DK174466B1 - Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method - Google Patents

Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method Download PDF

Info

Publication number
DK174466B1
DK174466B1 DK199800438A DK43898A DK174466B1 DK 174466 B1 DK174466 B1 DK 174466B1 DK 199800438 A DK199800438 A DK 199800438A DK 43898 A DK43898 A DK 43898A DK 174466 B1 DK174466 B1 DK 174466B1
Authority
DK
Denmark
Prior art keywords
generator
power
current
grid
switch
Prior art date
Application number
DK199800438A
Other languages
Danish (da)
Other versions
DK43899A (en
Inventor
Carsten Henriksen
Original Assignee
Mita Teknik As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Teknik As filed Critical Mita Teknik As
Priority to DK199800438A priority Critical patent/DK174466B1/en
Priority to AU30257/99A priority patent/AU3025799A/en
Priority to EP99911642A priority patent/EP1097499A1/en
Priority to JP2000541760A priority patent/JP2002510951A/en
Priority to PCT/DK1999/000189 priority patent/WO1999050945A1/en
Publication of DK43899A publication Critical patent/DK43899A/en
Priority to NO20004889A priority patent/NO320903B1/en
Application granted granted Critical
Publication of DK174466B1 publication Critical patent/DK174466B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Generators And Motors (AREA)

Description

i DK 174466 B1 : Opfindelsen angår en fremgangsmåde til begrænsning af indkoblingsstrøm og overskudseffekt fra en vindmølle eller et lignende el-producerende anlæg til udnyttelse af vedvarende energi, hvilken fremgangsmåde nærmere bestemt er af den i indledningen til krav 1 angivne art.The invention relates to a method for limiting switch-on current and the surplus power of a wind turbine or similar electricity-generating plant for the utilization of renewable energy, which method is more specifically defined in the preamble of claim 1.

5 Når en asynkronmotor drives over det synkrone omløbstal, vil maskinen virke som en elektrisk generator, der omdanner den tilførte mekaniske akseleffekt til elektrisk effekt. Forudsat motoren -nu en asynkron generator- er koblet på et vekselspændingsnet, vil den genererede strøm blive sendt ind på dette. Denne egenskab udnyttes bl a i moderne 10 vindmøller og lignende energianlæg til udnyttelse af vedvarende energi. Det bemærkes dog, at de til generatordrift benyttede asynkronmotorer er specielt viklet til fomålet.5 When an asynchronous motor is operated over the synchronous orbital number, the machine will act as an electrical generator which converts the applied mechanical shaft power into electrical power. Provided the motor - now an asynchronous generator - is connected to an AC power grid, the generated current will be sent to this. This property is utilized, among other things, in modern 10 wind turbines and similar energy plants for the utilization of renewable energy. However, it should be noted that the asynchronous motors used for generator operation are specially wound for the purpose.

Den frembragte elektriske effekt fra en vindmølle er i sagens natur varierende grundet vindens varierende, ustabile natur. Indkoblingen på nettet er forbundet med store 15 tekniske vanskeligheder, idet indkoblingen foretages fra en tilstand, hvor møllen kører nærmest ubelastet, og ofte samtidig med, at vindhastigheden er tiltagende. Ideelt set burde vindhastigheden kunne reguleres som en anden kontrollerbar driftsparameter, og man ville da kunne regulere vindhastigheden langsomt op indtil vindmøllerotoren lige netop roterede med synkront omløbstal. Når generatorfaserne efterfølgende havde 20 indstillet sig synkront med netfaseme kunne indkoblingen på nettet foretages gennem et relæ eller en lignende simpel elektrisk kontaktmekanisme, uden at dette ville fremkalde strømstød på nettet eller momentdiskontinuiteter i vindkraftanlægget. I praksis er denne fremgangsmåde naturligvis ikke mulig, eftersom vindhastigheden ikke er kontrollerbar.The electrical power produced by a wind turbine is inherently variable due to the variable, unstable nature of the wind. The connection on the grid is associated with great technical difficulties, the connection being made from a state where the mill is running almost unloaded, and often at the same time that the wind speed is increasing. Ideally, the wind speed should be regulated as another controllable operating parameter, and one would then be able to slowly adjust the wind speed until the wind turbine rotor just rotated with synchronous orbital speed. When the generator phases had subsequently aligned themselves synchronously with the grid phases, the connection to the grid could be made through a relay or a similar simple electrical contact mechanism, without this causing electric shock on the grid or torque discontinuities in the wind turbine. In practice, of course, this approach is not possible since the wind speed is not controllable.

25 I praksis er man tvunget til at tage hensyn til, at vindens hastighed og dermed energiindhold kan ændre sig endog meget hurtigt. I kraftige vindstød vil vindmøllerotoren således kunne accelerere op over det synkrone omløbstal på meget kort tid, forudsat der indledes fra en "tomgangstilstand", hvor møllen roterer med undersynkront omdrejningstal, og hvor generatoren -og dermed også rotoren- er 30 ubelastet. Indkoblingen af generatoren skal foregå senest i det øjeblik, hvor det synkrone omdrejningstal passeres, hvis ikke vindmøllen skal løbe løbsk. Foral hindre uaceepia:'·..;'. store strømstød på nettet og momentstød på rotoren er det nødvendigt at foretage indkoblingen "blødt", dvs at effekttransmissionen mellem generatoren og nettet under indkoblingsforløbet skal øges jævnt fra et minimum til fuldt indkoblet effekt. Til dette 35 formål har Μ1ΤΛ TEKNIK A/S udviklet en elektronisk regulerbar, elektrisk kobling, som imødekommer behovet for en fuldt kontrollerbar indkoblingsproces. Der henvises til beskrivelsen til DK-patentansøgning nr 0758/97.25 In practice, it is forced to take into account that the speed of the wind and thus the energy content can change even very quickly. Thus, in strong gusts, the wind turbine rotor can accelerate upwards over the synchronous orbital speed in a very short time, provided it is started from an "idle state" where the turbine rotates with sub-synchronous rpm and where the generator - and thus also the rotor - is unloaded. The generator must be switched on at the latest when the synchronous rpm is passed, unless the wind turbine is to run. Especially prevent uaceepia: '· ..;'. For large power surges on the grid and torque shocks on the rotor, it is necessary to make the connection "soft", ie the power transmission between the generator and the grid during the switch-on process must be increased evenly from a minimum to fully switched power. For this purpose, Μ1ΤΛ TEKNIK A / S has developed an electronically controllable, electrical coupling that meets the need for a fully controllable switch-on process. Reference is made to the description of DK patent application no. 0758/97.

Ønsket om en blød indkobling på nettet er imidlertid i direkte modstrid med behovet for 40 en hurtig, kontant belastning af rotoren, når de dynamiske forhold omkring møllen fordrer dette, dvs når vindmøllen under tomgangskørsel udsættes for et kraftigt vindstød som beskrevet. Grunden hertil er naturligvis, at man for at undgå ’’løbskkørsel” er tvunget til at holde møllen tøjlet (belastet), så omdrejningstallet ikke øges ukontrolleret under indkoblingsforløbet. Og det er jo netop under indkoblingsforløbet at man af hensyn 45 til den bløde indkobling på nettet ønsker at øge generatorens belastning successivt over en periode, i hvilken periode generatorens bremsevirkning på rotoren følgelig er reduceret. I praksis er det nødvendigt at vælge et kompromis, hvor generatorens indkobling foretages under et kontrolleret indkoblingsforløb fastlagt under hensyntagen 2 DK 174466 B1 til de påvirkninger, vindmøllekonstruktionen som sådan kan udsættes for (momentbelastning på gear og rotoraksel, bøjningspåvirkninger på vingerne, etc), ligesom der må tages hensyn til den maksimale indkoblingsstrøm, som kan accepteres j under hensyntagen til netkvaliteten.However, the desire for a soft connection on the grid is in direct contradiction to the need for a fast, cash load on the rotor when the dynamic conditions around the mill require this, ie when the wind turbine is subjected to heavy gusts during idle travel as described. The reason for this is, of course, that in order to avoid '' running '', one is forced to keep the mill (loaded), so that the speed does not increase uncontrolled during the switch-on process. And it is precisely during the switch-on process that, for reasons of 45 for the soft switch-on on the grid, it is desired to increase the generator load successively over a period, during which period the generator's braking effect on the rotor is consequently reduced. In practice, it is necessary to choose a compromise in which the generator shutdown is done during a controlled shut-down process, taking into account 2 DK 174466 B1 to the effects that the wind turbine design as such can be subjected to (torque load on the gear and rotor shaft, bending effects on the blades, etc), as well account must be taken of the maximum switch-on current acceptable j taking into account the network quality.

55

Ved indkobling af en asynkron generator på nettet opstår en kortvarig stigning i strømstyrken forårsaget af magnetiseringsstrømmen. Foruden denne magnetiseringsstrøm har det i praksis vist sig, at der umiddelbart efter passagen af synkronpunktet opstår en strømstyrke (strømstød), som langt overstiger hvad der kunne forventes som 10 magnetiseringsstrøm alene. Fænomenet kan forklares ved, at generatoren i praksis kobles ind på nettet umiddelbart inden møllen når synkronpunktet, således at generatoren kortvarigt fungerer som motor, indtil synkronpunktet nås. Når synkronpunktet passeres under rotorens fortsatte acceleration skifter generatoren fra motordrift til generatordrift.When connecting an asynchronous generator to the grid, a short-term increase in current is caused by the magnetization current. In addition to this magnetization current, it has been found in practice that immediately after the passage of the synchronous point, a current (current shock) occurs, which far exceeds what might be expected as magnetization current alone. The phenomenon can be explained by the fact that the generator is in practice connected to the grid immediately before the turbine reaches the synchronous point, so that the generator acts briefly as motor until the synchronous point is reached. As the synchronous point passes during the continued acceleration of the rotor, the generator shifts from motor to generator operation.

15 Dette skift indebærer ikke kun en ændring i de elektriske forhold omkring generatoren (fasevinkel, mætningsstrøm, etc), men også et skift i belastningen på vindmøllens fysiske struktur og maskinkomponenter. Dette hænger sammen med, at drejningsmomentet mellem rotoren og generatoren skifter retning, når generatoren ændrer funktion fra motor til generator. Dette skift i belastningsretning (momentretning) betyder frigivelse af 20 opspændt elastisk energi i systemet. Eksempelvis vil den elastiske forspænding i rotoraksel, rotorblade, gearophæng og elastiske akselkoblinger udløses som bevægelsesenergi ved momentskiftet. Den udløste bevægelsesenergi omsættes efterfølgende til en kortvarig forøgelse af generatorens omdrejningstal, og vil derfor føre til en kortvarig effektforøgelse. Det er netop denne effektforøgelse, som kan måles som 25 en kraftig indkoblingsstrøm, der langt overstiger den forventede magnetiseringsstrøm. At udløsningen af den elastiske energi finder sted samtidig med, at rotoren under indkoblingsforløbet arbejder sig hurtigt op i omdrejninger, bidrager yderligere til de ovenfor omtalte problemer i forbindelse med indkoblingen af generatoren på nettet.15 This shift involves not only a change in the electrical conditions around the generator (phase angle, saturation current, etc.), but also a shift in the load on the physical structure and machine components of the wind turbine. This is because the torque between the rotor and the generator changes direction as the generator changes function from motor to generator. This shift in load direction (torque direction) means the release of 20 clamped elastic energy in the system. For example, the resilient bias in the rotor shaft, rotor blades, gear suspension and resilient shaft couplings will be released as motion energy at the torque change. The triggered motion energy is subsequently converted into a short-lived increase in the generator's rpm and will therefore lead to a short-term power gain. It is precisely this increase in power that can be measured as a strong switch-on current that far exceeds the expected magnetization current. The release of the elastic energy at the same time as the rotor during the switch-on process works quickly in revolutions, further contributes to the above-mentioned problems in connection with the connection of the generator to the grid.

30 Generatoren skal således være i stand til på én og samme tid at opbremse den kinetiske energi, som rotoren har nået at opsamle under det ''glidende'' i:udkoblingsforløb. dvs generatoren skal yde en passende nedbremsning af rotoren til driftsomløbstal, og dette skal foregå samtidig med, at generatoren som anført optager den udløste elastiske energi fra møllekonstruktionen. Resultatet er den målte, relativt høje indkoblingsstrøm, som 35 optræder i en kortvarig periode efter passage af synkronpunktet.Thus, the generator must be able at one and the same time to slow down the kinetic energy which the rotor has been able to collect during the '' sliding '' in: switch-off process. that is, the generator must provide a suitable deceleration of the rotor for operating speed figures, and this must be done at the same time as the generator takes up the elastic energy released from the turbine assembly as mentioned. The result is the measured, relatively high switch-on current which occurs for a short period of time after passing the synchronous point.

Generelt vedrørende nettilsluttede vindkraftanlæg (og lignende anlæg til udnyttelse af vedvarende energi) kan siges, at kravene til kvaliteten af den elektriske effekt, som produceres af anlæggene, øges i takt med, at anlæggene bliver stadigt større og at antallet 40 af anlæg vokser. Vindmøllebranchen har bl a i Tyskland mødt en række skærpede kvalitetskrav med hensyn til netkvaliteten, som betyder, at de ovenfor omtalte problemer i forbindelse med vindmøllernes nettilslutning og el-produktion nødvendigvis må finde en løsning. Ved netkvaliteten forstås en række kravspecifikationer, som de nettilsluttede vindkraftanlæg skal overholde inden de kan godkendes, herunder bl a krav om en 45 maksimal indkoblingsstrøm, snævre grænseværdier for effektoverskridelse, etc. Hidtil kendte metoder til styring og regulering af nettilsluttede vindmøller under indkoblingsforløbet er utilstrækkelige til løsning af problemerne i forbindelse med de 3 DK 174466 B1 ; kraftigt forhøjede strømstyrker, som optræder under indkoblingen, jf. forklaringen ovenfor.In general, with regard to grid connected wind power plants (and similar renewable energy plants), it can be said that the requirements for the quality of the electrical power produced by the plants increase as the plants grow steadily and the number of 40 plants grows. The wind turbine industry has, among other things, in Germany met a number of stricter quality requirements with regard to grid quality, which means that the above-mentioned problems in connection with the wind turbines' grid connection and electricity generation must necessarily find a solution. Grid quality means a number of requirements specifications that the grid connected wind turbines must comply with before they can be approved, including requirements for a 45 maximum switch-on current, narrow limit values for power surplus, etc. Known methods for controlling and regulating grid connected wind turbines during the switch-on cycle are inadequate solving the problems associated with the 3 DK 174466 B1; greatly increased currents that occur during switching on, cf. explanation above.

Den foreliggende opfindelse har som formål, at anvise en løsning på, hvorledes kravene 5 til netkvaliteten kan overholdes. Nærmere bestemt er formålet at anvise en fremgangsmåde til begrænsning af generatorens indkoblingsstrøm på nettet, samtidig med, at den nødvendige tøjling (belastning) af vindmøllen under indkoblingsforløbet tilgodeses.The object of the present invention is to provide a solution to how the requirements of the network quality 5 can be met. More specifically, the object is to provide a method for limiting the generator's current flow on the grid, while at the same time taking into account the necessary bridging (load) of the wind turbine during the switching process.

i 10 Fremgangsmåden ifølge opfindelsen er ejendommelig ved, at generatoren afbremses/belastes ved at ’’dumpe” effekt via en reguleringsenhed i et modstandsnetværk under indkoblingsforløbet, dvs medens thyristorerne i hovedstrømkredsen endnu ikke er helt åbne. På denne måde skånes nettet effektivt for strømstød, som overstiger en specificeret maksimalstrøm. Dvs at fremgangsmåden gør det muligt på én og samme tid 15 at overholde kravene til netkvalitet, samtidig med, at møllegeneratoren belastes tilstrækkeligt til, at møllen effektivt tøjles under indkoblingsforløbet.The method according to the invention is characterized in that the generator is decelerated / loaded by '' dumping '' power via a control unit in a resistance network during the switch-on process, ie while the thyristors in the main circuit are not yet fully open. In this way, the grid is effectively spared from power surges that exceed a specified maximum current. That is, the method enables at the same time to comply with the requirements for grid quality, while at the same time loading the mill generator sufficiently for the mill to be effectively defrosted during the switch-on process.

Formålstjenligt er den til effektdumpningen benyttede dumpload (modstandsnetværk) trinvis eller trinløst regulerbar over et relativt bredt effektinterval, hvis størrelse er valgt 20 under hensyntagen til, at enhver overbelastning af nettet med strømstød eller periodiske overskridelser af den for nettet fastsatte maksimalstrøm under alle omstændigheder skal kunne afværges ved passende dumpning af overskudseffekt under indkoblingsforløbet. Dumpload-indkoblingen styres ifølge opfindelsen af en datamat, som løbende beregner den nødvendige dumpload-belastning bl a på grundlag af generatorens fasevinkel og 25 strøm, til hvilken beregning der er indlagt en fast algoritme i datamaten. Dumpload-teknikken bevirker, at generatorens neteffekt stabiliseres omkring den maksimalt tilladelige ydelse, uden at denne overskrides, og uden at der unødigt ’’brændes” effekt af i perioder, hvor effekten kunne være sendt ind på nettet. Dvs at teknikken dels sikrer optimal ydelse, dels medvirker til, at kravene til netkvalitet overholdes.Conveniently, the dump load (resistance network) used for power dumping is stepwise or infinitely adjustable over a relatively wide power range, the size of which is selected 20, taking into account that any overload of the network with power surges or periodic overruns of the maximum current set for the network must in any case be possible. is prevented by appropriate dumping of surplus power during the switch-on process. According to the invention, the dumpload switch-on is controlled by a computer, which continuously calculates the required dumpload load on the basis of the phase angle and current of the generator, for which a fixed algorithm is included in the computer. The dumpload technique causes the generator power to stabilize around the maximum allowable output without being exceeded, and without unnecessarily '' burning '' power off during periods when the power could be transmitted to the grid. That is, the technique partly ensures optimum performance and partly helps to meet the requirements for network quality.

3030

Ved fremgangsmåden v- m ;j >: mdelsen kan dumploaden med fordel være sammensa! al' resistiv, kapacitiv eller induktiv modstand eller en hvilken som helst kombination heraf. Styringen af dumploadens indkoblingsgrad sker i afhængighed af generatoreffekten og/eller andre relevante driftsparametre, som indikerer generatorens ydelse. Styringen 35 kan følge et forud fastlagt program, fx fastlagt som en beregningsalgoritme i en til systemet hørende styringsdatamat. Programmet sikrer udkobling af dumploaden i de perioder, hvor generatorydelscn er mindre end eller svarende til den nominelle ydelse (dvs nettets dimensionering). Man opnår på denne måde, dels at der tages hensyn til netkvaliteten (effektspidser, som overstiger den nominelle effektgrænseværdi, 40 ’’afbrændes” i dumploaden), dels at den nyttiggjorte effekt fra generatoren optimeres.In the process vm; j>: message, the dumpload may advantageously be assembled! all 'resistive, capacitive or inductive resistance or any combination thereof. The switching speed of the dumpload is controlled depending on the generator power and / or other relevant operating parameters which indicate the generator's performance. The control 35 can follow a predetermined program, for example, determined as a calculation algorithm in a control computer belonging to the system. The program ensures that the dump load is switched off during the periods when the generating capacity is less than or equal to the nominal output (ie grid dimensioning). This is achieved, in part, by taking into account the grid quality (power peaks that exceed the nominal power limit value, 40 '' burned 'in the dump load) and partly that the utilized power from the generator is optimized.

Opfindelsen skal forklares nærmere i forbindelse med tegningen, hvorThe invention will be explained in more detail in connection with the drawing, where

Fig. 1 viser et kurvediagram, der anskueliggør de driftsmæssige forhold omkring 45 indkoblingstidspunktet for en vindmølle,FIG. 1 is a graph showing the operating conditions around the time of switching on a wind turbine;

Fig. 2 et kurvediagram, der viser virkningen af dumpload-teknikken under driftsmæssige forhold, hvor generatorydelsen overstiger den tilladelige maksimaleffekt på nettet, og 4 DK 174466 B1FIG. 2 is a graph showing the effect of the dumpload technique under operating conditions where the generating capacity exceeds the permissible maximum power on the grid, and 4 DK 174466 B1

Fig. 3 et tværsnit af et mølletårn, som viser placeringen af dumpload- modstandselementer. ' 5 Diagrammerne, som er umiddelbart forståelige, illustrerer hvorledes dumpload-teknikken anvendes til at tøjle en vindmølle under indkoblingen på nettet uden at dette medfører slrømstød (fig. I), og hvorledes generatorydelsen ’’reguleres” ved domploading under mere almindelige driftsforhold (fig. 2). Den regulerede neteffekt er indtegnet på kurveform i figuren. Kurven viser, hvorledes både hensynet til netkvaliteten og hensynet 10 til størst mulig nyttiggjort ydelse fra møllen imødekommes.FIG. 3 is a cross-section of a mill tower showing the location of dump load resistance elements. '5 The diagrams, which are immediately understandable, illustrate how the dumpload technique is used to bridle a wind turbine during connection to the grid without causing a shock (Fig. I), and how the generating performance is'' regulated '' by dump loading under more common operating conditions (Fig. 2). The regulated grid power is plotted in waveform in the figure. The curve shows how both the consideration for the grid quality and the consideration 10 for the greatest possible performance from the mill are met.

1 fig. 3 er vist, hvorledes de til systemet hørende dumpload-modstandselementer kan placeres indvendig i mølletåmet 1 under udnyttelse af selve tårnet som køleflade. Tåmet består af bukket eller valset stålplade 2. Dumpload-modstandselementerne- eller i det 15 mindste disses resistive komponenter- udgøres af elektriske varmelegemer 3, som er indlejret i holdere 4 med U-profil. Holderne 4 er boltet fast på indersiden af tårnpladcn 2 i tæt anlæg mod denne. Den ved effektafledningen udviklede varme afgives til tåmpladen og fordeles langs denne. Dvs at tåmpladen virkersom køleelement. Af hensyn til tårnets opvarmning er varmelegemerne symmetrisk fordelt langs omkredsen af tårnet, således at 20 temperaturvarialionen langs omkredsen er mindst mulig.1 FIG. 3, it is shown how the dumpload resistance elements of the system can be placed inside the turbine 1 using the tower itself as a cooling surface. The toe consists of bent or rolled steel plate 2. The dumpload resistance elements - or at least their resistive components - are constituted by electric heaters 3 embedded in holders 4 with a U-profile. The holders 4 are bolted to the inside of the tower plate 2 in close contact with it. The heat generated by the power dissipation is delivered to the toe plate and distributed along it. That is, the toe plate acts as a cooling element. For heating of the tower, the heaters are symmetrically distributed along the perimeter of the tower, so that the temperature variation along the perimeter is as small as possible.

Claims (3)

1. Fremgangsmåde til begrænsning af indkoblingsstrøm og overskudseffekt fra en vindmølle eller et lignende el-producerende anlæg til udnyttelse af vedvarende energi, hvor anlæggets el-producerende generator er en asynkron vekselstrømsgenerator 5 (sædvanligvis 3-faset generator), som er koblet på et vekselspændingsnet (3-faset vekselspændingsnet), og hvor indkoblingen på nettet foretages v hj af en variabel, elektronisk styrbar elektrisk kobling af den type, som er baseret på thyristorer, hvis åbningsvinkel sammen med generatorens fasevinkel er bestemmende for den aktuelle koblingsgrad (underforstået: procentvise effektindkobling), og hvor indkoblingen på 10 nettet foretages successivt ved tilpasning af thyristor-åbningsvinklen i afhængighed af bl a generatorens momentane fasevinkel samt andre relevante driftsparametre, således at både generatorstrøm og momentbelastning under indkoblingsforløbet kan kontrolleres og øges gradvis efter en forud fastlagt kurve (en såkaldt ’’blød” indkobling), kendetegnet ved, 15 at generatoren afbremses/belastes ved at ’’dumpe” effekt via en reguleringsenhed i et modstandsnetværk under indkoblingsforløbet, dvs medens thyristorerne i hovedstrømkredsen endnu ikke er helt åbne.A method for limiting switch-on current and surplus power from a wind turbine or similar renewable energy generating plant, wherein the plant's electricity generating generator is an asynchronous alternator 5 (usually 3-phase generator) coupled to an alternating voltage grid (3-phase AC) and where the connection to the network is made by a variable, electronically controllable electrical coupling of the type based on thyristors whose opening angle together with the phase of the generator determines the current degree of coupling (implied: percentage power on ) and where the switching on the 10 grid is made successively by adjusting the thyristor opening angle depending on, inter alia, the instantaneous phase angle of the generator and other relevant operating parameters, so that both generator current and torque load during the switching process can be controlled and gradually increased according to a predetermined curve (a called '' soft '' switching), characterized in that the generator is decelerated / loaded by '' dumping '' power through a control unit in a resistance network during the switch-on process, ie while the thyristors in the main circuit are not yet fully open. 2. Fremgangsmåde ifølge krav 1, kendetegnet 20. at den til effektdumpningen benyttede dumpload (modstandsnetværk) er trinvis eller trinløst regulerbar over et relativt bredt effektinterval, hvis størrelse er valgt under hensyntagen til, at enhver overbelastning af nettet med strømstød eller periodiske overskridelser af den for nettet fastsatte maksimalstrøm under alle omstændigheder skal i kunne afværges ved passende dumpning af overskudseffekt under indkoblingsforløbet, 25 og - at dumpload-indkoblingen styres af en datamat, som løbende beregner den nødvendige dumpload-belastning på grundlag af generatorens fasevinkel og strøm, til hvilken beregning der er indlagt en fast algoritme i datamaten. 30Method according to claim 1, characterized in that the dump load (resistance network) used for power dumping is stepwise or infinitely controllable over a relatively wide power range, the size of which is chosen taking into account any overload of the network with power surges or periodic overruns of the power dump. the maximum current set for the grid must in any case be averted by appropriate dumping of surplus power during the switch-on process, 25 and - that the dumpload switch-on is controlled by a computer which continuously calculates the required dumpload load on the basis of the phase angle and current of the generator, for which calculation a fixed algorithm is embedded in the computer. 30 3. Fremgangsmåde ifølge krav 1, kendetegne! ved. at der til dumpload- belastningen benyttes cn elektrisk belastning sammensat af re.Msiiv. kapacitiv dier induktiv modstand eller en hvilken som helst kombination heraf.Method according to claim 1, characterized in! by. that an electrical load composed of re.Msiiv is used for the dumpload load. capacitive resistive inductive resistance or any combination thereof.
DK199800438A 1998-03-30 1998-03-30 Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method DK174466B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK199800438A DK174466B1 (en) 1998-03-30 1998-03-30 Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method
AU30257/99A AU3025799A (en) 1998-03-30 1999-03-30 Method and device for limiting making current and excess power from an alternating-current induction generator
EP99911642A EP1097499A1 (en) 1998-03-30 1999-03-30 Method and device for limiting making current and excess power from an alternating-current induction generator
JP2000541760A JP2002510951A (en) 1998-03-30 1999-03-30 Method and apparatus for limiting current and excess output from AC induction generators
PCT/DK1999/000189 WO1999050945A1 (en) 1998-03-30 1999-03-30 Method and device for limiting making current and excess power from an alternating-current induction generator
NO20004889A NO320903B1 (en) 1998-03-30 2000-09-29 Procedure for limiting the grid connection current of a wind turbine generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK199800438A DK174466B1 (en) 1998-03-30 1998-03-30 Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method
DK43898 1998-03-30

Publications (2)

Publication Number Publication Date
DK43899A DK43899A (en) 1999-10-01
DK174466B1 true DK174466B1 (en) 2003-03-31

Family

ID=8093549

Family Applications (1)

Application Number Title Priority Date Filing Date
DK199800438A DK174466B1 (en) 1998-03-30 1998-03-30 Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method

Country Status (6)

Country Link
EP (1) EP1097499A1 (en)
JP (1) JP2002510951A (en)
AU (1) AU3025799A (en)
DK (1) DK174466B1 (en)
NO (1) NO320903B1 (en)
WO (1) WO1999050945A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520399C2 (en) * 2001-03-23 2003-07-08 Abb Ab Electric power plant with means to dampen power commuting, as well as associated process, microprocessor and computer software product
CA2535458C (en) 2003-08-15 2018-12-04 Beacon Power Corporation Methods, systems and apparatus for regulating frequency of generated power using flywheel energy storage systems with varying load and/or power generation
US8277964B2 (en) 2004-01-15 2012-10-02 Jd Holding Inc. System and method for optimizing efficiency and power output from a vanadium redox battery energy storage system
ES2637890T5 (en) 2004-12-28 2020-08-03 Vestas Wind Sys As Control method of a wind turbine connected to an electric power distribution network
US7227275B2 (en) * 2005-02-01 2007-06-05 Vrb Power Systems Inc. Method for retrofitting wind turbine farms
WO2007027141A1 (en) * 2005-08-30 2007-03-08 Abb Research Ltd Wind mill power flow control with dump load and power converter
EP2075890B1 (en) 2007-12-28 2019-07-03 Vestas Wind Systems A/S Method for fast frequency regulation using a power reservoir
WO2011153612A2 (en) 2010-06-08 2011-12-15 Temporal Power Ltd. Flywheel energy system
US8709629B2 (en) 2010-12-22 2014-04-29 Jd Holding Inc. Systems and methods for redox flow battery scalable modular reactant storage
US10141594B2 (en) 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
US9853454B2 (en) 2011-12-20 2017-12-26 Jd Holding Inc. Vanadium redox battery energy storage system
EP2839562A4 (en) 2012-04-16 2015-07-08 Temporal Power Ltd Method and system for regulating power of an electricity grid system
EP2914826B1 (en) 2012-11-05 2019-10-30 BC New Energy (Tianjin) Co., Ltd. Cooled flywheel apparatus
DE102013206119A1 (en) * 2013-04-08 2014-10-09 Wobben Properties Gmbh Wind energy plant and method for operating a wind energy plant
EP2868913B1 (en) * 2013-11-05 2017-10-04 Openhydro IP Limited Turbulence compensation system and method for turbine generators
EP2868919A1 (en) * 2013-11-05 2015-05-06 Openhydro IP Limited Turbulence protection system and method for turbine generators
US9083207B1 (en) 2014-01-10 2015-07-14 Temporal Power Ltd. High-voltage flywheel energy storage system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2413813A1 (en) * 1977-12-27 1979-07-27 Gobaud Michel PROCESS FOR ADJUSTING THE VOLTAGE OF AN ELECTRIC GENERATOR AND SYSTEM FOR ITS IMPLEMENTATION
US4656413A (en) * 1986-06-19 1987-04-07 Bourbeau Frank J Stabilized control system and method for coupling an induction generator to AC power mains
DK171689B1 (en) * 1993-09-01 1997-03-10 Dancontrol Eng As Method of regulating an electrical coupling for interconnecting an AC network with an asynchronous generator and coupling

Also Published As

Publication number Publication date
NO20004889L (en) 2000-09-29
NO20004889D0 (en) 2000-09-29
JP2002510951A (en) 2002-04-09
AU3025799A (en) 1999-10-18
NO320903B1 (en) 2006-02-13
WO1999050945A1 (en) 1999-10-07
EP1097499A1 (en) 2001-05-09
DK43899A (en) 1999-10-01

Similar Documents

Publication Publication Date Title
DK174466B1 (en) Method for limiting switch-on current and surplus power from a wind turbine or similar electricity-generating plant for the utilization of renewable energy, and an adjustable electric power dissipator (brake load) for use in this method
US20220316443A1 (en) Fast Frequency Support from Wind Turbine Systems
JP5799159B2 (en) Wind power generator and operation method of wind power generator
CA3032468C (en) Method for controlling a wind turbine
EP3042075B1 (en) Speed management of a wind turbine when switching electrical configurations
EP3371882B1 (en) Balancing reactive current between a dfig stator and a grid-side inverter
JP2013102684A (en) Method for operating wind park
Muljadi et al. Hybrid power system with a controlled energy storage
KR20110130507A (en) Method for operating a wind turbine
US10006439B2 (en) Energy production plant, in particular wind turbine
US11962262B2 (en) Wind turbine with virtual synchronous generator and DC link control
KR20140000138A (en) Generator torque control methods
ES2923144T3 (en) Control of a wind turbine by modifying the number of revolutions parameters
US20230141320A1 (en) Method of operating a wind turbine and control system
Musarrat et al. A fractional order SMC approach to improve the reliability of wind energy systems during grid faults
JP6310079B2 (en) Control method for wind turbine generator
Sharma et al. Performance evaluation of SFIG and DFIG based wind turbines
CN106130076B (en) Low voltage ride through control method for self-sealing type electromagnetic coupling speed regulation wind turbine generator
CN116848746A (en) Method for controlling reactive power exchange between an electrical grid and a wind power plant
CN106567805A (en) Method to control wind power installation
CN113833538B (en) Operation control method of marine direct-current steam turbine generator unit
Wu et al. Frequency regulation technologies from a single wind turbine or wind farm
Jauch et al. Simulation model of a wind turbine pitch controller for grid frequency stabilisation
de Prada et al. Type–2 Wind Turbine control applied to Sub–Synchronous Resonance Damping

Legal Events

Date Code Title Description
PBP Patent lapsed

Country of ref document: DK