NO320903B1 - Procedure for limiting the grid connection current of a wind turbine generator - Google Patents

Procedure for limiting the grid connection current of a wind turbine generator Download PDF

Info

Publication number
NO320903B1
NO320903B1 NO20004889A NO20004889A NO320903B1 NO 320903 B1 NO320903 B1 NO 320903B1 NO 20004889 A NO20004889 A NO 20004889A NO 20004889 A NO20004889 A NO 20004889A NO 320903 B1 NO320903 B1 NO 320903B1
Authority
NO
Norway
Prior art keywords
grid
generator
load
power
connection
Prior art date
Application number
NO20004889A
Other languages
Norwegian (no)
Other versions
NO20004889D0 (en
NO20004889L (en
Inventor
Carsten Henriksen
Original Assignee
Mita Teknik As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Teknik As filed Critical Mita Teknik As
Publication of NO20004889D0 publication Critical patent/NO20004889D0/en
Publication of NO20004889L publication Critical patent/NO20004889L/en
Publication of NO320903B1 publication Critical patent/NO320903B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Description

Framgangsmåte for å begrense nettilknytningsstrømmen for en vindturbin-generator Method for limiting the grid connection current for a wind turbine generator

Oppfinnelsen omfatter en framgangsmåte for å begrense netttilknytningsstrømmen og overskuddseffekten av en vindturbin e.l. elektrisitetsgenererende system for bruk av fornybar energi, som angitt i innledningen til patentkrav 1. The invention includes a procedure for limiting the grid connection current and the surplus effect of a wind turbine or the like. electricity generating system for the use of renewable energy, as stated in the introduction to patent claim 1.

Bakgrunn Background

Når en induksjonsmotor drives over synkron hastighet virker den som en elektrisk generator som omdanner den tilførte mekaniske effekten på akselen til elektrisk effekt. Dersom motoren - nå en induksjonsgenerator - er koblet til et vekselstrømsnett, vil strømmen som genereres bli opptatt av nettet. Dette brukes f.eks. i moderne vindturbiner o.l. energisystemer for å utnytte fornybare energikilder. Induksjonsmotorene som brukes som generatorer blir utviklet for dette formålet. When an induction motor is operated above synchronous speed, it acts as an electrical generator that converts the supplied mechanical power on the shaft into electrical power. If the motor - now an induction generator - is connected to an alternating current network, the current generated will be absorbed by the network. This is used e.g. in modern wind turbines etc. energy systems to utilize renewable energy sources. The induction motors used as generators are developed for this purpose.

Den elektriske effekten som utvikles av en vindturbin varierer pga. av vindens varierende og ustabile natur. Tilkoplingen til nettet skaper store tekniske vanskeligheter, forbindelsen finner sted på et punkt hvor turbinen løper nesten belastningsfritt, ofte mens vinden er stigende. Ideelt ville det være mulig å styre vindhastigheten som en annen styrbar driftsparameter: vindhastigheten kunne da bringes til å stige langsomt inntil det nøyaktige punktet hvor turbinrotoren roterer med synkron hastighet. Straks generatoren var i fase med nettet, så kunne generatoren kobles til nettet igjennom et rele e.l. enkel elektrisk brytermekanisme, uten å forårsake effektbølger i nettet eller momentsprang i vindsystemet. I praksis er imidlertid dette ikke mulig, fordi vindhastigheten ikke er en styrbar faktor. The electrical power developed by a wind turbine varies due to of the variable and unstable nature of the wind. The connection to the grid creates major technical difficulties, the connection takes place at a point where the turbine runs almost load-free, often while the wind is rising. Ideally, it would be possible to control the wind speed as another controllable operating parameter: the wind speed could then be made to rise slowly until the exact point where the turbine rotor rotates at synchronous speed. As soon as the generator was in phase with the grid, the generator could be connected to the grid through a relay or the like. simple electrical switch mechanism, without causing power surges in the grid or torque jumps in the wind system. In practice, however, this is not possible, because the wind speed is not a controllable factor.

I praksis er en tvunget til å ta hensyn til at vindhastigheten og således energien den inneholder, kan variere meget hurtig. Sterke vindkast kan således forårsake at turbinrotoren akselerer over synkron hastighet meget hurtig, forutsatt at turbinens startpunkt er tomgangshastighet, uten belastning på generatoren og at det derfor heller ikke er noen belastning på rotoren. Koplingen av generatoren til nettet må skje senest på det tidspunkt at motoren når synkron hastighet, for å unngå at turbinen akselerer og ruser. For å hindre uakseptable effektstøt på nettet og dreiemomentstøt, er det nødvendig å foreta tilkoplingen til nettet "mykt", dvs. at effektoverføringen fra generatoren til nettet under koblingsprosessen må økes jevnt og gradvis fra et minimum til en full tilkopling av effekt. For dette formålet er det blitt utviklet en elektronisk styrbar elektrisk tilkobler som tilfredsstiller behovet for en fullstendig styrbar koblingsprosess. Det kan henvises til dansk patentsøknad 0758/97. In practice, one is forced to take into account that the wind speed, and thus the energy it contains, can vary very quickly. Strong gusts of wind can thus cause the turbine rotor to accelerate above synchronous speed very quickly, provided that the turbine's starting point is idle speed, with no load on the generator and that there is therefore no load on the rotor either. The connection of the generator to the grid must take place at the latest when the engine reaches synchronous speed, to avoid the turbine accelerating and rushing. In order to prevent unacceptable power surges on the grid and torque surges, it is necessary to make the connection to the grid "soft", i.e. that the power transfer from the generator to the grid during the switching process must be increased evenly and gradually from a minimum to a full connection of power. For this purpose, an electronically controllable electrical connector has been developed which satisfies the need for a fully controllable connection process. Reference can be made to Danish patent application 0758/97.

Ønsket om å foreta en myk tilkopling til nettet er imidlertid i direkte konflikt med behovet for en hard og fast belastning av rotoren når de dynamiske forbindelsene som omgir vindturbinen However, the desire to make a soft connection to the grid is in direct conflict with the need for a hard and fixed load on the rotor when the dynamic connections that surround the wind turbine

krever det, dvs., når turbinen, under tomgang, utsettes for et sterkt vindkast som beskrevet ovenfor. Grunnen til dette er naturligvis at en for å unngå at turbinen ruser er nødt til å holde en stram styring, slik at den ikke akselerer på en ustyrt måte under tilkoblingsprosessen. Det er akkurat under tilkoblingsprosessen at en, for å oppnå en myk tilkopling til nettet, ønsker å øke generatorbelastningen gradvis over et tidsintervall, under hvilket bremseeffekten fra generatoren på rotoren blir redusert som et resultat. I praksis er det nødvendig å velge et kompromiss, hvor generatoren blir koblet til nettet ved en styrt koblingsprosess som tar hensyn til de mulige effekter på vindmøllestrukturen (gir og rotoraksel-moment, bøyepåkjenninger på bladene etc). Det er også nødvendig å ta hensyn til det maksimale strømnivået for nettilkobling, hvilket er akseptabelt i forhold til nettets tilpasningsevne. requires it, i.e. when the turbine, during idling, is exposed to a strong gust of wind as described above. The reason for this is, of course, that in order to avoid the turbine rushing, you have to keep a tight control, so that it does not accelerate in an uncontrolled way during the connection process. It is precisely during the connection process that, in order to achieve a soft connection to the grid, one wants to gradually increase the generator load over a time interval, during which the braking effect from the generator on the rotor is reduced as a result. In practice, it is necessary to choose a compromise, where the generator is connected to the grid by a controlled connection process that takes into account the possible effects on the wind turbine structure (gear and rotor shaft torque, bending stresses on the blades, etc.). It is also necessary to take into account the maximum power level for grid connection, which is acceptable in relation to the grid's adaptability.

Straks en vindturbin av induksjonstypen er tilkoblet, vil nettfrekvensen og -spenningen styre generatoren og på denne måten også turbinen. I praksis betyr dette at hastigheten på turbinmotoren bestemmes av nettfrekvensen. Fordi effekten som utvikles av turbinen avhenger av hastigheten på vinden, er det klart at den elektriske effekten som avgis til nettet stadig varierer. Vindkratfsystemer er utformet for å utvikle en viss nominell avkastning (normert kapasitet) ved en viss vindhastighet, som heretter vil bli kalt "nominell vindhastighet". Av økonomiske grunner er nettet vanligvis utformet for den samme elektriske effektavgivelsen (dvs. normert kapasitet). Vindhastigheter over de nominelle - mer spesifikt i intervallet mellom den nominelle vindhastigheten og vindmølla sin utkoblingshastighet - vil resultere i en høyere utgangseffekt fra generatoren enn nettverket er utformet for å motta. To forskjellige metoder brukes i forsøket på å styre effekten som genereres av vindturbiner. En metode kalles "metningsstyring" og den utnytter tendensen i bladene til å gå i metning (tape sin løft), når angrepsvinkelen på bladet i forhold til luftstrømmen overskrider en viss terskelverdi som bestemmes av formen på bladet og det brukes rotorblad med fast stigning, med særlig utviklete aerodynamiske bladformer. Denne styringsmetoden er ikke særlig nøyaktig, og den krever overdimensjonerte gir og generatorer, slik at bremsemomentet fra generatoren mot turbinrotoren er tilstrekkelig til å hindre metningstilstanden for bladene ved den innstillte vindhastigheten. Like før bladene går i metning ("staller") foreligger det ofte et uønsket og ustyrbart effektstøt. I tilfeller hvor kravene til effektkvaliteten er høy, er denne styringsmåten utilstrekkelig. As soon as an induction-type wind turbine is connected, the grid frequency and voltage will control the generator and thus also the turbine. In practice, this means that the speed of the turbine engine is determined by the grid frequency. Because the power developed by the turbine depends on the speed of the wind, it is clear that the electrical power delivered to the grid is constantly varying. Wind power systems are designed to develop a certain nominal yield (normed capacity) at a certain wind speed, which will hereafter be called "nominal wind speed". For economic reasons, the grid is usually designed for the same electrical output (ie rated capacity). Wind speeds above the nominal - more specifically in the interval between the nominal wind speed and the wind turbine's cut-out speed - will result in a higher output power from the generator than the network is designed to receive. Two different methods are used in the attempt to control the power generated by wind turbines. One method is called "saturation control" and it exploits the tendency of the blades to go into saturation (lose their lift), when the angle of attack of the blade in relation to the air flow exceeds a certain threshold value determined by the shape of the blade and fixed pitch rotor blades are used, with particularly developed aerodynamic blade shapes. This control method is not very accurate, and it requires oversized gears and generators, so that the braking torque from the generator against the turbine rotor is sufficient to prevent the saturation condition of the blades at the set wind speed. Just before the blades go into saturation ("stalls"), there is often an unwanted and uncontrollable power surge. In cases where the requirements for power quality are high, this control method is insufficient.

Den andre metoden er å bruke blad med variabel stigning. Systemet som kreves er teknisk krevende og i praksis er det umulig å variere bladstigningen tilstrekkelig hurtig til å samsvare med forandringer i vindhastigheten. Resultatet er en uønsket periodisk overbelastning av nettet og mellomperioder med effekttap, fordi bladene ikke er i stand til å følge forandringene i vindhastighet tilfredsstillende, og at de derfor periodisk tilpasser en stigning som utvikler mindre effekt enn det de er i stand til å produsere ved den gitte vindhastigheten. The second method is to use variable pitch blades. The system required is technically demanding and in practice it is impossible to vary the pitch of the blades sufficiently quickly to match changes in the wind speed. The result is an unwanted periodic overload of the network and intermediate periods of power loss, because the blades are not able to follow the changes in wind speed satisfactorily, and that they therefore periodically adapt to a pitch that develops less power than what they are able to produce at the given the wind speed.

Andre framgangsmåter for effektstyring er basert på mekaniske hjelpebremser som kan aktiveres i korte tidsrom under nett-tilkoblingsprosessen, for å begrense de problematiske støtene i den utviklete effekten. Det blir også brukt såkalte "frittstående" vindkraftsystem, hvor frekvensen og effekten styres med et system med variabel belastning. Dumpingsbelastninger (lastmotstander) blir koblet til nettet eller koblet i fra, avhengig av den brukerinduserte belastningen på nettet og den aktuelle vindhastigheten, slik at turbinen møter en konstant elektrisk impedans som tillater den å rotere med en bestemt frekvens og ikke mer. Disse to siste framgangsmåtene er ikke aktuelle for den type vindkraftsystemer som oppfinnelsen dreier seg om. Other methods of power management are based on mechanical auxiliary brakes that can be activated for short periods of time during the grid connection process, in order to limit the problematic shocks in the developed power. So-called "stand-alone" wind power systems are also used, where the frequency and power are controlled with a system with variable load. Dumping loads (load resistors) are connected to the grid or disconnected, depending on the user-induced load on the grid and the current wind speed, so that the turbine encounters a constant electrical impedance that allows it to rotate at a certain frequency and no more. These last two procedures are not relevant for the type of wind power systems that the invention is about.

Uavhengig av den valgte styringsmåten, finnes et fenomen som kalles flimring og som ofte opptrer i forbindelse med vindkraftutvikling, dvs. spenningsvariasjoner som typisk har sin årsak i periodiske lastvariasjoner. Et av kjennetegnene på dette fenomenet er en flimring av det elektriske lyset, som er uakseptabelt. Flimring skapt av vindturbiner ligger vanligvis i et frekvensområde på 0-8 Hz. Årsakene til flimringen kan variere: bladene løper igjennom leområdet til vindmølletårnet, periodiske turbulensfenomener i vinden forårsaket av spesielle terrengtyper, tre som vokser nær vindmølla etc. Det eksisterer for tiden ingen kjent framgangsmåte for effektivt å undersøke eller fjerne flimring fra vindturbiner. Regardless of the chosen control method, there is a phenomenon called flickering which often occurs in connection with wind power development, i.e. voltage variations which typically have their cause in periodic load variations. One of the characteristics of this phenomenon is a flickering of the electric light, which is unacceptable. Flicker created by wind turbines is usually in a frequency range of 0-8 Hz. The causes of the flickering can vary: the blades run through the lee area of the wind turbine tower, periodic turbulence phenomena in the wind caused by special types of terrain, trees growing near the windmill etc. There is currently no known procedure to effectively investigate or remove flickering from wind turbines.

Når det gjelder nettilkoblete vindkraftsystemer og liknende systemer for å utnytte gjenvinnbar energi, stiger kravene til kvaliteten på den elektriske strømmen som genereres av vindturbinene generelt etter hvert som det blir utformet større vindkratfsystemer og antallet av dem øker. I Tyskland og andre land, har vindturbinprodusentene møtt strenge standarder for kraftkvalitet, som har gjort det nødvendig å finne en løsning på problemene med vindkratfkvalitet og elektrisk produksjon som beskrevet ovenfor. "Nettkvalitet" referer til et sett av pålagte spesifikasjoner, - medregnet en maksimal nett-tilkoblingsstrøm, et smalt område av akseptable nettbelastninger, et maksimalt tillatt nivå av flimring etc, som nett-tilkoblete vindkraftsystemer må tilfredsstille før de kan godkjennes. In the case of grid-connected wind power systems and similar systems for utilizing renewable energy, the requirements for the quality of the electrical current generated by the wind turbines generally increase as larger wind power systems are designed and their number increases. In Germany and other countries, the wind turbine manufacturers have faced strict power quality standards, which has made it necessary to find a solution to the problems of wind power quality and electrical production as described above. "Grid quality" refers to a set of mandated specifications, - including a maximum grid connection current, a narrow range of acceptable grid loads, a maximum permitted level of flicker etc, which grid-connected wind power systems must meet before they can be approved.

Formål Purpose

Hovedformålet med oppfinnelsen er å skape en løsning på problemet med å tilfredsstille kravene til kraftkvalitet. Mer spesielt, er formålet å skape en framgangsmåte for å begrense nett-tilkoblingsstrømmen til vindgeneratorer og avlede overskuddseffekten som genereres i de situasjonene hvor generatorproduksjonen overstiger normal ytelse, dvs. når der er flimring og når vindhastigheten er generelt høyere enn de normale driftsvilkårene. Formålet med oppfinnelsen er også å skaffe en styrbar elektrisk bremsebelastning for bruk i samsvar med oppfinnelsen. The main purpose of the invention is to create a solution to the problem of satisfying the requirements for power quality. More specifically, the purpose is to create a method to limit the grid connection current of wind generators and divert the excess power generated in those situations where the generator output exceeds normal performance, i.e. when there is flicker and when the wind speed is generally higher than the normal operating conditions. The purpose of the invention is also to provide a controllable electric brake load for use in accordance with the invention.

Oppfinnelsen The invention

Oppfinnelsen er angitt i patentkrav 1. Den er spesiell ved at generatoren under nett-tilkoplingen - altså i de driftsperioder når generatorytelsen er høyere enn ønsket i forhold til nettets spesifikasjoner - er belastet med en variabel effektavleder som er uavhengig av nettet. Denne belastningsmotstanden har et trinnvis eller kontinuerlig variabelt styringssystem som spenner over et forholdsvis bredt effektområde. Utgangsintervallet som velges bør være stort nok til å tillate en begrensning av effekten som overføres til nettet, for å hindre at generatorens utgangseffekt overstiger nominellt nivå for nettet. Denne "dumpingsteknikken" stabiliserer generatorens utgangseffekt til nettet ved den maksimalt tillatte ytelse uten å tillate den å overstige dette nivået og uten unødvendig sløsing med effekt som ellers ville blitt tilført nettet. Dette sikrer optimal ytelse, såvel som generatorens samsvar med kravene fra nettet. The invention is stated in patent claim 1. It is special in that the generator during the grid connection - i.e. during the operating periods when the generator performance is higher than desired in relation to the grid's specifications - is loaded with a variable power arrester that is independent of the grid. This load resistor has a stepwise or continuously variable control system that spans a relatively wide power range. The output interval chosen should be large enough to allow a limitation of the power transferred to the grid, to prevent the generator output power from exceeding the nominal level of the grid. This "dumping" technique stabilizes the generator's output power to the grid at the maximum allowable output without allowing it to exceed this level and without unnecessarily wasting power that would otherwise be supplied to the grid. This ensures optimal performance, as well as the generator's compliance with the requirements from the grid.

Ved oppfinnelsen blir denne dumpingsteknikken således brukt primært i driftssituasjoner, hvor vindhastigheten varierer i intervallet mellom turbinens nominelle vindhastighet og den maksimalt tillatte vindhastigheten, pluss i situasjoner hvor der er spenningsvariasjoner (flimring) som forårsaker periodiske støt. Denne teknikken brukes også, som nevnt ovenfor, under prosessen med tilkopling av generatoren til nettet, når den eksterne dumpingslasta virker som en tilleggsbelastning, slik turbinrotoren kan styres effektivt under tilkoblingsprosessen. Dette betyr at turbinen kan tilkobles til nettet uten effektstøt og uten risiko for at den akselerer ut av styring. In the invention, this dumping technique is thus used primarily in operating situations, where the wind speed varies in the interval between the turbine's nominal wind speed and the maximum permitted wind speed, plus in situations where there are voltage variations (flickering) that cause periodic shocks. This technique is also used, as mentioned above, during the process of connecting the generator to the grid, when the external dumping load acts as an additional load, so that the turbine rotor can be controlled efficiently during the connection process. This means that the turbine can be connected to the grid without power surges and without the risk of it accelerating out of control.

Dumpingslasta - som i samsvar med oppfinnelsen kan bestå av en motstand, en kondensator eller induktor eller en kombinasjon av disse - er trinnvis eller kontinuerlig variable, det vil si at den kan tilkobles på en trinnvis eller kontinuerlig variable måte via generatoren ved hjelp av en tyristorbryter eller liknende elektrisk eller elektromekanisk kobling av kjent type. På denne måten kan dumpingslasta dumpe alle typer elektrisk effekt, inkludert kapasitiv og reaktiv effekt fra generatoren. I prinsipp er dumpingslast-funksjonen en motstand som er plassert direkte over generatoren og uavhengig av nettet. The dumping load - which in accordance with the invention can consist of a resistor, a capacitor or inductor or a combination of these - is stepwise or continuously variable, that is to say it can be connected in a stepwise or continuously variable way via the generator by means of a thyristor switch or similar electrical or electromechanical coupling of a known type. In this way, the dumping load can dump all types of electrical power, including capacitive and reactive power from the generator. In principle, the dumping load function is a resistor placed directly above the generator and independent of the grid.

Ved oppfinnelsen kan styringen av graden av tilkobling gjøres avhengig av generatoreffekten og/eller andre relevante driftsparametre som kan gi opplysning om generatoreffekten. With the invention, the degree of connection can be controlled depending on the generator power and/or other relevant operating parameters that can provide information about the generator power.

Styringssystemet kan følge et forutbestemt program, f.eks. i form av en algoritme i en av systemets datamaskiner for styring. Programmet sikrer at dumpingslasta blir frakoblet når ytelsen fra generatoren er mindre enn eller lik den nominelle ytelsen, dvs. kapasiteten for nettutformingen. På denne måten blir det tatt hensyn til kraftkvaliteten. Utgangstopper som overstiger den nominelle effektterskel blir "brent av" i belastningsmotstanden. Utnyttelsen av effekten generert av turbinen blir gjort optimal. Sammenfattet vil den framgangsmåten som beskrives i samsvar med oppfinnelsen ha denne effekt at den stabiliserer generatoreffekten ut til nettet på den maksimalt tillatte ytelsen, uten å overstige den og uten unødvendig avledning av effekt i tidsrommet hvor effekten kunne vært levert til nettet. Med andre ord, oppfinnelsen sikrer et optimalt utbytte samtidig som den sikrer samsvar med kravene om kraftkvalitet. The control system can follow a predetermined program, e.g. in the form of an algorithm in one of the system's computers for management. The program ensures that the dumping load is disconnected when the output from the generator is less than or equal to the nominal output, i.e. the capacity for the network design. In this way, the power quality is taken into account. Output peaks that exceed the nominal power threshold are "burned off" in the load resistor. The utilization of the power generated by the turbine is made optimal. In summary, the method described in accordance with the invention will have the effect that it stabilizes the generator power output to the grid at the maximum permitted output, without exceeding it and without unnecessary diversion of power during the time when the power could have been delivered to the grid. In other words, the invention ensures an optimal yield while ensuring compliance with the requirements for power quality.

Eksempel Example

Oppfinnelsen er nedenfor beskrevet nærmere under henvisning til tegningen, hvor The invention is described below in more detail with reference to the drawing, where

Fig. 1 viser en kurve som illustrerer driftsbetingelsene, før, under og etter tidspunktet da en vindgenerator er koblet til nettet Fig. 2 viser en kurve som illustrerer effekten av dumpingsteknikken under driftsbetingelser hvori generatorytelsen overstiger den maksimalt tillatte nettspenningen, samt Fig. 3 viser et tverrsnitt gjennom et vindmølletårn som viser lokaliseringen til motstandselementene i dumpingslastmotstanden. Fig. 1 shows a curve that illustrates the operating conditions, before, during and after the time when a wind generator is connected to the grid. Fig. 2 shows a curve that illustrates the effect of the dumping technique under operating conditions in which the generator output exceeds the maximum permitted grid voltage, and Fig. 3 shows a cross section through a wind turbine tower showing the location of the resistance elements in the dump load resistor.

Disse diagrammene illustrerer hvordan dumpingsteknikken brukes for å styre en vindturbin mens den blir koblet til nettet, for å hindre den i å skape et effektstøt (Fig. 1) og hvordan generatorytelsen blir "justert" med dumpingslasta under mer ordinære driftsvilkår (Fig. 2). Den styrte utgangseffekten til nettet er tegnet inn i ei kurve i Fig. 2. Kurva viser hvordan kraftkvalitetskravene blir tilfredsstilt og den størst mulig utnyttelse av turbinytelsen er oppnådd. These diagrams illustrate how the dumping technique is used to control a wind turbine while connected to the grid, to prevent it from creating a power surge (Fig. 1) and how the generator output is "adjusted" with the dumping load under more ordinary operating conditions (Fig. 2) . The controlled output power to the grid is drawn in a curve in Fig. 2. The curve shows how the power quality requirements are satisfied and the greatest possible utilization of the turbine performance is achieved.

Fig. 3 viser hvordan systemets motstandselementer kan monteres i vindmølletårnets 1 innside, samtidig som tårnet brukes som ei kjøleflate. Tårnet består av bøyd eller valset stålplate 2. Belastningsmotstandene, eller i det minste deres respektive komponenter, består av elektriske varmedumper 3 som sitter i U-profil-holdere 4. Disse holderne 4 er boltet fast til det indre av. plata i tårnet. Oppvarmingen fra effektavlederen blir frigjort inn i tårnplata og fordelt langs den, dvs. at den nedre flata virker som et kjøleelement. Kjøleelementene er symmetrisk og fordelt langs utsida av tårnet, i innbyrdes like avstander, slik at temperaturvariasjonen rundt omkretsen av tårnet er så lav som mulig. Fig. 3 shows how the system's resistance elements can be mounted inside the wind turbine tower 1, while the tower is used as a cooling surface. The tower consists of bent or rolled steel plate 2. The load resistors, or at least their respective components, consist of electric heat sinks 3 which sit in U-profile holders 4. These holders 4 are bolted to the inside of the. the plate in the tower. The heating from the power dissipater is released into the tower plate and distributed along it, i.e. the lower surface acts as a cooling element. The cooling elements are symmetrical and distributed along the outside of the tower, at mutually equal distances, so that the temperature variation around the circumference of the tower is as low as possible.

Claims (3)

1. Framgangsmåte for begrensing av nettilkoblingsstrømmen og overskuddseffekten fra en vindturbin e.l. elektrisitetsgenererende system for bruk med fornybar energi, hvor den elektriske generatoren er en vekselstrøms induksjonsgenerator, særlig en tre-fase generator, som er koblet til et vekselstrømsnett og hvor koplingen til nettet skjer gradvis ved hjelp av en variabel, elektronisk styrt elektrisk tilkobler av den type som er basert på tyristorer, hvis akseptvinkel pluss fasevinkelen til generatoren bestemmer den virkelige tilkoblingsgrad, med gradvis tilførsel av effekt til nettet, og hvor tilkoplingen til nettet foretas ved å. justere tyristorens akseptvinkel avhengig av i det minste den momentane fasevinkelen til generatoren, slik at både generatorspenningen og dreiemomentbelastningen under tilkoblingsprosessen kan styres og økes gradvis i samsvar med ei forutbestemt kurve, karakterisert ved at generatoren blir belastet med ei variabel dumpingslast under tilkoblingsprosessen og ellers under driftsperioder hvor generatorytelsen er høyere enn ønsket i forhold til nettforenelighet, og at denne dumpingslasta blir skrittvis eller kontinuerlig styrt med et forholdsvis bredt utgangsområde, som er tilstrekkelig til å styre effektavgivelsen til nettet under alle aktuelle driftsvilkår, det vil si under tilkoblingsprosessen og i andre driftssituasjoner, særlig når en vindturbin kontinuerlig eller periodisk genererer en høyere elektrisk ytelse enn den nominelle opptakskapasiteten til nettet, driftssituasjoner som typisk opptrer når vindhastigheten varierer i intervallet mellom turbinens nominelle vindhastighet og dens utkoblingshastighet, og i situasjoner hvor spenningsfluktuasjonene opptrer og periodisk forårsaker effekt over den nominelle verdien, idet dumpingslasta består av en motstand, kapasitet og eller induktor, eller en kombinasjon av disse, hvis motstand er trinnvis eller kontinuerlig variabel i sin tilkopling via generatoren, ved hjelp av en elektrisk eller elektromekanisk bryteranordning, særlig en tyristor, og at den variable dumpingslasta blir regulert på en måte som er elektronisk avhengig av parametre som er knyttet til generatorens utgangseffekt.1. Procedure for limiting the grid connection current and excess power from a wind turbine etc. electricity generating system for use with renewable energy, where the electrical generator is an alternating current induction generator, in particular a three-phase generator, which is connected to an alternating current grid and where the connection to the grid is made gradually by means of a variable, electronically controlled electrical connector of the type which is based on thyristors, whose acceptance angle plus the phase angle of the generator determines the real degree of connection, with a gradual supply of power to the grid, and where the connection to the grid is made by adjusting the thyristor acceptance angle depending at least on the instantaneous phase angle of the generator, so that both the generator voltage and the torque load during the connection process can be controlled and increased gradually in accordance with a predetermined curve, characterized by the generator being loaded with a variable dumping load during the connection process and otherwise during operating periods where the generator performance is higher than desired in relation to grid compatibility, and that this dumping load is stepwise or continuously controlled with a relatively wide output range, which is sufficient to control the output to the grid under all relevant operating conditions, i.e. during the connection process and in other operating situations, in particular when a wind turbine continuously or periodically generates a higher electrical output than the nominal absorption capacity of the grid, operating situations that typically occur when the wind speed varies in the interval between the turbine's nominal wind speed and its cut-out speed, and in situations where the voltage fluctuations occur and periodically cause an effect above the nominal value, as the dumping load consists of a resistance, capacity and or inductor , or a combination of these, whose resistance is stepwise or continuously variable in its connection via the generator, by means of an electrical or electromechanical switching device, in particular a thyristor, and that the variable dumping load is regulated in a way e which is electronically dependent on parameters linked to the generator's output power. 2. Framgangsmåte i samsvar med patentkrav 1,karakterisert ved at den variable dumpingslasta blir regulert i samsvar med et forutbestemt program som sikrer frakobling av dumpingslasta når generatorytelsen er mindre eller lik den nominelle ytelsen gitt av nettkravene.2. Method in accordance with patent claim 1, characterized in that the variable dumping load is regulated in accordance with a predetermined program which ensures disconnection of the dumping load when the generator output is less than or equal to the nominal output given by the grid requirements. 3. Framgangsmåte i samsvar med patentkrav 1 eller 2, karakterisert ved at dumpingslasta styres med en datamaskin som samler inn relevante driftsparametre og på basis av disse parametrene og etter en forutbestemt algoritme kontinuerlig beregner den optimale lasta for hver individuell driftssituasjon.3. Method in accordance with patent claim 1 or 2, characterized in that the dumping load is controlled with a computer which collects relevant operating parameters and on the basis of these parameters and according to a predetermined algorithm continuously calculates the optimal load for each individual operating situation.
NO20004889A 1998-03-30 2000-09-29 Procedure for limiting the grid connection current of a wind turbine generator NO320903B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK199800438A DK174466B1 (en) 1998-03-30 1998-03-30 Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method
PCT/DK1999/000189 WO1999050945A1 (en) 1998-03-30 1999-03-30 Method and device for limiting making current and excess power from an alternating-current induction generator

Publications (3)

Publication Number Publication Date
NO20004889D0 NO20004889D0 (en) 2000-09-29
NO20004889L NO20004889L (en) 2000-09-29
NO320903B1 true NO320903B1 (en) 2006-02-13

Family

ID=8093549

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20004889A NO320903B1 (en) 1998-03-30 2000-09-29 Procedure for limiting the grid connection current of a wind turbine generator

Country Status (6)

Country Link
EP (1) EP1097499A1 (en)
JP (1) JP2002510951A (en)
AU (1) AU3025799A (en)
DK (1) DK174466B1 (en)
NO (1) NO320903B1 (en)
WO (1) WO1999050945A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520399C2 (en) * 2001-03-23 2003-07-08 Abb Ab Electric power plant with means to dampen power commuting, as well as associated process, microprocessor and computer software product
US8008804B2 (en) 2003-08-15 2011-08-30 Beacon Power Corporation Methods, systems and apparatus for regulating frequency of generated power using flywheel energy storage systems with varying load and/or power generation
US8277964B2 (en) 2004-01-15 2012-10-02 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
EP1831987B2 (en) 2004-12-28 2020-02-05 Vestas Wind Systems A/S Method of controlling a wind turbine connected to an electric utility grid
US7227275B2 (en) * 2005-02-01 2007-06-05 Vrb Power Systems Inc. Method for retrofitting wind turbine farms
EP1920515A4 (en) * 2005-08-30 2016-09-28 Abb Research Ltd Wind mill power flow control with dump load and power converter
EP2075890B1 (en) 2007-12-28 2019-07-03 Vestas Wind Systems A/S Method for fast frequency regulation using a power reservoir
CN103038541B (en) 2010-06-08 2016-04-27 时间功率有限公司 Flywheel energy system
US8709629B2 (en) 2010-12-22 2014-04-29 Jd Holding Inc. Systems and methods for redox flow battery scalable modular reactant storage
US10141594B2 (en) 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
US9853454B2 (en) 2011-12-20 2017-12-26 Jd Holding Inc. Vanadium redox battery energy storage system
EP2839562A4 (en) 2012-04-16 2015-07-08 Temporal Power Ltd Method and system for regulating power of an electricity grid system
US10508710B2 (en) 2012-11-05 2019-12-17 Bc New Energy (Tianjin) Co., Ltd. Cooled flywheel apparatus having a stationary cooling member to cool a flywheel annular drive shaft
DE102013206119A1 (en) * 2013-04-08 2014-10-09 Wobben Properties Gmbh Wind energy plant and method for operating a wind energy plant
EP2868919A1 (en) 2013-11-05 2015-05-06 Openhydro IP Limited Turbulence protection system and method for turbine generators
EP2868913B1 (en) * 2013-11-05 2017-10-04 Openhydro IP Limited Turbulence compensation system and method for turbine generators
US9083207B1 (en) 2014-01-10 2015-07-14 Temporal Power Ltd. High-voltage flywheel energy storage system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2413813A1 (en) * 1977-12-27 1979-07-27 Gobaud Michel PROCESS FOR ADJUSTING THE VOLTAGE OF AN ELECTRIC GENERATOR AND SYSTEM FOR ITS IMPLEMENTATION
US4656413A (en) * 1986-06-19 1987-04-07 Bourbeau Frank J Stabilized control system and method for coupling an induction generator to AC power mains
DK171689B1 (en) * 1993-09-01 1997-03-10 Dancontrol Eng As Method of regulating an electrical coupling for interconnecting an AC network with an asynchronous generator and coupling

Also Published As

Publication number Publication date
WO1999050945A1 (en) 1999-10-07
EP1097499A1 (en) 2001-05-09
NO20004889D0 (en) 2000-09-29
DK43899A (en) 1999-10-01
NO20004889L (en) 2000-09-29
DK174466B1 (en) 2003-03-31
AU3025799A (en) 1999-10-18
JP2002510951A (en) 2002-04-09

Similar Documents

Publication Publication Date Title
NO320903B1 (en) Procedure for limiting the grid connection current of a wind turbine generator
US8502406B2 (en) Variable-speed power generator and method of controlling the same
CN100371585C (en) Control system for wind turbine with hydrodynamic transmission
JP5216181B2 (en) Wind park driving method
TWI543492B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
EP2075890B1 (en) Method for fast frequency regulation using a power reservoir
CN108138746B (en) Varying power output by ramping derated power output and derated rotor speed
WO2012102623A1 (en) A method and system for connecting a wind turbine system to an electric grid
ES2923144T3 (en) Control of a wind turbine by modifying the number of revolutions parameters
WO2016198077A1 (en) Ramping power in a wind turbine dependent on an estimated available wind power
EP3311026B1 (en) Frequency regulation using wind turbine generators
EP2594786B1 (en) Method of operating a wind turbine
TWI543491B (en) Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid
CN111433454B (en) Power ramp rate control
CN116971946A (en) Method for operating a wind turbine and wind turbine
CN105048496A (en) Grid-connected control method of dual-motor wind generating set
CN110870156B (en) System and method of operating a wind farm for quick connection after a wind farm shutdown
EP4191054A1 (en) A method for operating a wind farm and a wind farm
US20230178994A1 (en) Method for operating a wind farm and a wind farm
US11682990B2 (en) System and method for dynamically estimating active power capability of an inverter-based resource
EP4194685A1 (en) A method for operating a wind turbine and a wind turbine
CN108667081B (en) Self-closed electromagnetic coupling speed regulation wind turbine generator control method adopting reactive power priority mode
Jensen Connection of wind turbines and windfarms to a distribution system
CN116104701A (en) Wind turbine and method of operating a wind turbine