NO20170106A1 publication Critical patent/NO20170106A1/en
Publication of NO343167B1 publication Critical patent/NO343167B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/154Making multi-wall tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • B23K11/065Resistance welding; Severing by resistance heating using roller electrodes for welding curved planar seams
    • B23K11/066Resistance welding; Severing by resistance heating using roller electrodes for welding curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/163Welding of coated materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/322Bonding taking account of the properties of the material involved involving coated metal parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L13/00Non-disconnectible pipe-joints, e.g. soldered, adhesive or caulked joints
    • F16L13/02Welded joints
    • F16L13/0254Welded joints the pipes having an internal or external coating
    • F16L13/0263Welded joints the pipes having an internal or external coating having an internal coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Metal Extraction Processes (AREA)

Abstract

A bi-metallic mechanically lined pipe (112a, 112b; MLP) has an outer pipe (114) of a first carbon steel based material, and an inner liner (116) of a second corrosion resistant material, wherein the inner liner (116) is metallurgically bonded to the outer pipe (114) at the extremities (17) of the outer pipe (114). A method of manufacturing such kind of MLP pipe is also defined.A bi-metallic mechanically lined pipe (112a, 112b; MLP) has an outer pipe (114) of a first carbon steel based material, and an inner liner (116) of a second corrosion resistant material, wherein the inner liner (116) is metallurgically bonded to the outer pipe (114) at the extremities (17) of the outer pipe (114). A method of manufacturing such kind of MLP pipe is also defined.

Description

A METHOD OF MANUFACTURING A BI-METALLIC MECHANICALLY LINED PIPE
The present invention relates to a method of manufacturing a bi-metallic mechanically lined pipe, able to provide a mechanically lined pipeline formed from such pipes, particularly but not exclusively to provide a marine pipeline.
Corrosion resistance pipelines for the marine or otherwise underwater transportation or conveying of corrosive fluids such as gas or crude oil can be provided by pipes having an internal metallic liner.
A double-walled or bi-metallic pipe is generally composed of two metallic layers. The outer layer or host pipe or outer pipe as termed hereinafter, is for resisting hydrostatic pressure, and/or internal pressure depending on the water depth, whilst the internal layer prevents damage to the outer pipe from the chemical composition of the fluid being conveyed. The inner layer is sometimes also termed a "liner". As one of its main purposes is to protect the outer pipe from corrosion, commonly a corrosion resistant alloy (CRA) is chosen for the liner.
Publication CN202349482 discloses a two-end metallurgy mechanical double-metal composite bent pipe. A bending section is formed in the middle of a matrix bent pipe; two ends of the bending section are connected integrally and are provided with straight pipe sections; a liner bent pipe is arranged in the matrix bent pipe; the distance between the end part of the liner bent pipe and the end part of the matrix bent pipe on the same side as the liner bent pipe is 10 to 50mm; and the two ends of the liner bent pipe and the two ends of the matrix bent pipe are welded and accumulated to form a metallurgical bonding layer.
One form of bi-metallic pipe is a single "clad" pipe having an internal CRA layer fully metallurgically bonded all along its length to the outer pipe, which could be formed from a carbon steel base metal.
A second form of bi-metallic pipe can be termed a mechanically lined pipe [MLP]. A bi-metallic mechanically lined pipe is well known in the Oil & Gas subsea market as a very cost effective product used for the transportation of corrosive hydrocarbon products or water. Such product is manufactured by a range of companies through the world [Butting, Proclad, Cladtek, etc] and a range of such products have been successfully installed, and are in operation.
Although the manufacturing process for such pipes can slightly vary from one manufacturer to another, the general principle remains the same, i.e. a corrosion resistant [preferably CRA) liner [typically Inconel alloy 316L, 825 or 625] is sleeved inside a carbon steel host pipe. The liner is then expanded inside the host pipe until the outside diameter [OD] of the liner touches the inner diameter [ID] of the carbon steel pipe. The expansion operation is further progressed to a degree that both liner and host pipe outside diameters have grown. Typically, the internal liner will have been plastically deformed, where the host pipe remains within elastic expansion range [this is not strictly true for all processes]. Then the expansion operation is released and both pipes try to regain their initial diameter. However, as the internal liner has been plastically expanded, it relaxes to a diameter greater than its initial diameter, and greater than the initial inside diameter of the host pipe. Hence residual hoops stresses in either pipe remain and a mechanical interference stress remains between the two layers of the bi-metallic product.
Such bi-metallic pipes are generally provided as 'stalks’, and are generally manufactured in 12m or 24m lengths at a manufacturing location, and then subsequently transported to a base or site next to a river or sea for welding together into conventionally 'standard' 1km lengths. These longer lengths are then spooled onto a vessel reel before being unspooled offshore by known reel laying processes. Or, 12m or 24m stalks can be stored directly on a pipeline laying vessel and joined together offshore to be laid subsea by a known J-lay or S-lay method.
In this way, a mechanically lined pipeline (MLPL), generally comprising a plurality of MLPs brought together, optionally with one or more intermediate apparatus or units, is provided.
Currently, mechanically lined pipes have a length of clad over-lay to cover the extremities of the mechanically lined pipe. The over-lay section provides the ability to cut and re-carry a girth weld between two pipes, without breaching the gap between host and liner layers.
To achieve this, the liner inserted in the host pipe is shorter than the host pipe, and a length of clad is applied using the over-lay process. However, this type of overlaying has various limitations, especially in relation to higher specification pipes, where higher fatigue performance is specified.
For example, clad overlaying is a relatively time consuming process. Also, it is prone to volumetric defects or non-uniform pattern at the carbon steel/over-lay interface. This results in difficulties for existing non destructive testing (NDT) technologies to have a sufficient level of accuracy to fully satisfy that the integrity of the over-lay is met
Another major "weak point” is the interface between the over-lay and the section. Lack of fusion can occur, but it is very difficult to identify this during the NDT inspection phase. Such lack of fusion has often been demonstrated to be the site of fatigue failure in full scale fatigue tests. Figure 1 shows the interface between a liner 6 and a clad over-lay 8 in a mechanically lined pipe 2. The host pipe is indicated by the reference numeral 4 and the lack of fusion location is indicated by the arrow LF.
It is an object of the invention to provide a method of manufacture of a bi-metallic mechanically lined pipe.
According to a first aspect, there is provided a method of manufacturing a bimetallic mechanically lined pipe (MLP) having an outer pipe of a first carbon steel based material, and an inner liner of a second corrosion resistant material, comprising at least the steps of:
[a] forming the outer pipe;
[b] forming an inner liner former;
[c] locating the inner liner former of step [b] within the outer pipe;
[d] expanding the inner liner former within the outer pipe to form the MLP with the inner liner; and
[e] metallurgically bonding the inner liner with the outer pipe at the extremities of the outer pipe.
Metallurgically bonding the inner liner to the outer pipe at the extremities achieves a more certain, a faster and a more cost effective method than using clad overlay at the terminations of the MLP, and thereby provides a bi-metallic mechanically lined pipe [MLP] having an outer pipe of a first carbon steel based material, and an inner liner of a second corrosion resistant material. The inner liner is metallurgically bonded to the outer pipe at the extremities of the outer pipe.
In addition, the method of the present invention provides an MLP with a clean and flat interface profile between the liner and the outer pipe, which makes the NDT implementation easier.
Furthermore, there is no intricate liner-to-over-lay interface which occurs when an MLP is terminated by the length of clad over-lay. This has the benefit of reducing the criticality of that section towards fatigue performance.
The present invention also provides repeated quality and reliability of an MLP over known methods for producing an MLP.
In an embodiment, the inner liner is metallurgically bonded directly with the outer pipe at the extremities of the outer pipe.
In an alternative embodiment,the inner liner is metallurgically bonded to the outer pipe using an intermediate layer to assist the wetting therebetween.
In another embodiment, the inner liner former is metallurgically bonded to the outer pipe by a resistance welding. Preferably, the resistance welding is a resistance clad welding.
In a preferred embodiment, the resistance welding includes pipe circumferential welding.
In another preferred embodiment, the resistance welding uses one or more contact resistance rollers either within the pipe, externally of the pipe, or both. More preferably, the resistance welding includes at least one pair of complementary contact resistance rollers on either side of the pipe.
In an alternative embodiment the inner liner former is metallurgically bonded to the outer pipe by laser welding. In such embodiments, the laser welding may be pin laser welding, laser overlay welding, or laser overlay clad welding.
The mechanically lined pipe (MLP) manufactured according to the present invention may be any length, generally 12m or 24m lengths.
Mechanically lined pipes can be formed with any number of layers, liners, coating etc., known in the art, but including at least one 'outer layer’ or 'outer pipe', such as a carbon steel outer pipe, fixed to at least one 'inner layer’ or 'liner', being formed from a corrosion resistant alloy (CRA), for example a clad liner such as an alloy 316L, 825, 625 or 904L, without metallurgical bonding.
The location of the inner liner former within the outer pipe can be carried out as a simple mechanical step of inserting the inner liner former into the host outer pipe length using one or more simple mechanical operations.
The expanding of the inner liner former within the outer pipe to form the final shape and form of the inner liner and MLP can be provided by any one of a number of conventional methods, including one or more mechanical processes and/or one or more hydraulic processes.
Mechanical expansion processes include passing an expander through the pipe length so as to expand the inner liner former to meet the inner surface of the host outer pipe. A hydraulic process can be the use of pressurized water passing through the pipe length, such as carried out during hydrotesting at a pressure in the range 20-50MPa for example, which testing is carried out in accordance with known standard procedures.
The method of manufacturing according to the present invention provides a mechanically line pipe [MLP] of any length, optionally but not limited to up to 1km long.
There is also described a method of manufacturing a mechanically lined pipeline [MLPL] comprising conjoining a plurality of mechanically lined pipes [MLPs] as defined hereinabove. Generally, the conjoining is provided by welding a plurality of consecutive mechanically lined pipes by the use of one or more pipeline-welding processes.
One example of a pipeline-welding process is to provide girth welds between two consecutive MLPs comprising welding using consumables of the same material as the inner liner material. Although inner liner material is usually more expensive than outer pipe material, this process only requires welding every pipe length.
A second pipeline-welding process involves welding consecutive outer pipes together using consumables of the same outer pipe material, such as carbon steel, followed by internal pipeline welding of consecutive inner liners. To assist avoiding any mixing of welding materials to form non-desired alloys, the inner liners of consecutive pipes could be cut back to allow clean outer pipe welding, and the internal welding can then be carried out cleanly between the two inner liners to avoid the already formed outer pipe welds.
The MLPL is preferably formed/manufactured/assembled at a spoolbase, generally where the MLPL is spooled onto a reel. Generally this is onshore or at an onshore location, optionally where the outer pipe and/or inner liner is formed, preferably to form an MLPL which is >500m long, and is ready for laying, preferably as part of a longer (generally many kilometres] pipeline.
It would be understood that any excess inner liner former will be removed from the MLP after the inner liner and outer pipe have been metallurgically bonded together so that the inner liner and the outer pipe are of substantially the same length prior conjoining the MLP to another MLP.
The methods of manufacturing described herein above are not limited to the size, shape, design, physical and/or chemical properties of the outer pipe and/or inner liner.
According to a further embodiment of the present invention, the manufactured MLP comprises a clad liner, and the clad liner has a thickness >2.5mm, preferably ≥3mm.
There are two common methods of laying underwater or marine pipelines. The socalled 'stove piping method’ involves assembling pipes on a marine pipe-laying vessel, and then welding each one as the laying progresses. In the so-called 'reeled laying method’, the pipeline is assembled onshore from a number of pipe lengths, and then directly spooled onto a large reel, sometimes also termed a storage reel or drum. Once offshore, the pipeline is unwound from the reel as a single entity and is directly available for laying because no welding is required during the ofshore operation.
The present invention encompasses all combinations of various embodiments or aspects of the invention described herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment to describe additional embodiments of the present invention. Furthermore, any elements of an embodiment may be combined with any and all other elements from any of the embodiments to describe additional embodiments.
The invention will now be described by way of non-limiting example, with reference being made to the accompanying drawings, in which:
Figure 1 shows the interface between a liner and clad overlay in a mechanically lined pipe;
Figure 2 is a diagrammatic view of one step of a method of forming a mechanically lined pipe (MLP);
Figure 3 is a diagrammatic view of a second step of a method of forming a mechanically lined pipe [MLP]
Figure 4 is a schematic cross-sectional view of an MLP formed according to the method shown in Figures 2 and 3;
Figures 5a and 5b are schematic cross-sectional view showing the metallurgical bonding of the liner and outer pipe according to an embodiment of the present invention; and
Figure 6 is a schematic cross-sectional view of a method of conjoining two consecutive MLPs.
Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to [and does not] exclude other components, integers or steps.
Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Referring to the Figures 2 to 6, Figure 4 shows a schematic cross-sectional view of parts of a mechanically lined pipe (MLP) 12. The MLP 12 generally comprises a number of layers, only two of which are shown in Figure 4 for clarity, comprising an outer pipe 14 of a first carbon steel based material, which can be a carbon steel pipe, and an inner layer or liner 16 a second corrosion resistant material, preferably being formed from a corrosion resistant alloy, such as alloy 316L. The relative dimensions shown in Figure 4 are not to scale, and are provided for clarity of representation.
It is emphasised that the present invention relates to the forming and use of specific bi-metallic pipes, having a metallic liner rather than any form of plastic liner. The present invention still allows the forming of an MLP having an extensive length, such as a length of >500m.
Figure 2 shows the locating of an inner liner former 16a within the outer pipe 14 following the direction of arrow A.
Figure 3 shows the application of a suitable pressure, such as water pressure from hydrotesting, in the direction of arrow B into the inner liner former 16a so as to expand the inner liner former 16a circumferentially, and as generally shown by arrows C, to form interference contact stress between the two formed layers 14, 16 and hence their bonding together to form a mechanically lined pipe 12.
Figures 5a and 5b show the metallurgical bonding process of the liner 16 and outer pipe 14 at the extremities of the outer pipe. The liner 16 is metallurgically bonded to the outer pipe 14 to form a bond 17 by a resistance welding process or laser welding process. For example, the liner 16 may be metallurgically bonded to the outer pipe 14 by a resistance welding process, a pin laser welding process, a laser overlay welding process, or a laser overlay clad welding process.
Laser welding in its various forms is generally well known, and uses one or more lasers to direct sufficient heat where required.
Resistance welding, sometimes also termed electric resistance welding, refers to a group of welding processes that produce coalescence of meeting or faying surfaces where the heat to form the weld is generated by the electrical resistance of the relevant materials, combined with time and force used to hold the materials together during welding. Some factors influencing the process are the size, thickness etc. of the work pieces, any metal coatings, the nature of the electrode materials, the electrode geometry, the forces used, the usual welding parameters such as electrical current, welding time, etc. Generally, molten metal is formed at the point of most electrical resistance (the meeting or "faying" surfaces) as an electrical current (such as in the range 100-100,000 A) is passed through the material(s).
Some resistance welding forms the weld progressively, whilst relying on two electrodes to apply pressure and current.
The electrodes can be in the form of contact resistance rollers to contact the material as it passes between the rollers, and typically to move the material, such as to rotate the material, as it passes between the rollers. In this way, the electrodes stay in constant contact with the material to form continuous welds. Optionally, the electrodes may also create the movement of the material.
A particular difficulty in relation to the present invention is the different nature of the first carbon steel based material of the outer pipe, and the second corrosion resistant material of the inner liner. Carbon steel often has a higher melting point or solidus compared with corrosion resistant materials, an example being 1495°C compared with typically a range of 1270 °C to 1370°C for corrosion resistant alloys commonly used in oil and gas pipelines. Thus, there can be a temperature difference greater than 100°C or even greater than 200°C between the two materials to consider when joining. It is known that bridging this temperature difference can be assisted using one or more intermediate layers or materials, such as a brazing interlayer known in the art, often having a melting temperature lower than at least the solidus of the two materials to be welded, such that it can flow readily below the solidus temperature.
Preferably, the resistance welding includes pipe circumferential welding. That is, welding carried out in a circumferential manner in, along or otherwise about, the circumference of the MLP at its extremities. This is generally being between the outer pipe and inner liner at the extremities or at each end of the MLP, and for the required depth into the MLP from the actual ends of the MLP and extending inwardly into the MLP.
Contact resistance rollers can act as the electrodes required to provide the current flow into the materials, as well as applying the force to the materials during the welding. The resistance heating of the materials created by the current flow, combined with the force, results in the formation of a localised bond or weld. By using contact rollers, which can roll around either the inner circumference, or the outer circumference, or preferably simultaneously both circumferences, of the MLP extremities, the resistance welding can provide continuous welding around the extremities. Preferably, at least one contact resistance roller is located within the pipe, and at least one complementary contact resistance roller is located oppositely on the outer circumference of the MLP extremity, and the two rollers act as the required electrodes to provide the required current flow thereinbetween through the outer pipe and inner liner to achieve a smooth and continuous bond or weld thereinbetween.
The use of resistance welding is particularly suitable for welding dissimilar and/or dissimilar thickness materials. As mentioned above, the melting or solidus temperatures of typical outer pipes and corrosion resistant inner liners for MLPs are dissimilar. In particular, the relative thicknesses of the outer pipe and the inner liner are different, especially where it is preferred to seek a reduction in inner liner thickness (due to its comparatively higher cost].
Welding apparatus and welding parameters to achieve electric resistance welding are known in the art. Typically the electrodes are formed wholly or substantially of copper. The actual parameters required for the resistance welding process to achieve the best heat balance will depend, as generally discussed above, on many factors. These include the thickness of the outer pipe, which can easily be greater than 10mm thick, such as 12.5mm thick, and the thickness of the corrosion resistant inner liner, which can be in the range l-4mm, typically 2mm, 2.5mm or 3mm thick. Other factors are the operating current, the conductivity of the materials, the speed of any rollers, and the force applied by the rollers, etc.
The present invention uses a resistive current based methodology to create metallurgical bonds or bonding at the point of contact, typically including the use of force to push together the outer pipe and inner liner to come into greater or more contact during the process. As such, the bonding between the outer pipe and the inner liner at the extremities of the MLP is not only smoother because of the use of force, but easier to inspect internally, such that the n bonds or bonding are more reliable and more open to NDT inspection.
Figure 6 shows a method of manufacturing a mechanically lined pipeline (MLPL) 100 comprising conjoining by welding a plurality of mechanically lined pipes (MLPs). Figure 6 shows two consecutive MLPs 112a, 112b such as those formed as described above in relation to Figures 2 to 5b, and involving an outer host pipe 114 and an inner liner 116.
The method comprises using consumables of the same material as the inner liner material to provide a butt weld 118, for example a girth weld, between the two consecutive MLPs 112a, 112b, so that at least the material of the inner liner is continuous along the consecutive MLPs 112a, 112b. This process can provide an MLPL 100 ready for the reeled-lay method of laying a marine pipeline.

Claims (13)

1. A method of manufacturing a bi-metallic mechanically lined pipe (MLP) having an outer pipe (14) of a first carbon steel based material, and an inner liner (16) of a second corrosion resistant material, characterized in that the method comprising at least the steps of:
(a) forming the outer pipe (14);
(b) forming an inner liner former (16a) ;
(c) locating the inner liner former of step (b) within the outer pipe; (d) expanding the inner liner former (16a) within the outer pipe (14) to form the MLP with the inner liner (16); and
(e) metallurgically bonding the inner liner (16) with the outer pipe (14) at the extremities of the outer pipe (14).
2. The method as claimed in claim 1, wherein the inner liner (16) is metallurgically bonded directly with the outer pipe (14) at the extremities of the outer pipe.
3. The method as claimed in claim 1 or claim 2, wherein the inner liner (16) is metallurgically bonded to the outer pipe (14) using an intermediate layer.
4. The method as claimed in any one of the preceding claims, wherein the inner liner (16) is metallurgically bonded to the outer pipe (14) using resistance welding.
5. The method as claimed in claim 4, wherein the resistance welding is a resistance clad welding.
6. The method as claimed in any one of claims 4 or 5, wherein the resistance welding includes pipe circumferential welding.
7. The method as claimed in any one of claims 4 to 6, wherein the resistance welding uses one or more contact resistance rollers either within the pipe, externally of the pipe, or both.
8. The method as claimed in claim 7, wherein the resistance welding includes at least one pair of complementary contact resistance rollers on either side of the pipe.
9. The method as claimed in any one of claims 1 to 3, wherein the inner liner (16] is metallurgically bonded to the outer pipe [14] using laser welding.
10. The method as claimed in claim 9, wherein the laser welding is a pin laser welding, a laser overlay welding, or a laser overlay clad welding.
11. The method as claimed in any one of the preceding claims, wherein the MLP comprises a clad liner.
12. The method as claimed in claim 11, wherein the clad liner has a thickness >2.5mm, preferably ≥3mm.
13. The method as claimed in claim 11 or claim 12, wherein the clad liner is alloy 316L, 825, 625 or 904L.
NO20170106A 2014-07-30 2017-01-24 A method of manufacturing a bi-metallic mechanically lined pipe NO343167B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1413445.6A GB2528713B (en) 2014-07-30 2014-07-30 Method of manufacturing a bi-metallic mechanically lined pipe
PCT/IB2015/001308 WO2016016713A1 (en) 2014-07-30 2015-07-27 Bi-metallic mechanically lined pipe with metallurgical bonding at its ends; method of manufacturing such bi-metallic lined pipe

Publications (2)

Publication Number Publication Date
NO20170106A1 NO20170106A1 (en) 2017-01-24
NO343167B1 true NO343167B1 (en) 2018-11-19

Family

ID=51587426

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20170106A NO343167B1 (en) 2014-07-30 2017-01-24 A method of manufacturing a bi-metallic mechanically lined pipe

Country Status (4)

Country Link
BR (1) BR112017000963A2 (en)
GB (1) GB2528713B (en)
NO (1) NO343167B1 (en)
WO (1) WO2016016713A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3533998T3 (en) * 2018-03-01 2021-07-05 Siemens Gamesa Renewable Energy As Procedure for corrosion protection in a wind turbine and wind turbine
GB2576366A (en) * 2018-08-17 2020-02-19 Impressive Eng Ltd A method of manufacturing mechanically lined pipe for reeling and bending applications
BR112022009419A2 (en) 2019-11-15 2022-08-09 Mcdermott Sa J Ray MECHANICALLY COATED HYBRID TUBE APPLIANCE AND METHODS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598857A (en) * 1984-04-02 1986-07-08 Kawasaki Jukogyo Kabushiki Kaisha Method of producing double-wall composite pipes
CN201407423Y (en) * 2009-05-22 2010-02-17 西安向阳航天材料股份有限公司 Double-metal composite bend pipe with both metallurgical bonding ends and mechanical bonding middle part
CN202349482U (en) * 2011-11-01 2012-07-25 西安向阳航天材料股份有限公司 Two-end metallurgy mechanical double-metal composite bent pipe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143956A (en) * 1976-05-26 1977-11-30 Akira Takayasu Multiple pipe manufacturing
JPS56111588A (en) * 1980-02-06 1981-09-03 Kawasaki Heavy Ind Ltd Rust preventing method for laminated boundary face near pipe end of laminated autofrettage double pipes
JPS5947637B2 (en) * 1980-12-22 1984-11-20 株式会社日本製鋼所 Manufacturing method of pipe clad steel
DE4210547C1 (en) * 1992-03-31 1993-06-03 Heinrich Dr. Moresnet-Chapelle Be Hampel
EP0666341B1 (en) * 1994-02-08 1997-08-06 Sumitomo Metal Industries, Ltd. Process for manufacturing clad pipe
AU2003902440A0 (en) * 2003-05-20 2003-06-05 Cladtek International Pty Ltd Production of clad pipes
GB2476457B (en) * 2009-12-22 2011-11-09 Technip France Method of manufacturing a mechanically lined pipe
BR102013021663B1 (en) * 2013-08-23 2020-08-25 Vallourec Soluções Tubulares Do Brasil S.A. process for the production of expansion coated tube and coated tube produced by this process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4598857A (en) * 1984-04-02 1986-07-08 Kawasaki Jukogyo Kabushiki Kaisha Method of producing double-wall composite pipes
CN201407423Y (en) * 2009-05-22 2010-02-17 西安向阳航天材料股份有限公司 Double-metal composite bend pipe with both metallurgical bonding ends and mechanical bonding middle part
CN202349482U (en) * 2011-11-01 2012-07-25 西安向阳航天材料股份有限公司 Two-end metallurgy mechanical double-metal composite bent pipe

Also Published As

Publication number Publication date
GB2528713A (en) 2016-02-03
NO20170106A1 (en) 2017-01-24
GB201413445D0 (en) 2014-09-10
GB2528713B (en) 2017-10-25
WO2016016713A1 (en) 2016-02-04
BR112017000963A2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
EP2516909B1 (en) Method of manufacturing a mechanically lined pipe
WO2011135349A1 (en) Welding method of a first to a second tubular, the tubulars comprising a corrosion resistant alloy on an internal face thereof
EP3389919B1 (en) Method for connection and tubular connection assembly for improved fatigue performance of metallic risers
NO343167B1 (en) A method of manufacturing a bi-metallic mechanically lined pipe
WO2009083937A2 (en) Insulated pipelines and methods of construction and installation thereof
AU2015370589B2 (en) Improving the bending behaviour of mechanically-lined rigid pipe
US11655930B2 (en) Reducing the risk of corrosion in pipelines
WO1997034101A1 (en) Improvements in or relating to bi-metal lined pipe
EP3728658B1 (en) Method of preparing a pipe-section
JP6054533B2 (en) System for the production of clad materials using resistance seam welding
RU2410593C2 (en) Procedure for connecting pipes with internal coating
Sriskandarajah et al. Seal weld fatigue assessment for CRA lined pipe for HP/HT applications
Schueller et al. GluBi® Pipe-A New Development of A Reelable Lined Pipe
Toguyeni et al. World's First Offshore Use of Adhesively Bonded Mechanically Lined Pipe
JPH03207575A (en) Circumferential welding method for double pipes
WO2015198142A1 (en) Improvements relating to a mechanically lined pipe
WO2018063090A1 (en) Corrugated liner for mechanically lined pipe installable by the reel-laying method
RU2643098C2 (en) Method of arc welding of weldolet from austenite steels to pipeline from low-carbon and low-alloy steels
JP2023502071A (en) Method and apparatus for hybrid mechanical lining pipe
JPH0323066A (en) Peripheral joint welding method for duplex tube
JPH04190994A (en) Method for corrosion resistance in joined part between tubes