NO319903B1 - Use of an antibody molecule for the preparation of a pharmaceutical composition for the treatment of squamous cell carcinoma. - Google Patents

Use of an antibody molecule for the preparation of a pharmaceutical composition for the treatment of squamous cell carcinoma. Download PDF

Info

Publication number
NO319903B1
NO319903B1 NO19982588A NO982588A NO319903B1 NO 319903 B1 NO319903 B1 NO 319903B1 NO 19982588 A NO19982588 A NO 19982588A NO 982588 A NO982588 A NO 982588A NO 319903 B1 NO319903 B1 NO 319903B1
Authority
NO
Norway
Prior art keywords
antibody
biwa
antibodies
tumor
expression
Prior art date
Application number
NO19982588A
Other languages
Norwegian (no)
Other versions
NO982588D0 (en
NO982588L (en
Inventor
Elinborg Ostermann
Erik Patzelt
Karl-Heinz Heider
Guenter Adolf
Marlies Sproll
Original Assignee
Karlsruhe Forschzent
Boehringer Ingelheim Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19545472A external-priority patent/DE19545472A1/en
Application filed by Karlsruhe Forschzent, Boehringer Ingelheim Int filed Critical Karlsruhe Forschzent
Publication of NO982588D0 publication Critical patent/NO982588D0/en
Publication of NO982588L publication Critical patent/NO982588L/en
Publication of NO319903B1 publication Critical patent/NO319903B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/10Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
    • A61K51/1027Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against receptors, cell-surface antigens or cell-surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70585CD44
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2884Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD44
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Optics & Photonics (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

Oppfinnelsen vedrører anvendelse av et antistoffmolekyl for fremstilling av et farmasøytisk preparat for behandling av plateepitelkarsinomer. Det beskrives fremgangsmåter for diagnostisering og behandling av plateepitelkarsinomer som beror på ekspresjonen av CD44-genets variable exon v6, midler for slike fremgangsmåter samt deres anvendelse. The invention relates to the use of an antibody molecule for the production of a pharmaceutical preparation for the treatment of squamous cell carcinomas. Methods for the diagnosis and treatment of squamous cell carcinomas which depend on the expression of the variable exon v6 of the CD44 gene, means for such methods and their use are described.

Det er nylig vist at ekspresjonen av varianter av overflate-glykoproteinet CD44 er nødvendig og tilstrekkelig til å utløse såkalte spontane metastatiske forhold både i en ikke-metastaserende pankreas-adenokarsinom-cellelinje hos rotte og en ikke-metastaserende fibrosarkom-cellelinje hos rotte (Gunthert eta!., 1991). Mens den minste CD44-isoform, standardformen CD44s, uttrykkes ubikvitært i en rekke forskjellige vev, herunder epitelceller, uttrykkes bestemte spleisevarianter av CD44 (CD44v) bare i en undergruppe av epitelceller. CD44-isoformene dannes ved alternativ spleising slik at sekvensen på 10 exoner <vl-v10) i CD44s snittes fullstendig ut, men i de større variantene likevel kan forekomme i forskjellige kombinasjoner (Screaton et al., 1992; Heider et al., 1993; Hofmann era/., 1991). Variantene adskiller seg fra hverandre ved at det på bestemte steder av den ekstracellulære del av proteinet er satt inn forskjellige aminosyresekvenser. Slike varianter kan påvises i forskjellige humane tumorceller og i humant tumorvev. Således er ekspresjonen av CD44-varianter i det kolorektale karsinogeneseforløp nylig undersøkt (Heider etat., 1993). Ekspresjonen av CD44-varianter mangler i normalt humant kolon-epitel, og det kan kun påvises en svak ekspresjon i kryptenes prolifererende celler. I senere stadier av tumorutviklingen, f.eks. i adenokarsinomer, uttrykker alle maligne misdannelser varianter av CD44. Dessuten er det nylig påvist ekspresjon avCD44-spleisevarianter i aktiverte lymfocytter, samt i non-Hodgkin-lymfomer (Koopman et ai, 1993). It has recently been shown that the expression of variants of the surface glycoprotein CD44 is necessary and sufficient to trigger so-called spontaneous metastatic conditions both in a non-metastatic rat pancreatic adenocarcinoma cell line and a non-metastatic rat fibrosarcoma cell line (Gunthert eta !., 1991). While the smallest CD44 isoform, the standard form CD44s, is expressed ubiquitously in a number of different tissues, including epithelial cells, certain splice variants of CD44 (CD44v) are expressed only in a subset of epithelial cells. The CD44 isoforms are formed by alternative splicing so that the sequence of 10 exons <vl-v10) in CD44s is completely excised, but in the larger variants can still occur in different combinations (Screaton et al., 1992; Heider et al., 1993; Hofmann era/., 1991). The variants differ from each other in that different amino acid sequences have been inserted in certain places of the extracellular part of the protein. Such variants can be detected in different human tumor cells and in human tumor tissue. Thus, the expression of CD44 variants in the course of colorectal carcinogenesis has recently been investigated (Heider et al., 1993). The expression of CD44 variants is missing in normal human colonic epithelium, and only a weak expression can be detected in the proliferating cells of the crypts. In later stages of tumor development, e.g. in adenocarcinomas, all malignancies express variants of CD44. Moreover, expression of CD44 splice variants has recently been demonstrated in activated lymphocytes, as well as in non-Hodgkin's lymphomas (Koopman et al, 1993).

Det er publisert forskjellige forsøk på å gjøre bruk av ekspresjonsforskjellene av exonvarianter t CD44-genet i svulster og normalvev til diagnostiske og terapeutiske fremgangsmåter (WO 94/02633, WO 94/12631, WO 95/00658, Various attempts have been published to make use of the expression differences of exon variants of the CD44 gene in tumors and normal tissues for diagnostic and therapeutic procedures (WO 94/02633, WO 94/12631, WO 95/00658,

WO 95/00851, EP 0531300). WO 95/00851, EP 0531300).

Også ekspresjonen av varianter av CD44-molekyler i plateepitelkarsinomer er allerede undersøkt. Salmi et al., (1993) fant således med det v6-spesifikke antistoff Var3.1. en reduksjon i v6-ekspresjonen i tumorceller sammenlignet med normal-celler. Brooks et al., (1995) oppnådde en heterogen (arving av nasofaryngeale karsinomer med det v6-spesifikke antistoff 11.9. Bare i 2 av 12 tilfeller ble det oppnådd en sterk farving, mens det i de fleste av tilfellene immunhistologisk bare kunne påvises en svak fokal v6-ekspresjon. The expression of variants of CD44 molecules in squamous cell carcinomas has also already been investigated. Salmi et al., (1993) thus found with the v6-specific antibody Var3.1. a reduction in v6 expression in tumor cells compared to normal cells. Brooks et al., (1995) obtained a heterogeneous (inheritance of nasopharyngeal carcinomas with the v6-specific antibody 11.9. Only in 2 of 12 cases was a strong staining obtained, while in most of the cases only a weak staining could be detected immunohistologically focal v6 expression.

Foreliggende oppfinnelses oppgave har vært å utvikle nye fremgangsmåter for diagnostisering og terapi av plateepitelkarsinomer, samt tilveiebringelse av midler for slike fremgangsmåter. The task of the present invention has been to develop new methods for the diagnosis and therapy of squamous cell carcinomas, as well as the provision of means for such methods.

Denne oppgave lot seg løse gjennom foreliggende oppfinnelse slik den -er definert i kravene 1-4. Det beskrives fremgangsmåter for diagnostisering og terapi av plateepitelkarsinomer beroende på ekspresjonen av exon-varianten v6 av CD44-genet som hhv. molekylær markør eller mål. Særlig angår foreliggende oppfinnelse anvendelser i forbindelse med den sterke og homogene ekspresjon av v6 i plateepitelkarsinomer og som overraskende nok og i motsetning til hva som tidligere har vært antatt, kunne fastslås. Antistoff-molekyler med tilsvarende spesifisitet egner seg særlig som bærer for selektivt å nå frem til plateepitelkarsinomer in vivo. This task was solved through the present invention as defined in claims 1-4. Methods are described for the diagnosis and therapy of squamous cell carcinomas depending on the expression of the exon variant v6 of the CD44 gene, which respectively molecular marker or target. In particular, the present invention relates to applications in connection with the strong and homogeneous expression of v6 in squamous cell carcinomas and which, surprisingly enough and contrary to what has previously been assumed, could be determined. Antibody molecules with similar specificity are particularly suitable as a carrier to selectively reach squamous cell carcinomas in vivo.

Ett aspekt av foreliggende oppfinnelse omfatter anvendelse av et antistoffmolekyl som binder seg til aminosyresekvensen WFGNRWHEGYR, for fremstilling av et farmasøytisk preparat for behandling av plateepitelkarsinomer. Særlig foretrukket er en anvendelse ifølge foreliggende oppfinnelse av det monoklonale antistoff BIWA-1 (klon VFF-18) som snittes ut av en hybridomcellelinje som ble deponert 7. juni, 1994, under tilgangsnummeret DSM ACC2174 ved DSM-Deutsche Sammlung fur Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig, Tyskland (WO 95/33771) eller derivater av dette antistoff. One aspect of the present invention comprises the use of an antibody molecule that binds to the amino acid sequence WFGNRWHEGYR, for the production of a pharmaceutical preparation for the treatment of squamous cell carcinomas. Particularly preferred is a use according to the present invention of the monoclonal antibody BIWA-1 (clone VFF-18) which is excised from a hybridoma cell line deposited on June 7, 1994, under accession number DSM ACC2174 at DSM-Deutsche Sammlung fur Mikroorganismen und Zellkulturen GmbH , Mascheroder Weg 1b, D-38124 Braunschweig, Germany (WO 95/33771) or derivatives of this antibody.

En annen særlig foretrukket anvendelse ifølge foreliggende oppfinnelse er en anvendelse hvor antistoffmolekylet er et monoklonalt antistoff, et Fab- eller F(ab')2* fragment av et immunglobulin, et antistoff fremstilt ved rekombinante fremgangsmåter, et kimært eller humanisert antistoff fremstilt ved rekombinante fremgangsmåter, et bifunksjonelt eller et enkeltkjedet antistoff (scFv). ;En ytterligere særlig foretrukket anvendelse ifølge foreliggende oppfinnelse er en anvendelse ifølge ett av kravene 1 til 3, hvor antistoffmolekylet er forbundet med en radioaktiv isotop, en fotoaktiverbar forbindelse, en radioaktiv forbindelse, et enzym, et fluorescensfarvestoff, et biotinmolekyl, et toksin, et cytostatikum, et prodrug, et antistoffmolekyl med en annen spesifisitet, et cytokin eller et annet immunmodulatorisk polypeptid. ;Nuklein- og aminosyresekvensen av exonvarianten v6 i CD44-genet er kjent (Screaton et ai, 1992, Tolg et al., 1993). Eksistensen av degenererte varianter eller allelvarianter har ikke betydning for oppfinnelsens utførelse, og slike varianter er således uttrykkelig inkludert. ;Sekvensen av exon v6 i det humane CD44-gen er: ;;Oppfinnelsen kan gjennomføres med polyklonale eller monoklonale antistoffer som er spesifikke for en epitop som kodes av exon v6, spesielt en epitop innenfor aminosyresekvensen WFGNRWHEGYR. Fremstillingen av antistoffer mot kjente aminosyresekvenser kan foretas i henhold til kjente metoder {Catty, 1989). Eksempelvis kan et peptid med denne sekvens fremstilles syntetisk og anvendes som antigen i henhold til en immuniseringsprotokoll. En annen måte er fremstillingen av et fusjonsprotein som inneholder den ønskede aminosyresekvens, hvor en nukleinsyre (som kan fremstilles syntetisk eller ved PCR (polymerasekjedereaksjon) fra en egnet probe) som koder for denne sekvens, integreres i en ekspresjonsvektor, og hvor fusjonsproteinet uttrykkes i en vertsorganisme. Det eventuelt rensede fusjonsprotein kan deretter inngå som antigen i en immuniseringsprotokoll, og innskudds-spesifikke antistoffer, eller når det er tale om monoklonale antistoffer, hybridomer, som uttrykker innskudds-spesifikke antistoffer, selekteres ved hjelp av egnede fremgangsmåter. Slike fremgangsmåter er for tiden kjent. Heider et al., ;(1993), 1996a) og Koopman et al., (1993) beskriver således fremstillingen av antistoffer mot epitopvarianter av CD44. ;For anvendelsen ifølge oppfinnelsen kan det imidlertid også benyttes antistoffmolekyler som er avledet av poly- eller monoklonale antistoffer, f.eks. "Fab-eller F(ab')2-fragmenter av immunglobuliner, rekombinant fremstillede enkeltkjede-antistoffer (scFv), kimære eller humaniserte antistoffer, samt andre molekyler som spesifikt binder seg til epitoper som kodes av exon v6. Av det fullstendige immunglobulin til antistoffet BIWA-1 (VFF-18) eller andre antistoffer, kan det eksempelvis frembringes Fab- eller F(ab')2-fragmenter eller andre fragmenter (Kreitman et ai, 1993). Fagmannen er dessuten i stand til å fremstille rekombinante v6-spesifikke antistoffmolekyler. Spesielt vil fagmannen etter analyse av aminosyresekvensen av antistoffet BIWA-1 (VFF-18) og/eller under anvendelse av den hybridomcellelinje som produserer dette antistoff, spesielt den genetiske informasjon som denne inneholder, kunne fremstille rekombinante antistoffmolekyler med den samme idiotypi som BIWA-1 (VFF-18), dvs. antistoffmolekyler som i området for antigen-bindingssetet (komplementaritetsbestemmende regioner, CDR) oppviser den samme aminosyresekvens som antistoffet BIWA-1 (VFF-18). Tilsvarende fremgangsmåter er idag kjent. Slike rekombinante antistoffmolekyler kan f.eks. være humaniserte antistoffer (Shin et al., 1989; Gussow et Seemann, 1991), bispesifikke eller bifunksjonelle antistoffer (Weiner et ai, 1993; Goodwin, 1989, Featherstone, 1996), "s/nge/-c/7a/n" antistoffer (scFv, Johnson et Bird, 1991), komplette eller fragmentariske immunglobuliner (Coloma et ai, 1992; Nesbit etat., 1992; Barbas ef ai, 1992) eller antistoffer frembragt ved " chain shuffling<*>(Winter ef ai, 1994. Humaniserte antistoffer kan for eksempel fremstilles ved CDR-grafting Another particularly preferred application according to the present invention is an application where the antibody molecule is a monoclonal antibody, a Fab or F(ab')2* fragment of an immunoglobulin, an antibody produced by recombinant methods, a chimeric or humanized antibody produced by recombinant methods , a bifunctional or single-chain antibody (scFv). A further particularly preferred use according to the present invention is a use according to one of claims 1 to 3, where the antibody molecule is connected to a radioactive isotope, a photoactivatable compound, a radioactive compound, an enzyme, a fluorescent dye, a biotin molecule, a toxin, a cytostatic drug, a prodrug, an antibody molecule with a different specificity, a cytokine or another immunomodulatory polypeptide. The nucleic and amino acid sequence of the exon variant v6 in the CD44 gene is known (Screaton et al, 1992, Tolg et al., 1993). The existence of degenerate variants or allelic variants has no significance for the performance of the invention, and such variants are thus expressly included. ;The sequence of exon v6 of the human CD44 gene is: ;;The invention can be carried out with polyclonal or monoclonal antibodies specific for an epitope encoded by exon v6, in particular an epitope within the amino acid sequence WFGNRWHEGYR. The preparation of antibodies against known amino acid sequences can be carried out according to known methods {Catty, 1989). For example, a peptide with this sequence can be produced synthetically and used as an antigen according to an immunization protocol. Another way is the production of a fusion protein containing the desired amino acid sequence, where a nucleic acid (which can be produced synthetically or by PCR (polymerase chain reaction) from a suitable probe) which codes for this sequence, is integrated into an expression vector, and where the fusion protein is expressed in a host organism. The possibly purified fusion protein can then be included as an antigen in an immunization protocol, and insert-specific antibodies, or in the case of monoclonal antibodies, hybridomas expressing insert-specific antibodies, are selected using suitable methods. Such methods are currently known. Heider et al., (1993), 1996a) and Koopman et al., (1993) thus describe the production of antibodies against epitope variants of CD44. For the application according to the invention, however, antibody molecules which are derived from poly- or monoclonal antibodies can also be used, e.g. "Fab or F(ab')2 fragments of immunoglobulins, recombinantly produced single-chain antibodies (scFv), chimeric or humanized antibodies, as well as other molecules that specifically bind to epitopes encoded by exon v6. Of the complete immunoglobulin to the antibody BIWA-1 (VFF-18) or other antibodies, for example Fab or F(ab')2 fragments or other fragments can be produced (Kreitman et ai, 1993). The person skilled in the art is also able to produce recombinant v6-specific In particular, after analyzing the amino acid sequence of the antibody BIWA-1 (VFF-18) and/or using the hybridoma cell line that produces this antibody, especially the genetic information it contains, the skilled person will be able to produce recombinant antibody molecules with the same idiotype as BIWA -1 (VFF-18), i.e. antibody molecules which in the region of the antigen-binding site (complementarity determining regions, CDR) exhibit the same amino acid sequence as antisto ffet BIWA-1 (VFF-18). Similar methods are known today. Such recombinant antibody molecules can e.g. be humanized antibodies (Shin et al., 1989; Gussow et Seemann, 1991), bispecific or bifunctional antibodies (Weiner et ai, 1993; Goodwin, 1989, Featherstone, 1996), "s/nge/-c/7a/n" antibodies (scFv, Johnson et Bird, 1991), complete or fragmentary immunoglobulins (Coloma et ai, 1992; Nesbit et al., 1992; Barbas ef ai, 1992) or antibodies produced by "chain shuffling<*>(Winter ef ai, 1994 Humanized antibodies can for example be produced by CDR grafting

(EP 0239400). Også framework-regioner kan modifiseres (EP 0519596; (EP 0239400). Framework regions can also be modified (EP 0519596;

WO 9007861). For humanisering av antistoffer kan det idag benyttes metoder som PCR (se f.eks. EP 0368684; EP 0438310; WO 9207075) eller datamaskin-modellering (se f.eks. WO 9222653). Det kan også fremstilles og anvendes fusjonsproteiner, eksempelvis "s/ny/e-cr>a/n"-antistoffAoksin-fusjonsproteiner (Chaudhary et ai, 1990; Friedman et ai, 1993). Under samlebegrepene "antistoff" og "antistoffmolekyler" inngår foruten polyklonale og monoklonale antistoffer, også alle de forbindelser som er diskutert i dette avsnitt, så vel som andre forbindelser -som strukturelt lar seg avlede fra immunglobuliner og som lar seg fremstille etter kjente fremgangsmåter. WO 9007861). For the humanization of antibodies, methods such as PCR (see e.g. EP 0368684; EP 0438310; WO 9207075) or computer modeling (see e.g. WO 9222653) can be used today. Fusion proteins can also be produced and used, for example "s/ny/e-cr>a/n" antibody Aoxin fusion proteins (Chaudhary et al, 1990; Friedman et al, 1993). In addition to polyclonal and monoclonal antibodies, the collective terms "antibody" and "antibody molecules" also include all the compounds discussed in this section, as well as other compounds - which structurally can be derived from immunoglobulins and which can be produced according to known methods.

Med kjennskap til epitopen (sml. Fig. 1, Fig. 4) av BIWA-1 (VFF-18) ligger det likeledes innenfor fagmannens kunnskapsområde å fremstille likeverdige antistoffer med den samme bindingsspesifisitet som kan benyttes i foreliggende oppfinnelse. With knowledge of the epitope (cf. Fig. 1, Fig. 4) of BIWA-1 (VFF-18), it is also within the expert's knowledge to produce equivalent antibodies with the same binding specificity that can be used in the present invention.

For diagnostiske fremgangsmåter kan antistoffmolekyler, fortrinnsvis BIWA-1 - antistoffmolekyler, fragmenter derav eller rekombinante antistoffmolekyler med samme idiotypi, forbindes for eksempel med radioaktive isotoper som 125l,1311,111ln, <99m>Tc eller radioaktive forbindelser (Larson et ai, 1991; Thomas ef ai, 1989; Srivastava, 1988), med enzymer som peroksydase eller alkalisk fosfatase (Catty ef Raykundalia, 1989), med fluorescensfarvestoffer (Johnson, 1989) eller biotinmolekyler (Guesdon ef ai, 1979). For terapeutiske anvendelser kan v6-spesifikke antistoffmolekyler, fortrinnsvis BIWA-1 (VFF-18) antistoffmolekyler eller VFF-18-avledede antistoffmolekyler, f.eks. fragmenter derav eller rekombinante antistoffmolekyler med samme idiotypi, forbindes med radioisotoper som 90Y,<131>1, <186>Re, 18<8>Re, 1<63>Sm, ^Cu, <212>Bi, <213>Bi, <177>Lu (Quadri ef ai, 1993; Lenhard ef ai, 1985; Vriesendorp ef ai, 1991; Wilbur et ai, 1989, Maraveyas etat., 1995a, Jurcic ef Scheinberg, 1994), toksiner (Vitetta ef ai, 1991, Vitetta efThorpe, 1991; Kreitman ef ai, 1993; Theuer ef ai, 1993), cytostatika (Schrappe et ai, 1992), prodrugs (Wang ef ai, 1992; Senter et ai, 1989), fotoaktiverbare substanser (Hemming et al., 1993), et antistoffmolekyl med en annen spesifisitet eller med radioaktive forbindelser. Antistoffmolekylet kan dessuten være forbundet medet cytokin eller et annet immunmodulerende polypeptid, f.eks. med tumornekrosefaktor, lymfotoksin (Reisfeld, et ai, 1996) eller interleukin-2 (Becker et ai, 1996). Antistoffmolekylene kan for anvendelse i et "pretargeting-system" f.eks. også modifiseres med streptavidin eller biotin (Goodwin, 1995). For diagnostic procedures, antibody molecules, preferably BIWA-1 - antibody molecules, fragments thereof or recombinant antibody molecules with the same idiotype, can be associated, for example, with radioactive isotopes such as 125l,1311,111ln, <99m>Tc or radioactive compounds (Larson et ai, 1991; Thomas ef ai, 1989; Srivastava, 1988), with enzymes such as peroxidase or alkaline phosphatase (Catty ef Raykundalia, 1989), with fluorescent dyes (Johnson, 1989) or biotin molecules (Guesdon ef ai, 1979). For therapeutic applications, v6-specific antibody molecules, preferably BIWA-1 (VFF-18) antibody molecules or VFF-18-derived antibody molecules, e.g. fragments thereof or recombinant antibody molecules of the same idiotype, associate with radioisotopes such as 90Y,<131>1, <186>Re, 18<8>Re, 1<63>Sm, ^Cu, <212>Bi, <213>Bi, <177>Lu (Quadri ef ai, 1993; Lenhard ef ai, 1985; Vriesendorp ef ai, 1991; Wilbur et ai, 1989, Maraveyas etat., 1995a, Jurcic ef Scheinberg, 1994), toxins (Vitetta ef ai, 1991, Vitetta efThorpe, 1991; Kreitman ef ai, 1993; Theuer ef ai, 1993), cytostatics (Schrappe et ai, 1992), prodrugs (Wang ef ai, 1992; Senter et ai, 1989), photoactivatable substances (Hemming et al., 1993), an antibody molecule with a different specificity or with radioactive compounds. The antibody molecule can also be associated with a cytokine or another immunomodulating polypeptide, e.g. with tumor necrosis factor, lymphotoxin (Reisfeld, et al, 1996) or interleukin-2 (Becker et al, 1996). For use in a "pretargeting system", the antibody molecules can e.g. also modified with streptavidin or biotin (Goodwin, 1995).

Ved hjelp av de diagnostiske fremgangsmåter kan prøver fra pasienter, eksempelvis fra biopsier hvor det foreligger mistanke om plateepitelkarsinom, eller hvor denne diagnose allerede foreligger, men hvor svulsten skal karakteriseres mer nøyaktig, undersøkes. Påvisningen av CD44-molekylvarianter som inneholder en aminosyresekvens som kodes av det variable exon v6, kan skje på proteinplanet ved hjelp av antistoffer, eller på nukleinsyreplanet ved hjelp av spesifikke nukleinsyre-prober eller primere for PCR (polymerasekjedereaksjon). Eksempelvis kan vevssnitt undersøkes immunhistokjemisk med antistoffer ved hjelp av i og for seg kjente metoder. Ekstrakter, utvunnet av vevsprøver, eller kroppsvæsker, kan dessuten undersøkes med andre immunologiske metoder under anvendelse av antistoffer, for eksempel ved Western blott, ELISA (enzyme-bundet immunosorbent testanalyser) Using the diagnostic methods, samples from patients, for example from biopsies where squamous cell carcinoma is suspected, or where this diagnosis already exists, but where the tumor needs to be characterized more precisely, can be examined. The detection of CD44 molecular variants containing an amino acid sequence encoded by the variable exon v6 can be done at the protein level using antibodies, or at the nucleic acid level using specific nucleic acid probes or primers for PCR (polymerase chain reaction). For example, tissue sections can be examined immunohistochemically with antibodies using methods known per se. Extracts, extracted from tissue samples or body fluids, can also be examined with other immunological methods using antibodies, for example by Western blot, ELISA (enzyme-linked immunosorbent assay)

(Catty ef Raykundalia, 1989), radioimmunotestanalyser (RIA, Catty et Murphy, 1989) eller beslektede immunoanalyser. Undersøkelsene kan foretas kvalitativt, semikvantitativt eller kvantitativt. (Catty ef Raykundalia, 1989), radioimmunoassays (RIA, Catty et Murphy, 1989) or related immunoassays. The investigations can be carried out qualitatively, semi-quantitatively or quantitatively.

Ved siden av in vitro diagnostikken er antistoffmolekylene med spesifisitet i henhold til oppfinnelsen, også egnet for in vivo diagnostisering av plateepitelkarsinom. Er antistoffmolekylet bærer av en påvisbar merking, kan det foretas en påvisning av merkingen for diagnostiske formål, f.eks. visualisering av svulsten in vivo (avbildning) eller eksempelvis for radioaktivt støttet kirurgi (radioguided surgery). For anvendelsen av antistoffer som er konjugert med radioaktive isotoper, til immunscintigrafi (avbildning) finnes en rekke protokoller som fagmannen kan gjennomføre oppfinnelsen på grunnlag av (Siccardi et ai, 1989; Keenan et al., 1987; Perkins ef Pimm, 1992; Colcher et al. t 1987; Thompson et a/., 1984). In addition to in vitro diagnostics, the antibody molecules with specificity according to the invention are also suitable for in vivo diagnosis of squamous cell carcinoma. If the antibody molecule carries a detectable label, the label can be detected for diagnostic purposes, e.g. visualization of the tumor in vivo (imaging) or, for example, for radioactively supported surgery (radioguided surgery). For the use of antibodies conjugated with radioactive isotopes for immunoscintigraphy (imaging) there are a number of protocols on the basis of which the person skilled in the art can carry out the invention (Siccardi et al., 1989; Keenan et al., 1987; Perkins ef Pimm, 1992; Colcher et al. et al. 1987; Thompson et al., 1984).

Data oppnådd ved påvisning og/eller kvantifisering av ekspresjonen av CD44-epitopvarianten v6, kan såtedes inngå i diagnosen og prognosen. Kombinasjonen med andre prognostiske parametere som f.eks. tumorgraden, kan herunder være fordelaktig. Data obtained by detecting and/or quantifying the expression of the CD44 epitope variant v6 can thus be included in the diagnosis and prognosis. The combination with other prognostic parameters such as e.g. the tumor grade, can therefore be advantageous.

Antistoffmolekyler med spesifisiteten ifølge oppfinnelsen, og eventuelt forbundet med et cytotoksisk agens, kan hensiktsmessig anvendes for behandlingen av plateepitelkarsinom. Påføringen kan herunder skje systemisk eller lokalt, eksempelvis ved intravenøs (som bolus eller vedvarende infusjon), intraperitoneal, intramuskulær, subkutan eller lignende injeksjon/infusjon. Protokoller for administrering av konjugerte eller ikke-konjugerte antistoffer (som fullstendige immunglobuliner, fragmenter, rekombinante humaniserte molekyler eller lignende) er idag kjent teknikk (Mulshine ef a/., 1991; Larson ef a/., 1991; Vitetta ef Thorpe, 1991; Vitetta ef a/., 1991; Breitz et al., 1992,1995; Press ef al., 1989; Weiner ef a/., 1989; Chatal ef al., 1989; Sears et al., 1982). En terapeutisk anvendelse kan eksempelvis skje analogt med anvendelsen av antistoffet 1.1ASML (Seifer et ai., 1993). Ikke-modifiserte monoklonale antistoffer kan benyttes direkte terapeutisk når de oppviser en egnet naturlig effektorf unksjon for en cytotoksisk virkning, for eksempel for komplement-indusert eller antistoff-indusert cellulær cytotoksisitet (Riethmuller ef al., 1994). Egnede monoklonale antistoffer for denne anvendelse er mus-antistoff av isotype lgG2a eller antistoff fra human IgGl type. Ikke-modifiserte antistoffer kan dessuten administreres via en anti-idiotypisk mekanisme for å indusere en pasient-egen anti-tumor-reaksjon (Baum ef ai, 1993; Khazaeli et ai, 1994). Antibody molecules with the specificity according to the invention, and optionally associated with a cytotoxic agent, can be suitably used for the treatment of squamous cell carcinoma. The application can take place systemically or locally, for example by intravenous (as a bolus or continuous infusion), intraperitoneal, intramuscular, subcutaneous or similar injection/infusion. Protocols for the administration of conjugated or non-conjugated antibodies (such as complete immunoglobulins, fragments, recombinant humanized molecules or the like) are known today (Mulshine et al., 1991; Larson et al., 1991; Vitetta et Thorpe, 1991; Vitetta et al., 1991; Breitz et al., 1992,1995; Press et al., 1989; Weiner et al., 1989; Chatal et al., 1989; Sears et al., 1982). A therapeutic application can, for example, take place analogously to the use of the antibody 1.1ASML (Seifer et al., 1993). Unmodified monoclonal antibodies can be used directly therapeutically when they exhibit a suitable natural effector function for a cytotoxic effect, for example for complement-induced or antibody-induced cellular cytotoxicity (Riethmuller et al., 1994). Suitable monoclonal antibodies for this application are mouse antibody of isotype IgG2a or antibody of human IgG1 type. Furthermore, unmodified antibodies can be administered via an anti-idiotypic mechanism to induce a patient-specific anti-tumor response (Baum ef ai, 1993; Khazaeli et al, 1994).

En foretrukket terapeutisk anvendelse består i å forbinde et humanisert v6-spesifikt immunglobulin eller et F(ab')2-fragment av dette med <90>Y (Quadri et ai, A preferred therapeutic application consists in connecting a humanized v6-specific immunoglobulin or an F(ab')2 fragment thereof with <90>Y (Quadri et al,

1993; Vriesendorp et ai, 1995).<131>i (Maraveyas et ai, 1995a, 1995b; Juweid ef a/., 1995; Press et a/., 1995; Thomas et ai, i: Catty 1985, s. 230-239), <186>Re (Breitz ef ai 1992,1995) eller en annen egnet radioaktiv isotop og benytte denne til radio-immunterapi av plateepitelkarsinomer. For eksempel kan antistoffet BIWA-1, en humanisert versjon av BIWA-1 eller et F(ab')2-frgament av BIWA-1 eller det humaniserte antistoff, forbindes med "Y under anvendelse av en chelat-dannende linker som ITCB-DTPA (isotiocyanat-benzyl-dietylentriaminpentaacetat), hvorved det skulle kunne oppnås en spesifikk aktivitet på 5-20 mCi/mg, fortrinnsvis 10 mCt/mg. Dette agens kan deretter administreres til en pasient med antigen-positiv tumor i en dosering på 0,1 til 1 mCi/kg legemsvekt, fortrinnsvis 0,3 til 0,5 mCi/kg legemsvekt. Er antistoffmolekylet forbundet med<131>1, kan et mulig doseringsskjema ved en spesifikk aktivitet på 2 mCi/mg, f.eks. være 2 x 150 mCi med 6 ukers mellomrom. Fagmannen kan fastsette den maksimalt mulige dosering ved hjelp av i og for seg kjente meteéér-(Maraveyas et ai, 1995a, 1995b). Ved administrering av en total proteinmengde på 2 til 5 mg, kan denne skje i form av en hurtig intravenøs bolusinjeksjon. Ved større proteinmengder kan en infusjon være en gunstigere administrasjonsform. Ved anvendelse av monoklonale antistoffer kan det før administreringen være nødvendig å blande dette agens med et overskudd (f.eks. med et tidobbelt molart overskudd) av det ikke-radioaktive antistoff. I så fall er det bedre å foreta administreringen i form av en intravenøs infusjon, f.eks. i løpet av 15 minutter. Anvendelsen kan gjentas. Terapien kan kombineres med en ekstern strålebehandling. Den kan dessuten suppleres med benmargstransplantasjon, noe som særlig er nødvendig når det ved terapien oppnås en dose på mer enn 1,6 Gy i benmargen. 1993; Vriesendorp et ai, 1995).<131>i (Maraveyas et ai, 1995a, 1995b; Juweid ef a/., 1995; Press et a/., 1995; Thomas et ai, in: Catty 1985, pp. 230-239 ), <186>Re (Breitz ef ai 1992,1995) or another suitable radioactive isotope and use this for radio-immunotherapy of squamous cell carcinomas. For example, the antibody BIWA-1, a humanized version of BIWA-1 or an F(ab')2 fragment of BIWA-1 or the humanized antibody can be linked to "Y using a chelating linker such as ITCB-DTPA (isothiocyanate-benzyl-diethylenetriamine pentaacetate), whereby a specific activity of 5-20 mCi/mg, preferably 10 mCt/mg, should be achieved This agent can then be administered to a patient with an antigen-positive tumor at a dosage of 0.1 to 1 mCi/kg body weight, preferably 0.3 to 0.5 mCi/kg body weight.If the antibody molecule is associated with <131>1, a possible dosage regimen at a specific activity of 2 mCi/mg may, for example, be 2 x 150 mCi at 6-week intervals. The person skilled in the art can determine the maximum possible dosage using methods known per se-(Maraveyas et ai, 1995a, 1995b). When administering a total amount of protein of 2 to 5 mg, this can be done in in the form of a rapid intravenous bolus injection.In the case of larger amounts of protein, an infusion may be more beneficial form of administration. When using monoclonal antibodies, it may be necessary to mix this agent with an excess (eg with a tenfold molar excess) of the non-radioactive antibody before administration. In that case, it is better to carry out the administration in the form of an intravenous infusion, e.g. within 15 minutes. The application can be repeated. The therapy can be combined with external radiation therapy. It can also be supplemented with bone marrow transplantation, which is particularly necessary when the therapy achieves a dose of more than 1.6 Gy in the bone marrow.

Antistoffmolekyler kan også benyttes ex wVo til rensing av CD34-positive Antibody molecules can also be used ex wVo for purification of CD34-positives

stam- og forløper-cellepreparater (Immunopurging). Stråle-behandlingen eller kjemoterapien av plateepitelkarsinomer kan understøttes gjennom autolog benmargstransplantasjon. Det derved appliserte preparat av hematopoietiske stam-og forløper-cejler må være fritt for tumorceller. Dette kan oppnås ved inkubasjon med antistoffmolekyler, eksempelvis antistoff-toksin-konjugater (Myklebust et ai., 1994; DEP 19648209.7). stem and precursor cell preparations (Immunopurging). The radiation treatment or chemotherapy of squamous cell carcinomas can be supported through autologous bone marrow transplantation. The thereby applied preparation of hematopoietic stem and precursor cells must be free of tumor cells. This can be achieved by incubation with antibody molecules, for example antibody-toxin conjugates (Myklebust et al., 1994; DEP 19648209.7).

Antistoffmolekyler kan dessuten innføres i form av rekombinante konstruksjoner i T-cellereseptoren av T-lymfocytter. Slike reprogrammerte T-lymfocytter binder seg selektivt til de antigen-uttrykkende tumorceller og utøver cytotoksisk virkning slik at de kan anvendes til behandling av plateepitelkarsinomer (PCT/EP9604631; Altenschmidt et al., 1996). Antibody molecules can also be introduced in the form of recombinant constructs into the T-cell receptor of T-lymphocytes. Such reprogrammed T-lymphocytes bind selectively to the antigen-expressing tumor cells and exert a cytotoxic effect so that they can be used for the treatment of squamous cell carcinomas (PCT/EP9604631; Altenschmidt et al., 1996).

Figurer Figures

Fig. 1: Bestemmelse av epitop-spesifisiteten av BIWA-1 gjennom binding til syntetiske peptider som er avledet av den humane CD44v6-sekvens. Det tilsvarende peptid fra rotte-CD44v6 ble testet med antistoffet 1.1ASML Bindingen ble bestemt i en ELISA, idet peptidene ble immobilisert på mikrotiterplater (sml. Heider et al., 1996b, Fig. 2). -: ingen binding, +/-: svak binding, +: sterk binding. Fig. 2: Immunhistokjemisk analyse av et plateephelkarsinom i larynx (a) og en levermetastase av et øsofaguskarsinom (b) med det CD44v6-spesifikke monoklonale antistoff BIWA-1. Fig. 1: Determination of the epitope specificity of BIWA-1 through binding to synthetic peptides derived from the human CD44v6 sequence. The corresponding peptide from rat CD44v6 was tested with the antibody 1.1ASML The binding was determined in an ELISA, as the peptides were immobilized on microtiter plates (cf. Heider et al., 1996b, Fig. 2). -: no binding, +/-: weak binding, +: strong binding. Fig. 2: Immunohistochemical analysis of a squamous cell carcinoma of the larynx (a) and a liver metastasis of an esophageal carcinoma (b) with the CD44v6-specific monoclonal antibody BIWA-1.

I begge tilfeller kan reaktiviteten av antistoffet med tumorcellens membran sees. Originalforstørrelse 40x, kontrastfarving hematoxylin. In both cases, the reactivity of the antibody with the tumor cell's membrane can be seen. Original magnification 40x, counterstaining hematoxylin.

Fig. 3: Sammenligning av antigen-bindingen av forskjellige CD44v6-spesifikke mAbs. Fig. 3: Comparison of the antigen binding of different CD44v6-specific mAbs.

Bindingen av fire forskjellige CD44v6-spesifikke mAbs til humane SCC A-431-celler ble målt i en celte-ELISA. mAb BIWA-1 oppviser en høyere affinitet for tumorcellene enn de andre mAbs. The binding of four different CD44v6-specific mAbs to human SCC A-431 cells was measured in a Celte ELISA. mAb BIWA-1 exhibits a higher affinity for the tumor cells than the other mAbs.

Fig; 4: Forbedret epitop-kartlegging av mAb BIWA-1. Fig; 4: Improved epitope mapping of mAb BIWA-1.

Bindingen av BIWA-1 til forskjellige overlappende syntetiske peptider som strekker seg fra aminosyrene 18-32 i den region som koder for CD44v6, ble målt i en kompetitiv ELISA. Den minimale bindingssekvens (peptid v6 (19-29)) er understreket. The binding of BIWA-1 to various overlapping synthetic peptides spanning from amino acids 18-32 of the CD44v6 coding region was measured in a competitive ELISA. The minimal binding sequence (peptide v6 (19-29)) is underlined.

Fig. 5: Biofordeling av <12>SI-BIWA-1 i A-431 xenotransplanterte nakne mus Fig. 5: Biodistribution of <12>SI-BIWA-1 in A-431 xenotransplanted nude mice

Akkumuleringen av antistoffet er angitt som %ID/g (middelverdi ±SEM) ved 4, 24,48,120 og 168 timer etter injeksjon. The accumulation of the antibody is indicated as %ID/g (mean value ± SEM) at 4, 24, 48, 120 and 168 hours after injection.

Eksempler Examples

Eksempel 1: Ekspresjon av CD44v6 i plateepitelkarsinomer Example 1: Expression of CD44v6 in squamous cell carcinomas

Vev Loom

Tilsammen 126 parafin-innleirede tumorprøver ble immunhistokjemisk undersøkt på ekspresjon av CD44v6 med mAb BIWA-1 (klon VFF-18). Prøvene omfattet 31 tilfeller av primære plateepitelkarsinomer (15 tilfeller larynx, 16 tilfeller hud), 91 tilfeller av lymfeknutemetastaser (larynx, n=38; lunge, n=27; øsofagus, n=11; munnhule, n=11; tonsiller, n=4) og fire tilfeller av levermetastaser (øsofagus). A total of 126 paraffin-embedded tumor samples were immunohistochemically examined for expression of CD44v6 with mAb BIWA-1 (clone VFF-18). The samples included 31 cases of primary squamous cell carcinomas (15 cases larynx, 16 cases skin), 91 cases of lymph node metastases (larynx, n=38; lung, n=27; esophagus, n=11; oral cavity, n=11; tonsils, n= 4) and four cases of liver metastases (oesophagus).

Antistoff Antibody

Hele den varierende region av HPKII-typen av CD44v (Hofmann et al., 1991) ble amplifisert fra human keratinocytt-cDNA ved PCR. Begge PCR-primeme 5'-CAGGCTGGGAGCCAAATGAAGAAAATG-3\ posisjonene 25-52, og 5'-TGATAAGGAACGATTGACATTAGAGTTGGA-3\ posisjonene 1013-984, av den LCLC97-varierende region, inneholdt som beskrevet av Hofmann et al., et EcøRI-gjenkjenningssete som ble benyttet for direkte å klone PCR-produktet inn i vektoren pGEX-2T (Smith et al., 1988). Den resulterende konstruksjon (pGEX CD44v HPKII, v3-v10) koder for et fusjonsprotein på -70 kD, som består av glutation-S-transferase av Schistosoma japonicum og exonene v3-v10 av humant CD44 (Fig. 1; Heider ef al., 1993). Fusjonsproteinet ble uttrykt i E. colt og deretter affinitetsrenset over glutation-agarose (Smith ef a/., 1988). The entire HPKII-type variable region of CD44v (Hofmann et al., 1991) was amplified from human keratinocyte cDNA by PCR. Both PCR primers 5'-CAGGCTGGGAGCCAAATGAAGAAAATG-3\ positions 25-52, and 5'-TGATAAGGAACGATTGACATTAGAGTTGGA-3\ positions 1013-984, of the LCLC97 variable region, contained as described by Hofmann et al., an EcøRI recognition site that was used to directly clone the PCR product into the vector pGEX-2T (Smith et al., 1988). The resulting construct (pGEX CD44v HPKII, v3-v10) encodes a fusion protein of -70 kD, consisting of glutathione-S-transferase of Schistosoma japonicum and exons v3-v10 of human CD44 (Fig. 1; Heider et al., 1993). The fusion protein was expressed in E. colt and then affinity purified over glutathione-agarose (Smith ef a/., 1988).

Balb/c-hunnmus ble immunisert intraperitonealt med det affinitetsrensede fusjonsprotein i henhold til følgende skjema: Balb/c female mice were immunized intraperitoneally with the affinity-purified fusion protein according to the following schedule:

1. Immunisering: 90 ug fusjonsprotein i Freunds fullstendige adjuvans 1. Immunization: 90 µg fusion protein in Freund's complete adjuvant

2. og 3. Immunisering: 50 ug fusjonsprotein i Freunds ufullstendige adjuvans 2nd and 3rd Immunization: 50 µg fusion protein in Freund's incomplete adjuvant

Immuniseringene skjedde med 4 ukers mellomrom. 14 dager etter den siste immunisering ble dyrene ytterligere immunisert med 10 ug fusjonsprotein i PBS på tre påfølgende dager. Dagen deretter ble mirtceller fra et dyr med høyt antistofftiter fusjonert med P3.X63-Ag8.653-muse-myeldmceller ved hjelp av polyetylenglykol 4000. Hybridomcellene ble deretter selektert i mikrotiterplater i HAT-medium (Kohler ef Milstein, 1.975; Kearney et al., 1979). The immunizations took place 4 weeks apart. 14 days after the last immunization, the animals were further immunized with 10 µg of fusion protein in PBS on three consecutive days. The day after, myrtle cells from an animal with a high antibody titer were fused with P3.X63-Ag8.653 mouse myeldm cells using polyethylene glycol 4000. The hybridoma cells were then selected in microtiter plates in HAT medium (Kohler ef Milstein, 1975; Kearney et al. , 1979).

Bestemmelsen av antistofftrteret i serum, resp. screeningen av hybridom-supematanten, ble foretatt ved hjelp av en ELISA. Ved denne test ble mikrotiterplater først belagt med fusjonsprotein (GST-CD44v3-10) eller bare med glutation-S-transferase. Deretter ble disse inkubert med seriefortynninger av serumprøver, resp. hybridom-supernatanter, og de spesifikke antistoff påvist med peroksydase-konjugerte antistoff mot mus-immunglobulin. Hybridomer som bare. reagerte med glutation-S-transferase, ble kassert. Gjenværende antistoffer ble deretter karakterisert med domene-spesifikke fusjonsproteiner (exon v3, exon v5 + v6, The determination of the antibody titer in serum, resp. the screening of the hybridoma supernatant was carried out by means of an ELISA. In this test, microtiter plates were first coated with fusion protein (GST-CD44v3-10) or only with glutathione-S-transferase. These were then incubated with serial dilutions of serum samples, resp. hybridoma supernatants, and the specific antibody detected with peroxidase-conjugated antibody against mouse immunoglobulin. Hybridomas that just. reacted with glutathione-S-transferase, was discarded. Remaining antibodies were then characterized with domain-specific fusion proteins (exon v3, exon v5 + v6,

exon v6 + v7, exon v8 - v10) ved hjelp av en ELISA (Koopman ef a/., 1993). Deres immunhistokjemiske reaktivitet ble testet på humane hudsnitt. exon v6 + v7, exon v8 - v10) by means of an ELISA (Koopman ef a/., 1993). Their immunohistochemical reactivity was tested on human skin sections.

BIWA-1 (VFF-18; angående fremstilling og egenskaper, se også BIWA-1 (VFF-18; regarding manufacture and properties, see also

WO 95/33771) bandt seg kun til fusjonsproteiner som inneholdt et domene som ble kodet av exonet v6. For å ytterligere avgrense antistoffets epitop, ble forskjellige syntetiske peptider som representerte deler av v6-domenet, benyttet i en ELISA-bindingstest (Fig. 1). Det 14 aminosyrers peptid v6D oppviste den sterkeste binding. Følgelig ligger epitopen av BIWA-1 helt eller delvis innenfor sekvensen QWFGNRWHEGYRQT, domenet som kodes av exon v6. Denne sekvens er homolog med bindingsepitopen til antistoffet 1.1 AS ML, som ble benyttet i en terapeutisk rottemodell, og som er spesifikk for rotte-CD44v6 (Fig. 1). WO 95/33771) bound only to fusion proteins containing a domain encoded by exon v6. To further delineate the antibody's epitope, different synthetic peptides representing parts of the v6 domain were used in an ELISA binding test (Fig. 1). The 14 amino acid peptide v6D showed the strongest binding. Accordingly, the epitope of BIWA-1 lies wholly or partially within the sequence QWFGNRWHEGYRQT, the domain encoded by exon v6. This sequence is homologous to the binding epitope of the antibody 1.1 AS ML, which was used in a therapeutic rat model, and which is specific for rat CD44v6 (Fig. 1).

Immunhistokjemi Immunohistochemistry

Før inkuberingen med primær-antistoffet ble parafinsnitt (4 um) deparafinert tre ganger å 10 minutter i Rotihistol (Roth, Tyskland) og deretter rehydrert i en stigende alkoholrekke. Snittene ble gitt en kort vask med destillert vann, og deretter kokt i 0,01 M Na-citratbuffer i en mikrobølgeovn (Sharp Model R-6270) tre ganger å 10 minutter ved 600Watt. Etter hver mikrobølge-inkubering ble snittene avkjølt i 20 minutter. Etter det siste avkjølingstrinn ble bærerne vasket i PBS og preinkubert med normalt geiteserum (10% i PBS). Etter tre vaskinger i PBS ble snittene inkubert i 1 time med primær-antistoff (BIWA-1:5 ug/mL; mus-IgG (isotype - tilsvarende negativ kontroll) 5 ug/mL i PBS/1% BSA). Som positiv kontroll f or farvereaksjonen ble det benyttet normale humane hudsnitt, da keratinocytter uttrykker en CD44-isoform som inneholder v3-v10. Endogene peroksydaser ble blokkert med 0,3% H202 i PBS, og snittene ble inkubert med det biotinylerte sekundær-antistoff (anti-mus lgG-F(ab')2, DAKO Corp.) i 30 minutter. For farveutvikling ble snittene inkubert i 30 minutter med pepperrot-peroksydase som var koblet til biotin som streptavidin-biotin-peroksydasekompleks (DAKO Corp.). Snittene ble deretter inkubert i 3,3-amino-9-etyl-karbazol-substrat (Sigma Immunochemicals) i 5-10 minutter, hvoretter reaksjonen ble stanset med H20 og snittene kontrastfar<g>et med hematoxylin. Vurderingen av (arvingene ble foretatt med et Zeiss-Axioskop-lysmikroskop, og farveintensitetene kvantifisert på følgende måte: +++, sterk ekspresjon; ++, moderat ekspresjon; +, svak ekspresjon; -, ikke entydig eller ingen påvisbar ekspresjon. Bare tumorceller med en klar membranfarving ble betraktet som positive. Prosentandelen positive tumorceller i hvert snitt ble grovt anslått og det ble opprettet to grupper: fokalt positive tumorer (mindre enn 10% av tumorcellene reagerte med antistoffet) og positive tumorer (10% eller mer av tumorcellene var positive). Når mindre enn 80% av tumorcellene i de positive cellene reagerte med antistoffet, ble det tilsvarende prosenttall angitt. Before the incubation with the primary antibody, paraffin sections (4 µm) were deparaffinized three times for 10 min in Rotihistol (Roth, Germany) and then rehydrated in an ascending alcohol series. The sections were given a brief wash with distilled water, and then boiled in 0.01 M Na-citrate buffer in a microwave oven (Sharp Model R-6270) three times for 10 minutes at 600 Watts. After each microwave incubation, the sections were cooled for 20 minutes. After the last cooling step, the carriers were washed in PBS and preincubated with normal goat serum (10% in PBS). After three washes in PBS, the sections were incubated for 1 hour with primary antibody (BIWA-1: 5 ug/mL; mouse IgG (isotype - corresponding negative control) 5 ug/mL in PBS/1% BSA). As a positive control for the color reaction, normal human skin sections were used, as keratinocytes express a CD44 isoform containing v3-v10. Endogenous peroxidases were blocked with 0.3% H 2 O 2 in PBS, and the sections were incubated with the biotinylated secondary antibody (anti-mouse IgG-F(ab')2, DAKO Corp.) for 30 minutes. For color development, the sections were incubated for 30 minutes with horseradish peroxidase linked to biotin as streptavidin-biotin-peroxidase complex (DAKO Corp.). The sections were then incubated in 3,3-amino-9-ethylcarbazole substrate (Sigma Immunochemicals) for 5-10 minutes, after which the reaction was stopped with H 2 O and the sections counterstained with hematoxylin. The assessment of (heirs was performed with a Zeiss-Axioskop light microscope, and the staining intensities quantified as follows: +++, strong expression; ++, moderate expression; +, weak expression; -, ambiguous or no detectable expression. Tumor cells only with a clear membrane staining were considered positive. The percentage of positive tumor cells in each section was roughly estimated and two groups were created: focally positive tumors (less than 10% of the tumor cells reacted with the antibody) and positive tumors (10% or more of the tumor cells were When less than 80% of the tumor cells in the positive cells reacted with the antibody, the corresponding percentage was indicated.

126 tilfeller av plateepitelkarsinomer av ulik opprinnelse ble analysert med det CD44v6-spesifikke monoklonale antistoff BIWA-1. Ekspresjon av CD44v6-holdige isoformer ble observert i alle tumorprøver unntatt en. Størsteparten av prøvene oppviste en ekspresjon av antigenet på 80-100% av tumorcellene, og f arvingen var begrenset til tumorcellemembranen. Med stromavev, lymfocytter, muskelceller eller endotel, ble det ikke observert noen reaksjon. 126 cases of squamous cell carcinomas of various origins were analyzed with the CD44v6-specific monoclonal antibody BIWA-1. Expression of CD44v6-containing isoforms was observed in all but one tumor sample. The majority of the samples showed an expression of the antigen on 80-100% of the tumor cells, and the inheritance was limited to the tumor cell membrane. With stromal tissue, lymphocytes, muscle cells or endothelium, no reaction was observed.

For å kvantifisere ekspresjonen av CD44v6-molekyler på disse tumorcellene ble snitt av normal menneskehud farvet parallelt med tumorsnittene. Normale hudkeratinocytter uttrykker høye CD44-isoformspeil og regnes blant de sterkeste CD44v6-uttrykkende normale celler som hittil er beskrevet. Keratinocyttfarvingen ble derfor valgt som referanse og klassifisert som "sterk" (+++) i vårt vurdeirngssystem. I flesteparten av de undersøkte tumorprøvene var farvingen av tumorcellene sammenlignbar, eller endog sterkere, enn farvingen av hudkeratinocytter, og bare få tilfeller oppviste svak (3 tilfeller av fymfeknutemetastaser) eller moderat (2 primærkarsinomer, 10 metastaser) tumorfarving. Farvereaksjonen innenfor et gitt tumorsnitt var meget homogen, idet de fleste av snittets tumorceller oppviste den samme farvingsintensitet. Det ble ikke observert signifikante forskjeller i CD44v6-ekspresjonsmønsteret mellom primærtumorer og metastaser. En detaljert sammenfatning av resultatene er vist i Tabell 1, og eksempler er vist i Fig. 2. To quantify the expression of CD44v6 molecules on these tumor cells, sections of normal human skin were stained parallel to the tumor sections. Normal skin keratinocytes express high levels of CD44 isoforms and are considered among the strongest CD44v6-expressing normal cells described to date. The keratinocyte staining was therefore chosen as a reference and classified as "strong" (+++) in our grading system. In most of the examined tumor samples, the staining of the tumor cells was comparable, or even stronger, than the staining of skin keratinocytes, and only a few cases showed weak (3 cases of lymph node metastases) or moderate (2 primary carcinomas, 10 metastases) tumor staining. The staining reaction within a given tumor section was very homogeneous, as most of the section's tumor cells showed the same staining intensity. No significant differences were observed in the CD44v6 expression pattern between primary tumors and metastases. A detailed summary of the results is shown in Table 1, and examples are shown in Fig. 2.

80-100% av tumorcellene reagerte positivt med BIWA-1.1 de tilfeller hvor færre tumorceller reagerte med antistoffet, er det tilsvarende prosenttall angitt. 80-100% of the tumor cells reacted positively with BIWA-1.1 in the cases where fewer tumor cells reacted with the antibody, the corresponding percentage is indicated.

Eksempel 2: Ekspresjon av CD44v6 i nyrecellekarsinomer, prostatakarsinomer og levermetastaser av kolonkarsinomer Example 2: Expression of CD44v6 in renal cell carcinomas, prostate carcinomas and liver metastases of colon carcinomas

Vev Loom

Det ble analysert 19 tilfeller av nyrecellekarsinomer (12 tilfeller klare celler, 5 tilfeller kromofile, 1 tilfelle kromofob, 1 onkocytom), 16 primære adenokarsinomer av prostata og 19 tilfeller av lymfeknutemetastaser av prostatakarsinomer, samt 30 tilfeller av levermetastaser av kolonkarsinomer. 19 cases of renal cell carcinomas were analyzed (12 cases of clear cells, 5 cases of chromophilic, 1 case of chromophobe, 1 oncocytoma), 16 primary adenocarcinomas of the prostate and 19 cases of lymph node metastases of prostate carcinomas, as well as 30 cases of liver metastases of colon carcinomas.

Antistoff Antibody

BIWA-1 (se Eksempel 1) BIWA-1 (see Example 1)

Immunhistokjemi Immunohistochemistry

Utførelse, se Eksempel 1. Execution, see Example 1.

I motsetning til plateepitelkarsinomene kunne det i flesteparten av de undersøkte nyrecelle- og prostatakarsinomer ikke påvises noen, eller bare en fokal, ekspresjon av CD44v6-isoformer. Ved forekomst av en mer enn fokal ekspresjon av prostatakarsinomene, var farvingen overveiende diffus cytoplasmatisk og svakt eller heterogen sammenlignet med farvingen av normalt prostataepitel. 150% av de undersøkte levermetastaser av kolonkarsinomer ble det påvist en mer enn fokal ekspresjon av CD44v6-tsoformer. Farvingen av flesteparten av tilfellene var svak til middels, idet oftest mindre enn 100% av tumorcellene i en prøve oppviste en farving med BIWA-1. En sammenfatning av resultatene er gjengitt i Tabell 2. In contrast to the squamous cell carcinomas, no, or only a focal, expression of CD44v6 isoforms could be detected in most of the examined renal cell and prostate carcinomas. In the presence of a more than focal expression of the prostate carcinomas, the staining was predominantly diffuse cytoplasmic and weak or heterogeneous compared to the staining of normal prostate epithelium. In 150% of the examined liver metastases of colon carcinomas, a more than focal expression of CD44v6 isoforms was detected. The staining of the majority of the cases was weak to medium, as often less than 100% of the tumor cells in a sample showed staining with BIWA-1. A summary of the results is given in Table 2.

Eksempel 3: karakterisering av CD44v6-spesifikke antistoffer Example 3: characterization of CD44v6-specific antibodies

Cellelinje Cell line

Den humane SCC-cellelinje A-431 (spontant epidermoid vulva-karsinom) ble anskaffet fra American Type Culture Collection (Rockwell MD) og dyrket i henhold til produsentens anvisninger. Overflateekspresjonen av CD44v6-holdigé isoformer ble bestemt ved FACS-analyse, idet en FITC-forbundet mAb BIWA-1 ble benyttet. The human SCC cell line A-431 (spontaneous epidermoid vulvar carcinoma) was obtained from the American Type Culture Collection (Rockwell MD) and cultured according to the manufacturer's instructions. The surface expression of CD44v6-holdigé isoforms was determined by FACS analysis, using a FITC-linked mAb BIWA-1.

Analyse av de kinetiske konstanter Analysis of the kinetic constants

Bestemmelsene av affiniteten og kinetikken av den monoklonale antistoff-CD44v6-vekselvirkning ble foretatt ved SPR (Surface Plasmon Resonance), idet det ble benyttet et BIAcore 2000 system (Pharmacia Biocensor). Et glutation-S-transferase-CD44-fus]onsprotein som inneholdt den region som koder for exonet v3-v10 (GST/CD44v3-vtO) ble immobilisert på en CM5 Sensor-Chip, hvorunder aminkoblingsmetoden ble foretatt i henhold til produsentens angivelser. Antistoffer i forskjellige konsentrasjoner (8-132 nM) i HBS (10 mM Hepes, pH 7,4,150 mM natriumklorid, 3,4 mM EDTA, 0,05% BIAcore overflateaktivt P20) ble injisert over den antigen-spesifikke overflate med en strømningshastighet på 5 pl/min. Vekselvirkningen ble tegnet opp som forandring av SPR-signalet. Dissosiasjonen av antistoffene ble observert i bufferstrøm (HBS) i 5 minutter. Chip-overflaten ble regenerert med en enkelt puls av 15 uL 30 mM HCI. Analysé av dataene og beregning av de kinetiske konstantene ble foretatt med Pharmacia Biosensor BIA Evaluation Software, versjon 2.1. The determinations of the affinity and kinetics of the monoclonal antibody-CD44v6 interaction were made by SPR (Surface Plasmon Resonance), using a BIAcore 2000 system (Pharmacia Biocensor). A glutathione-S-transferase-CD44 fusion protein containing the region coding for exon v3-v10 (GST/CD44v3-vtO) was immobilized on a CM5 Sensor-Chip, during which the amine coupling method was performed according to the manufacturer's instructions. Antibodies at various concentrations (8-132 nM) in HBS (10 mM Hepes, pH 7.4, 150 mM sodium chloride, 3.4 mM EDTA, 0.05% BIAcore surfactant P20) were injected over the antigen-specific surface at a flow rate of 5 pl/min. The interaction was plotted as a change in the SPR signal. The dissociation of the antibodies was observed in buffer flow (HBS) for 5 minutes. The chip surface was regenerated with a single pulse of 15 µL of 30 mM HCl. Analysis of the data and calculation of the kinetic constants was carried out with the Pharmacia Biosensor BIA Evaluation Software, version 2.1.

På denne måte ble antigenaffiniteten av BIWA-1 sammenlignet med andre CD44v6-spesifikke mAbs (VFF4, VFF7, BBA-13 (IgGI, R&D Systems, Abingdon, Storbritannia)). Kinetiske konstanter og affinitetskonstanter for de forskjellige antistoffer ble hver gang bestemt i 2 uavhengige forsøk. Tabell 3 viser verdiene for assosiasjonhastighetene (M. dissosiasjonshastighetene (kd) og dissosiasjonskonstanten (Kd) for de 4 mAbs. Alle mAbs viste lignende ka og kd med unntak av BBA-13, som har en 3 ganger lavere ka. og VFF7 som oppviser en signifikant høyere dissosiasjonshastighet (faktor 5) sammenlignet med de øvrige mAbs. Dette resulterer i en lavere bindingsaffinitet for VFF7 og BBA-13 sammenlignet med VFF4 og BIWA-1. BIWA-1 oppviser den laveste Kd av alle undersøkte antistoffer. In this way, the antigen affinity of BIWA-1 was compared with other CD44v6-specific mAbs (VFF4, VFF7, BBA-13 (IgGI, R&D Systems, Abingdon, UK)). Kinetic constants and affinity constants for the different antibodies were each time determined in 2 independent experiments. Table 3 shows the values of the association rates (M, the dissociation rates (kd) and the dissociation constant (Kd) for the 4 mAbs. All mAbs showed similar ka and kd with the exception of BBA-13, which has a 3-fold lower ka. and VFF7, which exhibits a significantly higher dissociation rate (factor 5) compared to the other mAbs. This results in a lower binding affinity for VFF7 and BBA-13 compared to VFF4 and BIWA-1. BIWA-1 exhibits the lowest Kd of all antibodies examined.

Analyse av antistoff-protein-vekselvirkning ved hjelp av ELISA Analysis of antibody-protein interaction using ELISA

CD44v6-uttrykkende A-431 -celler ble dyrket i 96-brønns plater (Falcon Microtest 111, Becton Dickinson, Lincoln Park, NJ) i et antall på 5 x 10<4> per brønn i RPM11640 med 10% føtalt kalveserum ved 37°C over natten. Etter en vasking med PBS/0,05% Tween 20 ble cellene fiksert med iskald etanol i 1 minutt, hvoretter det fulgte et vasketrinn. Inkubasjonen med primærantistoffene (VFF4, VFF7, BIWA-1, BBA-13,1 ng/mL til 600 ng/mL, hver gang i bestemmelsesbuffer:PBS/0,5% BSA/0,05%Tween 20) foregikk i 1 time ved romtemperatur og ble etterfulgt av 3 vasketrinn. Som sekundærantistoff ble det benyttet et kanin-antimus-lgG-pepperrot-peroksydase-konjugert antistoff (DAKO Corporation, København, Danmark; fortynning 1:6000 i bestemmelsesbuffer) (1 time/RT). Etter 3 vasketrinn ble larveutviklingen foretatt med TMB-løsning (Kirkegaard + Perry, Gaithersburg, USA). Ekstinksjonen ble målt med en Hewlett-Packard ELISA-Reader. CD44v6-expressing A-431 cells were grown in 96-well plates (Falcon Microtest 111, Becton Dickinson, Lincoln Park, NJ) at a number of 5 x 10<4> per well in RPM11640 with 10% fetal calf serum at 37° C overnight. After a wash with PBS/0.05% Tween 20, the cells were fixed with ice-cold ethanol for 1 minute, after which a washing step followed. The incubation with the primary antibodies (VFF4, VFF7, BIWA-1, BBA-13.1 ng/mL to 600 ng/mL, each time in determination buffer: PBS/0.5% BSA/0.05% Tween 20) took place for 1 hour at room temperature and was followed by 3 washing steps. A rabbit-anti-mouse-IgG-horseradish-peroxidase-conjugated antibody (DAKO Corporation, Copenhagen, Denmark; dilution 1:6000 in assay buffer) was used as secondary antibody (1 hour/RT). After 3 washing steps, larval development was carried out with TMB solution (Kirkegaard + Perry, Gaithersburg, USA). Extinction was measured with a Hewlett-Packard ELISA-Reader.

Figur 3 viser at antistoffenes relative affinitet slik de ble bestemt ved BIAcore-analyse, reflekteres gjennom deres vekselvirkning med tumorcellene, idet BIWA-1 klart oppviser den høyeste bindingsaffinitet. Figure 3 shows that the relative affinity of the antibodies as determined by BIAcore analysis is reflected through their interaction with the tumor cells, BIWA-1 clearly showing the highest binding affinity.

De protein-domener som kodes av CD44-exon v6, består av 45 aminosyrer (Figur 4). For mer presist å definere den epitop som gjenkjennes av BIWA-1, ble det anvendt en rekke syntetiske peptider i ELISA-bestemmelsér. Forutgående forsøk viste en binding til en sentralt lokalisert 14-mer (aminosyrerestene 18-31; Figur 4; sml. også Figur 1), men ikke til peptider utenfor denne region. Det ble derfor syntetisert en annen serie av peptider som ble testet i kompetitive ELISA-bestemmelser (Figur4). Resultatene viserat peptidet 19-29 (WFGNRWHEGYR) representerer den minimalstruktur som fordres for høyaffinitetsbinding. Elimineringen av den C-terminale argininrest ga en mer enn 100 ganger svakere binding. The protein domains encoded by CD44 exon v6 consist of 45 amino acids (Figure 4). To more precisely define the epitope recognized by BIWA-1, a number of synthetic peptides were used in ELISA assays. Previous experiments showed a binding to a centrally located 14-mer (amino acid residues 18-31; Figure 4; cf. also Figure 1), but not to peptides outside this region. Another series of peptides was therefore synthesized and tested in competitive ELISA determinations (Figure 4). The results show that peptide 19-29 (WFGNRWHEGYR) represents the minimal structure required for high-affinity binding. The elimination of the C-terminal arginine residue produced a more than 100-fold weaker binding.

Eksempel 4: Biofordeling av radiojodert CD44v6-antistoff i nakne mus som var bærer av xenotransplantat Example 4: Biodistribution of radioiodinated CD44v6 antibody in nude mice that were carriers of xenograft

A-431 -xenotransplantat-modell A-431 xenograft model

Åtte uker gamle Balb/c nu/nu nakne hunnmus (B & K Universal, Renton, W A) ble subkutant injisert i den venstre side i midtlinje 5 x 106 dyrkede A-431-celler (humant epidermoid vulva-karsinom). Xenotransplanterte dyr som var bærere av A-431 -tumorer ble benyttet for biofordelingsforsøkene i løpet av 2 uker (tumorvekt 40-50 mg). Eight-week-old female Balb/c nu/nu nude mice (B & K Universal, Renton, WA) were subcutaneously injected in the left side in the midline with 5 x 10 6 cultured A-431 cells (human epidermoid vulvar carcinoma). Xenotransplanted animals that were carriers of A-431 tumors were used for the biodistribution experiments during 2 weeks (tumor weight 40-50 mg).

Radiojodering av BIWA-1 Radioiodination of BIWA-1

Protein G-renset mAb BIWA-1 (murin lgG1) ble koblet til streptavidin, idet den heterobifunksjonelle krysslinker succinimidyl-4-(N^maleimido-metyl)cykloheksan-1 - karboksylat ble benyttet. Streptavidin-lysyl-rester ble forbundet med reduserte antistoff-cysteinyl-rester som var frembragt ved ditiotreitol-forbehandling av antistoffet. Oppnådde 1:1-konjugater (>90%) ble renset ved ionebytter-kromatografi. For biofordelingsforsøkene ble BIWA-1 /SA markert via primære aminer av lysin med <125>l, idet det ble benyttet p-jodfenyl-markeringsreagens (PIP; NEN Dupont, Wilmington, DE), etterfulgt av fremgangsmåten til Wilbur ef al., (1989). Markering av BIWA-1 med SÅ eller <126>l endret ikke antistoffets immunreaktivitet eller farmokinetikk i mus. Protein G-purified mAb BIWA-1 (murine IgG1) was coupled to streptavidin, using the heterobifunctional cross-linker succinimidyl-4-(N^maleimido-methyl)cyclohexane-1-carboxylate. Streptavidin lysyl residues were associated with reduced antibody cysteinyl residues which had been produced by dithiothreitol pretreatment of the antibody. Obtained 1:1 conjugates (>90%) were purified by ion-exchange chromatography. For the biodistribution experiments, BIWA-1/SA was labeled via primary amines of lysine with <125>l, using p-iodophenyl labeling reagent (PIP; NEN Dupont, Wilmington, DE), following the procedure of Wilbur et al., ( 1989). Labeling of BIWA-1 with SÅ or <126>l did not change the antibody's immunoreactivity or pharmacokinetics in mice.

Biofordelingsforsøk Biodistribution experiments

Nakne mus som var xenotransplantert med humane A-431-tumorer ble intravenøst (i.v.) injisert 5-7 ji Ci <125>l på 50 ug mAb BIWA-1 (spesifikk aktivitet 0,1-0,14 mCi/mg) gjennom den laterale halevene. Tidsforløps-biofordélingsstudierble foretatt i grupper på n=3 dyr per tidspunkt, 4,24,48,120 og 168 timer etter injeksjon. Til utvalgte tidspunkter ble det fra veide mus tatt ut blodprøver via det retro-orbitale plexus og dyrene avlivet ved cervix-dislokasjon. Ni organer og vev, nemlig blod, hale, lunge, lever, milt, mavesekk, nyre, tarm og tumor, ble uttatt og veid. Radioaktiviteten i vev ble tellet i en gamma-scintillasjonsteller (Packard Instrument Company, Meriden, CT) og sammenlignet med standarder av det injiserte antistoffpreparat, hvorunder energivinduet ble innstillet på 25-80 keV for <125>l. Prosentdelen av injisert dose/g av vevet ble beregnet (% ID/g). Nude mice xenografted with human A-431 tumors were intravenously (i.v.) injected with 5-7 µl Ci <125>l of 50 µg mAb BIWA-1 (specific activity 0.1-0.14 mCi/mg) through the lateral tail veins. Time-course biodistribution studies were performed in groups of n=3 animals per time point, 4, 24, 48, 120 and 168 hours after injection. At selected times, blood samples were taken from weighed mice via the retro-orbital plexus and the animals euthanized by cervical dislocation. Nine organs and tissues, namely blood, tail, lung, liver, spleen, stomach, kidney, intestine and tumor, were removed and weighed. Radioactivity in tissue was counted in a gamma scintillation counter (Packard Instrument Company, Meriden, CT) and compared to standards of the injected antibody preparation, during which the energy window was set at 25-80 keV for <125>l. The percentage of injected dose/g of the tissue was calculated (% ID/g).

Forutgående forsøk hadde vist at BIWA-1 ikke kryssreagerte med murint CD44v6-antigen. Tabell 4 og Figur 5 viser opptaket av radioaktivitet i tumorer og normalvev. Joderte BIWA-1 viste et hurtig tumoropptak (7,6% injisert dose/g fire timer etter injeksjon) som økte til mer enn 18% ID/g ved 48 timer og deretter forble konstant opptil 120 timer. 7 dager etter injeksjon (168 timer) inneholdt svulsten fremdeles 15,3% ID/g vev. Tumorrvev-fprhold ble beregnet for individuelle tidspunkter og er vist i Tabell 4. Ved tidspunktet 24 timer etter injeksjon var tumonblod-forholdet 0,48 og økte til 3,16 på dag 7. Opptak t normalvev var lavt og Previous experiments had shown that BIWA-1 did not cross-react with murine CD44v6 antigen. Table 4 and Figure 5 show the absorption of radioactivity in tumors and normal tissue. Iodinated BIWA-1 showed a rapid tumor uptake (7.6% injected dose/g four hours after injection) which increased to more than 18% ID/g at 48 hours and then remained constant up to 120 hours. 7 days after injection (168 hours) the tumor still contained 15.3% ID/g tissue. Tumor tissue ratios were calculated for individual time points and are shown in Table 4. At 24 hours after injection, the tumor blood ratio was 0.48 and increased to 3.16 on day 7. Uptake in normal tissue was low and

var mest sannsynlig forårsaket av blodforråd-bakgrunn i vevsbiopsiene. Selektiv målretting in vivo av humane SCC-xenotransplantater i nakne mus med <12S>l-merkede BIWA-1 viste at disse monoklonale antistoffene oppviser et høyt potensiale som målsøkende bærer for diagnostisk og terapeutisk anvendelse i SCC-pasienter. was most likely caused by blood supply background in the tissue biopsies. Selective in vivo targeting of human SCC xenografts in nude mice with <12S>1-labeled BIWA-1 demonstrated that these monoclonal antibodies exhibit high potential as targeting carriers for diagnostic and therapeutic application in SCC patients.

Eksempel 5: Ulik ekspresjon av CD44v6 i et stort antall humantumorer Example 5: Differential expression of CD44v6 in a large number of human tumors

I en utvidet undersøkelse ble i alt 544 tumorprøver undersøkt immunhistokjemisk med det monoklonale antistoff BIWA-1 (klon VFF-18) på ekspresjonen av CD44v6. Prøvene var enten parafin-innleiret eller ble umiddelbart etter kirurgisk uttak nedfrosset i flytende nitrogen og oppbevart ved -70°C inntil anvendelse. Følgende tumorer ble analysert: basaliomer (n=16), adénokarsinomér (AC) i bryst (n=55), AC i kolon (n=83), plateepitelkarsinom (SCC) i hode og hals (n=125), lungekarsinom (n=120), prostata AC (n=34), nyrecellekarsinom (n=27), In an extended investigation, a total of 544 tumor samples were examined immunohistochemically with the monoclonal antibody BIWA-1 (clone VFF-18) for the expression of CD44v6. The samples were either paraffin-embedded or immediately after surgical removal they were frozen in liquid nitrogen and stored at -70°C until use. The following tumors were analyzed: basal cell carcinomas (n=16), adenocarcinomas (AC) of the breast (n=55), AC of the colon (n=83), squamous cell carcinoma (SCC) of the head and neck (n=125), lung carcinoma (n =120), prostate AC (n=34), renal cell carcinoma (n=27),

SCC i hud (n=15) og AC av mavesekk (n=69). Vevet ble tatt ved rutinekirurgi eller -biopsi, idet normalvev var det vev som ledsaget tumorprøvene. Den immunhistokjemiske undersøkelse ble utført som i Eksempel 1. SCC in skin (n=15) and AC of stomach (n=69). The tissue was taken during routine surgery or biopsy, as normal tissue was the tissue that accompanied the tumor samples. The immunohistochemical examination was performed as in Example 1.

Tabell 5 viser en oversikt over den immunhistokjemiske analyse åv 397 forskjellige tumorprøver med mAb BIWA1. Table 5 shows an overview of the immunohistochemical analysis of 397 different tumor samples with mAb BIWA1.

Ved småcellede lungekarsinomer, nyrecellekarsinomer og AC av prostata ble det ikke observert noen eller kun svak reaktivitet. Alle andre undersøkte tumortyper uttrykte CD44v6-hofdige isoformer i forskjellig grad. De fleste av de undersøkte AC fra bryst oppviste reaktivitet med BIWA 1, og de testede SCC (larynx, lunge og øsofagus) uttrykte CD44v6 i 100% av tilfellene. In small cell lung carcinomas, renal cell carcinomas and AC of the prostate, no or only weak reactivity was observed. All other tumor types examined expressed CD44v6-rich isoforms to varying degrees. Most of the examined AC from the breast showed reactivity with BIWA 1, and the tested SCC (larynx, lung and esophagus) expressed CD44v6 in 100% of the cases.

Det ble i alt undersøkt 185 tilfeller av SCC av forskjellige typer og klassifikasjon på reaktivitet med BIWA 1. Blant disse var 67 tilfeller av primær SCC (larynx, n«15; munnhule, n=16, orofarynx, n=3; hud, n=15), 77 prøver av lymfeknutemetastaser (larynx, n=12; lunge, n=27; øsofagus, n=11; munnhule, n=6, orofarynx, n=7; hypofarynx, n=10; tonsiller, n=4) og tre prøver av levermetastaser (øsofagus). Tabell 6 viser en oversikt over den immunhistokjemiske analyse av alle undersøkte SCC-prøver. A total of 185 cases of SCC of different types and classification on reactivity with BIWA 1 were examined. Among these, 67 cases were of primary SCC (larynx, n«15; oral cavity, n=16, oropharynx, n=3; skin, n =15), 77 samples of lymph node metastases (larynx, n=12; lung, n=27; esophagus, n=11; oral cavity, n=6, oropharynx, n=7; hypopharynx, n=10; tonsils, n=4 ) and three samples of liver metastases (oesophagus). Table 6 shows an overview of the immunohistochemical analysis of all examined SCC samples.

Fokal pos.: < 10% av tumorcellene positive; LNM: lymfeknutemetastase; Focal pos.: < 10% of tumor cells positive; LNM: lymph node metastasis;

PT: primærtumor; LM: levermetastaser PT: primary tumor; LM: liver metastases

Ekspresjon av CD44v6-holdige isoformer ble funnet i alle tumorprøver unntatt tre (et larynx-tilfelle, 2 lungelilfeller). De fleste prøvene viste en ekspresjon av antigenet på 80 til 100% av tumorcellene innenfor et enkelt snitt, hvor farvingen hovedsakelig var konsentrert til tumorcellemembranen. Det sterkeste homogene farvingsmønster ble funnet i karsinomer av larynx, øsofagus og hypofarynx, hvorunder de fleste av snittets tumorceller oppviste den samme farvingsintensitet. Expression of CD44v6-containing isoforms was found in all but three tumor samples (one larynx case, 2 lung cases). Most samples showed an expression of the antigen on 80 to 100% of the tumor cells within a single section, where the staining was mainly concentrated to the tumor cell membrane. The strongest homogeneous staining pattern was found in carcinomas of the larynx, esophagus and hypopharynx, where most of the section's tumor cells showed the same staining intensity.

Litteratur Literature

Altenschmidt U, Kahl R, Moritz D, Schnierle BS, Gerstmayer B, Wels W, Groner B. Cytoplysis of tumor cells expressing the neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clinicat Cancer Res. 2:1001-1008 (1996). Altenschmidt U, Kahl R, Moritz D, Schnierle BS, Gerstmayer B, Wels W, Groner B. Cytoplysis of tumor cells expressing the neu/erbB-2, erbB-3, and erbB-4 receptors by genetically targeted naive T lymphocytes. Clinicat Cancer Res. 2:1001-1008 (1996).

Barbas C F, Bjoding E, Chiodi F, Dunlop N, Cababa Dt Jones T M, Zebedee S L, Persson M A A, Nara P L, Norrby E, Burton D R. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vhro. Proe. Nati. Acad. Sei. U. S. A. 89:9339-9343 (1992). Barbas C F, Bjoding E, Chiodi F, Dunlop N, Cababa Dt Jones T M, Zebedee S L, Persson M A A, Nara P L, Norrby E, Burton D R. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vhro. Pro. Nati. Acad. Pollock. U.S.A. 89:9339-9343 (1992).

Baum RP, Noujaim AA, Nanci A, Moebus V, Hertel A, Niesen A, Donnerstag B, Sykes T, Boniface G, Hor G. Clinical course of ovarian cancer patients under repeated stimulation of HAMA using MAb OC125 and B43.13. Hybridoma 12( 5) : 583-589(1993). Baum RP, Noujaim AA, Nanci A, Moebus V, Hertel A, Niesen A, Donnerstag B, Sykes T, Boniface G, Hor G. Clinical course of ovarian cancer patients under repeated stimulation of HAMA using MAb OC125 and B43.13. Hybridoma 12(5): 583-589(1993).

Becker JC, Varki N, Gillies SD, Furukawa K, Reisfeld RA. An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Proe. nati. Acad. Sei. USA 53:7826-7831 (1996). Becker JC, Varki N, Gillies SD, Furukawa K, Reisfeld RA. An antibody-interleukin 2 fusion protein overcomes tumor heterogeneity by induction of a cellular immune response. Pro. nati. Acad. Pollock. USA 53:7826-7831 (1996).

Breitz H B, Weiden P L, Vanderheyden J-L, Appelbaum J W, Bjom M J, Fer M F, Wolf S B, Ratcliff B A, Seiler C A, Foisie D C, Fisher D R, Schroff R W, Fritzberg A R, Abrams P G. Clinical experience with rhenium-186-labeled monoclonal antibodies for radioimmunotherapy: results of phase I trials. J. Nucl. Med. 33:1099-1112 Breitz H B, Weiden P L, Vanderheyden J-L, Appelbaum J W, Bjom M J, Fer M F, Wolf S B, Ratcliff B A, Seiler C A, Foisie D C, Fisher D R, Schroff R W, Fritzberg A R, Abrams P G. Clinical experience with rhenium-186- labeled monoclonal antibodies for radioimmunotherapy: results of phase I trials. J. Nucl. With. 33:1099-1112

(1992). (1992).

Breitz H B, Durham J S, Fisher D R, Weiden P L, DeNardo G L, Goodgold H M, Nelp W B. Phrmacokinetics and normal organ dosimetry following intraperitoneal rhenium-186-labeled monoclonal antibody. J. Nucl. Med 36:754 (1995). Breitz H B, Durham J S, Fisher D R, Weiden P L, DeNardo G L, Goodgold H M, Nelp W B. Phrmacokinetics and normal organ dosimetry following intraperitoneal rhenium-186-labeled monoclonal antibody. J. Nucl. Med 36:754 (1995).

Brooks, L., Niedobitek, G., Agathanggelou, A., Farrell, P.J. The expression of variant CD44 in nasopharyngeal carcinoma is unrelated to expression of LMP-1. Am. J. Pathol. 746Y5>: 1102-12 (1995). Brooks, L., Niedobitek, G., Agathanggelou, A., Farrell, P.J. The expression of variant CD44 in nasopharyngeal carcinoma is unrelated to expression of LMP-1. Am. J. Pathol. 746Y5>: 1102-12 (1995).

Catty, D (Utg.). Antibodies Vols. I und II. IRL Press Oxford (1989). Catty, D (Ed.). Antibodies Vols. I and II. IRL Press Oxford (1989).

Catty, D., Raykundalia, C. ELISA and related immunoassays. i: Catty, D (Utg.). Antibodies Vol. II. IRL Press Oxford (1989), 97-152, s. S. 105-109. Catty, D., Raykundalia, C. ELISA and related immunoassays. in: Catty, D (Ed.). Antibodies Vol. II. IRL Press Oxford (1989), 97-152, pp. 105-109.

Catty, D., Murphy, G. Immunoassays using radiolabels. i: Catty, D<Utg.). Antibodies Vol. II. IRL Press Oxford (1989), 77-96. Catty, D., Murphy, G. Immunoassays using radiolabels. in: Catty, D<Ed.). Antibodies Vol. II. IRL Press Oxford (1989), 77-96.

Chatal J-F, Saccavini J-C, Gestin J-F, Thédrez P, Curtet C, Kremer M, Guerreau D, Nolibé D, Fumoleau P, Guillard Y. Biodistribution of indium-111-labeledOC 125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas. Cancer Res. 49:3087-3094 (1989). Chatal J-F, Saccavini J-C, Gestin J-F, Thédrez P, Curtet C, Kremer M, Guerreau D, Nolibé D, Fumoleau P, Guillard Y. Biodistribution of indium-111-labeledOC 125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas. Cancer Res. 49:3087-3094 (1989).

Chaudhary V K, Batra J K, Galdo M G, Willingham M C, Fitzgerald D J, Pastan I. A rapid method of doning functional variable-region antibody genes in Escherichia eoli as single-chain immunotoxins. Proe. Nati. Acad. Sei. U. S. A. 87:1066 (1990). Colcher 0, Esteban J, Carrasquillo J A, Sugarbaker P, 'Reynolds J C, BryantG, Larson S M, Schlom J. Complementation of intracavrtary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res. 47:4218-4224 (1987). Chaudhary V K, Batra J K, Galdo M G, Willingham M C, Fitzgerald D J, Pastan I. A rapid method of donating functional variable-region antibody genes in Escherichia eoli as single-chain immunotoxins. Pro. Nati. Acad. Pollock. U.S.A. 87:1066 (1990). Colcher 0, Esteban J, Carrasquillo J A, Sugarbaker P, 'Reynolds J C, BryantG, Larson S M, Schlom J. Complementation of intracavrtary and intravenous administration of a monoclonal antibody (B72.3) in patients with carcinoma. Cancer Res. 47:4218-4224 (1987).

Coloma M J, Hastings A, Wims L A, Morrison S L. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J. Immunol. Methods 152:89-104 (1992). Coloma M J, Hastings A, Wims L A, Morrison S L. Novel vectors for the expression of antibody molecules using variable regions generated by polymerase chain reaction. J. Immunol. Methods 152:89-104 (1992).

Featherstone C. Bispecific antibodies: the new magic bullets. Lancet 348:536 Featherstone C. Bispecific antibodies: the new magic bullets. Lancet 348:536

(1996). (1996).

Friedmann P N, McAndrew S J, Gawlak S L, Chace D, Trail P A, Brown J P, Siegall C B. BR96 sFv-PE40, a potent single-chain immunotoxin thatselectively kills carcinoma cells. Cancer Res. 53:334-339 (1993). Friedmann P N, McAndrew S J, Gawlak S L, Chace D, Trail P A, Brown J P, Siegall C B. BR96 sFv-PE40, a potent single-chain immunotoxin that selectively kills carcinoma cells. Cancer Res. 53:334-339 (1993).

Gerretsen M, Visser GWM, Brakenhoff RH, van Walsum M, SnowGB, van Dongen GAMS. Complete ablation of small squamous cell carcinoma xenografts with <186>Re-labeled monoclonal antibody E48. Cell Biophysics 24/ 25:135-141 (1994). Gerretsen M, Visser GWM, Brakenhoff RH, van Walsum M, Snow GB, van Dongen GAMS. Complete ablation of small squamous cell carcinoma xenografts with <186>Re-labeled monoclonal antibody E48. Cell Biophysics 24/25:135-141 (1994).

Goodwin D A. A new appoach to the problem of targeting specific monoclonal antibodies to human tumors using anti-hapten chimeric antibodies. J. Nucl. Med. Biol. 16:645 (1989). Goodwin D A. A new approach to the problem of targeting specific monoclonal antibodies to human tumors using anti-hapten chimeric antibodies. J. Nucl. With. Biol. 16:645 (1989).

Goodwin DA. Tumor pretargeting: almost the bottom line. J. Nucl. Med. 36( 5) : 876-879(1995). Goodwin DA. Tumor pretargeting: almost the bottom line. J. Nucl. With. 36(5): 876-879(1995).

Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zdller, M., HauBmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Celt 65:13-24 (1991). Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zdller, M., HauBmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Celt 65:13-24 (1991).

Guesdon, J. I., Ternynck, T., Avrameas, S. J. Histochem. Cytocheni. 27:1131 Guesdon, J.I., Ternynck, T., Avrameas, S.J. Histochem. Cytocheny. 27:1131

(1979). (1979).

Gussow D, Seemann G. Humanization of monoclonal antibodies. Methods Enzymol. 203:99-121 (1991): Heider, K.-H., Hofmann, M., Horst, E., van den Berg, F., Ponta, H., Herrlich, P., and Pals, S.T.A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J. Cell Biol. 120:227-233(1993). Heider, K.-H., Mulder, J.-W. R, Ostermann, E., Susani, S., Patzelt, E., Pals, S.T., Adolf, G.R. Splice variants of the cells surface glycoprotein CD44 associated with metastatic tumor cells are expressed in normal tissues of humans and cynomolgus monkeys. Eur. J. Cancer 3M.2385-2391 (1995). Gussow D, Seemann G. Humanization of monoclonal antibodies. Methods Enzymol. 203:99-121 (1991): Heider, K.-H., Hofmann, M., Horst, E., van den Berg, F., Ponta, H., Herrlich, P., and Pals, S.T.A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps. J. Cell Biol. 120:227-233 (1993). Heider, K.-H., Mulder, J.-W. R, Ostermann, E., Susani, S., Patzelt, E., Pals, S.T., Adolf, G.R. Splice variants of the cell surface glycoprotein CD44 associated with metastatic tumor cells are expressed in normal tissues of humans and cynomolgus monkeys. Eur. J. Cancer 3M. 2385-2391 (1995).

Heider K H, Ratschek M, Zatloukal K, Adolf G R. Expression of CD44 isoforms in human renal cell carcinomas. Virchows Arch. 428:267-273 (1996a). Heider K H, Ratschek M, Zatloukal K, Adolf G R. Expression of CD44 isoforms in human renal cell carcinomas. Virchow's Arch. 428:267-273 (1996a).

Heider KH, Sproll M, Susani S, Patzelt E, Beaumier P, Ostermann E, Ahom H, Adolf GR. Characterization of a high-affinrty monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. Cancer Immunot. Immunother. : in press. 1996. Heider KH, Sproll M, Susani S, Patzelt E, Beaumier P, Ostermann E, Ahom H, Adolf GR. Characterization of a high-affinity monoclonal antibody specific for CD44v6 as candidate for immunotherapy of squamous cell carcinomas. Cancer Immunot. Immunother. : in press. 1996.

Hemming AW, Davis NL, Finley RJ. Photodynamic therapy of squamous cell carcinoma: an evaluation of an anti-EGFR monoclonal antibody-prophyrin conjugate. Society of Surgical Oncoiogy, 46th Annual Cancer Symposium. Maren 18-21,1993, Los Angeles, CA, p. 67 Hemming AW, Davis NL, Finley RJ. Photodynamic therapy of squamous cell carcinoma: an evaluation of an anti-EGFR monoclonal antibody-prophyrin conjugate. Society of Surgical Oncoiogy, 46th Annual Cancer Symposium. Maren 18-21,1993, Los Angeles, CA, p. 67

Hofmann, M., Rudy, W., Zoller, M., Tokj, C, Ponta, H, Herrlich P., and Gunthert, U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res. 51:5292-5297 (1991). Hofmann, M., Rudy, W., Zoller, M., Tokj, C, Ponta, H, Herrlich P., and Gunthert, U. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines . Cancer Res. 51:5292-5297 (1991).

Johnson, G. D. Immunofluorescence. In: Catty, D (Hrsg). Antibodies Vol. II. IRL Press Oxford (1989), 179-200, s. S. 180-189. Johnson, G.D. Immunofluorescence. In: Catty, D (Editor). Antibodies Vol. II. IRL Press Oxford (1989), 179-200, pp. 180-189.

Johnson S, Bird R E. Construction of single-chain derivatives of monoclonal antibodies and their production in Escherichia coli. Methods Enzymol. 203:88-98 Johnson S, Bird R E. Construction of single-chain derivatives of monoclonal antibodies and their production in Escherichia coli. Methods Enzymol. 203:88-98

(1991). (1991).

Jurcic JG, Scheinberg DA. Recent Developments in the radioimmunotherapy of cancer. Current Opinion in Immunology 6:715-721 (1994). Jurcic JG, Scheinberg DA. Recent Developments in the radioimmunotherapy of cancer. Current Opinion in Immunology 6:715-721 (1994).

Juweid M, Sharkey R M, MarkowHz A, Behr T, Swayne L C, Dunn R, Hansen H J, Shevitz J, Leung S-O, Rubin A D, Herskovic T, Hanley D, Goldenberg D M. Treatment of Non-Hodgkins's lymphoma with radiolabeled murine, chimeric, or humanized LL2, an anti-CD22 monoclonal antibody. Cancer Res. ( Suppl.) 55:5899s-5907s (1995). Juweid M, Sharkey R M, MarkowHz A, Behr T, Swayne L C, Dunn R, Hansen H J, Shevitz J, Leung S-O, Rubin A D, Herskovic T, Hanley D, Goldenberg D M. Treatment of Non-Hodgkins's lymphoma with radiolabeled murine, chimeric, or humanized LL2, an anti-CD22 monoclonal antibody. Cancer Res. ( Suppl.) 55:5899s-5907s (1995).

Keamey, J.F., Radbruch A., Liesegang B., Rajewski K. A new mouse myeloma cell line that has lost imunoglobulin expression but permits construction of antibody-secreting hybrid cell lines. J. Immunol. 123:1548 (1979). Keamey, J.F., Radbruch A., Liesegang B., Rajewski K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits construction of antibody-secreting hybrid cell lines. J. Immunol. 123:1548 (1979).

Keenan A M, Weinstein J N, Carrasquillo J A, Bunn P A, Reynolds J C, Foon K A ef al. Immunolymphoscintigraphy and the dose dependence of<111> ln-labeled T101 monoclonal antibody in patients with cutaneous T-cell lymphoma. Cancer Res. 47: 6093-6099(1987). Keenan A M, Weinstein J N, Carrasquillo J A, Bunn P A, Reynolds J C, Foon K A et al. Immunolymphoscintigraphy and the dose dependence of<111> ln-labeled T101 monoclonal antibody in patients with cutaneous T-cell lymphoma. Cancer Res. 47: 6093-6099 (1987).

Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J. Immunother. 15:42-52 (1994). Khazaeli MB, Conry RM, LoBuglio AF. Human immune response to monoclonal antibodies. J. Immunother. 15:42-52 (1994).

Kohler, G., Milstein, C. Continous culture of fused cells secreting antibody of predefined specifity. Nature 265:495 (1975) Kohler, G., Milstein, C. Continuous culture of fused cells secreting antibody of predefined specificity. Nature 265:495 (1975)

Koopman, G., Heider, K.-H., Horts, E., Adolf,<3. R., van den Berg, F., Ponta, H., Herrlich, P., Pals, S. T. Activated human lymphocytes and aggressive Non-Hodgkin s lymphomas express a homologue of the rat metastasis-associated variant of CD44. J. Exp. Med. 777:897-904 (1993). Koopman, G., Heider, K.-H., Horts, E., Adolf,<3. R., van den Berg, F., Ponta, H., Herrlich, P., Pals, S. T. Activated human lymphocytes and aggressive Non-Hodgkin's lymphomas express a homologue of the rat metastasis-associated variant of CD44. J. Exp. Med. 777:897-904 (1993).

Kreitman R J Hansen H J, Jones A L, FitzGerald D J P, Goldenberg D M, Pastan I. Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab1 induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res. 53:819-825 (1993). Kreitman R J Hansen H J, Jones A L, FitzGerald D J P, Goldenberg D M, Pastan I. Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab1 induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res. 53:819-825 (1993).

Larson S M, Cheung N-K V, Leibel S A. Radioisotope Conjugates. In: DeVita V T, Hellman S, Rosenberg S A (Hrsg.). Biologic therapy of cancer. J. B. Lippincott Comp., Philadelphia, 496-511 (1991). Larson S M, Cheung N-K V, Leibel S A. Radioisotope Conjugates. In: DeVita V T, Hellman S, Rosenberg S A (Eds.). Biological therapy of cancer. J.B. Lippincott Comp., Philadelphia, 496-511 (1991).

Lenhard R E, Order S E, Spunberg J J, Asbell S O, Leibel S A. Isotopic immunoglobulin. A new systemic therapy for advanced HodgkitVs Disease. J. Clin. Lenhard R E, Order S E, Spunberg J J, Asbell S O, Leibel S A. Isotopic immunoglobulin. A new systemic therapy for advanced Hodgkit's Disease. J. Clin.

Oncol. 3:1296-1300 (1985). Oncol. 3:1296-1300 (1985).

Maraveyas A, Myers M, Stafford N, Rowlinson-Busza G, Stewart J S W, Epenetos A A. Radiolabeled antibody combined with extemal radiotherapy for the treatment of head and neck cancer: Reconstruction of a theoretical phantom of the larynx for radiation dose calculation to local tissues. Cancer Res. 55:1020-1027 (1995a). Maraveyas A, Myers M, Stafford N, Rowlinson-Busza G, Stewart J S W, Epenetos A A. Radiolabeled antibody combined with extemal radiotherapy for the treatment of head and neck cancer: Reconstruction of a theoretical phantom of the larynx for radiation dose calculation to local tissues. Cancer Res. 55:1020-1027 (1995a).

Maraveyas A, Stafford N, Rowlinson-Busza G, Stewart J S W, Epenetos A A. Pharmacokinetics, biodistribution, and dosimetry of specrfic and control radiolabeled monoclonal antibodies in patients with primary head and neck squamous-cell carcinoma. Cancer Res. 55:1060-1069 (1995b). Maraveyas A, Stafford N, Rowlinson-Busza G, Stewart J S W, Epenetos A A. Pharmacokinetics, biodistribution, and dosimetry of specrfic and control radiolabeled monoclonal antibodies in patients with primary head and neck squamous-cell carcinoma. Cancer Res. 55:1060-1069 (1995b).

Mulshine J L, Magnani J L, Linnoila R I: Applications of monoclonal antibodies in the treatment of solid tumors, In: DeVita V T, Hellman S, Rosenberg S A (Hrsg.). Biologic therapy of cancer. J. B. Lippincott Comp., Philadelphia, 563-588 (1991). Mulshine J L, Magnani J L, Linnoila R I: Applications of monoclonal antibodies in the treatment of solid tumors, In: DeVita V T, Hellman S, Rosenberg S A (Eds.). Biological therapy of cancer. J.B. Lippincott Comp., Philadelphia, 563-588 (1991).

Myklebust AT, Godal A, Juell S, Pharo A, Fodstad O. Comparison of two antibody based methods for elimination of breast cancer cells from human bone morrow. Cancer Res. 54.-209-214 (1994). Myklebust AT, Godal A, Juell S, Pharo A, Fodstad O. Comparison of two antibody based methods for elimination of breast cancer cells from human bone marrow. Cancer Res. 54.-209-214 (1994).

Nesbit M, Fu Z F, McDonald-Smith J, Steplewski Z, Curtis P J. Production of a functional monoclonal antibody recognizing human colorectal carcinoma cells from a baculovirus expression system. J. Immunol. Methods 757:201-208 (1992). Nesbit M, Fu Z F, McDonald-Smith J, Steplewski Z, Curtis P J. Production of a functional monoclonal antibody recognizing human colorectal carcinoma cells from a baculovirus expression system. J. Immunol. Methods 757:201-208 (1992).

Perkins A C, Pimm M V. A role for gamma scintigraphy in cancer immunology and immunotherapy. Eur. J. Nucl. Med. 19:1054-1063 (1992). Perkins A C, Pimm M V. A role for gamma scintigraphy in cancer immunology and immunotherapy. Eur. J. Nucl. With. 19:1054-1063 (1992).

Press O W, Eary J F, Badger C C, Martin P J, Appelbaum F R, Levy R, Miller R, Brown S, Nelp W B, Krohn K A, Fisher D, DeSantes K, Porter B, Kidd P, Thomas E Press O W, Eary J F, Badger C C, Martin P J, Appelbaum F R, Levy R, Miller R, Brown S, Nelp W B, Krohn K A, Fisher D, DeSantes K, Porter B, Kidd P, Thomas E

D, Bernstein I D. Treatment of refractory Non-Hodgkir<Y>s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J. Clin. Oncol. 7:1027-1038 (1989). D, Bernstein I D. Treatment of refractory Non-Hodgkir<Y>s lymphoma with radiolabelled MB-1 (anti-CD37) antibody. J. Clin. Oncol. 7:1027-1038 (1989).

Press O W, Eary J F, Appelbaum F R .Martin P J, Nelp W B Glenn S, Fisher D J, Porter B, Metthews D C Gooley T, Bernstein I D. Phase II trial of<131>1-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346:336-340 (1995). Press O W, Eary J F, Appelbaum F R .Martin P J, Nelp W B Glenn S, Fisher D J, Porter B, Matthews D C Gooley T, Bernstein I D. Phase II trial of<131>1-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346:336-340 (1995).

Quadri S M, Vriesendorp H M, Leichner P K, Williams J R. Evaluation of indium-111 and yttrium-90 labeled linker immunoconjugates in nude mice and dogs. J. Nucl. Quadri S M, Vriesendorp H M, Leichner P K, Williams J R. Evaluation of indium-111 and yttrium-90 labeled linker immunoconjugates in nude mice and dogs. J. Nucl.

Med. 54:938-945 (1993). With. 54:938-945 (1993).

Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC. Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer res. 56:1707-1712(1996). Reisfeld RA, Gillies SD, Mendelsohn J, Varki NM, Becker JC. Involvement of B lymphocytes in the growth inhibition of human pulmonary melanoma metastases in athymic nu/nu mice by an antibody-lymphotoxin fusion protein. Cancer res. 56:1707-1712 (1996).

Riethmuller G, Schneider-Gådicke E, Schlimok G, Schmiegel W et al. Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. Lancet 343:1177-1183 (1994). Riethmuller G, Schneider-Gådicke E, Schlimok G, Schmiegel W et al. Randomized trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. Lancet 343:1177-1183 (1994).

Salmi, M., Gron-Virta, K., Sointu, P., Grenman, R., Kalimo, H-, Jalkanen S. Salmi, M., Gron-Virta, K., Sointu, P., Grenman, R., Kalimo, H-, Jalkanen S.

Regulated expression of exon v6 containing isoforms of CD44 in man: Downregulation during malignant transformation of tumors of squamocellular origin. Regulated expression of exon v6 containing isoforms of CD44 in man: Downregulation during malignant transformation of tumors of squamocellular origin.

J. Cell Biol. 122:431 -442 (1993). J. Cell Biol. 122:431-442 (1993).

Sambrook, J., Fritsch E.E., Maniatis I., Molecular doning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989). Sambrook, J., Fritsch E.E., Maniatis I., Molecular donation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).

SchrappeM, BumolTF, ApelgrenLD, BriggsSL,KoppelG A, MarkowitzDD, Mueller B M, Reisfeld R A. Long-term growth suppression of human glioma SchrappeM, BumolTF, ApelgrenLD, BriggsSL, KoppelG A, MarkowitzDD, Mueller B M, Reisfeld R A. Long-term growth suppression of human glioma

xenografts by chemoimmunoconjugates of 4-desacetylvinblastine-3-carboxyhydrazide and monoclonal antibody 9.2.27. Cancer Res. 52:3838-3844 xenografts by chemoimmunoconjugates of 4-desacetylvinblastine-3-carboxyhydrazide and monoclonal antibody 9.2.27. Cancer Res. 52:3838-3844

(1992). (1992).

Screaton, G.R., Bell, M.V., Jackson, D.G., Comelis, F.B., Gerth, U., and Bell, J. I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proe. Natt. Acad. Sei. U. S. A. 69:12160-12164 Screaton, G.R., Bell, M.V., Jackson, D.G., Comelis, F.B., Gerth, U., and Bell, J.I. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Pro. Night. Acad. Pollock. U. S. A. 69:12160-12164

(1992). (1992).

Sears H F, Mattis J, Herlyn D, Håyry P, Atkinson B, Ernst C, Steplewski Z, Koprowski H. Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours. Lancet 1982 ( 1) : 762-765 (1982). Sears H F, Mattis J, Herlyn D, Håyry P, Atkinson B, Ernst C, Steplewski Z, Koprowski H. Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours. Lancet 1982 (1): 762-765 (1982).

Seiter, S., Arch, R., Reber, S., Komitowski, D., Hofmann, M., Ponta, H:, Herrlich, P., Matzku, S., Zoller, M. Prevention of tumor metastasis formation by anti-variant CD44. J. Exp. Med. 177:443-455 (1993). Seiter, S., Arch, R., Reber, S., Komitowski, D., Hofmann, M., Ponta, H:, Herrlich, P., Matzku, S., Zoller, M. Prevention of tumor metastasis formation by anti-variant CD44. J. Exp. Med. 177:443-455 (1993).

Senter P D, Schreiber G J, Hirschberg D L, Asne S A, Hellstrøm K €, Hellstrøm I. En-hancement of the in vitro and in vivo antitumor activities of phosphorylated mitomycin Senter P D, Schreiber G J, Hirschberg D L, Asne S A, Hellstrøm K €, Hellstrøm I. En-hancement of the in vitro and in vivo antitumor activities of phosphorylated mitomycin

C and etoposide derivatives by monoclonal antibody-alkaline phosphatase conjugates. Cancer Res. 49:5789-5792 (1989). C and etoposide derivatives by monoclonal antibody-alkaline phosphatase conjugates. Cancer Res. 49:5789-5792 (1989).

Shin S-U, Morrison S L. Production and properties of chimeric antibody molecules. Methods Enzymol. 178:459-476 (1989). Shin S-U, Morrison S L. Production and properties of chimeric antibody molecules. Methods Enzymol. 178:459-476 (1989).

Siccardi A G, Buraggi G L, Catlegaro L, Colella A C, DeFilippi P G ef al. Immunoscintigraphy of adenocarcinomas by means of radiolabeled F(ab')2 fragments of an anti-carcinoembryonic antigen monoclonal antibody: a multicenter study. Cancer Res. 49:3095-3103 (1989). Siccardi A G, Buraggi G L, Catlegaro L, Colella A C, DeFilippi P G et al. Immunoscintigraphy of adenocarcinomas by means of radiolabelled F(ab')2 fragments of an anti-carcinoembryonic antigen monoclonal antibody: a multicenter study. Cancer Res. 49:3095-3103 (1989).

Smith, D.B., Johnson, K.S. Single-step purification of potypetides expressed in Escherichia co//as fusions with glutathione S-transferase. Gene 67:31 (1988). Smith, D.B., Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli fusions with glutathione S-transferase. Gene 67:31 (1988).

Srivastava S C (Hrsg). Radiolabeled monoclonal antibodies for imaging and therapy. Life Sciences Series A 152, Plenum New York (1988). Srivastava S C (Eds.). Radiolabelled monoclonal antibodies for imaging and therapy. Life Sciences Series A 152, Plenum New York (1988).

Tolg, C, Hofmann, M., Herrlich, P., and Ponta, H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids. Res. 21:1225-1229 (1993). Tolg, C, Hofmann, M., Herrlich, P., and Ponta, H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids. Res. 21:1225-1229 (1993).

Theuer C P, Kreitman R J, FitzGerald D J, Pastan I. Immunotoxins made with a recombinant form of pseudomonas exotoxin A that do not require proteolysis for activity. Cancer Res. 53:340-347 (1993). Theuer C P, Kreitman R J, FitzGerald D J, Pastan I. Immunotoxins made with a recombinant form of pseudomonas exotoxin A that do not require proteolysis for activity. Cancer Res. 53:340-347 (1993).

Thomas, G. D., Dykes, P. W., Bradwell, A. R. Antibodies for tumour immunodetection and methods for antibody radiolabeling. In: Catty, D. (Hrsg.). Antibodies Vol. It. IRL Press Oxford , 223-244 (1989). Thomas, G. D., Dykes, P. W., Bradwell, A. R. Antibodies for tumor immunodetection and methods for antibody radiolabeling. In: Catty, D. (Ed.). Antibodies Vol. It. IRL Press Oxford, 223-244 (1989).

Thompson C H, Stacker S A, Salehi N, Lichtenstein M, Leyden M J, Andrews J T. Immunoscintigraphy for detection of lymph node metastases from breast cancer. Lancet 1984 ( 2) : 1245-1247 (1984). Thompson C H, Stacker S A, Salehi N, Lichtenstein M, Leyden M J, Andrews J T. Immunoscintigraphy for detection of lymph node metastases from breast cancer. Lancet 1984 (2): 1245-1247 (1984).

Vitetta E S, Thorpe P E. Immunotoxins. In: DeVita V T, Hellman S, Rosenberg S A (Hrsg.). Biologic therapy of cancer. J. B. Lippincott Comp., Philadelphia, 482-495 Vitetta E S, Thorpe P E. Immunotoxins. In: DeVita V T, Hellman S, Rosenberg S A (Eds.). Biological therapy of cancer. J.B. Lippincott Comp., Philadelphia, 482-495

(1991) Vitetta E S, Stone M, Amlot P, Fay J, May R, Till M, Newman J, Clark P, Collins R, Cunningham D, Ghetie V, Uhr J W, Thorpe P E. Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res. 57:4052-4058 (1991). (1991) Vitetta E S, Stone M, Amlot P, Fay J, May R, Till M, Newman J, Clark P, Collins R, Cunningham D, Ghetie V, Uhr J W, Thorpe P E. Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res. 57:4052-4058 (1991).

Vriesendorp H M, Herbst J M, Germack M A, Klein J L, Leichner P K, Loudenslager D M, Order S E. Phase l-ll studies of yttrium-labeled antiferritin treatment for end stage HodgkirVs diesease, including Radiation Therapy Oncology Group 87-01. J. Clin Oncol. 9: 918-928 (1991). Vriesendorp H M, Herbst J M, Germack M A, Klein J L, Leichner P K, Loudenslager D M, Order S E. Phase l-ll studies of yttrium-labeled antiferritin treatment for end stage Hodgkir's disease, including Radiation Therapy Oncology Group 87-01. J. Clin Oncol. 9: 918-928 (1991).

Vriesendorp H M, Morton J D, Quadri S M. Review of five consecutive studies of radiolabeled immunoglobulin therapy in Hodgkins's Disease. Cancer Res. ( Suppt.) 55:5888s-5892s (1995). Wang S-M, Chem J-W, Yeh M-Y, Ng J C, Tung E, Roffler S R. Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer Res. 52:4484-4491 (1992). Weiner L M, 0'Dwyer J, Kitson J, Comis R L, Frankel A E, Bauer R J, Kopnrad M S, Groves E S. Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Cancer Res. 45:4062-4067 Vriesendorp H M, Morton J D, Quadri S M. Review of five consecutive studies of radiolabelled immunoglobulin therapy in Hodgkins's Disease. Cancer Res. ( Supt.) 55:5888s-5892s (1995). Wang S-M, Chem J-W, Yeh M-Y, Ng J C, Tung E, Roffler S R. Specific activation of glucuronide prodrugs by antibody-targeted enzyme conjugates for cancer therapy. Cancer Res. 52:4484-4491 (1992). Weiner L M, 0'Dwyer J, Kitson J, Comis R L, Frankel A E, Bauer R J, Kopnrad M S, Groves E S. Phase I evaluation of an anti-breast carcinoma monoclonal antibody 260F9-recombinant ricin A chain immunoconjugate. Cancer Res. 45:4062-4067

(1989). (1989).

Wilbur, D. S., Hadley, S. W., Hylandes, M. D., Abrams, P. G., Beaumier, P. A., Morgan, A.C., Reno, J.M., Fritzberg, A.R. Development of a stable radioiodinating agent to label monoclonal antibodies for radiotherapy of cancer. J. Nucl. Med. 30: 216-226(1989). Wilbur, D.S., Hadley, S.W., Hylandes, M.D., Abrams, P.G., Beaumier, P.A., Morgan, A.C., Reno, J.M., Fritzberg, A.R. Development of a stable radioiodinating agent to label monoclonal antibodies for radiotherapy of cancer. J. Nucl. With. 30: 216-226 (1989).

Winter, G., Griffith, A. D., Hawkins, R. E., Hoogenboom, H. R. Making antibodies by phage display technology. Ann. Rev. Immunot. 12,433-455 (1994). Winter, G., Griffith, A.D., Hawkins, R.E., Hoogenboom, H.R. Making antibodies by phage display technology. Ann. Fox. Immunot. 12,433-455 (1994).

Claims (4)

1. Anvendelse av et antistoffmolekyl som binder seg til aminosyresekvensen WFGNRWHEGYR, for fremstilling av et farmasøytisk preparat for behandling av plateepitelkarsinomer.1. Use of an antibody molecule that binds to the amino acid sequence WFGNRWHEGYR, for the production of a pharmaceutical preparation for the treatment of squamous cell carcinomas. 2. Anvendelse ifølge krav 1, hvor antistoffmolekylet er det monoklonale antistoff BIWA-1 (VFF-18) som dannes av hybridomcellelinjen med tilgangsnummeret DSM ACC2174, eller et derivat av dette antistoff.2. Use according to claim 1, where the antibody molecule is the monoclonal antibody BIWA-1 (VFF-18) which is produced by the hybridoma cell line with the accession number DSM ACC2174, or a derivative of this antibody. 3. Anvendelse ifølge et hvilket som helst av kravene 1 eller 2, hvor antistoffmolekylet er et monoklonalt antistoff, et Fab- eller F(ab')2*fragment av et immunglobulin, et antistoff fremstilt ved rekombinante fremgangsmåter, et kimært eller humanisert antistoff fremstilt ved rekombinante fremgangsmåter, et bifunksjonelt eller et enkeltkjedet antistoff (scFv).3. Use according to any one of claims 1 or 2, where the antibody molecule is a monoclonal antibody, a Fab or F(ab')2* fragment of an immunoglobulin, an antibody produced by recombinant methods, a chimeric or humanized antibody produced by recombinant methods, a bifunctional or a single-chain antibody (scFv). 4. Anvendelse ifølge et av kravené 1 til 3, hvor antistoffmolekylet er forbundet med en radioaktiv isotop, en fotoaktiverbar forbindelse, en radioaktiv forbindelse, et enzym, et fluorescensfarvestoff, et biotinmolekyl, et toksin, et cytostatikum, et prodrug, et antistoffmolekyl med en annen spesifisitet, et cytokin eller et annet immunmodulatorisk polypeptid.4. Use according to one of claims 1 to 3, wherein the antibody molecule is associated with a radioactive isotope, a photoactivatable compound, a radioactive compound, an enzyme, a fluorescent dye, a biotin molecule, a toxin, a cytostatic agent, a prodrug, an antibody molecule with a other specificity, a cytokine or another immunomodulatory polypeptide.
NO19982588A 1995-12-06 1998-06-05 Use of an antibody molecule for the preparation of a pharmaceutical composition for the treatment of squamous cell carcinoma. NO319903B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19545472A DE19545472A1 (en) 1995-12-06 1995-12-06 Diagnosis of squamous epithelial cell carcinoma
DE19615074 1996-04-17
PCT/EP1996/005448 WO1997021104A1 (en) 1995-12-06 1996-12-05 Method of diagnosing and treating epithelioma

Publications (3)

Publication Number Publication Date
NO982588D0 NO982588D0 (en) 1998-06-05
NO982588L NO982588L (en) 1998-08-05
NO319903B1 true NO319903B1 (en) 2005-09-26

Family

ID=26020988

Family Applications (1)

Application Number Title Priority Date Filing Date
NO19982588A NO319903B1 (en) 1995-12-06 1998-06-05 Use of an antibody molecule for the preparation of a pharmaceutical composition for the treatment of squamous cell carcinoma.

Country Status (26)

Country Link
EP (1) EP0865609B1 (en)
JP (1) JP2000502067A (en)
KR (1) KR100473824B1 (en)
CN (1) CN1151377C (en)
AR (1) AR004360A1 (en)
AT (1) ATE235056T1 (en)
AU (1) AU726704B2 (en)
BG (1) BG62985B1 (en)
BR (1) BR9611901A (en)
CA (1) CA2239709A1 (en)
CO (1) CO4520233A1 (en)
CZ (1) CZ174198A3 (en)
DE (1) DE59610248D1 (en)
DK (1) DK0865609T3 (en)
EE (1) EE03783B1 (en)
ES (1) ES2190484T3 (en)
HK (1) HK1011560A1 (en)
MX (1) MX9804459A (en)
NO (1) NO319903B1 (en)
NZ (1) NZ324314A (en)
PL (1) PL184521B1 (en)
PT (1) PT865609E (en)
SK (1) SK284378B6 (en)
TR (1) TR199801027T2 (en)
UY (1) UY24389A1 (en)
WO (1) WO1997021104A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7189397B2 (en) * 1999-10-08 2007-03-13 Arius Research Inc. Cytotoxicity mediation of cells evidencing surface expression of CD44
US20050100542A1 (en) * 1999-10-08 2005-05-12 Young David S. Cytotoxicity mediation of cells evidencing surface expression of CD44
US6972324B2 (en) 2001-05-18 2005-12-06 Boehringer Ingelheim Pharmaceuticals, Inc. Antibodies specific for CD44v6
EP1258255A1 (en) * 2001-05-18 2002-11-20 Boehringer Ingelheim International GmbH Conjugates of an antibody to CD44 and a maytansinoid
US20030103985A1 (en) 2001-05-18 2003-06-05 Boehringer Ingelheim International Gmbh Cytotoxic CD44 antibody immunoconjugates
WO2002094879A1 (en) * 2001-05-18 2002-11-28 Boehringer Ingelheim International Gmbh Antibodies specific for cd44v6
EP1391213A1 (en) * 2002-08-21 2004-02-25 Boehringer Ingelheim International GmbH Compositions and methods for treating cancer using maytansinoid CD44 antibody immunoconjugates and chemotherapeutic agents
EP1417974A1 (en) * 2002-11-08 2004-05-12 Boehringer Ingelheim International GmbH Compositions and methods for treating cancer using cytotoxic CD44 antibody immunoconjugates and radiotherapy
PL2531527T3 (en) * 2010-02-04 2014-08-29 Univ Miami A monoclonal antibody to cd44 for use in the treatment of head and neck squamous cell carcinoma
US9218450B2 (en) * 2012-11-29 2015-12-22 Roche Molecular Systems, Inc. Accurate and fast mapping of reads to genome
WO2019161528A1 (en) * 2018-02-22 2019-08-29 Abmart Shanghai Co., Ltd. Therapeutic antibody and uses thereof
WO2023227644A2 (en) 2022-05-25 2023-11-30 Akiram Therapeutics Ab Binding protein

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69406664T2 (en) * 1993-06-18 1998-06-04 Biotie Therapies Oy COMPOSITIONS AND DIAGNOSTIC METHODS USING MONOCLONAL ANTIBODY AGAINST CD44V6
EP0767378A1 (en) * 1993-06-22 1997-04-09 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Method for the diagnosis and analysis of stomach carcinoma
DE4326573A1 (en) * 1993-08-07 1995-02-23 Boehringer Ingelheim Int Polypeptides encoded by exon v5 of the CD44 gene as targets for immunotherapy and immunoscintigraphy of tumors
UA58482C2 (en) * 1994-06-08 2003-08-15 Бьорінгер Інгельхайм Інтернаціональ Гмбх MONOCLONAL ANTIBODY VFF-18 AGAINST CD44v6 AND ITS FRAGMENTS

Also Published As

Publication number Publication date
EP0865609B1 (en) 2003-03-19
AU726704B2 (en) 2000-11-16
PT865609E (en) 2003-08-29
BR9611901A (en) 1999-03-02
AU1177397A (en) 1997-06-27
TR199801027T2 (en) 1998-10-21
UY24389A1 (en) 2001-10-25
EE03783B1 (en) 2002-06-17
CN1151377C (en) 2004-05-26
EP0865609A1 (en) 1998-09-23
CZ174198A3 (en) 1999-02-17
CO4520233A1 (en) 1997-10-15
MX9804459A (en) 1998-09-30
BG102513A (en) 1999-02-26
KR19990071952A (en) 1999-09-27
SK73698A3 (en) 1999-01-11
WO1997021104A1 (en) 1997-06-12
EE9800164A (en) 1998-12-15
BG62985B1 (en) 2000-12-29
NZ324314A (en) 2000-02-28
NO982588D0 (en) 1998-06-05
PL327066A1 (en) 1998-11-23
CN1207811A (en) 1999-02-10
SK284378B6 (en) 2005-02-04
KR100473824B1 (en) 2005-09-30
DK0865609T3 (en) 2003-06-23
JP2000502067A (en) 2000-02-22
HK1011560A1 (en) 1999-07-16
AR004360A1 (en) 1998-11-04
ES2190484T3 (en) 2003-08-01
DE59610248D1 (en) 2003-04-24
CA2239709A1 (en) 1997-06-12
PL184521B1 (en) 2002-11-29
ATE235056T1 (en) 2003-04-15
NO982588L (en) 1998-08-05

Similar Documents

Publication Publication Date Title
US5916561A (en) Monoclonal antibody against CD44v6
KR102308812B1 (en) Antibodies against claudin 18.2 useful in cancer diagnosis
NO319903B1 (en) Use of an antibody molecule for the preparation of a pharmaceutical composition for the treatment of squamous cell carcinoma.
US20130039931A1 (en) Antibodies Against A Cancer-Associated Epitope of Variant HNRNPG and Uses Thereof
AU2013370171B2 (en) Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
US6372441B1 (en) Method for diagnosis and therapy of Hodgkin&#39;s lymphomas
CA2168988A1 (en) Polypeptides coded by exon v5 of the cd44 gene as targets for immunotherapy and immunoscintigraphy of tumours
MXPA96006108A (en) Monoclonal antibody active against cd44v6
Tang et al. Evaluation of human major histocompatibility complex class I chain-related A as a potential target for tumor imaging
RU2193779C2 (en) Method and preparation for treating the cases of flat cell cancer
MXPA99005544A (en) Method for diagnosis and therapy of hodgkin lymphomas