NO319800B1 - Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge - Google Patents

Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge Download PDF

Info

Publication number
NO319800B1
NO319800B1 NO20034599A NO20034599A NO319800B1 NO 319800 B1 NO319800 B1 NO 319800B1 NO 20034599 A NO20034599 A NO 20034599A NO 20034599 A NO20034599 A NO 20034599A NO 319800 B1 NO319800 B1 NO 319800B1
Authority
NO
Norway
Prior art keywords
bridge
suspension
tower
centric
construction
Prior art date
Application number
NO20034599A
Other languages
Norwegian (no)
Other versions
NO20034599D0 (en
NO20034599L (en
Inventor
Stein Fergestad
Elljarn A Jordet
Original Assignee
Aas Jakobsen As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aas Jakobsen As filed Critical Aas Jakobsen As
Priority to NO20034599A priority Critical patent/NO319800B1/en
Publication of NO20034599D0 publication Critical patent/NO20034599D0/en
Priority to JP2006535292A priority patent/JP4388071B2/en
Priority to CNB200480029922XA priority patent/CN100458015C/en
Priority to KR1020067009058A priority patent/KR101161657B1/en
Priority to PCT/NO2004/000305 priority patent/WO2005035876A1/en
Publication of NO20034599L publication Critical patent/NO20034599L/en
Publication of NO319800B1 publication Critical patent/NO319800B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D11/00Suspension or cable-stayed bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/14Towers; Anchors ; Connection of cables to bridge parts; Saddle supports
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/16Suspension cables; Cable clamps for suspension cables ; Pre- or post-stressed cables

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Description

Foreliggende oppfinnelse vedrører broer for spennvidder over ca 1000 m, og den vil være et alternativ til konvensjonelle hengebroer. The present invention relates to bridges for spans over approximately 1000 m, and it will be an alternative to conventional suspension bridges.

Fram til i dag har hengebroer vært enerådende for spennvidder over 1000 m, og det har på verdensbasis blitt bygget en rekke slike broer med spennvidder i området 1000-2000 m. En typisk hengebro består av en sentral brobjelke opphengt i to parallelle bærekabler med vertikale hengestenger mellom brobjelke og bærekabler. Bærekablene er understøttet av et tårn i hver ende av brospennet, og ført videre til en forankring i fjell eller et betongfundament. Et tårn er normalt utformet med H- eller A-form, med ett tårnbein på hver side av den sentrale brobjelken og med tverrbjelker mellom tårnbeina både under og over brobjelken. Until today, suspension bridges have been dominant for spans over 1,000 m, and a number of such bridges have been built worldwide with spans in the range of 1,000-2,000 m. A typical suspension bridge consists of a central bridge girder suspended in two parallel suspension cables with vertical suspension rods between bridge girder and supporting cables. The supporting cables are supported by a tower at each end of the bridge span, and carried on to an anchorage in the rock or a concrete foundation. A tower is normally designed with an H or A shape, with one tower leg on each side of the central bridge girder and with cross beams between the tower legs both below and above the bridge girder.

For brospenn over 1000 m vil vindlast bli en dominerende belastning, og det er av-gjørende å benytte et konstruksjonskonsept som gjør brobjelken i stand til å mot-stå vindkrefter samt å gjøre den aerodynamisk stabil for de største opptredende vindhastigheter. Dette kan bli avgjørende for materialmengde og kostnader. For bridge spans over 1000 m, wind load will become a dominant load, and it is crucial to use a construction concept that enables the bridge girder to withstand wind forces as well as to make it aerodynamically stable for the greatest occurring wind speeds. This can be decisive for the amount of material and costs.

For lange brospenn blir konstruksjonens egenvekt en mer og mer dominerende belastning i forhold til nyttelast (trafikk) samtidig med at vindklimaet også vil være avgjørende for konstruksjonens dynamiske oppførsel og aerodynamiske utforming. Med økende spennvidder vil tradisjonelle hengebrokonstruksjoner etter hvert få en egenvekt og masse som vil umuliggjøre en økonomisk realisering av pro-sjektene. Til orientering er lastfordelingen mellom brobjelke, bærekabler og trafikk-last for en vegbro med 2 kjørefelt ca. 60/20/20% for et 1000 m spenn og ca. 55/35/10% foret 2000 m spenn. Den totale egentasten som skal bæres har samtidig økt fra ca. 12 tonn pr. m brobjelke til ca. 16 tonn pr. m brobjelke. For long bridge spans, the construction's own weight becomes an increasingly dominant load in relation to the payload (traffic), while the wind climate will also be decisive for the construction's dynamic behavior and aerodynamic design. With increasing spans, traditional suspension bridge constructions will eventually gain a specific weight and mass that will make the economic realization of the projects impossible. For information, the load distribution between bridge girder, supporting cables and traffic load for a road bridge with 2 lanes is approx. 60/20/20% for a 1000 m span and approx. 55/35/10% lined 2000 m span. The total personal key to be carried has simultaneously increased from approx. 12 tonnes per m bridge beam to approx. 16 tonnes per m bridge beam.

Både nasjonalt og internasjonalt er det identifisert et behov for mange krysninger i ovennevnte spennviddeområde. Mange av disse er ikke realisert pga. for høye kostnader. Det er derfor av stor samfunnsøkonomisk nytte å få redusert kostnadene for slike brokonstruksjoner. Dette vil i praksis innebære å få redusert egenvekt og materialbruk samtidig med at den aerodynamiske stabiliteten beholdes. Det er også et generelt krav om at konstruksjonen må kunne bygges med sikre metoder i en forutsigbar og rasjonell byggeprosess som ivaretar samfunnets krav til helse, miljø og sikkerhet (HMS). Both nationally and internationally, a need for many crossings in the above-mentioned span area has been identified. Many of these have not been realized due to too high costs. It is therefore of great socio-economic benefit to reduce the costs of such bridge constructions. In practice, this will mean reducing the weight and material use while maintaining aerodynamic stability. There is also a general requirement that the construction must be able to be built using safe methods in a predictable and rational construction process that safeguards society's requirements for health, environment and safety (HSE).

En rekke bruer ble bygget på 1800-tallet med en kombinasjon av skråstag og hengestenger. Den mest kjente er Brooklyn Bridge fra 1883 med hovedspenn på 486 m. Skråstag og hengestenger er her benyttet overlappende over hele spennet, hvilket gir et svært overbestemt statisk system. Systemet kombinerer et stivt (skråstag) og et mykt (hengebru) bæresystem på en ikke optimal måte. A number of bridges were built in the 19th century with a combination of cantilever and suspension rods. The most famous is the Brooklyn Bridge from 1883 with a main span of 486 m. Here, inclined beams and suspension rods are used overlapping over the entire span, which gives a very overdetermined static system. The system combines a rigid (slanted brace) and a soft (suspension bridge) support system in a non-optimal way.

NO 107352 angir bæring med en kombinasjon av skråstag og hengebrokabel, men ikke som sentrisk bærende elementer i kombinasjon med splittede kjøre-baner. NO 107352 specifies support with a combination of inclined struts and suspension bridge cable, but not as centric load-bearing elements in combination with split carriageways.

Det er også bygget noen såkalte hybridbruer der det er benyttet skråstagbroløs-ning nærmest tårn og hengebro i den midtre delen av spennet. Eksempler på dette er gangbruene Sidi Me Cid (164 m) i Algerie og Nagisa Bridge (110 m) i Japan. Some so-called hybrid bridges have also been built where a cable-stayed bridge solution has been used closest to the tower and suspension bridge in the middle part of the span. Examples of this are the footbridges Sidi Me Cid (164 m) in Algeria and Nagisa Bridge (110 m) in Japan.

Skråstag alene sammen med splittede kjørebaner og sentrisk monotårn er benyttet for Stonecutters bro i Hong Kong med spennvidde 1018 m, men skråstagene er her festet på yttersiden av kjørebanene. For lengre spenn vil denne konstruksjons-typen bli svært kostbar og med økende stabilitetsproblemer i byggetiden. Inclined beams alone together with split carriageways and a centric monotower are used for the Stonecutter's bridge in Hong Kong with a span of 1018 m, but the inclined beams are here attached to the outer side of the carriageways. For longer spans, this type of construction will be very expensive and with increasing stability problems during construction.

Foreliggende oppfinnelse løser problemene med vindstabilitet ved å benytte delte kjørebaner med bred luftspalte mellom, samt at bæring som fritt-frambyggbro (FFB) og skråstagbro nærmest tårnene bidrar til en stivere brobjelke. Avstanden mellom brobjelkene bestemmer broens stivhet i tverretningen. Denne avstanden kan varieres med en mindre vesentlig endring av materialbruk for den foreliggende oppfinnelse. En slik variasjon er i prinsippet ikke mulig for en tradisjonell henge-brokonstruksjon. Videre vil de splittede brobjelkene i kombinasjon med sentrisk tårn og bærekabel med skråstilte stag og hengestenger danne et trekantformet bæresystem som i seg selv øker stabiliteten for vridning (torsjon) av brobanen. Økt torsjonsstivhet bedrer bruas aerodynamiske egenskaper. The present invention solves the problems with wind stability by using divided carriageways with a wide air gap between them, and that bearing such as free-form bridge (FFB) and cantilever bridge closest to the towers contribute to a stiffer bridge girder. The distance between the bridge girders determines the bridge's stiffness in the transverse direction. This distance can be varied with a less significant change in material use for the present invention. Such a variation is in principle not possible for a traditional suspension bridge construction. Furthermore, the split bridge girders in combination with a centric tower and support cable with inclined struts and suspension rods will form a triangular support system which in itself increases the stability for twisting (torsion) of the bridge track. Increased torsional stiffness improves the bridge's aerodynamic properties.

Med hensyn til krav til sikkerhet i byggetiden vil en konstruksjon med fri frembygg-ing fra en side (FFB-bro og skråstagbro) ha økende stabilitetsproblemer i byggetiden tilnærmet proporsjonalt med kvadratet av fri utkrager, mens hengebrokon-struksjonen gir en langt mer stabil konstruksjon basert på at bærekablene monteres først ved spinning på stedet. Bærekablene spenner fra tårn til tårn og bidrar til stabiliteten mens de øvrige elementer (hengestenger og brobjelke) monteres meget raskt i små elementer. (Kfr. f.eks. også alle de lange luftspennene for høy-spentlinjer i Norge.) With regard to safety requirements during the construction period, a construction with free extension from one side (FFB bridge and cable-stayed bridge) will have increasing stability problems during the construction period approximately proportional to the square of the free cantilever, while the suspension bridge construction provides a far more stable construction based on that the carrier cables are installed first by spinning on site. The supporting cables span from tower to tower and contribute to stability, while the other elements (suspension rods and bridge beam) are assembled very quickly in small elements. (Cf. e.g. also all the long overhead lines for high-voltage lines in Norway.)

En fritt-frambyggbrokonstruksjon er det billigste alternativet for den delen av broen som befinner seg nærmest tåmene, men denne konstruksjonsmåten alene gir svært begrenset brospenn (maks ca. 400 m spenn bestemt av kostnadene). Skrå-stagbrokonstruksjonen er noe dyrere for kortere spenn, men kan anvendes for betydelig lengre brospenn (maks ca. 1000 m) bestemt av kostnaden. Hengebrokon-struksjonen gir generelt en relativt dyr meterpris for kortere brospenn, men den kan anvendes for de lengste brospennene. Det lengste spennet som er bygget til nå er 1991 m (Akashi - Kaikyo) fra 1998. Hengebrokostnaden er også sterkt økende med økende spennvidde, bl.a. pga. økende vindstabilitetsproblemer. A free-standing bridge construction is the cheapest option for the part of the bridge that is closest to the abutments, but this method of construction alone gives a very limited bridge span (max. approx. 400 m span determined by costs). The inclined-stay bridge construction is somewhat more expensive for shorter spans, but can be used for considerably longer bridge spans (max. approx. 1000 m) determined by the cost. The suspension bridge construction generally gives a relatively expensive price per meter for shorter bridge spans, but it can be used for the longest bridge spans. The longest span that has been built to date is 1991 m (Akashi - Kaikyo) from 1998. The suspension bridge cost is also increasing strongly with increasing span, i.a. because of. increasing wind stability problems.

Foreliggende oppfinnelse reduserer byggekostnadene betydelig ved å benytte en seriell kombinasjon av fritt-frambyggbro, skråstagbro og hengebro. Dette gir en betydelig besparelse i materialforbruk i forhold til en ren hengebro. The present invention significantly reduces construction costs by using a serial combination of free-standing bridge, cantilever bridge and suspension bridge. This gives a significant saving in material consumption compared to a pure suspension bridge.

Formålene med foreliggende oppfinnelse oppnås ved hjelp av de trekk som er angitt i den karakteriserende delen av krav 1. Ytterligere fordelaktige trekk ved foreliggende oppfinnelse er angitt i de uselvstendige kravene. The purposes of the present invention are achieved by means of the features stated in the characterizing part of claim 1. Further advantageous features of the present invention are stated in the independent claims.

I det følgende gis et ikke-begrensende eksempel på foreliggende oppfinnelse under henvisning til vedføyde tegninger, der In the following, a non-limiting example of the present invention is given with reference to the attached drawings, where

Fig. 1 viser sideriss av en bro ifølge foreliggende oppfinnelse, Fig. 1 shows a side view of a bridge according to the present invention,

Fig. 2 viser et tverrsnitt av en bro ifølge foreliggende oppfinnelse, der tverrsnittet er tatt gjennom hengebrodelen av broen, Fig. 3 viser et tverrsnitt av en bro ifølge foreliggende oppfinnelse, der tverrsnittet er tatt gjennom skråstagbrodelen av broen, Fig. 4 viser et tverrsnitt av en bro ifølge foreliggende oppfinnelse, der tverrsnittet er tatt gjennom fritt-frembyggbrodelen av broen, og Fig. 2 shows a cross-section of a bridge according to the present invention, where the cross-section is taken through the suspension bridge part of the bridge, Fig. 3 shows a cross-section of a bridge according to the present invention, where the cross-section is taken through the cantilever bridge part of the bridge, Fig. 4 shows a cross-section of a bridge according to the present invention, where the cross-section is taken through the free-build bridge part of the bridge, and

Fig. 5 og 6 viser broen i perspektiv, med ulike kabelforankringer. Figs 5 and 6 show the bridge in perspective, with different cable anchorages.

Fig. 1 viser en bro ifølge foreliggende oppfinnelse, omfattende to monotårn 1, en hovedkabel 2, fritt-frembyggbrodeler 3, skråstagbrodeler 4 og en hengebrodel 5. Fritt-frembyggbrodelene 3 kan krage ut fra for eksempel 50 m til maksimalt ca 200 m, skråstagbrodelene 4 vil "overta" etter fritt-frembyggbrodelene 3 og kan der-etter krage ut til inntil ca. 500 m, mens hengebrodelen 5 vil spenne over det rester-ende gapet inntil ca. 2000 m vist i dette eksemplet. For en bro med et totalt spenn på ca. 1300 m vil de respektive lengdene utgjøre for eksempel ca. 100 m, 250 m og 600 m (dvs. 2 x 100 m + 2 x 250 m + 600 m = 1300 m). Tilsvarende tall for en bro med et spenn på 2700 m vil for eksempel kunne være ca. 100 m, 450 m og 1600 m (dvs. 2 x 100 m + 2 x 450 m + 1600 m = 2700 m). Fritt-frembyggbrodelene 3 danner stive elementer som så går over i de noe mykere skråstagbrodelene 4, mens hengebrodelen 5 danner den mykeste brodelen mellom skråstagbrodelene 4. Denne kombinasjonen av en fritt-frambyggbro, en skråstagbro og til sist en hengebro, der hengebrodelen gjøres kortere, bidrar til at hovedkabelens dimen-sjon kan reduseres, noe som i stor grad bidrar tii reduserte kostnader. Fig. 2 viser et tverrsnitt av broen ifølge foreliggende oppfinnelse, der tverrsnittet er tatt gjennom hengebrodelen av broen. To brobjelker 6 forløper i varierende avstand og er forbundet med hverandre ved hjelp av tverrbjelker 7 på innsiden av brobjelkene 6. Hengestenger 9, festet til hovedkabelen 2, strekker seg ned til hver sin ende av tverrbjelkene 7 på innsiden av brobjelkene 6. Ettersom hengestengene 9 (og skråstagene 8) er anordnet på innsiden av brobjelkene 6, vil en "brolift" (inspeksjonskjøretøy med en lang, bøyelig arm), lett komme til under brobjelkene 7 og enkelt kunne føres i brobjelkenes 6 lengderetning uten at hengestenger 9 (eller skråstag 8) kommer i veien slik at armen til stadighet må trekkes opp og inn, før den igjen må føres ut i posisjon under brobjelken 6. Fig. 3 viser et tverrsnitt av en bro ifølge foreliggende oppfinnelse, der tverrsnittet er tatt gjennom skråstagbrodelen 4 av broen. Brobjelkene 6 er forbundet med tverrbjelker 7. Avstanden mellom brobjelkene er økt fra figur 2. Skråstagene 8 løper fra tverrbjelkene 7 til monotårnene 1. Fig. 4 viser et tverrsnitt av en bro ifølge foreliggende oppfinnelse, der tverrsnittet er tatt gjennom fritt-frembrobyggbrodelen 3 av broen ved tårn. Brobjelkene 6 befinner seg lengre fra hverandre fordi veibanene skal forløpe på hver side av monotårnene 1, (idet avstanden mellom brobjelkene 6 ca. tilsvarer monotårnenes 1 ytre di-mensjoner ved den høyden brobjelkene 6 er forbundet til monotårnet.) Brobjelkene er forbundet til monotårnet med en kraftig tverrbjelke 7. Ifølge oppfinnelsen kan brobjelkene 6 bøyes innover på en eller begge sider av monotårnene 1, slik at tverrbjelkenes 7 lengde kan holdes nede. i tillegg vil en slik utforming kunne gi et estetisk fordelaktig inntrykk. Fig. 1 shows a bridge according to the present invention, comprising two monotowers 1, a main cable 2, free-standing bridge parts 3, cantilever bridge parts 4 and a suspension bridge part 5. The cantilever bridge parts 3 can extend from, for example, 50 m to a maximum of approx. 200 m, the cantilever bridge parts 4 will "take over" after the free-build bridge sections 3 and can then expand to approx. 500 m, while the suspension bridge part 5 will span the remaining gap up to approx. 2000 m shown in this example. For a bridge with a total span of approx. 1300 m, the respective lengths will amount to, for example, approx. 100 m, 250 m and 600 m (ie 2 x 100 m + 2 x 250 m + 600 m = 1300 m). Corresponding figures for a bridge with a span of 2,700 m could, for example, be approx. 100 m, 450 m and 1600 m (ie 2 x 100 m + 2 x 450 m + 1600 m = 2700 m). The free-standing bridge parts 3 form rigid elements which then transition into the somewhat softer cable-stayed bridge parts 4, while the suspension bridge part 5 forms the softest bridge part between the cable-stayed bridge parts 4. This combination of a free-standing bridge, a cable-stayed bridge and finally a suspension bridge, where the suspension bridge part is made shorter, contributes to the main cable's dimension being reduced, which largely contributes to reduced costs. Fig. 2 shows a cross-section of the bridge according to the present invention, where the cross-section is taken through the suspension bridge part of the bridge. Two bridge beams 6 extend at varying distances and are connected to each other by means of cross beams 7 on the inside of the bridge beams 6. Suspension rods 9, attached to the main cable 2, extend down to each end of the cross beams 7 on the inside of the bridge beams 6. As the suspension rods 9 (and the inclined struts 8) are arranged on the inside of the bridge girders 6, a "bridge lift" (inspection vehicle with a long, flexible arm) will easily get under the bridge girders 7 and easily be guided in the longitudinal direction of the bridge girders 6 without suspension rods 9 (or inclined struts 8 ) gets in the way so that the arm must be constantly pulled up and in, before it must again be brought out into position under the bridge girder 6. Fig. 3 shows a cross-section of a bridge according to the present invention, where the cross-section is taken through the cantilever bridge part 4 of the bridge. The bridge beams 6 are connected by cross beams 7. The distance between the bridge beams has been increased from Figure 2. The inclined beams 8 run from the cross beams 7 to the monotowers 1. Fig. 4 shows a cross section of a bridge according to the present invention, where the cross section is taken through the free-front bridge construction bridge part 3 of the bridge by tower. The bridge girders 6 are further apart because the roadways are to run on either side of the mono towers 1, (since the distance between the bridge girders 6 approximately corresponds to the outer dimensions of the mono towers 1 at the height at which the bridge girders 6 are connected to the mono tower.) The bridge girders are connected to the mono tower with a strong crossbeam 7. According to the invention, the bridge beams 6 can be bent inwards on one or both sides of the monotowers 1, so that the length of the crossbeams 7 can be kept down. in addition, such a design could give an aesthetically advantageous impression.

I stedet for monotåm kan det også benyttes alternative tårnkonstruksjoner, så som A-tårn, H-tårn, X-tårn eller V-tårn. Det forstås at andre eventuelle tårnkonstruksjoner også kan brukes. Instead of monotowers, alternative tower constructions can also be used, such as A-tower, H-tower, X-tower or V-tower. It is understood that other possible tower structures can also be used.

Byggearbeidet kan gjennomføres på følgende måte: The construction work can be carried out in the following way:

Tårn, utformet som hul kasse med varierende bredde og veggtykkelser, Tower, designed as a hollow box with varying width and wall thickness,

bygges med glide- eller klatreform. Tradisjonelle tids- og kostnadskrevende tverrbjelker unngås. All material- og persontransport kan gå innvendig og beskyttet for vær og vind. Utvendig tårnkran er ikke nødvendig. (Dette er meget viktig da tårnhøyden blir i området ca. 200 m for bro med spennvidde 1000 m og ca. 300 m for bro med spennvidde 2000 m.) built with sliding or climbing form. Traditional time- and cost-consuming cross beams are avoided. All material and passenger transport can go inside and protected from weather and wind. An external tower crane is not required. (This is very important as the tower height will be in the region of approx. 200 m for a bridge with a span of 1000 m and approx. 300 m for a bridge with a span of 2000 m.)

FFB-delene av brobjelken kan startes når tårnet er bygget til dette nivået, The FFB sections of the bridge girder can be started once the tower is built to this level,

og for en stor del fullføres samtidig med at tårnet bygges videre. and to a large extent completed at the same time as the tower is being built further.

Skråstagdelen av brobjelken kan bygges samtidig med at bærekabelen for The diagonal brace part of the bridge girder can be built at the same time as the supporting cable

hengebrodelen monteres ved spinning i luften. The hanging bridge part is assembled by spinning in the air.

Det er betydelig mer rasjonelt å montere kun en sentrisk bærekabel enn de It is considerably more rational to install only a centric carrier cable than those

to tradisjonelle plassert en på hver side. two traditional placed one on each side.

Brubanen (stålkasser) i hengebrodelen prefabrikkeres og monteres i større The bridge track (steel boxes) in the suspension bridge section is prefabricated and assembled in larger ones

elementer. elements.

Foreliggende oppfinnelse gir derfor kortere byggetid samt mindre værømfintlig bygging enn en konvensjonell hengebro, noe som medfører muligheter for ytterligere økonomisk besparelse. Forankring av skråstag og hengestenger på innsiden av brobjelkene forenkler tilkomst med "brolift" for inspeksjon og vedlikehold av bro-kassene. Den sentriske hengekabelen blir også såvidt stor at den gir en sikker plattform for inspeksjon av kabler og hengestenger. The present invention therefore provides a shorter construction time and a less weatherproof construction than a conventional suspension bridge, which entails opportunities for further financial savings. Anchoring of inclined struts and hanging rods on the inside of the bridge girders facilitates access with a "bridge lift" for inspection and maintenance of the bridge boxes. The centric suspension cable is also large enough to provide a safe platform for inspection of cables and suspension rods.

Ifølge foreliggende oppfinnelse vil en seriell kombinasjon av en fritt-frambyggbro, skråstagbro og hengebro bidra til en konstruksjon som gir stivhetsmessig fordelaktige overganger mellom de ulike broelementene for bæring av vertikale laster. Samtidig benyttes hver brotype i det spennområdet der de hver for seg er kost-nadsoptimale. Foreliggende oppfinnelse tilveiebringer altså en synergi mellom for-skjellige brokonstruksjonstyper som gir et godt konstmksjonsmessig resultat, betydelig kortere byggetid, betydelig lavere pris samt enklere vedlikehold. According to the present invention, a serial combination of a free-standing bridge, cantilever bridge and suspension bridge will contribute to a construction which provides advantageous transitions in terms of stiffness between the various bridge elements for carrying vertical loads. At the same time, each bridge type is used in the span range where they are individually cost-optimal. The present invention thus provides a synergy between different types of bridge construction which gives a good constructional result, significantly shorter construction time, significantly lower price and easier maintenance.

Claims (5)

1. Bro omfattende tårn, brobjelke, hovedkabel samt hengestenger og skråstilte stag, der broen omfatter en seriell kombinasjon av en skråstagbro (4) og en hengebro (5) samt minst én sentrisk hovedkabel (2), der hengebrodelen (5) befinner seg mellom skråstagbrodelene (4), karakterisert ved at brobanen (6) omfatter to eller flere separate brobjelker med konstant eller varierende avstand mellom seg, der brobjelkene videre er forbundet med tverrbjelker (7) eller annen avstivning, idet skråstag (8) og hengestenger (9) er festet til tverrbjelkene (7) eller brobjelkene (6), slik at hengestengene, hoved kabelen og tverrbjelkene eller annen avstivning danner et trekantformet bæresystem i et vertikalplan på tvers av broen.1. Bridge comprising tower, bridge girder, main cable as well as suspension rods and inclined stays, where the bridge comprises a serial combination of a cantilever bridge (4) and a suspension bridge (5) as well as at least one centric main cable (2), where the suspension bridge part (5) is located between the cantilever bridge parts (4), characterized in that the bridge span (6) comprises two or more separate bridge girders with a constant or varying distance between them, where the bridge girders are further connected by cross beams (7) or other bracing, as inclined struts (8) and suspension rods (9) are attached to the cross girders ( 7) or the bridge girders (6), so that the suspension rods, the main cable and the cross beams or other bracing form a triangular support system in a vertical plane across the bridge. 2. Bro ifølge krav 1, karakterisert ved at den også omfatter en fritt-frambyggbrodel (3), der fritt-frambyggbrodelene (3) er anordnet nærmest tårnene (1) før skråstagbrodelene (4).2. Bridge according to claim 1, characterized in that it also comprises a free-standing bridge part (3), where the free-standing bridge parts (3) are arranged closest to the towers (1) before the cantilever bridge parts (4). 3. Bro ifølge krav 1 eller 2, karakterisert ved at tårnene danner sentriske monotårn (1) eller andre tårnkonstruksjoner, der de to eller flere brobjelkene (6) forløper på ut-siden eller gjennom av de sentriske monotårnene (1) eller andre tårnkonstruksjoner.3. Bridge according to claim 1 or 2, characterized in that the towers form centric monotowers (1) or other tower constructions, where the two or more bridge beams (6) run on the outside or through the centric monotowers (1) or other tower constructions. 4. Bro ifølge et av de foregående krav, karakterisert ved at den minst ene sentriske hoved kabelen (2) forløper over, gjennom eller på siden av de sentriske monotårnene (1) eller de andre tårnkonstruksjonene, idet hengebrodelen (5) bæres av den minst ene sentriske hovedkabelen (2).4. Bridge according to one of the preceding claims, characterized in that the at least one centric main cable (2) runs over, through or to the side of the centric monotowers (1) or the other tower structures, the suspension bridge part (5) being carried by the at least one centric main cable (2). 5. Bro ifølge krav 2, 3 eller 4, karakterisert ved at skråstag (8) og hengestenger (9) fortrinnsvis er festet på innsiden av brobjelkene (6).5. Bridge according to claim 2, 3 or 4, characterized in that inclined struts (8) and suspension rods (9) are preferably attached to the inside of the bridge beams (6).
NO20034599A 2003-10-14 2003-10-14 Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge NO319800B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NO20034599A NO319800B1 (en) 2003-10-14 2003-10-14 Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge
JP2006535292A JP4388071B2 (en) 2003-10-14 2004-10-08 Bridge structure with fence, bridge, main suspension cable, suspension bar and diagonal cable branch
CNB200480029922XA CN100458015C (en) 2003-10-14 2004-10-08 Bridge structure comprising tower, bridge beam, main/suspension cable, suspending bars, and diagonal cable-stays
KR1020067009058A KR101161657B1 (en) 2003-10-14 2004-10-08 Bridge structure comprising tower, bridge beam, main/suspension cable, suspending bars, and diagonal cable-stays
PCT/NO2004/000305 WO2005035876A1 (en) 2003-10-14 2004-10-08 Bridge structure comprising tower, bridge beam, main/suspension cable, suspending bars, and diagonal cable-stays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20034599A NO319800B1 (en) 2003-10-14 2003-10-14 Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge

Publications (3)

Publication Number Publication Date
NO20034599D0 NO20034599D0 (en) 2003-10-14
NO20034599L NO20034599L (en) 2005-04-15
NO319800B1 true NO319800B1 (en) 2005-09-19

Family

ID=29728975

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20034599A NO319800B1 (en) 2003-10-14 2003-10-14 Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge

Country Status (5)

Country Link
JP (1) JP4388071B2 (en)
KR (1) KR101161657B1 (en)
CN (1) CN100458015C (en)
NO (1) NO319800B1 (en)
WO (1) WO2005035876A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094383A (en) * 2010-12-21 2011-06-15 中铁大桥勘测设计院有限公司 Suspended and cable-stayed combined structural bridge
CN102251465B (en) * 2011-05-03 2012-12-05 张志新 Suspension bridge with bearing cable having X-shaped curve
CN102277831B (en) * 2011-05-13 2012-12-26 大连海事大学 Stay cable structure for cable-stayed bridge
RU2502844C1 (en) * 2012-04-28 2013-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Дальневосточный государственный университет путей сообщения" (ДВГУПС) Hanging bridge
CN103966943B (en) * 2013-01-24 2015-12-16 中交公路规划设计院有限公司 Control the structural system of cable-stayed bridge main-beam, auxiliary pier and transition pier transverse response
CN104264578A (en) * 2014-10-21 2015-01-07 天津市市政工程设计研究院 Steel-concrete combining bridge of self-anchored suspension cable-cable-stayed cooperative system
CN106638270A (en) * 2016-12-01 2017-05-10 中铁第四勘察设计院集团有限公司 Non-complete-shape cable stayed bridge structure
CN106884371B (en) * 2017-04-25 2018-02-16 安徽省交通控股集团有限公司 A kind of non-uniform beam and suspension cable combined bridge structural system
CN107724226B (en) * 2017-11-13 2023-09-12 安徽省交通控股集团有限公司 Four-rope-surface homodromous rotary stay cable-suspension cable cooperation system bridge
CN109371805A (en) * 2018-11-14 2019-02-22 西南交通大学 A kind of large span multitower cable-cabin structure bridge and its construction method
CN111209625B (en) * 2020-01-06 2022-11-25 中铁大桥勘测设计院集团有限公司 Method for determining cable force distribution proportion of cable-stayed sling overlapping area of cooperative system bridge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401285B1 (en) * 1999-05-05 2002-06-11 David C. Morris Undulating support structure bridge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE936144C (en) * 1949-02-26 1955-12-07 Demag Ag Suspension bridges, in particular railway bridges, with stiffening beams and main cables
US4866803A (en) * 1988-10-24 1989-09-19 Nedelcu Lucian I Bridge structure with inclined towers
FR2661434B1 (en) * 1990-04-25 1992-12-11 Scetauroute BRIDGE COMPRISING AN APRON AND AT LEAST TWO PYLONES, AND ITS CONSTRUCTION METHOD.
CN2265223Y (en) * 1996-09-05 1997-10-22 许世光 Building-block type suspension bridge model
US6012191A (en) * 1997-06-30 2000-01-11 Caldwell; H.L. Jack Suspension bridge having a central observation pod and high rise multi-use commercial buildings sandwiched between the bridge support pylons
KR200226456Y1 (en) 2000-12-20 2001-06-15 주식회사천일기술단 A bridge for long spans

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6401285B1 (en) * 1999-05-05 2002-06-11 David C. Morris Undulating support structure bridge

Also Published As

Publication number Publication date
CN100458015C (en) 2009-02-04
JP4388071B2 (en) 2009-12-24
NO20034599D0 (en) 2003-10-14
NO20034599L (en) 2005-04-15
JP2007508483A (en) 2007-04-05
CN1867736A (en) 2006-11-22
KR20060123140A (en) 2006-12-01
WO2005035876A1 (en) 2005-04-21
KR101161657B1 (en) 2012-07-02

Similar Documents

Publication Publication Date Title
NO319800B1 (en) Bridge construction comprising a serial combination of a sloping drawbridge and a suspension bridge
CN109736206B (en) Cast-in-situ bracket structure for bridge side span closure of corrugated steel web continuous beam and construction method
CN211815489U (en) Super large span flying swallow type concrete filled steel tube arch bridge with self-anchoring suspension cable system
CN209162616U (en) Formula main cable suspension bridge structure outside a kind of tunnel immediately adjacent to bridge
CN105088972B (en) Using the rigid frame bridge reinforcement means of short tower deck type Suspension bridge structure system
CN110438881A (en) The three branch mailbox mixing girders and four rope face combined highway and metro cable-stayed bridges worn in bridge tower
CN203247495U (en) Pedestrian rope bridge
CN107841934A (en) Spread the wings and encircle cable-stayed bridge
CN109468941A (en) A kind of curve tower abnormity cable-stayed bridge and its construction method
CN113481818B (en) Through-type arch bridge suitable for ultra-high speed railway
CN205775786U (en) A kind of novel railway curve Cable-stayed Bridge with Slanted Pylon
CN201411627Y (en) Steel-concrete composite tower-beam consolidation kilometer grade multi-span suspension bridge
CN206858966U (en) A kind of truss structure
CN112878171A (en) Large-span steel structure arch bridge and construction method
KR100974306B1 (en) Bridge construction method using node structure hanged with girder
CN109457592B (en) V-shaped canyon long-span railway concrete arch bridge
CN211815595U (en) Lower tower column tension and compression structure for cable tower
WO2005035875A1 (en) Bridge structure comprising tower, bridge beam, main/suspension cable, suspending bars, and diagonal cable-stays
De Miranda Long-span bridges
CN207452680U (en) A kind of curve chord steel truss is put more energy into continuous beam
CN214089518U (en) Double-amplitude four-cable-plane cable-stayed bridge of single-blade hyperboloid single-column tower
CN213653171U (en) Novel decorate half-through bow member structure
CN114319070A (en) Cable-stayed bridge with single-column type leaning tower structure
CN113863114A (en) Cable-stayed bridge with roads and railways in asymmetrical arrangement on same floor
CN103485271B (en) A kind of mountainous rural area People's Bank of China prestressed cable-truss bridge

Legal Events

Date Code Title Description
MK1K Patent expired