NO326100B1 - Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents - Google Patents

Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents Download PDF

Info

Publication number
NO326100B1
NO326100B1 NO20003678A NO20003678A NO326100B1 NO 326100 B1 NO326100 B1 NO 326100B1 NO 20003678 A NO20003678 A NO 20003678A NO 20003678 A NO20003678 A NO 20003678A NO 326100 B1 NO326100 B1 NO 326100B1
Authority
NO
Norway
Prior art keywords
groups
polymer
slurry
hydrophilic dispersion
acrylamide
Prior art date
Application number
NO20003678A
Other languages
Norwegian (no)
Other versions
NO20003678L (en
NO20003678D0 (en
Inventor
Chidambaram Maltesh
Ramasubramanyam Nagarasjan
Jane Beryl Wong Shing
John R Hurlock
Original Assignee
Nalco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Chemical Co filed Critical Nalco Chemical Co
Priority to NO20003678A priority Critical patent/NO326100B1/en
Publication of NO20003678D0 publication Critical patent/NO20003678D0/en
Publication of NO20003678L publication Critical patent/NO20003678L/en
Publication of NO326100B1 publication Critical patent/NO326100B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/66Salts, e.g. alums

Description

Oppfinnelsen vedrører generelt området av fremstilling av papir og, mer spesielt, til en fremgangsmåte for forbedret retensjon og dreneringsytelse i en prosess for fremstilling av papir ved å bruke hydrofile dispersjonskopolymerer av diallyl-N,N-disubstituert ammoniumhalid og (met)akrylamid som retensjons- og avvanningsmidler. The invention relates generally to the field of papermaking and, more particularly, to a method for improved retention and drainage performance in a papermaking process using hydrophilic dispersion copolymers of diallyl-N,N-disubstituted ammonium halide and (meth)acrylamide as retention- and dewatering agents.

Bakgrunn for oppfinnelsen Background for the invention

1 fremstillingen av papir formes en vandig cellulosesus-pensjon eller slurry til et papirark. Celluloseslurryen fortynnes vanligvis til en konsistens (prosent tørrvekt av faststoff i en slurry) på mindre enn 1%, og ofte under 0,5%, i forkant av papirmaskinen, mens det ferdige ark må ha mindre enn 6 vekt% vann. Derved er avvanningsaspektet av fremstillingen av papir ekstremt viktig for effektiviteten og kostnaden av tilvirkningen. In the production of paper, an aqueous cellulose suspension or slurry is formed into a sheet of paper. The cellulose slurry is usually diluted to a consistency (percent dry weight of solids in a slurry) of less than 1%, and often less than 0.5%, ahead of the paper machine, while the finished sheet must have less than 6% water by weight. Thereby the dewatering aspect of the manufacture of paper is extremely important to the efficiency and cost of manufacture.

Den minst kostbare avvanningsmetoden er drenering, og deretter anvendes mer kostbare metoder, inkludert vakuumpress-ing, filtteppeavtrekking og pressing, fordampning og lign-ende, og enhver kombinasjon av slike metoder. Fordi drenering er både den første avvanningsmetoden anvendt og den minst kostbare, vil forbedringer i effektiviteten av drenering minske mengden av vann som er nødvendig å fjerne ved andre metoder og forbedre den samlede effektivitet av avvanning, som derved reduserer kostnadene derav. The least expensive dewatering method is drainage, and then more expensive methods are used, including vacuum pressing, felt blanket removal and pressing, evaporation and the like, and any combination of such methods. Because drainage is both the first dewatering method used and the least expensive, improvements in the efficiency of drainage will reduce the amount of water required to be removed by other methods and improve the overall efficiency of dewatering, thereby reducing its costs.

Et annet aspekt av fremstilling av papir som er ekstremt viktig for effektiviteten og kostnaden av tilvirkning er retensjonen av massekomponenter på og innenfor fibermatten som dannes under fremstilling av papir. En papirmasse inneholder partikler som varierer i størrelse fra omtrent 2 til 3 mm størrelsen av cellulosefibre til fyllstoff som måler kun noen få mikron. Innen dette område finnes cellu-losef instoff, mineralfyllstoff (anvendt for å øke opasitet, lysstyrke og andre papirkarakteristikker) og andre små partikler som vanligvis, uten innbefatningen av en eller flere retensjonsmidler, ville passere gjennom åpningene (porer) mellom cellulosefibrene i fibermatten som dannes. Another aspect of papermaking that is extremely important to the efficiency and cost of manufacture is the retention of pulp components on and within the fiber mat formed during papermaking. A paper pulp contains particles ranging in size from about 2 to 3 mm the size of cellulose fibers to fillers measuring only a few microns. Within this range are cellulose fillers, mineral fillers (used to increase opacity, brightness and other paper characteristics) and other small particles that would normally, without the inclusion of one or more retention agents, pass through the openings (pores) between the cellulose fibers in the resulting fiber mat .

En fremgangsmåte for å forbedre retensjonen av cellulosefinstoff, mineralfyllstoff og andre massekomponenter på fibermatten er å anvende et koagulant/flokkulant system, som tilsettes i forkant av papirmaskinen. I et slikt system tilsettes en koagulant slik som en lavmolekylvekt, kationisk syntetisk polymer eller en kationisk stivelse først til massen. Koagulanten reduserer vanligvis den negative overflatespenning til stede på partiklene i massen, spesielt cellulosefinstoff og mineralfyllstoff, og agglomererer derved slike partikler. Koagulanten etterfølges av tilsetning av en flokkulant. Flokkulanten er vanligvis en høymolekylærvekt kationisk eller anionisk syntetisk polymer som bygger bro mellom partiklene og/eller agglomeratene fra en overflate til en annen, som derved binder partiklene til store agglomerater. Tilstedeværelsen av slike store agglomerater i massen øker retensjonen. Agglomeratene filtreres ut av vannet i fibernettet, der uagglomererte partikler ellers ville passere. One method to improve the retention of cellulose fines, mineral filler and other pulp components on the fiber mat is to use a coagulant/flocculant system, which is added at the front of the paper machine. In such a system, a coagulant such as a low molecular weight, cationic synthetic polymer or a cationic starch is first added to the pulp. The coagulant usually reduces the negative surface tension present on the particles in the pulp, especially cellulose fines and mineral filler, and thereby agglomerates such particles. The coagulant is followed by the addition of a flocculant. The flocculant is usually a high molecular weight cationic or anionic synthetic polymer that bridges the particles and/or agglomerates from one surface to another, thereby binding the particles into large agglomerates. The presence of such large agglomerates in the pulp increases retention. The agglomerates are filtered out of the water in the fiber net, where unagglomerated particles would otherwise pass.

Selv om et flokkulert agglomerat vanligvis ikke innvirker på dreneringen av fibermatten i den utstrekning som ville skje dersom massen ble gelaktig eller inneholdt gelatinøst materiale, men når slike flokkinger filtreres av fibernettet reduseres porene derav, som derved reduserer dreneringseffektiviteten. Derved økes retensjonen på bekostning av en reduksjon i drenering. Although a flocculated agglomerate does not usually affect the drainage of the fiber mat to the extent that would occur if the mass became gel-like or contained gelatinous material, when such flocculations are filtered by the fiber net, the pores thereof are reduced, thereby reducing the drainage efficiency. This increases retention at the expense of a reduction in drainage.

Systemer, slik som de beskrevet i U.S. patent nr. 4,753,710 og 4,913,775, har blitt benyttet for å gi en forbedret kombinasjon av retensjon og avvanning. Kort fortalt forlanger disse patenter å først tilsette til den vandige cellulose-papiranvendelsessuspensjon først en høy molekylærvekt lineær kationisk polymer før skjæring av suspensjonen, etterfulgt av tilsetning av bentonitt etter skjæring. Skjæringen tilveiebringes vanligvis ved en eller flere av trinnene for rengjøring, blanding og pumping av prosessen for papirfremstilling. Skjæringen bryter ned de store flokker dannet av høymolekylærvekt-polymerer til mikroflokker, og videre agglomerasjon følger deretter med tilsetningen av bentonittleirepartikler. Systems, such as those described in U.S. Pat. Patent Nos. 4,753,710 and 4,913,775, have been used to provide an improved combination of retention and dewatering. Briefly, these patents call for first adding to the aqueous cellulosic paper use suspension a high molecular weight linear cationic polymer prior to shearing the suspension, followed by the addition of bentonite after shearing. The cutting is usually provided by one or more of the cleaning, mixing and pumping steps of the papermaking process. The cutting breaks down the large flocs formed by high molecular weight polymers into micro flocs, and further agglomeration follows with the addition of bentonite clay particles.

Et annet system, redegjort for i U.S. patent nr. 4,388,150 anvender kombinasjonen av kationisk stivelse etterfulgt av kolloidal silika for å øke mengden av materiale holdt til-bake på matten ved ladningsnøytralisering og adsorbsjon av mindre agglomerater. Another system, described in the U.S. patent no. 4,388,150 uses the combination of cationic starch followed by colloidal silica to increase the amount of material retained on the mat by charge neutralization and adsorption of smaller agglomerates.

U.S. patent nr. 5,098,520 og 5,185,062 beskriver fremgangsmåter for å forbedre avvanning i prosessen for papirfremstilling. U.S. Patent Nos. 5,098,520 and 5,185,062 describe methods for improving dewatering in the papermaking process.

U.S. patent nr. 5,266,164 beskriver en fremgangsmåte for å forbedre retensjonen av mineralfyllstoffer og cellulosefibre på et cellulosefiberark. U.S. patent no. 5,266,164 describes a method for improving the retention of mineral fillers and cellulose fibers on a cellulose fiber sheet.

EP-A2-0760406 beskriver en fremgangsmåte for å minimalisere partikkelavsetninger av bek, blekk og klebrige materialer i papirproduksjonsprosessen ved retensjonen av slike partikler oppå fiber. EP-A2-0760406 describes a method for minimizing particle deposits of pitch, ink and sticky materials in the papermaking process by the retention of such particles on top of fiber.

CA-A1-2102742 beskriver en fremgangsmåte for å forbedre retensjon og/eller drenering i papirproduksjon ved å tilsette diallyldimetylammoniumklorid (DADMAC)/akrylamid-kopolymer til en fibersuspensjon. CA-A1-2102742 describes a process for improving retention and/or drainage in papermaking by adding diallyldimethylammonium chloride (DADMAC)/acrylamide copolymer to a fiber suspension.

Til tross for disse tidligere systemer er det fortsatt et behov for nye fremgangsmåter anvendende hydrofile dispersjonspolymerer for å forbedre retensjon og avvanningytelse, spesielt uten den uønskede tilsetning av oljer og surfaktanter som er inneholdt i de konvensjonelle latexpolymerer. Som anvendt heri, er "latex" definert til å mene en invers vann-i-olje emulsjonspolymer. Det er også et behov for dispersjonspolymerer som ikke krever et invertersystem og som kan introduseres i prosessen for papirfremstilling anvendende enkelt doseringsutstyr. Despite these prior systems, there is still a need for new methods using hydrophilic dispersion polymers to improve retention and dewatering performance, especially without the undesirable addition of oils and surfactants contained in the conventional latex polymers. As used herein, "latex" is defined to mean an inverse water-in-oil emulsion polymer. There is also a need for dispersion polymers that do not require an inverter system and that can be introduced into the papermaking process using simple dosing equipment.

Oppsummering av oppfinnelsen Summary of the invention

Oppfinnelsens fremgangsmåte krever dannelsen av en vandig cellulose-slurry for papirfremstilling, tilsetning av en effektiv mengde av en hydrofil dispersjonspolymer til slurryen, drenering av slurryen for å danne et ark og tørking av arket. The process of the invention requires forming an aqueous cellulose slurry for papermaking, adding an effective amount of a hydrophilic dispersion polymer to the slurry, draining the slurry to form a sheet, and drying the sheet.

Nærmere bestemt tilveiebringer den foreliggende oppfinnelsen en fremgangsmåte for forbedret retensjon og dreneringsytelse i en prosess for fremstilling av papir omfattende trinnene: a) å danne en vandig cellulose-slurry for tilvirking av papir; b) å tilsette fra 0,02-2,3 kg av en hydrofil dispersjonspolymer per 907 kg slurry-faststoffer til slurryen, hvori den hydrofile dispersjonspolymeren har en kationisk ladning fra 1 molprosent til 50 molprosent, en intrinsisk viskositet fra 0,5 til 10 desiliter per gram og som resulterer fra polymeriseringen av: i) en kationisk monomer diallyl-N,N-disubstituert ammoniumhalid hvori substituentene av det disubstituerte ammoniumhalidet er valgt fra gruppen bestående av Ci-C2o alkylgrupper, arylgrupper, alkylarylgrupper og arylalkylgrupper, More specifically, the present invention provides a method for improved retention and drainage performance in a papermaking process comprising the steps of: a) forming an aqueous cellulose slurry for papermaking; b) adding from 0.02-2.3 kg of a hydrophilic dispersion polymer per 907 kg of slurry solids to the slurry, wherein the hydrophilic dispersion polymer has a cationic charge of from 1 mole percent to 50 mole percent, an intrinsic viscosity of from 0.5 to 10 deciliters per gram and which results from the polymerization of: i) a cationic monomer diallyl-N,N-disubstituted ammonium halide in which the substituents of the disubstituted ammonium halide are selected from the group consisting of C1-C20 alkyl groups, aryl groups, alkylaryl groups and arylalkyl groups,

ii) en andre monomer med formelen ii) a second monomer of the formula

hvori Ri og R2 er valgt fra gruppen bestående av hydrogen, C1-C10 alkylgrupper, arylgrupper og alkylarylgrupper; R3 er valgt fra gruppen bestående av hydrogen- og metylgrupper og R4 og R5 er valgt fra gruppen bestående av C1-C10 rette kjeder eller forgrenede alkylengrupper og hydrogen, i en vandig løsning av et polyvalent anionisk salt, hvori polymeriseringen utføres ved tilstedeværelsen av et dispersjonsmiddel; wherein R 1 and R 2 are selected from the group consisting of hydrogen, C 1 -C 10 alkyl groups, aryl groups and alkylaryl groups; R3 is selected from the group consisting of hydrogen and methyl groups and R4 and R5 are selected from the group consisting of C1-C10 straight chain or branched alkylene groups and hydrogen, in an aqueous solution of a polyvalent anionic salt, wherein the polymerization is carried out in the presence of a dispersant ;

c) å drenere slurryen for å danne et ark; og c) draining the slurry to form a sheet; and

d) å tørke arket. d) drying the sheet.

Denne fremgangsmåte forbedrer retensjonen og avvanningsytelse uten den uønskede tilsetning av oljer og surfaktanter. Videre krever ikke de hydrofile dispersjonspolymerer anvendt i foreliggende oppfinnelse et inverteringssystem og kan tilsettes prosessen for papirfremstilling anvendende enkelt doseringsutstyr. This method improves retention and dewatering performance without the unwanted addition of oils and surfactants. Furthermore, the hydrophilic dispersion polymers used in the present invention do not require an inversion system and can be added to the papermaking process using simple dosing equipment.

Detaljert beskrivelse av oppfinnelsen Detailed description of the invention

Som angitt ovenfor er foreliggende oppfinnelse rettet mot en fremgangsmåte for forbedret retensjon og dreneringsytelse i en prosess for fremstilling av papir omfattende å danne en vandig cellulose-slurry for tilvirkning av papir, ved å tilsette en hydrofil dispersjonspolymer til slurryen, og drenere slurryen for å danne et ark og deretter å tørke arket. As stated above, the present invention is directed to a method for improved retention and drainage performance in a process for making paper comprising forming an aqueous cellulose slurry for making paper, adding a hydrophilic dispersion polymer to the slurry, and draining the slurry to form a sheet and then to dry the sheet.

Den hydrofile dispersjonspolymer av oppfinnelsen er en kopolymer av diallyl-N,N-disubstituert ammoniumhalid kationisk monomer og (met)akrylamid. En foretrukket kopolymer dannes fra diallyldimetyl-ammoniumklorid (DADMAC) og akrylamid (AcAm). Det er funnet at polymeren beskrevet over gir fordeler for anvendelse i en prosess for papirfremstilling. Spesielt viser de hydrofile dispersjonspolymerer av oppfinnelsen forbedret eller lik aktivitet med hensyn til retensjon og avvanningsytelse uten den uønskede tilsetning av oljer og surfaktanter sammenlignet med konvensjonelle kationiske latex-polymerer. I tillegg krever disse polymerer ingen invertersystem og kan introduseres i prosessen for papirfremstilling anvendende enkelt doseringsutstyr. The hydrophilic dispersion polymer of the invention is a copolymer of diallyl-N,N-disubstituted ammonium halide cationic monomer and (meth)acrylamide. A preferred copolymer is formed from diallyldimethylammonium chloride (DADMAC) and acrylamide (AcAm). It has been found that the polymer described above provides advantages for use in a papermaking process. In particular, the hydrophilic dispersion polymers of the invention show improved or equal activity in terms of retention and dewatering performance without the undesirable addition of oils and surfactants compared to conventional cationic latex polymers. In addition, these polymers do not require an inverter system and can be introduced into the papermaking process using simple dosing equipment.

En annen fordel vedrører metoden for tilsetning av dispersjonspolymerene. I de fleste tilfeller er konvensjonelle vannløselige polymerer nå kommersielt tilgjengelige i pul-verform. Før anvendelse må det polymere pulver løses i et vandig medium for aktuell anvendelse. Polymeren sveller i vandig medium, og de dispergerte partikler flokkulerer. Another advantage relates to the method of adding the dispersion polymers. In most cases, conventional water-soluble polymers are now commercially available in powder form. Before use, the polymeric powder must be dissolved in an aqueous medium for the application in question. The polymer swells in an aqueous medium, and the dispersed particles flocculate.

Det er typisk svært vanskelig å løse de konvensjonelle polymerer i et vandig medium. I kontrast unngår dispersjonspolymerene av denne oppfinnelse ved denne natur oppløsningsrelaterte problemer. It is typically very difficult to dissolve the conventional polymers in an aqueous medium. In contrast, the dispersion polymers of this invention by this nature avoid dissolution-related problems.

Videre har dispersjons-kopolymerene dannet fra DADMAC og AcAm den fordelaktige fleksibilitet ved at de kan anvendes enten som den eneste polymere behandling, eller som en kom-ponent i et konvensjonelt dualt polymerprogram som krever både en konvensjonell koagulant og en flokkulant. Furthermore, the dispersion copolymers formed from DADMAC and AcAm have the advantageous flexibility in that they can be used either as the only polymeric treatment, or as a component in a conventional dual polymer program that requires both a conventional coagulant and a flocculant.

Dispersjons-kopolymerene av foreliggende oppfinnelse, dersom påkrevd i formen av vandig løsning som resulterer fra fortynning med vann, kan blant annet fordelaktig anvendes i et antall av teknologiske felt som flokkulanter, fortykk-ere, jordforbedringsmidler, klebemidler, mattilsetninger, dispersjonsmidler, rengjøringsmidler, additiver for medisiner eller kosmetikk. The dispersion copolymers of the present invention, if required in the form of an aqueous solution resulting from dilution with water, can be advantageously used in a number of technological fields such as flocculants, thickeners, soil improvers, adhesives, food additives, dispersants, cleaning agents, additives for medicines or cosmetics.

Monomerene The monomers

Eksempel 1 skisserer fremgangsmåten for fremstilling av kopolymerer ved forskjellige forhold av monomerkomponentene i området av fra omtrent 1:99 til omtrent 99:1 av akryl-amidtypemonomer mot diallyll-N,N-disubstituert ammoniumhalid. Hver av de to typene av monomerer anvendt for å danne dispersjonspolymerene av denne oppfinnelse vil bli beskrevet under i større detalj. Example 1 outlines the process for preparing copolymers at various ratios of the monomer components in the range of from about 1:99 to about 99:1 of acrylamide type monomer to diallyl-N,N-disubstituted ammonium halide. Each of the two types of monomers used to form the dispersion polymers of this invention will be described below in greater detail.

Når det gjelder det diallyll-N,N-disubstituerte ammoniumhalid, kan disubstituentene av monomeren være C1-C20 alkylgrupper, arylgrupper, alkylarylgrupper eller arylalkylgrupper. Videre kan hver av disubstituentene være en for-skjellig gruppe. For eksempel er et tilsiktet halid N-metyl-N-etyl-N,N-diallyl-ammoniumklorid. In the case of the diallyl-N,N-disubstituted ammonium halide, the disubstituents of the monomer may be C1-C20 alkyl groups, aryl groups, alkylaryl groups or arylalkyl groups. Furthermore, each of the disubstituents can be a different group. For example, an intended halide is N-methyl-N-ethyl-N,N-diallyl-ammonium chloride.

Et spesifikt eksempel på et anvendbart halid er DADMAC. Fortrinnsvis er mengden av DADMAC til stede i kopolymeren fra omtrent 5 mol% til omtrent 30 mol%. Diallyl-N,N-disubstituert-ammoniumhalider, spesielt DADMAC er velkjente og kommersielt tilgjengelige fra en rekke kilder. I tillegg til klorid kan motionet også være bromid, sulfat, fosfat, monohydrogenfosfat og nitrat, blant andre. En fremgangsmåte for fremstillingen av DADMAC er beskrevet i US patent nr. 4,151,202. A specific example of a useful halide is DADMAC. Preferably, the amount of DADMAC present in the copolymer is from about 5 mol% to about 30 mol%. Diallyl-N,N-disubstituted-ammonium halides, particularly DADMAC are well known and commercially available from a variety of sources. In addition to chloride, the counterion can also be bromide, sulphate, phosphate, monohydrogen phosphate and nitrate, among others. A method for the production of DADMAC is described in US patent no. 4,151,202.

Når det gjelder akrylamidtype monomerer, kan substituert (met)akrylamid-monomerer ha enten rette kjeder eller forgrenede alkylgrupper. Anvendbare monomerer inkluderer, men er ikke begrenset til, etylheksyl(met)akrylamid, dietyl-aminopropyl(met)akrylamid, dimetylaminohydroksypropyl-(met)akrylamid, N-isopropyl(met)akrylamid, N-tert-butyl-(met) akrylamid, C1-C10 N-alkylakrylamid, C1-C10 N-alkylmet-akrylamid, N-arylakrylamid, N-arylmetakrylamid, N-aryl-alkylakrylamid, N-isopropyl(met)akrylamid, N,N-dimetyl-akrylamid (met) akrylamid, C1-C10 N, N-dialkylakrylamid, C1-C10 N,N-dialkylmetakrylamid, N,N-diarylakrylamid, N,N-diaryl-metakrylamid, N,N-diallylalkylakrylamid og N,N-diarylalkyl-metakrylamid. Som anvendt her er betegnelsen "arylalkyl" ment å omfatte benzylgrupper og fenetylgrupper. Pendant amin refererer til en NH2-gruppe som er festet til hovedpolymerkj eden. In the case of acrylamide type monomers, substituted (meth)acrylamide monomers can have either straight chains or branched alkyl groups. Useful monomers include, but are not limited to, ethylhexyl(meth)acrylamide, diethylaminopropyl(meth)acrylamide, dimethylaminohydroxypropyl-(meth)acrylamide, N-isopropyl(meth)acrylamide, N-tert-butyl-(meth)acrylamide, C1-C10 N-alkylacrylamide, C1-C10 N-alkylmethacrylamide, N-arylacrylamide, N-arylmethacrylamide, N-arylalkylacrylamide, N-isopropyl(meth)acrylamide, N,N-dimethylacrylamide (meth)acrylamide, C1-C10 N,N-dialkylacrylamide, C1-C10 N,N-dialkylmethacrylamide, N,N-diarylacrylamide, N,N-diarylmethacrylamide, N,N-diallylalkylacrylamide and N,N-diarylalkylmethacrylamide. As used herein, the term "arylalkyl" is intended to include benzyl groups and phenethyl groups. Pendant amine refers to an NH2 group attached to the main polymer chain.

De polyvalente anioniske salter The polyvalent anionic salts

Et polyvalent anionisk salt er omfattet i en vandig løs-ning. I henhold til foreliggende oppfinnelse, er det polyvalente anioniske salt hensiktsmessig sulfat, et fosfat eller en blanding derav. Foretrukne salter inkluderer ammoniumsulfat, natriumsulfat, magnesiumsulfat, aluminium-sulfat, ammoniumhydrogenfosfat, natriumhydrogenfosfat og kaliumhydrogenfosfat. I foreliggende oppfinnelse kan hver av disse salter anvendes som en vandig løsning derav med en konsentrasjon på 15% eller over. A polyvalent anionic salt is contained in an aqueous solution. According to the present invention, the polyvalent anionic salt is conveniently sulfate, a phosphate or a mixture thereof. Preferred salts include ammonium sulfate, sodium sulfate, magnesium sulfate, aluminum sulfate, ammonium hydrogen phosphate, sodium hydrogen phosphate and potassium hydrogen phosphate. In the present invention, each of these salts can be used as an aqueous solution thereof with a concentration of 15% or more.

Dispersjonsmidiet The dispersion medium

En dispersjonspolymer er til stede i en vandig anionisk saltløsning i hvilken polymeriseringen av de ovennevnte monomerer skjer. Dispersjonspolymeren er en vannløselig høymolekylærvekt kationisk polymer, og er fortrinnsvis løselig i de ovennevnte vandige saltløsninger. Det er foretrukket at dispersjonspolymeren anvendes i en mengde på fra omtrent 1 til 10% i vekt basert på den totale vekt av den hydrofile dispersjonspolymeren. A dispersion polymer is present in an aqueous anionic salt solution in which the polymerization of the above-mentioned monomers takes place. The dispersion polymer is a water-soluble high molecular weight cationic polymer, and is preferably soluble in the above-mentioned aqueous salt solutions. It is preferred that the dispersion polymer is used in an amount of from about 1 to 10% by weight based on the total weight of the hydrophilic dispersion polymer.

Dispersjonspolymeren består av 20 mol% eller mer av kationisk monomerenheter av diallyl disubstituert ammonium-alid eller N,N-dialkyl-aminoetyl(met)akrylater og deres fireverdige salter. Fortrinnsvis er restmol% AcAm eller (met)AcAm. Ytelsen av dispersjonsmidlet påvirkes ikke mye av molekylvekt. Derimot er molekylvekten av dispersjonsmidlet fortrinnsvis i området av omtrent 10.000 til 10.000.000. Foretrukne dispersjonsmidler inkluderer homopolymerer av diallyldimetyl-ammoniumklorid, dimetyl-aminoetylakrylat-metylklorid kvaternært salt og dimetyl-aminoetylmetakrylat metylklorid kvaternært salt. The dispersion polymer consists of 20 mol% or more of cationic monomer units of diallyl disubstituted ammonium alide or N,N-dialkylaminoethyl (meth)acrylates and their tetravalent salts. Preferably, the residual mol% is AcAm or (meth)AcAm. The performance of the dispersant is not greatly affected by molecular weight. In contrast, the molecular weight of the dispersant is preferably in the range of approximately 10,000 to 10,000,000. Preferred dispersants include homopolymers of diallyl dimethyl ammonium chloride, dimethyl aminoethyl acrylate methyl chloride quaternary salt and dimethyl aminoethyl methacrylate methyl chloride quaternary salt.

I henhold til en utførelse av oppfinnelsen sameksisterer en multifunksjonell alkohol slik som glyserin eller polyetyl-englykol i polymeriseringssystemet. Avsetningen av fine partikler utføres lett i nærvær av disse alkoholer. Videre kan polysakkarider, slik som stivelse, dekstran, karbo-metoksycellulose og pullulan, blant andre, kan også anvendes som stabiliserere enten alene eller i sammenheng med andre organiske kationiske flokkulanter. According to one embodiment of the invention, a multifunctional alcohol such as glycerine or polyethylene glycol coexists in the polymerization system. The deposition of fine particles is easily carried out in the presence of these alcohols. Furthermore, polysaccharides, such as starch, dextran, carbo-methoxycellulose and pullulan, among others, can also be used as stabilizers either alone or in conjunction with other organic cationic flocculants.

Dispersjonspolymerene The dispersion polymers

For polymeriseringene kan et vanlig vannløselig radikal-middel anvendes, men fortrinnsvis anvendes vannløselige azo-forbindelser slik som 2,2'-azobis(2-amidinopropan)-hydroklorid og 2,2'-azobis(N,N'-dimetylenisobutylamin)-hydroklorid. For the polymerizations, a common water-soluble radical agent can be used, but preferably water-soluble azo compounds such as 2,2'-azobis(2-amidinopropane) hydrochloride and 2,2'-azobis(N,N'-dimethylisobutylamine) hydrochloride are used .

I henhold til en utførelse av oppfinnelsen tilsettes en According to one embodiment of the invention, a

podepolymer før begynnelsen av polymeriseringen av de ovennevnte monomerer med den hensikt å oppnå en fin dispersjon. Podepolymeren er en vannløselig kationisk polymer, uløselig i den vandige løsningen av det polyvalente anionsalt. graft polymer before the start of the polymerization of the above-mentioned monomers with the intention of obtaining a fine dispersion. The graft polymer is a water-soluble cationic polymer, insoluble in the aqueous solution of the polyvalent anion salt.

Podepolymeren er fortrinnsvis en polymer fremstilt fra de ovennevnte monomerblandinger ved fremgangsmåten beskrevet heri. Allikevel behøver monomersammensetningen av podepolymeren ikke alltid være lik med den vannløselige kationiske polymer dannet under polymerisering. Derimot, som den vannløselige polymer dannet under polymerisering, bør podepolymeren inneholde minst mol% av kationiske monomerenheter av diallylmetyl-ammoniumhalid. I henhold til en utførelse av oppfinnelsen er podepolymeren anvendt i en polymeriseringsreaksjon en vannløselig polymer fremstilt i en tidligere reaksjon som anvendte den samme monomerblan-dingen. The graft polymer is preferably a polymer produced from the above-mentioned monomer mixtures by the method described herein. Even so, the monomer composition of the graft polymer need not always be the same as the water-soluble cationic polymer formed during polymerization. In contrast, as the water-soluble polymer formed during polymerization, the graft polymer should contain at least mol% of cationic monomer units of diallylmethyl ammonium halide. According to one embodiment of the invention, the graft polymer used in a polymerization reaction is a water-soluble polymer produced in a previous reaction that used the same monomer mixture.

Fremgangsmåten The procedure

En vandig cellulose-slurry dannes først ved enhver konvensjonell metode vanligvis kjent for fagpersonen. En hydrofil dispersjonspolymer tilsettes deretter til slurryen. An aqueous cellulose slurry is first formed by any conventional method commonly known to those skilled in the art. A hydrophilic dispersion polymer is then added to the slurry.

Den hydrofile dispersjonspolymer dannes ved polymerisasjonen av The hydrophilic dispersion polymer is formed by the polymerization of

1) en kationisk monomer diallyl-N,N-disubstituert 1) a cationic monomer diallyl-N,N-disubstituted

ammoniumhalid hvori substituentene av det disubstituerte ammoniumhalidet er valgt fra gruppen bestående av C1-C20 alkylgrupper, arylgrupper, alkylarylgrupper og arylalkylgrupper, ammonium halide wherein the substituents of the disubstituted ammonium halide are selected from the group consisting of C1-C20 alkyl groups, aryl groups, alkylaryl groups and arylalkyl groups,

2) en andre monomer med formelen 2) a second monomer with the formula

hvori Ri og R2 er valgt fra gruppen bestående av hydrogen, C1-C10 alkylgrupper, arylgrupper og alkyl-arylgrupper; R3 er valgt fra gruppen bestående av hydrogen- og metylgrupper og R4 og R5 er valgt fra gruppen bestående av C1-C10 rette kjeder eller forgrenede alkylengrupper og hydrogen, i en vandig løsning av et polyvalent anionisk salt, hvori polymeriseringen utføres ved tilstedeværelsen av et dispersjonsmiddel. wherein R 1 and R 2 are selected from the group consisting of hydrogen, C 1 -C 10 alkyl groups, aryl groups and alkyl-aryl groups; R3 is selected from the group consisting of hydrogen and methyl groups and R4 and R5 are selected from the group consisting of C1-C10 straight chain or branched alkylene groups and hydrogen, in an aqueous solution of a polyvalent anionic salt, wherein the polymerization is carried out in the presence of a dispersant .

Cellulose-slurryen for papirfremstilling dreneres deretter for å danne et ark og tørkes deretter. Trinnene for drenering og tørking kan utføres på enhver konvensjonell måte vanligvis kjent for fagpersonen. Den kationiske monomer kan være DADMAC og den andre monomeren kan være AcAm. Den hydrofile dispersjonspolymer kan ha en kationisk ladning på fra omtrent 1 mol% til omtrent 50 mol%. The papermaking cellulose slurry is then drained to form a sheet and then dried. The steps of draining and drying may be carried out in any conventional manner commonly known to those skilled in the art. The cationic monomer can be DADMAC and the other monomer can be AcAm. The hydrophilic dispersion polymer can have a cationic charge of from about 1 mol% to about 50 mol%.

I tillegg kan konvensjonelle koagulanter, konvensjonelle flokkulanter, alun, kationisk stivelse eller en kombinasjon derav også anvendes som tilbehør med dispersjonspolymerer, selv om det må understrekes at dispersjonspolymeren ikke trenger noe tilbehør for effektiv retensjon og drenerings-aktivitet. In addition, conventional coagulants, conventional flocculants, alum, cationic starch or a combination thereof can also be used as accessories with dispersion polymers, although it must be emphasized that the dispersion polymer does not need any accessories for effective retention and drainage activity.

Videre er området for intrinsiske viskositeter for de hydrofile dispersjonspolymerer av oppfinnelsen fra omtrent 0,5 til omkring 10 dl/g, fortrinnsvis fra omtrent 1,5 til omtrent 8,5 dl/g og mest fordelaktig fra omtrent 2,5 til omtrent 7,5 dl/g. Avhengig av forholdene ved den enkelte fabrikk, er den foretrukne dosering fra omtrent 0,02 til omtrent 2,3 kg av aktivt stoff pr. 907 kg av slurry-faststoffer. Furthermore, the range of intrinsic viscosities of the hydrophilic dispersion polymers of the invention is from about 0.5 to about 10 dl/g, preferably from about 1.5 to about 8.5 dl/g and most advantageously from about 2.5 to about 7, 5 dl/g. Depending on the conditions at the individual factory, the preferred dosage is from about 0.02 to about 2.3 kg of active substance per 907 kg of slurry solids.

EKSEMPLER EXAMPLES

De følgende eksempler er ment å være illustrative for foreliggende oppfinnelser og for å lære en fagperson hvordan å lage og tilvirke oppfinnelsen. The following examples are intended to be illustrative of the present invention and to teach a person skilled in the art how to make and manufacture the invention.

Eksempel 1 Example 1

En dispersjonskopolymer på 30 mol% diallyldimetylammoniumklorid og akrylamid ble syntetisert på følgende måte. 25,667 g av en 49,0% løsning av akrylamid (0,1769 mol), 161,29 g av en 62,0% løsning av DADMAC (0,6192 mol), 200 g av ammoniumsulfat, 40 g av natriumsulfat, 303,85 g av av-ionisert vann, 0,38 g av natriumformat, 45 g av en 20% løs-ning av poly(DMAEA.MCQ)(dimetylaminoetylakrylatmetylklorid fireverdig salt, IV = 2,0 dl/gm) og 0,2 g av EDTA ble tilsatt en to liter harpiksreaktor utstyrt med en rører, tem-peraturkontroll, og vannkjølt kondensator. Blandingen ble oppvarmet til 48°C og 2,50 g av en 4% løsning av 2,2-azo-bis(2-amidinopropan)dihydroklorid og 2,50 g av en 4% løs-ning av 2,2-azobis(N,N'-dimetylenisobutryramidin) og 2,50 g av en 4% løsning av 2,2'-azobis(N,N'-dimetylenisobutryr-amidin) dihydroklorid ble tilsatt. Den resulterende blanding ble gjennomluftet med 1000 cc/min nitrogen. Etter 15 minutter begynte polymerisering og løsningen ble viskøs. I løpet av de neste 4 timer ble temperaturen holdt ved 50°C og en løsning inneholdende 178,42 g av 49,0 AcAm (1,230 mol) og 0,2 g av EDTA ble pumpet inn i reaktoren anvendende en sprøytepumpe. Den resulterende polymerdispersjon hadde en Brookfield-viskositet på 4200 eps. Dispersjonen ble deretter videre reagert i 2,5 timer og ved en temperatur på 55°C. Den resulterende polymerdispersjon hadde en Brookfield-viskositet på 3300 eps. 10 g av 99% adipinsyre, 10 g ammoniumsulfat og 12,5 g 60% vandig løsning av ammoniumtiosulfat ble tilsatt til polymerdispersjonen. Den resulterende dispersjon hadde en Brookfield-viskositet på 1312,5 eps og inneholdt 20% av en 50 vekt% kopolymer av DADMAC og AcAm med en intrinsisk viskositet på 6,32 dl/gm i 1,0 molar NaN03. A dispersion copolymer of 30 mol% diallyldimethylammonium chloride and acrylamide was synthesized as follows. 25.667 g of a 49.0% solution of acrylamide (0.1769 mol), 161.29 g of a 62.0% solution of DADMAC (0.6192 mol), 200 g of ammonium sulfate, 40 g of sodium sulfate, 303, 85 g of deionized water, 0.38 g of sodium formate, 45 g of a 20% solution of poly(DMAEA.MCQ) (dimethylaminoethyl acrylate methyl chloride tetravalent salt, IV = 2.0 dl/gm) and 0.2 g of EDTA was added to a two liter resin reactor equipped with a stirrer, temperature control, and water-cooled condenser. The mixture was heated to 48°C and 2.50 g of a 4% solution of 2,2-azo-bis(2-amidinopropane)dihydrochloride and 2.50 g of a 4% solution of 2,2-azobis( N,N'-dimethylisobutryramidine) and 2.50 g of a 4% solution of 2,2'-azobis(N,N'-dimethylisobutryramidine) dihydrochloride were added. The resulting mixture was aerated with 1000 cc/min of nitrogen. After 15 minutes, polymerization began and the solution became viscous. During the next 4 hours the temperature was maintained at 50°C and a solution containing 178.42 g of 49.0 AcAm (1.230 mol) and 0.2 g of EDTA was pumped into the reactor using a syringe pump. The resulting polymer dispersion had a Brookfield viscosity of 4200 eps. The dispersion was then further reacted for 2.5 hours and at a temperature of 55°C. The resulting polymer dispersion had a Brookfield viscosity of 3300 eps. 10 g of 99% adipic acid, 10 g of ammonium sulfate and 12.5 g of a 60% aqueous solution of ammonium thiosulfate were added to the polymer dispersion. The resulting dispersion had a Brookfield viscosity of 1312.5 eps and contained 20% of a 50% by weight copolymer of DADMAC and AcAm with an intrinsic viscosity of 6.32 dl/gm in 1.0 molar NaNO 3 .

Polymerene anvendt i denne oppfinnelse og deres respektive beskrivelser er oppsummert i tabell 1. The polymers used in this invention and their respective descriptions are summarized in Table 1.

Eksempel 2 Example 2

For å bestemme aktiviteten av de hydrofile dispersjonspolymerer syntetisert i henhold til eksempel 1, ble følgende prosedyre anvendt. Vakuumdreneringstesteren (VDT) ble anvendt for å evaluere dreneringsytelsen. Tynnmasse for VDT-testene ble hentet fra en Southern linerboard papermill ved et prøveuttakspunkt rett før baseark innløpskassen. Fordi det ikke ble anvendt noe retensjon/ dreneringshjelpemidler på papirmaskinen, ble tynnmassen testet som den var. To determine the activity of the hydrophilic dispersion polymers synthesized according to Example 1, the following procedure was used. The vacuum drainage tester (VDT) was used to evaluate the drainage performance. Thin stock for the VDT tests was obtained from a Southern linerboard papermill at a sampling point just before the basesheet inlet box. Because no retention/drainage aids were used on the paper machine, the pulp was tested as is.

Massen ble behandlet i en Britt jar rører ved 1000 rpm. VDT-testene ble utført ved den normale fremgangsmåte av å overføre den behandlede masse til VDT-kammeret, og deretter filtrering under 15 tommer Hg (7,84 psi) vakuum gjennom Filpaco nr. 716-papiret. Testbetingelsene er gitt i tabell II. Dreneringshastighetene er uttrykt i benevnelsen av ti-den det tok å samle 100 ml filtrerte volumer. The pulp was processed in a Britt jar stirrer at 1000 rpm. The VDT tests were conducted by the normal procedure of transferring the treated pulp to the VDT chamber, then filtering under 15 in. Hg (7.84 psi) vacuum through Filpaco No. 716 paper. The test conditions are given in Table II. The drainage rates are expressed in terms of the time it took to collect 100 ml filtered volumes.

Kationiske polymerprogrammer viste aktivitet med basearket-massen i forholdet til ubehandlet prøve (Blank). Tabell III viser VDT dreneringsdata for polymerer listet i tabell I. En lavere dreneringstid (for et konstant volum av 100 ml) indikerer en høyere dreneringshastighet. Derfor, jo høyere dreneringshastighet, desto mer effektiv behandling. Resultatene i tabell III demonstrerer at den hydrofile DADMAC/AcAm dispersjonspolymer (Dispersjon I) er overlegen til konvensjonelle behandlinger. Videre var dreneringsytelsen av dispersjon I bedre enn dens latexanalog, polymer I. I tillegg var turbiditeten av filtratet oppnådd med dispersjon I tydelig klarere enn de andre polymerer testet, som antyder bedre retensjon. Cationic polymer programs showed activity with the basesheet pulp in relation to untreated sample (Blank). Table III shows VDT drainage data for polymers listed in Table I. A lower drainage time (for a constant volume of 100 ml) indicates a higher drainage rate. Therefore, the higher the drainage rate, the more effective the treatment. The results in Table III demonstrate that the hydrophilic DADMAC/AcAm dispersion polymer (Dispersion I) is superior to conventional treatments. Furthermore, the drainage performance of Dispersion I was better than its latex analogue, Polymer I. In addition, the turbidity of the filtrate obtained with Dispersion I was clearly clearer than the other polymers tested, suggesting better retention.

Eksempel 3 Example 3

En serie VDT-dreneringseksperimenter ble utført anvendende den hydrofile dispersjon DADMAC/AcAm polymer (dispersjon I) med tynnmasse hentet fra en Midwestern boxboard papermill. Massen ble behandlet i en Britt jar omrører ved 1000 rpm. VDT-testene ble utført ved normal fremgangsmåte ved å overføre den behandlede masse til VDT-kammeret, og deretter filtrere under 15 tommer Hg (7,84 psi) vakuum gjennom Filpaco nr. 716 papir. Testbetingelsene er vist i tabell IV. A series of VDT drainage experiments were conducted using the hydrophilic dispersion DADMAC/AcAm polymer (Dispersion I) with pulp obtained from a Midwestern boxboard papermill. The mass was processed in a Britt jar stirrer at 1000 rpm. The VDT tests were performed by the normal procedure of transferring the treated pulp to the VDT chamber, then filtering under 15 in. Hg (7.84 psi) vacuum through Filpaco No. 716 paper. The test conditions are shown in Table IV.

Resultatene er oppsummert i tabell V. Dreneringshastighetene er uttrykt i betegnelse av tid brukt for å samle opp 400 ml filtratvolumer. En lavere dreneringstid for å samle et konstant volum på 400 ml indikerer bedre ytelse. Data-ene i tabell V viser fleksibiliteten av den hydrofile dispersjonspolymer ved at den kan anvendes enten som den eneste polymere behandling (flokkulant) eller som en koagulant i et dualprogram med konvensjonelle flokkulanter (Polymer Q, Polymer N). The results are summarized in Table V. The drainage rates are expressed in terms of time taken to collect 400 ml filtrate volumes. A lower drain time to collect a constant volume of 400 ml indicates better performance. The data in Table V show the flexibility of the hydrophilic dispersion polymer in that it can be used either as the only polymeric treatment (flocculant) or as a coagulant in a dual program with conventional flocculants (Polymer Q, Polymer N).

Claims (8)

1. Fremgangsmåte for forbedret retensjon og dreneringsytelse i en prosess for fremstilling av papir omfattende trinnene: a) å danne en vandig cellulose-slurry for tilvirkning av papir; b) å tilsette fra 0,02-2,3 kg av en hydrofil dispersjonspolymer per 907 kg slurry-faststoffer til slurryen, hvori den hydrofile dispersjonspolymeren har en kationisk ladning fra 1 molprosent til 50 molprosent, en intrinsisk viskositet fra 0,5 til 10 desiliter per gram og som resulterer fra polymerisasjonen av: i) en kationisk monomer diallyl-N,N-disubstituert ammoniumhalid hvori substituentene av det disubstituerte ammoniumhalidet er valgt fra gruppen bestående av C1-C20 alkylgrupper, arylgrupper, alkylarylgrupper og arylalkylgrupper, ii) en andre monomer med formelen hvori Ri og R2 er valgt fra gruppen bestående av hydrogen, C1-C10 alkylgrupper, arylgrupper og alkylarylgrupper; R3 er valgt fra gruppen bestående av hydrogen- og metylgrupper og R4 og R5 er valgt fra gruppen bestående av C1-C10 rette kjeder eller forgrenede alkylengrupper og hydrogen, i en vandig løsning av et polyvalent anionisk salt, hvori polymerisasjonen utføres ved tilstedeværelsen av et dispersjonsmiddel; c) å drenere slurryen for å danne et ark; og d) å tørke arket.1. A method for improved retention and drainage performance in a paper making process comprising the steps of: a) forming an aqueous cellulose slurry for making paper; b) adding from 0.02-2.3 kg of a hydrophilic dispersion polymer per 907 kg of slurry solids to the slurry, wherein the hydrophilic dispersion polymer has a cationic charge of from 1 mole percent to 50 mole percent, an intrinsic viscosity of from 0.5 to 10 deciliters per gram and which results from the polymerization of: i) a cationic monomer diallyl-N,N-disubstituted ammonium halide in which the substituents of the disubstituted ammonium halide are selected from the group consisting of C1-C20 alkyl groups, aryl groups, alkylaryl groups and arylalkyl groups, ii) a second monomer with the formula wherein R 1 and R 2 are selected from the group consisting of hydrogen, C 1 -C 10 alkyl groups, aryl groups and alkylaryl groups; R3 is selected from the group consisting of hydrogen and methyl groups and R4 and R5 are selected from the group consisting of C1-C10 straight chain or branched alkylene groups and hydrogen, in an aqueous solution of a polyvalent anionic salt, wherein the polymerization is carried out in the presence of a dispersant ; c) draining the slurry to form a sheet; and d) drying the sheet. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at den kationiske monomeren er diallyldimetyl-ammoniumklorid og den andre monomeren er akrylamid.2. Process according to claim 1, characterized in that the cationic monomer is diallyldimethylammonium chloride and the other monomer is acrylamide. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at den hydrofile dispersjonspolymeren har en intrinsisk viskositet fra 1,5 til 8,5 desiliter per gram.3. Method according to claim 1 or 2, characterized in that the hydrophilic dispersion polymer has an intrinsic viscosity of from 1.5 to 8.5 deciliters per gram. 4. Fremgangsmåte ifølge krav 3, karakterisert ved at den hydrofile dispersjonspolymeren har en intrinsisk viskositet fra 2,5 til 7,5 desiliter per gram.4. Method according to claim 3, characterized in that the hydrophilic dispersion polymer has an intrinsic viscosity of from 2.5 to 7.5 deciliters per gram. 5. Fremgangsmåte ifølge ethvert av kravene 1-4, karakterisert ved at den videre omfatter tilsats av en koagulant i trinn b).5. Method according to any one of claims 1-4, characterized in that it further comprises the addition of a coagulant in step b). 6. Fremgangsmåte ifølge ethvert av kravene 1-5, karakterisert ved at den videre omfatter tilsats av en flokkulant i trinn b).6. Method according to any one of claims 1-5, characterized in that it further comprises the addition of a flocculant in step b). 7. Fremgangsmåte ifølge ethvert av kravene 1-6, karakterisert ved at den videre omfatter tilsats av alun i trinn b).7. Method according to any one of claims 1-6, characterized in that it further comprises the addition of alum in step b). 8. Fremgangsmåte ifølge ethvert av kravene 1-7, karakterisert ved at den omfatter tilsats av en kationisk stivelse i trinn b).8. Method according to any one of claims 1-7, characterized in that it comprises the addition of a cationic starch in step b).
NO20003678A 1999-01-15 2000-07-18 Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents NO326100B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20003678A NO326100B1 (en) 1999-01-15 2000-07-18 Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US1999/000869 WO2000042253A1 (en) 1999-01-15 1999-01-15 Papermaking process utilizing hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide as retention and drainage aids
NO20003678A NO326100B1 (en) 1999-01-15 2000-07-18 Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents

Publications (3)

Publication Number Publication Date
NO20003678D0 NO20003678D0 (en) 2000-07-18
NO20003678L NO20003678L (en) 2000-09-12
NO326100B1 true NO326100B1 (en) 2008-09-22

Family

ID=22272000

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20003678A NO326100B1 (en) 1999-01-15 2000-07-18 Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents

Country Status (9)

Country Link
EP (1) EP1082493B1 (en)
KR (1) KR100572306B1 (en)
CN (1) CN1189623C (en)
AU (1) AU766846B2 (en)
BR (1) BR9908576B1 (en)
DE (1) DE69924371T2 (en)
DK (1) DK1082493T3 (en)
NO (1) NO326100B1 (en)
WO (1) WO2000042253A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8491753B2 (en) * 2004-10-15 2013-07-23 Nalco Company Composition and method for improving retention and drainage in papermaking processes by activating microparticles with a promoter-flocculant system
CN100378163C (en) * 2005-03-19 2008-04-02 徐州市众恒精细化工技术有限公司 High copolymer pulp components for composite inorganic nanoparticles
CN101016359B (en) * 2007-03-06 2010-06-02 山东东方华龙工贸集团有限公司 Method of preparing cationic polyacrylamide aqueous emulsion
FI121545B (en) * 2007-10-18 2010-12-31 Chempolis Oy Method for improving the properties of pulp
BR112018017286B1 (en) 2016-02-26 2022-08-02 Ecolab Usa Inc METHOD TO TREAT A MULTIPLE STRATE PAPER PRODUCTION PROCESS
JP2020147888A (en) * 2019-03-06 2020-09-17 荒川化学工業株式会社 Dispersion for paper manufacturing agent, paper strengthening agent including the dispersion for paper manufacturing agent, freeness improver, and yield improver

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913775A (en) * 1986-01-29 1990-04-03 Allied Colloids Ltd. Production of paper and paper board
US5587415A (en) * 1991-07-30 1996-12-24 Hymo Corporation Process for preparation of dispersion of water-soluble cationic polymer the dispersion produced thereby and its use
CA2102742A1 (en) * 1992-11-10 1994-05-11 Kevin S. Dell Use of dadmac/acrylamide copolymer on newsprint machines
US5266164A (en) * 1992-11-13 1993-11-30 Nalco Chemical Company Papermaking process with improved drainage and retention
EP0760406A3 (en) * 1995-08-24 1997-09-17 Nalco Canada Inc Combination of poly (dadmac/acrylamide) and bentonite for deposition control in papermaking processes
AU3918297A (en) * 1996-09-24 1998-03-26 Nalco Chemical Company Hydrophilic dispersion polymers for paper applications

Also Published As

Publication number Publication date
BR9908576A (en) 2000-11-21
NO20003678L (en) 2000-09-12
DE69924371D1 (en) 2005-04-28
EP1082493B1 (en) 2005-03-23
KR20010040360A (en) 2001-05-15
AU2320899A (en) 2000-08-01
KR100572306B1 (en) 2006-04-24
CN1289380A (en) 2001-03-28
BR9908576B1 (en) 2009-01-13
WO2000042253A1 (en) 2000-07-20
DE69924371T2 (en) 2005-09-15
EP1082493A4 (en) 2002-06-05
CN1189623C (en) 2005-02-16
DK1082493T3 (en) 2005-04-25
AU766846B2 (en) 2003-10-23
EP1082493A1 (en) 2001-03-14
NO20003678D0 (en) 2000-07-18

Similar Documents

Publication Publication Date Title
ES2237082T3 (en) PAPER MANUFACTURING PROCESS USING POLYMERS IN HYDROPHYL DISPERSION OF DIALYL DIMETHYLL CHLORIDE AMMONIUM AND ACRYLAMIDE AS RETAINING AND SCORING ASSISTANTS.
US6071379A (en) Papermaking process utilizing hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide as retention and drainage aids
US5587415A (en) Process for preparation of dispersion of water-soluble cationic polymer the dispersion produced thereby and its use
KR100523680B1 (en) Aqueous dispersion polymers and the processes for producing said polymers
AU592535B2 (en) Water soluble cationic polymer flocculating agent
US6391156B1 (en) Manufacture of paper and paperboard
NO149391B (en) AMPHOTA POLYELECTROLYT, PREPARATION OF IT AND USE OF IT
US6059930A (en) Papermaking process utilizing hydrophilic dispersion polymers of dimethylaminoethyl acrylate methyl chloride quaternary and acrylamide as retention and drainage aids
EP0805234A2 (en) Improved papermaking process
US4104226A (en) Retention aids and flocculants based on polyacrylamides
KR20040022429A (en) Amphoteric water-soluble polymer dispersion and use thereof
US5473033A (en) Water-soluble cationic copolymers and their use as drainage retention aids in papermaking processes
CN100587000C (en) Composition containing amphoteric water-soluble polymer
EP0821704B1 (en) Water-soluble cationic copolymers and their use as flocculants and drainage retention aids
NO326100B1 (en) Process for the preparation of paper using hydrophilic dispersion polymers of diallyldimethylammonium chloride and acrylamide as retention and dewatering agents
WO2007001470A1 (en) Improved retention and drainage in the manufacture of paper
NO324301B1 (en) Hydrophilic dispersion polymers for paper applications
US6019904A (en) Hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide for the clarification of deinking process waters
NO326144B1 (en) Methods for clarification, dewatering, retention and drainage by adding a higher active polymer dispersion
US5720888A (en) Water-soluble cationic copolymers and their use as flocculants
US20230243103A1 (en) Novel water-soluble polymer complexes in the form of an inverse emulsion and uses thereof
AU764315B2 (en) Hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide for the clarification of deinking process waters
MXPA00007792A (en) Papermaking process utilizing hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide as retention and drainage aids
JPH0978488A (en) Improving agent for freeness
TW526306B (en) Papermaking process utilizing hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide as retention and drainage aids

Legal Events

Date Code Title Description
MK1K Patent expired