NO324134B1 - Energy saving heater. - Google Patents

Energy saving heater. Download PDF

Info

Publication number
NO324134B1
NO324134B1 NO20064533A NO20064533A NO324134B1 NO 324134 B1 NO324134 B1 NO 324134B1 NO 20064533 A NO20064533 A NO 20064533A NO 20064533 A NO20064533 A NO 20064533A NO 324134 B1 NO324134 B1 NO 324134B1
Authority
NO
Norway
Prior art keywords
water
nozzles
gas
heating
pump
Prior art date
Application number
NO20064533A
Other languages
Norwegian (no)
Other versions
NO20064533A (en
Inventor
Hans-Olav Ottersen
Original Assignee
Hans-Olav Ottersen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hans-Olav Ottersen filed Critical Hans-Olav Ottersen
Priority to NO20064533A priority Critical patent/NO20064533A/en
Publication of NO324134B1 publication Critical patent/NO324134B1/en
Publication of NO20064533A publication Critical patent/NO20064533A/en
Priority to PCT/NO2007/000352 priority patent/WO2008041862A2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/12Devices or arrangements for circulating water, i.e. devices for removal of polluted water, cleaning baths or for water treatment
    • E04H4/129Systems for heating the water content of swimming pools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H2033/0045Bathing devices for special therapeutic or hygienic purposes with heat-recovery of waste fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0207Characteristics of apparatus not provided for in the preceding codes heated or cooled heated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0214Characteristics of apparatus not provided for in the preceding codes heated or cooled cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0221Mechanism for heating or cooling
    • A61H2201/0242Mechanism for heating or cooling by a fluid circulating in the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0221Mechanism for heating or cooling
    • A61H2201/025Mechanism for heating or cooling by direct air flow on the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/02Characteristics of apparatus not provided for in the preceding codes heated or cooled
    • A61H2201/0221Mechanism for heating or cooling
    • A61H2201/0264Mechanism for heating or cooling using heat exchanger, e.g. between fresh and used fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Til forskjell for en varmepumpe som flytter varmeenergien ved å komprimere/pumpe en gass over til et kammer som veksler varmen videre før den ekspanderer og går tilbake der den var først i sirkulasjon, har denne, i tillegg til dette, to avgjørende konstruksjoner. Etter at det inngående vannet (eller gassen) (1 9) er blitt varmet opp av nevnte veksler, blir den sluppet ut i effektive dyser (21), slik et energien fra trykket i disse går over til turbulens og direkte varmeenergi i vannbassenget (23), eller dersom det er gass, i kammeret (23). Dys'ene.5prer vannstrømmen bedre i bevegelige flater som gir varme.Unlike a heat pump that moves the heat energy by compressing / pumping a gas over to a chamber that exchanges the heat further before it expands and returns to where it was first in circulation, it has, in addition to this, two crucial constructions. After the incoming water (or gas) (19) has been heated by said exchangers, it is discharged into efficient nozzles (21), so that the energy from the pressure in these is transferred to turbulence and direct heat energy in the water basin (23). ), or if there is gas, in the chamber (23). The nozzles.5prepar the water flow better in moving surfaces that provide heat.

Description

Tittel: Title:

Energisparende varmeelement Energy-saving heating element

Beskrivelse, Description,

Det har vært utviklet flere teknologier som varmer opp vann, men ingen har lykkes i affektivt og økonomisk å varme opp sjøvann. I hvert fall ikke fra energien i bølger. Det å varme opp sjøvann til utendørs eller innendørs badeanlegg har ofte strandet pé altfor høye kostnadene ved å varme opp vannet Several technologies have been developed that heat water, but none have succeeded in heating seawater affectively and economically. At least not from the energy in waves. Heating seawater for outdoor or indoor swimming facilities has often resulted in the costs of heating the water being too high

Denne oppfinnelsen er energisparende, og kan brukes til å både varme opp og å rense sjøvann til bruk for badebasseng. Denne teknologien utnytter også den direkte solenergien bedre. This invention is energy-saving, and can be used to both heat and purify seawater for use in swimming pools. This technology also makes better use of the direct solar energy.

Fordi bassengvannet har høy sirkulasjon, ved at det blir pumpet gjennom en større mengde friskt sjøvann, vil bakteriekonsentrasjonen fra badegjestene holde seg lavt. Det vil av den grunn ikke være nødvendig med tilsetning av klor og da blir trivselen og helsen forbedret. Because the pool water has high circulation, by being pumped through a larger amount of fresh seawater, the bacteria concentration from bathers will remain low. For that reason, it will not be necessary to add chlorine, and the well-being and health will then be improved.

Videre kan det settes på ulike slag filtre som tar vekk uønskete partikler og organiske materialer. Furthermore, various types of filters can be fitted to remove unwanted particles and organic materials.

Denne betydelige gjennomstrømningen av friskt sjøvann gjør det også mulig å la vannet passere gjennom kontrollerte og valgte sjøplanter. Dette gir vannet et økt innhold av oksygen og andre rensende kvaliteter som er ekstra bra og helsebringende å bade i. This significant flow of fresh seawater also makes it possible to let the water pass through controlled and selected sea plants. This gives the water an increased content of oxygen and other purifying qualities that are extra good and healthy to bathe in.

Denne oppfinnelsen gir høy effekt i oppvarmingen av vannet fordi den kombinerer følgende tré teknikker.: 1. Trykket i vannet fra bølgekonvertor eller pumpe (3) overfører denne energien direkte til vannet i bassenget (23) ved at dette vannet går ut gjennom dyser (21) som lager turbulens som ved sin friksjon omformer denne energien til termisk energi (varme). 2. Termisk energi fra det utgående vannet (5-18) blir flyttet over til det inngående vannet (4-19) 3. Varmeveksleren, som flytter energien nevnt i punkt 2, erstatter ekspansjonsdysen (som vanligvis befinner seg i varmevekslere), med hydraulisk motor eller pumpe (11), Denne pumpen er vist detaljert i fig 2. Energitap fra turbulens ved ekspansjon blir derfor bortimot fjernet (ved at turbulens blir minimal) og denne energien går isteden This invention provides a high effect in heating the water because it combines the following three techniques: 1. The pressure in the water from the wave converter or pump (3) transfers this energy directly to the water in the pool (23) by this water going out through nozzles (21 ) which creates turbulence which, through its friction, transforms this energy into thermal energy (heat). 2. Thermal energy from the outgoing water (5-18) is transferred to the incoming water (4-19) 3. The heat exchanger, which moves the energy mentioned in point 2, replaces the expansion nozzle (which is usually located in heat exchangers), with hydraulic motor or pump (11), This pump is shown in detail in fig 2. Energy loss from turbulence during expansion is therefore virtually removed (by turbulence becoming minimal) and this energy goes instead

I IN

til denne hydrauliske motoren eller pumpen (11) som bruker denne energi til å drive kompressor (eller pumpe) (17) av det samme fluid. to this hydraulic motor or pump (11) which uses this energy to drive the compressor (or pump) (17) of the same fluid.

Dette gir også større nedkjøling av det utgående vannet (5) og denne varmeenergien kommer til slutt i bassenget (23). This also results in a greater cooling of the outgoing water (5) and this heat energy ends up in the pool (23).

Dette gir energisparing som gir vesentlig høyere effekt på oppvarming av det ferdige produktet, nemlig badevannet. This provides energy savings that give a significantly higher effect on heating the finished product, namely the bath water.

Dersom bassenget (23) ligger høyere enn havet (1), vil det utgående vannet (18-5) overføre potensiell energi til det inngående vannet ved hjelp av turbiner og pumpe (6-9), slik at det vannet som renner ut pumper opp igjen det friske vannet. Dersom bassenget ikke ligger høyere enn havet, vii det motsatte skje, det inngående friske vannet vil bruke noe av sin energi (fra trykket) tii å pumpe ut det brukte vannet fra bassenget. If the pool (23) is higher than the sea (1), the outgoing water (18-5) will transfer potential energy to the incoming water with the help of turbines and pump (6-9), so that the water that flows out pumps up again the fresh water. If the pool is not higher than the sea, the opposite happens, the incoming fresh water will use some of its energy (from the pressure) to pump out the used water from the pool.

Her følger en detaljert beskrivelse: Here follows a detailed description:

Fra sjøen eller havet (1) gjennom filter (2) pumper en bølgekonvertor (3), eller en pumpe (3), friskt sjøvann inn gjennom et rør (4). Denne bølgekonvertoren eller From the lake or sea (1) through filter (2), a wave converter (3), or a pump (3), pumps fresh seawater in through a pipe (4). This wave converter or

pumpen (3) er energikilden i dette systemet. the pump (3) is the energy source in this system.

Vannet går gjennom en hydraulisk motor/turbin (9), gjennom en varmeveksler (13-16), hvor dette vannet blir varmet opp, og videre gjennom regulerbare kraner/spjeld The water goes through a hydraulic motor/turbine (9), through a heat exchanger (13-16), where this water is heated, and further through adjustable taps/dampers

(20) og ut gjennom dyser (21) hvor det blir varmet opp for annen gang ved at det ved (20) and out through nozzles (21) where it is heated a second time by the wood

sin turbulens blandes til bassengvannet (23). Energien fra trykket i væsken (eller its turbulence is mixed with the pool water (23). The energy from the pressure in the liquid (or

dersom det er gass) går over til varmeenergi mens turbulensen forsvinner i bassenget. if there is gas) turns into heat energy while the turbulence disappears in the pool.

De regulerbare kranene/spjeld (20) styrer både hastigheten på vanngjennomstrømningen i bassenget (23) og temperaturen i dette vannet. Temperaturen blir styrt ved å regulere vannstrømmen gjennom ulike antall og tverrsnittet (tykkelsen) på fluidstrømmen. The adjustable taps/dampers (20) control both the speed of the water flow in the pool (23) and the temperature of this water. The temperature is controlled by regulating the water flow through different numbers and the cross-section (thickness) of the fluid flow.

Disse dysene er laget siik at de ved hjelp av rekylen på vannstrålen snur retningen på vannstrålen vekselvis frem og tifbake rundt to akser (40). Hensikten med dette er å spre den nevnte turbulens over et størst mulig vannvolum for derved la omtrent all kinetisk energi bli transformert til termisk energi. Ved å spre både plasseringen og retningen på denne vannstrålen, vil det bli gitt mer turbulens, større friksjon og høyere oppvarmingseffekt. These nozzles are designed so that, with the help of the recoil of the water jet, they turn the direction of the water jet alternately forwards and backwards around two axes (40). The purpose of this is to spread the aforementioned turbulence over the largest possible volume of water, thereby allowing almost all kinetic energy to be transformed into thermal energy. By spreading both the location and the direction of this water jet, more turbulence, greater friction and a higher heating effect will be provided.

Ved at vannstrømmen forandrer posisjon vil den treffe vannpartikler med lavere hastighet, og dermed øke friksjonen. As the water flow changes position, it will hit water particles at a lower speed, thereby increasing friction.

Her følger beskrivelse av ulike dyser med spredere, både med kjegleform og med flat vannstrøm som spres. Here follows a description of various nozzles with spreaders, both with a cone shape and with a flat water stream that spreads.

Dysene er laget med et kjegleformet spjeld (35) som er plassert i åpningen av dysen (37). En servokontroll (38) regulerer tverrsnittet (tykkelsen) på vannstrømmen som The nozzles are made with a cone-shaped damper (35) which is placed in the opening of the nozzle (37). A servo control (38) regulates the cross-section (thickness) of the water flow which

den kjegleformete vannstrålen danner. the cone-shaped water jet forms.

Dysen er på aksen kneppet slik at den stiller seg i 45 grader vinkel enten til høyre eller venstre. Stangen (44) mellom denne og den faste delen (46) svinger også 45 grader hver vei før den stopper mot festet. Når den gjør dette, slynges den ytre delen med dysen, på grunn av sin trege masse, videre over til motsatt side som før. The nozzle is buttoned on the axis so that it stands at a 45 degree angle either to the right or to the left. The rod (44) between this and the fixed part (46) also swings 45 degrees each way before it stops against the attachment. When it does this, the outer part with the nozzle, due to its inertial mass, is thrown further over to the opposite side as before.

Figur 4 viser skjematisk denne bevegelsen, og figur 3 viser detaljene i denne. Figure 4 schematically shows this movement, and Figure 3 shows the details of this.

Alternativt kan disse dysene lages på flere andre måter; de kan være faste, de kan rotere eller spres i vifteform ved hjelp av ulike konstruksjoner. Alternatively, these nozzles can be made in several other ways; they can be fixed, they can rotate or spread in a fan shape using various constructions.

En av disse alternative løsningene er å sette to dyser på en vippende stang, som når den svinger mot hver av endeflatene på delen, skyver en ventil som styrer vannstrålen vekselvis til hver av de to dysene. Rekylen vil da skyve dysene frem og tilbake. Videre blant alternativene kan det brukes en enkel dyse mens en fjær trekker stangen tilbake. One of these alternative solutions is to put two nozzles on a tilting rod, which, as it swings towards each of the end surfaces of the part, pushes a valve that directs the water jet alternately to each of the two nozzles. The recoil will then push the nozzles back and forth. Furthermore, among the options, a simple nozzle can be used while a spring pulls the rod back.

Neste alternativ er å la flere ledd kobles sammen, med en glassfiberstang montert langs med stengene, (44) som stabiliserer dem. Da vil rekylen skape en oscillerende bevegelse som sprer dysen i flere retninger. Dersom disse leddene har akser som ligger i ulike plan, vil dysen spres i flere plan, altså en 3D spredning. The next option is to have several links connected together, with a fiberglass rod fitted along the rods, (44) which stabilizes them. The recoil will then create an oscillating movement that spreads the nozzle in several directions. If these joints have axes that lie in different planes, the nozzle will spread in several planes, i.e. a 3D spread.

Det enkleste alternativet er å kun bruke en enkel elastisk glassfiberstang med en dyse plassert ytterst. Ved å plassere dysen litt på skrå vil osckilleringen starte av seg selv. The simplest option is to use only a simple elastic fiberglass rod with a nozzle located at the end. By placing the nozzle slightly at an angle, the oscillating will start by itself.

i steden for å lage dysene med rund spiss som sprer vannet ut i kjegleform, kan de lages flate (fig.6, 7 og 8) og settes i rotasjon.. instead of making the nozzles with a round tip that spreads the water out in a cone shape, they can be made flat (fig.6, 7 and 8) and set in rotation..

Sprederen er laget slik at mellom to deler (49) er en sparte, mellom to flater(48), som skaper en plan vannstrøm på skrå utover. Siden disse to sammenskrudde delene kan rotere fritt om aksen/vannrøret (51)plassert midt inni disse, og at planet av denne vannstrømmen går utenom denne aksen, altså på skrå, vil rekylen fra vannstrømmen skape rotasjon rundt nevnte akse. The spreader is made so that between two parts (49) there is a spar, between two surfaces (48), which creates a level flow of water at an angle outwards. Since these two screwed together parts can rotate freely about the axis/water pipe (51) located in the middle of these, and that the plane of this water flow goes outside this axis, i.e. at an angle, the recoil from the water flow will create rotation around said axis.

TyKKelsen på denne flate vannstrømmen kan varieres ved å regulere skruene som går gjennom boringene (50) og som holder sammen de to halvdelene av denne vannsprederen. Dette kan fjernstyres ved servomekanikk. The thickness of this flat stream of water can be varied by adjusting the screws that go through the bores (50) and that hold together the two halves of this water spreader. This can be remotely controlled by servomechanics.

Denne gir en spesiell god spredning av høytrykksvannet over til et større vannvolum. Derfor blir oppvarmingen mer effektiv. This provides a particularly good dispersion of the high-pressure water over a larger volume of water. Therefore, the heating becomes more efficient.

Fig.6 viser viser den ene halvdelen av sprederen ifra siden. Fig.6 shows one half of the spreader from the side.

Fig.7 viser sprederen ovenifra, og fig.8 på skrå. Fig.7 shows the spreader from above, and Fig.8 at an angle.

Alle vanndysene kan skjennes mot badegjester og annet som mindre partikler ved å plassere dysene i et vannkammer som har en litt høyere vanntrykk enn resten av bassenget All the water nozzles can be directed at bathers and other small particles by placing the nozzles in a water chamber that has a slightly higher water pressure than the rest of the pool

Det kan gjøres ved å la vannet stige med et nivå, noen få centimeter høyere opp før det slippes videre ut. Vannet kan varmes opp nedenrfra bunnen. This can be done by letting the water rise by a level, a few centimeters higher up before it is released further. The water can be heated from below.

Noe av energien fra trykket i vannet i røret (4), kan bli absorbert av en hydraulisk motor (9) eller en turbin (9) som videre driver varmeveksler. Resten av denne nevnte energien blir, ved at vannet går ut av dysene (21) og danner turbulens i bassenget (23), omgjort til termisk energi. Slik blir vannet varmet opp. Some of the energy from the pressure in the water in the pipe (4) can be absorbed by a hydraulic motor (9) or a turbine (9) which further drives the heat exchanger. The rest of this aforementioned energy is, by the water exiting the nozzles (21) and forming turbulence in the pool (23), converted into thermal energy. This is how the water is heated.

Denne nevnte hydrauliske motoren (9) kan eventuelt få tilført energi til det inngående vannet dersom energien fra den hydrauliske motoren (6) på det utgående vannet er sterk nok ved at fallhøyden fra bassenget ned til sjøen (1) er tilstrekkelig. This mentioned hydraulic motor (9) can optionally have energy added to the incoming water if the energy from the hydraulic motor (6) on the outgoing water is strong enough in that the drop height from the pool down to the sea (1) is sufficient.

De nevnte hydrauliske motorene (6) og (9) er mekanisk forbundet med en akse (8). På denne aksen (8) er koblet en giroverf øring (7) som er koblet til aksene (10) og (12) som er forbundet med en kompressor/pumpe (17) og hydraulisk motor (11) Aksen (10) får tilført energi enten fra turbin eller pumpe (6) på det utgående vannet The mentioned hydraulic motors (6) and (9) are mechanically connected by an axis (8). A gear transfer ring (7) is connected to this axis (8) which is connected to the axes (10) and (12) which are connected to a compressor/pump (17) and hydraulic motor (11). The axis (10) receives energy either from turbine or pump (6) on the outgoing water

(5), eller pumpen eller turbinen (9) på det inngående vannet, eller begge deler. (5), or the pump or turbine (9) on the incoming water, or both.

Den hydrauliske motoren (11) får energi fra den komprimerte gassen (16) og sender denne energien mekaniske gjennom aksen (12) til nevnte kompressor eller pumpe (17). The hydraulic motor (11) receives energy from the compressed gas (16) and sends this mechanical energy through the axis (12) to said compressor or pump (17).

Denne hydrauliske motoren (11), som får energi fra den komprimerte gassen (16), består av stempler (28) i sylindere (27) som blir drevet frem av at denne gassen og ekspanderer inne i disse sylindrene. Derfor blir det blir minimal eller Ingen turbulens This hydraulic motor (11), which receives energy from the compressed gas (16), consists of pistons (28) in cylinders (27) which are driven forward by this gas expanding inside these cylinders. Therefore there will be minimal or no turbulence

med tilhørende energitap når denne gassen ekspanderer. Energien blir absorbert og sendt mekanisk gjennom aksen (12) til kompressoren eller pumpen (17) with associated energy loss when this gas expands. The energy is absorbed and sent mechanically through the shaft (12) to the compressor or pump (17)

Av dette ser vi at kompressoren / pumpen (17) får energi både fra den hydrauliske motoren (11), som ekspanderer den samme sirkulerende gassen, og aksen (10), som får energien fra vannsirkulasjonen gjennom begge hydrauliske motorer eller pumper (9) og (11). From this we see that the compressor / pump (17) gets energy both from the hydraulic motor (11), which expands the same circulating gas, and the axis (10), which gets the energy from the water circulation through both hydraulic motors or pumps (9) and (11).

Varmeenergien fra det utgående vannet fra rør (18) vil, når det strømmer gjennom rør /plater (14), varme opp den ekspanderte gassen i kammer (15). Vannet (14) og gassen (15) beveger seg i motsatt retning for å utveksle varmen effektivt. The heat energy from the outgoing water from pipe (18) will, when it flows through pipe/plates (14), heat up the expanded gas in chamber (15). The water (14) and the gas (15) move in the opposite direction to exchange the heat efficiently.

Den oppvarmets gassen komprimeres i kompressor eller pumpe (17) ved at den pumpes fra lavtrykkskammer (15) til høytrykkskammer (16). The heated gas is compressed in a compressor or pump (17) by pumping it from a low-pressure chamber (15) to a high-pressure chamber (16).

Varmeenergien blir videre overført fra den komprimerte gassen (16), mens det strømmer gjennom rør eller plater (13) i motsatt retning som det inngående vannet, til dette vannet (13), slik at vannet blir varmet maksimalt opp. The heat energy is further transferred from the compressed gas (16), while it flows through pipes or plates (13) in the opposite direction to the incoming water, to this water (13), so that the water is maximally heated.

Temperaturen i bassengvannet (23) kan reguleres både på nevnte måte ved å regulere kranene/ spjeldene (20), og ved å regulere utvekslingen på giret (7) som da styrer rotasjonshastigheten på kompressoren (17). The temperature in the pool water (23) can be regulated both in the aforementioned way by regulating the taps/dampers (20), and by regulating the ratio on the gear (7) which then controls the rotational speed of the compressor (17).

Figur 2 viser detaljert tegning av pumpene/ kompressor/ hydraulisk motor, som i figur 1 viser plasseringene i hele varmeelementet med nr. (6 - 9 -11 -17) Figure 2 shows a detailed drawing of the pumps/compressor/hydraulic motor, which in Figure 1 shows the locations in the entire heating element with no. (6 - 9 -11 -17)

Tegningen her viser bare øverste del av dette huset (24) som denne pumpen er bygget inni. Det er kun de to foringene/ lagrene (30-33) som forbinder sylinderen med huset (24) The drawing here only shows the upper part of this housing (24) which this pump is built inside. Only the two bushings/bearings (30-33) connect the cylinder to the housing (24)

De to boringene (25) på toppen av huset, er koblet slik at The two bores (25) at the top of the housing are connected so that

sylinderkammeret er koblet til den ene boringen når stempelet går opp, og det andre når det går ned. Både sylinder (28) og stempel (29) roterer om sylinderaksen (30); og virker som ventilstyring ved å vekselvis åpne og stenge for en av disse to boringene (25). Når den ene er stengt er den andre åpen. the cylinder chamber is connected to one bore when the piston goes up, and the other when it goes down. Both cylinder (28) and piston (29) rotate about the cylinder axis (30); and acts as valve control by alternately opening and closing one of these two bores (25). When one is closed, the other is open.

Når denne skal pumpe gass, virker trykkventilen (26) slik at den åpner når trykket fra sylinderen er tilstrekkelig. When this is to pump gas, the pressure valve (26) works so that it opens when the pressure from the cylinder is sufficient.

Når den skal absorbere energien fra gass, med andre ord når gassen skal drive akselen, slepper ventilen (26) inn et begrenset volum gass. Dette styres fra veivakselen; slik at den er åpen i en ønsket vinkel fra toppunktet og ned et stykke. På resten av bevegelsen fra dette punktet av rotasjonen og ned ekspanderer gassen. Slik blir turbulens og energitap minsket. When it is to absorb the energy from gas, in other words when the gas is to drive the shaft, the valve (26) lets in a limited volume of gas. This is controlled from the crankshaft; so that it is open at a desired angle from the top point down a distance. On the rest of the movement from this point of rotation down, the gas expands. This reduces turbulence and energy loss.

Det kan monteres flere sylindere på samme veivaksel (32). Several cylinders can be mounted on the same crankshaft (32).

Pumpe/hydraulisk motor (6 og 9) på figt. bruker ikke ventil (16). Her er de to boringene (25) for inngående og utgående vann like, uten ventil. Pump/hydraulic motor (6 and 9) in fig. does not use valve (16). Here, the two bores (25) for incoming and outgoing water are the same, without a valve.

På grunn av denne konstruksjonen kan energien flytte seg begge veier mellom fluidstrømmen og veivakselen, ved at, enten veivakselen pumper fluid, eller, fluidstrømmen driver veivakselen. Videre kan også retningen på disse bevegelsene gå begge veier, slik at når veivakselen snur rotasjonen, så vil fluidstrømmen snu i motsatt retning som før. Det samme gjelder når den styrende fluidsretningen snur. Veivakselen kan også bremse og stenge fluidstrømmen, og tilsvarende, fluidstrømmen kan bremse og stenge veivakselens rotasjon. Because of this construction, energy can move both ways between the fluid flow and the crankshaft, in that either the crankshaft pumps fluid, or the fluid flow drives the crankshaft. Furthermore, the direction of these movements can also go both ways, so that when the crankshaft reverses its rotation, the fluid flow will turn in the opposite direction as before. The same applies when the controlling fluid direction reverses. The crankshaft can also slow down and shut off the fluid flow, and correspondingly, the fluid flow can slow down and shut down the rotation of the crankshaft.

Avslutningsvis oppsummeres, punktvis (A-B-C-D), energiens bevegelse fra energikilden (3) til bassengvannet (23) som får temperaturøkning. A) . Varmevekslerens kompressor eller pumpe (17) får energi fra bølgekonvertoren eller pumpen (3); gjennom aksene (10 - 12) og hydraulisk motor (9), B) . Varmevekslerens kompressor/ pumpe (17) får tilbake en del av energien fra hydraulisk motor (11) C) Dysene (21) får sin energi fra bølgemotoren eller pumpen (3), og omformer denne energien til varme i bassenget (23) D) De to hydrauliske motorene eller turbinene (6) og (9) vil til sammen forflytte energi fra nevnte energikilde (3), via gir (7), til kompressor (17). Det er høydeforholdet mellom bassenget og sjøen, som bestemmer hvilken av disse to som skyver mot giret (7). Dette gjør et denne høydeforskjellen ikke utgjør noe fra eller til for effekten for oppvarmingen. Finally, point by point (A-B-C-D), the movement of the energy from the energy source (3) to the pool water (23) is summarized, which increases in temperature. A). The heat exchanger's compressor or pump (17) receives energy from the wave converter or pump (3); through the axes (10 - 12) and hydraulic motor (9), B) . The heat exchanger's compressor/pump (17) gets back part of the energy from the hydraulic motor (11) C) The nozzles (21) get their energy from the wave motor or the pump (3), and transform this energy into heat in the pool (23) D) They two hydraulic motors or turbines (6) and (9) will together transfer energy from said energy source (3), via gear (7), to compressor (17). It is the height ratio between the pool and the sea, which determines which of these two pushes against the gear (7). This means that this difference in height does not make any difference to the heating effect.

Nummerhenvisnfng til figur 1: Number reference to Figure 1:

1. Sjø eller hav. 1. Sea or ocean.

2. Filter 2. Filter

3. Bølgekonvertor elier pumpe. 3. Wave converter and pump.

4. Rør for innstrømmende vann 4. Pipe for inflowing water

5. Rør for utstrømmende vann. 5. Pipe for outflowing water.

6. Turbin / hydraulisk motor. 6. Turbine / hydraulic motor.

7. Gir. 7. Gears.

8. Akse. 8. Axis.

9. Turbin / hydraulisk motor. 9. Turbine / hydraulic motor.

10. Akse. 10. Axis.

11. Hydraulisk motor. 11. Hydraulic motor.

12. Akse. 12. Axis.

13. Rør eller plater som det inngående vannet strømmer gjennom. 14. Rør eller plater som det utgående vannet strømmer gjennom. 13. Pipes or plates through which the incoming water flows. 14. Pipes or plates through which the outgoing water flows.

15. Ekspandert gass (i lavt trykk). 15. Expanded gas (in low pressure).

16. Komprimert gass (i høyt trykk.) 16. Compressed gas (in high pressure.)

17. Kompressor/pumpe. 17. Compressor/pump.

18. Utstrømmende vann. 18. Flowing water.

19. Innstrømmende oppvarmet vann. 19. Inflowing heated water.

20. Kraner / spjeld 20. Taps / dampers

21. Dyser. 21. Nozzles.

22. Filter. 22. Filters.

23. Basseng med vann. 23. Pool with water.

Figur 2 Figure 2

Viser detaljert pumpe/ hydraulisk motor, figur 1 viser plassering på nr.6- 9- 11-17: Shows detailed pump/hydraulic motor, figure 1 shows location on no.6-9-11-17:

24. Pumpehus. 24. Pump house.

25. Boringer som leder fluid gjennom sylinderen (27) 25. Bores that guide fluid through the cylinder (27)

26. Ventil 26. Valve

27. Boring i sylinder. 27. Bore in cylinder.

28. Sylinder. 28. Cylinder.

29. Stempel 29. Stamp

30. To akser som er festet utenpå, en på hver side av, sylinderen (28) 30. Two axles attached to the outside, one on each side of the cylinder (28)

31. Foringer /lagre, omslutter Aksene (29), og er festet til huset (24). 31. Bushings/bearings, enclose the Axes (29), and are attached to the housing (24).

32. Stempelstang. 32. Piston rod.

33. Veivaksel. 33. Crankshaft.

34. Foring/ lager, er forbundet til huset (24) og omslutter akse (30), 34. Lining/bearing, is connected to the housing (24) and encloses the axis (30),

Figur 3 Dyse med spredningsmekanikk Figure 3 Nozzle with spreading mechanism

35. Regulerbar kjegleformet del som styrer vannstrømmen 35. Adjustable cone-shaped part that controls the water flow

36. Dyse 36. Nozzle

37. Vannrør 37. Water pipe

38. Servoregulator for 35 38. Servo regulator for 35

39. Feste 39. Partying

40. Aksler 40. Axles

41. Flater som ligger an mot 42 41. Surfaces adjacent to 42

42. Plate 42. Plate

43. Rør, som omslutter stang 44 43. Tube, which encloses rod 44

44. Stang festet til akslene 40 44. Rod attached to the axles 40

45. Fjær 45. Feather

46. Feste. 46. Fasting.

Figur 4. Bokstavene^A-fl-C-Ø-É-F- viser ulike tidspunkt i denne delens bevegelse. Figure 4. The letters ^A-fl-C-Ø-É-F- show different times in this part's movement.

A. Samme posisjon som på tegningen over. Rekylen fra vannstrålen skyver mekanikken i rotasjon mot høyre A. Same position as in the drawing above. The recoil from the water jet pushes the mechanism in rotation to the right

B. Bevegelsen fortsetter B. Motion continues

C. Stangen stopper mot festet (46) og dyser tipper over mot høyre. C. The rod stops against the attachment (46) and nozzles tip over to the right.

D. Dysen er tippet over og starter å skyve tilbake. D. The nozzle is tipped over and starts to push back.

E. Bevegelsen fortsetter E. The movement continues

F Stangen blir stoppet mot festet (46) og dyser tipper over der den var først. F The rod is stopped against the attachment (46) and the nozzles tip over where they were first.

Fig.5 viser den samme dysen som er vist på fig 3 og 4, men her er den festet med glassfiberstang. Fig.5 shows the same nozzle as shown in figs 3 and 4, but here it is attached with a fiberglass rod.

47. Elastisk (glassfiber) stang. 47. Elastic (glass fiber) rod.

Fig. 6 -7- 8. Roterende dyse med flat vannstrøm. Fig. 6 -7- 8. Rotating nozzle with flat water flow.

48. Skrå dyseflater 48. Inclined nozzle surfaces

49. To halvdeler som passer sammen 49. Two halves that fit together

50. Tre boringer for å sette sammen 49 50. Three bores to assemble 49

51. Vannrør og akse. 51. Water pipe and axis.

Claims (1)

Patentkrav 1. Varmeelement for oppvarming av fluid karakterisert ved en hydraulisk motor (11) blir drevet av ekspanderende gass (15-16), som sammen med bølgekonvertor (3), pumpe (3) eller annen energikilde, driver kompressor / pumpe (17) til å komprimere den samme nevnte sirkulerende gassen (16) som omslutter og avgir varme til inngående fluid (19) gjennom varmeledende rør eller plater (13) slik at det oppvarmede fluidet (19) strømmer tii basseng eller kammer (23) og derfra strømmer ut gjennom varmeledende rør eller plater (14), som avgir varme til nevnte ekspanderte gass, og lar fluidet derfra i nedkjølt tilstand strømme vekk i rør (5). Patentkrav 2. Varmeelement for oppvarming av væske i f ø I g e krav 1 karakterisert ved dyser (21), som sprer væsken (19) med overtrykk ut i et større basseng (23) derfra et utgående rør (18), leder væsken (18) gjennom rør eller plater (14) der det kjøles ned av en ekspandert omsluttende gass(15) ved at denne gass komprimeres og ledes til et kammer(16) som omslutter rør eller plater (13) som omslutter og varmer opp nevnte væske (19) før den går til nevnte dyser (21). Patentkrav 3. Varmeelement for oppvarming av lfuid i f ø I g e krav 1-2 karakterisert ved dyser bestående av roterende elementer (49) med flate plane spalter (48) som skyver fluidet på skrå ut i flater. Patentkrav 4. Varmeelement for oppvarming av lfuid ifø lg e krav 1-2 karakterisert ved dyser som er festet i elastiske stenger (47). Patentkrav 5. Varmeelement for oppvarming av fluid ifø lg e krav 1-2 karakterisert ved dyser som er festet i bevegelige i ledd (40) mellom stenger (44). Patentkrav 6. Varmeelement for oppvarming av fluid ifølge krav 1-2 karakterisert ved en hydraulisk motor eller pumpe som lar sylinderen sin (27) og tilhørende stempel (28) rotere om en akse (29) som er plassert utenpå sylinderen (27) ved at denne aksen (29) gjennom lager eller foring (33) er festet i huset (24), slik at nevnte rotasjon, styrt av veivakselen (32), vekselvis kobler dysen (26) på sylinderen, sammen med enten inngående eller utgående dyse (25) festet på huset (24). Patentkrav 7. Varmeelement for oppvarming av fluid i f ø I g e krav 1 -2 karakterisert ved en sylinderpumpe med ventil som åpner inngående komprimerte gass i en posisjon når vervakselens rotasjon er i en vinkelsektor mindre enn 180 grader.Patent claim 1. Heating element for heating fluid characterized by a hydraulic motor (11) is driven by expanding gas (15-16), which together with wave converter (3), pump (3) or other energy source, drives compressor / pump (17) to compress the same mentioned circulating gas (16) which encloses and emits heat to incoming fluid (19) through heat-conducting tubes or plates (13) so that the heated fluid (19) flows into a pool or chamber (23) and from there flows out through heat-conducting pipes or plates (14), which emit heat to said expanded gas, and allow the fluid from there in a cooled state to flow away in pipe (5). Patent claim 2. Heating element for heating liquid in claim 1 characterized by nozzles (21), which spread the liquid (19) with excess pressure into a larger pool (23), from there an outgoing pipe (18), leads the liquid (18) through pipes or plates (14) where it is cooled by an expanded surrounding gas (15) by this gas being compressed and led to a chamber (16) which encloses pipes or plates (13) which encloses and heats said liquid (19) before it goes to said nozzles (21). Patent claim 3. Heating element for heating fluid in claims 1-2 characterized by nozzles consisting of rotating elements (49) with flat planar slits (48) which push the fluid obliquely out into surfaces. Patent claim 4. Heating element for heating liquid according to claims 1-2 characterized by nozzles which are fixed in elastic rods (47). Patent claim 5. Heating element for heating fluid according to claims 1-2 characterized by nozzles which are fixed in movable joints (40) between rods (44). Patent claim 6. Heating element for heating fluid according to claims 1-2 characterized by a hydraulic motor or pump which allows its cylinder (27) and associated piston (28) to rotate about an axis (29) which is placed outside the cylinder (27) by this axis (29) through a bearing or liner (33) is fixed in the housing (24), so that said rotation, controlled by the crankshaft (32), alternately connects the nozzle (26) on the cylinder, together with either the inlet or outlet nozzle (25 ) attached to the housing (24). Patent claim 7. Heating element for heating fluid in claims 1 -2 characterized by a cylinder pump with a valve which opens incoming compressed gas in a position when the rotation of the vershaft is in an angular sector less than 180 degrees.
NO20064533A 2006-10-05 2006-10-05 Energy-saving heating element. NO20064533A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20064533A NO20064533A (en) 2006-10-05 2006-10-05 Energy-saving heating element.
PCT/NO2007/000352 WO2008041862A2 (en) 2006-10-05 2007-10-05 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20064533A NO20064533A (en) 2006-10-05 2006-10-05 Energy-saving heating element.

Publications (2)

Publication Number Publication Date
NO324134B1 true NO324134B1 (en) 2007-09-03
NO20064533A NO20064533A (en) 2007-09-03

Family

ID=38515342

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20064533A NO20064533A (en) 2006-10-05 2006-10-05 Energy-saving heating element.

Country Status (2)

Country Link
NO (1) NO20064533A (en)
WO (1) WO2008041862A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476274B (en) * 2009-12-17 2012-08-01 Aquamarine Power Ltd A heating or cooling system and method
WO2017143068A1 (en) * 2016-02-16 2017-08-24 Hyperloop Technologies, Inc. Corrosion-resistant fluid membrane

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH201559A (en) * 1936-11-05 1938-12-15 Bbc Brown Boveri & Cie Method and device for regulating gas or air heat pump systems that work on the principle of compression-heat release-expansion-heat absorption.
CH232847A (en) * 1942-12-18 1944-06-30 Bbc Brown Boveri & Cie Heat pump system.
FR2420103A1 (en) * 1978-03-16 1979-10-12 Commissariat Energie Atomique Heating or refrigerating system - has water turbine driving refrigerating compressor with evaporator designed as indirect heat exchanger
GB2153440A (en) * 1983-04-25 1985-08-21 Roger Stuart Brierley Heat regeneration in turbo generator condensation
JPS60246974A (en) * 1984-05-18 1985-12-06 日産車体株式会社 Back door stay
JPS61107063A (en) * 1984-10-29 1986-05-24 株式会社島津製作所 Wave-force heat converter
WO1996016270A1 (en) * 1994-11-18 1996-05-30 Vera Gamini Samarasinghe Wave energy machine
DE102004033061A1 (en) * 2004-07-08 2006-02-09 Eilers, Helmut A method to utilise the pressure energy of a conventional refrigeration circuit has a piston pump and two shut-off valves replacing the expansion valve
WO2006078215A1 (en) * 2005-01-21 2006-07-27 Mecmaster Ab A plant for production of hot water

Also Published As

Publication number Publication date
WO2008041862A3 (en) 2008-06-19
NO20064533A (en) 2007-09-03
WO2008041862A2 (en) 2008-04-10

Similar Documents

Publication Publication Date Title
AU753000B2 (en) Method and device for entropy transfer with a thermodynamic cyclic process
JP5126349B2 (en) Solar panel drive system and hot water supply system
US5685147A (en) Buoyancy and thermal differentials energy generator
JP6306505B2 (en) Floating wave energy converter with control device
JPS5958170A (en) Apparatus and method for power generation due to wind force
JP2001508147A (en) Thermo-hydraulic engine
US8800280B2 (en) Generator
NO331747B1 (en) Thermodynamic cycle and heating machine
US4376435A (en) Solar powered air conditioning system
NO324134B1 (en) Energy saving heater.
CN105320194B (en) A kind of ocean micro-ecological environment boiler-plate
US7021900B2 (en) Vapor-powered kinetic pump
US4388805A (en) Power plants deriving their energy from expansion and contraction
US9540963B2 (en) Generator
CN103133235B (en) Coriolis scroll fluid pressure conversion fluid energy water pump
CN201170663Y (en) Rapid open type solar water heater capable of automatically filling water and emptying pipe
CN107314537A (en) A kind of ship hot water tank heating system and its application method
CN220600470U (en) Special tuber pipe valve controlling means of unrestrained equipment of making
DE19742677A1 (en) Entropy transformation method using solar or thermal energy
RU2763637C1 (en) Hot water heating system with hydromechanical drive of the heat pump
CN210602322U (en) Seawater source triple co-generation device
RU42633U1 (en) HEAT GENERATOR
RU2364798C2 (en) Heat supply and/or hot water supply system of complex consumer and heat supply and/or hot water supply system of building, facility
RU183405U1 (en) Heater
CN101978134A (en) Fluid pump for heat engine, heat engine, thermal system and method