NO339417B1 - Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier - Google Patents

Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier Download PDF

Info

Publication number
NO339417B1
NO339417B1 NO20141512A NO20141512A NO339417B1 NO 339417 B1 NO339417 B1 NO 339417B1 NO 20141512 A NO20141512 A NO 20141512A NO 20141512 A NO20141512 A NO 20141512A NO 339417 B1 NO339417 B1 NO 339417B1
Authority
NO
Norway
Prior art keywords
rotor
stator
pressure
gap
coolant
Prior art date
Application number
NO20141512A
Other languages
Norwegian (no)
Other versions
NO20141512A1 (en
Inventor
Tarje Olderheim
Åge Hofstad
Original Assignee
Aker Solutions As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aker Solutions As filed Critical Aker Solutions As
Priority to NO20141512A priority Critical patent/NO339417B1/en
Priority to GB1709430.1A priority patent/GB2547611B/en
Priority to BR112017011745-2A priority patent/BR112017011745B1/en
Priority to AU2015363802A priority patent/AU2015363802B2/en
Priority to PCT/NO2015/050245 priority patent/WO2016099283A1/en
Priority to US15/528,558 priority patent/US20170261004A1/en
Publication of NO20141512A1 publication Critical patent/NO20141512A1/en
Publication of NO339417B1 publication Critical patent/NO339417B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0653Units comprising pumps and their driving means the pump being electrically driven the motor being flooded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/086Units comprising pumps and their driving means the pump being electrically driven for submerged use the pump and drive motor are both submerged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Measuring Fluid Pressure (AREA)

Description

SENTRIFUGAL TRYKKFORSTERKER OG FREMGANGSMÅTE FOR MODIFISERING ELLER KONSTRUKSJON AV EN SENTRIFUGAL CENTRIFUGAL PRESSURE AMPLIFIER AND METHOD OF MODIFYING OR CONSTRUCTING A CENTRIFUGAL

TRYKKFORSTERKER PRESSURE AMPLIFIER

Oppfinnelsens område Field of the invention

Foreliggende oppfinnelse vedrører sentrifugalpumper og kompressorer, for enkelthets skyld betegnet trykkforsterkere i dette dokumentet. Mer spesielt vedrører oppfinnelsen forbedret kjøling av en trykkforsterker, hvilket forbedrer den maksimale kraften og hastigheten og forlenger levetiden til trykkforsterkeren. The present invention relates to centrifugal pumps and compressors, for the sake of simplicity referred to as pressure intensifiers in this document. More particularly, the invention relates to improved cooling of a pressure intensifier, which improves the maximum power and speed and extends the life of the pressure intensifier.

Bakgrunn for oppfinnelsen og teknikkens stand Background for the invention and the state of the art

Forbedret kjøling av trykkforsterkere, som forbedrer den maksimale effekten og hastigheten og forlenger levetiden, er av generell interesse for brukere av trykkforsterkere, spesielt brukere av undervanns trykkforsterkere. Flere spesielle utfordringer i forbindelse med undervanns trykkforsterkning begrenser imidlertid anvendelsen. Undervanns trykkforsterkning av væsker, flerfase fluider eller gass er av stor interesse for petroleumsindustrien, på grunn av de enorme mulighetene som er tilgjengelige for industrien. Undervanns trykkforsterkning kan øke produksjonen betydelig fra undervannsbrønner, både utvinning og produksjonsrate, og tillater transport av det produserte petroleumsfluidet, prosessert eller ikke-prosessert, til fjerntliggende lokasjoner på land eller plattform. To hovedutfordringer for undervanns trykkforsterkning er å forbedre påliteligheten og øke den maksimale effekten og hastigheten til undervanns trykkforsterkeren. Improved booster cooling, which improves peak power and speed and extends life, is of general interest to booster users, particularly underwater booster users. However, several special challenges in connection with underwater pressure boosting limit its application. Underwater pressure boosting of liquids, multiphase fluids or gas is of great interest to the petroleum industry, due to the enormous possibilities available to the industry. Subsea pressure boosting can significantly increase production from subsea wells, both recovery and production rate, and allows transportation of the produced petroleum fluid, processed or unprocessed, to remote locations on land or a platform. Two main challenges for subsea pressure boosting are to improve reliability and increase the maximum power and speed of the subsea pressure booster.

Motorer for pumper eller kompressorer er normalt væskefylte. Et stort friksjonstap i åpningen mellom rotoren og statoren, spesielt ved høye hastigheter, begrenser rotorens rotasjon. Friksjonen følger generelt hastigheten i tredje potens. Friksjonen utvikler varme, begrenser den maksimale nominelle effekten og rotasjoner per minutt og forkorter levetiden til trykkforsterkeren. Nåværende praksis er å spyle et kjølemiddel gjennom spalten for å begrense temperaturøkningen på grunn av friksjonen, ved å bruke en vanlig sirkulasjonspumpe for kjølemiddel, som virker til å kjøle statorviklingene og rotor-stator spalten. Mer spesielt er det en enkelt kjølemiddelpumpe som spyler kjølemiddel gjennom rotor-stator spalten og også gjennom kjølemiddelledninger gjennom eller mellom statorviklingene, idet strømmen gjennom rotor-stator spalten og statorviklingsledningene er anordnet i parallell. Motors for pumps or compressors are normally liquid-filled. A large friction loss in the opening between the rotor and the stator, especially at high speeds, limits the rotation of the rotor. The friction generally follows the speed to the third power. The friction develops heat, limits the maximum rated power and rotations per minute and shortens the life of the pressure intensifier. Current practice is to flush a coolant through the gap to limit the temperature rise due to friction, using a conventional coolant circulation pump, which acts to cool the stator windings and the rotor-stator gap. More specifically, there is a single coolant pump that flushes coolant through the rotor-stator slot and also through coolant lines through or between the stator windings, the flow through the rotor-stator slot and the stator winding lines being arranged in parallel.

En første kjent løsning for å øke rotor-stator spaltekjølingen er å øke rotor-stator spalteavstanden og derved redusere motstanden til kjølemiddelstrømmen. Dette vil imidlertid redusere effektiviteten til den magnetiske koblingen og derved også motoreffekten. En andre kjent løsning for å øke rotor-stator spaltekjølingen er å tilføre eller integrere finner på rotoren, i rotor-stator spalten. Det vises til patentpublikasjonene GB2497667, US2001051097, JPH11230088, JPH1189180 og JP4770441. Læren i disse publikasjonene er generelt uegnet for overflatehastighetene relatert til foreliggende oppfinnelse. A first known solution to increase the rotor-stator gap cooling is to increase the rotor-stator gap distance and thereby reduce the resistance to the coolant flow. However, this will reduce the effectiveness of the magnetic coupling and thereby also the motor power. A second known solution to increase the rotor-stator gap cooling is to add or integrate fins on the rotor, in the rotor-stator gap. Reference is made to patent publications GB2497667, US2001051097, JPH11230088, JPH1189180 and JP4770441. The teachings in these publications are generally unsuitable for the surface velocities related to the present invention.

Mer relevant lære finnes i patentpublikasjonene EP 2113671 A1, US 5616973 A, JPH 0427789 B, EP 0531267 B1, US 1974678 A, CN 2736562 Y og WO 2013/119483 A1. Ingen av nevnte publikasjoner beskriver eller illustrerer en rotor-stator spalte kjølemiddel innløpspumpe, for å øke kjølemiddelstrømmen gjennom en rotor-stator spalte, idet innløpspumpen er en impeller festet til og anordnet som en aksial forlengelse av lamineringer eller en kortslutningsring til rotoren, eller anordnet på en rotoraksel ved rotor-stator spalten. More relevant teachings can be found in the patent publications EP 2113671 A1, US 5616973 A, JPH 0427789 B, EP 0531267 B1, US 1974678 A, CN 2736562 Y and WO 2013/119483 A1. None of the aforementioned publications describe or illustrate a rotor-stator slot coolant inlet pump, to increase the coolant flow through a rotor-stator slot, the inlet pump being an impeller attached to and arranged as an axial extension of laminations or a short circuit ring to the rotor, or arranged on a rotor shaft at the rotor-stator gap.

Hensikten med foreliggende oppfinnelse er å tilveiebringe forbedret maksimal effekt og hastighet og forlenge levetiden til en trykkforsterker. Ingen av de ovennevnte publikasjonene beskriver eller viser en forbedret eller alternativ kjøling i en sentrifugal trykkforsterker som en måte på oppnå foreliggende hensikt. The purpose of the present invention is to provide improved maximum power and speed and to extend the life of a pressure intensifier. None of the above publications describe or show an improved or alternative cooling in a centrifugal booster as a means of achieving the present purpose.

Oppsummering av oppfinnelsen Summary of the invention

Oppfinnelsen oppnår hensikten ved å tilveiebringe en sentrifugal trykkforsterker, for trykkforsterkning av væsker, flerfasefluider eller gass, hvilken trykkforsterker innbefatter en væskefylt elektrisk motor med en stator og en rotor, med en rotor-stator spalte mellom rotoren og statoren, en trykkforsterkende del i form av en pumpe eller kompressor operativt koblet til rotoren, og minst et hus, et fluidinnløp og et fluidutløp. Trykkforsterkeren er kjennetegnet ved at den innbefatter en rotor-stator spalte kjølemiddel innløpspumpe, for å øke kjølemiddelstrømmen gjennom rotor-stator spalten, idet innløpspumpen er en impeller festet til og anordnet som en aksial forlengelse av lamineringer eller en kortslutningsring til rotoren, eller anordnet på en rotoraksel ved rotor-stator spalten. The invention achieves the purpose by providing a centrifugal pressure booster, for pressure boosting of liquids, multiphase fluids or gas, which pressure booster includes a liquid-filled electric motor with a stator and a rotor, with a rotor-stator gap between the rotor and the stator, a pressure boosting part in the form of a pump or compressor operatively connected to the rotor, and at least one housing, one fluid inlet and one fluid outlet. The pressure intensifier is characterized in that it includes a rotor-stator gap coolant inlet pump, to increase the coolant flow through the rotor-stator gap, the inlet pump being an impeller attached to and arranged as an axial extension of laminations or a short-circuit ring to the rotor, or arranged on a rotor shaft at the rotor-stator gap.

Fortrinnsvis er trykkforsterkeren en undervanns trykkforsterker som videre innbefatter minst et trykkhus og en kjølemiddelsirkulasjonspumpe anordnet for pumping av kjølemiddel gjennomspalten og kanaler gjennom statoren. Preferably, the pressure intensifier is an underwater pressure intensifier which further includes at least a pressure housing and a coolant circulation pump arranged for pumping coolant through the gap and channels through the stator.

I en foretrukket utførelsesform innbefatter innløpspumpen vinklede blader eller finner som er festet til og anordnet som en aksiell forlengelse til lamineringer eller en kortslutningsring til rotoren, eller anordnet på en rotoraksel ved rotor-stator spalten. In a preferred embodiment, the inlet pump includes angled blades or fins attached to and arranged as an axial extension to laminations or a shorting ring to the rotor, or arranged on a rotor shaft at the rotor-stator gap.

Fortrinnsvis er rotor-stator kjølemiddelinnløpspumpen en kombinert balanseringsriing og impeller, med en ytre diameter som er større enn den indre diameteren til rotor-stator spalten, men mindre enn den ytre diameteren til rotor-stator spalten, hvilken kombinerte balanseringsring og impeller har et utløp for kjølemiddel direkte inn i rotor-stator spalten. Den ytre impellerdiameteren kan imidlertid være større enn den ytre diameteren til rotor-stator spalten, dersom et eksternt deksel med litt større diameter eller tilsvarende leder strømmen inn i rotor-stator spalten. Alternativt kan impellerens ytre diameter være mindre enn den indre diameteren til rotor-stator spalten, dersom et eksternt deksel eller tilsvarende leder strømmen inn i rotor-stator spalten, hvilket kan være en hensiktsmessig utforming dersom kavitasjon er et mulig problem. Forde kjente trykkforsterkerne med en felles aksel for rotor/motor og pumpe, er balanseringsanordningen og impelleren ringformede. En balanseringsring, også kalt balanseringsanordning, balansering eller balanseskive, blir brukt for å minimalisere vibrasjoner og eventuelle andre effekter av små skjevinnstillinger på akselen hvor den er festet, ved finjustering av vekt eller mengden materiale rundt rotasjonsaksen. Preferably, the rotor-stator coolant inlet pump is a combined balancing ring and impeller, with an outer diameter greater than the inner diameter of the rotor-stator gap but less than the outer diameter of the rotor-stator gap, which combined balancing ring and impeller has an outlet for coolant directly into the rotor-stator gap. The outer impeller diameter can, however, be larger than the outer diameter of the rotor-stator gap, if an external cover with a slightly larger diameter or equivalent leads the current into the rotor-stator gap. Alternatively, the outer diameter of the impeller can be smaller than the inner diameter of the rotor-stator gap, if an external cover or equivalent directs the current into the rotor-stator gap, which can be an appropriate design if cavitation is a possible problem. Previously known pressure intensifiers with a common shaft for rotor/motor and pump, the balancing device and the impeller are ring-shaped. A balancing ring, also called a balancing device, balancing or balance disc, is used to minimize vibrations and any other effects of small misalignments on the shaft where it is attached, by fine-tuning the weight or amount of material around the axis of rotation.

Oppfinnelsen tilveiebringer også en fremgangsmåte for å modifisere eller konstruere en sentrifugal trykkforsterker, for trykkforsterkning av væsker, flerfasefluid eller gass. For fremgangsmåten innbefatter trykkforsterkeren en væskefylt elektrisk motor med en stator og en rotor, med en rotor-stator spalte mellom rotoren og statoren, en trykkforsterkende del mellom i form av en pumpe eller kompressor operativt koblet til rotoren, et fluidinnløp og et fluidutløp, og minst et trykkhus dersom trykkforsterkeren er for undervannsoperasjon. Fremgangsmåten er kjennetegnet ved å utstyre trykkforsterkeren mer en rotor-stator spalte kjølemiddel innløpspumpe, for å øke kjølemiddelstrømmen gjennom rotor-stator spalten, idet innløpspumpen er en impeller festet til og anordnet som en aksial forlengelse av lamineringer eller en kortslutningsring til rotoren, eller anordnet på en rotoraksel ved rotor-stator spalten. The invention also provides a method for modifying or constructing a centrifugal pressure intensifier, for pressure amplification of liquids, multiphase fluid or gas. For the method, the pressure intensifier includes a liquid-filled electric motor with a stator and a rotor, with a rotor-stator gap between the rotor and the stator, a pressure-intensifying part between in the form of a pump or compressor operatively connected to the rotor, a fluid inlet and a fluid outlet, and at least a pressure housing if the booster is for underwater operation. The method is characterized by equipping the pressure intensifier with more of a rotor-stator gap coolant inlet pump, to increase the coolant flow through the rotor-stator gap, the inlet pump being an impeller attached to and arranged as an axial extension of laminations or a short-circuit ring to the rotor, or arranged on a rotor shaft at the rotor-stator gap.

Fortrinnsvis er det anordnet en kombinert balansering og impeller som rotor-stator spalte innløpspumpen, fortrinnsvis med en ytre diameter som er større enn den indre diameteren til rotor-stator spalten, men mindre enn den ytre diameteren til rotor-stator spalten, hvilken kombinerte balansering og impeller er anordnet med utløp direkte inn i rotor-stator spalten og fortrinnsvis er den festet til og anordnet som en forlengelse av lamineringer eller en kortslutningsring til rotoren, som en ring på en rotoraksel. Preferably, a combined balancing and impeller is provided as the rotor-stator slot inlet pump, preferably with an outer diameter that is larger than the inner diameter of the rotor-stator slot, but smaller than the outer diameter of the rotor-stator slot, which combined balancing and impeller is arranged with an outlet directly into the rotor-stator gap and preferably it is attached to and arranged as an extension of laminations or a short circuit ring to the rotor, like a ring on a rotor shaft.

Oppfinnelsen tilveiebringer balansering av strømningsraten gjennom statorviklingene og rotor-stator spalten, hvilke vil ha en meget forskjellig friksjonskarakteristikk og derved forskjellige trykkfall. Oppfinnelsen sikrer at ved alle relevante rotasjonshastigheter, har både statorviklingene og rotor-stator spalten en tilstrekkelig kjølevæskestrøm, hvilket gir maksimal effekt og hastighet og forlenget levetid til trykkforsterkeren i henhold til oppfinnelsen. Innløpspumpen roterer med rotoren, uten å forstyrre rotor-stator spaltestrømmen med økning av friksjonen, og løser derved det som er ansett å være et hovedproblem med tidligere kjente anordninger med finner i hele eller i det minste langs en betydelig lengde langs rotor-stator spalten. The invention provides balancing of the flow rate through the stator windings and the rotor-stator gap, which will have a very different friction characteristic and thereby different pressure drops. The invention ensures that at all relevant rotational speeds, both the stator windings and the rotor-stator gap have a sufficient coolant flow, which gives maximum power and speed and extended lifetime to the pressure amplifier according to the invention. The inlet pump rotates with the rotor, without disturbing the rotor-stator slot flow with increasing friction, and thereby solves what is considered to be a main problem with previously known devices with fins throughout or at least along a significant length along the rotor-stator slot.

Begrepet en «rotor-stator spalte kjølemiddel innløpspumpe» betyr i denne forbindelse finner eller blader eller tilsvarende konstruksjonselementer anordnet ved motorens statorspalteinnløp, så vel som impellere med minst et blad, ikke anordnet i motorens statorspalte sett i en rad i al retn ing, men ved innløpet derav, rett utenfor spalten. Dette betyr at kjølemiddelstrømmen kommer ut direkte fra utløpet av innløpspumpen inn i spalteinnløpet og pumpeinnløpet er anordnet ved spalten, hvilket er rett ved siden av den radielle motor statorspalten uten noen vesentlig aksiell avstand mellom, for å øke kjølemiddelstrømmen gjennom rotor-stator spalten. Aksiell betyr parallelt med rotorens rotasjonsakse, radiell betyr radielt til rotorens rotasjonsakse. The term "rotor-stator slot coolant inlet pump" in this context means fins or blades or similar structural elements arranged at the motor's stator slot inlet, as well as impellers with at least one blade, not arranged in the motor's stator slot seen in a row in all directions, but at the inlet thereof, just outside the gap. This means that the coolant flow comes out directly from the outlet of the inlet pump into the slot inlet and the pump inlet is arranged at the slot, which is right next to the radial motor stator slot with no significant axial distance between, to increase the coolant flow through the rotor-stator slot. Axial means parallel to the axis of rotation of the rotor, radial means radial to the axis of rotation of the rotor.

Med begrepet en «impeller» i menes denne betydning en anordning som typisk har en radiell fluidfortrengningskomponent ved rotasjon, tilveiebragt ved å ha minst et blad eller fluidledning. Fluidinnløpet til en impeller er typiske nærmere rotasjonsaksen enn fluidutløpet. Med begrepene et «blad» eller «finne» er det ment en aksiell fluidfortrengningskomponent formet som et blad eller lignende, som sett i publikasjoner ifølge teknikkens stand, men for foreliggende oppfinnelse ikke anordnet i rotor-stator spalten. Rotor-stator spalte kjølemiddelinnløpspumpen kan imidlertid innbefatte elementer av enhver operativ type som gir en pumpevirkning ved rotasjon. The term "impeller" in this sense means a device which typically has a radial fluid displacement component during rotation, provided by having at least one blade or fluid line. The fluid inlet to an impeller is typically closer to the axis of rotation than the fluid outlet. With the terms a "blade" or "fin" is meant an axial fluid displacement component shaped like a blade or the like, as seen in publications according to the state of the art, but for the present invention not arranged in the rotor-stator slot. However, the rotor-stator gap coolant inlet pump may include elements of any operative type that provide a pumping action upon rotation.

En fagmann innen området vet at kjølemiddelet til motoren til trykkforsterkerne i henhold til oppfinnelsen er en væske, rotor-stator spalten har i hovedsak glatte, jevne overflater, uten rotorbladene som sees i tidligere kjente løsninger, og trykkforsterkeren operer typisk ved høy hastighet og effekt, så som 2000 - 6000 rpm (omdreininger per minutt) og effekt som regnes i flere megawatt. A person skilled in the art knows that the coolant of the engine of the pressure intensifiers according to the invention is a liquid, the rotor-stator gap has essentially smooth, even surfaces, without the rotor blades seen in previously known solutions, and the pressure intensifier typically operates at high speed and power, such as 2000 - 6000 rpm (revolutions per minute) and power that is calculated in several megawatts.

Bladene eller finnene er vinklet eller skrå for å tilveiebringe pumpeeffekt ved rotasjon. Fortrinnsvis er bladene optimalisert med hensyn til form og antall for tilstrekkelig pumpeeffekt ved de påtenkte driftsbetingelsene, så som en rotasjonshastighet på 6000 rpm. Det i det minste ene bladet er fremstilt med en vinkel til tangentialretningen, slik at ved rotasjon av pumpen eller impelleranordningen, festet til rotorlamineringene eller rotorakselen eller begge, blir det dannet en forutsigbar kjølemiddelstrømkomponent parallelt med rotasjonsaksen, hvilket øker kjølemiddelstrømmen gjennom rotor-stator spalten. The blades or fins are angled or slanted to provide pumping effect upon rotation. Preferably, the blades are optimized in terms of shape and number for sufficient pumping power at the intended operating conditions, such as a rotational speed of 6000 rpm. The at least one blade is made at an angle to the tangential direction, so that upon rotation of the pump or impeller assembly, attached to the rotor laminations or the rotor shaft or both, a predictable coolant flow component is formed parallel to the axis of rotation, increasing the coolant flow through the rotor-stator gap.

Uten å være bundet av noen teori, er det antatt at den tidligere kjente løsningen med å anbringe finner i rotor-stator spalten øker friksjonen betydelig. Strømningsmotstanden og varmedannelsen i rotor-stator spalten blir derved meget høy med de tidligere kjente løsningene. Without being bound by any theory, it is assumed that the previously known solution of placing fins in the rotor-stator gap increases the friction significantly. The flow resistance and heat generation in the rotor-stator gap is thereby very high with the previously known solutions.

Løsningen til forliggende oppfinnelse er også mye enklere enn de tidligere kjente løsningen med hensyn til maskinering og installasjon. For den mest foretrukne utførelsesformen vil en kombinert balansering og impeller fortrinnsvis være fremstilt av et spesielt slitebestandig stål eller messing eller legering eller annet materiale som er mer bestandig mot slitasje og fortrinnsvis er mer egnet for maskinering og fabrikasjon, enn rotorakselen og lamineringer. The solution of the present invention is also much simpler than the previously known solution with regard to machining and installation. For the most preferred embodiment, a combined balancer and impeller will preferably be made of a special wear-resistant steel or brass or alloy or other material that is more resistant to wear and preferably more suitable for machining and fabrication than the rotor shaft and laminations.

Oppfinnelsen sikrer en jevn strøm av kjølemiddel gjennom rotor-stator spalten, hvilket vil fjerne friksjonsvarmen i spalten på en bedre måte. Dette gir en forlenget levetid for motoren, forbedret energiutbytte og maksimal rpm for trykkforsterkeren, og forenkler fabrikasjonen, installasjonen og vedlikeholdet av trykkforsterkeren sammenlignet med å ha blader i hele eller over en vesentlig lengde av rotor-stator spalten. The invention ensures a steady flow of coolant through the rotor-stator gap, which will remove the frictional heat in the gap in a better way. This provides an extended life for the motor, improved energy yield and maximum rpm for the pressure intensifier, and simplifies the fabrication, installation and maintenance of the pressure intensifier compared to having blades throughout or over a significant length of the rotor-stator gap.

Figurer Figures

Figur 1 viser en undervanns trykkforsterker i henhold til oppfinnelsen, med en kombinert balansering og rotor-stator spalte sirkulasjonsimpeller. Figur 2 viser en detalj ved en undervanns trykkforsterker i henhold til oppfinnelsen. Figure 1 shows an underwater pressure booster according to the invention, with a combined balancing and rotor-stator split circulation impeller. Figure 2 shows a detail of an underwater pressure amplifier according to the invention.

Detaljert beskrivelse Detailed description

Det henvises til figur 1 som viser, i et langsgående snitt en undervanns trykkforsterker 1 i henhold til oppfinnelsen, med en kombinert balansering og rotor-stator spalte sirkulasjonsimpeller 2. Rotor-stator spalte kjølemiddel innløpspumpen er derved en kombinert impeller og balanseringsanordning. Reference is made to Figure 1 which shows, in a longitudinal section, an underwater pressure booster 1 according to the invention, with a combined balancing and rotor-stator slot circulation impeller 2. The rotor-stator slot coolant inlet pump is thereby a combined impeller and balancing device.

Figur 2 inneholder flere detalj ved impelleren 2, hvor det kan sees klart at impelleren innbefatter et antall blader 2b. Impelleren er festet til rotoren 3 ved innløpet til rotor-stator spalten, som en aksiell forlengelse av rotorens lamineringer/kortslutningsring. Impelleren har en ytre diameter litt mindre enn den ytre diameteren til rotor-stator spalten, for å sikre klaring ved forskjellige temperaturer. Utløpets ytre diameter til impellernavnet, ikke bladene, er identisk med den ytre diameteren til kortslutningsringen og rotorlamineringene. Rundt rotoren 3 er en stator 5, mellom rotoren og statoren er rotor-stator spalten 6, som er et ringformet volum med glatt radielle indre og ytre overflater, uten finner som øker friksjonen til strømningen. Videre viser figuren en kjølemiddel sirkulasjonspumpe 7 anordnet for å pumpe kjølemiddel gjennom spalten og statorkanalene, i form av en felles sirkulasjonsimpeller 7 som mater både statorkanalen og rotor-statorspalte kjølemiddelstrøm. Den felles sirkulasjonsimpelleren 7 er vist og rotor-statorspalte kjølemiddelstrømmen 8 og statorkanalenes kjølemiddelstrøm 9. Figure 2 contains several details of the impeller 2, where it can be clearly seen that the impeller includes a number of blades 2b. The impeller is attached to the rotor 3 at the inlet to the rotor-stator gap, as an axial extension of the rotor's laminations/short circuit ring. The impeller has an outer diameter slightly smaller than the outer diameter of the rotor-stator gap, to ensure clearance at different temperatures. The outlet outside diameter of the impeller name, not the blades, is identical to the outside diameter of the shorting ring and rotor laminations. Around the rotor 3 is a stator 5, between the rotor and the stator is the rotor-stator gap 6, which is an annular volume with smooth radial inner and outer surfaces, without fins that increase the friction of the flow. Furthermore, the figure shows a coolant circulation pump 7 arranged to pump coolant through the slot and the stator channels, in the form of a common circulation impeller 7 which feeds both the stator channel and the rotor-stator slot coolant flow. The common circulation impeller 7 is shown and the rotor-stator gap coolant flow 8 and the stator ducts coolant flow 9.

Sentrifugal undervanns trykkforsterkeren i henhold til oppfinnelsen kan innbefatte ethvert trekk eller trinn som her er vist eller beskrevet, i enhver operativ kombinasjon, idet hver slik kombinasjon er en utførelsesform av oppfinnelsen. Fremgangsmåten i henhold til oppfinnelsen kan innbefatte ethvert trekk eller trinn som her er vist eller beskrevet, i enhver operativ kombinasjon, idet hver slik kombinasjon er en utførelsesform av oppfinnelsen. The centrifugal underwater pressure booster according to the invention may include any feature or step shown or described herein, in any operative combination, each such combination being an embodiment of the invention. The method according to the invention may include any feature or step shown or described herein, in any operative combination, each such combination being an embodiment of the invention.

Claims (7)

1. Sentrifugal trykkforsterker (1), for trykkforsterkning av væsker, flerfasefluider eller gass, hvilken trykkforsterker (1) innbefatter en væskefylt elektrisk motor med en stator (5) og en rotor (3), med en rotor-stator spalte (6) mellom rotoren (3) og statoren (5), en trykkforsterkende del i form av en pumpe eller kompressor operativt forbundet med rotoren (3), og minst et hus, et fluidinnløp og et fluidutløp, karakterisert vedat trykkforsterkeren (1) innbefatter en rotor-stator spalte (6) kjølemiddel innløpspumpe, for å øke kjølemiddelstrømmen gjennom rotor-stator spalten, idet innløpspumpen er en impeller (2) festet til og anordnet som en aksial forlengelse av lamineringer eller en kortslutningsring til rotoren (3), eller anordnet på en rotoraksel ved rotor-stator spalten.1. Centrifugal pressure booster (1), for pressure boosting of liquids, multiphase fluids or gas, which pressure booster (1) includes a liquid-filled electric motor with a stator (5) and a rotor (3), with a rotor-stator gap (6) between the rotor ( 3) and the stator (5), a pressure boosting part in the form of a pump or compressor operatively connected to the rotor (3), and at least one housing, a fluid inlet and a fluid outlet, characterized in that the pressure intensifier (1) includes a rotor-stator slot (6) coolant inlet pump, to increase the coolant flow through the rotor-stator slot, the inlet pump being an impeller (2) attached to and arranged as an axial extension of laminations or a short circuit ring to the rotor (3), or arranged on a rotor shaft at the rotor-stator gap. 2. Trykkforsterker (1) i henhold til krav 1, idet trykkforsterkeren er en undervanns trykkforsterker (1) for trykkforsterkning av væsker, flerfasefluid eller gass ved undervannslokasjoner, hvilken trykkforsterker (1) videre innbefatter minst et trykkhus og en kjølemiddel sirkulasjonspumpe anordnet for pumping av kjølemiddel gjennom spalten og statorkanalene.2. Pressure intensifier (1) according to claim 1, the pressure intensifier being an underwater pressure intensifier (1) for pressure amplification of liquids, multiphase fluid or gas at underwater locations, which pressure intensifier (1) further includes at least a pressure housing and a coolant circulation pump arranged for pumping coolant through the gap and the stator ducts. 3. Trykkforsterker (1) i henhold til krav 1, idet innløpspumpen innbefatter vinklede blader eller finner festet til og anordnet som en aksiell forlengelse av lamineringer eller en kortslutningsring til rotoren.3. Pressure intensifier (1) according to claim 1, the inlet pump comprising angled blades or fins attached to and arranged as an axial extension of laminations or a short circuit ring to the rotor. 4. Trykkforsterker i henhold til krav 1, eller 2, idet rotor-stator spalte kjølemiddel innløpspumpe er en kombinert balanseringsring og impeller (2), med en ytre diameter større enn den indre diameteren til rotor-stator spalten (6) men mindre enn den ytre diameteren til rotor-stator spalten, hvilken kombinerte balanseringsring og impeller har et utløp for kjølemiddel direkte inn i rotor-stator spalten (6).4. Pressure intensifier according to claim 1, or 2, the rotor-stator slot coolant inlet pump being a combined balancing ring and impeller (2), with an outer diameter larger than the inner diameter of the rotor-stator slot (6) but smaller than the outer diameter to the rotor-stator gap, which combined balancing ring and impeller has an outlet for coolant directly into the rotor-stator gap (6). 5. Fremgangsmåte for modifisering eller konstruksjon av en sentrifugal trykkforsterker (1), for trykkforsterkning av væsker, flerfasefluid eller gass, hvilken trykkforsterkeren innbefatter en væskefylt elektrisk motor med en stator (5) og en rotor (3), med en rotor-stator spalte (6) mellom rotoren og statoren, en trykforsterkende del i form av en pumpe eller kompressor operativt koblet til rotoren, et fluidinnløp og et fluidutløp, og minst et trykkhus dersom trykkforsterkeren (1) er for undervannsoperasjon,karakterisert vedå utstyre trykkforsterkeren (1) med en rotor-statorspalte kjølemiddel innløpspumpe for å øke kjølemiddelstrømmen gjennom rotor-stator spalten (6), idet innløpspumpen er en impeller (2) festet til og anordnet som en aksial forlengelse av lamineringer eller en kortslutningsring til rotoren (3), eller anordnet på en rotoraksel ved rotor-stator spalten.5. Method of modification or construction of a centrifugal pressure intensifier (1), for pressure amplification of liquids, multiphase fluid or gas, which pressure intensifier includes a liquid-filled electric motor with a stator (5) and a rotor (3), with a rotor-stator gap (6 ) between the rotor and the stator, a pressure boosting part in the form of a pump or compressor operatively connected to the rotor, a fluid inlet and a fluid outlet, and at least one pressure housing if the pressure booster (1) is for underwater operation, characterized by equipping the pressure booster (1) with a rotor -stator gap coolant inlet pump to increase the coolant flow through the rotor-stator gap (6), the inlet pump being an impeller (2) attached to and arranged as an axial extension of laminations or a short-circuit ring to the rotor (3), or arranged on a rotor shaft by the rotor-stator gap. 6. Fremgangsmåte i henhold til krav 5, hvorved en kombinert balansering og impeller (2) er anordnet som rotor-stator spalte innløpspumpen, med en ytre diameter større enn den indre diameteren til rotor-stator spalten (6) men mindre enn den ytre diameteren til rotor-stator spalten (6), hvilken kombinerte balanseringsring og impeller (2) er anordnet med utløp direkte inn i rotor-stator spalten (6) og er fortrinnsvis festet til og anordnet som en forlengelse av lamineringer eller en kortslutningsring til rotoren, som en ring på en rotoraksel.6. Method according to claim 5, whereby a combined balancing and impeller (2) is arranged as the rotor-stator slot inlet pump, with an outer diameter greater than the inner diameter of the rotor-stator slot (6) but smaller than the outer diameter of the rotor -stator slot (6), which combined balancing ring and impeller (2) is arranged with an outlet directly into the rotor-stator slot (6) and is preferably attached to and arranged as an extension of laminations or a short circuit ring to the rotor, as a ring on a rotor shaft. 7. Anvendelse av en rotor-stator spalte kjølemiddel innløpspumpe i en trykkforsterker (1), fortrinnsvis en undervanns trykkforsterker, for å forbedre kjølemiddelstrømmen gjennom en rotor-stator spalte (6) i trykkforsterkeren.7. Use of a rotor-stator slot coolant inlet pump in a booster (1), preferably an underwater booster, to improve the coolant flow through a rotor-stator slot (6) in the booster.
NO20141512A 2014-12-16 2014-12-16 Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier NO339417B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
NO20141512A NO339417B1 (en) 2014-12-16 2014-12-16 Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier
GB1709430.1A GB2547611B (en) 2014-12-16 2015-12-15 Centrifugal pressure booster and method for modifying or constructing a centrifugal pressure booster
BR112017011745-2A BR112017011745B1 (en) 2014-12-16 2015-12-15 CENTRIFUGAL PRESSURE BOOST AND METHOD FOR MODIFYING OR BUILDING A CENTRIFUGAL PRESSURE BOOST
AU2015363802A AU2015363802B2 (en) 2014-12-16 2015-12-15 Centrifugal pressure booster and method for modifying or constructing a centrifugal pressure booster
PCT/NO2015/050245 WO2016099283A1 (en) 2014-12-16 2015-12-15 Centrifugal pressure booster and method for modifying or constructing a centrifugal pressure booster
US15/528,558 US20170261004A1 (en) 2014-12-16 2015-12-15 Centrifugal pressure booster and method for modifying or constructing a centrifugal pressure booster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20141512A NO339417B1 (en) 2014-12-16 2014-12-16 Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier

Publications (2)

Publication Number Publication Date
NO20141512A1 NO20141512A1 (en) 2016-06-17
NO339417B1 true NO339417B1 (en) 2016-12-12

Family

ID=56127023

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20141512A NO339417B1 (en) 2014-12-16 2014-12-16 Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier

Country Status (6)

Country Link
US (1) US20170261004A1 (en)
AU (1) AU2015363802B2 (en)
BR (1) BR112017011745B1 (en)
GB (1) GB2547611B (en)
NO (1) NO339417B1 (en)
WO (1) WO2016099283A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880022B (en) * 2018-06-19 2020-05-12 清华大学 External rotor self-circulation liquid cooling permanent magnet motor
CN112628161A (en) * 2020-11-18 2021-04-09 靳普 Air-cooled compressor
US20220252070A1 (en) * 2021-02-09 2022-08-11 Onesubsea Ip Uk Limited Subsea electric fluid processing machine
US20220252071A1 (en) * 2021-02-09 2022-08-11 Onesubsea Ip Uk Limited Subsea electric fluid processing machine
CN114526244B (en) * 2022-01-26 2023-06-27 清华大学 Shielded rotary fluid machine
CN114992017B (en) * 2022-06-20 2023-11-24 青岛双瑞海洋环境工程股份有限公司 Heat exchange supercharging device, system and method of marine ammonia fuel supply system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1974678A (en) * 1930-10-04 1934-09-25 Lafont Lucien Pump
JPH0427789B2 (en) * 1982-07-05 1992-05-12 Tokyo Shibaura Electric Co
EP0531267B1 (en) * 1991-09-03 1995-11-15 ITT Flygt Aktiebolag Motor cooling device
US5616973A (en) * 1994-06-29 1997-04-01 Yeomans Chicago Corporation Pump motor housing with improved cooling means
CN2736562Y (en) * 2004-05-17 2005-10-26 江苏大学 Electric submersible shield pump
EP2113671A1 (en) * 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Arrangement with an electric motor and a pump
WO2013119483A1 (en) * 2012-02-07 2013-08-15 Johnson Controls Technology Company Hermetic motor cooling and control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH105337A (en) * 1923-10-25 1924-06-16 Oerlikon Maschf Oil delivery pump assembled with an electric motor.
DE1096206B (en) * 1958-11-07 1960-12-29 Haeny & Cie Centrifugal pump and electric motor filled with a liquid isolating agent
GB8423793D0 (en) * 1984-09-20 1984-10-24 Framo Dev Ltd Submersible pump head cooling means
NO313111B1 (en) * 1999-06-01 2002-08-12 Kvaerner Eureka As Device for use in an underwater pump module
US20020130565A1 (en) * 2000-09-22 2002-09-19 Tilton Charles L. Spray cooled motor system
NO330192B1 (en) * 2007-04-12 2011-03-07 Framo Eng As Fluid Pump System.
US20090232664A1 (en) * 2008-03-12 2009-09-17 General Electric Permanent magnet motor for subsea pump drive
US9954414B2 (en) * 2012-09-12 2018-04-24 Fmc Technologies, Inc. Subsea compressor or pump with hermetically sealed electric motor and with magnetic coupling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1974678A (en) * 1930-10-04 1934-09-25 Lafont Lucien Pump
JPH0427789B2 (en) * 1982-07-05 1992-05-12 Tokyo Shibaura Electric Co
EP0531267B1 (en) * 1991-09-03 1995-11-15 ITT Flygt Aktiebolag Motor cooling device
US5616973A (en) * 1994-06-29 1997-04-01 Yeomans Chicago Corporation Pump motor housing with improved cooling means
CN2736562Y (en) * 2004-05-17 2005-10-26 江苏大学 Electric submersible shield pump
EP2113671A1 (en) * 2008-04-28 2009-11-04 Siemens Aktiengesellschaft Arrangement with an electric motor and a pump
WO2013119483A1 (en) * 2012-02-07 2013-08-15 Johnson Controls Technology Company Hermetic motor cooling and control

Also Published As

Publication number Publication date
NO20141512A1 (en) 2016-06-17
WO2016099283A1 (en) 2016-06-23
BR112017011745B1 (en) 2022-09-20
GB201709430D0 (en) 2017-07-26
US20170261004A1 (en) 2017-09-14
AU2015363802B2 (en) 2019-03-28
GB2547611A (en) 2017-08-23
BR112017011745A2 (en) 2018-02-20
GB2547611B (en) 2020-08-19
AU2015363802A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
NO339417B1 (en) Centrifugal Pressure Amplifier and Method of Modifying or Constructing a Centrifugal Pressure Amplifier
EP2715056B1 (en) Subsea compressor directly driven by a permanent magnet motor with stator and rotor submerged in liquid
EP2539994B1 (en) Cooling system for a multistage electric motor
ES2920774T3 (en) Cryogenic submerged pump for LNG, light hydrocarbon and other electrically non-conductive and non-corrosive fluids
US20190186245A1 (en) Lubricant Circulating Pump For Electrical Submersible Pump Motor
US3347168A (en) Motor pump unit
US10465695B2 (en) Thrust washer and diffuser for use in a downhole electrical submersible pump
US20200173496A1 (en) Bearing housing for a turbomachine, and turbomachine having a bearing housing
KR101852150B1 (en) High speed cavitation tunnel with mixed flow pump
JP6151382B2 (en) Multistage electric centrifugal compressor
US20200408212A1 (en) Vacuum Pumping System Comprising A Vacuum Pump And Its Motor
TWI685616B (en) Cylindrical symmetric volumetric machine
RU146402U1 (en) DIRECT VECTOR ELECTRIC PUMP WITH HOLE ROTOR SHAFT
JP2006009740A (en) Submersible motor pump
RU2284426C1 (en) Axial-centrifugal motor-pump
JP2009236063A (en) Pump device
US2803763A (en) Heat dissipation in rotors of electric motors
JP2021504618A (en) Bending shaft hydraulic pump with centrifugal support
RU2815180C1 (en) Electric motor of submersible installation for production of formation fluid and method of its manufacturing and assembly
CN209228686U (en) Horizontal pump pumps end of blade mechanical seal structure
EP3484006A1 (en) Stabilizer apparatus for electric machines operating under vacuum with hydraulic rotary seal
JPS6011696A (en) Down hole pump
NO328758B1 (en) Electric machine

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: AKER SOLUTIONS AS, NO