NO326308B1 - Peptide fragments and their use, as well as fusion protein, nucleic acid fragment, vector and process for producing, purifying and detecting proteins. - Google Patents

Peptide fragments and their use, as well as fusion protein, nucleic acid fragment, vector and process for producing, purifying and detecting proteins. Download PDF

Info

Publication number
NO326308B1
NO326308B1 NO20005819A NO20005819A NO326308B1 NO 326308 B1 NO326308 B1 NO 326308B1 NO 20005819 A NO20005819 A NO 20005819A NO 20005819 A NO20005819 A NO 20005819A NO 326308 B1 NO326308 B1 NO 326308B1
Authority
NO
Norway
Prior art keywords
protein
nucleic acid
proteins
fragment
sequence
Prior art date
Application number
NO20005819A
Other languages
Norwegian (no)
Other versions
NO20005819D0 (en
NO20005819L (en
Inventor
Bernhard Hauer
Rolf D Schmid
Markus Enzelberger
Stephan Minning
Original Assignee
Basf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Ag filed Critical Basf Ag
Publication of NO20005819D0 publication Critical patent/NO20005819D0/en
Publication of NO20005819L publication Critical patent/NO20005819L/en
Publication of NO326308B1 publication Critical patent/NO326308B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The invention relates to new peptide fragments, fusion proteins containing said peptide fragments, methods for producing same and the use of the peptide fragments. The invention also relates to a method for the purification of fusion proteins and a method for detecting proteins. The invention further relates to nucleic acids coding for the peptide fragments or the fusion proteins and to vectors containing said nucleic acids.

Description

Foreliggende oppfinnelse vedrører nye peptidfragmenter, fusjonsproteiner omfattende peptidfragmentene, fremgangsmåter for fremstilling av disse og anvendelse av peptidfragmentene. Oppfinnelsen vedrører også en fremgangsmåte for rensing av fusjonsproteiner og en fremgangsmåte for detektering av proteiner. The present invention relates to new peptide fragments, fusion proteins comprising the peptide fragments, methods for their production and use of the peptide fragments. The invention also relates to a method for purifying fusion proteins and a method for detecting proteins.

Oppfinnelsen vedrører videre nukleinsyrer som koder for peptidfragmenter eller for fusjonsproteiner og vektorer som omfatter nukleinsyrene. The invention further relates to nucleic acids which code for peptide fragments or for fusion proteins and vectors which comprise the nucleic acids.

Det er blitt mulig gjennom moderne molekylær biologi å fremstille nesten hvilke som helst proteiner, peptider eller derivater derav i nesten ubegrensede mengder. I denne sammenhengen har rensing av proteiner ofte vist seg å være begrensende og som oftest ineffektivt og er dermed generelt den kostnadsbestemmende faktoren. It has become possible through modern molecular biology to produce almost any proteins, peptides or derivatives thereof in almost unlimited quantities. In this context, purification of proteins has often been shown to be limiting and most often ineffective and is thus generally the cost-determining factor.

Dette er grunnen til at et antall teknikker for rensing av proteiner er blitt utviklet. Teknikken normalt anvendt for å rense proteiner fra cellesupernatanter, rå celleekstrakter eller celler utgjør for eksempel saltpresipitering eller presipitering med organiske løsningsmidler, ultrafiltrering, dialysering, gelelektroforese, isoelektrisk fokusering, kromatofokusering, ionebytte eller gelkromatografi, hydrofobisk kromatografi, immunopresipitering eller IMAC (= Immobilized Metal Affinity Chromatography). This is why a number of techniques for purifying proteins have been developed. The techniques normally used to purify proteins from cell supernatants, crude cell extracts or cells are, for example, salt precipitation or precipitation with organic solvents, ultrafiltration, dialysis, gel electrophoresis, isoelectric focusing, chromatofocusing, ion exchange or gel chromatography, hydrophobic chromatography, immunoprecipitation or IMAC (= Immobilized Metal Affinity) Chromatography).

Enkle metoder kan bli anvendt for rensing, med en kombinasjon av forskjellige teknikker er vanligvis nødvendig. Konvensjonelle rensningsmetoder er for eksempel beskrevet i lærebøkene Protein Purification Process Engineering (Ed. R.G. Harrison, 1994, Marcel Dekker, Inc., New York, page 209 - 316, ISBN 0-8247-9009-X), Protein Purification (Ed. R.K. Scopes, 1994, Springer Verlag New York, chapter 4 - 7, ISBN 0-387-94072-3) og Methods for Protein Analysis (Ed. R.A. Copelog, 1994 Chapman & Hall, page 59-112, ISBN 0-412-03741 -6). Det er viktig for rensing av proteinene at rensingen foregår under betingelser som er så svake som mulig, og som er så selektive som mulig og så hurtige som mulig. Videre bør proteintapene bli holdt så små som mulig. Mange av metodene for proteinrensing er ikke tilstrekkelig selektive og bare egnede for små mengder protein og/eller meget dyre. Simple methods can be used for purification, with a combination of different techniques usually required. Conventional purification methods are described, for example, in the textbooks Protein Purification Process Engineering (Ed. R.G. Harrison, 1994, Marcel Dekker, Inc., New York, page 209 - 316, ISBN 0-8247-9009-X), Protein Purification (Ed. R.K. Scopes, 1994, Springer Verlag New York, chapter 4 - 7, ISBN 0-387-94072-3) and Methods for Protein Analysis (Ed. R.A. Copelog, 1994 Chapman & Hall, page 59-112, ISBN 0-412-03741 -6). It is important for the purification of the proteins that the purification takes place under conditions that are as weak as possible, and that are as selective as possible and as fast as possible. Furthermore, protein losses should be kept as small as possible. Many of the methods for protein purification are not sufficiently selective and are only suitable for small amounts of protein and/or very expensive.

Metoder for rensing av proteiner ved IMAC (= Immobilized Metal Affinity Chromatography) beskrevet avPorath et al. (Nature, Vol.258,1975: 598 - 599) er et kompromiss mellom angitte krav som skal bli oppfylt ved optimal rensing. Denne metoden har derimot fortsatt noen ulemper. Ikke alle metallioner bindes like godt til bærematerialet slik at noen ioner blir vasket ut og dermed kontaminerer det nødvendige produktet. Mange proteiner bindes ikke i det hele tatt til kromatografimaterialet og kan derfor ikke bli renset, eller bindes for svakt slik at de til og med blir eluert i løpet av de nødvendige trinnene for vasking av kolonnematerialer. Dette resulterer i uønskede tap av produkt. På grunn av at selektiviteten vanligvis er utilstrekkelig for en ett-trinns rensning, i kontrast til rensinger ved biospesifikke affinitetsrensningsmetoder så som for eksempel rensing med antistoffer, er ytterligere rensningstrinn nødvendige. Methods for purification of proteins by IMAC (= Immobilized Metal Affinity Chromatography) described by Porath et al. (Nature, Vol.258, 1975: 598 - 599) is a compromise between specified requirements that must be met by optimal purification. However, this method still has some disadvantages. Not all metal ions bind equally well to the carrier material so that some ions are washed out and thus contaminate the required product. Many proteins do not bind at all to the chromatography material and therefore cannot be purified, or bind too weakly to even be eluted during the necessary steps for washing column materials. This results in unwanted loss of product. Because the selectivity is usually insufficient for a one-step purification, in contrast to purifications by biospecific affinity purification methods such as, for example, purification with antibodies, additional purification steps are necessary.

For å kunne rense en rekke proteiner ved anvendelse av denne metoden er forskjellige såkalte tagger blitt utviklet, så som polyhistidine, His-Trp, His-Tyr or (His-Asp)n (see Sporeno et al., J. Biol. Chem. 269 (15), 1994:10991 -10995, Le Grice et al., Eur. J. Biochem., 187 (2), 1990: 307 - 314, Reece et al., Gene, 126 (1), 1993:105 -107, De Vos et al., Nucl. Acid. Res., 22 (7), 1994:1161 -1166, Feng et al., J. Biol. Chem. 269 (3), 1994: 2342 - 2348, Hochuli et al., Biotechnology, 1988:1321 -1325, Patwardhan et al., J. Chromatography A, 787,1997: 91 -100, Hutchens et al., J. Chromatography, 604,1992:133-141). Disse taggene blir koblet til proteinet som skal bli renset ved hjelp av molekylær biologi på nukleinsyrenivået. Det har vært mulig gjennom disse taggene å forbedre proteinrensningen ytterligere i noen områder selv om denne metoden fortsatt har noen ulemper. Det er fortsatt ikke mulig å forutsi påliteligheten når det gjelder om et protein kan bli renset ifølge denne metoden (se Immobilized Metal lon Affinity Chromatography, L. Kågedal, side 227 - 251 in Protein Purification, Eds. J.C. Janson, L. Rydén, 1989, VCH Publishers, Inc., New York, ISBN 0-89573-122-3), som betyr at denne metoden ikke kan anvendes selv ikke på hvert protein. Metallionet kan bli vasket ut eller proteiner kan bli bundet så svakt at de delvis blir borte i løpet av vasketrinnene. Selektiviteten er i tillegg fortsatt utilfredsstillende. I tillegg er kapasiteten til kolonnematerialet for belastning med proteinene som skal bli renset i noen tilfeller for lav slik at en stor mengde kolonnemateriale må bli anvendt i en rensning. Proteinutbyttet er fortsatt utilfredsstillende. Dette fører til unødvendige kostnader. In order to purify a number of proteins using this method, various so-called tags have been developed, such as polyhistidine, His-Trp, His-Tyr or (His-Asp)n (see Sporeno et al., J. Biol. Chem. 269 (15), 1994:10991 -10995, Le Grice et al., Eur. J. Biochem., 187 (2), 1990: 307 - 314, Reece et al., Gene, 126 (1), 1993:105 -107, De Vos et al., Nucl. Acid. Res., 22 (7), 1994:1161 -1166, Feng et al., J. Biol. Chem. 269 (3), 1994: 2342 - 2348, Hochuli et al., Biotechnology, 1988:1321-1325, Patwardhan et al., J. Chromatography A, 787, 1997: 91-100, Hutchens et al., J. Chromatography, 604, 1992:133-141). These tags are linked to the protein to be purified using molecular biology at the nucleic acid level. It has been possible through these tags to further improve protein purification in some areas, although this method still has some disadvantages. It is still not possible to predict the reliability of whether a protein can be purified according to this method (see Immobilized Metal Affinity Chromatography, L. Kågedal, pages 227 - 251 in Protein Purification, Eds. J.C. Janson, L. Rydén, 1989 , VCH Publishers, Inc., New York, ISBN 0-89573-122-3), which means that this method cannot be applied even to every protein. The metal ion may be washed out or proteins may be bound so weakly that they are partially lost during the washing steps. In addition, the selectivity is still unsatisfactory. In addition, the capacity of the column material for loading with the proteins to be purified is in some cases too low so that a large amount of column material must be used in a purification. The protein yield is still unsatisfactory. This leads to unnecessary costs.

EP 282042 beskriver rekombinante fusjonsproteiner med peptider inneholdende His- og Asp-residier som har en høy affinitet for immobiliserte metallioner. EP 282042 describes recombinant fusion proteins with peptides containing His and Asp residues which have a high affinity for immobilized metal ions.

J. Volz et al., Journal of Chromatography A, vol. 800,1998, s. 29-37 beskriver polypeptider inneholdende spesifikke peptider av His- og Cys-residier som har en høy affinitet for Ni og Cu-ioner. J. Volz et al., Journal of Chromatography A, vol. 800, 1998, pp. 29-37 describes polypeptides containing specific peptides of His and Cys residues which have a high affinity for Ni and Cu ions.

Volz et al. har beskrevet rensing av ATPaser fra Helicobacter pylori uten anvendelse av en ytterligere His-tag sekvens. Disse ATPasene inneholder naturlige metallbindingsseter som gjør rensing ved IMAC mulig. Våre egne studier har vist at disse bindingsstudiene utviser en bindingsaffinitet som er for lav for effektiv rensing av alle ønskede proteiner. Volz et al. have described the purification of ATPases from Helicobacter pylori without the use of an additional His-tag sequence. These ATPases contain natural metal binding sites that make purification by IMAC possible. Our own studies have shown that these binding studies show a binding affinity that is too low for effective purification of all desired proteins.

Det er en hensikt ifølge foreliggende oppfinnelse å tilveiebringe ytterligere tagger for proteinrensing ved IMAC som ikke har ovennevnte ulemper og som følgelig gjør det mulig for eksempel å anvende taggene i mer utstrakt grad og/eller applisere kolonnematerialet med høyere tetthet, og som utviser en høyere selektivitet og som dermed forenkler rensingen. Vi har oppdaget at den hensikten blir oppnådd av peptidfragment, kjennetegnet ved at det har den generelle sekvensen His-X<1->His-X<2->X<3->X<4->Cys-X<5->X<6->Cys hvor variablene X<1> til X<6> i sekvensen har følgende betydninger uavhengig av hverandre: X<1> = Asn; It is an aim according to the present invention to provide additional tags for protein purification by IMAC which do not have the above-mentioned disadvantages and which consequently make it possible, for example, to use the tags to a more extensive extent and/or to apply the column material with a higher density, and which exhibit a higher selectivity and which thus simplifies cleaning. We have discovered that that purpose is achieved by peptide fragment characterized by having the general sequence His-X<1->His-X<2->X<3->X<4->Cys-X<5-> X<6->Cys where the variables X<1> to X<6> in the sequence have the following meanings independently of each other: X<1> = Asn;

X<2>=Gln, Glu eller Arg; X<2>=Gln, Glu or Arg;

X3 = Gly, Thr eller Tyr; X3 = Gly, Thr or Tyr;

X<4>= Asn eller Arg; X<4>= Asn or Arg;

X<5>=Gly eller Lys; X<5>=Gly or Light;

X<6>=Cys. X<6>=Cys.

Den generelle sekvensen His-X<1->His-X2-X<3->X<4->Cys-X<5->X<6->Cys korresponderer med SEQ ID No:1 hvori X<1> korresponderer med aminosyrene betegnet Xaa i posisjon i SEQ ID No: 1, og X<2> korresponderer med Xaa i posisjon 4, X<3> korresponderer med Xaa i posisjon 5, X<4> korresponderer med Xaa i posisjon 6, X<5> korresponderer med Xaa i posisjon 8 og X<6> korresponderer med Xaa i posisjon 9. Aminosyrene nevnt ovenfor for X<1> til X<6> kan representere korresponderende aminosyrer betegnet Xaa i SEQ ID No: 1. The general sequence His-X<1->His-X2-X<3->X<4->Cys-X<5->X<6->Cys corresponds to SEQ ID No:1 wherein X<1> corresponds with the amino acids designated Xaa in position in SEQ ID No: 1, and X<2> corresponds to Xaa in position 4, X<3> corresponds to Xaa in position 5, X<4> corresponds to Xaa in position 6, X<5 > corresponds to Xaa in position 8 and X<6> corresponds to Xaa in position 9. The amino acids mentioned above for X<1> to X<6> may represent corresponding amino acids designated Xaa in SEQ ID No: 1.

Spesielt foretrukne peptidfragmenter er fragmenter med sekvensen Particularly preferred peptide fragments are fragments with the sequence

Angitte sekvenser tilsvarer i hvert tilfelle sekvensene SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, og SEQ ID NO:5. Specified sequences correspond in each case to the sequences SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, and SEQ ID NO: 5.

Foreliggende oppfinnelse vedrører videre fusjonsprotein, kjennetegnet ved at det omfatter et proteinfragment ifølge krav 1. The present invention further relates to fusion protein, characterized in that it comprises a protein fragment according to claim 1.

Det er videre beskrevet nukleinsyrefragment, kjennetegnet ved at det koder for et proteinf ragment ifølge krav 1. A nucleic acid fragment is further described, characterized in that it codes for a protein fragment according to claim 1.

Nukleinsyren ifølge oppfinnelsen omfatter et nukleinsyrefragment ifølge krav 4. The nucleic acid according to the invention comprises a nucleic acid fragment according to claim 4.

Ifølge oppfinnelsen koder nukleinsyren for et fusjonsprotein ifølge krav 3. Oppfinnelsen vedrører videre vektor, kjennetegnet ved at den omfatter et nukleinsyrefragment ifølge krav 4 eller 6. According to the invention, the nucleic acid codes for a fusion protein according to claim 3. The invention further relates to vector, characterized in that it comprises a nucleic acid fragment according to claim 4 or 6.

Ovennevnte proteinfragmentsekvens blir kodet av nukleinsyrefragmentene ifølge oppfinnelsen. Det må tas hensyn til den degenererte genetiske koden i denne sammenhengen. Nukleinsyref ragmentene ifølge oppfinnelsen kan i prinsippet være tilstede i en hvilken som helst egnet nukleinsyre. Nukleinsyref ragmenter blir fortrinnsvis skutt inn i vektorer på en slik måte at det er mulig å danne komposittnukleinsyre-sekvenser (= genkonstruksjoner) som koder for fusjonsproteinene ifølge oppfinnelsen. Disse gen-konstruksjonene kan for ekspresjon fordelaktig bli huset i en egnet vertsorganisme som gjør optimal ekpressjon av fusjonsproteinet mulig. Egnede vektorer er velkjente for fagfolk og kan for eksempel finnes i boken Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Bortsett fra plasmider betyr vektorer alle andre vektorer kjent for fagfolk, så som for eksempel, fag, vimser, transposoner, IS elementer, plasmider, kosmider, lineært eller sirkulært DNA. Disse vektorene kan gjennomgå autonom replikasjon eller kromosomal replikasjon i vertsorganismene. The above-mentioned protein fragment sequence is encoded by the nucleic acid fragments according to the invention. The degenerate genetic code must be taken into account in this context. The nucleic acid fragments according to the invention can in principle be present in any suitable nucleic acid. Nucleic acid fragments are preferably inserted into vectors in such a way that it is possible to form composite nucleic acid sequences (= gene constructs) which code for the fusion proteins according to the invention. For expression, these gene constructs can advantageously be housed in a suitable host organism which makes optimal expression of the fusion protein possible. Suitable vectors are well known to those skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Apart from plasmids, vectors mean all other vectors known to those skilled in the art, such as, for example, phages, vims, transposons, IS elements, plasmids, cosmids, linear or circular DNA. These vectors can undergo autonomous replication or chromosomal replication in the host organisms.

Nukleinsyresekvensene ifølge oppfinnelsen betyr sekvenser som er blitt funksjonelt koblet til en eller flere regulatoriske signaler, fortrinnsvis for å øke gen-ekspresjonen. Disse kan være 3' og/eller 5' terminale regulatoriske sekvenser for å forsterke ekspresjonen og er valgt for optimal ekspresjon avhengig av valgt vertsorganisme og gen. Disse regulatoriske sekvensene er for eksempel sekvenser hvortil indusere eller repressorer bindes og som dermed regulerer ekspresjonen av nukleinsyrene. Genkonstruksjonen kan i tillegg fortrinnsvis inneholde en eller flere såkalte enhancersekvenser funksjonelt koblet til promoteren og disse gjør øket ekspresjon av nukleinsyresekvensen mulig. Dette kan for eksempel foregå ved en godkjent interaksjon mellom RNA polymerase og DNA. Det er også mulig å sette inn ytterligere fordelaktige sekvenser i 3' enden av DNA sekvensene så som andre regulatoriske elementer eller termineringsmidler. Nukleinsyrefragmenter fra oppfinnelsen blir fortrinnsvis skutt inn i vektoren på en slik måte at de danner den N-terminale regionen av fusjonsproteinet. Det kan derimot også være lokalisert i den C-terminale enden, eller være lokalisert innenfor proteinet, men i dette tilfellet må funksjonen til proteinet ikke være påvirket, og utspaltning fra fusjonsproteinet er ikke lenger mulig. The nucleic acid sequences according to the invention mean sequences that have been functionally linked to one or more regulatory signals, preferably to increase gene expression. These can be 3' and/or 5' terminal regulatory sequences to enhance expression and are chosen for optimal expression depending on the chosen host organism and gene. These regulatory sequences are, for example, sequences to which inducers or repressors are bound and which thus regulate the expression of the nucleic acids. The gene construct can also preferably contain one or more so-called enhancer sequences functionally linked to the promoter and these make increased expression of the nucleic acid sequence possible. This can, for example, take place through an approved interaction between RNA polymerase and DNA. It is also possible to insert further advantageous sequences at the 3' end of the DNA sequences such as other regulatory elements or terminators. Nucleic acid fragments from the invention are preferably inserted into the vector in such a way that they form the N-terminal region of the fusion protein. However, it can also be located at the C-terminal end, or be located within the protein, but in this case the function of the protein must not be affected, and cleavage from the fusion protein is no longer possible.

Regulatoriske sekvenser er ment å danne spesifikk ekspresjon av genene og proteinekspresjon mulig. Dette kan for eksempel bety, avhengig av vertsorganismen, at genet blir uttrykt eller overuttrykt kun etter induksjon,.eller at det blir øyeblikkelig uttrykt og/eller overuttrykt. Regulatory sequences are intended to make specific expression of the genes and protein expression possible. This can mean, for example, depending on the host organism, that the gene is expressed or overexpressed only after induction, or that it is immediately expressed and/or overexpressed.

Fordelaktige regulatoriske sekvenser er for eksempel tilstede i promotere så som cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, lacl<q*> T7, T5, T3, gal, tre, ara, SP6, I-Pr promotere eller i I-Pl promoter, som fortrinnsvis blir anvendt i gram-negative bakterier. Ytterligere fordelaktige regulatoriske sekvenser er for eksempel tilstede i gram-positive promotere amy og SP02, i gjær eller sopp promotere ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH eller i plantepromoterene CaMV/35S, SSU, OCS, Iib4, usp, STLS1, B33, nos eller i ubiquitin or faseolin promoteren. Også fordelaktig i denne sammenhengen er promotere av pyruvat dekarboksylase og metanoloksydase fra for eksempel Hansenula. Det er også mulig å anvende kunstige promotere for regulering. Advantageous regulatory sequences are for example present in promoters such as cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, lacl<q*> T7, T5, T3, gal, tre, ara, SP6, I-Pr promoter or I-Pl promoter, which is preferably used in gram-negative bacteria. Additional advantageous regulatory sequences are present, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV/35S, SSU, OCS, Iib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter. Also advantageous in this context are promoters of pyruvate decarboxylase and methanol oxidase from, for example, Hansenula. It is also possible to use artificial promoters for regulation.

Regulatoriske sekvenser eller faktorer kan videre fortrinnsvis ha en fordelaktig effekt på ekspresjonen av det introduserte genet og dermed øke det. Forsterkning av regulatoriske elementer kan fordelaktig foregå på transkripsjonsnivå ved anvendelse av sterke transkripsjonssignaler så som nevnte promotere og/eller enhancere. Forsterkning av translasjon er derimot også mulig ved for eksempel å forbedre stabiliteten til mRNA. Regulatory sequences or factors can furthermore preferably have a beneficial effect on the expression of the introduced gene and thereby increase it. Reinforcement of regulatory elements can advantageously take place at the transcriptional level by using strong transcriptional signals such as the aforementioned promoters and/or enhancers. On the other hand, strengthening of translation is also possible by, for example, improving the stability of mRNA.

Nukleinsyresekvenser ifølge oppfinnelsen inneholder også fortrinnsvis signaler som gjør det mulig at proteinene blir utskilt i mediet eller inn i cellerommene. Eksempler på sekvenser av denne typen som kan bli nevnt er typiske signalsekvenser så som for eksempel signalsekvensen til ompA (E. colimembranprotein). Det er i tillegg mulig at andre fordelaktige sekvenser er tilstede, så som sekvensen til a faktoren eller for YAC (= gjærkunstig) [sic] kromosomer. Nucleic acid sequences according to the invention also preferably contain signals which make it possible for the proteins to be secreted into the medium or into the cell compartments. Examples of sequences of this type that can be mentioned are typical signal sequences such as, for example, the signal sequence of ompA (E. coli membrane protein). It is additionally possible that other advantageous sequences are present, such as the sequence of the a factor or of YAC (= yeast artificial) [sic] chromosomes.

Genkonstruksjoner (=nukleinsyresekvenser) ifølge oppfinnelsen inneholder i tillegg fortrinnsvis sekvenser som gjør det mulig å eliminere proteinfragmenter som har ovennevnte sekvens ifølge oppfinnelsen fra N eller C terminal av fusjonsproteinet, fortrinnsvis fra den N-terminale enden. Disse sekvensene koder for eksempel for spaltningsseter for en rekke proteaser for eksempel for faktor Xa, enterokinase, humanrenin, karboksypeptidase A, trombin, trypsin, dipeptidyl peptidaser, papain, plasmin, pepsin eller andre proteaser. Foretrukne spaltningsseter er for eksempel Xa, human renin, dipeptidyl peptidases, carboxypeptidase A eller entero- kinase, på grunn av at disse enzymene har en høy spesifisitet og dermed kan uønsket spaltning av proteinet som skal bli renset bli unngått. Dersom andre proteaser blir anvendt må man være forsiktig slik at ingen av spaltningssetene er inne i proteinet som skal bli renset. Proteinfragmentet kan også bli deletert ved spaltning med cyanogenbromid [for eksempel 2-(2-nitrophenylsulfenyl)-3-bromo-3'-metylindolinium, hydroksyl- amine etc] i nærvær av maursyre. I dette tilfellet er derimot refolding av proteinet vanligvis nødvendig og dette resulterer i at denne metoden er mindre foretrukket. Eliminering av proteinfragmentet ved eksoproteasespaltning (under kinetisk kontroll) er også mulig. Dette resulterer derimot vanligvis i produktblandinger. Spaltningsseter som fortrinnsvis blir anvendt er de som gjør det mulig å deletere proteinf ragmenter uten å etterlate residier av proteinfragmenter i proteinet som skal bli renset. Dersom proteinfragmentene ifølge oppfinnelsen kan bli tolerert i fusjonsproteinet uten tap av funksjon og uten andre ulemper, kan et spesifikt sete for løsning av proteinfragmentet kan bli unngått. Gene constructs (=nucleic acid sequences) according to the invention additionally preferably contain sequences which make it possible to eliminate protein fragments having the above-mentioned sequence according to the invention from the N or C terminus of the fusion protein, preferably from the N-terminal end. These sequences code for example for cleavage sites for a number of proteases, for example for factor Xa, enterokinase, human renin, carboxypeptidase A, thrombin, trypsin, dipeptidyl peptidases, papain, plasmin, pepsin or other proteases. Preferred cleavage sites are, for example, Xa, human renin, dipeptidyl peptidases, carboxypeptidase A or enterokinase, because these enzymes have a high specificity and thus unwanted cleavage of the protein to be purified can be avoided. If other proteases are used, care must be taken so that none of the cleavage sites are inside the protein to be purified. The protein fragment can also be deleted by cleavage with cyanogen bromide [for example 2-(2-nitrophenylsulfenyl)-3-bromo-3'-methylindolinium, hydroxylamine etc] in the presence of formic acid. In this case, however, refolding of the protein is usually necessary and this results in this method being less preferred. Elimination of the protein fragment by exoprotease cleavage (under kinetic control) is also possible. However, this usually results in product mixes. Cleavage sites that are preferably used are those that make it possible to delete protein fragments without leaving residues of protein fragments in the protein to be purified. If the protein fragments according to the invention can be tolerated in the fusion protein without loss of function and without other disadvantages, a specific site for solution of the protein fragment can be avoided.

Egnede vektorer er i prinsippet alle vektorer som gjør ekspresjon i pro- eller eukaryote celler mulig. Det er mulig i denne sammenhengen å anvende vektorer som replikerer i bare en slekt eller de som replikerer i flere slekter (betegnet skyttelvektorer). Eksempler på fordelaktige vektorer er plasmider så som E.coli plasmidene pEGFP, pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pl_G200, pUR290, plN-lll<113->B1, Igt11 eller pBdCI, fortrinnsvis pEGFP, i Streptomyces plJ101, plJ364, plJ702 eller plJ361, i Bacillus pUB110, pC194 eller pBD214, i Corynebacterium pSA77 eller pAJ667, i fungi pALS1, pll_2 or pBB116, i gjærorganismer 2um, pAG-1, YEp6, YEp13 eller pEMBLYe23 eller i planter pLGV23, pGHlac"1", pBIN19, pAC2004 or pDH51. Nevnte plasmider representerer et lite utvalg av mulige plasmider. Ytterligere plasmider er velkjente for fagfolk og kan for eksempel finnes i ovennevnte bok Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985 , ISBN 0 444 904018). Suitable vectors are in principle all vectors that make expression in pro- or eukaryotic cells possible. In this context, it is possible to use vectors that replicate in only one genus or those that replicate in several genera (referred to as shuttle vectors). Examples of advantageous vectors are plasmids such as the E.coli plasmids pEGFP, pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pl_G200, pUR290, plN-lll<113->B1, Igt11 or pBdCI, preferably pEGFP, in Streptomyces plJ101, plJ364, plJ702 or plJ361, in Bacillus pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667, in fungi pALS1, pll_2 or pBB116, in yeast 2um, pAG-1, YEp6, YEp13 or pEMBLYe23 or in plants pLGV23, pGHlac"1", pBIN19, pAC2004 or pDH51. Said plasmids represent a small selection of possible plasmids. Additional plasmids are well known to those skilled in the art and can be found, for example, in the above-mentioned book Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018).

I en annen utførelsesform av vektoren kan nukleinsyresekvensen ifølge oppfinnelsen også fordelaktig bli innført i form av et lineært DNA inn i mikroorganismene og bli integrert ved heterolog eller homolog rekombinasjon inn i genomet til vertsorganismen. Dette lineære DNA kan bestå av en lineærisert vektor så som et plasmid eller bare av nukleinsyren, dvs. nukleinsyrefragmentet og genet for proteinet (= fusjons-proteingenet) og, når hensiktsmessig, andre regulatoriske sekvenser. In another embodiment of the vector, the nucleic acid sequence according to the invention can also advantageously be introduced in the form of a linear DNA into the microorganisms and be integrated by heterologous or homologous recombination into the genome of the host organism. This linear DNA can consist of a linearized vector such as a plasmid or only of the nucleic acid, i.e. the nucleic acid fragment and the gene for the protein (= fusion protein gene) and, when appropriate, other regulatory sequences.

Vertsorganismer egnede for genkonstruksjon er i prinsippet alle prokaryote eller eukaryote organismer. Vertsorganismer som fortrinnsvis blir anvendt er mikroorganismer så som gram positive eller gram negative bakterier, archaebakterier, sopp, gjær, dyr eller planteceller så som Drosophila, spesielt D.melanogaster, mus, zebra fisk eller tobakk. Det som fortrinnsvis blir anvendt er gram positive eller gram negative bakterier, sopp eller gjær, spesielt foretrukket er slekten Escherichia, Bacillus, Streptomyces, Aspergillus or Saccharomyces, meget spesielt foretrukket er E. coli. Host organisms suitable for gene engineering are in principle all prokaryotic or eukaryotic organisms. Host organisms which are preferably used are microorganisms such as gram positive or gram negative bacteria, archaebacteria, fungi, yeast, animal or plant cells such as Drosophila, especially D. melanogaster, mice, zebra fish or tobacco. What is preferably used are gram positive or gram negative bacteria, fungi or yeast, particularly preferred is the genus Escherichia, Bacillus, Streptomyces, Aspergillus or Saccharomyces, very particularly preferred is E. coli.

Spesielt foretrukket er følgende kombinasjoner av vektor og vertsorganismer så som Escherichia coli og dets plasmider og fag og promotere som hører dertil, og Bacillus og plasmider og promotere derav, Streptomyces og plasmider og promotere derav, Aspergillus og plasmider og promotere derav eller Saccharomyces og plasmider og promotere derav. Particularly preferred are the following combinations of vector and host organisms such as Escherichia coli and its plasmids and phage and promoters belonging thereto, and Bacillus and plasmids and promoters thereof, Streptomyces and plasmids and promoters thereof, Aspergillus and plasmids and promoters thereof or Saccharomyces and plasmids and promote thereof.

Foreliggende oppfinnelse vedrører videre fremgangsmåte for fremstilling av fusjonsproteiner i krav 3, kjennetegnet ved at den omfatter fusjonering av et nukleinsyrefragment som krevd i krav 6 til et gen som koder for et protein. The present invention further relates to the method for producing fusion proteins in claim 3, characterized in that it comprises the fusion of a nucleic acid fragment as claimed in claim 6 to a gene that codes for a protein.

Den beskriver videre fremgangsmåte for rensing av fusjonsproteiner ifølge krav 3, kjennetegnet ved at den omfatter It further describes a method for purifying fusion proteins according to claim 3, characterized in that it comprises

a) å bringe væsker som inneholder fusjonsproteinet i kontakt med immobiliserte metallioner på en slik måte at en affinitetsbinding kan bli dannet mellom a) bringing liquids containing the fusion protein into contact with immobilized metal ions in such a way that an affinity bond can be formed between

metallionene av fusjonsproteinet, the metal ions of the fusion protein,

b) fjerning av ubundede forbindelser tilstede i væsken, b) removal of unbound compounds present in the liquid,

c) eluering av bundet fusjonsprotein hvori affinitetsbindingen blir unngått ved forandring av det flytende mediet og c) elution of bound fusion protein in which the affinity binding is avoided by changing the liquid medium and

d) samling av renset fusjonsprotein. d) collection of purified fusion protein.

Oppfinnelsen vedrører også anvendelse av et proteinfragment ifølge krav 1 eller The invention also relates to the use of a protein fragment according to claim 1 or

et nukleinsyrefragment ifølge krav 4 for rensing av proteiner. a nucleic acid fragment according to claim 4 for the purification of proteins.

Foreliggende oppfinnelse vedrører videre fremgangsmåte for fremstilling av proteinfragmenter som har evne til å gå inn i en reversibel affinitetsbinding med immobiliserte metallioner, kjennetegnet ved at den omfatter å utføre følgende trinn: The present invention further relates to a method for the production of protein fragments which have the ability to enter into a reversible affinity bond with immobilized metal ions, characterized in that it comprises carrying out the following steps:

a) fremstilling av et nukleinsyrebibliotek begynnende fra en hvilken som helst egnet nukleinsyresekvens som koder for et proteinfragment med sekvensen a) preparation of a nucleic acid library starting from any suitable nucleic acid sequence encoding a protein fragment having the sequence

hvor histidin og cysteinresidiene til sekvensen er konserverte i nukleinsyrebiblioteket. where the histidine and cysteine residues of the sequence are conserved in the nucleic acid library.

b) fusjonering av nukleinsyrene fra biblioteket til et reseptorgen som gjør det mulig å detektere fusjonsproteinet som blir kodet av den resulterende nukleinsyren via b) fusing the nucleic acids from the library to a receptor gene which makes it possible to detect the fusion protein encoded by the resulting nucleic acid via

dets binding til immobiliserte metallioner og its binding to immobilized metal ions and

c) selektering av nukleinsyresekvenser som utviser en reversibel binding til immobiliserte metalloiner som er minst 1,5 ganger sterkere enn sekvensen i naturlig c) selection of nucleic acid sequences that exhibit a reversible binding to immobilized metalloins that is at least 1.5 times stronger than the sequence in natural

Helicobacter pylori ATPase-439. Helicobacter pylori ATPase-439.

Det er også beskrevet fremgangsmåte for detektering av proteiner, Methods for detecting proteins are also described,

kjennetegnet ved at at den omfatter detektering av individuelle proteiner som omfatter et proteinfragment som krevd i krav 1 i en proteinblanding via antistoffer som er rettet mot proteinf ragmentet. characterized in that it includes the detection of individual proteins that comprise a protein fragment as required in claim 1 in a protein mixture via antibodies that are directed against the protein fragment.

Oppfinnelsen beskriver også anvendelse av et proteinfragment ifølge krav 1 eller et nukleinsyrefragment ifølge krav 4 for rensing av proteiner. The invention also describes the use of a protein fragment according to claim 1 or a nucleic acid fragment according to claim 4 for the purification of proteins.

Fusjonsproteiner ifølge oppfinnelsen kan bli fremstilt som beskrevet ovenfor i en fremgangsmåte hvori nukleinsyrefragmenter ifølge oppfinnelsen, som koder for proteinfragmenter som har ovennevnte sekvens, blir fusjonert til et gen som koder for proteinene som skal bli renset, og, hvor hensiktsmessig, andre fordelaktige sekvenser så som promoter og/eller enhancersekvenser, spaltningsseter for proteaser osv. Dersom det er nødvendig for dette formålet blir et egnet restriksjonsenxym-spaltningssete introdusert mellom nukleinsyref ragmentet og genet til proteinet som skal bli renset, og denne konstruksjonen blir skutt inn via egnede spaltningsseter inn i en vektor. Metoder av denne typen er kjent for fagfolk og kan for eksempel finnes i bøker av Sambrook, J. et al. (1989) Molecular doning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley og Sons or D.M. Glover et al., DNA Cloning Vol.1, (1995), IRL Press (ISBN 019-963476-9). Ytterligere fordelaktige vektorer er Pichia pastoris vektorene pPic og pGap. Denne gjærorganismen er også en egnet vertsorganisme for proteinekspresjon. Fusion proteins according to the invention can be produced as described above in a method in which nucleic acid fragments according to the invention, which code for protein fragments having the above-mentioned sequence, are fused to a gene which codes for the proteins to be purified, and, where appropriate, other advantageous sequences such as promoter and/or enhancer sequences, cleavage sites for proteases, etc. If necessary for this purpose, a suitable restriction enzyme cleavage site is introduced between the nucleic acid fragment and the gene of the protein to be purified, and this construct is inserted via suitable cleavage sites into a vector . Methods of this type are known to those skilled in the art and can be found, for example, in books by Sambrook, J. et al. (1989) Molecular donation: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons or D.M. Glover et al., DNA Cloning Vol. 1, (1995), IRL Press (ISBN 019-963476-9). Additional advantageous vectors are the Pichia pastoris vectors pPic and pGap. This yeast organism is also a suitable host organism for protein expression.

Proteinf ragmenter ifølge oppfinnelsen er egnede for fremstilling av fusjonsproteiner som lett kan bli renset, billig og effektivt ved hjelp av proteinf ragmenter. Proteinfragmenter og fusjonsproteiner ifølge oppfinnelsen kan dermed med hell bli renset, meget selektivt og i høye utbytter og med høy renhet. Proteinfragmenter ifølge oppfinnelsen og dermed fusjonsproteiner fremstilt fra disse blir fortrinnsvis skjelnet ved binding til immobiliserte metallioner minst 1,5 ganger sterkere enn Helicobacter pylori ATPase-439 sekvensen. Protein fragments according to the invention are suitable for the production of fusion proteins which can be easily purified, cheaply and efficiently using protein fragments. Protein fragments and fusion proteins according to the invention can thus be successfully purified, very selectively and in high yields and with high purity. Protein fragments according to the invention and thus fusion proteins produced from them are preferably distinguished by binding to immobilized metal ions at least 1.5 times stronger than the Helicobacter pylori ATPase-439 sequence.

Alle proteiner er egnede i prinsippet for fremstilling av fusjonsproteiner. Proteiner som fortrinnsvis blir anvendt er de som har en biologisk effekt i mennesker, dyr eller planter eller de som er av interesse for organisk syntese. Eksempler der på er proteiner så som enzymer, hormoner eller lagring eller binding eller transportproteiner. Eksempler som kan bli nevnt er proteiner så som hydrolaser så som lipaser, esteraser, amidaser, nitrilaser, proteaser, mediatorer så som cytokiner for eksempel lymphokiner så som MIF, MAF, TNF, interleukiner så som interleukin 1, interferoner så som y-interferon, tPA, hormoner så som proteohormoner, glycohormoner, oligo- eller polypeptid hormoner så som vasopressin [sic], endorphiner, endostatin, angiostatin, vekstfaktorer, erythropoietin, transcripsjonsfaktorer, integriner så som GPIIb/llla eller avblll, reseptorer så som forskjellige glutamatreseptorer, angiogenesfaktorer så som angiotensin. All proteins are suitable in principle for the production of fusion proteins. Proteins that are preferably used are those that have a biological effect in humans, animals or plants or those that are of interest for organic synthesis. Examples are proteins such as enzymes, hormones or storage or binding or transport proteins. Examples that can be mentioned are proteins such as hydrolases such as lipases, esterases, amidases, nitrilases, proteases, mediators such as cytokines such as lymphokines such as MIF, MAF, TNF, interleukins such as interleukin 1, interferons such as y-interferon, tPA, hormones such as proteohormones, glycohormones, oligo- or polypeptide hormones such as vasopressin [sic], endorphins, endostatin, angiostatin, growth factors, erythropoietin, transcription factors, integrins such as GPIIb/llla or abblll, receptors such as various glutamate receptors, angiogenesis factors such such as angiotensin.

Fremgangsmåten ifølge oppfinnelsen for rensing av fusjonsproteiner gjør det for eksempel mulig å rense proteiner fra de naturlige kildene så som plante eller dyre-ekstrakter, plante eller dyrecellelysater, fra kulturmediet, fermenteringskraft eller fra syntesekraft, for bare å nevne noen få som eksempel. The method according to the invention for purifying fusion proteins makes it possible, for example, to purify proteins from natural sources such as plant or animal extracts, plant or animal cell lysates, from the culture medium, fermentation power or from synthesis power, to name just a few as examples.

Fusjonsproteinet blir hensiktsmessig uttrykt i en egnet vertsorganisme (se ovenfor) før rensingen for å øke utbyttet av fusjonsproteinet. Vertsorganismen blir dyrket i et egnet syntetisk eller kompleks medium som inneholder en karbonkilde, en nitrogen-kilde, og, hvor hensiktsmessig, uorganiske salter, vitaminer og sporelementer, ved en egnet temperatur og med egnet utluftning. The fusion protein is suitably expressed in a suitable host organism (see above) prior to purification to increase the yield of the fusion protein. The host organism is grown in a suitable synthetic or complex medium containing a carbon source, a nitrogen source, and, where appropriate, inorganic salts, vitamins and trace elements, at a suitable temperature and with suitable aeration.

Avhengig av om fusjonsproteinet blir utskilt fra cellene eller ikke blir cellene først brutt opp og cellene eller celledetritus blir fordelaktig fjernet. Metoder anvendt for celle-oppbrudd er de som er kjente for fagfolk, så som ultralyd, French press, enzymspaltning, osmotisk sjokk og mange andre. Celler eller celledetritus kan bli fjernet, for eksempel, ved sentrifugering eller filtrering. Fjerning av cellene eller celledetritus er absolutt nødvendig. Depending on whether or not the fusion protein is secreted from the cells, the cells are first broken up and the cells or cell detritus advantageously removed. Methods used for cell disruption are those known to those skilled in the art, such as ultrasound, French press, enzyme cleavage, osmotic shock and many others. Cells or cell detritus can be removed, for example, by centrifugation or filtration. Removal of the cells or cell detritus is absolutely necessary.

Væsken inneholdende fusjonsproteinene blir deretter brakt i kontakt med immobiliserte metallioner slik at en affinitetsbinding mellom fusjonsproteinet og metallionene kan bli dannet. Bindingen foregår ved pH verdier høyere enn 7, fortrinnsvis for eksempel ved pH 7,0 til 9,0, fortrinnsvis mellom pH 7,5 til 8,0. Fordelaktige buffere er enkeltbuffere eller bufferbloginger så som for eksempel 50 til 1000 mm buffere så som 50 mM Tris/HCI pH 8.0 + 150 mM NaCI, 100 mM natriumacetat pH 7.7 + 500 mM NaCI, 20 mM natriumfosfat pH 7.7 + 500 mM NaCI eller 50 mM Tris/HCI pH 8.0 + 150 mM NH4CI. Disse bufferane gjør det mulig å applisere fusjonsproteinene på immobiliserte metallioner. I det enkleste og spesielt fordelaktige tilfellet blir fusjonsproteinene brakt i kontakt med immobiliserte metallioner direkte i bufferen anvendt for oppbrudd eller i inkubasjonsmediet. Det er fordelaktig at væskene og de immobiliserte metallionene blir brakt i kontakt med hverandre på en konvensjonell kromatografikolonne. Dette letter fjerning av ubundede forbindelser, for eksempel proteiner, ved vasking av kolonnen med en egnet buffer. Egnede buffere er buffere som ikke reduserer binding av proteinfragmentene ifølge oppfinnelsen eller av fusjonsproteinene i metallinonene, eller som har evne til å fjerne urenheter. Buffere av denne typen har fortrinnsvis en pH på over 7, fortrinnsvis en pH på mellom 7,0 til 9,0, fortrinnsvis mellom pH 7,5 til 8,0. Det er også mulig å rense vertsbloginger, hvori immobiliserte metallioner er plasserte i en beholder og deretter blir væskene tilsatt eller vice versa på denne måten. Nevnte buffere kan bli anvendt i disse vertsblogingene. Bloginger blir fortrinnsvis sentrifugerte eller filtrert mellom de individuelle vasketrinnene. The liquid containing the fusion proteins is then brought into contact with immobilized metal ions so that an affinity bond between the fusion protein and the metal ions can be formed. The binding takes place at pH values higher than 7, preferably for example at pH 7.0 to 9.0, preferably between pH 7.5 to 8.0. Advantageous buffers are single buffers or buffer blogs such as, for example, 50 to 1000 mM buffers such as 50 mM Tris/HCl pH 8.0 + 150 mM NaCl, 100 mM sodium acetate pH 7.7 + 500 mM NaCl, 20 mM sodium phosphate pH 7.7 + 500 mM NaCl or 50 mM Tris/HCl pH 8.0 + 150 mM NH 4 Cl. These buffers make it possible to apply the fusion proteins to immobilized metal ions. In the simplest and particularly advantageous case, the fusion proteins are brought into contact with immobilized metal ions directly in the buffer used for disruption or in the incubation medium. It is advantageous that the liquids and the immobilized metal ions are brought into contact with each other on a conventional chromatography column. This facilitates the removal of unbound compounds, for example proteins, by washing the column with a suitable buffer. Suitable buffers are buffers which do not reduce binding of the protein fragments according to the invention or of the fusion proteins in the metallinones, or which have the ability to remove impurities. Buffers of this type preferably have a pH of over 7, preferably a pH of between 7.0 to 9.0, preferably between pH 7.5 to 8.0. It is also possible to purify host blogs, in which immobilized metal ions are placed in a container and then the liquids are added or vice versa in this way. Said buffers can be used in these host blogs. Blottings are preferably centrifuged or filtered between the individual washing steps.

Bærermaterialer egnede i prinsippet for immobilisering av metallionene er alle konvensjonelle og kan lett bli derivatisert, viser ingen eller bare en viss uspesifikk adsorpsjon, viser gode fysiske, mekaniske og kjemisk stabilitet, og har et høyt ytre og indre overflateareal. Egnede materialer kan bli oppnådd kommersielt, for eksempel fra Pharmacia LKB, Sverige (Sepharose™6B eller Superose™), Pierce, USA (immobilisert iminodieddiksyre I eller II, immobilisert tris(carboksymetyl)- etylenediamin), Sigma, USA (immobilisert iminodieddiksyre-agarose), Boehringer Mannheim, Tysklog (zinc chelat-agarose) eller Toyo Soda, Japan (TSKgel Chelate-5PW). EP-B-0 253 303 beskriver ytterligere egnede materialer. Ytterligere egnede og fordelaktige materialer er materialer så som Ni-belagte mikrotiter plater (nikkel-chelatbelagte Flashplate®, NEN life science products) eller magnetiske partikler eller spesifikke metallione-behoglede og bindingsmembraner. Carrier materials suitable in principle for immobilizing the metal ions are all conventional and can be easily derivatized, show no or only some non-specific adsorption, show good physical, mechanical and chemical stability, and have a high external and internal surface area. Suitable materials can be obtained commercially, for example from Pharmacia LKB, Sweden (Sepharose™6B or Superose™), Pierce, USA (immobilized iminodiacetic acid I or II, immobilized tris(carboxymethyl)-ethylenediamine), Sigma, USA (immobilized iminodiacetic acid-agarose ), Boehringer Mannheim, Tysklog (zinc chelate-agarose) or Toyo Soda, Japan (TSKgel Chelate-5PW). EP-B-0 253 303 describes further suitable materials. Further suitable and advantageous materials are materials such as Ni-coated microtiter plates (nickel-chelate-coated Flashplate®, NEN life science products) or magnetic particles or specific metal ion-coated and binding membranes.

Forskjellige metallioner er bundet i egnede materialer fortrinnsvis via grupper så som IDA (= iminodieddiksyre), NTA (= nitrilotrieddiksyre) eller TED (= tris(karboksy-metyl)- etylenediamin). Egnede metallioner er Co, Cu, Fe, Ca, Mg, Ni, Al, Cd, Hg or Zn, fortrinnsvis Fe, Ni eller Cu, spesielt foretrukket er Ni eller Cu, meget spesielt foretrukket er Ni. Belastning av materialene med metallioner foregår fortrinnsvis med 0.1 til 0.4 M løsninger av metallsaltne i vogig, ubufferet løsning. Different metal ions are bound in suitable materials preferably via groups such as IDA (= iminodiacetic acid), NTA (= nitrilotriacetic acid) or TED (= tris(carboxy-methyl)-ethylenediamine). Suitable metal ions are Co, Cu, Fe, Ca, Mg, Ni, Al, Cd, Hg or Zn, preferably Fe, Ni or Cu, particularly preferred is Ni or Cu, very particularly preferred is Ni. Loading of the materials with metal ions preferably takes place with 0.1 to 0.4 M solutions of the metal salts in aqueous, unbuffered solution.

Etter vasking blir fusjonsproteinet eluert med en egnet buffer. Denne bufferen unngår affinitetsbinding mellom fusjonsproteinet og immobiliserte metallioner. Fusjonsproteinene kan bli eluert via en pH gradient (lave pH verdier < pH 7.0 eluerer), konkurrerende ligoger så som imidazol, organiske løsningsmidler så som aceton eller etanol, chelateringsmidler så som EDTA eller NTA og/eller detergenter så som Tween 80. Eluering via konkurrerende ligoger så som imidazol og/eller detergenter er foretrukket. Imidazol blir anvendt for eluering i et området fra 0.05 til 0.7 M, fortrinnsvis fra 0.1 til 0.5 M. Konkurrerende ligoger og/eller detergenter blir fortrinnsvis anvendt i en buffer, men kan også bli anvendt i vann. Fordelaktige buffere er buffere som tilsvarer bufferene anvendt for å bli belastet på immobiliserte metallioner. Dette har den fordelen at ingen uønskede interaksjoner mellom kolonnematerialet, bundede proteiner og buffer oppstår. Fordelaktige buffere har fortrinnsvis en pH som er høyere enn pH 7, fortrinnsvis en pH mellom 7,0 til 9,1, fortrinnsvis mellom pH 7,5 til 8,0. Disse bufferene blir fortrinnsvis applisert via en økende gradient. I det tilfellet hvor en pH gradient blir anvendt for eluering er det mulig å anvende buffere med en pH under pH 7,0 og/eller syrer. Eluert fusjonsprotein blir samlet og kan bli anvendt øyeblikkelig eller ellers, om nødvendig og om ønskelig, behoglet ytterligere. Egnede applisering- og elueringsbuffere finnes for eksempel i boken Protein Purification (Eds. J.C. Janson, L. Rydén, VCH Publisher Inc., 1989, s. 227 to 251). After washing, the fusion protein is eluted with a suitable buffer. This buffer avoids affinity binding between the fusion protein and immobilized metal ions. The fusion proteins can be eluted via a pH gradient (low pH values < pH 7.0 elute), competitive ligands such as imidazole, organic solvents such as acetone or ethanol, chelating agents such as EDTA or NTA and/or detergents such as Tween 80. Elution via competitive ligands such as imidazole and/or detergents are preferred. Imidazole is used for elution in a range from 0.05 to 0.7 M, preferably from 0.1 to 0.5 M. Competing ligands and/or detergents are preferably used in a buffer, but can also be used in water. Advantageous buffers are buffers that correspond to the buffers used to be loaded on immobilized metal ions. This has the advantage that no unwanted interactions between the column material, bound proteins and buffer occur. Advantageous buffers preferably have a pH higher than pH 7, preferably a pH between 7.0 to 9.1, preferably between pH 7.5 to 8.0. These buffers are preferably applied via an increasing gradient. In the case where a pH gradient is used for elution, it is possible to use buffers with a pH below pH 7.0 and/or acids. Eluted fusion protein is collected and can be used immediately or else, if necessary and if desired, processed further. Suitable application and elution buffers can be found, for example, in the book Protein Purification (Eds. J.C. Janson, L. Rydén, VCH Publisher Inc., 1989, pp. 227 to 251).

Proteinfragmenter ifølge oppfinnelsen kan bli deletert ved anvendelse av metodene beskrevet ovenfor, så som cyanogenbromid eller proteasespaltning. Det er i dette tilfellet mulig at residiene til proteinfragmentet forblir i molekylet eller blir fullstendig eliminert fra proteinet som skal bli renset. Proteinfragmentet blir fortrinnsvis fullstendig fjernet fra proteinet. Protein fragments according to the invention can be deleted using the methods described above, such as cyanogen bromide or protease cleavage. In this case, it is possible that the residues of the protein fragment remain in the molecule or are completely eliminated from the protein to be purified. The protein fragment is preferably completely removed from the protein.

Nukleinsyrebiblioteket basert på ovennevnte sekvens kan bli konstruert ifølge metoder for mutagenese kjent for fagfolk. For dette formålet kan sekvensen bli utsatt for for eksempel en seterettet mutagenese som beskrevet i D.M. Glover et al., DNA Cloning Vol.1, (1995), IRL Press (ISBN 019-963476-9), kap. 6, s. 193 et seq. The nucleic acid library based on the above sequence can be constructed according to methods of mutagenesis known to those skilled in the art. For this purpose, the sequence can be subjected to, for example, a site-directed mutagenesis as described in D.M. Glover et al., DNA Cloning Vol.1, (1995), IRL Press (ISBN 019-963476-9), ch. 6, pp. 193 et seq.

Spee et al. (Nucleic Acids Research, Vol. 21, No. 3,1993: 777 - 778) beskriver en PCR metode ved anvendelse av dITP for tilfeldig mutagenese. Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777 - 778) describes a PCR method using dITP for random mutagenesis.

Anvendelse av en in vitro rekombinasjonsteknikk for molekylær utvikling er beskrevet av Stemmer (Proe. Nati. Acad. Sei. USA, Vol. 91,1994:10747 -10751). Application of an in vitro recombination technique for molecular development is described by Stemmer (Proe. Nati. Acad. Sei. USA, Vol. 91, 1994:10747-10751).

Moore et al. (Nature Biotechnology Vol. 14,1996:458 - 467) beskriver kombinasjon av PCR metoden og rekombinasjonsmetoden. Moore et al. (Nature Biotechnology Vol. 14, 1996:458 - 467) describes a combination of the PCR method and the recombination method.

Anvendelse av en in vitro rekombinasjonsteknikk for molekylær utvikling er beskrevet av Stemmer (Proe. Nati. Acad. Sei. USA, Vol. 91,1994:10747 -10751). Det er også mulig å anvende en kombinasjon av de to metodene. Application of an in vitro recombination technique for molecular development is described by Stemmer (Proe. Nati. Acad. Sei. USA, Vol. 91, 1994:10747-10751). It is also possible to use a combination of the two methods.

Anvendelse av muterte stammer med defekter i DNA repareringssystemet er beskrevet av Bornscheuer et al. (Strategies, 11,1998:16-17). Rellos et al. beskriver en PCR metode ved anvendelse av ikke-equimolare mengder av nukleotider (Protein Expression og Purification, 5,1994: 270 - 277). The use of mutant strains with defects in the DNA repair system is described by Bornscheuer et al. (Strategies, 11,1998:16-17). Rellos et al. describes a PCR method using non-equimolar amounts of nucleotides (Protein Expression and Purification, 5, 1994: 270 - 277).

Nukleinsyrebiblioteket kan fordelaktig bli produsert ifølge en PCR teknikk ved anvendelse av to komplementære, degenererte oligonukleotider (betegnet wobble primere), som beskrevet i eksemplene. Det er viktig at histidin og cysteinresidiene tilstede i denne sekvensen er konserverte. The nucleic acid library can advantageously be produced according to a PCR technique using two complementary, degenerate oligonucleotides (called wobble primers), as described in the examples. It is important that the histidine and cysteine residues present in this sequence are conserved.

For sekvensering for proteinfragmenter som har forbedret metall-bindende affinitet blir nukleinsyrefragmentet ifølge oppfinnelsen som koder for proteinfragmentet fusjonert til et reportergen. Fordelaktige reportergener gjør det enkelt å detektere bindingen til immobiliserte metallioner via for eksempel, binding av antistoffer som er merket med et fluorescensfargestoff og er rettet mot reportergenet, eller via selv-fluorescerende proteiner så som fordelaktig og foretrukket egf protein fra E.coli (= grønt fluorescensprotein, se Prasher et al., Gene 111 (2), 1992: 229 - 233) eller foretrukket bioluminescencprotein fra Aequoria Victoria eller via lys-dannende proteiner så som luciferin/luciferase system. Spesielt foretrukket blir det anvendt en gfp protein mutant (= egfp = forsterket grønt fluorescencprotein) med en 35-ganger høyere fluorescens-aktivitet forårsaket av to punkts mutasjoner i posisjon 64, erstatning av Phe by Leu, og posisjon 65, erstattet av Ser med Thr. Denne proteinmutanten har den fordelen i forhold til vill-type proteinet at det er oppløselig og ikke danner noen inklusjonslegemer. Anvendelse av egfo proteinet gjør det mulig å lokalisere og kvantifisere protein-konsentrasjonen i hver fase av rensingen av proteinene uten å interferere med rensingen og uten å anvende andre kofaktorer eller substrater (Poppenborg et al., For sequencing for protein fragments that have improved metal-binding affinity, the nucleic acid fragment according to the invention which codes for the protein fragment is fused to a reporter gene. Advantageous reporter genes make it easy to detect the binding to immobilized metal ions via, for example, the binding of antibodies that are labeled with a fluorescent dye and are directed against the reporter gene, or via self-fluorescent proteins such as the advantageous and preferred egf protein from E.coli (= green fluorescence protein, see Prasher et al., Gene 111 (2), 1992: 229 - 233) or preferably bioluminescence protein from Aequoria Victoria or via light-generating proteins such as the luciferin/luciferase system. Particularly preferably, a gfp protein mutant (= egfp = enhanced green fluorescence protein) is used with a 35-fold higher fluorescence activity caused by two point mutations in position 64, replacement of Phe by Leu, and position 65, replacement of Ser by Thr . This protein mutant has the advantage over the wild-type protein that it is soluble and does not form any inclusion bodies. Application of the egfo protein makes it possible to localize and quantify the protein concentration in each phase of the purification of the proteins without interfering with the purification and without using other cofactors or substrates (Poppenborg et al.,

J. Biotechnol., 58 (2), 1997, 77 - 88). egfp proteinet blir også skjelnet med en høy stabilitet overfor et vidt pH område (pH 5,5 til 12), bleking med fotooksidasjon, oksiderings- og svakt reduserende midler så som 2% mercaptoetanol. Proteinet viser en reduksjon i fluorescens over 37°C. Likeledes er gfp-uv (blå fluorescens) og eyfp (gule fluorescens) proteiner likeledes egnede som reportergen. J. Biotechnol., 58 (2), 1997, 77-88). The egfp protein is also distinguished by a high stability against a wide pH range (pH 5.5 to 12), bleaching with photooxidation, oxidizing and weak reducing agents such as 2% mercaptoethanol. The protein shows a decrease in fluorescence above 37°C. Similarly, gfp-uv (blue fluorescence) and eyfp (yellow fluorescence) proteins are also suitable as reporter genes.

Egnede sekvenser blir valgt ved sammenligning med bindingsaffiniteten til immobiliserte metallioner fra følgende naturlige Helicobacter pylori ATPase-439 sekvens His-lle-His-Asn-Leu-Asp- Cys-Pro-Asp-Cys. Proteinfragmentsekvenser ifølge oppfinnelsen viser en reversibel binding til immobiliserte metallioner som er minst 1,5 ganger sterkere, fortrinnsvis misnt 2 ganger og spesielt foretrukket minst 3 ganger sterkere. Fordelaktige sekvenser gjør det mulig at proteinutbyttet etter rensingen er minst 20%, fortrinnsvis minst 30%, spesielt foretrukket er minst 40% og meget foretrukket er minst 50%. Suitable sequences are selected by comparison with the binding affinity of immobilized metal ions from the following natural Helicobacter pylori ATPase-439 sequence His-lle-His-Asn-Leu-Asp-Cys-Pro-Asp-Cys. Protein fragment sequences according to the invention show a reversible binding to immobilized metal ions which is at least 1.5 times stronger, preferably at least 2 times and especially preferably at least 3 times stronger. Advantageous sequences make it possible for the protein yield after purification to be at least 20%, preferably at least 30%, particularly preferably at least 40% and very preferably at least 50%.

Fremgangsmåten ifølge oppfinnelsen for screening av nukleinsyrebiblioteket er spesielt fordelaktig for automatisering. Denne fremgangsmåten kan lett bli anvendt for testing av et stort antall nukleinsyref ragmenter og proteinfragmenter for deres metallionbindende affinitet i såkalt høy-gjennomkjøringsscreening. The method according to the invention for screening the nucleic acid library is particularly advantageous for automation. This method can easily be used for testing a large number of nucleic acid fragments and protein fragments for their metal ion-binding affinity in so-called high-throughput screening.

Proteiner kan lett bli detektert ved anvendelse av proteinfragmentene ifølge oppfinnelsen. I fremgangsmåten ifølge oppfinnelsen for detektering av proteiner blir individuelle proteiner som omfatter et proteinfragment som har ovennevnte proteinfragmenter ifølge oppfinnelsen i en proteinbloging detektert via antistoffer som er rettet mot proteinskjelettet. Deteksjon av disse fusjonsproteinene foregår fortrinnsvis via mono- eller polyklonale antistoffer rettet mot proteinfragmentet (= tag). Proteinblogingen kan fortrinnsvis bli fraksjonert ved kromatografi eller elektroforese før deteksjon og deretter bli overført (= blottet) til en egnet membran (for eksempel PVDF eller nitro-cellulose) ved konvensjonelle metoder (se Sambrook et al.). Denne membranen blir deretter inkubert med et antistoff rettet mot tag. Det er foretrukket å vaske membranen flere ganger og deretter å detektere bundede antistoffer via en spesifikk reaksjon med et andre antistoff som for eksempel er enzym-konjugert (for eksempel alkalisk fosfatase, peroksidase osv.) og er rettet mot en konstant region til den første, i et Western blot eller immuno blot. Tilsvarende antistoffer er kommersielt tilgjengelige. Når magnetiske partikler blir anvendt kan vaskingen bli utelatt og antistoff- belagte magnetiske partikler kan bli renset ved utviskning med magneter. Proteins can be easily detected using the protein fragments according to the invention. In the method according to the invention for detecting proteins, individual proteins which comprise a protein fragment which has the above-mentioned protein fragments according to the invention in a protein blogging are detected via antibodies which are directed against the protein skeleton. Detection of these fusion proteins preferably takes place via mono- or polyclonal antibodies directed against the protein fragment (= tag). The protein blog can preferably be fractionated by chromatography or electrophoresis before detection and then transferred (= blotted) to a suitable membrane (for example PVDF or nitro-cellulose) by conventional methods (see Sambrook et al.). This membrane is then incubated with an antibody directed against tag. It is preferred to wash the membrane several times and then to detect bound antibodies via a specific reaction with a second antibody that is, for example, enzyme-conjugated (for example, alkaline phosphatase, peroxidase, etc.) and is directed to a constant region of the first, in a Western blot or immunoblot. Corresponding antibodies are commercially available. When magnetic particles are used, washing can be omitted and antibody-coated magnetic particles can be purified by wiping with magnets.

Proteinfragmentet ifølge oppfinnelsen har den fordelen i forhold til konvensjonelle His tager for proteindeteksjon at de har en sterk antigen effekt og dermed er mer egnede for produsering av antistoffer mot tågen. The protein fragment according to the invention has the advantage over conventional His tags for protein detection that they have a strong antigenic effect and are thus more suitable for the production of antibodies against the fog.

Oppfinnelsen er ytterligere illustrert i følgende eksempler. The invention is further illustrated in the following examples.

Eksempler: Examples:

Chelaterende sefarose Fast-Flow fa Pharmacia LKB, Uppsala, Sverige, ble anvendt for testing av bindingen til metallchelatkolonner (= immobiliserte metallioner). Ampicillin, imidazole, EDTA og alle andre reagenser ble oppnådd fra Fluka (Buchs, Switzerlog). DNA gel ekstraheringssett, Midi Plasmid-Kit og Prepspin Plasmid Kit med opprinnelse fra Qiagen (Hilden, Tysklog), restriksjonsenzymer, DNA-modifiserende enzymer, T4-DNA ligase og Taq polymerase hadde opphav fra MBI Fermentas (St. Leon-Rot, Tysklog). Taq Dye Cycle Sequencing Kit ble oppnådd fra Applied Biosystems (Weiterstadt, Tysklog). Chelating Sepharose Fast-Flow from Pharmacia LKB, Uppsala, Sweden, was used for testing the binding to metal chelate columns (= immobilized metal ions). Ampicillin, imidazole, EDTA and all other reagents were obtained from Fluka (Buchs, Switzerlog). DNA gel extraction kit, Midi Plasmid-Kit and Prepspin Plasmid Kit originated from Qiagen (Hilden, Tysklog), restriction enzymes, DNA-modifying enzymes, T4-DNA ligase and Taq polymerase originated from MBI Fermentas (St. Leon-Rot, Tysklog) . The Taq Dye Cycle Sequencing Kit was obtained from Applied Biosystems (Weiterstadt, Germany).

E. coli stammen DH5a (F" endA1 hsdR17 [rk', mk<+>] supE44 thil XgyrA96 relA1 A (argF laczya) U169) ble anvendt i kloningseksperimentene. Plasmider som inneholdt genet for egf proteinet ble oppnådd fra Clonetech USA. E. coli stammene ble dyrket i Luria-Bertani medium (= LB) med 100 ug/ml Ampicillin ved 37 °C for å selektere kloner for transformasjon med egfp vektoren. Lyseringsbufferen inneholdt 50 mM natriumfosfatbuffer pH 8.0, 300 mM NaCI, 1 mg/ml Lysozym og 1 mM PMSF (= fenylmetan-sulfonylfluorid = spesifikk trypsin og chymotrypsininhibitor). E. coli strain DH5a (F" endA1 hsdR17 [rk', mk<+>] supE44 thil XgyrA96 relA1 A (argF laczya) U169) was used in the cloning experiments. Plasmids containing the gene for the egf protein were obtained from Clonetech USA. E. coli strains were grown in Luria-Bertani medium (= LB) with 100 µg/ml Ampicillin at 37 °C to select clones for transformation with the egfp vector.The lysis buffer contained 50 mM sodium phosphate buffer pH 8.0, 300 mM NaCl, 1 mg/ml Lysozyme and 1 mM PMSF (= phenylmethane sulfonyl fluoride = specific trypsin and chymotrypsin inhibitor).

DNA metoder, så som legeringer, restriksjoner, PCR eller transformasjoner osv. ble utført som beskrevet i Sambrook, J. et al. (1989) Molecular doning: A laboratory manual, Cold Spring Harbor Laboratory Press or F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley og Sons. Fluorescens-merket dideoksy-DNA sekvenseringsmetode ble anvendt for sekvenseringen. DNA sekvensering ble utført ved anvendelse av Taq Dye Deoxy™ Cycle Sequencing Kit (Applied Biosystems) og 373A DNA Sequencing System (Applied Biosystems) i henholdt til forhoglerens instruksjoner. DNA methods, such as fusions, restrictions, PCR or transformations, etc. were performed as described in Sambrook, J. et al. (1989) Molecular donation: A laboratory manual, Cold Spring Harbor Laboratory Press or F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons. Fluorescence-labeled dideoxy-DNA sequencing method was used for the sequencing. DNA sequencing was performed using the Taq Dye Deoxy™ Cycle Sequencing Kit (Applied Biosystems) and the 373A DNA Sequencing System (Applied Biosystems) according to the manufacturer's instructions.

Eksempel 1: Fremstilling av tilfeldig mutageniserte N-terminale metallbindende seter som ble bundet til egfp genet og his6-egfp Example 1: Preparation of randomly mutagenized N-terminal metal-binding sites that were bound to the egfp gene and his6-egfp

For PCR reaksjonen ble plasmid egfp og de to følgende komplementære oligonukleotidene anvendt. For the PCR reaction, plasmid egfp and the two following complementary oligonucleotides were used.

Når det gjelder his6-egfp ble følgende to komplementære primere anvendt. In the case of his6-egfp the following two complementary primers were used.

Betingelser anvendt for PCR reaksjonen var som følger: Conditions used for the PCR reaction were as follows:

Blanding: Mixture:

PCR program 95°C 7min PCR program 95°C 7min

95°C 1min 95°C 1 min

56°C 1min 30x 56°C 1min 30x

72°C 3min 72°C 3 min

72°C 7min 72°C 7 min

PCR produktene ble hver og en spaltet med Ncol og Noti og ligert inn i egfp vektoren som var blitt spaltet med samme enzymet, for å utelukke mutasjoner i vektoren (se figur 1). PCR-vektor ligeringer ble anvendt for å transformere E. coli. Transformanter ble sådd ut på LB agar med 100 ug/ml Ampicillin og inkubert ved 37°C. The PCR products were each cleaved with NcoI and Noti and ligated into the egfp vector which had been cleaved with the same enzyme, to exclude mutations in the vector (see figure 1). PCR-vector ligations were used to transform E. coli. Transformants were plated on LB agar with 100 ug/ml Ampicillin and incubated at 37°C.

Eksempel 2: Dyrkningsbetingelser og preparering av cellelysater. Example 2: Cultivation conditions and preparation of cell lysates.

Transformerte kolonier som viser fluorescens og noen som ikke viser fluorescens ble valgt og dyrket i 50 ml LB medium som inneholdt 100 u.g ampicillin. Kolonier som viser fluorescens ble valgt for høy-gjennomkjøringsscreening og ble inkubert i sterile mikrotiterskåler som inneholdt 250 u.l LB medium med 100 ug/ml Ampicillin. Etter inkubasjon ble kulturene sentrifugert. Pelletene ble resuspendert i 2 ml lyseringsbuffer, inkubert på is i 20 minutter og deretter oppbrutt med ultralyd (2 ganger, 5 minutter med en Branson Sonifier 250). Etter sentrifugering (15 min, 4°C, 20000 x g) ble de forskjellige egfp mutantene oppnådd i supernatanten. Alle selketerte kloner ble sekvensert (se tabellene I og II). Kloner som ikke viste fluorescens inneholdt stopp-kodoner i sekvensen slik at ingen funksjonelle proteiner ble uttrykt (se tabell I, A8, A13, M16a, Z4, Z11 og Z13). For å kvantifisere bundede proteiner ble en fluorescensmåling utført i alle eksperimentene og korrelert i stort omfang med gfp konsentrasjonen (se figur 2). Transformed colonies showing fluorescence and some not showing fluorescence were selected and grown in 50 ml LB medium containing 100 µg ampicillin. Colonies showing fluorescence were selected for high-throughput screening and were incubated in sterile microtiter dishes containing 250 µl LB medium with 100 µg/ml Ampicillin. After incubation, the cultures were centrifuged. The pellets were resuspended in 2 ml of lysis buffer, incubated on ice for 20 min and then disrupted by ultrasound (2 times, 5 min with a Branson Sonifier 250). After centrifugation (15 min, 4°C, 20000 x g), the different egfp mutants were obtained in the supernatant. All screened clones were sequenced (see Tables I and II). Clones that did not fluoresce contained stop codons in the sequence so that no functional proteins were expressed (see Table I, A8, A13, M16a, Z4, Z11 and Z13). To quantify bound proteins, a fluorescence measurement was carried out in all experiments and correlated to a large extent with the gfp concentration (see figure 2).

Eksempel 3: Lav-gjennomkjøringsscreening med Ni-NTA kolonner fra Qiagen Example 3: Low-throughput screening with Ni-NTA columns from Qiagen

600 ul lyserte celler ble applisert på en Ni-NTA kolonne, vasket to ganger med 600 ul av en vaskeløsning (50 mM natriumfosphatbuffer, pH 8.0, 250 mM NaCI) og deretter eluert med en 0.7 M imidazolløsning. 600 µl of lysed cells was applied to a Ni-NTA column, washed twice with 600 µl of a washing solution (50 mM sodium phosphate buffer, pH 8.0, 250 mM NaCl) and then eluted with a 0.7 M imidazole solution.

Eksempel 4: Høy-gjennomkjøringsscreening med membranfiltetskåler Example 4: High-throughput screening with membrane felt dishes

Membranfilter microtiterskåler (MultiScreen 5 um; tilført av Millipore, Molsheim, Tysklog) ble anvendt for høy-gjennomkjøringsscreening. 250 ul av en omrørt chelat Sepharose suspensjon ble plassert i hver brønn av membranfilterskålene tre ganger. Etter hver tilsetning ble Sepharosen sentrifugert ned (2 min, 23°C, 350 rpm). Alle ytterligere trinn ble utført i en Beckmann Biomek 2000 robot. Minikolonner i brønnene ble vasket to ganger med 250 ul vann. Sepharose ble deretter applisert med 250 ul av en metall-saltløsning og ekvilibrert tre ganger med 200 ul buffer (50 mM natriumfosfat, pH 8.0, 250 mM NaCI). 0.3 M NiCI2, 0.3 M CuS04 eller 0.3 M ZnCI2 løsninger ble anvendt i hver av de forskjellige blogingene (applisert med metallioner). Vogige ikke-bufferede metall-saltløsninge ble anvendt. 250 ul cellelysatsupernatanter ble plassert på hver av disse minikolonnne. Kolonnene ble deretter vasket to ganger med 250 ul ekvilibreringsbuffer. Bundede proteiner ble eluert med 2 x 100 ul 0.5 M imidazol i ekvilibreringsbuffer. Chelat-Sepharose i filtrene kan bli regenerert med 250 ul 50 mM EDTA, 1 M NaCI i vann og anvendt i ytterligere screeningseksperimenter. Membrane filter microtiter dishes (MultiScreen 5 µm; supplied by Millipore, Molsheim, Tysklog) were used for high-throughput screening. 250 µl of a stirred chelate Sepharose suspension was placed in each well of the membrane filter dishes three times. After each addition, the Sepharose was centrifuged down (2 min, 23°C, 350 rpm). All further steps were performed in a Beckmann Biomek 2000 robot. Mini columns in the wells were washed twice with 250 µl of water. Sepharose was then applied with 250 µl of a metal salt solution and equilibrated three times with 200 µl buffer (50 mM sodium phosphate, pH 8.0, 250 mM NaCl). 0.3 M NiCI2, 0.3 M CuSO4 or 0.3 M ZnCI2 solutions were used in each of the different bloggings (applied with metal ions). Vague non-buffered metal-salt solutions were used. 250 µl of cell lysate supernatants were placed on each of these mini-columns. The columns were then washed twice with 250 µl of equilibration buffer. Bound proteins were eluted with 2 x 100 µl 0.5 M imidazole in equilibration buffer. Chelate-Sepharose in the filters can be regenerated with 250 µl 50 mM EDTA, 1 M NaCl in water and used in further screening experiments.

Eksempel 5: IMAC eksperimenter Example 5: IMAC experiments

Et konvensjonelt kromatografisystem bestående av en glasskolonne, to peristaltiske pumper for påføring av løsningene, en UV detektor (LKB UV-MII), en printer (LKB A conventional chromatography system consisting of a glass column, two peristaltic pumps for applying the solutions, a UV detector (LKB UV-MII), a printer (LKB

RIC 102) og en fraksjonsoppsamler (LKB FRAC-200) ble valgt i eksperimentet. All apparatur var fra Pharmacia. Kolonnen ble pakket med chelaterende Sepharose Fast-Flow Gel (Pharmacia),vasket med 7 sjiktvolumer deionisert vann og tilført metallioner med 7 sjiktvolum 0.3 M NiCI2 løsning. Kolonnen ble deretter vasket og ekvilibrert med 7 sjiktvolum IMAC buffer (50 mM natriumfosfat, pH 8.0, 250 mM NaCI). 1 ml prøver av cellelysatene ble applisert på kolonnen ved en strømningsrate på 1.5 ml/min og vasket med 10 sjiktvolum IMAC buffer. Bundede proteiner blir eluert via en økende gradient med 0.5% av en 0.5 M imidazolløsning per ml elueringsløsning og til slutt 5 sjiktvolum av en 5 M imidazol/vannløsning. Proteinfraksjonene ble identifisert ved UV deteksjon og samlet. Når fullført ble kolonnen vasket og regenerert med 50 mM EDTA/1 M NaCI løsning. Dette vasketrinnet frakoblet metall, bundede celleresidier og proteiner fra kolonnen. Eluerte fraksjoner ble undersøkt både optisk og spektroskopisk. Noen av de undersøkte klonene viste ingen affinitet for matriksen (se tab. I, M15, M16), mens andre viste god binding (se tab. I, M13, Z5 og Z7). Klonene M13 og Z5 eluerte fra kolonnen i et skarpt bånd, mens det var utsmøring av klone Z7 på kolonnen. RIC 102) and a fraction collector (LKB FRAC-200) were selected in the experiment. All equipment was from Pharmacia. The column was packed with chelating Sepharose Fast-Flow Gel (Pharmacia), washed with 7 bed volumes of deionized water and added metal ions with 7 bed volumes of 0.3 M NiCI2 solution. The column was then washed and equilibrated with 7 bed volumes of IMAC buffer (50 mM sodium phosphate, pH 8.0, 250 mM NaCl). 1 ml samples of the cell lysates were applied to the column at a flow rate of 1.5 ml/min and washed with 10 bed volumes of IMAC buffer. Bound proteins are eluted via an increasing gradient with 0.5% of a 0.5 M imidazole solution per ml elution solution and finally 5 bed volumes of a 5 M imidazole/water solution. The protein fractions were identified by UV detection and pooled. When complete, the column was washed and regenerated with 50 mM EDTA/1 M NaCl solution. This washing step decoupled metal, bound cell debris and proteins from the column. Eluted fractions were examined both optically and spectroscopically. Some of the examined clones showed no affinity for the matrix (see tab. I, M15, M16), while others showed good binding (see tab. I, M13, Z5 and Z7). Clones M13 and Z5 eluted from the column in a sharp band, while there was smearing of clone Z7 on the column.

Eksempel 6: Eksperiment som sammenligner egfp-type og his-tag Example 6: Experiment comparing egfp-type and his-tag

Klone M13 ble sammenlignet med egfp vill-type protein og vanlige his tager i et sammenlignbart eksperiment. Egfp vill-type proteinet blir ikke bundet til metallchelatkolonner. Fluorescensen var ikke lenger detekterbar på kolonnen etter vasking av kolonnen. Klon M13 bindes til kolonnen i et skarpt bånd, men his tag proteinene bindes over hele kolonnen. Dette skyldes den lavere affinitet som til slutt fører til en lavere kapasitet i kolonnen. Proteinutbyttet når det gjelder M13 er 56%, som er høyere enn 48% med his tågene. Clone M13 was compared with egfp wild-type protein and normal histags in a comparable experiment. The Egfp wild-type protein does not bind to metal chelate columns. The fluorescence was no longer detectable on the column after washing the column. Clone M13 binds to the column in a sharp band, but the his tag proteins bind over the entire column. This is due to the lower affinity which ultimately leads to a lower capacity in the column. The protein yield in the case of M13 is 56%, which is higher than 48% with his mists.

Klonene A6, A10, M13, Z5 og Z7 bindes godt til metallchelatekolonnen, mens klonene M14, M15 og M16 ikke viser noen binding. Clones A6, A10, M13, Z5 and Z7 bind well to the metal chelate column, while clones M14, M15 and M16 show no binding.

Eksempel 7: Metallbindende affinitet Example 7: Metal binding affinity

Mange av klonene viste en foretrukket binding til Ni<2+> eller Cu<2+>. Når det gjelder M13 ble ingen binding til Zn<2+> observert. Ved anvendelse av Ni chelatkolonner viste klon M13 tydelig bedre rensing av proteinene sammenlignet med his tågene. Likeledes resulterte sistnevnte i et renere produkt ved sammenligning med M13 ved anvendelse av Cu chelatkolonner, men, på grunn av at bindingen til kolonnematerialet er meget sterk i begge tilfellene ble Cu ionene vasket ut ved drastiske elueringsbetingelser. Dette fører til kontaminering av produktene. Many of the clones showed a preferred binding to Ni<2+> or Cu<2+>. As for M13, no binding to Zn<2+> was observed. When using Ni chelate columns, clone M13 clearly showed better purification of the proteins compared to the His mists. Likewise, the latter resulted in a cleaner product when compared to M13 using Cu chelate columns, but, due to the fact that the bond to the column material is very strong in both cases, the Cu ions were washed out by drastic elution conditions. This leads to contamination of the products.

Eksempel 8: Eksperiment som sammenligner ATPase-439 sekvens og Example 8: Experiment comparing ATPase-439 sequence and

proteinfragmenter ifølge oppfinnelsen protein fragments according to the invention

ATPase-439 sammenlignende klon ble utført analogt med eksempel 1 og 6. Primeren som ble anvendt var følgende: The ATPase-439 comparative clone was performed analogously to examples 1 and 6. The primer used was the following:

De andre primerene og PCR betingelsene var som beskrevet i eksempel 1. The other primers and PCR conditions were as described in example 1.

Eksperimentet ble utført med et Qiagen Ni-NTA Spin sett under native betingelser, lyseringen ble utført som beskrevet under disse betingelsene; kolonnene som allerede var blitt belastede ble ekvilibrert med 600 pl 50 mM natriumfosfatbuffer, pH 8.0, 300 mM NaCI og sentrifugert ved 2000 rpm (= 420 x g) i 2 min. Deretter ble 600 ul av lysatet påført og sentrifugert i 2 min. To vaskinger ble utført med 600 ul av en 50 mM natriumfosfatbuffer, pH 8.0, 300 mM NaCI hver gang. Deretter ble 600 ul 50 mM natriumfosfatbuffer, pH 8.0, 300 mM NaCI, 0.5 M imidazol anvendt i to elueringer. Utbyttet av rent protein var 1,5 ganger høyere med klon M13 enn metall-bindende sete til ATPase-439 sammenlignende klon. Klon M13 bindes derfor bedre og kan også bli bedre eluert. The experiment was performed with a Qiagen Ni-NTA Spin set under native conditions, the lysis was performed as described under these conditions; the columns that had already been loaded were equilibrated with 600 µl of 50 mM sodium phosphate buffer, pH 8.0, 300 mM NaCl and centrifuged at 2000 rpm (= 420 x g) for 2 min. Then 600 ul of the lysate was applied and centrifuged for 2 min. Two washes were performed with 600 µl of a 50 mM sodium phosphate buffer, pH 8.0, 300 mM NaCl each time. Then 600 µl of 50 mM sodium phosphate buffer, pH 8.0, 300 mM NaCl, 0.5 M imidazole was used in two elutions. The yield of pure protein was 1.5-fold higher with clone M13 than the metal-binding site of the ATPase-439 comparative clone. Clone M13 therefore binds better and can also be better eluted.

Claims (14)

1. Peptidfragment, karakterisert ved at det har den generelle sekvensen His-X<1->His-X<2>-X3-X<4->Cys-X<5->X<6->Cys hvor variablene X<1> til X<6> i sekvensen har følgende betydninger uavhengig av hverandre: X<1> = Asn;X<2>= Gin, Glu eller Arg; X3=Gly, Thr eller Tyr;X<4>= Asn eller Arg;X<5>=Gly eller Lys; X<6>=Cys.1. Peptide fragment, characterized in that it has the general sequence His-X<1->His-X<2>-X3-X<4->Cys-X<5->X<6->Cys where the variables X< 1> to X<6> in the sequence have the following meanings independently of each other: X<1> = Asn; X<2>= Gin, Glu or Arg; X3=Gly, Thr or Tyr; X<4>= Asn or Arg; X<5>=Gly or Lys; X<6>=Cys. 2. Peptidfragment, karakterisert ved at det har sekvensen2. Peptide fragment, characterized in that it has the sequence 3. Fusjonsprotein, karakterisert ved at det omfatter et proteinfragment ifølge krav 1.3. Fusion protein, characterized in that it comprises a protein fragment according to claim 1. 4. Nukleinsyrefragment, karakterisert ved at det koder for et proteinfragment ifølge krav 1.4. Nucleic acid fragment, characterized in that it codes for a protein fragment according to claim 1. 5. Nukleinsyre, karakterisert ved at den omfatter et nukleinsyrefragment ifølge krav 4.5. Nucleic acid, characterized in that it comprises a nucleic acid fragment according to claim 4. 6. Nukleinsyre, karakterisert ved at den koder for et fusjonsprotein ifølge krav 3.6. Nucleic acid, characterized in that it codes for a fusion protein according to claim 3. 7. Vektor, karakterisert ved at den omfatter et nukleinsyrefragment ifølge krav 4 eller 6.7. Vector, characterized in that it comprises a nucleic acid fragment according to claim 4 or 6. 8. Fremgangsmåte for fremstilling av fusjonsproteiner i krav 3, karakterisert ved at den omfatter fusjonering av et nukleinsyrefragment som krevd i krav 6 til et gen som koder for et protein.8. Process for producing fusion proteins in claim 3, characterized in that it comprises fusing a nucleic acid fragment as claimed in claim 6 to a gene that codes for a protein. 9. Fremgangsmåte for rensing av fusjonsproteiner ifølge krav 3, karakterisert ved at den omfatter a) å bringe væsker som inneholder fusjonsproteinet i kontakt med immobiliserte metallioner på en slik måte at en affinitetsbinding kan bli dannet mellom metallionene av fusjonsproteinet, b) fjerning av ubundede forbindelser tilstede i væsken, c) eluering av bundet fusjonsprotein hvori affinitetsbindingen blir unngått ved forandring av det flytende mediet og d) samling av renset fusjonsprotein.9. Method for purifying fusion proteins according to claim 3, characterized in that it comprises a) bringing liquids containing the fusion protein into contact with immobilized metal ions in such a way that an affinity bond can be formed between the metal ions of the fusion protein, b) removing unbound compounds present in the liquid, c) elution of bound fusion protein in which the affinity binding is avoided by changing the liquid medium and d) collection of purified fusion protein. 10. Anvendelse av et proteinfragment ifølge krav 1 eller et nukleinsyrefragment ifølge krav 4 for rensing av proteiner.10. Use of a protein fragment according to claim 1 or a nucleic acid fragment according to claim 4 for purification of proteins. 11. Fremgangsmåte for fremstilling av proteinfragmenter som har evne til å gå inn i en reversibel affinitetsbinding med immobiliserte metallioner, karakterisert ved at den omfatter å utføre følgende trinn: a) fremstilling av et nukleinsyrebibliotek begynnende fra en hvilken som helst egnet nukleinsyresekvens som koder for et proteinfragment med sekvensen hvor histidin og cysteinresidiene til sekvensen er konserverte i nukleinsyrebiblioteket. b) fusjonering av nukleinsyrene fra biblioteket til et reseptorgen som gjør det mulig å detektere fusjonsproteinet som blir kodet av den resulterende nukleinsyren via dets binding til immobiliserte metallioner og c) selektering av nukleinsyresekvenser som utviser en reversibel binding til immobiliserte metalloiner som er minst 1,5 ganger sterkere enn sekvensen i naturlig Helicobacter pylori ATPase-439.11. Method for the production of protein fragments that have the ability to enter into a reversible affinity bond with immobilized metal ions, characterized in that it comprises carrying out the following steps: a) production of a nucleic acid library starting from any suitable nucleic acid sequence that codes for a protein fragment with the sequence where the histidine and cysteine residues of the sequence are conserved in the nucleic acid library. b) fusing the nucleic acids from the library to a receptor gene that makes it possible to detect the fusion protein encoded by the resulting nucleic acid via its binding to immobilized metal ions and c) selecting nucleic acid sequences that exhibit a reversible binding to immobilized metal ions of at least 1.5 times stronger than the sequence in native Helicobacter pylori ATPase-439. 12. Fremgangsmåte ifølge krav 11,karakterisert ved ategf proteinet fra Aequoria Victoria blir anvendt som reportergen.12. Method according to claim 11, characterized in that the ategf protein from Aequoria Victoria is used as a reporter gene. 13. Fremgangsmåte for detektering av proteiner, karakterisert ved at den omfatter detektering av individuelle proteiner som omfatter et proteinfragment som krevd i krav 1 i en proteinblanding via antistoffer som er rettet mot proteinfragmentet.13. Method for detecting proteins, characterized in that it comprises detection of individual proteins comprising a protein fragment as required in claim 1 in a protein mixture via antibodies directed against the protein fragment. 14. Anvendelse av et proteinfragment ifølge krav 1 eller et nukleinsyrefragment ifølge krav 4 for rensing av proteiner.14. Use of a protein fragment according to claim 1 or a nucleic acid fragment according to claim 4 for purification of proteins.
NO20005819A 1998-05-20 2000-11-17 Peptide fragments and their use, as well as fusion protein, nucleic acid fragment, vector and process for producing, purifying and detecting proteins. NO326308B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19822823A DE19822823A1 (en) 1998-05-20 1998-05-20 New peptide fragments for protein purification
PCT/EP1999/003469 WO1999060134A1 (en) 1998-05-20 1999-05-20 New peptide fragments for protein purification

Publications (3)

Publication Number Publication Date
NO20005819D0 NO20005819D0 (en) 2000-11-17
NO20005819L NO20005819L (en) 2001-01-15
NO326308B1 true NO326308B1 (en) 2008-11-03

Family

ID=7868528

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20005819A NO326308B1 (en) 1998-05-20 2000-11-17 Peptide fragments and their use, as well as fusion protein, nucleic acid fragment, vector and process for producing, purifying and detecting proteins.

Country Status (16)

Country Link
EP (1) EP1078072B1 (en)
JP (1) JP2002515250A (en)
KR (1) KR100577140B1 (en)
CN (1) CN1204257C (en)
AT (1) ATE351909T1 (en)
AU (1) AU758445B2 (en)
BR (1) BR9910624A (en)
CA (1) CA2329144C (en)
DE (2) DE19822823A1 (en)
DK (1) DK1078072T3 (en)
HU (1) HUP0102122A3 (en)
IL (2) IL139272A0 (en)
NO (1) NO326308B1 (en)
TW (1) TW555763B (en)
WO (1) WO1999060134A1 (en)
ZA (1) ZA200007619B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE466868T1 (en) * 2005-04-20 2010-05-15 Viromed Co Ltd COMPOSITIONS AND METHODS FOR SEPARATING FUSION PROTEINS
JP2006322858A (en) * 2005-05-19 2006-11-30 Kyushu Univ Method for fluorescent labeling of proteins
WO2009140408A2 (en) 2008-05-13 2009-11-19 University Of Kansas Metal abstraction peptide (map) tag and associated methods
WO2013181461A2 (en) 2012-06-01 2013-12-05 University Of Kansas Metal abstraction peptide with superoxide dismutase activity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1340522C (en) * 1987-03-10 1999-05-04 Heinz Dobeli Fusion proteins containing neighbouring histidines for improved purification
US5115102A (en) * 1989-07-21 1992-05-19 Monsanto Company Variant proteins and polypeptides possessing enhanced affinity for immobilized-metal affinity matrices

Also Published As

Publication number Publication date
TW555763B (en) 2003-10-01
DK1078072T3 (en) 2007-05-14
WO1999060134A1 (en) 1999-11-25
EP1078072A1 (en) 2001-02-28
NO20005819D0 (en) 2000-11-17
HUP0102122A3 (en) 2004-03-01
AU758445B2 (en) 2003-03-20
JP2002515250A (en) 2002-05-28
IL139272A0 (en) 2001-11-25
CN1204257C (en) 2005-06-01
IL139272A (en) 2008-08-07
AU4145099A (en) 1999-12-06
CA2329144C (en) 2009-07-21
NO20005819L (en) 2001-01-15
EP1078072B1 (en) 2007-01-17
DE19822823A1 (en) 2000-02-10
ZA200007619B (en) 2001-12-19
DE59914155D1 (en) 2007-03-08
CN1310763A (en) 2001-08-29
CA2329144A1 (en) 1999-11-25
HUP0102122A2 (en) 2001-10-28
KR20010034872A (en) 2001-04-25
KR100577140B1 (en) 2006-05-09
ATE351909T1 (en) 2007-02-15
BR9910624A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
Richard et al. Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli
KR20150076160A (en) Expression sequences
JP4964284B2 (en) Recombinantly expressed carboxypeptidase B and purification thereof
Mander et al. Use of laccase as a novel, versatile reporter system in filamentous fungi
Yagmurov et al. Lipase purification: the review of conventional and novel methods.
Hedhammar et al. Protein engineering strategies for selective protein purification
GB2540763A (en) Catalytically active protein aggregates and methods for producing the same
Abdullah et al. Removal of poly‐histidine fusion tags from recombinant proteins purified by expanded bed adsorption
US6750042B2 (en) Metal binding proteins, recombinant host cells and methods
US20020164718A1 (en) Metal ion affinity tags and methods for usig the same
NO326308B1 (en) Peptide fragments and their use, as well as fusion protein, nucleic acid fragment, vector and process for producing, purifying and detecting proteins.
US6861403B2 (en) Method and device for improving protein stability and solubility
EP4244361B1 (en) Fluorescent fusion based heterologous peptide production
MXPA00011310A (en) New peptide fragments for protein purification
CN106632683B (en) Polypeptide with pNPPC hydrolase activity, coding gene, preparation method and application thereof
Hu et al. Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins
EP1538203B1 (en) Recombinantly expressed carboxypeptidase B and purification thereof
Sloane et al. Expression and purification of a recombinant metal-binding T4 lysozyme fusion protein
CZ20004252A3 (en) Novel peptide fragments for cleaning proteins
RU2789032C1 (en) Recombinant analogue of b-domain of the bdpa-1 protein a, recombinant plasmid for the expression of the bdpa-1 protein, escherichia coli producer strain producing the bdpa-1 protein, method for producing the bdpa-1 protein, and method for creating an affinity sorbent containing bdpa-1 or a fragment thereof as a ligand
Kim et al. One-step purification of poly-his tagged penicillin G acylase expressed in E. coli
ES2354326B1 (en) THERMOPHYL LIPASE.
WO2019193139A1 (en) Process for producing a membrane protein
JP2005143310A (en) Polypeptide-fused hydroxylase

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees