NO338730B1 - Sanntidstelemetri - Google Patents

Sanntidstelemetri Download PDF

Info

Publication number
NO338730B1
NO338730B1 NO20074955A NO20074955A NO338730B1 NO 338730 B1 NO338730 B1 NO 338730B1 NO 20074955 A NO20074955 A NO 20074955A NO 20074955 A NO20074955 A NO 20074955A NO 338730 B1 NO338730 B1 NO 338730B1
Authority
NO
Norway
Prior art keywords
rotary valve
data
duration
mud
drilling fluid
Prior art date
Application number
NO20074955A
Other languages
Norwegian (no)
Other versions
NO20074955L (en
Inventor
Geoff Downton
Luke Alexander Kuwertz
Original Assignee
Schlumberger Technology Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Bv filed Critical Schlumberger Technology Bv
Publication of NO20074955L publication Critical patent/NO20074955L/en
Publication of NO338730B1 publication Critical patent/NO338730B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/20Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by modulation of mud waves, e.g. by continuous modulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

Denne oppfinnelse angår et telemetrisystem og særlig et telemetrisystem som er egnet for bruk ved overføring av data i et borehull. This invention relates to a telemetry system and in particular a telemetry system which is suitable for use when transmitting data in a borehole.

Det er ønskelig, ved boring av et undergrunnsborehull i en formasjon, å kunne overføre data langs borehullet. For eksempel der et styrbart boresystem benyttes og nedihullssensorer er anordnet og innrettet til å avgi signaler som er representative f.eks. for boreretningen, er det ønskelige å kunne overføre sig-naldata som er representative for boreretningen, i sanntid, til en operatør som befinner seg ved overflaten. It is desirable, when drilling an underground borehole in a formation, to be able to transfer data along the borehole. For example, where a controllable drilling system is used and downhole sensors are arranged and arranged to emit signals that are representative, e.g. for the drilling direction, it is desirable to be able to transmit signal data that is representative of the drilling direction, in real time, to an operator located at the surface.

Det er kjent et antall telemetrisystemer som kan tilveiebringe slik dataover-føring. Slike systemer har imidlertid lett for å bli temmelig kompliserte og dyre, og vil muligens ikke kunne overføre data i sanntid. Der er situasjoner hvor mengden av data som skal overføres er forholdsvis liten og tilveiebringelse av et slikt telemetrisystem kan ikke rettferdiggjøres eller, om det tilveiebringes, blir ikke brukt fullt ut. Det er et formål med oppfinnelsen å tilveiebringe et telemetrisystem av forholdsvis enkel og hensiktsmessig form, egnet for bruk ved slike anvendelser. A number of telemetry systems are known which can provide such data transmission. However, such systems can easily become rather complicated and expensive, and will possibly not be able to transfer data in real time. There are situations where the amount of data to be transferred is relatively small and the provision of such a telemetry system cannot be justified or, if provided, is not fully used. It is an object of the invention to provide a telemetry system of relatively simple and appropriate form, suitable for use in such applications.

US 5182731 A beskriver en hydromekanisk signalsenderfor å generere trykkpulser i et borefluid for å overføre telemetriinformasjon i en brønnloggings-operasjon. US 5182731 A describes a hydromechanical signal transmitter for generating pressure pulses in a drilling fluid to transmit telemetry information in a well logging operation.

Den foreliggende oppfinnelse vedrører et telemetrisystem for bruk i et boresystem, idet telemetrisystemet omfatter en rotasjonsventil som styrer tilførselen av borefluid eller -slam til et spennpute-stempelarrangement til et brønnverktøy, hvor rotasjonsventilen har et rotasjonsventillegeme og et utløpslegeme, hvor rotasjonsventillegemet innbefatter en åpning som selektivt kommuniserer med en serie åpninger i utløpslegemet for å muliggjøre styring over strømningen av borefluid eller -slam til brønnverktøyet, hvor systemet videre omfatter det å motta data som skal overføres, omkode dataene som en varighet, og styre rotasjonsventilens rotasjon slik at rotasjonsventillegemet til rotasjonsventilen roteres med hensyn til utløpslegemet for nevnte varighet med en forutbestemt rotasjonshastighet for å bevirke dannelse av trykksvingninger eller - bølger i borefluidet eller -slammet for å danne telemetrisignaler, og hvor boresystemet innbefatter minst én nedihullssensor, hvis output omfatter dataene som skal overføres. The present invention relates to a telemetry system for use in a drilling system, the telemetry system comprising a rotary valve which controls the supply of drilling fluid or mud to a tension pad piston arrangement of a well tool, where the rotary valve has a rotary valve body and an outlet body, where the rotary valve body includes an opening which selectively communicates with a series of openings in the outlet body to enable control over the flow of drilling fluid or mud to the well tool, the system further comprising receiving data to be transmitted, recoding the data as a duration, and controlling rotation of the rotary valve such that the rotary valve body of the rotary valve is rotated with respect to the outlet body for said duration at a predetermined rotational speed to cause the formation of pressure fluctuations or waves in the drilling fluid or mud to form telemetry signals, and wherein the drilling system includes at least one downhole sensor, the output of which includes data one to be transferred.

Ytterligere utførelsesformer av telemetrisystemet i henhold til oppfinnelsen fremgår av de uselvstendige patentkrav. Further embodiments of the telemetry system according to the invention appear from the independent patent claims.

Det beskrives et telemetrisystem for bruk i et boresystem innbefattende en dreie- eller rotasjonsventil som styrer tilførselen av borefluid eller slam til et brønnverktøy, hvor systemet omfatter det å motta data som skal overføres, dekode dataene som en varighet, og styre rotasjonsventilens rotasjon slik at rotasjonsventilen roteres for den samme varighet med en forutbestemt rotasjonshastighet for å bevirke dannelse av trykksvingninger eller -bølger i borefluidet eller -slammet. A telemetry system is described for use in a drilling system including a rotary or rotary valve that controls the supply of drilling fluid or mud to a well tool, the system comprising receiving data to be transmitted, decoding the data as a duration, and controlling rotation of the rotary valve so that the rotary valve is rotated for the same duration at a predetermined rotational speed to cause the formation of pressure fluctuations or waves in the drilling fluid or mud.

En har funnet at rotasjon av en rotasjonsventil frembringer trykksvingninger eller -bølger i borefluidet eller slammet som føres til, og gjennom, rotasjonsventilen, ved bruk, og disse svingninger eller bølger kan avføles, f.eks. ved overflaten. Ved riktig styring av rotasjonsventilen, kan disse trykksvingninger eller -bølger brukes til å overføre signaler, uten behov for ytterligere, kompliserte brønnverktøy. Følgelig kan data overføres i sanntid til en operatør ved overflaten. It has been found that rotation of a rotary valve produces pressure fluctuations or waves in the drilling fluid or mud that is fed to, and through, the rotary valve in use, and these fluctuations or waves can be sensed, e.g. at the surface. With proper control of the rotary valve, these pressure fluctuations or waves can be used to transmit signals, without the need for additional, complicated well tools. Consequently, data can be transmitted in real time to an operator at the surface.

Systemet innbefatter hensiktsmessig minst én nedihullssensor, hvis output omfatter de data som skal overføres. The system suitably includes at least one downhole sensor, the output of which includes the data to be transmitted.

Med sikte på å øke mengden av data som kan overføres ved bruk av systemet, kan det velges to eller flere forut bestemte rotasjonshastigheter som hver indikerer outputen fra en respektiv sensor. Alternativt kan dataene omkodes ved bruk av en oppslagstabell, idet et første signal som overføres ved å rotere ventilen i en første varighet med en første rotasjonshastighet brukes til å overføre informasjon relatert til en koordinat i oppslagstabellen, idet et andre signal som overføres ved å rotere ventilen i en andre varighet med en andre, forutbestemt hastighet brukes til å overføre informasjon relatert til en annen koordinat i oppslagstabellen. In order to increase the amount of data that can be transmitted using the system, two or more predetermined rotation speeds can be selected, each indicating the output of a respective sensor. Alternatively, the data may be recoded using a lookup table, wherein a first signal transmitted by rotating the valve for a first duration at a first rotational speed is used to transmit information related to a coordinate in the lookup table, a second signal transmitted by rotating the valve in a second duration at a second, predetermined rate is used to transfer information related to another coordinate in the lookup table.

Signalet som overføres ved bruk av systemet kan dekodes av operatøren ganske enkelt ved å overvåke for hvor lenge trykksvingningene eller -bølgene ved de forutbestemte frekvenser mottas. Dette kan oppnås manuelt eller automatisk ved bruk av en hensiktsmessig styrt anordning. The signal transmitted using the system can be decoded by the operator simply by monitoring how long the pressure oscillations or waves at the predetermined frequencies are received. This can be achieved manually or automatically using an appropriately controlled device.

Signalene som overføres på dette vis blir lettest identifiserbare når borerøret er stasjonært. Systemet blir derfor hensiktsmessig brukt til å overføre data like etter at brønnverktøyet har fullført sin oppstartingssekvens når pumpene tilfører borefluid eller slam eller er slått på. Imidlertid kan det være mulig å bruke systemet for å overføre data til overflaten på andre tider. The signals transmitted in this way are most easily identifiable when the drill pipe is stationary. The system is therefore appropriately used to transfer data just after the well tool has completed its start-up sequence when the pumps supply drilling fluid or mud or are switched on. However, it may be possible to use the system to transmit data to the surface at other times.

Oppfinnelsen skal ytterligere beskrives, ved hjelp av eksempel, i tilknytning til de medfølgende tegninger, hvor: Fig. 1 er et skjematisk riss som viser en del av en bunnhullsstreng innbefattende et brønnverktøy som styres ved bruk av en rotasjonsventil; The invention shall be further described, by way of example, in connection with the accompanying drawings, where: Fig. 1 is a schematic diagram showing a part of a downhole string including a well tool which is controlled using a rotary valve;

Fig. 2 er et skjematisk riss som viser rotasjonsventilen; og Fig. 2 is a schematic view showing the rotary valve; and

Fig. 3a og 3b er tabeller som viser to mulige omkodingsteknikker. Figures 3a and 3b are tables showing two possible recoding techniques.

Idet det først vises til fig. 1, er det skjematisk vist en del av en bunnhulls-sammenstilling 10 for bruk ved utforming av et borehull 14 i en undergrunnsforma-sjon 12. Sammenstillingen 10 omfatteren borkrone 16 som bæres av en spennenhet 20. En styreenhet 18 kan betjenes for styring av spennenhetens 20 funksjon. Referring first to fig. 1, a part of a bottom hole assembly 10 is schematically shown for use when designing a borehole 14 in an underground formation 12. The assembly 10 comprises a drill bit 16 which is carried by a clamping unit 20. A control unit 18 can be operated for controlling the clamping unit's 20 function.

Spennenheten 20 omfatter et hus 22 som er innrettet til å bære en rekke spennputer 24. Hver spennpute 24 kan beveges mellom en inntrukket stilling og en utskjøvet stilling, idet stempelanordninger 26 er innrettet til å skyve hver pute 24 fra dens inntrukne stilling til dens utskjøvne stilling. Stempelarrangementene 26 kan betjenes uavhengig av hverandre, idet tilførsel av fluid under trykk til stempelarrangementene 26 styres ved hjelp av en rotasjons-styreventil 28 i styreenheten 18. The clamping unit 20 comprises a housing 22 which is adapted to carry a number of tension pads 24. Each tension pad 24 can be moved between a retracted position and an extended position, piston devices 26 being adapted to push each pad 24 from its retracted position to its extended position . The piston arrangements 26 can be operated independently of each other, as the supply of fluid under pressure to the piston arrangements 26 is controlled by means of a rotary control valve 28 in the control unit 18.

Ved bruk, blir huset 22 båret eller utgjør en del av et borerør eller en borestreng som roteres, f.eks. fra overflaten eller ved hjelp av en brønnmotor nede i borehullet. Hvis stempelanordningene 26 tilføres trykkfluid etter tur, synkront med husets 22 rotasjon, vil det forstås at spennputene 24, etter tur, beveges til sine utskjøvne stillinger. I deres utskjøvne stillinger, hviler putene 24 mot borehullets 14 vegg, og huset 22 påføres en siderettet reaksjonskraft. Ved å styre stempelanordningene 26 på en synkronisert måte med husets 22 rotasjon, vil det forstås at reaksjonskraften virker i en hovedsakelig konsistent retning. Da borkronen 16 er festet til huset 22, vil det forstås at virkemåten til spennenheten på denne måte også resulterer i påføring av en siderettet kraft på borkronen 16, slik at borkronen tvinges til å danne en kurve eller et borehullskne i borehullet 14. In use, the housing 22 is carried or forms part of a drill pipe or a drill string that is rotated, e.g. from the surface or with the help of a well motor down the borehole. If the piston devices 26 are supplied with pressure fluid in turn, synchronously with the rotation of the housing 22, it will be understood that the tension pads 24, in turn, are moved to their extended positions. In their extended positions, the pads 24 rest against the borehole 14 wall, and the housing 22 is subjected to a lateral reaction force. By controlling the piston devices 26 in a synchronized manner with the rotation of the housing 22, it will be understood that the reaction force acts in an essentially consistent direction. As the drill bit 16 is attached to the housing 22, it will be understood that the operation of the clamping unit in this way also results in the application of a side-directed force to the drill bit 16, so that the drill bit is forced to form a curve or a borehole knee in the borehole 14.

Rotasjons-styreventilen 28 omfatter en "face"-tetningsventil av den type som er skjematisk vist i fig. 2. Ventilen omfatter et skiveformet rotasjonsventillegeme 30 anordnet i et kammer 32 som tilføres borefluid eller -slam, ved bruk, under trykk gjennom borerøret gjennom et innløp 34. I kammeret 32 er det også et utløpslegeme 36, også skiveformet, idet en overflate på ventillegemet 30 ligger an mot en overflate på utløpslegemet 36. Utløpslegemet 36 er utformet med en rekke åpninger 38 som strekker seg fra overflaten som ventillegemet 30 ligger an mot til den motsatte overflate, idet hver åpning kommuniserer med et respektivt utløp 40. Utløpene 40 kommuniserer, ved bruk, med hver sin av stempelanordningene 26. Åpningene 38 i utløpslegemet 36 ligger ved en felles radial posisjon. The rotary control valve 28 comprises a "face" sealing valve of the type schematically shown in fig. 2. The valve comprises a disc-shaped rotary valve body 30 arranged in a chamber 32 which is supplied with drilling fluid or mud, when in use, under pressure through the drill pipe through an inlet 34. In the chamber 32 there is also an outlet body 36, also disc-shaped, as a surface on the valve body 30 rests against a surface of the outlet body 36. The outlet body 36 is designed with a series of openings 38 that extend from the surface against which the valve body 30 rests to the opposite surface, each opening communicating with a respective outlet 40. The outlets 40 communicate, by use, with each of the piston devices 26. The openings 38 in the outlet body 36 are located at a common radial position.

Ventillegemet 30 er utformet med en bueformet åpning 42 som strekker seg fra ventillegemets overflate som ligger an mot utløpslegemet 36 til den motsatte overflate av dette og som er anordnet ved den samme radiale posisjon som åpningene 38. The valve body 30 is designed with an arc-shaped opening 42 which extends from the surface of the valve body which abuts the outlet body 36 to the opposite surface thereof and which is arranged at the same radial position as the openings 38.

En styreaksel 44 strekker seg inn i kammeret 32 og er forbundet med ventillegemet 30 for å bevirke rotasjonsbevegelse av elementet 30. A control shaft 44 extends into the chamber 32 and is connected to the valve body 30 to effect rotational movement of the element 30.

Det skal forstås at, ved bruk, vil fluid som strømmer inn i kammeret 32 passere gjennom den bueformede åpning 42 og inn i den av åpningene 38 som korresponderer med denne, idet fluidet strømmer gjennom det respektive utløp 40 til den tilhørende stempelanordning 26. Valget av hvilken, og noen, av utløpene 40 som fluid tilføres ved hjelp av ventilen 28, avhenger av ventillegemets 30 vinkelposisjon som, i sin tur, avhenger av styreakselens 44 vinkelposisjon. It is to be understood that, in use, fluid flowing into the chamber 32 will pass through the arcuate opening 42 and into the one of the openings 38 corresponding thereto, the fluid flowing through the respective outlet 40 to the associated piston device 26. The choice of which, and some, of the outlets 40 to which fluid is supplied by means of the valve 28 depends on the angular position of the valve body 30 which, in turn, depends on the angular position of the steering shaft 44.

Styreakselen 44 kan roteres ved hjelp av en rekke anordninger. For eksempel kan en hensiktsmessig styrt, elektrisk drevet motor brukes til å drive akselen 44 og derved styre operasjonen av ventilen 28. Alternativt kan styreakselen 44 være forbundet med en hensiktsmessig styrt, rullestabilisert plattform. I begge tilfeller kan akselens 44 bevegelse styres som reaksjon på utgangssignaler fra én eller flere nedihullssensorer 46, f.eks. innrettet til å avføle husets 22 inklinasjon. The steering shaft 44 can be rotated using a number of devices. For example, a suitably controlled, electrically driven motor can be used to drive the shaft 44 and thereby control the operation of the valve 28. Alternatively, the steering shaft 44 can be connected to a suitably controlled, roll stabilized platform. In both cases, the movement of the shaft 44 can be controlled in response to output signals from one or more downhole sensors 46, e.g. arranged to sense the house's 22 inclination.

Systemer av denne typer er velkjent og deres virkemåte vil derfor ikke bli nærmere beskrevet. Systems of this type are well known and their mode of operation will therefore not be described in more detail.

Så lenge styreakselen 44 roteres, dannes trykksvingninger eller -bølger i borefluidet eller -slammet i borerøret når kommunikasjon begynner, og deretter brytes, mellom den bueformede åpning 42 og åpningene 38, etter tur. De trykksvingninger eller -bølger som derved dannes kan avføles ved overflaten eller ved andre steder i avstand fra ventilen 28, særlig på tidspunkter når borerøret ikke roteres. As long as the steering shaft 44 is rotated, pressure fluctuations or waves are formed in the drilling fluid or mud in the drill pipe as communication begins, and then breaks, between the arcuate opening 42 and the openings 38, in turn. The pressure fluctuations or waves that are thereby formed can be sensed at the surface or at other locations at a distance from the valve 28, particularly at times when the drill pipe is not rotated.

I samsvar med oppfinnelsen, er disse trykksvingninger eller -bølger utstyrt for å muliggjøre dataoverføring fra bunnhullssammenstillingen, f.eks. til overflaten. For eksempel der sensoren 46 er innrettet til å avgi et signal som er representativt for inklinasjonen til spennenhetshuset 22, blir utgangssignalet fra sensoren 46 omkodet, f.eks. ved bruk av tabellen vist i fig. 3a for å utlede en varighet som er representativ for den avfølte inklinasjon. Rotasjonsventilen 28 blir så satt i rotasjon med en forutbestemt rotasjonshastighet for den utledede varighet, hvorved det overføres en rekke trykksvingninger eller -bølger gjennom borefluidet eller -slammet med en frekvens som er relatert til rotasjonshastigheten til rotasjonsventilen for den utledede varighet. Utstyr plassert på overflaten som er sensitivt for trykksvingningene eller -bølgene i fluidet kan brukes til å sette en operatør i stand til å måle hvor lenge trykkfluktasjonene eller -bølgene ble overført ved den forutbestemte frekvens. Varigheten kan så dekodes for å forsyne operatøren med sanntids-informasjon representativt for husets 22 inklinasjon. In accordance with the invention, these pressure fluctuations or waves are provided to enable data transfer from the downhole assembly, e.g. to the surface. For example, where the sensor 46 is arranged to emit a signal representative of the inclination of the tension unit housing 22, the output signal from the sensor 46 is recoded, e.g. using the table shown in fig. 3a to derive a duration representative of the sensed inclination. The rotary valve 28 is then set in rotation at a predetermined rotational speed for the derived duration, whereby a series of pressure fluctuations or waves are transmitted through the drilling fluid or mud with a frequency that is related to the rotational speed of the rotary valve for the derived duration. Equipment placed on the surface which is sensitive to the pressure fluctuations or waves in the fluid can be used to enable an operator to measure how long the pressure fluctuations or waves were transmitted at the predetermined frequency. The duration can then be decoded to provide the operator with real-time information representative of the house's 22 inclination.

For eksempel hvis utgangssignalet fra sensoren 46 indikerer at huset 22 heller med en vinkel på 2,5 grader, ved bruk av den ovenfor beskrevne teknikk med henvisning til fig. 3a, roteres rotasjonsventilen 28 i et tidsrom på 30 sekunder med den forutbestemte rotasjonshastighet, f.eks. en hastighet som virker til å overføre trykksvingninger eller -bølger ved en frekvens på 6 Hz. Operatøren kan, etter å ha målt at et 6 Hz signal er blitt mottatt i 30 sekunder, sikre, i sanntid, at husets 22 helling er i området 2-3 grader. Det skal forstås at andre rotasjonshastigheter for ventilen 28 kan brukes til å overføre signaler, og at varigheten og området av inklinasjonsvinkler, og forholdet mellom disse, kan velges for å til-passes den anvendelse ved hvilken oppfinnelsen anvendes. For example, if the output signal from the sensor 46 indicates that the housing 22 is leaning at an angle of 2.5 degrees, using the technique described above with reference to fig. 3a, the rotary valve 28 is rotated for a period of 30 seconds at the predetermined rotational speed, e.g. a speed that acts to transmit pressure fluctuations or waves at a frequency of 6 Hz. The operator can, after measuring that a 6 Hz signal has been received for 30 seconds, ensure, in real time, that the inclination of the house 22 is in the range of 2-3 degrees. It should be understood that other rotational speeds for the valve 28 can be used to transmit signals, and that the duration and range of inclination angles, and the ratio between these, can be chosen to suit the application in which the invention is used.

Der to eller flere sensorer er anordnet, kan data, representative for sen-sorenes utgangssignaler overføres, etter tur, f.eks. ved rotasjonsventilen rotert ved ulike rotasjonshastigheter, for derved å fremskaffe en indikasjon på for hvilke para-metere data overføres. Where two or more sensors are arranged, data representative of the sensors' output signals can be transmitted, in turn, e.g. at the rotary valve rotated at different rotational speeds, thereby providing an indication of the parameters for which data is transmitted.

Fig. 3b viser en alternativ omkodingsteknikk som kan brukes til å overføre større datamengder ved bruk av systemet ifølge oppfinnelsen. I dette arrange-ment, omkodes utgangssignalene fra sensorene ved bruk av en oppslagstabell. Fig. 3b shows an alternative recoding technique that can be used to transfer larger amounts of data when using the system according to the invention. In this arrangement, the output signals from the sensors are recoded using a look-up table.

Hvis det f.eks. bestemmes at verktøyets arbeidsflatevinkel er 90 grader og avviket er 60%, så vil en ved å bruke oppslagstabellen, vist i fig. 3b, kunne se at denne kombinasjon av parameterverdier skjer i kolonne 3, rad 7 i oppslagstabellen. I dette eksempel overføres kolonnedataene ved å rotere ventilen 28 med en rotasjonshastighet for å generere trykksvingninger eller -bølger ved en frekvens på 4 Hz, og rådata overføres ved å rotere ventilen 28 for å bevirke trykksvingninger eller -bølger ved en frekvens på 6 Hz. For å overføre dataene blir således ventilen rotert for å bevirke overføring av et 4 Hz-signal for 3 tidsenheter, f.eks. 30 sekunder, idet ventilen deretter roteres for å overføre et 6 Hz-signal i syv tidsenheter, f.eks. 70 sekunder. Ved mottak av disse signaler, kan operatøren dekode signalene ved bruk av den samme oppslagstabell for å oppnå, i sanntid, verktøy-arbeidsflate- og awiksdata. If it e.g. if it is determined that the tool's working surface angle is 90 degrees and the deviation is 60%, then by using the look-up table, shown in fig. 3b, could see that this combination of parameter values occurs in column 3, row 7 of the lookup table. In this example, the column data is transferred by rotating the valve 28 at a rotational speed to generate pressure fluctuations or waves at a frequency of 4 Hz, and the raw data is transferred by rotating the valve 28 to cause pressure fluctuations or waves at a frequency of 6 Hz. Thus, to transmit the data, the valve is rotated to effect transmission of a 4 Hz signal for 3 time units, e.g. 30 seconds, the valve then being rotated to transmit a 6 Hz signal for seven time units, e.g. 70 seconds. Upon receiving these signals, the operator can decode the signals using the same lookup table to obtain, in real time, tool work surface and awiks data.

Om ønskelig, kan oppslagstabellen brukes til å overføre verktøystatuskoder eller -ord til operatøren. If desired, the lookup table can be used to transmit tool status codes or words to the operator.

Som ovenfor nevnt, blir denne informasjon best overført når borestrengen ikke roteres, og kan hensiktsmessig overføres like etter at brønnverktøyet har fullført sin oppstartingsprosedyre når borefluidpumpene aktiveres etter resirkulering. Det kan imidlertid være mulig å foreta vellykket overføring og mottak av data ved bruk av systemer til andre tider. As mentioned above, this information is best transmitted when the drill string is not rotated, and can conveniently be transmitted just after the well tool has completed its start-up procedure when the drilling fluid pumps are activated after recirculation. However, it may be possible to successfully transfer and receive data using systems at other times.

Signalet som mottas ved overflaten kan måles ganske enkelt ved at operatøren bestemmer hvor lenge et signal med en forutbestemt frekvens er blitt overført, som han så dekoder. Alternativt kan overflateplassert utstyr brukes til å avføle signaloverføringen ved den forutbestemte frekvens eller de forutbestemte frekvenser, for å måle hvor lenge signalene er overført, for å dekode signalene og for å frembringe et korrekt output for å operatøren. The signal received at the surface can be measured simply by the operator determining how long a signal with a predetermined frequency has been transmitted, which he then decodes. Alternatively, surface mounted equipment can be used to sense the signal transmission at the predetermined frequency or frequencies, to measure how long the signals have been transmitted, to decode the signals and to produce a correct output to the operator.

Evnen til å overføre data i sanntid i samsvar med denne oppfinnelsen, er fordelaktig ved at, sammenliknet med konvensjonelle arrangementer, kan data overføres på en forholdsvis enkel, hurtig og bekvem måte. Data kan således over-føres oftere og mer kostnadseffektivt enn hva som er mulig med konvensjonelle arrangementer. Sanntids-dataoverføringen setter også en operatør i stand til å sikre at nedihullsutstyret arbeider korrekt, at kommunikasjonslenker med nedihullsutstyret funksjonerer, og kan tillate bedre styring over nedihullsutstyr som, f.eks., at avvik fra ønsket bane kan avføles og korrigeres hurtigere. Systemet krever ikke anskaffing av ytterligere nedihullsverktøy eller -utstyr, men kan isteden impliseres ganske enkelt ved hensiktsmessig modifikasjon av styresystemet for et standard brønnverktøy. The ability to transfer data in real time in accordance with this invention is advantageous in that, compared to conventional arrangements, data can be transferred in a relatively simple, fast and convenient manner. Data can thus be transferred more often and more cost-effectively than is possible with conventional arrangements. The real-time data transmission also enables an operator to ensure that the downhole equipment is working correctly, that communication links with the downhole equipment are functioning, and can allow better control over downhole equipment such that, for example, deviations from the desired path can be sensed and corrected more quickly. The system does not require the acquisition of additional downhole tools or equipment, but can instead be implemented simply by appropriate modification of the control system for a standard well tool.

Det skal forstås at et område av modifikasjoner og endringer kan utføres ved den ovenfor beskrevne oppfinnelse uten å avvike fra oppfinnelsens ramme. It should be understood that a range of modifications and changes can be made to the invention described above without deviating from the scope of the invention.

Claims (7)

1. Telemetrisystem for bruk i et boresystem, idet telemetrisystemet omfatter en rotasjonsventil som styrer tilførselen av borefluid eller -slam til et spennpute-stempelarrangement til et brønnverktøy, hvor rotasjonsventilen har et rotasjonsventillegeme og et utløpslegeme, hvor rotasjonsventillegemet innbefatter en åpning som selektivt kommuniserer med en serie åpninger i utløpslegemet for å muliggjøre styring over strømningen av borefluid eller -slam til brønnverktøyet, hvor systemet videre omfatter det å motta data som skal overføres, omkode dataene som en varighet, og styre rotasjonsventilens rotasjon slik at rotasjonsventillegemet til rotasjonsventilen roteres med hensyn til utløpslegemet for nevnte varighet med en forutbestemt rotasjonshastighet for å bevirke dannelse av trykksvingninger eller -bølger i borefluidet eller -slammet for å danne telemetrisignaler, og hvor boresystemet innbefatter minst én nedihullssensor, hvis output omfatter dataene som skal overføres.1. Telemetry system for use in a drilling system, the telemetry system comprising a rotary valve that controls the supply of drilling fluid or mud to a spring pad piston arrangement of a well tool, the rotary valve having a rotary valve body and an outlet body, the rotary valve body including an opening that selectively communicates with a series of openings in the outlet body to enable control over the flow of drilling fluid or mud to the well tool, the system further comprising receiving data to be transmitted, recoding the data as a duration, and controlling rotation of the rotary valve such that the rotary valve body of the rotary valve is rotated with respect to the outlet body for said duration at a predetermined rotational speed to cause pressure fluctuations or waves to form in the drilling fluid or mud to form telemetry signals, and wherein the drilling system includes at least one downhole sensor, the output of which comprises the data to be transmitted. 2. System ifølge krav 1, hvor boresystemet innbefatter en flerhet av sensorer, og hvor rotasjonsventilen roteres med to eller flere forutbestemte rotasjonshastigheter, som hver indikerer output-en fra en respektiv sensor.2. System according to claim 1, where the drilling system includes a plurality of sensors, and where the rotary valve is rotated at two or more predetermined rotational speeds, each of which indicates the output from a respective sensor. 3. System ifølge krav 1, hvor dataene omkodes ved bruk av en oppslagstabell.3. System according to claim 1, where the data is recoded using a lookup table. 4. System ifølge krav 3, hvor et første signal som overføres ved å rotere rotasjonsventilen for en første varighet med en første forutbestemt rotasjonshastighet, brukes til å overføre informasjon relatert til en koordinat i oppslagstabellen, et andre signal som overføres ved å rotere rotasjonsventilen for en andre varighet med en andre forutbestemt hastighet, brukes til å overføre informasjon relatert til en annen koordinat i oppslagstabellen.4. The system of claim 3, wherein a first signal transmitted by rotating the rotary valve for a first duration at a first predetermined rotational speed is used to transmit information related to a coordinate in the lookup table, a second signal transmitted by rotating the rotary valve for a second duration at a second predetermined rate, is used to transfer information related to another coordinate in the lookup table. 5. System ifølge et av kravene 1 til 4, hvor data overføres når et borerør er rotasjonsmessig stasjonært.5. System according to one of claims 1 to 4, where data is transferred when a drill pipe is rotationally stationary. 6. System ifølge krav 5, hvor data overføres like etter at brønnverktøyet har fullført sin oppstartingssekvens når en pumpe som tilfører borefluid eller -slam er slått på.6. System according to claim 5, where data is transferred just after the well tool has completed its start-up sequence when a pump supplying drilling fluid or mud is switched on. 7. System ifølge et av kravene 1 til 6, hvor brønnverktøyet omfatter en spennenhet.7. System according to one of claims 1 to 6, where the well tool comprises a clamping unit.
NO20074955A 2006-10-03 2007-10-02 Sanntidstelemetri NO338730B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0619459A GB2442522B (en) 2006-10-03 2006-10-03 Real time telemetry

Publications (2)

Publication Number Publication Date
NO20074955L NO20074955L (en) 2008-04-04
NO338730B1 true NO338730B1 (en) 2016-10-10

Family

ID=37435107

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20074955A NO338730B1 (en) 2006-10-03 2007-10-02 Sanntidstelemetri

Country Status (3)

Country Link
CA (1) CA2605045C (en)
GB (1) GB2442522B (en)
NO (1) NO338730B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7921876B2 (en) 2007-11-28 2011-04-12 Halliburton Energy Services, Inc. Rotary control valve and associated actuator control system
US8127834B2 (en) 2009-01-13 2012-03-06 Halliburton Energy Services, Inc. Modular electro-hydraulic controller for well tool
CN107795317B (en) * 2017-10-24 2020-11-10 中国石油大学(华东) Rotary valve rotating speed control method of measurement while drilling tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182731A (en) * 1991-08-08 1993-01-26 Preussag Aktiengesellschaft Well bore data transmission apparatus
NO325821B1 (en) * 2006-03-20 2008-07-21 Well Technology As Device for acoustic well telemetry with pressure compensated transmitter / receiver units

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9503827D0 (en) * 1995-02-25 1995-04-19 Camco Drilling Group Ltd "Improvements in or relating to steerable rotary drilling systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182731A (en) * 1991-08-08 1993-01-26 Preussag Aktiengesellschaft Well bore data transmission apparatus
NO325821B1 (en) * 2006-03-20 2008-07-21 Well Technology As Device for acoustic well telemetry with pressure compensated transmitter / receiver units

Also Published As

Publication number Publication date
NO20074955L (en) 2008-04-04
CA2605045C (en) 2013-04-30
GB2442522A (en) 2008-04-09
GB0619459D0 (en) 2006-11-08
GB2442522B (en) 2011-05-04
CA2605045A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
NO338729B1 (en) Gas processing plants
US9035788B2 (en) Real time telemetry
NO324104B1 (en) Apparatus and method for mud pulse telemetry by means of a reciprocating pulse system.
US20140262507A1 (en) Rotary steerable system for vertical drilling
CN108071386B (en) Rotary pulse transmitter and method for transmitting information along drill string
US20150107902A1 (en) Mud Actuated Drilling System
NO341187B1 (en) Method and system for downhole noise cancellation in sludge pulse telemetry
NO342358B1 (en) Reciprocating pulse sensor for mud pulse telemetry and a method for transmitting pressure pulses from a downhole site through a flowing fluid into a borehole
NO342178B1 (en) Steps to Increase or Decrease Data Speed by Downlink Signaling to a Downhole Device
NO851197L (en) ROTATING CUTTER VALVE FOR DRILL FLUID TELEMETRY SYSTEMS
NO315134B1 (en) Method and apparatus for transmitting data from the downhole unit of a directional drilling system to the surface
NO324447B1 (en) Closed loop drilling unit with electronics outside a non-rotating sleeve
MX2013014902A (en) Earth boring tools including retractable pads, cartridges including retractable pads for such tools, and related methods.
US20110280105A1 (en) Downhole Turbine Communication
NO325490B1 (en) Controllable modular bore assembly
EP3414427B1 (en) Flow off downhole communication method and related systems
GB2412128A (en) Rotary downlink system
US20160326864A1 (en) Steerable drilling method and system
CA2739978C (en) Apparatus and method for directional drilling
NO316757B1 (en) Device and method for remote activation of a downhole tool by vibration
US11396807B2 (en) Dual turbine power and wellbore communications apparatus
NO338730B1 (en) Sanntidstelemetri
NO342983B1 (en) Estimation of sludge properties
CA2268444A1 (en) Apparatus and method for drilling boreholes
CA2987642C (en) Fluid pressure pulse generator for a telemetry tool

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees